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Abstract
Sepsis is a life-threatening syndrome triggered by an infection. Despite international
guidelines, sepsis management varies between sites. This unwanted practice varia-
tion may affect negatively the quality of care but enables theoretically retrospective
studies for finding optimal treatment strategies. The goal of the present master
thesis was to find a relevant way to model practice variation in the management of
sepsis-induced circulatory failure.

Sepsis patients were retrieved from the eICU critical care database. Nine treatments
and nine relevant covariates were selected from domain knowledge. Practice vari-
ation was successively investigated in four intensive care units and four hospitals
respectively. Missing values were imputed using forward filling, linear interpolation
and the Multiple Imputation by Chained Equations algorithm. For each analy-
sis, two logistic regression models were successively trained and calibrated. The
first model yielded propensity estimates for being treated in a particular site given
covariates. The second model was trained on the subset of patients having a rea-
sonable probability of being treated in all the sites and yielded propensity estimates
for being treated with a particular treatment. Practice variation was first defined
as the expected difference in propensity for treatment between two sites and then
characterized for a given patient with given covariates as the distance between the
likelihood to get a certain treatment in a certain site s and the expectation of the
likelihood to get the same treatment over all the sites with the assumption that this
patient had the same likelihood of being treated in s as he had in the actual data.

A pairwise comparisons of propensity for treatments between sites revealed vari-
ations up to 12.5%. At a patient level, practice variation distributions showed a
similar positively skewed distribution for both analyses and revealed variations up
to 5.8%.

We demonstrated the feasibility of modeling practice variation among distinct sites
in the management of sepsis-induced circulatory failure using retrospective data.
The significance of this variation should be further evaluated by investigating which
treatment policies are associated with a better outcome.

Keywords: sepsis, calibration, practice variation, importance sampling, multiple
imputation
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1
Introduction

Sepsis is a common syndrome defined as life-threatening organ dysfunction caused by
a dysregulated host response to infection [1]. The cardiovascular system is the most
frequently compromised organ during sepsis [2]. This syndrome has recently been
recognized as a global health priority by the World Health Organization [3]. Indeed,
11 million sepsis-related deaths and about 49 million cases of sepsis were reported
worldwide in 2017 [4]. Furthermore, a significant number of sepsis patients require
Intensive Care Unit (ICU) admission to receive advanced and costly treatments.
Thus, almost one third of ICU patients in high income countries have sepsis [5].
The current outbreak of COVID 19 highlighted sorely the lack of medical resources
and the need for critical care optimization even in Western countries [6].

Critical care societies regularly make recommendations for the management of pa-
tients in sepsis [7]. For various reasons [8], these recommendations are not uniformly
implemented which led to practice variation across ICUs [9, 10]. Unwarranted prac-
tice variation may be undesirable for guaranteeing uniform quality of care. Some
patients may be exposed to real harm from not receiving the treatment they need
or potential harm from receiving treatment that they do not need. However, this
undesired practice variation [11] could give the opportunity to retrospectively study
treatment effects. If patients in similar condition are treated differently across sites
and doctors, there is hope of identifying practices that work particularly well for
that condition.

The eICU Collaborative Research Database (eICU) [12] is a freely available multi-
center ICU database for critical care research that contains high granularity data
for 139,367 ICU patients admitted between 2014 and 2015 at 208 hospitals located
throughout the United States of America. Notably, this database annotates admis-
sions with hospital ID, enabling the study of practice variation across sites.

The goal of the present master thesis was to investigate practice variation in the
management of sepsis-induced circulatory failure using patient data from the eICU
Collaborative Research Database (eICU) database [12]. Studying practice variation
involves addressing two questions: I) can “similar” patients be identified across dif-
ferent sites in the database, and II) can distinct treatment practices can be observed
between these sites. In order to answer these two practical questions, we developed
a method for learning site-specific treatment policies which consisted of two succes-
sive logistic regression models. The first one enabled the selection of comparable

3



1. Introduction

patients with respect to relevant clinical features who where hospitalized in distinct
sites. The second one provided an estimation of treatment variation across those
sites in the cohort of similar patients.

4



2
Theory

Working with observational data often implies handling missing values. Different
strategies are presented in this chapter especially multiple imputation methods that
require dealing with multiple imputed datasets.

Quantifying practice variation between different sites involves estimating site-specific
treatment policies. We defined below what is a policy, a way to evaluate it and the
importance of a calibrated estimator to obtain an accurate policy evaluation.

2.1 Learning treatment policies from observational
data

Randomized clinical trials are considered the gold standard for evaluating treatment
effects since they minimize confounding by prospectively and randomly allocating
treatments to patients [13]. However, carrying out such trials may be impossible
due to ethical issues, limited time or insufficient funds [14]. The growing digital-
ization of the health-care system leads to an increase in electronic medical records
which has raised new interest in retrospective observational studies [15], especially
in the critical care setting [16]. There currently exist two significant openly-available
critical care databases, eICU (multi-center) and MIMIC-III (single-center) [17].

An increasing number of works are based on these databases and the medical ap-
plications of AI. In the ICU, applications of AI have mainly concerned machine
learning, which aims to generate knowledge from data. Machine learning typically
includes three categories of techniques: supervised, unsupervised and reinforcement
learning [18]. There have been many notable applications of supervised learning
algorithms in sepsis. For example, automated algorithms that identify patients at-
risk of having sepsis [19], a gradient tree boosting model for predicting sepsis and
septic shock [20] and even simpler rule-based algorithms that could identify at-risk
patients [21, 22]. In unsupervised learning, research mainly have been exploratory
and hypothesis generating, but more recent progress utilizing clustering algorithms
have made it possible to believe that such approaches will be in practical use in
the near future [23, 24]. Reinforcement learning is arguably considered to be the
most immature branch of machine learning w.r.t. technology readiness for intensive
care applications [25]. Recently, a reinforcement learning model trained on MIMIC-

5



2. Theory

III claimed to learn optimal treatment strategies for sepsis in intensive care [26].
However, the reliability of the policy evaluation estimates raised concerns that such
evaluation is ill-supported for some clinical decisions [27, 28].

A policy is defined as the probability of assigning treatment t to a subject i with
covariates xi and its quality is measured by the expected cumulative outcomes V .
Evaluating the value V of a learned policy (target policy π) with data generated
by another policy (behavior policy µ) is known as off-line policy evaluation [29].
Importance sampling is a classical method to correct the discrepancy between the
distributions under the target policy and the behavior policy [30]. Indeed, the
patient i with covariates xi, treatment ti and outcome Yi is sampled from µ but
importance sampling method reweights the data like if they were drawn from π. A
global value V̂ of the target policy could be estimated by taking the average over
patients as follows (adapted from [29]):

V̂ (π) = 1
n

n∑
i=1

π(xi, T = t)
µ(xi, T = t) × Yi (2.1)

2.2 Missing data
Missing data are prevalent in observational studies in healthcare as data are often
routinely electronically collected data for clinical reasons, rather than research [31].
Missing data in observational studies is a pervasive challenge as it is nearly ubiqui-
tous and its impact on inference can be substantial. In most studies the reporting
of missing data and the underlying mechanisms for its missingness are often below
par. For example, of 262 studies published in 2010 in 3 leading epidemiologic jour-
nals, 68% had insufficiently reported the amount of missing data to be quantified
by reviewers and 46% had not clearly distinguished and classified the underlying
mechanisms of the missing data [32].

The underlying mechanisms for missing data are commonly classified as missing
completely at random (MCAR), missing at random (MAR), or missing not at ran-
dom (MNAR) [33, 34, 31].

• MCAR: the missingness of a value is unrelated to the observed parameters and
the unknown value itself. It occurs, for example, when the physician forgot to
register a clinical observation or when a medical device broke down during a
measurement. This scenario represents the strongest assumption and doesn’t
bias the analysis of data since the missing values have the same distribution as
the available data. However, this assumption is often unrealistic in practice.

• MAR: the missingness of a value is related to the observed parameters but
not to the missing value itself. This case arises when a measurement is not
performed because it is not clinically indicated. For example, the patient has
no sign of infection and no microbiological sample is taken.

• MNAR: the missingness of a value depends on the value itself. This pattern
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is typically found in quality of life studies in intensive care survivors because
disabled patients may not answer the survey.

Handling missing data is necessary as most statistical learning models do not work
with datasets with missing values. Common methods to deal with this issue are:

• Deletion

(i) Subjects with missing values are deleted to perform a “complete case
analysis”.

• Imputation methods

(i) Mean/median/mode: the missing values are replaced with the mean,
median or mode of the observed values of the variable.

(ii) K Nearest Neighbors (KNN): the missing values are replaced by an ag-
gregate value (mean/median/mode) of the k most similar observations in
the dataset.

(iii) Linear Regression - if a linear relation is assumed between variables, miss-
ing values can then be predicted by a linear regression model fitted with
variables from the complete data.

(iv) Last Observation Carried Forward (LOCF) and Next Observation Car-
ried Backward (NOCB): these methods are often used for time-series data
especially when the period of time is short and the trend is monotonous
without large fluctuation. Missing values are replaced either by the last
observed value (LOCF) or by the first observation after the missing value
(NOCB).

(v) Linear Interpolation: this is an alternative to LOCF and NOCB for time-
series data as missing values are filled using both the observations before
and after.

(vi) Multiple Imputation by Chained Equations (MICE) [35]: is a multiple
imputation method that creates a specified number of imputed versions
of the original dataset. For each dataset, missing values are iteratively
imputed using a predictive model. For each iteration, each specified vari-
able is imputed using the other variables and these iterations continue
until convergence.

The deletion method and the imputation with mean/median/mode usually produce
unbiased estimates only for MCAR values whereas the other above methods may
work for MAR values. However, among the latter, only MICE avoids standard errors
to shrink because it generates n imputed datasets with different imputed missing
values [35].
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2.3 Multiple imputation and predictions
With MICE a predictive model consequently has to be performed on n imputed
datasets. As such, MICE yields n imputation-specific regression coefficients. These
n regression coefficients can be pooled according to Rubin’s rules [36] to get pooled
regression coefficients. There are two alternatives to obtain an individual prediction
from such a predictive model with n imputed datasets:

1. A prediction is obtained from the pooled regression coefficients.

2. A pooled prediction is obtained from pooling the imputation-specific predic-
tions of each imputed dataset.

The pros and cons of these two alternatives are not yet established [37]. Similarly,
a measure of model performance can be obtained in two ways:

1. Pooled performance strategy: a pooled estimate of model performance is ob-
tained from imputation-specific estimate of model performance.

2. Pooled prediction strategy: model performance is estimated from the pooled
predictions.

Figure 2.1 which illustrates these two alternatives is adapted from [37].

Figure 2.1: Model performance estimation with multiple imputed datasets
(adapted from Wood AM et al.).

2.4 Model Calibration
In a medical database, the true behaviour policy that generated the data is generally
unknown i.e we don’t have access to the set of rules used by the clinicians to treat
the patients. However, this behaviour policy can be estimated from the data by
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training various type of models such as logistic regression, random forests or neural
network. Thus, it is possible to estimate the probability of treatment given a set
of relevant covariates. These estimates have to be calibrated i.e the probabilities
of treatment under the estimated behaviour policy model should correspond to the
true probabilities because the accuracy of the importance sampling-based off-policy
policy evaluation described above depends on the quality of the calibration [38].

In a binary classification setting with the input X in X and the label Y in Y =
{1, 0}, let’s define the classifier C with C(X) = (Ŷ , P̂ ), where Ŷ is a class prediction
and P̂ its confidence. C is perfectly calibrated if the following equation holds [39]:

P (Ŷ = Y | P̂ = p) = p, ∀p ∈ [0, 1] (2.2)

2.4.1 Reliability diagrams
Model calibration can be illustrated by reliability diagrams that plot the expected
sample accuracy as a function of confidence. In case of a perfectly calibrated model,
the plot shows the identity function. To construct reliability diagrams, the predic-
tions are first grouped into M bins. Then the accuracy and the average confidence
are computed in each bin according to the following formulas:

accuracy(Bm) = 1
|Bm|

∑
i∈Bm

1(ŷi = y), (2.3)

where Bm represents the bin m and ŷi and yi are the predicted and true class labels
for sample i

confidence(Bm) = 1
|Bm|

∑
i∈Bm

p̂i, (2.4)

where p̂i is the confidence for sample i.

The quality of model calibration can be then estimated by computing the expected
calibration error (ECE) and the maximum calibration error (MCE) [40]. ECE com-
putes a weighted average of the bins’ accuracy/confidence difference as follows:

ECE =
M∑

m=1

|Bm|
n
|accuracy(Bm)− confidence(Bm)| (2.5)

MCE computes the worst-case deviation between confidence and accuracy as follows:

MCE = max
m∈{1,...,M}

|accuracy(Bm)− confidence(Bm)| (2.6)
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MCE may be preferred in mission-critical applications where reliable confidence
measures are essential.
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3
Methods

The eICU database contains medical information about 139 367 patients hospital-
ized in ICU in 208 distinct hospitals across the United States during 2014 and 2015.
All these patients had various diagnosis but we focused on patients with sepsis at
ICU admission. The registered medical information is heterogeneous and consists of
demographic data, vital sign measurements, laboratory tests, diagnosis and treat-
ment information, among other things. An ICU stay corresponds to a limited period
of time where a patient receives critical care in a critical care unit. The collected
clinical information during an ICU stay is documented in the database as time se-
ries data and the time step varied with the type of data. Each ICU stay is uniquely
associated to a hospital ID and an ICU ID (a hospital may contain several ICUs).
We successively analysed practice variation between ICUs and hospitals. We first
started by creating a dataset which contained sepsis patients with relevant clinical
variables and treatments coded as time series with a four-hour time step that we
called period as shown in Table 3.1.

We then trained and calibrated two estimators. The first model estimated the
propensity of being hospitalized in a given site given relevant clinical variables.
The patients who had a sensible probability of being treated in every site were
considered comparable and were therefore selected for the next step. The second
model estimated the propensity of receiving a given treatment given clinical variables
and site. Finally this last model was used to estimate the treatment policy in each
site. The implementation details are described in the following subsections.
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ICU stay Period Site v1 ... vn

1 1 2 - ... -
1 2 2 - ... -
1 3 2 - ... -
1 4 2 - ... -
2 1 1 - ... -
2 2 1 - ... -
2 3 1 - ... -
... ... ... ... ... ...
n 1 2 - ... -
n 2 2 - ... -
n 3 2 - ... -
n 4 2 - ... -
n 5 2 - ... -

Table 3.1: Dataset as time series with four-hour time steps called period. The
column ICU stay corresponded to unique patient ICU stay, The column site
contained either ICU ID or hospital ID depending on which practice variation
analysis was performed. Variables v1, ... vn corresponded to relevant clinical

information.

