
Sahlgrenska Academy

Measuring natural hemispheric asymmetry in
the brain: quantifying the Yakovlevian torque
phenomenon

Hannah Moeini

Essay/Thesis: 30 hp
Program and/or course: Medical physics
Level: Second cycle
Semester/year: Spring 2020
Supervisor: Rolf A. Heckemann
Examiner: Magnus Båth



Abstract

Essay/Thesis: 30 hp
Program and/or course: Medical physics
Level: Second cycle
Semester/year: Spring 2020
Supervisor: Rolf A. Heckemann
Examiner: Magnus Båth
Keywords: cerebral asymmetry, yakovlevian torque, petalia

occipital bending

Background:
Just by a cursory examination, the two hemispheres of the human
brain may appear as mirror images of one another. Yet, the left and
right sides exhibit profound differences in anatomy. One of the most
obvious expressions of hemispheric asymmetry is the counterclockwise
rotation of the brain known as “Yakovlevian torque”.
Objective:
To measure natural hemispheric asymmetry in the brain by studying
the involvement of individual regions in the Yakovlevian torque.
Method:
Asymmetry was studied on T1-weighted whole-brain atlases of 285
healthy study participants, each labeling 83 anatomical structures.
Three techniques were employed: visual scoring, ordinary volumetric
asymmetry, and an advanced registration-based technique proposed
by Martinez-Torteya et al. [2019].
Results:
Regionally specific differences between the two hemispheres were ev-
ident in all investigated regions, with particularly large asymmetry
indices found for the temporal horn of the lateral ventricle, the pre-
subgenual frontal cortex, and the lateral orbital gyrus. Asymmetry
indices obtained from the registration-based measure were higher than
the volume measures for 78% of the region pairs. The visual scoring
corresponded well with these results but was possibly confounded by
differences between the data sets.
Conclusion:
This study illustrates the distribution of structural asymmetries in the
healthy human brain. Automatic quantification of the brain torque
was proven more challenging than anticipated, as the investigation
did not lead to a suitable method. Moreover, volumetric assessment
of asymmetry should be complemented with an index that is also sen-
sitive to shape.
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1 Introduction

1 Introduction
Natural hemispheric asymmetry is a well-known aspect of human brain orga-
nization. For more than a century, studies have demonstrated asymmetries
in both function and structure between the two halves of our brain; from lan-
guage skills to gyral and sulcal variation. According to Toga and Thompson
[2003], these are thought to reflect evolutionary, hereditary, developmental,
experiential, and pathological factors. One of the earliest observations of
functional asymmetry was made in the nineteenth century when pioneering
work by Broca [1861], followed by Wernicke and Lichtheim [1874], showed
that damage to specific areas of the left hemisphere would cause deficits in the
production and comprehension of language. Similarly, subsequent research
showed that visuospatial abilities and social understanding are represented
more strongly in the right hemisphere [Sperry et al., 1979]; [Sperry, 1982];
[Heilman and Abell, 1980]; [Mort and Kennard, 2003].

Historically, hemispheric asymmetry was considered a uniquely human
trait and even that which distinguished us as a species. In contrast to this
view, modern research shows that left-right asymmetries of brain and be-
haviour are widespread in the animal kingdom [LeMay, 1976]; [Bisazza et al.,
1998]; [Corballis, 2009]. Comparative studies on non-human primates even
suggest that some of them may have evolved together before chimpanzees
(Pan troglodytes) and humans diverged, while others arose independently
after the evolutionary split some five to six million years ago [Hopkins, 2013].
An example of this is a pronounced leftward asymmetry of the planum tem-
porale (PT), which has been documented in both the human and chimpanzee
brain, albeit to a lower degree in the latter [Geschwind and Levitsky, 1968];
[Hopkins et al., 1998]. The PT forms the core of Wernicke’s language compre-
hension area, and it is commonly believed that the expansion of this region
gave rise to our superior language skills and a left hemispheric dominance for
language [Spocter et al., 2010]; [Gannon et al., 1998]; [Foundas et al., 1994].

