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Purpose: The purpose of this work was to find out how the existing brain atlases and 

segmentation algorithms perform when applied to ultrahigh-resolution MR brain 

images, acquired with a 7-Tesla scanner. Also to make adaptations to deal with the 

potential challenges and evaluate the quality of the anatomical segmentations of the 7-

Tesla images.  

 

Materials: A dataset of MR brain images with various resolutions (1mm, 500 m, 250 m non-

averaged & 250 m averaged) shared by Lüsebrink et al. from the 7 Tesla scanner in 

Magdeburg was used.  

 

Methods: Two atlas-based anatomical image segmentation algorithms were applied: Pincram for 

brain extraction and MAPER for labelling multiple brain regions. The resulting brain 

masks and label maps were assessed qualitatively and quantitatively. Visual evaluation 

of the quality of the segmentations was made by the auther and external experts. To 

quantify the consistency of segmentations at the highest resolution, the Jaccard overlap 

coefficient were calculated. 

Shape base averaging (SBA) has been implemented on the MAPER-segmented atlases 

and applied to a 500 m resolution image to improve the appearance of the 

segmentation. It was then compared to Vote Rule decision Fusion (VRF) that is the 

standard method of fusing atlas labels in MAPER.  

Conclusion: MAPER and Pincram work on brain images obtained with a 7-Tesla scanner even 

though the algorithms have been designed for and validated on 1.5 and 3 Tesla. The 

data size at the highest resolution exceed available computational resources, therefore 

images had to be downsampled to 500 m.  

The segment boundaries were smoother with SBA than with VRF and they got more 

pleasant to look at. Some boundaries do get misplaced, so the volume estimation of the 

structures might not be better than with VRF.  
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Introduction  

Magnetic resonance imaging (MRI) is a widely used modality for structural brain imaging due to its 

great contrast between different brain tissues and its high spatial resolution. MR imaging can be carried 

out non-invasively and, unlike X-ray computed tomography (CT), does not expose the study subject to 

ionizing  radiation. Scanners commonly used for clinical purposes operate with field strengths of 1.5 or 

3 Tesla, but recently, 7-Tesla scanners have been introduced. With these, it is possible to acquire MR 

images with ultrahigh resolution. The advantages of having ultrahigh resolution are improved 

visualization of small details, higher signal to noise ratio (SNR), and diminished partial volume effect. 

Such images are, however, more sensitive to artefacts, for example artefacts caused by movements [1]. 

The majority of the scanners with higher field strength than 3 Tesla are used for research, but there is at 

least one 7-Tesla scanner located in North America and one in Sweden used clinically [2]. 

Anatomical segmentation of brain images plays an important role in clinical research. It is used to 

determine the volume of the whole brain as well as its anatomical structures. Volumetric analysis of the 

segmented regions can be used to support diagnosis and track progression of neurodegenerative diseases 

such as Alzheimer’s disease (AD) [3]. For example, pronounced whole-brain shrinking, ventricle 

enlargement, and hippocampal atrophy in particular are characteristics of AD. These changes can be 

detected and quantified in vivo with anatomical brain image segmentation [4]. 

 

Ultrahigh resolution will potentially lead to improved brain image segmentation. More accurate volume 

measurements of brain structures may entail higher sensitivity for diagnosing neurological diseases. It 

may also enable detection of subregional changes in the hippocampus or give rise to structural imaging 

biomarkers with high specificity.  

Manual segmentation of brain images is currently the gold standard in clinical research. The process is 

time consuming and requires profound knowledge about the anatomy of the human brain. Therefore, 

manual segmentation is not suitable for some tasks, especially for analysing a large cohort of subjects. 

For this, the segmentation process needs to be automated. One of the challenges in automatic anatomical 

segmentation is that many anatomical structures of the brain consist of more than one tissue type, leading 

to a mixture of signal intensities within a region in the MR image. Therefore conventional image 

segmentation techniques based on intensity classification are insufficient. One way of achieving 

automatic anatomical segmentation is to propagate a handmade segmentation of one individual to 

another individual’s brain by using image registration to estimate the correspondence between the 

anatomies of the pair [5]. This technique of doing label propagation makes up the basis of MAPER, an 

automatic anatomical brain image segmentation tool [6], and Pincram, a brain extraction tool [7]. 

It has been shown that Pincram and MAPER are robust and accurate when applied to brain images with 

a resolution of approximately 1 mm acquired at 1.5 or 3 Tesla [6, 7]. It is, however, not known how 

these algorithms perform on ultrahigh-resolution images obtained on 7-Tesla scanners. The potential 

benefits of anatomical segmentation of the brain on ultrahigh-resolution images thus have not yet been 

quantified. The scope of this thesis was to evaluate the segmentation of brain images with ultrahigh 

resolution. The comparison of the segmented 7-Tesla images with the segmented 3-Tesla images is left 

to future studies.  