3.1 Data extraction and preprocessing

3.1.1 Extraction of patients in sepsis
The identification of sepsis patients from electronic medical records can be performed
using two methods [1]:

1. The explicit method is based on International Classification of Diseases (ICD)
codes [41]. Patients with severe sepsis and septic shock are explicitly coded in
eICU with ICD codes 995.92 or 785.52 and R65.20 or R65.2 respectively.

2. The implicit method consists in retrieving three criteria in a specified period:

(a) order of body fluid culture

(b) antibiotic prescription

(c) organ failure represented by an increased Sequential Organ Failure As-
sessment (SOFA) score > 1 [42]

Concomitant orders for body fluid cultures and antibiotics set the time of suspected
infection. The addition of a SOFA score > 1 defines sepsis.

Since body fluid cultures are rarely documented in the eICU (90% of ICU stays have
no data) we chose the explicit method [43]. However, in order to reduce the risk of
retrieving miscoded sepsis patients, we decided to combine the explicit method with
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the other two available criteria of the implicit method, i.e., antibiotic prescription
and SOFA score > 1. Since the suspected infection time could not be characterized,
we decided to define a cohort of patients admitted to ICU for sepsis using the
following inclusion criteria:

(i) At least one ICD-9 or ICD-10 for sepsis or septic shock during the ICU stay
(coding procedure and clinical activities are not necessarily synchronous).

(ii) ICU stays with antibiotic prescription and SOFA score > 1 in a period ranging
from one day before and one day after ICU admission.

(iii) ICU stays with an admission diagnosis of sepsis registered in the Acute Phys-
iology And Chronic Health Evaluation (APACHE). APACHE is a severity-
of-disease classification system which is applied within the first day of ICU
admission [44].

In the eICU database, the data were recorded heterogeneously across hospitals. As a
consequence, the absence of documentation for a specific treatment doesn’t indicate
that this treatment was not administered [45]. To prevent any systematic bias,
hospitals with potential poor data completion were excluded. Since we focused on
vasopressor and intravenous fluid therapies with a 4-hour time window, hospitals
with less than 6 daily records on average for these treatments were excluded as
previously described [26].

Finally, ICU stays with patients under 18 years, with a length of stay < 6 hours
and with a documentation of care limitation such as “Comfort measures only”, “No
vasopressors/inotropes” and “No augmentation of care” were excluded. Due to ICU
readmissions, one patient could be included several times for distinct ICU stays.

3.1.2 Extraction of sites

We aim at studying practice variation across hospitals and ICUs. One hospital may
contain several ICUs. In order to get a sufficient number of patients per sites, we
only kept the sepsis patients who belonged to the four most represented hospitals
and ICUs.

3.1.3 Extraction of treatments

The clinical manifestations of sepsis are heterogeneous because the function of all
the organs can be impaired. We decided to focus on the cardiovascular system
which is most commonly affected. The treatment of acute circulatory failure relies
on a combination of intravenous fluid and vasopressor infusion and aims at restoring
adequate organ perfusion [46].

For each patient, the vasopressor infusion rate and the amount of received fluid are
registered at irregular intervals in the eICU database.
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Extraction of vasopressors The main vasopressors clinically used are: Nore-
pinephrine, Epinephrine, Dopamine, Phenylephrine and Vasopressin.

The standard infusion rate is usually expressed in units/min for Vasopressin and in
mcg/kg/min for Norepinephrine, Epinephrine, Dopamine and Phenylephrine.

Infusion rates are inconsistently registered in the eICU database and the following
expressions could be found in the infusiondrug table: ‘mcg/kg/min’, ‘mcg/kg/hr’,
‘ml/hr’, ‘mcg/min’, ‘mcg/hr’, ‘units/min’ and ‘none’. Infusion rates expressed in
‘ml/hr’ were converted in ‘mcg/min’ using concentrations inferred from the medica-
tion table.

Dopamine infusion rates were almost entirely expressed in ‘ml/hr’. Since concen-
tration information was missing, infusion rates could not be converted and patients
who received Dopamine were excluded.

Then ‘mcg/min’ and ‘mcg/hr’ were converted into ‘mcg/kg/min’ using patient’s
weight. The weights were retrieved by taking an average from the tables: patient,
intakeoutput and infusiondrug. When a patient had no registered weight in either
of those tables, the patient’s weight was imputed with the average weight of the
cohort of sepsis patients. Finally, Vasopressin, Epinephrine and Phenylephrine were
converted to Norepinephrine equivalent using previously described formulas [47] and
as shown in Table 3.2.

Vasopressor Unit Norepinephrine equivalent infusion rate
in mcg/kg/min

Norepinephrine mcg/kg/min infusion rate
Norepinephrine mcg/kg/hr infusion rate * 0.167
Norepinephrine mcg/min infusion rate / weight
Norepinephrine ml/hr infusion rate * 0.533 / weight
Epinephrine mcg/kg/min infusion rate
Epinephrine ml/hr infusion rate * 0.533 / weight
Phenylephrine mcg/kg/min infusion rate * 0.1
Phenylephrine mcg/hr infusion rate * 0.0017 / weight
Phenylephrine ml/hr infusion rate * 0.266 / weight
Vasopressin units/min infusion rate * 2.5
Vasopressin ml/hr infusion rate * 0.025

Table 3.2: Conversion to obtain Norepinephrine equivalent dose.

Extraction of fluids The amount of intravenous fluid received by each patient
was obtained at different time intervals from the eICU intakeOutput table. Intra-
venous fluid could consist in crystalloids, colloids and blood products.
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3.1.4 Extraction of covariates
We selected from domain knowledge the covariates that could influence the treat-
ment strategy of the circulatory failure (Table 3.3).

Based on Random forest models, the Artificial intelligence (AI) Clinician study [26]
found that these covariates had a significant importance for predicting both the
clinicians’ and the AI policy for circulation optimization.

Covariate Measured in unit
Systolic Blood Pressure mmHg
Mean Blood Pressure mmHg
Diastolic Blood Pressure mmHg
Shock Index (Heart Rate/Systolic Blood Pressure) (min-1/mmHg)
Lactates mmol/l
Base Excess mmol/l
PaO2 / FiO2 mmHg
SaO2 %
Creatinine mg/dl

Table 3.3: Selected covariates.

(i) Covariates that describe the circulation system:

Blood pressure is a continuous variable measured in mmHg. It varies during
each heartbeat between a maximum and a minimum value, respectively systolic
and diastolic blood pressure. The mean blood pressure is the average of blood
pressure over a cardiac cycle and is considered as the tissue perfusion pressure
in clinical practice.

Shock index is defined by the ratio of heart rate and systolic blood pressure.
It can be used to rapidly assess the cardiovascular system. High values are
correlated with shock.

(ii) Covariates that reflect the quality of global perfusion:

During sepsis, the circulatory system (basically the heart and the blood ves-
sels) can be impaired and a state of shock occurs if the tissue oxygen demand
exceeds the supply. Inadequate tissue perfusion leads to impaired cellular
aerobic (i.e., with oxygen) respiration and lactate is produced. Lactate is a
global biological marker of shock and blood lactate elevation is partly respon-
sible for acidosis (blood acidification). The level of acidosis is automatically
characterized by blood gas analysis that report a calculated base excess.

Base excess is the theoretical amount of acid needed to get back a neutral
blood pH and its value decreases when acidosis increases.

(iii) Covariates that reflect the quality of local perfusion:
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All the organs may suffer during sepsis but the kidneys are particularly vul-
nerable in case of low perfusion pressure. Creatinine is a blood marker of renal
failure.

(iv) Covariates that inform on fluid tolerance:

Most oxygen in the blood is reversibly bound to hemoglobin.

SaO2 or arterial oxygen saturation corresponds to the percentage of hemoglobin
binding sites occupied by oxygen.

PaO2 or partial pressure of oxygen in mmHg corresponds to the small amount
of oxygen directly dissolved in the blood.

Sepsis-induced lung injury is characterized by increased alveolar–capillary per-
meability, pulmonary edema and reduced blood oxygen level. Administration
of oxygen is required when PaO2 or SaO2 are critically low.

FiO2 or fraction of inspired oxygen represents the percentage of oxygen con-
centration in the air delivered to the patient. Fio2 can range from 0.21 to
1.

In case of severe sepsis-induced lung injury, fluid infusion may worsen pul-
monary edema and oxygen diffusion.

All intensive care patients are continuously monitored for blood pressure, heart
rate and SaO2 but the frequencies of measurements vary with the clinical context.
Lactate, PaO2 and Creatinine are intermittently obtained from blood samples if
clinically needed.

Preliminary covariates. The preliminary covariates were extracted to five datasets:
vital periodic, vital aperiodic, laboratory, fluids and vasopressor. Observations that
contained outliers were removed using domain knowledge as shown in Table 3.4.

For each preliminary covariate, a value was associated with an observation offset.

Values in the vital periodic table were registered every five minutes whereas values in
the other four tables were not regularly documented. Indeed, the vital periodic table
contained continuous monitoring whereas the other tables contained intermittent
information. The frequency of this intermittent information depends on the medical
context.

Blood pressure can be measured non-invasively or invasively depending on the medi-
cal context. The non-invasive procedure is often preferred when the clinical situation
is stable whereas invasive measurements are privileged in case of hemodynamic in-
stability. The non-invasive and the invasive blood pressure columns were merged
into one variable for each component of blood pressure (systolic, mean and diastolic)
respectively.
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Covariate or Treatment Outliers’ limits
Vital Periodic
Invasive Systolic Blood Pressure [0 - 300]
Invasive Mean Blood Pressure [0 - 200]
Invasive Diastolic Blood Pressure [0 - 200]
Heart Rate [0 - 250]
Sao2 [0 - 100]

Vital Aperiodic
Non-Invasive Systolic Blood Pressure [0 - 300]
Non-Invasive Mean Blood Pressure [0 - 200]
Non-Invasive Diastolic Blood Pressure [0 - 200]

Laboratory
Creatinine [0 - 25]
Lactate [0 - 50]
FiO2 [0.2 - 1]
PaO2 [0 - 700]
Base Excess [-50 - 50]

Fluids
Fluids [0 - 10 000]

Vasopressor
Vasopressor [0 - 10]

Table 3.4: Outliers’ limits for preliminary covariates.

Definitive covariates. Definitive covariates were obtained by combining the pre-
liminary ones as follows:

• Shock Index = Heart Rate / Systolic Blood Pressure

• P/F = PaO2 / FiO2

Finally, all the preliminary covariates (five datasets) were combined into one dataset.

Normalization. All the features were normalized with min max scaling (0-1)
before continuing with imputation.

3.1.5 Imputation
We made the assumption that the variables were normally distributed and that
most of the missing values were MAR. Indeed, if a patient had not a registered
value at a particular point in time, then we considered that no measurement was
clinically indicated. The imputation methods were adapted to the characteristics of
the features.

Covariate imputation.

• Linear interpolation was used for the features based on continuous monitoring.
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Missing values were imputed from the two closest available values if those were
observed within a specific time-length.

• Forward filling was selected for ‘intermittent’ features.

The physician point of view was adopted to discriminate between the features. For
example, in the clinical setting, medical actions are based on immediate data like
monitoring and delayed data like blood samples. If for some reason the monitoring
stops working for a short while, the physician will guess the invisible values based
on the latest trend. On the other hand, the values of the latest blood samples may
be considered ‘unaltered’ during a certain period depending on the context. Our
decisions for covariate imputations are described in Table 3.5.

Covariate Monitoring Imputation method Length (minutes)
Shock Index Continuous Linear Interpolation 2880
SaO2 Continuous Linear Interpolation 2880
Systolic Blood Pressure Continuous Linear Interpolation 2880
Mean Blood Pressure Continuous Linear Interpolation 2880
Diastolic Blood Pressure Continuous Linear Interpolation 2880
Lactate Intermittent Forward Fill 2880
Creatinine Intermittent Forward Fill 2880
P/F Intermittent Forward Fill 2880
Base Excess Intermittent Forward Fill 2880

Table 3.5: Imputation method for each covariate.

Treatment imputation. We made the assumption that there was no missing
values for vasopressors and fluids.

• Vasopressors:

(i) Missing values before the first non-missing value and after the last non-
missing value were replaced by 0 because the patient did not receive
vasopressor

(ii) The remaining missing values were imputed by forward filling since the
dose was considered constant between two consecutive observation offsets.

• Fluids:

(i) All the missing values were replaced by 0 because the registered values in
eICU correspond to cumulative measurements up to the current observa-
tion offset.
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Time range after ICU admission. The time range of our study was set to three
days after ICU admission. As such, we divided the time series data in 18 periods of
4 hours by grouping the features as shown in the Table 3.6.

Covariate or treatment Unit Formula
Systolic Blood Pressure mmHg mean
Mean Blood Pressure mmHg mean
Diastolic Blood Pressure mmHg mean
Shock Index (Heart Rate/Systolic Blood Pressure) (min-1/mmHg) mean
Lactates mmol/l mean
Base Excess mmol/l mean
PaO2 / FiO2 mmHg mean
SaO2 % mean
Creatinine mg/dl mean
Vasopressor mcg/kg/min max
Fluids
Input total ml cumsum
Input 4 hours ml/4h sum

Table 3.6: Covariates and treatments for each period.

Grouping the features into 4-hour time windows created missing values (MAR val-
ues) since the time steps with a registered value could vary between features.

Final dataset The remaining missing values were imputed performing MICE and
yielded five imputed datasets without any missing values.

3.1.6 Defining the treatment variable
Vasopressors and fluids doses were discretized in three classes respectively. Class 0
represented the absence of vasopressor or fluid infusion. Class 1 and 2 corresponded
to vasopressors and fluids doses below and above the median respectively. The final
treatment variable T was obtained by nine combinations of vasopressors [0, low,
high] and fluids [0, low, high] classes as shown in Table 3.7.