Having the two sides of our brain specialize in complementary functions
has been argued to enhance neural efficiency. By allocating specific tasks
to each hemisphere, separate functions can be carried out simultaneously
without costly interference or useless duplication of neural circuitry [Ringo
et al., 1994]; [Rogers et al., 2004]. As suggested by Palmer [2004], bilateral
symmetry can be considered the default condition of humans and other bila-
terian animals; being defined about an anteroposterior and dorsoventral axis
during development. Yet symmetry is repeatedly broken, not the least by
the way our brain perceives and responds to stimuli, thus implying adaptive
advantages in lateralization. These departures from symmetry occur both
at the individual level, as so-called fluctuating asymmetries, and at the pop-
ulation level with most individuals showing similar direction of bias. This
widespread pattern has long puzzled researchers as individual brain efficiency
does not require asymmetries to be aligned in a population. Lateral biases
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in perception or overt behaviour might even be disadvantageous as it makes
individual behaviour more predictable to predators. Theoretical models on
the evolution of lateralization suggest that the alignment of the direction of
behavioural and brain asymmetries among vertebrates and invertebrates may
have evolved under “social” selection pressures when individually asymmet-
ric organisms had to coordinate their behaviour with each other. The evolu-
tionary and developmental pathways leading to lateralization may therefore
reflect a trade-off between the relative costs and benefits of symmetry and
asymmetry [Vallortigara and Rogers, 2005].

When it comes to structure, the human brain hemispheres are strikingly
similar in almost every respect. Nonetheless they also display some important
anatomical differences [Amunts, 2010]. Among the most prominent features
of hemispheric asymmetry are the right frontal and left occipital petalia. The
petalias are local impressions on the inner surface of the skull caused by the
relative protrusions of the hemispheres. A related finding is the frequent
extension of the right frontal and left occipital lobes over the midline (onto
their respective counterparts) [LeMay, 1976]; [Toga and Thompson, 2003].
Since the warping of the lobes is usually more pronounced in the posterior
aspect, the effect has been termed occipital bending. In the 1960’s, Yakovlev
and Rakic [1966] described the overall asymmetry as looking like somebody
had taken the brain between two hands and torqued it slightly. Thus, the
phenomenon has become known as “Yakovlevian torque”.

With X-ray computed tomography (CT) or structural magnetic resonance
(MR) imaging, we are able to characterize macrostructural asymmetries in
vivo [Amunts, 2010]. While most of these are present in the majority of peo-
ple, in some individuals they are absent or even reversed [Corballis, 2009].
Brain asymmetry studies accumulated over the past decades have evidenced
that the variability in brain asymmetry is influenced by various biological
factors, such as age, sex, handedness, and disease. For instance, atypical
asymmetry has been related to numerous psychiatric and neurodevelopmental
disorders, including dyslexia [Eckert, 2004], Alzheimer’s Disease (AD) [Heck-
emann et al., 2011]; [Thompson et al., 1998], attention-deficit/hyperactivity
disorder (ADHD) [Shaw et al., 2009], Autism Spectrum Disorder (ASD)
[Postema et al., 2019], psychotic disorders [Crow, 1990]; [Okada et al., 2016],
and mood disorders [Yucel et al., 2009]; [Drevets et al., 1997]. Measuring
natural asymmetry thereby affords compelling opportunities to character-
ize abnormalities or idiosyncrasies of individual development. Further, by
quantifying asymmetry at a healthy stage we can better understand how the
anatomy of our brain may be alterered in disease. This could eventually
help elucidate the progression of pathological conditions and provide new or
potentially replace current biomarkers with more sensitive ones.