The aims of this thesis project were 1) to find out how the existing brain atlases and segmentation 

algorithms perform when applied to ultrahigh-resolution MR brain images; 2) to identify necessary 

adaptations to deal with the potential challenges that such images pose; and 3) to validate the results of 

the segmentation of ultrahigh-resolution MR brain images. 
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Materials and Methods 

Dataset 

Atlases 
An atlas is defined as an intensity image (MR image) and a delineated region (or regions) of interest 

(label) in that image. Typically, an atlas is created by an expert who manually traces the region of interest 

on each image slice. Brain atlases can be used as an aid to trace brain anatomy by unexperienced 

observers. Atlases have also become commonly used in the domain of automated anatomical brain 

image segmentation. Due to the variations in shape and size of individual brains and brain structures, 

availability of numerous atlases improves the ability to capture inter-subject anatomical variability. 

The brain atlases used to carry out the automatic anatomical segmentation of the target brain were 

created by Hammers et al [8-11]. The atlases were made by manually segmenting 30 MRI brain scans 

of 30 healthy adults. Each atlas consists of 95 segments that have been delineated by trained experts in 

several phases.  

An example of how the manually segmented brain image can look like is shown in Figure 1. To the left 

is an axial section of atlas number 27 from the Hammers atlas, and to the right is a zoomed-in image of 

the upper right part of the image.  

   

Figure 1. An axial slice of atlas number 27 from the Hammers atlas with a zoomed-in image of the top right part of the 

image. 

7T dataset  
The 7-Tesla dataset used consisted of T1-weighted whole-brain images of a single healthy subject (born 

1982) acquired at the 7-Tesla facility in Magdeburg, Germany, and publicly shared by the investigators. 

Full technical details are available in the data paper by Lüsebrink et al. [12]. Briefly, eight ultrahigh-

resolution brain volumes were acquired in five sessions with a resolution of 250 m and averaged. In 

two additional sessions, images with lower resolution (1 mm and 0.5 mm, respectively) were acquired. 

Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) sequence and prospective motion 

correction were used. Optical Moiré phase tracking was used to accomplish prospective motion 

correction. 
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The reconstructed volumes were corrected for field inhomogeneities using a customized script for 

Statistical Parametric Mapping (SPM). To align the anterior commissure (AC) and posterior commissure 

(PC) in the same axial slice “acpcdetect” from the Automatic Registration Toolbox (ART) [13] was 

applied. For three of the sessions, more than one volume of the brain was acquired and averaged after 

rigid registration. Before averaging of the images, they were aligned with a diffeomorphic registration 

method from the Advanced Normalization Tools (ANTs) [14].  

One notable difference between the images acquired at 7 Tesla respectively 3 Tesla with the MPRAGE-

sequence is that the cross-section of the vessels appears as white dots in the T1-weighted 7-Tesla images. 

This is because of the lack of body RF transmit coils for the 7-Tesla scanner. When the body coil is used 

for the 3-Tesla scanner, the blood will be inverted far from the imaging volume (the head). In contrast, 

the blood does not get inverted until it reaches the head when not using a body coil in the 7-Tesla scanner 

[15].  

Pincram  

The main purpose of Pincram is to create a brain mask in the target image that distinguishes brain voxels 

from adjacent tissue- and background voxels. The brain mask can be used to estimate the volume of the 

brain, or to perform further segmentation within the brain mask. Pincram also has the ability to calculate 

and show the accuracy of the segmentation. It determines the “success index” by calculating the Jaccard 

coefficient (see below) between the final fused brain mask and the brain mask generated first in the prior 

iteration. 

Pincram is an algorithm that propagates multiple atlases and iterates from coarse to more refined image 

registration to find the most accurate delineation of the target brain. In the first iteration, the brain labels 

are propagated by rigid registration. In the second iteration, an affine image registration is used, and the 

last – a non-linear registration is applied [7]. 

The difference between the three image registration types is the number of degrees of freedom used 

when registering two different images. Rigid registration has six degrees of freedom which is translation 

and rotation in three dimensions. In addition to the six degrees of freedom of the rigid registration, affine 

registration has six more degrees of freedom, being scaling and shearing in three dimensions. The 

degrees of freedom for the non-linear registration depends on how many control points are used and the 

spacing between the control points. Decreasing the space between the control points leads to more 

degrees of freedom [16]. 

The following procedure is repeated at every refinement level to generate a brain mask and select a 

subset of the atlases to be used in the subsequent level (a schematic overview is shown in Figure 2). 

First, the label sets are propagated to the target brain using the current registration type. The generated 

label sets are then fused in the geometrical space of the target image by summation, thresholding and 

binarization to create an estimated brain mask of the target brain (Cl). A margin mask (Ml) consisting of 

all voxels in the vicinity of the estimated brain mask boundary (up to a distance of four voxels) is created. 

By comparing the target image with every transformed atlas image within the margin mask, a ranking 

of the atlases is obtained. The atlases that are most similar to the target within the margin region are then 

used in the next level. To make the subsequent level more precise, a second brain mask is created by 

thresholding and binarizing the fuzzy label (Fl) that has been created by summing the most similar 

transformed labels. The voxels with values between 15% and 99% in the fuzzy label are converted to 1 

and the rest of the voxels to 0 to create the second margin mask (M’l). The second margin mask is then 

applied to the target to determine the parameters for the registration in the subsequent level. This ensures 

that the margin used for the ranking of the atlases contains the true boundary of the target brain [7].  
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Figure 2. Flow chart of the iterative procedure of the Pincram algorithm [7].  