Treatment
1 2 3 4 5 6 7 8 9

Vasopressor 0 0 0 low low low high high high
Fluids 0 low high 0 low high 0 low high

Table 3.7: Treatments 1-9 with their combination of vasopressor and fluid classes.

3.1.7 Train and test sets
Each final imputed dataset was split in training and test set, comprising 80% and
20% of patients, respectively. Moreover, the training and validation sets contained
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the same patients across the imputed datasets.

3.2 Training estimators
We defined:

• X as the set of vectors containing the 9 covariates [systolic blood pressure,
mean blood pressure, diastolic blood pressure, shock index, lactate, P/F, saO2,
creatinine, base excess].

• T (vasopressor, fluid) as the set of 9 treatments {(0, 0), (0, low), (0, high), (low, 0),
(low, low), (low, high), (high, 0), (high, low), (high, high)} or {1, 2, 3, 4, 5, 6,
7, 8, 9}.

• S as the set of 4 sites {1, 2, 3, 4}.

Each patient i was associated to a site s ∈ S and each couple (patient, period)
was associated to one treatment t ∈ T and to one covariates vector xi,j ∈ X. The
number j ∈ {1, ..., 18} of xi,j depended on the length of stay of patient i.

Table 3.8 gives an example of the dataset before training.

Patient Period Site Covariates Treatment
1 1 2 x1,1 3
1 2 2 x1,2 2
1 3 2 x1,3 2
1 4 2 x1,4 5
2 1 1 x2,1 1
2 2 1 x2,2 2
2 3 1 x2,3 1
... ... ... ... ...
n 1 2 xn,1 4
n 2 2 xn,2 5
n 3 2 xn,3 7
n 4 2 xn,4 7
n 5 2 xn,5 5

Table 3.8: Dataset example before training.

3.2.1 Estimator of site propensity
First we defined a logistic regression model f to estimate the probability of belonging
to site s given covariates xi,j:

f(s | xi,j) ≈ P (S = s | X = xi,j) (3.1)
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We then defined the set C that corresponded to the set of covariates xi,j that were
likely to be observed in all sites s:

C = {xi,j : ∀s : f(s | xi,j) > ε} (3.2)

P = {patient : retained periods > δ} (3.3)

After training, each patient i has a varying number of periods with covariates xi,j

that belonged to C as shown in Table 3.9.

Patient Period f(S = 1 | xi,j) > ε f(S = 2 | xi,j) > ε f(S = 3 | xi,j) > ε f(S = 4 | xi,j) > ε xi,j in C
1 1 True True True True True
1 2 False True True True False
1 3 False False True True False
1 4 True True True True True
2 1 True False False True False
2 2 True True True True True
2 3 True True True False False
... ... ... ... ...
n 1 False True True True False
n 2 True True True True True
n 3 False True True False False
n 4 True True True True True
n 5 True True True True True

Table 3.9: Dataset example after training.

For further analysis, we selected only the patients who had more than δ% of their
periods with covariates xi,j that belonged to C and we defined the set U which
contained the covariates of this sub set of patients.

Sensible ε and δ thresholds were determined after plotting the number of patients
possibly retained for training the second estimator.

3.2.2 Estimator of treatment propensity
The next step consisted in training a second logistic regression model g that gave
an estimate gs(s, t) of the propensity for treatment t given covariate xi,j and site s:

∀t ∈ T, s ∈ S, xi,j ∈ U : gs(t | xi,j) ≈ P (T = t | X = xi,j, S = s) . (3.4)

3.2.3 Training with multiply imputed datasets
The MICE algorithm yielded 5 imputed datasets. The pooled prediction strategy
described above was chosen for practical reasons. Figure 3.1 illustrates the process.
For each logistic regression modelm with parameters p, five trainings were performed
using the five imputed datasets and the predictions of each model mp, i i ∈ {1, ..., 5}
were pooled.

21



3. Methods

Figure 3.1: Pooled predictions strategy.

Logistic regression models were instantiated with the multinomial option and a
lbfgs solver. 48 parameter combinations were obtained from different regularization
strengths [0.00001, ... , 500] and penalties [’none’, ’l2’]. Finally, a dummy classifier
with stratified strategy was also trained. The performance of each logistic regression
model mp p ∈ {1, ..., 48} was assessed with balanced accuracy (BAC) using pooled
predictions.

3.2.4 Calibration and model selection
Since practice variation analysis builds upon propensity estimates successively yielded
by two classifiers, getting reliable estimates was crucial. Therefore, each model
trained for f and g was calibrated using Platt scaling and Isotonic regression with
the test sets as shown in Figure 3.1.

These calibrated models were also evaluated using BAC. Moreover, the quality of
calibration was assessed for each calibrated model by computing the ECE and the
MCE. Finally, reliability curves for the best estimators f and g were plotted. Re-
liability diagrams, ECE and MCE calculations were based on the following data
manipulations:

First, for each couple (patient - period), the estimators f and g yielded propensity
estimates for sites (or treatments) as shown in Table 3.10.

Patient Period Site ŷs1 ŷs2 ŷs3 ŷs4

1 1 1 0.22 0.11 0.33 0.40
... ... ... ... ... ... ...
n 18 3 0.59 0.050 0.20 0.25

Table 3.10: Examples of propensity estimates for sites yielded by estimator f .
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Each probability was then associated with its accuracy as shown in Table 3.11.

Patient Period Site s == 1 ŷs1 s == 2 ŷs2 s == 3 ŷs3 s == 4 ŷs4

1 1 1 True 0.22 False 0.11 False 0.33 False 0.40
... ... ... ... ... ... ... ... ... ... ...
n 18 3 False 0.59 False 0.05 True 0.20 False 0.25

Table 3.11: Examples of propensity estimates for sites yielded by estimator f
associated to prediction accuracy.

Then all the probabilities were grouped as shown in Table 3.12

Accuracy Confidence
True 0.22
False 0.11
False 0.33
False 0.40
... ...

False 0.59
False 0.05
True 0.20
False 0.25

Table 3.12: Propensity estimates for each site are grouped.

and sorted and placed into 10 bins as shown in Table 3.13.

Bin Accuracy Confidence
1 False 0.05
2 False 0.11
3 True, True, False 0.22, 0.20, 0.25
4 False 0.33
5 False 0.40
6 False 0.59
7 - -
8 - -
9 - -
10 - -

Table 3.13: Propensity estimates are sorted and place in bins.

Finally, an average accuracy and confidence were computed for each bin as shown
in Table 3.14.

23



3. Methods

Bin Accuracy Confidence
1 0 0.05
2 0 0.11
3 0.66 0.22
4 0 0.33
5 0 0.40
6 0 0.59
7 - -
8 - -
9 - -
10 - -

Table 3.14: Average accuracy and confidence are computed for each bin.

Thus the reliability diagrams could be plot with the expected sample accuracy as a
function of confidence.

As a compromise between class-prediction accuracy and prediction confidence, the
calibrated model with lowest MCE in the subgroup of models having the 5% highest
BAC was chosen for f and g respectively.
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3.3 Practice variation
Once trained, the second classifier gs was used to obtain the treatment policy, i.e.
the propensity for each treatment t ∈ T for each site s in S as shown in Table 3.15.

Patient Period Site t1 t2 t3 t4 t5 t6 t7 t8 t9

1 1 1 - - - - - - - - -
1 2 1 - - - - - - - - -
1 3 1 - - - - - - - - -
... ... ... ... ... ... ... ... ... ... ... ...
n 4 1 - - - - - - - - -
n 5 1 - - - - - - - - -
1 1 2 - - - - - - - - -
1 2 2 - - - - - - - - -
1 3 2 - - - - - - - - -
... ... ... ... ... ... ... ... ... ... ... ...
n 4 2 - - - - - - - - -
n 5 2 - - - - - - - - -
1 1 3 - - - - - - - - -
1 2 3 - - - - - - - - -
1 3 3 - - - - - - - - -
... ... ... ... ... ... ... ... ... ... ... ...
n 4 3 - - - - - - - - -
n 5 3 - - - - - - - - -
1 1 4 - - - - - - - - -
1 2 4 - - - - - - - - -
1 3 4 - - - - - - - - -
... ... ... ... ... ... ... ... ... ... ... ...
n 4 4 - - - - - - - - -
n 5 4 - - - - - - - - -

Table 3.15: Treatment policy for each site.

We predicted the probabilities for treatment t given covariates xi,j for every patient
i whose covariates xi,j ∈ U four times, each with a different input site s ∈ S.

3.3.1 Among sites
Practice variation (PV) between sites could first be illustrated as the expected dif-
ference in propensity of treatment t, for two sites s1, s2:

PV s1, s2 = EX [gs1(t | xi,j)− gs2(t | xi,j)] (3.5)
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3.3.2 Among patients
To investigate practice variation at a patient level, we averaged the covariates xi,j

over each patient ICU stay as follows:

xi ←
1
n

n∑
j=1

xi,j (3.6)

In equation 3.5 n represents the total number of periods for patient i. After this
step, each patient i had only one covariates vector xi and the expected propensity
for treatment t across sites was defined as:

Es|xi
[gs(t | xi)] =

4∑
k=1

f(sk | xi)× gsk
(t | xi) (3.7)

For each patient i, we obtained 9 expected propensities, one for each treatment.
Practice variation for patient i with covariates xi in site s = 1 for treatment t = 1
could then be estimated as:

PVi(S = 1, T = 1) = |gs1(t1 | xi)− Es|xi
[gs(t = 1 | xi)]| (3.8)

Then, a global practice variation metric across sites and treatments for patient i
could be computed as follows:

E(s,t|xi)[PVi(S = s, T = t)] =
S∑

s=1

T∑
t=1

PVi(S = s, T = t)× P (S = s, T = t | X = xi)

(3.9)

with:

P (S = s, T = t | X = xi) = P (T = t | S = s,X = xi)× P (S = s | X = xi)
= gs(t | xi)× f(s | xi)

(3.10)

Then, we analysed the patients who corresponded to the 1% highest practice vari-
ation. We performed a principal component analysis (PCA) to reduce the feature
space to only two components and we situated these extreme patients among all the
others in a plot.

Finally, we investigated the correlation between practice variation and covariates at
a patient level.
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3.3.3 Importance sampling
Evaluating the value of a learned policy (target policy) with data generated by
another policy (behavior policy) is known as off-line policy evaluation [29]. For
example, we would like to know if the learned policy gs conducted in site S = 1 would
lead to lower hospital mortality than the behavior policy. Importance sampling is a
classical method to correct the discrepancy between the target π and the behavior
µ distributions.

In our case, the outcome mortality Yi for patient i would be weighted by the ratio
of its likelihood of occurring under the two distributions and a global value V̂ of the
target policy could be estimated by taking the average over patients as follows:

V̂ (π) = 1
n

n∑
i=1

π(xi, T = t)
µ(xi, T = t) × Yi (3.11)

π and µ can be expressed as follows:

π(X = xi, T = t) = P (X = xi, T = t)
= P (X = xi)× P (T = t | X = xi)
= P (X = xi)× gs(t|xi)

(3.12)

µ(X = xi, T = t) = Es|xi
[gs(t, xi)]

=
4∑

k=1
f(sk | xi)× gsk

(t, xi)

= P (X = xi)×
4∑

k=1
f(sk | xi)× gsk

(t | xi)

= P (X = xi)× Es|xi
[gs(t | xi)]

(3.13)

The value V̂ of the target policy can be rewritten as follows:

V̂ (π) = 1
n

n∑
i=1

gs(t|xi)
Es|xi

[gs(t | xi)]
× Yi (3.14)

An alternative way to illustrate practice variation among sites was to plot the dis-
tributions of the ratio π over µ for each target policy and each treatment. For a
given treatment and a given policy, a ratio greater than one for most of the patients
could indicate that this policy recommended this treatment and vice versa.
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3.4 Software used
The cohort of sepsis patients and the preliminary covariates were obtained by using
Structured Query Language (SQL) to query the PostgreSQL eICU database. The
queries for obtaining the SOFA score and the data on creatinine, lactate, FiO2 and
base excess were adapted from van den Boom et al. [48] and Tom Pollard et al. [45].

The code for this work was written in Python (version 3.7.3) using the Jupyter
Notebook interface.
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Results

4.1 Cohort of sepsis patients and sites selection
2820 ICU stays corresponding to 2668 unique sepsis patients were retrieved from the
eICU database. Figure 4.1 shows the flowchart of selecting the cohort of patients in
sepsis.

Figure 4.1: Flowchart of selecting the cohort of patients in sepsis.

In order to get a sufficient number of ICU stays per site, we selected the most
represented hospitals and ICUs. The distributions of ICU stays with sepsis over
hospitals (n = 61) and ICUs (n = 107) are represented in the Figure 4.2.

We selected the five most represented sites of each category which yielded 1016 and
702 ICU stays for the hospitals and the ICUs respectively. However, due to missing
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(a) Distribution of ICU stays
with sepsis over hospitals.

(b) Distribution of ICU stays
with sepsis over ICUs

Figure 4.2: Distribution of stays in hospitals and ICUs.

vasopressor concentrations, one hospital from the five most represented hospitals
and one ICU from the five most represented ICUs had to be excluded. This led to a
subset of four hospitals (837 ICU stays) and a subset of four ICUs (573 ICU stays)
as displayed in Figure 4.3.

Figure 4.3: Flowchart of site selection.