A wide range of measurement techniques has previously been used to in-
vestigate regional differences between the two hemispheres, including various
aspects of the torque. However, these have relied mainly on volume measures
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of the cerebral cortex or a limited selection of subcortical structures [Lyttel-
ton et al., 2009]; [Szabó et al., 2003]. More recently, Martinez-Torteya et al.
[2019] proposed a registration-based approach for measuring hippocampal
neuroanatomical asymmetry, resulting in a shape-based asymmetry measure
that may be a more accurate marker of AD than current volumetric mark-
ers. While their asymmetry measure was proven more indicative of AD than
left hippocampal volume, the area under the curve in the receiver-operating
characteristics test did not suggest that it was useful as a biomarker by it-
self. Bakidou [2019] later reproduced the results of Martinez-Torteya et al.
[2019] and extended the work by studying mild cognitive impairment (MCI)
in addition to AD, and the amygdala in addition to the hippocampus. She
showed that amygdalar symmetry is affected by the disease to a similar de-
gree as the hippocampus, and concluded that AD has a biological effect that
is measurable as asymmetry.

The technique used in these investigations has shown great potential in
assessing neuroanatomical asymmetry. A logical next step is therefore to ap-
ply the technique to other brain regions. In this study, I aimed to measure
the natural hemispheric asymmetry in the healthy human brain by imple-
menting the method proposed by Martinez-Torteya et al. [2019]. I sought to
identify the contribution of individual cortical and subcortical structures to
the Yakovlevian torque phenomenon. In addition, I compared the sensitiv-
ity of the shape-based asymmetry index proposed by Martinez-Torteya et al.
[2019] with plain volumetric asymmetry.

2 Method

2.1 Data acquisition and image preprocessing
The data used in this paper were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and consisted
of TI-weighted screening (1.5 T) and baseline (3 T) MR images of 285 healthy
elderly study participants. The ADNI was launched in 2003 as a public-
private partnership. The primary goal of ADNI has been to test whether
serial MR imaging, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. For up-to-date information,
see www.adni-info.org.

Automatic whole-brain segmentations for the MRI data were also avail-
able from the ADNI database and had been generated using multi-atlas
propagation with enhanced registration (MAPER), rendering labels for 83
anatomical regions, including 40 left/right pairs [Heckemann et al., 2010,
2011].
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2.2 Asymmetry measurements
Inter-hemispheric asymmetry was measured in 40 bilaterally paired brain re-
gions by employing the methodology proposed by Martinez-Torteya et al.
[2019]. All processing steps described below were performed in Bash (Unix
shell), utilizing software tools retrieved from the Medical Image Registra-
tion ToolKit (MIRTK, [Schuh et al., 2018]). First, left and right hemi-
spheric structure labels were extracted from the segmentation images using
the calculate-element-wise function. Then flip-image was used to reflect left
hemispheric labels, individually, about the mid-sagittal plane so that they
would have the same orientation as their right homologue. A rigid registra-
tion (6 degrees of freedom; i.e. 3 rotations and 3 translations) was then car-
ried out between both label images. This was done with the register function,
optimizing for the sum of squared differences with a gradient descent to yield
the alignment with maximum overlap. Lastly, neuroanatomical asymmetry,
α, was calculated from the aligned label pair using the evaluate-overlap tool,
according to

α = 1− Vr + Vl − V∆

Vr + Vl
(1)

where Vl and Vr are the number of voxels of the left and right brain
regions, respectively, and V∆ is the number of voxels that did not overlap.
Complete overlap between two structures would lead to an α value of zero.

Regional volume asymmetry was derived by computing an asymmetry
index (AI) following the formula

AI = 2 · | Vr − Vl |
Vr + Vl

(2)

where Vl and Vr refer, as above, to the number of voxels of the left and
right hemispheric brain regions. AI measured zero when Vl = Vr. The AI is a
widely used index in brain asymmetry studies. Also note that neither index
scales with l, r, or overall brain size, owing to the denominators.

The sensitivity of α and AI was compared by calculating the rank dif-
ference for each region. The raw values of both indices were converted into
ranking positions, where a greater difference in rank implies a weaker agree-
ment between metrics.