 

MAPER 

MAPER is a whole-brain segmentation algorithm that also propagates multiple atlases to the target brain 

with image registration. Before the target image can be segmented, brain extraction and bias field 

correction are applied as pre-processing steps. The brain extraction can be done with Pincram. Each 

atlas is aligned with the target image, first with rigid, then affine and finally non-linear registration 

creating n possible label maps for the target. Every voxel in the target image has n label values 

corresponding to the n atlas labels at that voxel. The final decision which label is assigned to a given 

voxel is made by vote-rule decision fusion (VRF) [5, 6] that assigns the label indicated by the majority 

of the atlases [17].  

Jaccard coefficient 

The Jaccard coefficient (JC) is a measure of the overlap between two labels (A and B). It is defined as 

the intersection of the labels divided by the union of the labels, 

 
JC =  

|A ∩ B|

|A ∪ B|
 (1) 

and takes a value between 0 and 1. The intersection (left) and union (right) of the labels are schematically 

shown in Figure 3. In the ideal case where the segments completely overlap each other, the ratio becomes 

1 and it becomes 0 if they do not overlap at all.  
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Figure 3. Left: The intersection between section A and B. Right: The union of section A and B.  

 

Ultrahigh-resolution image 

Pincram 
The eight ultrahigh-resolution (250 m) images acquired at five different sessions and the average 

between the eight images were downsampled to 500 m with cubic interpolation. This was necessary 

because Pincram processing at the native resolution failed due to excessive runtime requirements at the 

shared cluster of CPUs used. To segment one 250 m image with 30 atlas images, a full node with 32 

CPU cores would have been occupied for 360 hours, which would potentially have blocked more than 

900 processes by other users. Visual assessments of how well the brain masks delineate the brain were 

carried out for the original 500 m resolution image and the downsampled images. The Jaccard overlap 

coefficients were calculated to determine the level of agreement between the 9 brain masks that were 

acquired with the downsampled images.  

MAPER  
The downsampled, ultrahigh-resolution images and their corresponding brain mask made with Pincram 

were used to carry out brain segmentation with MAPER. The segmentation of the brain images with 

ultrahigh resolution was visually compared with each other and with the segmented 500 m resolution 

brain image. To get a measure of the similarity between the segmentations of all of the downsampled 

images, the mean Jaccard coefficient of all 95 segments were calculated between the segmentations of 

all the 9 downsampled images.  

The 8 segmentations of the downsampled non-averaged images were fused with VRF and then applied 

to the averaged image with 250 m resolution. The mean Jaccard overlap coefficients for all 95 segments 

were calculated between the fused segmentation and 9 MAPER segmentations acquired with the 

downsampled images.  

Shape-based averaging  

Instead of using VRF when fusing the atlases in the scripts for MAPER and Pincram, other methods can 

be used. One of the methods is the shape-based averaging (SBA) method that has been shown to produce 

more regular and contiguous labels than VRF [18].  

SBA is a distance transform that is based on the distance maps (Euclidean distance) for each label in 

every atlas segmentation used. In the Euclidean distance map, voxels inside the labels have negative 

distances to the edge of the segment, and those outside have positive distances. The mean distance is 
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calculated for every voxel position (𝑥⃗) to the current label (𝑙) by summing the voxel values (𝑑𝑘,𝑙) for all 

the atlases and dividing it by the total number of atlases (𝐾),  

 𝐷𝑙(𝑥⃗) =
1

𝐾
∑ 𝑑𝑘,𝑙(𝑥⃗)

𝐾

𝑘=1

 (1) 

   

To get an output that consists of all the labels (𝑆(𝑥⃗)), SBA is iteratively computed by minimizing the 

mean distance (𝐷min(𝑥⃗)) over all labels like in Figure 4.  

 

 

 

Figure 4. Rohlfing’s pseudocode representation of the SBA-algorithm [18].   

 

The iterative algorithm in Figure 4 was implemented and applied segment by segment (i.e. 95 times) to 

combine the 30 atlas segmentations. The algorithm was written in Bash shell script using the Medical 

Image Registration Toolkit (MIRTK) [19] and the “seg_maths”-tool from the NiftySeg package [20]. 

SBA was used on the 7-Tesla image with 500 m resolution. The segmentation done with SBA was 

visually compared with the VRF-segmentation of the same brain image. The Jaccard coefficient 

averaged over all labels between SBA and VRF was calculated to get a measure of the similarity between 
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the different types of fusing the segmentations of the target image acquired with MAPER. To get a better 

understanding of which one of SBA and VRF gives the most accurate segmentation, they were visually 

compared with two of the manually segmented brain images (#27 and #28).  

Internal visual evaluation 

The first step in evaluating the quality of the segmentations was to review the segmentations in the 

context of the MR image to assess the visual impression subjectively. Rview from MIRTK (called view 

in recent versions), a software that enables review of an MR image volume in three orthogonal planes, 

was used. Segmentations superimposed as label outlines differentiated by colour on the image made it 

possible to notice large differences from the brain anatomy. The disparity between the labels and brain 

anatomy was written down for all of the target images.  