Table 4.1 and 4.2 contains descriptive statistics for the four hospitals and the four
ICUs respectively.
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Hospital 1 2 3 4
Stays (n) 173 207 198 259
SOFA score 7 (5-10) 7 (4-9) 7 (4-9) 7 (5-10)
Age (years) 70 (60-79) 60 (49-71) 67 (57-78) 68 (57-78)
Weight (kg) 79 (66-94) 78 (65-102) 75 (64-98) 75 (63-94)
Length of stay (min) 52 (26-121) 71 (34-161) 58 (25-129) 88 (46-164)
ICU types (n) 1 3 3 6
Stays ICU type* (%)
Med-Surg ICU 100 82 57 47
Cardiac 0 0 0 36
Surg 0 0 0 14
CCU-CTICU 0 0 0 3
Neuro 0 10 0 0
CSICU 0 8 43 0

Beds (n) 250 - 499 ≥ 500 Unknown ≥ 500
Teaching status No Yes No Yes
Region West West Unknown Northeast
Male/Female (%) 50/50 50/50 53/47 54/46
Ethnicity (%)
Caucasian 87 64 85 87
African-American 2 8 5 4
Native-American 4 13 0 0
Hispanic 1 6 1 0
Asian 0 0 3 1
Other-Unknown 6 9 6 8

Unit Admission (%)
Emergency 73 59 72 65
Floor 21 22 22 20
SDU 2 1 2 1
Other Hospital 2 14 3 10
Other ICU 1 1 1 2
Direct 1 3 1 1
OR-recovery 0 0 0 1

Sepsis Type (%)
Pulmonary 42 42 44 27
UTI-Renal 25 16 19 16
GI 15 21 14 13
Soft Tissue 9 11 12 3
Gyneco 0 1 0 0
Other-Unknown 9 8 11 41

ICU Mortality (%) 12 13 11 16
Hospital Mortality (%) 17 17 14 20
Vasopressor (%) 69 59 71 62

Table 4.1: Descriptive statistics for the four hospitals.
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ICU 1 2 3 4
Stays (n) 112 118 173 170
SOFA score 7 (5-10) 6 (4-9) 7 (5-10) 7 (4-9)
Age (years) 62 (51-74) 72 (64-81) 70 (60-79) 57 (46-68)
Weight (kg) 78 (65-94) 79 (66-97) 79 (66-94) 77 (65-103)
Length of stay (min) 64 (27-107) 67 (35-139) 52 (26-121) 64 (31-156)
ICU type Med-Surg ICU MICU Med-Surg ICU Med-Surg ICU
Beds (n) ≥ 500 250 - 499 250 - 499 ≥ 500
Teaching status No No No Yes
Region West West West West
Male/Female (%) 58.9/41.1 43.2/56.8 49.7/50.3 50/50
Ethnicity (%)
Caucasian 79 86 87 60
African-American 4 3 2 9
Native-American 3 0 4 15
Hispanic 2 2 1 5
Asian 1 1 0 1
Other-Unknown 11 8 6 10

Unit Admission (%)
Emergency 68 80 73 63
Floor 24 14 21 21
SDU 3 1 2 0
Other Hospital 3 1 2 13
Other ICU 2 3 1 1
Direct 0 1 1 2

Sepsis Type (%)
Pulmonary 42 33 42 42
UTI-Renal 27 31 25 19
GI 10 20 15 22
Soft Tissue 12 5 9 8
Gyneco 1 0 0 2
Other-Unknown 9 10 9 6

ICU Mortality (%) 12 9 12 13
Hospital Mortality (%) 15 10 17 16
Vasopressor (%) 68 61 69 55

Table 4.2: Descriptive statistics for the four ICUs.
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4.2 Covariates and treatments
The patients retrieved from our selection of ICUs and hospitals had a lot of missing
covariate and treatment values. Table 4.3 and Figure 4.4 shows for each covariate
and treatment: the number of patients with registered values and missing values
before imputation.

Covariate or treatment Patients with value Values Missing values Proportion of missing values
Systolic blood pressure 1067 373758 427539 53.36
Mean blood pressure 1067 375082 426215 53.19
Diastolic blood pressure 1067 373563 427734 53.38
Shock Index 976 287520 513777 64.12
Sao2 902 600790 200507 25.02
Lactate 1067 2448 798849 99.69
Creatinine 1052 4030 797267 99.50
P/F 548 1965 799332 99.75
Base Excess 706 2733 798564 99.66
Input Fluid 1066 51459 749838 93.58
Vasopressor 668 23544 777753 97.06

Table 4.3: Covariates and treatments - missingness before imputation.

Figure 4.4: Covariates and treatments - fraction of missing values before
imputation.

‘Continuous’ covariates like blood pressures, shock index and saO2 showed less miss-
ing values than ‘intermittent’ covariates collected from blood samples (lactate, cre-
atinine, P/F and base excess), between around 0.2 and 0.65 versus over 0.95 respec-
tively.
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Covariates and treatments - missingness after linear interpolation and for-
ward filling. Linear interpolation and forward filling were applied as described in
3.5. Table 4.4 and Figure 4.5 shows the missingness for each covariate and treatment
before and after linear interpolation and forward filling.

Covariate or treatment Values Missing values Proportions of missing values
before after before after before after

Systolic blood pressure 373758 799952 427539 2318 53.36 0.29
Mean blood pressure 375082 799959 426215 2311 53.19 0.29
Diastolic blood pressure 373563 799952 427734 2318 53.38 0.29
Shock Index 287520 689789 513777 112481 64.12 14.02
Sao2 600790 798351 200507 3919 25.02 0.49
Lactate 2448 569914 798849 232356 99.69 28.96
Creatinine 4030 695793 797267 106477 99.50 13.27
P/F 1965 368235 799332 434035 99.75 54.10
Base Excess 2733 483284 798564 318986 99.66 39.76
Input Fluid 51459 802270 749838 0 93.58 0.00
Vasopressor 23544 802270 777753 0 97.06 0.00

Table 4.4: Covariates and treatments - missingness after linear interpolation and
forward filling.

Figure 4.5: Covariates and treatments - fraction of missing values after linear
interpolation and forward filling.

Covariates - missingness after grouping. Then each patient had their co-
variates grouped with a four-hour time window as describe in 3.6. This created a
maximum up to 18 time steps depending on the ICU length of stay. This merging
of covariates into 18 periods created missing values as covariates were recorded at
different rates or only when medically needed. The missingness after grouping is
shown in Table 4.5 and illustrated in Figure 4.6.
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Covariate or treatment Values Missing values Proportion of missing values
Systolic blood pressure 15056 378 2.45
Mean blood pressure 15056 378 2.45
Diastolic blood pressure 15056 378 2.45
Shock Index 13261 2173 14.08
Sao2 15034 400 2.59
Lactate 11171 4263 27.62
Creatinine 13706 1728 11.20
P/F 7003 8431 54.63
Base Excess 9207 6227 40.35

Table 4.5: Covariates - missingness after grouping (4-hour time windows).

Figure 4.6: Covariates - missingness after grouping (4-hour time windows).

The remaining missing values were imputed performing MICE which yielded five
imputed datasets with no missing values. The five imputed datasets had 15344 rows
with 9 columns for covariates and 1 column for treatment. The number of patient
stays and periods per hospitals and ICUs are shown in Table 4.6. Hospital 1, 2, 3
and 4 consisted of 1, 3, 3 and 6 ICUs respectively.
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Datasets (1-5) Stays Periods
ICUs 573 7926
ICU 1 112 1569
ICU 2 118 1674
ICU 3 173 2280
ICU 4 170 2403

Hospitals 837 12191
Hospital 1 173 2280
Hospital 2 207 2979
Hospital 3 198 2704
Hospital 4 259 4228

Total 1067 15434

Table 4.6: Datasets - imputed.

Covariates distributions. Figure 4.7 and 4.8 display the distribution of covari-
ates after imputations and normalization for sepsis patients in the four hospitals
and the four ICUs respectively. Covariates values have been averaged across the five
datasets only for the purpose of visualization.

Figure 4.7: Hospital - distribution of covariates after imputations and
normalization.
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Figure 4.8: ICU - distribution of covariates after imputations and normalization.

The analysis of practice variation was then independently conducted on the subsets
of sepsis patients coming from the four largest ICUs and the fours largest hospitals
respectively.
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4.3 ICU results

4.3.1 Estimator of site propensity
Training and calibration. The extracted and imputed datasets was split into
training and testing sets with a split ratio of 80/20 without overlapping stays. The
train set contained 458 patient stays with 6330 periods and the test set contained
115 stays with 1596 periods. These figures are identical for each imputed dataset
and the complete figures with an overview of the train and test split on an ICU level
can be found in Appendix B.1.

48 logistic regression estimators with distinct parameters were trained to predict
ICUs given covariates for each imputed dataset. 16 models were not calibrated, 16
models were calibrated using Platt calibration and 16 models were calibrated using
isotonic calibration. Among all these models, three dummy classifiers with stratified
strategy were trained (uncalibrated, Platt and isotonic calibrated respectively). For
each estimator, the performance prediction and the calibration quality were evalu-
ated with BAC, ECE and MCE respectively after pooling the predictions from each
imputed dataset as described above. The log loss was also retrieved. The dummy
classifiers yielded a BAC of 0.25 (four classes) and served as baseline performance.

Table 4.7 displays the results of the best calibrated estimators regarding BAC (0.95
quantile) with information of their respective parameter settings and scores. The
results showed that estimators calibrated with isotonic regression outperformed cali-
bration with Platt scaling across all metrics on almost all parameter settings (except
for some C values below 1).

No. Estimator class Solver Penalty C Calibration BAC ECE MCE Log loss
8 logistic regression lbfgs l2 150 isotonic 0.341 0.039 0.12976 1.292
7 logistic regression lbfgs l2 160 isotonic 0.341 0.035 0.12979 1.292
6 logistic regression lbfgs l2 200 isotonic 0.341 0.038 0.12970 1.292
5 logistic regression lbfgs l2 240 isotonic 0.341 0.041 0.12999 1.292
4 logistic regression lbfgs l2 130 isotonic 0.341 0.037 0.12985 1.292
3 logistic regression lbfgs l2 170 isotonic 0.342 0.037 0.12990 1.292
2 logistic regression lbfgs none none isotonic 0.342 0.037 0.13001 1.292
1 logistic regression lbfgs l2 100 isotonic 0.342 0.039 0.12971 1.292

Table 4.7: ICU - best candidates for the estimator of site propensity of site
propensity regarding BAC (0.95 quantile).

Model number 6 with parameters [solver: lbgfs, penalty: l2, c: 200] and isotonic
calibration had the lowest MCE (0.12970) in the subgroup of models having the 5%
highest BAC and was therefore chosen as the estimator of site propensity. It had
also a BAC of 0.341.
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Figure 4.9 represents the reliability diagram of model number 6 before calibration
and after Platt and isotonic calibration.

(a) No calibration (b) Platt calibration (c) Isotonic calibration

Figure 4.9: ICU - Reliability diagrams for the logistic regression model with
parameters [solver: lbgfs, penalty: l2, c: 200] before and after calibration. The
model with isotonic calibration was selected as the estimator of site propensity.

Extracting comparable patients using the estimator of site propensity.
Figure 4.10 represents the number of retained patients as a function of epsilon and
delta. We visually estimated that an epsilon of 0.10 and a delta of 0.9 were sensible
trade-offs for retaining a larger subset of stays (retention of around 75% of the
patient ICU stays). Table 4.8 shows the number of patient ICU stays and periods
retained per site for the next step.

Figure 4.10: Number of patient ICU stays given epsilon and delta.
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Site Stays Stays retained Periods Periods retained
ICU 1 112 77 1569 1053
ICU 2 118 68 1674 944
ICU 3 173 130 2280 1652
ICU 4 170 152 2403 2135

573 427 7926 5784

Table 4.8: Subset of patient ICU stays retained after the first training.

4.3.2 The treatment variable
A treatment variable (1-9) was then computed for each period in the subset of pa-
tients retained. Figure 4.11 displays the marginal distribution of all nine treatment
combinations obtained. The figure shows that treatments were clearly imbalanced
as treatment 2 and 3 had more than one thousand occurrences, while treatment 4
and 7 only a few dozen ones. This indicates that fluid 0 combined with doses of va-
sopressor was rarely observed. These figures are identical for each imputed dataset
and the complete figures with an overview of the marginal distribution of treatments
on an ICU level can be found in Appendix B.3.

Figure 4.11: ICU - marginal distribution of treatments.
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4.3.3 Estimator of treatment propensity
Training and calibration. The estimator of treatment propensity was trained
to predict treatments given covariates and sites. The sites were one-hot encoded
and each imputed dataset therefore contained 13 features (9 covariates + 4 sites).

As in the first step, the imputed datasets were split into 80% train and 20% test
data, without overlapping stays. The train set contained 341 patient stays with
4584 periods and the test set contained 86 stays with 1200 periods. These figures
are identical for each imputed dataset and the complete figures with an overview of
the train and test split on an ICU level can be found in Appendix B.5.

In the same way as for the first step, we trained 48 logistic regression estimators
with distinct parameters for each imputed dataset. 16 models were not calibrated,
16 models were calibrating using Platt calibration and 16 models were calibrated
using isotonic calibration. Among all these models, three dummy classifiers with
stratified strategy were trained (uncalibrated, Platt and isotonic calibrated respec-
tively). For each estimator, the performance prediction and the calibration quality
were evaluated with BAC, ECE and MCE respectively after pooling the predictions
from each imputed dataset as described above. The log loss was also retrieved.
The dummy classifiers yielded a BAC of 0.11 (nine classes) and served as baseline
performance.

Table 4.9 displays the results of the best calibrated estimators regarding BAC (0.95
quantile) with information of their respective parameter settings and scores. Once
again, the results showed that estimators calibrated with isotonic regression out-
performed calibration with Platt scaling across all metrics on almost all parameter
settings (except for some C values below 1).

No. Estimator class Solver Penalty C Calibration BAC ECE MCE Log loss
7 logistic regression lbfgs l2 20 isotonic 0.139 0.143 0.483697 1.609
6 logistic regression lbfgs l2 70 isotonic 0.139 0.140 0.497638 1.610
5 logistic regression lbfgs l2 40 isotonic 0.140 0.156 0.451662 1.610
4 logistic regression lbfgs l2 30 isotonic 0.140 0.146 0.457316 1.609
3 logistic regression lbfgs l2 50 isotonic 0.140 0.147 0.496853 1.610
2 logistic regression lbfgs l2 15 isotonic 0.140 0.146 0.482657 1.608
1 logistic regression lbfgs l2 230 isotonic 0.140 0.155 0.493008 1.613

Table 4.9: ICU - best candidates for the estimator of treatment propensity
regarding BAC (0.95 quantile).

Model number 5 with parameters [solver: lbgfs, penalty: l2, c: 40] and isotonic
calibration had the lowest MCE in the subgroup of models having the 5% highest
BAC and was therefore chosen as the estimator of treatment propensity. It had also
a BAC of 0.140.