The evaluation of asymmetry measurements was performed in R version
4.0.0.

2.3 Visual scoring
To analyze the agreement between measurements and visual perception of
asymmetry, differences in shape and volume between corresponding struc-
tures were evaluated subjectively and rated. The scores were defined on a
three-point scale as follows
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1. No visible or weak asymmetry

2. Moderate asymmetry

3. Strong asymmetry

The data set used for the visual scoring was the Hammers Atlas Database,
consisting of 30 individual brain atlases with 83 manually drawn regions
each. Details of the acquisition are in Hammers et al. [2003]. Segmentation
protocols used in the preparation of resulted labels are described in Ham-
mers et al. [2003] and Gousias et al. [2008] and are available at www.brain-
development.org. All scans were viewed in MRIcron, a cross-platform Neu-
roimaging Informatics Technology Initiative (NIfTI) format image viewer de-
veloped by Rorden et al. [2007]. The individual scores assigned to each region
pair were averaged across participants.

3 Results

3.1 Asymmetry measurements
From 285 participants and 40 region pairs, I obtained 11 385 plausible mea-
surements. Failures (no result or α = 1) occurred in 15 instances. No attempt
was made to rescue these measurements; they were excluded. For the remain-
ing measurements, the range of α was 0.040–0.693, and the range of AI was
0–1.034.

Among the most symmetric regions on both α and AI were the cerebellum,
thalamus, and posterior temporal lobe. Particularly strong asymmetry was
evident in the temporal horn of the lateral ventricle, the presubgenual frontal
cortex, and the lateral orbital gyrus. Asymmetry was also prominent in
traditional frontal and temporal language regions in the perisylvian cortex.
The two measures diverged strongly on the precentral gyrus (mean α = 0.168,
mean AI = 0.045, rank difference -20) and the postcentral gyrus (mean α =
0.196, mean AI = 0.074, rank difference -18), meaning that for these two
region pairs, the volume asymmetry was negligible, but the shape asymmetry
was distinct. The opposite finding was evident for the lateral ventricle (α =
0.144, AI = 0.147, rank difference 23) and the anterior temporal lobe medial
part (α = 0.137, AI = 0.103, rank difference 16).

The correlation between measured α and AI values for all region pairs is
illustrated in Fig. 1. In general, α showed larger magnitudes of asymme-
try compared to AI. Few exceptions were observed in which AI on average
depicted larger values than α. This was most apparent in the presubgen-
ual frontal cortex and the lateral ventricle. Moreover, AI generally showed
a larger spread of values compared to α, with larger maximum values as a
result (Fig. 2).
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Figure 1: Scatter plot of α (alpha) versus AI for each region pair. Colours correspond to a specific brain
structure. Each point in the plot represents a pair of measurements for each participant. The identity line
is showed in black.

Table 1 shows for all region pairs the robust maximum of α and AI as
an indicator of the amplitude of the respective index value and a comparison
index. Values were on average higher according to α than AI for most (31/40)
of the regions.

3.2 Visual scoring
The visual scoring showed good agreement with asymmetry measurements.
However, larger cortical structures (e.g. the occipital and posterior temporal
lobe) tended to receive a high score considering α, while smaller structures
(e.g. the subcallosal area and the temporal horn of the lateral ventricle) were
assigned low scores. Fig. 3 shows the distribution of measured α values for
all region pairs, where the colouring under the curves represents the averaged
scoring results.
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Table 1: Comparison of α and AI as asymmetry indices. Robust maximum (90th percentile) and a
difference index are shown. Rows are arranged in descending order of the absolute value of the difference
index. Positive difference values (31/40) indicate stronger sensitivity of α, negative difference values (9/40)
indicate stronger sensitivity of AI.