 

When comparing segmentations with various resolution, the 500 m image with the segmentation 

superimposed as label outlines differentiated by colour was opened in rview. In another window of 

rview, the 250 m images were opened one by one with their coloured labels from the 250 m that were 

downsampled to 500 m. Written notes were taken of the differences between the 500 m segmentation 

and all of the segmentations of the 250 m that were downsampled to 500 m to see if they all differed 

the same from the original 500 m segmentation. The 1 mm segmentation was only compared with the 

500 m segmentation in the same way as previously explained.  

Visual evaluation by external experts  

Four expert visual raters, chosen by the main supervisor’s recommendation, were asked to rank a subset 

of the segmentations based on visual impression of quality on sample sections, and to explain how they 

were thinking. Table 1 lists the four images for which Pincram masks were shown, as well as the three 

images for which MAPER segmentations were shown. The questionnaire that were sent to the experts 

can be found at soundray.org/questions-experts.html. 

The ranking points of the segmentations from all four experts were summed up and divided by the total 

number of experts to generate a mean score. The relative score was then calculated by dividing the mean 

score by the total amount of images of each slice.  

 

Table 1. Lists of which images were shown for the experts to rank.   

Pincram MAPER 

1 mm resolution 250 m resolution, averaged 

500 m resolution 500 m resolution 

250 m resolution, non-averaged 500 m resolution, SBA 

250 m resolution, averaged  

 

http://soundray.org/questions-experts.html
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Results  

Ultrahigh-resolution image 

The following images that have ultrahigh resolution are the original images with 250 m cubic voxels, 

but with segmentations that have been acquired with the downsampled 500 m version of the ultrahigh-

resolution images. There was no visual difference between the original and downsampled images at the 

required zoom level. Comparison was made with all of the 8 images acquired at 5 different sessions. 

The one used to represent them below is the image acquired at the first session. The image that is called 

“the averaged image” in the following sections is the image that is an average of the 8 original images 

with 250 m cubic voxels.  

Pincram 
When comparing the Pincram segmentations of the 9 downsampled images, the one with 500 m 

resolution and the one with 1 mm resolution, significant differences were observed in the superior and 

inferior regions of the brain. 

In the upper part of the brain, it was the downsampled, ultrahigh-resolution, non-averaged image  that 

had the best-fitting brain mask to the parenchyma of the brain. The same was observed in all of the non-

averaged images, and image c in Figure 4 shows one of them. In the averaged image (d), it could be 

seen that the brain mask deviated further from the cortex surface than in both the non-averaged images 

and the image with 500 m resolution (b). In image a in Figure 5, it was the brain image with 1 mm 

resolution which excluded more of the sulci than the non-averaged image. It did seem to have a better 

fit to the parenchyma of the brain than both the 500 m resolution image and the averaged one.  

In the inferior brain regions, the segmentation acquired with the downsampled ultrahigh-resolution 

images, both the averaged (d) and non-averaged images (c), seemed to exclude a portion of cerebellar 

tissue compared to the segmentations from the 500 m resolution (b) and 1 mm resolution images (a). 

The exclusion seemed to be greater for all 8 of the non-averaged images compared to the averaged. An 

axial slice of the lower part is represented in Figure 6.  

Around the anterior part of the brain in the section shown in Figure 6, the structures were not as clear in 

the ultrahigh-resolution images as in the 500 m resolution image. So the brain masks acquired with the 

downsampled non-averaged and averaged images also seemed to exclude some of that part of the brain. 

In the 1 mm resolution image, the delineation of the cerebellum included more voxels that did not 

contain brain tissue compared to the image with 500 m resolution. In the frontal part of the brain, the 

1 mm resolution image looked more accurate than the non-averaged and averaged images with 250 m 

resolution.  
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a. b.  

c. d.  

Figure 5. a. Axial slice in the upper part of the brain image with 1 mm resolution and the brain mask acquired with Pincram. 

b. 500 m resolution image and the corresponding Pincram brain mask. c. One of the non-averaged images with 250 m 

resolution and the Pincram brain mask acquired with the downsampled version of the same image. d. The averaged image 

with 250 m resolution and the Pincram brain mask acquired with the downsampled version of the same image. 
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a. b.  

c. d.  

Figure 6. a. Axial slice from the lower part of the brain image with 1 mm resolution and the corresponding brain mask 

acquired with Pincram. b. The 500 m resolution image and the corresponding Pincram brain mask. c. One of the non-

averaged images with 250 m resolution and the Pincram brain mask acquired with the downsampled version of the same 

image. d. The averaged image with 250 m resolution and the Pincram brain mask acquired with the downsampled version 

of the same image. 

 

 

In Table 2, the Jaccard coefficients for the overlap between the brain masks for all of the downsampled 

ultrahigh-resolution images are shown. 0.970 was the highest JC and it was between the two runs in 

Session 4. The lowest JC was 0.908 and represented the overlap between the first run in Session 2 and 

the first run in Session 5. The mean JC of all the calculated JC’s in the table was 0.940.  
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Table 2. The Jaccard coefficients for comparison of all of the MAPER-segmentations acquired with the downsampled 

ultrahigh-resolution images. s-01 to s-05 are session numbers as provided in the public dataset. The red numbers are the 

extreme values of the calculated Jaccard coefficients.  