Figure 4.12 represents the reliability diagram of model number 5 before calibration
and after Platt and isotonic calibration.
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(a) No calibration (b) Platt calibration (c) Isotonic calibration

Figure 4.12: ICU - reliability diagrams for the logistic regression model with
parameters [solver: lbgfs, penalty: l2, c: 40] before and after calibration. The
model with isotonic calibration was selected as the estimator of treatment

propensity.

Treatment policies. By sequentially modifying the one-hot encoding for sites in
the imputed datasets, the estimator of treatment propensity could yield the propen-
sity for treatments at each time steps for each site.

In Figure 4.13 the propensities for each treatment and each site were averaged over
time and these aggregated propensities roughly matched the treatment distribution
in the datasets.

Figure 4.13: ICU - marginal probability of treatments during ICU stay per site.
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4.3.4 Practice variation
Among sites. Figure 4.14 illustrates practice variation among ICUs as the ex-
pected difference in propensity for treatment t for two sites s1, s2 (see Equation
3.7). For example, the probability of receiving treatment 3 in ICU 1 was about 5%
higher than in ICU 2 while the probability of receiving treatment 1 in ICU 1 was
about 3% lower than in the ICU 4.

Figure 4.14: ICU - treatment propensity difference.

Among patients. Figure 4.15 illustrates the global practice variation distribution
at a patient level (see Equations 3.8-3.11) and Table 4.10 displays statistics of this
distribution.

Figure 4.15: ICU - global practice variation distribution at a patient level.

Patients Mean Std Min Max
427 0.02084 0.00553 0.01064 0.03847

Table 4.10: ICU - statistics for the global practice variation distribution at a
patient level.
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Figure 4.16 illustrates the practice variation distribution at a patient level for each
treatment and Table 4.11 displays statistics of these distributions.

Figure 4.16: ICU - practice variation among patients for each treatment.

Treatment Mean Std Min Max
1 (vaso: 0, fluid: 0) 0.00038 0.00012 0.00004 0.00088
2 (vaso: 0, fluid: low) 0.00529 0.00161 0.00241 0.01172
3 (vaso: 0, fluid: high) 0.00247 0.00110 0.00016 0.00578
4 (vaso: low, fluid: 0) 0.00000 0.00001 0.00000 0.00005
5 (vaso: low, fluid: low) 0.00076 0.00018 0.00012 0.00141
6 (vaso: low, fluid: high) 0.00117 0.00041 0.00014 0.00237
7 (vaso: high, fluid: 0) 0.00004 0.00002 0.00000 0.00013
8 (vaso: high, fluid: low) 0.00273 0.00114 0.00002 0.01381
9 (vaso: high, fluid: high) 0.00798 0.00417 0.00106 0.02260

Table 4.11: ICU - practice variation among patients for each treatment.
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Situate patients with high practice variation among others. Figure 4.17
represents a PCA with two components. The patients with 1% highest practice
variation roughly lie on the periphery.

Figure 4.17: ICU - situate patients in the practice variation 0.99 quantile
amongst other patients.

Figure 4.18 individualizes these patients from the distribution of every covariate in
the dataset.

Figure 4.18: ICU - covariates before imputation with medians of the top five
patients with highest practice variation.
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Correlation with covariates. Figure 4.19 shows a correlation between practice
variation and the first component of a PCA (Pearson’s correlation = -0.599).

Figure 4.19: ICU - correlation between practice variation and principal
component.

This correlation was not evident when we considered each covariate individually as
shown in Figure 4.20.

Figure 4.20: ICU - correlation between practice variation and each covariate.
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Importance sampling. Figure 4.21 shows the distributions of the weights (see
equation 3.10) for each learned policy and each treatment. For a given treatment
and a given policy, a ratio greater than one (green) for most of the patients could
indicate that this policy recommended this treatment and vice versa (red). For
example, treatment 1 was recommended by the policy in ICU 4 but not by the
policy in ICU 1.

Figure 4.21: ICU - importance sampling weight distribution.

47



4. Results

4.4 Hospital results

4.4.1 Estimator of site propensity
Training and calibration. The extracted and imputed datasets was split into
training and testing sets with a split ratio of 80/20 without overlapping stays. The
train set contained 669 patient stays with 9716 periods and the test set contained
168 stays with 2475 periods. These figures are identical for each imputed dataset
and the complete figures with an overview of the train and test split on an hospital
level can be found in Appendix B.2.

48 logistic regression estimators with distinct parameters were trained to predict
ICUs given covariates for each imputed dataset. 16 models were not calibrated, 16
models were calibrating using Platt calibration and 16 models were calibrated using
isotonic calibration. Among all these models, three dummy classifiers with stratified
strategy were trained (uncalibrated, Platt and isotonic calibrated respectively). For
each estimator, the performance prediction and the calibration quality were evalu-
ated with BAC, ECE and MCE respectively after pooling the predictions from each
imputed dataset as described above. The log loss was also retrieved. The dummy
classifiers yielded a BAC of 0.25 (four classes) and served as baseline performance.

Table 4.12 displays the results of the best calibrated estimators regarding BAC (0.95
quantile) with information of their respective parameter settings and scores. Once
again, the results showed that estimators calibrated with isotonic regression out-
performed calibration with Platt scaling across all metrics on almost all parameter
settings.

No. Estimator class Solver Penalty C Calibration BAC ECE MCE Log loss
7 logistic regression lbfgs l2 10 isotonic 0.316 0.0209 0.225829 1.326
6 logistic regression lbfgs l2 7 isotonic 0.317 0.0258 0.497848 1.326
5 logistic regression lbfgs l2 3 isotonic 0.318 0.0314 0.489147 1.327
4 logistic regression lbfgs l2 6 isotonic 0.318 0.0315 0.477560 1.326
3 logistic regression lbfgs l2 8 isotonic 0.319 0.0213 0.501692 1.326
2 logistic regression lbfgs l2 2 isotonic 0.319 0.0323 0.247794 1.328
1 logistic regression lbfgs l2 4 isotonic 0.321 0.0300 0.480372 1.327

Table 4.12: Hospital - best candidates for the estimator of site propensity
regarding BAC (0.95 quantile).

Model number 7 with parameters [solver: lbgfs, penalty: l2, c: 10] and isotonic
calibration had the lowest MCE (0.225829) in the subgroup of models having the
5% highest BAC and was therefore chosen as the estimator of site propensity. It
had also a BAC of 0.316.

Figure 4.22 represents the reliability diagram of model number 7 before calibration
and after Platt and isotonic calibration.
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(a) No calibration (b) Platt calibration (c) Isotonic calibration

Figure 4.22: Hospital - reliability diagrams for the logistic regression model with
parameters [solver: lbgfs, penalty: l2, c: 10] before and after calibration. The
model with isotonic calibration is selected as the estimator of site propensity.

Extracting comparable patients using the estimator of site propensity.
Figure 4.23 represents the number of retained patients as a function of epsilon and
delta. We visually estimated that an epsilon of 0.13 and a delta of 0.9 were sensible
trade-offs for retaining a larger subset of stays (retention of around 93% of the
patient ICU stays). Table 4.13 shows the number of patient ICU stays and periods
retained per site for the next step.

Figure 4.23: Hospital - stays given epsilon and delta.
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Site Stays Stays retained Periods Periods retained
Hospital 1 173 163 2280 2157
Hospital 2 207 186 2979 2660
Hospital 3 198 184 2704 2501
Hospital 4 259 242 4228 3955

837 775 12191 11273

Table 4.13: Hospital - stays after subset.

4.4.2 The treatment variable
A treatment variable (1-9) was then computed for each period in the subset of pa-
tients retained. Figure 4.11 displays the marginal distribution of all nine treatment
combinations obtained. The figure shows that treatments were clearly imbalanced
as treatment 2 and 3 had more than two thousand occurrences, while treatment 4
and 7 only around 50. This indicates that fluid 0 combined with doses of vasopressor
was rarely observed. These figures are identical for each imputed dataset and the
complete figures with an overview of the marginal distribution of treatments on a
hospital level can be found in Appendix B.4.

Figure 4.24: Hospital - marginal distribution of treatments.
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4.4.3 Estimator of treatment propensity
Training and calibration. The estimator of treatment propensity was trained
to predict treatments given covariates and sites. The sites were one-hot encoded
and each imputed dataset therefore contained 13 features (9 covariates + 4 sites).

As in the first step, the imputed datasets were split into 80% train and 20% test
data, without overlapping stays. The train set contained 620 patient stays with
9060 periods and the test set contained 155 stays with 2213 periods. These figures
are identical for each imputed dataset and the complete figures with an overview of
the train and test split on a hospital level can be found in Appendix B.6.

In the same way as for the first step, we trained 48 logistic regression estimators
with distinct parameters for each imputed dataset. 16 models were not calibrated,
16 models were calibrating using Platt calibration and 16 models were calibrated
using isotonic calibration. Among all these models, three dummy classifiers with
stratified strategy were trained (uncalibrated, Platt and isotonic calibrated respec-
tively). For each estimator, the performance prediction and the calibration quality
were evaluated with BAC, ECE and MCE respectively after pooling the predictions
from each imputed dataset as described above. The log loss was also retrieved.
The dummy classifiers yielded a BAC of 0.11 (nine classes) and served as baseline
performance.

No. Estimator class Solver Penalty C Calibration BAC ECE MCE Log loss
8 logistic regression lbfgs l2 300 isotonic 0.202 0.0899 0.368877 1.645
7 logistic regression lbfgs l2 260 isotonic 0.202 0.0913 0.369331 1.645
6 logistic regression lbfgs l2 400 isotonic 0.202 0.0902 0.368812 1.645
5 logistic regression lbfgs l2 220 isotonic 0.203 0.0913 0.359259 1.645
4 logistic regression lbfgs l2 290 isotonic 0.203 0.0937 0.369316 1.645
3 logistic regression lbfgs l2 500 isotonic 0.203 0.0908 0.368743 1.645
2 logistic regression lbfgs l2 270 isotonic 0.203 0.0916 0.358627 1.645
1 logistic regression lbfgs none none isotonic 0.204 0.0931 0.368917 1.645

Table 4.14: Hospital - best candidates for the estimator of treatment propensity
regarding BAC (0.95 quantile).

Model number 2 with parameters [solver: lbgfs, penalty: l2, c: 270] and isotonic
calibration had the lowest MCE (0.358627) in the subgroup of models having the
5% highest BAC and was therefore chosen as the estimator of treatment propensity.
It had also a BAC of 0.203.

Figure 4.25 represents the reliability diagram of model number 2 before calibration
and after Platt and isotonic calibration.
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(a) Logistic regression
(solver: lbgfs, penalty:

l2, c: 270)

(b) (g) after Platt
calibration

(c) (g) after Isotonic
calibration

Figure 4.25: Hospital - reliability diagrams for the logistic regression model with
parameters [solver: lbgfs, penalty: l2, c: 10] before and after calibration. The

model with isotonic calibration is selected as the estimator of treatment propensity.

Treatment policies. By sequentially modifying the one-hot encoding for sites in
the imputed datasets, the estimator of treatment propensity could yield the propen-
sity for treatments at each time steps for each site.

In Figure 4.26 the propensities for each treatment and each site were averaged over
time and these aggregated propensities roughly matched the treatment distribution
in the datasets.

Figure 4.26: Hospital - marginal probability of treatments during ICU stay per
site.
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4.4.4 Practice variation
Among sites. Figure 4.27 illustrates practice variation among hospitals as the
expected difference in propensity for treatment t for two sites s1, s2 (see Equation
3.7). For example, the probability of receiving treatment 3 in hospital 1 was about
6% higher than in ICU 2 while the probability of receiving treatment 1 in ICU 1
was about 3% lower than in the ICU 4.

Figure 4.27: Hospital - treatment propensity difference.

Among patients. Figure 4.28 illustrates the global practice variation distribution
at a patient level (see Equations 3.8-3.11) and the table 4.15 displays statistics of
this distribution.

Figure 4.28: Hospital - global practice variation distribution at a patient level.

Patients Mean Std Min Max
775 0.02417 0.00806 0.01063 0.05786

Table 4.15: Hospital - statistics for the global practice variation distribution at a
patient level.
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Figure 4.29 illustrates the practice variation distribution at a patient level for each
treatment and the table Table 4.16 displays statistics of these distributions.

Figure 4.29: Hospital - practice variation among treatments.

Treatment Mean Std Min Max
1 (vaso: 0, fluid: 0) 0.00061 0.00018 0.00010 0.00127
2 (vaso: 0, fluid: low) 0.00622 0.00247 0.00123 0.01835
3 (vaso: 0, fluid: high) 0.00291 0.00088 0.00041 0.00609
4 (vaso: low, fluid: 0) 0.00001 0.00001 0.00000 0.00017
5 (vaso: low, fluid: low) 0.00106 0.00027 0.00016 0.00336
6 (vaso: low, fluid: high) 0.00198 0.00041 0.00010 0.00509
7 (vaso: high, fluid: 0) 0.00004 0.00004 0.00000 0.00047
8 (vaso: high, fluid: low) 0.00229 0.00130 0.00009 0.01392
9 (vaso: high, fluid: high) 0.00905 0.00547 0.00108 0.03239

Table 4.16: Hospital - practice variation among treatments.

54



4. Results

Situate patients with high practice variation among others. Figure 4.30
represents a PCA with two components. The patients with 1% highest practice
variation roughly lie on the periphery.

Figure 4.30: Hospital - situate patients in the practice variation 0.99 quantile
amongst other patients.

Figure 4.31 individualizes five of these patients from the distribution of every co-
variate in the dataset.

Figure 4.31: Hospital - covariates before imputation with medians of the top five
patients with highest practice variation.
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Correlation with covariates. Figure 4.32 shows a weak correlation between
practice variation and the first component of a PCA (Pearson’s correlation = -
0.511).

Figure 4.32: Hospital - correlation between practice variation and principal
component.

This correlation was not evident when we considered each covariate individually as
shown in Figure 4.33 .

Figure 4.33: Hospital - correlation between practice variation and each covariate.
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Importance sampling. Figure 4.34 shows the distributions of the weights (see
equation 3.10) for each learned policy and each treatment. For a given treatment
and a given policy, a ratio greater than one (green) for most of the patients could
indicate that this policy recommended this treatment and vice versa (red). For
example, treatment 1 was recommended by the policy in hospital 4 but not by the
policy in hospital 1.