Pair name α AI Difference
1 Insula 0.16 0.06 92
2 Cerebellum 0.07 0.03 73
3 Precentral gyrus 0.19 0.09 70
4 Sup frontal gyrus 0.17 0.10 54
5 Pre-subgenual frt ct 0.39 0.68 -53
6 Substantia nigra 0.24 0.14 53
7 Postcentral gyrus 0.23 0.14 51
8 Sup parietal gyrus 0.16 0.09 51
9 Middle frontal g 0.16 0.10 48
10 Med orbital gyrus 0.19 0.12 45
11 Lat ventricle main 0.19 0.30 -43
12 G parahippocamp/amb 0.19 0.13 40
13 Post temp l 0.13 0.09 39
14 Cingulate gyrus, post 0.19 0.13 34
15 Subcallosal area 0.31 0.22 33
16 Lingual gyrus 0.22 0.16 30
17 Post orbital gyrus 0.19 0.15 27
18 Caudate nucleus 0.17 0.14 23
19 Nucleus accumbens 0.21 0.27 -23
20 Ant temp lobe med 0.17 0.21 -22
21 Lat ventricle temp 0.51 0.41 22
22 Straight gyrus 0.19 0.24 -21
23 Cingulate gyrus, ant 0.23 0.19 19
24 Parietal lobe (rem) 0.14 0.12 18
25 Putamen 0.13 0.11 18
26 Cuneus 0.26 0.22 17
27 Thalamus 0.08 0.07 17
28 Hippocampus 0.21 0.18 15
29 Ant temp lobe lat 0.23 0.27 -14
30 Subgenual frt cortex 0.24 0.28 -14
31 Middle & inf temp gg 0.16 0.18 -13
32 Pallidum 0.18 0.15 13
33 Fusiform g 0.24 0.21 12
34 Inf frontal gyrus 0.19 0.18 8
35 Sup temp g ant part 0.21 0.20 7
36 Ant orbital gyrus 0.17 0.17 3
37 Lat orbital gyrus 0.26 0.27 -3
38 Occipital lobe 0.14 0.14 2
39 Amygdala 0.17 0.17 1
40 Sup temp gyrus post 0.21 0.21 1
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(a) (b)

(c) (d)

Figure 2: Scatter plots of α (alpha) versus AI for regions (a) lateral ventricle, (b) presubgenual frontal
cortex, (c) precentral gyrus, (d) postcentral gyrus. Each point represents a pair of measurements for each
participant.
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4 Discussion

Figure 3: Distribution of measured asymmetry values (alpha) for each individual region pair. Colours
correspond to visual assessment of asymmetry. Warmer colours (towards yellow) indicate a higher score,
cooler colours (towards gray) indicate a lower score.

4 Discussion
In this study, left and right hemispheric regions were compared in healthy
individuals using two metrics, one volume-based and one shape-based. The
goal was to establish which cerebral regions tend to be asymmetrical in the
general population and to what degree. Traditionally, research regarding this
topic has focused on studying the influences of factors like age and sex on
brain structure [Guadalupe et al., 2017]; [Wang et al., 2019]. Others have
been in clinical contexts, comparing asymmetry patterns attributed to cer-
tain neurological and psychiatric conditions [Kong et al., 2018b]. However,
findings have often been contradictory, likely due to methodological differ-
ences between studies as well as insufficient sample sizes in relation to subtle
effects [Kong et al., 2018a]; [Biberacher et al., 2016]. Recently, automated
segmentation methods and publicly available brain atlases have facilitated
large-scale studies of the brain, where harmonized protocols and procedures
have been used to eliminate inconsistencies [Petersen et al., 2010]; [Hecke-
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mann et al., 2010]; [Hammers et al., 2003].

4.1 Correspondence with Previous Findings
Inter-hemispheric differences were found in a large number of regions, includ-
ing the frontal and occipital cortices, which are particularly affected by the
petalias and overall brain torque [Toga and Thompson, 2003]. Related to
this, I also noticed strong asymmetry in the perisylvian regions, specifically
in the inferior frontal and superior temporal gyrus. These results corroborate
previous findings, e.g. [Good et al., 2001]; [Delisi et al., 1994]; [Kong et al.,
2018b].