 
s-01 

s-02 

run-01 

s-02 

run-02 
s-03 

s-04 

run-01 

s-04 

run-02 

s-05 

run-01 

s-05 

run-02 

Averaged 

Image 

s-01 1 0.940 0.941 0.952 0.949 0.948 0.920 0.928 0.947 

s-02 

run-01 
0.940 1 0.917 0.948 0.962 0.960 0.908 0.920 0.955 

s-02 

run-02 
0.941 0.917 1 0.946 0.927 0.929 0.940 0.938 0.936 

s-03 0.952 0.948 0.946 1 0.956 0.957 0.929 0.938 0.965 

s-04 

run-01 
0.949 0.962 0.927 0.956 1 0.970 0.913 0.923 0.960 

s-04 

run-02 
0.948 0.960 0.929 0.957 0.970 1 0.916 0.927 0.963 

s-05 

run-01 
0.920 0.908 0.940 0.929 0.913 0.916 1 0.960 0.918 

s-05 

run-02 
0.928 0.920 0.938 0.938 0.923 0.927 0.960 1 0.930 

Averaged 

image 
0.947 0.955 0.936 0.965 0.960 0.963 0.918 0.930 1 

 

 

MAPER 
When visually comparing the segmentation of the brain image with 500 m resolution with the brain 

segmentation of the downsampled ultrahigh-resolution images, the most significant differences in the 

segmentations were found in the middle and inferior parts of the brain.  

For the non-averaged images with ultrahigh resolution, the ventricles showed more irregular boundaries 

and a smaller volume than the image with 500 m resolution (b in Figure 7), the averaged image (d in 

Figure 7) and the 1 mm resolution image (a in Figure 7). Image c in Figure 7 shows one of the non-

averaged images to show this effect. The same effect could be seen on the segmentation acquired with 

VRF of the 8 segmentations acquired with the downsampled non-averaged images (e in Figure 7), but 

the boundaries for the ventricles were not as irregular as for the downsampled non-averaged image.  
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a.  

b. c.  

d. e.  

Figure 7. a. Axial slice in the middle of the brain image with 1 mm resolution and the anatomical segmentation acquired with 

MAPER. b. The 500 m resolution image with the corresponding MAPER-segmentation. c. One of the non-averaged images 

with 250 m resolution and its corresponding MAPER-segmentation acquired with the downsampled version of the same 

image. d. The image that has been averaged from the 8 non-averaged images with 250 m resolution and the MAPER-

segmentation done with the downsampled version of the image. e. The averaged, ultrahigh-resolution image with the VRF of 

the segmentations of the 8 non-averaged images. 
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The cerebellum and brainstem were delineated in the slice shown in Figure 8. For all 8 downsampled 

ultrahigh-resolution images (c), the size of the cerebellum was underestimated compared with the 

segmentation acquired with the 500 m resolution image (b), the 1 mm resolution image (a) and the 

segmentation of the downsampled averaged image (d). The 8 non-averaged images did not 

underestimate the size of the cerebellum as much as the VRF of the 8 segmentations acquired with the 

downsampled, non-averaged images (e) did. So the best segmentation of this region of the brain was 

achieved with the 500 m resolution image.  

The mean calculated Jaccard coefficients for all 95 segments between all of the downsampled 250 m 

resolution images can be seen in Table 3 in the light grey cells. The largest overlap was between run 

one and two in Session 4 with a mean JC of 0.836. The smallest overlap was between run one and two 

in Session 2 with a mean JC of 0.640. The mean of all the JCs in the table is 0.740. The darker grey cells 

in Table 2 contain the mean Jaccard coefficients for all 95 segments between the VRF of the 8 MAPER 

segmentations of the non-averaged images and the rest of the segmentations. For the VRF segmentation, 

the largest overlap was with the image acquired is Session 3 with a JC of 0.877 and the least overlap 

was with the first run of Session 5 with a JC of 0.769.  
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a.  

b. c.  

d. e.  

Figure 8. Axial sections in the region of the cerebellum. Light blue: right cerebellum; brown: left cerebellum; dark blue: 

brainstem. a. Segmentation at 1 mm resolution. b. Segmentation at 500 m resolution. c. One of the 250 m images with the 

segmentation acquired with the downsampled version of the same image. d. The averaged 250 m resolution image with the 

segmentation acquired with the downsampled version of the image. e. The averaged ultrahigh-resolution image with the VRF 

of the segmentations of the 8 non-averaged images. 
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Table 3. The mean JC for all 95 segments between the 8 images from the non-averaged and the averaged image, all obtained 

on downsampled ultrahigh-resolution images. Extreme values of the Jaccard coefficients in the lighter grey cells are the red 

numbers. The darker grey cells contains the mean JC for all 95 segments between the VRF segmentation and the 

segmentations acquired from the rest of the downsampled images. The highest Jaccard coefficient over all is the yellow 

value. 