Figure 4.34: Hospital - importance sampling weight distribution.
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In this work, we showed the feasibility of learning site-specific treatment policies for
the management of sepsis-induced circulatory failure by modeling the distribution
of sites and treatments with logistic regression models.

6313 sepsis patients were retrieved from the eICU database. This number is consis-
tent with previous studies and may vary from about 5000 to 11000 according to the
stringency of sepsis definition [49, 50, 51]. However, we excluded half of the patients
because the reliability and data completion could significantly vary across hospitals
and/or ICUs [43]. We used a previously described method to estimate the quality
of data in every site [26]. The final cohort contained 3174 sepsis patients but after
selecting the four most represented hospitals and ICUs, this figure dropped to 837
and 573 respectively. To not further reduce the available data for analysis, we de-
cided not to exclude readmitted patients (77 in total). A larger number of patients
might have helped the second classifier to discriminate, especially for uncommon
treatments such as high doses of vasopressor without fluid infusion.

We modelled practice variation among four ICUs and four hospitals. The hospitals
contained a varying number of ICUs, between one and six. From a clinical perspec-
tive, the hospital analysis may include more heterogeneous patients and it may be
more difficult to find similar patient to compare. We didn’t face this issue in our
work. Considering practice variation between hospitals was a way to generalize the
concept and one could imagine investigating larger geographical zones like cities or
regions.

The amount of fluid (ml) and the dose of vasopressor (mcg/kg/min) given to the
patients are theoretically considered as continuous variables. We defined a discrete
variable Treatment which could take nine values corresponding to nine combinations
of fluid doses (0, low and high) and vasopressor doses (0, low and high). It would
have been clinically more sensible to increase the number of combinations but it
would have drastically reduced the number of patients per treatment class and the
classifier would not have learned efficiently.

Merging together the nine covariates created many missing values. Indeed, vital
signs such as blood pressure, SaO2 and heart rate were automatically recorded
every 5 minutes while the other biological parameters such as PaO2, lactate, base
excess and creatinine were only ordered when medically needed. This pattern of
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missingness could correspond to missing at random (MAR) values [33]) and we
decided therefore to impute missing values using linear interpolation, LOCF and
MICE methods.

Since our data consisted in multidimensional discrete time series, we made the as-
sumption that adjacent observations were similar to one another. Thus, we per-
formed first linear imputation and forward filling. Linear interpolation was preferred
for vital signs whereas forward filling was used for biological parameters. This dis-
tinction might intuitively match the cognitive process of clinicians when it comes to
take medical decisions. Indeed, vital signs trends are considered more labile while
biological parameters are thought more stable over time. Before imputation, vital
signs and biological parameters had a missingness rate ranging from 25 to 65% and
over 99% respectively. Imputation was performed with a maximum time range of
48 hours. This time limit should be clinically relevant and adapted to each feature.
We chose first a unique long time interval for all the covariates for practical reasons
but we didn’t get the time to investigate the consequences of such a uniform choice.
After this first imputation step, the missingness rate for vital signs and biological
parameters ranged from 0.3 to 14% and from 13 to 54% respectively. We finally
performed a multiple imputation step using the Scikit-Learn implementation of the
original MICE algorithm written in R. Multiple imputation has become an increas-
ingly popular imputation method mainly because it accounts for uncertainty due to
missing data but also because it is easy to use [52]. We set the number of imputa-
tion to five as it is usually recommended when the primary interest is on the point
estimates [35].

In observational data, sites and treatments are not randomly assigned to patients.
Thus, differences in treatment outcomes between sites may be caused by factors or
confounders that predict sites or treatments rather than sites or treatments them-
selves. In practice, the clinical profile of admitted patients may substantially vary
between hospitals because of socio-economic inequalities and those with sicker pa-
tients may exhibit worse outcomes. To minimize the bias due to confounders, site-
specific treatment policies for the management of sepsis-induced circulatory failure
were learned by modeling the distribution of sites and treatments using logistic re-
gression models. We defined a cohort of comparable patients across sites who had
approximately the same probability of being hospitalized in every site given a set of
clinical features and we then estimated the probability of receiving the treatments
given each site. P. Rosenbaum and D. implemented the propensity score matching
procedure in 1983 for reducing the risk of bias due to confounders when comparing
the outcome between treated and non-treated groups [53]. In brief, this multi-step
procedure estimates the propensity for treatment given clinical covariates for every
patient and then matches each treated patient to one or more non-treated patients
on propensity score using different possible methods. We used a similar approach
to account for confounders. However, we performed a two-step regression because
we wanted first to match comparable patients across sites and then to quantify the
differences in received treatments in these patients. The advantage of this two-step
procedure compared to a one-step approach which would have predicted both sites
and treatments was the possibility of selecting the cohort of comparable patients
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using a probability threshold irrespective of the received treatments.

The first logistic regression model learned to predict sites given covariates coded as
discrete time series with 4-hours time steps and the covariates that were likely to
be found in every site where used to select patients. As described in the method,
the threshold α had to be sufficiently high to be confident about patient similari-
ties but also low to retain enough patients for the next step. Moreover, a patient
was represented by several covariates, depending on the length of stay. Selecting
only the patients that had all their covariates fulfilling the α criteria would have
drastically reduced the cohorts’ size. With a threshold α between 10% (ICU) and
15% (hospitals) and a threshold δ of 90% we were able to create a sufficiently large
cohort of “similar” patients across different sites in the database. Thus, about 75%
(ICU) and 92% (hospitals) of the septic patients could be considered as comparable,
i.e. having a probability of being hospitalized in every site greater than 10% and
15% respectively. (Answer to question I)

Another approach for retrieving comparable patients in observational data consists
in computing pairwise similarity between patients using a specified distance met-
ric such as Euclidean distance, cosine distance or Mahalanobis distance [54]. A
short distance between two feature vectors implies high similarity between patients.
However, this method could not be used to estimate site-specific treatment policies
therefore we considered that it was more convenient and straightforward to train
the same type of model throughout the project.

Although both classifiers were trained with time series data, the temporal aspect
was not taking into account and covariates were assumed to be correlated with sites
and treatment irrespective of their timing.

Due to time constraint, a total of 48 distinct parameter settings were tested and
the performance och each logistic regression model mp p ∈ {1, ..., 48} was evaluated
with BAC. These logistic regression models were parameterized with the multinomial
option and a lbfgs solver. 48 parameter combinations were obtained from different
penalties [’none’, ’l2’] and regularization strength [0.00001, ... , 500].

The datasets used for predicting hospitals and ICUs were imbalanced [0.2, 0.25, 0.25,
0.3] and [0.2, 0.2, 0.3, 0.3] respectively. However, we assumed that imbalance was
not significant and that resampling or generating synthetic samples like Synthetic
Minority Over-sampling Technique (SMOTE) were not indicated. We opted instead
for a performance metric that could deal with class imbalance such as BAC.

The datasets used for predicting treatments were clearly imbalanced. Two classes
had more than one thousand observations, five classes had a few hundred ones and
two classes had only a few dozen ones. We deemed that oversampling or performing
SMOTE would change drastically the original distributions and giving too much
weight to uncommon observations seemed inappropriate. Once again we preferred
to use the metric BAC which accounts for the imbalance in classes by taking the
average of recall obtained on each class.
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We wanted our estimators to be reliable not only for class prediction but also for esti-
mating propensity for each class. The best models had therefore to exhibit both high
BAC and low MCE. We preferred MCE to ECE since we wanted models that min-
imize the maximum discrepancy between accuracy and confidence as recommended
for safety critical applications.

In the ICU analysis, the best 5% estimators for predicting sites had a BAC around
0.34 (dummy classifier 0.25) and a MCE between 0.12 and 0.13 while the best 5%
estimators for predicting treatments had an a BAC around 0.14 (dummy classifier
0.11) and a MCE between 0.45 and 0.50. The quite low performance for predicting
site was anticipated given the rather similar covariates distribution across ICUs as
shown in Figure 4.8. The even lower performance for predicting treatments was
also foreseeable given that similar covariates had been selected by the estimator of
site propensity. A similar pattern was found in the hospital analysis where the best
5% estimators for predicting sites had an accuracy around 0.32 (dummy classifier
0.25) and a MCE between 0.22 and 0.5 while the best 5% estimators for predicting
treatments had a BAC around 0.2 (dummy classifier 0.11) and a MCE between 0.36.
The slightly higher performance for predicting treatment in the hospital analysis
compared to the ICU analysis (0.2 vs 0.14, respectively) might be explained by a
larger dataset (11273 vs 5784 instances respectively).

For both analysis, i.e. for ICUs and for hospitals, we selected the final estimators f
and g that had the lowest MCE among the models that exhibited the 5% best BAC.

We used our trained estimator of treatment propensity g to investigate the treat-
ment policy for each site and we could reveal varying propensities for treatments
between sites, i.e. we could identify distinct treatment practices between these sites.
(Answer to question II). However, most of the differences in propensities for treat-
ments between sites were less than 5%, for both the hospital and ICU analysis, and
the clinical significance of such magnitude is unclear.

To analyse practice variation between patients, we made the weak assumption that
a patient ICU stay could be summarized by the average value of all the time steps
of the covariates. This unrealistic assumption introduced bias but considerably
simplified the modeling of practice variation PV.

At a patient level, we defined PV for a given patient with given covariates as the
distance between the likelihood to get a certain treatment t in a certain site s and
the expectation of the likelihood to get the same treatment t over all the sites with
the assumption that this patient had the same likelihood of being treated in s as he
had in the actual dataset.

We could plot the distributions of PV over patients (Figures 4.15, 4.16, 4.28 and
4.29) and could individualize therefore the patients who had the 1% most unusual
treatments, both for the hospital and ICU analysis (4 and 5 patients respectively).

Then we compared the covariates distributions of these particular patients with the
whole cohort (Figure 4.18 and Figure 4.31) and could visually notice, at least for the
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hospital sub-analysis, a certain degree of divergence. This pattern was less obvious
for the ICU sub-analysis but the small number of patients limited the conclusions
that could be drawn. It would be of interest to investigate if some additional features
such as age and comorbidities could explain the different treatment regimen received
by these particular patients.

We tried to visualise how PV among patients could be correlated to their covariates.
We performed a principal component analysis (PCA) to convert the nine covariates
into one component and we plotted patient’s practice variation against the unique
principal component.

The correlation was weak and almost equivalent between ICUs (0.59) and hospitals
analysis (0.51). Then we separately plotted patient’s practice variation against each
covariate but no significant correlation could be revealed. We could imagine that for
a particular covariate, it would exist a range of values (extreme values for examples)
where practice variation would become more marked and revealing therefore more
uncertainty in the clinical management.

Our work consisted in modeling practice variation in the management of circula-
tory failure during sepsis across sites. For each site the estimator g learned from
the data a specific treatment policy. The next step should investigate which policy
gives the best outcome such as mortality or ICU length of stay. Since deploying a
bad policy would be costly and dangerous for patients, it is of upmost importance
to correctly asses the performance of a learned policy before execution in the real
world. Evaluating the outcomes obtained by a learned policy from data generated
by another policy is called off-policy evaluation. Importance sampling is a popular
method for off-policy evaluation in reinforcement learning setting that re-weights
off-policy outcomes to account for differences in the likelihood of the outcomes be-
tween the learned policy and the behaviour policy that generates the data. This
method gives unbiased estimates of the performance of a policy provided a sufficient
number of samples [29]. However if the policy to evaluate and the behaviour policy
differ significantly because clinicians made choices that the algorithm didn’t recom-
mend, the number of informative samples may be very small and the variance of the
importance sampling estimator will increase. A reduced number of informative sam-
ples may therefore limit the reliability of policy evaluation [55]. Even if we didn’t
investigate any outcome, we plotted the distribution of the importance sampling
weights over patients for the different treatment policies (Figure 4.21 and Figure
4.34) and could notice that these weight mostly lay around one, except for the more
uncommon treatments. In reinforcement learning, the weights are calculated for
every time step until the outcome and then multiplied all together. In sepsis stud-
ies, the mortality outcome may occur several days after admission resulting in long
trajectories and very small final weights. Since we condensed an entire ICU stay
which could contain up to 18 time steps into one instance, we could not observe the
issue of reduced informative samples. Our work could be continued by computing
the importance sampling weights for each time step and analysing precisely which
profile of a patient’s history are excluded by the re-weighted method.
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Conclusion

Our work demonstrated the practicability of modeling practice variation among
distinct sites in the management of sepsis-induced circulatory failure using retro-
spective data. We were able to identify comparable patients across different sites in
the database and to observe distinct treatment practices between these sites. The
next step would be to investigate this practice variation in terms of outcome such
as mortality, that is to find the treatment policies which are associated with better
survival. However, stronger assumptions should be made and the time aspect of the
data should be taken into account. Finally, the quality of policy evaluation should
be carefully assessed in particular the size of informative samples should be clearly
documented.
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A
Appendix 1

In this appendix we append the SQL codes used for extraction of data from the
eICU database.