The perisylvian area contains both Broca’s speech and Wernicke’s recep-
tive language areas [Catani et al., 2005]; [Rentería, 2012]. It also encompasses
the Sylvian fissure (SF); one of the first anatomical asymmetries described
in humans [Geschwind and Levitsky, 1968]. In most individuals, the left SF
is significantly longer than the right. Furthermore, in both fetal and adult
brains, the posterior end of the right SF is commonly higher than the left, an
asymmetrical shift caused by the torque. Accompanying these features is also
a typically larger left planum temporale [LeMay, 1976]. Evidence for peri-
sylvian asymmetry has been consistently observed in non-human primates
as well, though directional biases are more pronounced in humans [Liu and
Phillips, 2009]. Less than a century ago, researchers were convinced that
hemispheric asymmetry was restricted to the human brain. However, this
idea is being increasingly refuted by the diverse findings in animal species
[Corballis, 2008]; [Ocklenburg and Güntürkün, 2012]. Some of them parallel
those documented in humans, providing further support of their gradual evo-
lution [Hopkins, 2013]; [Hopkins et al., 2015]; [Gannon et al., 2005]; [Spocter
et al., 2010].

Leftward functional and morphological asymmetry in language-related re-
gions has been widely reported in the literature [Niznikiewicz, 2000]; [Good
et al., 2001]; [Chiarello et al., 2013]; [Reynolds et al., 2019]. Both the infe-
rior frontal gyrus (containing Broca’s area) and the anterior and posterior
part of the superior temporal gyrus (containing Wernicke’s area) have re-
ceived particular attention in the context of language lateralization in the past
[Reynolds et al., 2019]; [Foundas et al., 1996]; [Foundas et al., 1998]. Find-
ings in these regions might correlate with the documented left-hemispheric
dominance for language [Price, 2000]. Another brain region that has been
linked to language functions is the insular cortex (or insula for short). For in-
stance, Biduła and Króliczak [2015] reported that the left insula is implicated
in gestural language, and Oh et al. [2014] showed that speech production and
language processing involve activation of distinct insular subregions.

I found strong asymmetry in several key regions for visuospatial process-
ing, such as the fusiform gyrus, cuneus, and lingual gyrus. Most previous
studies have shown a rightward trend in these regions, consistent with the
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widely-held view that visuospatial attention is processed mainly in the right
hemisphere [Kong et al., 2018b]; [Luders et al., 2006]; [Plessen et al., 2014].
Additional findings in the pre-/ and postcentral gyrus, anterior temporal
and superior parietal lobes are in line with those reported by Luders et al.
[2006] and Plessen et al. [2014]. The precentral gyrus is known as the pri-
mary motor cortex. In an early investigation of motor cortex asymmetries
in relation to handedness, Amunts et al. [1996] showed that in right-handed
individuals, the left central sulcus was deeper than the right, and vice versa
for left-handed individuals. In addition, their findings suggested that hand-
edness was associated with increased connectivity and intrasulcal surface of
the precentral gyrus in the dominant hemisphere. Steinmetz et al. [1991]
also reported that PT asymmetry was correlated with hand dominance, with
right-handed individuals showing greater leftward PT asymmetry compared
to left-handed individuals.

Handedness and language are perhaps the two most obvious manifesta-
tions of cerebral asymmetry in humans. A significant majority of individuals
show a left-hemisphere dominance for language and speech. Correspondingly,
most people prefer to use their right hand for various activities, which is also
regulated by the left hemisphere. Initially, this led to the belief that the left
side of our brain was dominant, whereas the right was nondominant (even
being referred to as the “minor” hemisphere). However, we now know that
the right hemisphere is specialized in complementary functions, such as per-
ception and emotion [Silberman and Weingartner, 1986]; [Corballis, 2003].
There have been conflicting reports, though, on whether handedness really
does have an impact on brain asymmetry, or if it merely reflects one [Corbal-
lis, 2009]. In a recent large-scale study by the ENIGMA-Laterality Working
Group [Kong et al., 2018b], effects of age, sex, and intracranial volume were
found. However they found no significant associations regarding handedness.