 

s-01 

s-02 

run-

01 

s-02 

run-

02 

s-03 

s-04 

run-

01 

s-04 

run-

02 

s-05 

run-

01 

s-05 

run- 

02 

Averaged 

image 

VRF 

of all 8 

runs   

s-01 1 0.720 0.724 0.772 0.759 0.758 0.693 0.707 0.747 0.824 

s-02 

run-01 
0.720 1 0.640 0.764 0.788 0.778 0.646 0.679 0.749 0.789 

s-02 

run-02 
0.724 0.640 1 0.734 0.687 0.702 0.780 0.752 0.708 0.776 

s-03 0.772 0.764 0.734 1 0.791 0.799 0.729 0.752 0.788 0.877 

s-04 

run-01 
0.759 0.788 0.687 0.791 1 0.836 0.671 0.711 0.810 0.840 

s-04 

run-02 
0.758 0.778 0.702 0.799 0.836 1 0.690 0.731 0.817 0.857 

s-05 

run-01 
0.693 0.646 0.780 0.729 0.671 0.690 1 0.792 0.690 0.769 

s-05 

run-02 
0.707 0.679 0.752 0.752 0.711 0.731 0.792 1 0.740 0.803 

Averaged 

image 
0.747 0.749 0.708 0.788 0.810 0.817 0.690 0.740 1 0.818 

VRF of 

all 8 runs   
0.824 0.789 0.776 0.877 0.840 0.857 0.769 0.803 0.818 1 
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Shape-based averaging  

Figure 9 illustrates the visual differences between VRF and SBA. The figure shows the three axial slices 

which contained the largest differences between VRF and SBA of the original 500 m resolution image 

as judged visually. For all three slices, the left image was the one where the segments have been fused 

with VRF and the right with SBA. The overlap between the labels measured as an averaged JC over all 

labels was 0.89 between VRF and SBA.  

In the first and most cranial slice, the biggest difference between the segmentations was the lines 

separating the superior frontal gyrus (darker green & light-blue) and the precentral gyrus (lighter green 

& red) on both sides of the brain. The label boundary voxels were much more scattered for the VRF 

than for the SBA segmentation. In general, the SBA-generated segments had smoother lines. In the 

second slice, there was one small and yellow segment that was surrounded by the green, superior frontal 

gyrus on the left side of the brain in the figure. The yellow region got much smaller with SBA than with 

VRF. In the third slice, the largest difference was in the posterior half of the brain where the lines 

between segments were much smoother for the SBA than the VRF segmentation.  
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Figure 9. Three axial slices of the same brain image with 500 m resolution. Anatomical segmentations generated with 

different methods are superimposed. The left segmentation is done with VRF and the right one with SBA. 

 

VRF SBA 
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Figure 10 shows the VRF segmentation on the left and SBA on the right. It is zoomed in to get a better 

view of how SBA diminishes the uncertainties in the boundaries between labels and smoothens the lines. 

In the uncertain regions, SBA tended to move the boundary between labels and cut off parts of one of 

the structures as in the red circles in Figure 10.  

 

  
   

Figure 10. Zoomed-in images of the segmented brain with 500 m resolution acquired at 7 Tesla. Segmentation done with 

VRF to the left and with SBA to the right. The red circles highlights the displacement of the lines between the structures for 

VRF compared to SBA. 

 

Another phenomenon that was noticed in the bottom row of Figure 9 was that SBA sometimes splits a 

structure in two where the VRF segmentation was uncertain of which label the local structure belongs 

to. Figure 11 shows the zoomed in images of the splitting of a structure for SBA compared to the same 

region of the VRF segmentation. Several instances of this effect have been noticed all over the brain. 

VRF SBA 



 

 19 

  
   

Figure 11. Zoomed in images of the segmented brain with 500 m resolution acquired at 7 Tesla. Segmentation done with 

VRF to the left and with SBA to the right. The red circle highlights the splitting of the structure for SBA compared to VRF 

that has more irregularity between the segments.   

 

Visual evaluation by external experts  

The Pincram brain mask that received the lowest score (Table 4) of the ones that were shown in the 

questionnaire (Q1 in soundray.org/questions-experts.html) was the segmentation acquired with the 

1 mm resolution image and therefore had the best visual impression of quality according to the experts. 

Their motivation for this decision was that the outer cortex delineation looked better than the other 

segmentations. The MAPER segmentation of the segmentations shown in the questionnaire (Q2 in 

soundray.org/questions-experts.html) according to the experts was the segmentation acquired with 

the downsampled averaged 250 m resolution image because of the superior delineation of the thalamus 

compared to the other segmentations. The segmentation of the downsampled averaged image with 

ultrahigh resolution got the best score in Q2 and the worst in Q1.  
  

VRF SBA 

http://soundray.org/questions-experts.html
http://soundray.org/questions-experts.html
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Table 4. Individual ranking of each segmentation done by the experts and the mean score for each segmentation.  

Pincram Person1 Person2 Person3 Person4 

Mean 

score 

(sum/#persons) 

Relative 

score  

(mean/#images) 

1 mm resolution 1 1 1 2 1.25 0.31 

500 m resolution 2.5 3 4 4 3.4 0.85 

250 m resolution, 

non-averaged 
2.5 2 2 1 1.9 0.48 

250 m resolution, 

averaged 
4 4 3 3 3.5 0.88 

MAPER Person1 Person2 Person3 Person4 

Mean 

score 

(sum/#persons) 

Relative 

score  

(mean/#images) 

500 m resolution 3 3 3 3 3 1 

500 m resolution, 

SBA 
2 2 2 1 1.75 0.58 

250 m resolution, 

averaged 
1 1 1 2 1.25 0.42 
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Discussion  

MR scanning with 7 Tesla opens up new possibilities to study the anatomy of the human brain due to 

the high resolution achievable. There are some challenges using a 7 Tesla scanner for brain scans. The 

loss of signal in the inferior part of the brain due to the absence of a body coil led to lower SNR in the 

part where the fine structure of the cerebellum would need less noise to clearly be seen.  