A.1 admission_diagnosis.sql
DROP TABLE IF EXISTS a d m i s s i o n _ d i a g n o s i s CASCADE;
CREATE TABLE a d m i s s i o n _ d i a g n o s i s AS

WITH
t1_adm AS −− admiss ion d i a g n o s i s AS SEPSIS from admissiondx t a b l e (23 136)
(

SELECT
patientUnitStayID ,
admitdxname

FROM
admissiondx

WHERE
LOWER( admitdxname ) LIKE '% s e p s i s %'

) ,

t2_adm AS
(

SELECT
t1_adm . patientUnitStayID ,
CASE WHEN t1_adm . admitdxname LIKE '%pulmonary%' THEN ' pulmonary '

WHEN t1_adm . admitdxname LIKE '% r e n a l %' THEN ' UTI_renal '
WHEN t1_adm . admitdxname LIKE '%GI%' THEN ' GI '
WHEN t1_adm . admitdxname LIKE '% cutaneous %' THEN ' s o f t _ t i s s u e '
WHEN t1_adm . admitdxname LIKE '%gyneco%' THEN ' gyneco '
WHEN t1_adm . admitdxname LIKE '% o t h e r %'

OR t1_adm . admitdxname LIKE '%unknown%'
OR t1_adm . admitdxname IS NULL THEN ' other_unknown ' ELSE ' 0 ' END AS s e p s i s _ t y p e

FROM t1_adm
)

SELECT ∗ FROM t2_adm ;

A.2 antibio_1.sql
DROP TABLE IF EXISTS antibio_1 CASCADE;
CREATE TABLE antibio_1 AS

WITH
t_medication as
(

SELECT
d i s t i n c t patientUnitStayID ,
d r u g S t a r t O f f s e t AS antibio_time

FROM
medicat ion

WHERE
lower ( drugname ) LIKE '%adoxa%' OR lower ( drugname ) LIKE '% ala −t e t %'
OR lower ( drugname ) LIKE '% alodox %' OR lower ( drugname ) LIKE '% amikacin %'
OR lower ( drugname ) LIKE '%amikin%' OR lower ( drugname ) LIKE '% a m o x i c i l l i n %'
OR lower ( drugname ) LIKE '% c l a v u l a n a t e %' OR lower ( drugname ) LIKE '% a m p i c i l l i n %'
OR lower ( drugname ) LIKE '%augmentin%' OR lower ( drugname ) LIKE '% a v e l o x %'
OR lower ( drugname ) LIKE '% avidoxy %' OR lower ( drugname ) LIKE '%azactam%'
OR lower ( drugname ) LIKE '% azi thro myci n %' OR lower ( drugname ) LIKE '%aztreonam%'
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OR lower ( drugname ) LIKE '% a x e t i l %' OR lower ( drugname ) LIKE '% b a c t o c i l l %'
OR lower ( drugname ) LIKE '% bactrim %' OR lower ( drugname ) LIKE '% b e t h k i s %'
OR lower ( drugname ) LIKE '% b i a x i n %' OR lower ( drugname ) LIKE '% b i c i l l i n l −a%'
OR lower ( drugname ) LIKE '% cayston %' OR lower ( drugname ) LIKE '% c e f a z o l i n %'
OR lower ( drugname ) LIKE '%cedax%' OR lower ( drugname ) LIKE '% c e f o x i t i n %'
OR lower ( drugname ) LIKE '% c e f t a z i d i m e %' OR lower ( drugname ) LIKE '% c e f a c l o r %'
OR lower ( drugname ) LIKE '% c e f a d r o x i l %' OR lower ( drugname ) LIKE '% c e f d i n i r %'
OR lower ( drugname ) LIKE '% c e f d i t o r e n %' OR lower ( drugname ) LIKE '% c e f e p i m e %'
OR lower ( drugname ) LIKE '% c e f o t e t a n %' OR lower ( drugname ) LIKE '% c e f o t a x i m e %'
OR lower ( drugname ) LIKE '% cefpodoxime %' OR lower ( drugname ) LIKE '% c e f p r o z i l %'
OR lower ( drugname ) LIKE '% c e f t i b u t e n %' OR lower ( drugname ) LIKE '% c e f t i n %'
OR lower ( drugname ) LIKE '% c ef u ro xi m e %' OR lower ( drugname ) LIKE '% c ef u ro xi me %'
OR lower ( drugname ) LIKE '% c e p h a l e x i n %' OR lower ( drugname ) LIKE '% c h l o r a m p h e n i c o l %'
OR lower ( drugname ) LIKE '% c i p r o %' OR lower ( drugname ) LIKE '% c i p r o f l o x a c i n %'
OR lower ( drugname ) LIKE '% c l a f o r a n %' OR lower ( drugname ) LIKE '% c l a r i t h r o m y c i n %'
OR lower ( drugname ) LIKE '% c l e o c i n %' OR lower ( drugname ) LIKE '% cl indamycin %'
OR lower ( drugname ) LIKE '% c u b i c i n %' OR lower ( drugname ) LIKE '% d i c l o x a c i l l i n %'
OR lower ( drugname ) LIKE '%doryx%' OR lower ( drugname ) LIKE '% d o x y c y c l i n e %'
OR lower ( drugname ) LIKE '% d u r i c e f %' OR lower ( drugname ) LIKE '% dynacin %'
OR lower ( drugname ) LIKE '%ery−tab%' OR lower ( drugname ) LIKE '% eryped %'
OR lower ( drugname ) LIKE '% e r y c %' OR lower ( drugname ) LIKE '% e r y t h r o c i n %'
OR lower ( drugname ) LIKE '% erythromycin %' OR lower ( drugname ) LIKE '% f a c t i v e %'
OR lower ( drugname ) LIKE '% f l a g y l %' OR lower ( drugname ) LIKE '% f o r t a z %'
OR lower ( drugname ) LIKE '% f u r a d a n t i n %' OR lower ( drugname ) LIKE '%garamycin%'
OR lower ( drugname ) LIKE '% gentamicin %' OR lower ( drugname ) LIKE '%kanamycin%'
OR lower ( drugname ) LIKE '% k e f l e x %' OR lower ( drugname ) LIKE '% ketek %'
OR lower ( drugname ) LIKE '% l e v a q u i n %' OR lower ( drugname ) LIKE '% l e v o f l o x a c i n %'
OR lower ( drugname ) LIKE '% l i n c o c i n %' OR lower ( drugname ) LIKE '%macrobid%'
OR lower ( drugname ) LIKE '% macrodantin %' OR lower ( drugname ) LIKE '%maxipime%'
OR lower ( drugname ) LIKE '% mefoxin %' OR lower ( drugname ) LIKE '% m e t r o n i d a z o l e %'
OR lower ( drugname ) LIKE '% minocin %' OR lower ( drugname ) LIKE '% m i n o c y c l i n e %'
OR lower ( drugname ) LIKE '%monodox%' OR lower ( drugname ) LIKE '%monurol%'
OR lower ( drugname ) LIKE '%morgidox%' OR lower ( drugname ) LIKE '%moxatag%'
OR lower ( drugname ) LIKE '% m o x i f l o x a c i n %' OR lower ( drugname ) LIKE '%myrac%'
OR lower ( drugname ) LIKE '% n a f c i l l i n sodium%' OR lower ( drugname ) LIKE '% n i c a z e l doxy 30%'
OR lower ( drugname ) LIKE '% n i t r o f u r a n t o i n %' OR lower ( drugname ) LIKE '% noroxin %'
OR lower ( drugname ) LIKE '%ocudox%' OR lower ( drugname ) LIKE '% o f l o x a c i n %'
OR lower ( drugname ) LIKE '% omnicef %' OR lower ( drugname ) LIKE '% o r a c e a %'
OR lower ( drugname ) LIKE '% o r a x y l %' OR lower ( drugname ) LIKE '% o x a c i l l i n %'
OR lower ( drugname ) LIKE '%pc pen vk%' OR lower ( drugname ) LIKE '%pce d i s p e r t a b %'
OR lower ( drugname ) LIKE '% p a n i x i n e %' OR lower ( drugname ) LIKE '% p e d i a z o l e %'
OR lower ( drugname ) LIKE '% p e n i c i l l i n %' OR lower ( drugname ) LIKE '% p e r i o s t a t %'
OR lower ( drugname ) LIKE '% p f i z e r p e n %' OR lower ( drugname ) LIKE '% p i p e r a c i l l i n %'
OR lower ( drugname ) LIKE '%tazobactam%' OR lower ( drugname ) LIKE '% p r i m s o l %'
OR lower ( drugname ) LIKE '% proquin %' OR lower ( drugname ) LIKE '% r a n i c l o r %'
OR lower ( drugname ) LIKE '% r i f a d i n %' OR lower ( drugname ) LIKE '% r i f a m p i n %'
OR lower ( drugname ) LIKE '% r o c e p h i n %' OR lower ( drugname ) LIKE '%smz−tmp%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% s e p t r a ds%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% solodyn %'
OR lower ( drugname ) LIKE '% s p e c t r a c e f %' OR lower ( drugname ) LIKE '% streptomycin s u l f a t e %'
OR lower ( drugname ) LIKE '% s u l f a d i a z i n e %' OR lower ( drugname ) LIKE '% s u l f a m e t h o x a z o l e %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '% s u l f a t r i m %'
OR lower ( drugname ) LIKE '% s u l f i s o x a z o l e %' OR lower ( drugname ) LIKE '% suprax %'
OR lower ( drugname ) LIKE '% s y n e r c i d %' OR lower ( drugname ) LIKE '% t a z i c e f %'
OR lower ( drugname ) LIKE '% t e t r a c y c l i n e %' OR lower ( drugname ) LIKE '% t i m e n t i n %'
OR lower ( drugname ) LIKE '% t o b i %' OR lower ( drugname ) LIKE '% tobramycin %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '%unasyn%'
OR lower ( drugname ) LIKE '% vancocin %' OR lower ( drugname ) LIKE '%vancomycin%'
OR lower ( drugname ) LIKE '% vantin %' OR lower ( drugname ) LIKE '% v i b a t i v %'
OR lower ( drugname ) LIKE '% vibra −tabs %' OR lower ( drugname ) LIKE '% vibramycin %'
OR lower ( drugname ) LIKE '% z i n a c e f %' OR lower ( drugname ) LIKE '% zithromax %'
OR lower ( drugname ) LIKE '%zmax%' OR lower ( drugname ) LIKE '% zosyn %'
OR lower ( drugname ) LIKE '%zyvox%'

)

SELECT ∗ FROM t_medication

A.3 antibio_2.sql
DROP TABLE IF EXISTS antibio_2 CASCADE;
CREATE TABLE antibio_2 AS

WITH
t _ i n f u s i o n as
(

SELECT
d i s t i n c t patientUnitStayID ,
i n f u s i o n O f f s e t as ant ibio_time

FROM
i n f u s i o n D r u g

WHERE
lower ( drugname ) LIKE '%adoxa%' OR lower ( drugname ) LIKE '% ala −t e t %'
OR lower ( drugname ) LIKE '% alodox %' OR lower ( drugname ) LIKE '% amikacin %'
OR lower ( drugname ) LIKE '%amikin%' OR lower ( drugname ) LIKE '% a m o x i c i l l i n %'
OR lower ( drugname ) LIKE '% c l a v u l a n a t e %' OR lower ( drugname ) LIKE '% a m p i c i l l i n %'
OR lower ( drugname ) LIKE '%augmentin%' OR lower ( drugname ) LIKE '% a v e l o x %'
OR lower ( drugname ) LIKE '% avidoxy %' OR lower ( drugname ) LIKE '%azactam%'
OR lower ( drugname ) LIKE '% azi thro myci n %' OR lower ( drugname ) LIKE '%aztreonam%'
OR lower ( drugname ) LIKE '% a x e t i l %' OR lower ( drugname ) LIKE '% b a c t o c i l l %'
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OR lower ( drugname ) LIKE '% bactrim %' OR lower ( drugname ) LIKE '% b e t h k i s %'
OR lower ( drugname ) LIKE '% b i a x i n %' OR lower ( drugname ) LIKE '% b i c i l l i n l −a%'
OR lower ( drugname ) LIKE '% cayston %' OR lower ( drugname ) LIKE '% c e f a z o l i n %'
OR lower ( drugname ) LIKE '%cedax%' OR lower ( drugname ) LIKE '% c e f o x i t i n %'
OR lower ( drugname ) LIKE '% c e f t a z i d i m e %' OR lower ( drugname ) LIKE '% c e f a c l o r %'
OR lower ( drugname ) LIKE '% c e f a d r o x i l %' OR lower ( drugname ) LIKE '% c e f d i n i r %'
OR lower ( drugname ) LIKE '% c e f d i t o r e n %' OR lower ( drugname ) LIKE '% c e f e p i m e %'
OR lower ( drugname ) LIKE '% c e f o t e t a n %' OR lower ( drugname ) LIKE '% c e f o t a x i m e %'
OR lower ( drugname ) LIKE '% cefpodoxime %' OR lower ( drugname ) LIKE '% c e f p r o z i l %'
OR lower ( drugname ) LIKE '% c e f t i b u t e n %' OR lower ( drugname ) LIKE '% c e f t i n %'
OR lower ( drugname ) LIKE '% c ef u ro xi m e %' OR lower ( drugname ) LIKE '% c ef u ro xi me %'
OR lower ( drugname ) LIKE '% c e p h a l e x i n %' OR lower ( drugname ) LIKE '% c h l o r a m p h e n i c o l %'
OR lower ( drugname ) LIKE '% c i p r o %' OR lower ( drugname ) LIKE '% c i p r o f l o x a c i n %'
OR lower ( drugname ) LIKE '% c l a f o r a n %' OR lower ( drugname ) LIKE '% c l a r i t h r o m y c i n %'
OR lower ( drugname ) LIKE '% c l e o c i n %' OR lower ( drugname ) LIKE '% cl indamycin %'
OR lower ( drugname ) LIKE '% c u b i c i n %' OR lower ( drugname ) LIKE '% d i c l o x a c i l l i n %'
OR lower ( drugname ) LIKE '%doryx%' OR lower ( drugname ) LIKE '% d o x y c y c l i n e %'
OR lower ( drugname ) LIKE '% d u r i c e f %' OR lower ( drugname ) LIKE '% dynacin %'
OR lower ( drugname ) LIKE '%ery−tab%' OR lower ( drugname ) LIKE '% eryped %'
OR lower ( drugname ) LIKE '% e r y c %' OR lower ( drugname ) LIKE '% e r y t h r o c i n %'
OR lower ( drugname ) LIKE '% erythromycin %' OR lower ( drugname ) LIKE '% f a c t i v e %'
OR lower ( drugname ) LIKE '% f l a g y l %' OR lower ( drugname ) LIKE '% f o r t a z %'
OR lower ( drugname ) LIKE '% f u r a d a n t i n %' OR lower ( drugname ) LIKE '%garamycin%'
OR lower ( drugname ) LIKE '% gentamicin %' OR lower ( drugname ) LIKE '%kanamycin%'
OR lower ( drugname ) LIKE '% k e f l e x %' OR lower ( drugname ) LIKE '% ketek %'
OR lower ( drugname ) LIKE '% l e v a q u i n %' OR lower ( drugname ) LIKE '% l e v o f l o x a c i n %'
OR lower ( drugname ) LIKE '% l i n c o c i n %' OR lower ( drugname ) LIKE '%macrobid%'
OR lower ( drugname ) LIKE '% macrodantin %' OR lower ( drugname ) LIKE '%maxipime%'
OR lower ( drugname ) LIKE '% mefoxin %' OR lower ( drugname ) LIKE '% m e t r o n i d a z o l e %'
OR lower ( drugname ) LIKE '% minocin %' OR lower ( drugname ) LIKE '% m i n o c y c l i n e %'
OR lower ( drugname ) LIKE '%monodox%' OR lower ( drugname ) LIKE '%monurol%'
OR lower ( drugname ) LIKE '%morgidox%' OR lower ( drugname ) LIKE '%moxatag%'
OR lower ( drugname ) LIKE '% m o x i f l o x a c i n %' OR lower ( drugname ) LIKE '%myrac%'
OR lower ( drugname ) LIKE '% n a f c i l l i n sodium%' OR lower ( drugname ) LIKE '% n i c a z e l doxy 30%'
OR lower ( drugname ) LIKE '% n i t r o f u r a n t o i n %' OR lower ( drugname ) LIKE '% noroxin %'
OR lower ( drugname ) LIKE '%ocudox%' OR lower ( drugname ) LIKE '% o f l o x a c i n %'
OR lower ( drugname ) LIKE '% omnicef %' OR lower ( drugname ) LIKE '% o r a c e a %'
OR lower ( drugname ) LIKE '% o r a x y l %' OR lower ( drugname ) LIKE '% o x a c i l l i n %'
OR lower ( drugname ) LIKE '%pc pen vk%' OR lower ( drugname ) LIKE '%pce d i s p e r t a b %'
OR lower ( drugname ) LIKE '% p a n i x i n e %' OR lower ( drugname ) LIKE '% p e d i a z o l e %'
OR lower ( drugname ) LIKE '% p e n i c i l l i n %' OR lower ( drugname ) LIKE '% p e r i o s t a t %'
OR lower ( drugname ) LIKE '% p f i z e r p e n %' OR lower ( drugname ) LIKE '% p i p e r a c i l l i n %'
OR lower ( drugname ) LIKE '%tazobactam%' OR lower ( drugname ) LIKE '% p r i m s o l %'
OR lower ( drugname ) LIKE '% proquin %' OR lower ( drugname ) LIKE '% r a n i c l o r %'
OR lower ( drugname ) LIKE '% r i f a d i n %' OR lower ( drugname ) LIKE '% r i f a m p i n %'
OR lower ( drugname ) LIKE '% r o c e p h i n %' OR lower ( drugname ) LIKE '%smz−tmp%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% s e p t r a ds%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% solodyn %'
OR lower ( drugname ) LIKE '% s p e c t r a c e f %' OR lower ( drugname ) LIKE '% streptomycin s u l f a t e %'
OR lower ( drugname ) LIKE '% s u l f a d i a z i n e %' OR lower ( drugname ) LIKE '% s u l f a m e t h o x a z o l e %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '% s u l f a t r i m %'
OR lower ( drugname ) LIKE '% s u l f i s o x a z o l e %' OR lower ( drugname ) LIKE '% suprax %'
OR lower ( drugname ) LIKE '% s y n e r c i d %' OR lower ( drugname ) LIKE '% t a z i c e f %'
OR lower ( drugname ) LIKE '% t e t r a c y c l i n e %' OR lower ( drugname ) LIKE '% t i m e n t i n %'
OR lower ( drugname ) LIKE '% t o b i %' OR lower ( drugname ) LIKE '% tobramycin %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '%unasyn%'
OR lower ( drugname ) LIKE '% vancocin %' OR lower ( drugname ) LIKE '%vancomycin%'
OR lower ( drugname ) LIKE '% vantin %' OR lower ( drugname ) LIKE '% v i b a t i v %'
OR lower ( drugname ) LIKE '% vibra −tabs %' OR lower ( drugname ) LIKE '% vibramycin %'
OR lower ( drugname ) LIKE '% z i n a c e f %' OR lower ( drugname ) LIKE '% zithromax %'
OR lower ( drugname ) LIKE '%zmax%' OR lower ( drugname ) LIKE '% zosyn %'
OR lower ( drugname ) LIKE '%zyvox%'