I also found striking asymmetries in the limbic cortices or structures that
are intimately connected to it, including the cingulate cortex, hippocampus,
amygdala, and subgenual frontal cortices. The limbic system is responsible
for our emotional responses and social behaviours [Devinsky et al., 1995];
[Okada et al., 2016]. It is also involved in higher mental functions such as
learning and memory formation. Abnormalities in these regions have of-
ten been recognised in mood disorders and schizophrenia [Drevets et al.,
1997]. Moreover, both the hippocampus and amygdala are known to show
early signs of atrophy in MCI and AD [Martinez-Torteya et al., 2019]; [Ledig
et al., 2018]. An important motivation behind large cohort studies like ADNI
(which provided the core data set used in the present study) is to discover
AD biomarkers that enable accurate diagnosis and can serve as surrogate
endpoints in trials of disease-modifying drugs. Current biomarkers include
change in amygdalar and hippocampal volumes based on structural MRI
[Klein-Koerkamp et al., 2014]; [Ledig et al., 2018].
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Interestingly, asymmetry was evident in the insular cortex. As mentioned
earlier, the insula is involved in various language tasks [Chiarello et al.,
2013]. However, it also has reciprocal connections with the limbic system
and subserves a wide variety of functions ranging from sensory and affective
processing to decision-making, empathy and emotional processing, propri-
oception and self-awareness, and motor control [Gogolla, 2017]; [Mutschler
et al., 2009]. Several studies have investigated structural and functional cor-
relates of insular asymmetry and found that the anterior insula plays a major
role in high-level cognitive control and attentional processes (Menon and Ud-
din [2010]; Nelson et al. [2010]) as well as experiencing and interpreting social
emotions (Lamm and Singer [2010]), while posterior regions are more involved
in sensorimotor functions and pain perception [Uddin et al., 2017]. Decreased
functional connectivity in the left anterior insula has also been highlighted
in major depressive disorder [Veer et al., 2010]. Further, Takahashi et al.
[2010] reported that atypical insular morphometry, i.e. reduced gray matter
volume in the left anterior insula, is evident in individuals with both current
and past major depression.

4.2 Asymmetry Indices
Overall, α produced higher amplitudes of asymmetry compared to AI, es-
pecially in the lower ranges where AI indicated little or no asymmetry for
several regions (Fig.1). This could indicate that α is more sensitive to neu-
roanatomical asymmetry than AI, which is plausible as α is sensitive to shape
and volume differences, whereas AI only considers volume. Furthermore, if
different subregions within a given structure are asymmetrical in opposite di-
rections (i.e. rightward and leftward), the delta-voxels will likely cancel each
other out and thus misestimate the ’real’ asymmetry. In the case of α, how-
ever, this effect would not be as easily overlooked. The advantage of α over
conventional volume measures becomes even more important when studying
brain diseases, since focal abnormalities are more likely than physiological
differences to manifest as shape asymmetry. However, when studying global
asymmetries, i.e. processess which affect the brain as a whole, volumetry
would suffice, as regional shape might not be affected as strongly as regional
volume.

I should also like to emphasize that shape-aware asymmetry measures
could strongly improve the statistical power of this type of study, i.e. more
subtle biological effects would be detectable with the same number of study
participants, or, equivalently, fewer participants would be needed to test a
hypothesis about an effect of a given estimated size.
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4.3 Visual Scoring
The visual asymmetry scoring corresponded well with measurements of α,
although for some regions asymmetry was either overestimated or underes-
timated in comparison. Interestingly, regions that were most asymmetrical
according to α were generally underestimated. For example, this was ob-
served for the subgenual prefrontal cortex, subcallosal area, substantia nigra,
and temporal horn of the lateral ventricle. Larger cortical structures, on the
other hand, were generally overestimated, such as posterior temporal lobe,
parietal lobe (remainder), occipital lobe, and anterior orbital gyrus.