The present study is an investigation of automatic multi-atlas based anatomical segmentation methods 

applied to structural MR brain images acquired at 7 Tesla. It seems to be the first evaluation of its kind. 

The in-house developed algorithm that was used had previously only been applied to images acquired 

at 1.5 and 3 Tesla for clinical research purposes [21]. It was therefore unclear how well the algorithm 

and the atlases containing images acquired at 1.5 Tesla would work on images acquired at 7 Tesla. 

Would it even be possible, or would it require changes in the software or even new atlases?  

Thanks to the extensive 7-Tesla data publicly shared by Lüsebrink et al., high quality 7-Tesla images 

with high resolution were available for this study. Their work shows that it is possible to obtain MR 

images with ultrahigh resolution without any major artefacts due to their advanced image processing, in 

particular their method for motion correction. Their comprehensive work with image processing made 

the present work easier because images were ready to be used immediately, rather than having to develop 

a preparation pipeline before the segmentation.  

When applying SBA to the segmentation acquired with the 500 m resolution image, the boundaries 

between the labels got much smoother and more pleasant to look at than with VRF.  

The experts could tell if a specific structure was well segmented or poorly segmented without knowing 

which structure it was supposed to delineate which means that the algorithm is doing its job. The level 

of agreement between the experts was strong and they ranked the segmentations nearly identical.  

Ultrahigh-resolution image 

One of the segmentations acquired with one of the non-averaged images was shown in every Figure in 

the result. The reason for that was because they all had the same characteristics and underinclusions. 

The slices from the different acquisitions were approximately the same. Because of the different number 

of voxels in the 500 m resolution image and the 250 m resolution image, anatomical marks were used 

to find the same region of the images instead of the number of the current slice.  

MAPER segmentations were strongly conditioned on the brain mask generated with Pincram, therefore 

the most outer lines were almost the same as the corresponding Pincram brain mask for all of the images 

in Figure 7 and 8.  

The cerebellum turned out to be a problem region when Pincram and MAPER were applied to the 

downsampled ultrahigh-resolution images. It was distinctly underestimated, with underinclusions 

toward the anterior and inferior parts. On images with 1 mm and 500 m resolution, this problem was 

also present, but on a smaller scale. Again, the problem appeared at the Pincram stage. MAPER relies 

on the corresponding brain mask, which places the cerebellar boundary inside the cerebellum (Figure 

6), probably because the noise level in the non-averaged ultrahigh-resolution images increases 

substantially in the superior-inferior direction, and more so than in the 500 m image.  

With available software, it was not possible to calculate the JC between the segments that had been 

acquired on images with different resolution. That is why the JC was only calculated for the 

downsampled 250 m, both non-averaged, averaged and the VRF of the 8 MAPER segmentations of 

the non-averaged images. The mean JC for all non-averaged images and the averaged image was higher 

for Pincram (0.940) than for MAPER (0.740). This is because of the size of the segments. Smaller 

segments and higher surface-to-volume ratio as in the MAPER segmentation generates a lower JC than 
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for the Pincram brain mask. Both for Pincram and MAPER, the highest JC was between the two runs in 

the fourth session which suggests that the time between the scans has an impact of the anatomy of the 

brain. There are, however, various variables that could have changed between scans and are hard to 

control. A case in point is that the lowest JC for MAPER was between the two runs in the second session. 

The difference between segmentations might have to do with the positioning and the movement of the 

subject, which have a greater impact on the images with high resolution. It is clear that the segmentations 

varied a lot because of the relatively low JC. Also, the range from the lowest to the highest JC was quite 

large for MAPER, with an interval of almost 0.2. For Pincram, the range interval was modest at 0.06. 

The highest JC for the VRF of the MAPER segmentations of the 8 non-averaged images was 0.877 with 

the MAPER segmentation acquired with the image from Session 3. This does not say much of how 

accurate the segmentation of the VRF version was, but it shows that the image that looks the most like 

the VRF of the segmentations of the non-averaged images was the one from the third session. In Figure 

7 and Figure 8, it can be seen that the VRF did not delineate the parenchyma as tightly as for the other 

images in the middle part of the brain. It also underestimated the size of the cerebellum more than the 

segmentation of the averaged image. That is why I choose not to show this segmentation to the experts.  

Even though the segmentations were acquired with the downsampled images and not the original 

ultrahigh-resolution images, the segmentations would probably not have been better with the original 

ultrahigh-resolution images than the 500 m resolution image. The reason for this speculation is that 

there was no visual difference between the downsampled and the original ultrahigh-resolution images. 

That is why the segmentations acquired with the downsampled images were assessed on the original 

ultrahigh-resolution images. What happens when doing so is that the segmentation only changes every 

other slice when scrolling through the volume. So, there would probably have been a difference in the 

segmentations of the original ultrahigh-resolution images compared to the downsampled, but the 

segmentations would probably not have been as good as for the 500 m resolution image.  

SBA 

In the segmentation of the 500 m resolution image acquired at 7 Tesla, irregular and scattered boundary 

voxels were noticed in several places. The manual segmentation protocols were formulated to imply 

that region labels should be continuous, there should be only one connected component per region. 