A plausible explanation for this would be that even subtle structural dif-
ferences are visually more perceptible in larger structures than in smaller
ones and would therefore result in a higher score. There might also be more
uncertainty for smaller structures owing to limitations in the spatial resolu-
tion of MR images. Additional discrepancies may be due to the fact that
two different data sets of different sizes were used for the asymmetry mea-
surements and visual scoring. Further, the mean ages of study participants
differed between the two data sets, and it is well established that human brain
asymmetry changes across the lifespan [Kong et al., 2020]; [Guadalupe et al.,
2017]; [Plessen et al., 2014]; [Nie et al., 2013]. Finally, I had no previous
experience with evaluating structural brain MR images. Perhaps the scoring
results would have looked different if a trained professional had performed
the same task.

4.4 Future Analyses
It has been surprisingly difficult to find any clear-cut links between asym-
metries and their variability among healthy individuals in the literature. It
is clear that brain asymmetry is a multidimensional trait that depends on a
complex interplay among several genetic and nongenetic factors. Although
our knowledge of human brain organization has increased significantly in re-
cent decades, we are still far from having a complete understanding of the on-
togenetic and phylogenetic processes responsible for lateralization. Advances
in neuroimaging technology will probably continue to advance this field of re-
search. Current techniques only support the study of gross macrostructural
features; more aspects of hemispheric asymmetry could be captured by the
integration of different approaches.

The expression of population-level asymmetries (e.g. brain torque and
language) has been consistent enough throughout history and across cultures
that normal patterns can be mapped, despite individual variations. Find-
ings may then serve as reference data on the typical brain asymmetries in
the general population and possibly reveal new avenues to detect and track
disease processes. In future work, it would be beneficial to utilize cross-
hemispheric registration methods in larger and more varied cohorts to assess
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neuroanatomical asymmetries within and across groups defined by age, sex,
and diagnosis. The relation between structural and functional asymmetries is
also understudied and needs further investigation. Another fruitful direction
for future research would be to combine neurostructural measures with gene
databases to better understand the mechanisms underlying lateralization.

4.5 Potential Limitations
The asymmetry measures presented here make no distinction whether asym-
metry is leftward or rightward, but are rather used as an indication of asym-
metry strength. This made it difficult to compare my findings with existing
literature since most studies have also considered the directionality. How-
ever, in this work I aimed to determine the degree and distribution of brain
asymmetries. A second objective was to evaluate a promising shape-sensitive
measure (α, cf. Section 2.2) by comparison with conventional volume-based
asymmetry measures. Both absolute and directional differences between the
hemispheres can be extracted from my measurements.

Furthermore, an open question remains with regard to small regions. Dis-
cretization into voxels implies that even the plain volume measurement of
regions is subject to substantial quantization artefact, if they only consist of
a few voxels. It is safe to assume that this problem similarly affects all asym-
metry measures discussed here, but the size and consequences of potential
misestimations remain to be determined.

5 Conclusion
Several conclusions follow from this study. First, the findings demonstrate
that nearly all cerebral regions are asymmetrical on average in the healthy
human brain. However, due to its complexity, it is uncertain whether and
how the brain torque may play role in my current findings. This could be
adressed in the future by a closer examination of components more specific
to the torque, such as the frontal/occipital petalias and bending. Second,
the registration-based technique used here showed greater sensitivity towards
asymmetry than plain volumetry and may provide useful clinical markers.
Lastly, the current state of knowledge is largely based on small and method-
ologically diverse studies. Moving forward, I suggest that brain asymmetries
should be analyzed in larger samples than used previously and preferably in
combination with functional and genetic data. This would help disentangle
the fundaments of hemispheric specialization.
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