Visible irregularities in an automatic segmentation, therefore, suggest that something is wrong. The 

irregularities also distract the viewer, meaning that the labels stop being helpful for the viewer’s 

anatomical orientation in the brain image. 

Rohlfing et al. showed that shape-based averaging produces more regular and contiguous structures than 

VRF [18]. These results prompted me to implement SBA and to test whether the resulting labels would 

appear more consistent to the human eye and easier to distinguish from their neighbours. Indeed, 

applying SBA instead of VRF when segmenting the 500 m resolution MR brain image acquired at 7 

Tesla with MAPER resulted in smoother lines between the segments as shown in Figure 9, just as 

Rohlfing et al. suggested.  

Between certain segments, the boundary was, however, clearly misplaced when using SBA (Figure 10). 

The reason for this misplacement may be that it was a strongly curved shape with large variations across 

the 30 atlases used for the MAPER segmentation. This means that the mean distance map of all 30 

different segmentations of the pink area got smaller values than the green area in the region with grey 

matter in this case. Unlike in VRF, in SBA even the least similar atlas segmentation contributes to the 

final segmentation. Rohlfing et al. also claim that SBA has trouble dealing with high levels of intensity 

noise and requires the images to have the same grey level [18]. That might be a part of the reason why 

the fusion with SBA does not get as close to the fusion with VRF as wished for.  

The fact that SBA divided the gyrus in Figure 11 is not so surprising. Figure 1 shows the corresponding 

section in one of the atlases. The appearance of the boundary dividing the structure is similar. This is 
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because the blue segment (left middle frontal gyrus) transitions into the purple segment (left inferior 

frontal gyrus) while scrolling from the most cranial slice and down. The transition became much 

smoother looking in the SBA segmentation than in both the VRF and the manual segmentation. This 

does not necessarily mean that it is the best volume estimation of the segments.   

Visual evaluation by external experts  

It was hard to draw any conclusions about which was the most accurate Pincram brain mask in the upper 

part of the brain (Figure 5) and the MAPER segmentation of the middle part of the brain (Figure 7). 

That is why some of them were to show to experts, to get a sense of which image and method are the 

best when segmenting the brain.  

The segmentation of the downsampled averaged image with ultrahigh resolution was included in both 

Q1 and Q2 in the questionnaire. It received the best rating in Q2 and the worst in Q1, which means that 

the best image to use for segmentation of the brain with Pincram may be different from the best image 

to use with MAPER.  

All four experts commented that it was challenging to rank the images. Their answers were nevertheless 

quite similar, which indicates that the assessment results are valid and that some image types were 

clearly better than others. Also, the fact that experts had trouble deciding on a ranking means that no 

segmentation had totally failed and that further evaluation of all segmentations is justified.  

Another thing that two of the experts noticed was that the subject had unusually large sulci for a healthy 

person under the age of 40, implying that the subject has some degree of brain atrophy. This might affect 

the result of atlas-based brain segmentation if atrophy-related anatomical variation is not represented in 

the atlas. However, Pincram and MAPER have been designed to be robust for use in studying 

neurodegeneration and have been extensively used on, for example, images of elderly subjects with 

Alzheimer’s disease [6, 22]. It is an indication that the accuracy of the segmentations was probably not 

affected by the atrophy noted.  

The questionnaire that was shown to the experts only included axial slices of the brain which makes it 

harder to obtain a visual impression of the quality of the segmentations. The fact that it only showed a 

single brain section per question also made ranking the segmentations hard. The level of agreement 

between the experts is encouraging, but it is possible that a differently designed questionnaire would 

have yielded different results. For example, it would be desirable to show the whole brain image so that 

the segmentation of the whole brain could be evaluated. Doing a more comprehensive quality evaluation 

would be optimal, but would have exceeded the scope of this project.  

Next step 

Two things that neither SBA nor VRF take into account when fusing the segmentations that are acquired 

with MAPER using the atlases are the texture of the structures and the intensity in the image. A group 

of students at Chalmers University of Technology is currently working on incorporating texture 

attributes in the process of fusing the segmentation. Texture attributes are obtained by comparing the 

neighbouring voxels to each other.  

To be able to run the ultrahigh-resolution images it would be beneficial to parallelize the image 

registration algorithms so that the process time and memory demands can better be adapted to the 

available hardware. The comparison between the segmentation of 7-Tesla images with the segmentation 

of 3-Tesla images exceeded the scope of this thesis but would be interesting to carry out due to the 

artefacts arising when using 7-Tesla scanners.   
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Conclusion 

MAPER and Pincram work on brain images obtained with a 7-Tesla scanner even though the algorithms 

have been designed for and validated on 1.5 and 3 Tesla. The data size at the highest resolution exceed 

available computational resources, therefore images had to be downsampled. To be able to process the 

ultrahigh-resolution images without downsampling, the algorithms will need to be adapted to cope with 

the large information content generated.  

SBA has been implemented on the MAPER-segmented atlases and applied to a 500 m resolution 

image. The segment boundaries were smoother than with VRF and it got more pleasant to look at. Some 

boundaries do get misplaced, so the volume estimation of the structures might not be better than with 

VRF.  
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