)

SELECT ∗ FROM t _ i n f u s i o n ;

A.4 antibio_3.sql
DROP TABLE IF EXISTS antibio_3 CASCADE;
CREATE TABLE antibio_3 AS

WITH
t_treatment AS
(

SELECT
d i s t i n c t patientUnitStayID ,
t r e a t m e n t o f f s e t AS antibio_time

FROM
treatment

WHERE
lower ( drugname ) LIKE '%adoxa%' OR lower ( drugname ) LIKE '% ala −t e t %'
OR lower ( drugname ) LIKE '% alodox %' OR lower ( drugname ) LIKE '% amikacin %'
OR lower ( drugname ) LIKE '%amikin%' OR lower ( drugname ) LIKE '% a m o x i c i l l i n %'
OR lower ( drugname ) LIKE '% c l a v u l a n a t e %' OR lower ( drugname ) LIKE '% a m p i c i l l i n %'
OR lower ( drugname ) LIKE '%augmentin%' OR lower ( drugname ) LIKE '% a v e l o x %'
OR lower ( drugname ) LIKE '% avidoxy %' OR lower ( drugname ) LIKE '%azactam%'
OR lower ( drugname ) LIKE '% azi thro myci n %' OR lower ( drugname ) LIKE '%aztreonam%'
OR lower ( drugname ) LIKE '% a x e t i l %' OR lower ( drugname ) LIKE '% b a c t o c i l l %'
OR lower ( drugname ) LIKE '% bactrim %' OR lower ( drugname ) LIKE '% b e t h k i s %'
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OR lower ( drugname ) LIKE '% b i a x i n %' OR lower ( drugname ) LIKE '% b i c i l l i n l −a%'
OR lower ( drugname ) LIKE '% cayston %' OR lower ( drugname ) LIKE '% c e f a z o l i n %'
OR lower ( drugname ) LIKE '%cedax%' OR lower ( drugname ) LIKE '% c e f o x i t i n %'
OR lower ( drugname ) LIKE '% c e f t a z i d i m e %' OR lower ( drugname ) LIKE '% c e f a c l o r %'
OR lower ( drugname ) LIKE '% c e f a d r o x i l %' OR lower ( drugname ) LIKE '% c e f d i n i r %'
OR lower ( drugname ) LIKE '% c e f d i t o r e n %' OR lower ( drugname ) LIKE '% c e f e p i m e %'
OR lower ( drugname ) LIKE '% c e f o t e t a n %' OR lower ( drugname ) LIKE '% c e f o t a x i m e %'
OR lower ( drugname ) LIKE '% cefpodoxime %' OR lower ( drugname ) LIKE '% c e f p r o z i l %'
OR lower ( drugname ) LIKE '% c e f t i b u t e n %' OR lower ( drugname ) LIKE '% c e f t i n %'
OR lower ( drugname ) LIKE '% c ef u ro xi m e %' OR lower ( drugname ) LIKE '% c ef u ro xi me %'
OR lower ( drugname ) LIKE '% c e p h a l e x i n %' OR lower ( drugname ) LIKE '% c h l o r a m p h e n i c o l %'
OR lower ( drugname ) LIKE '% c i p r o %' OR lower ( drugname ) LIKE '% c i p r o f l o x a c i n %'
OR lower ( drugname ) LIKE '% c l a f o r a n %' OR lower ( drugname ) LIKE '% c l a r i t h r o m y c i n %'
OR lower ( drugname ) LIKE '% c l e o c i n %' OR lower ( drugname ) LIKE '% cl indamycin %'
OR lower ( drugname ) LIKE '% c u b i c i n %' OR lower ( drugname ) LIKE '% d i c l o x a c i l l i n %'
OR lower ( drugname ) LIKE '%doryx%' OR lower ( drugname ) LIKE '% d o x y c y c l i n e %'
OR lower ( drugname ) LIKE '% d u r i c e f %' OR lower ( drugname ) LIKE '% dynacin %'
OR lower ( drugname ) LIKE '%ery−tab%' OR lower ( drugname ) LIKE '% eryped %'
OR lower ( drugname ) LIKE '% e r y c %' OR lower ( drugname ) LIKE '% e r y t h r o c i n %'
OR lower ( drugname ) LIKE '% erythromycin %' OR lower ( drugname ) LIKE '% f a c t i v e %'
OR lower ( drugname ) LIKE '% f l a g y l %' OR lower ( drugname ) LIKE '% f o r t a z %'
OR lower ( drugname ) LIKE '% f u r a d a n t i n %' OR lower ( drugname ) LIKE '%garamycin%'
OR lower ( drugname ) LIKE '% gentamicin %' OR lower ( drugname ) LIKE '%kanamycin%'
OR lower ( drugname ) LIKE '% k e f l e x %' OR lower ( drugname ) LIKE '% ketek %'
OR lower ( drugname ) LIKE '% l e v a q u i n %' OR lower ( drugname ) LIKE '% l e v o f l o x a c i n %'
OR lower ( drugname ) LIKE '% l i n c o c i n %' OR lower ( drugname ) LIKE '%macrobid%'
OR lower ( drugname ) LIKE '% macrodantin %' OR lower ( drugname ) LIKE '%maxipime%'
OR lower ( drugname ) LIKE '% mefoxin %' OR lower ( drugname ) LIKE '% m e t r o n i d a z o l e %'
OR lower ( drugname ) LIKE '% minocin %' OR lower ( drugname ) LIKE '% m i n o c y c l i n e %'
OR lower ( drugname ) LIKE '%monodox%' OR lower ( drugname ) LIKE '%monurol%'
OR lower ( drugname ) LIKE '%morgidox%' OR lower ( drugname ) LIKE '%moxatag%'
OR lower ( drugname ) LIKE '% m o x i f l o x a c i n %' OR lower ( drugname ) LIKE '%myrac%'
OR lower ( drugname ) LIKE '% n a f c i l l i n sodium%' OR lower ( drugname ) LIKE '% n i c a z e l doxy 30%'
OR lower ( drugname ) LIKE '% n i t r o f u r a n t o i n %' OR lower ( drugname ) LIKE '% noroxin %'
OR lower ( drugname ) LIKE '%ocudox%' OR lower ( drugname ) LIKE '% o f l o x a c i n %'
OR lower ( drugname ) LIKE '% omnicef %' OR lower ( drugname ) LIKE '% o r a c e a %'
OR lower ( drugname ) LIKE '% o r a x y l %' OR lower ( drugname ) LIKE '% o x a c i l l i n %'
OR lower ( drugname ) LIKE '%pc pen vk%' OR lower ( drugname ) LIKE '%pce d i s p e r t a b %'
OR lower ( drugname ) LIKE '% p a n i x i n e %' OR lower ( drugname ) LIKE '% p e d i a z o l e %'
OR lower ( drugname ) LIKE '% p e n i c i l l i n %' OR lower ( drugname ) LIKE '% p e r i o s t a t %'
OR lower ( drugname ) LIKE '% p f i z e r p e n %' OR lower ( drugname ) LIKE '% p i p e r a c i l l i n %'
OR lower ( drugname ) LIKE '%tazobactam%' OR lower ( drugname ) LIKE '% p r i m s o l %'
OR lower ( drugname ) LIKE '% proquin %' OR lower ( drugname ) LIKE '% r a n i c l o r %'
OR lower ( drugname ) LIKE '% r i f a d i n %' OR lower ( drugname ) LIKE '% r i f a m p i n %'
OR lower ( drugname ) LIKE '% r o c e p h i n %' OR lower ( drugname ) LIKE '%smz−tmp%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% s e p t r a ds%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% solodyn %'
OR lower ( drugname ) LIKE '% s p e c t r a c e f %' OR lower ( drugname ) LIKE '% streptomycin s u l f a t e %'
OR lower ( drugname ) LIKE '% s u l f a d i a z i n e %' OR lower ( drugname ) LIKE '% s u l f a m e t h o x a z o l e %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '% s u l f a t r i m %'
OR lower ( drugname ) LIKE '% s u l f i s o x a z o l e %' OR lower ( drugname ) LIKE '% suprax %'
OR lower ( drugname ) LIKE '% s y n e r c i d %' OR lower ( drugname ) LIKE '% t a z i c e f %'
OR lower ( drugname ) LIKE '% t e t r a c y c l i n e %' OR lower ( drugname ) LIKE '% t i m e n t i n %'
OR lower ( drugname ) LIKE '% t o b i %' OR lower ( drugname ) LIKE '% tobramycin %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '%unasyn%'
OR lower ( drugname ) LIKE '% vancocin %' OR lower ( drugname ) LIKE '%vancomycin%'
OR lower ( drugname ) LIKE '% vantin %' OR lower ( drugname ) LIKE '% v i b a t i v %'
OR lower ( drugname ) LIKE '% vibra −tabs %' OR lower ( drugname ) LIKE '% vibramycin %'
OR lower ( drugname ) LIKE '% z i n a c e f %' OR lower ( drugname ) LIKE '% zithromax %'
OR lower ( drugname ) LIKE '%zmax%' OR lower ( drugname ) LIKE '% zosyn %'
OR lower ( drugname ) LIKE '%zyvox%'

)

SELECT ∗ FROM t_treatment ;

A.5 antibio_4.sql
DROP TABLE IF EXISTS antibio_4 CASCADE;
CREATE TABLE antibio_4 AS

WITH
t_intakeoutput AS
(

SELECT
d i s t i n c t patientUnitStayID ,
i n t a k e O u t p u t O f f s e t AS antibio_time

FROM
i n t a k e o u t p u t

WHERE
lower ( drugname ) LIKE '%adoxa%' OR lower ( drugname ) LIKE '% ala −t e t %'
OR lower ( drugname ) LIKE '% alodox %' OR lower ( drugname ) LIKE '% amikacin %'
OR lower ( drugname ) LIKE '%amikin%' OR lower ( drugname ) LIKE '% a m o x i c i l l i n %'
OR lower ( drugname ) LIKE '% c l a v u l a n a t e %' OR lower ( drugname ) LIKE '% a m p i c i l l i n %'
OR lower ( drugname ) LIKE '%augmentin%' OR lower ( drugname ) LIKE '% a v e l o x %'
OR lower ( drugname ) LIKE '% avidoxy %' OR lower ( drugname ) LIKE '%azactam%'
OR lower ( drugname ) LIKE '% azi thro myci n %' OR lower ( drugname ) LIKE '%aztreonam%'
OR lower ( drugname ) LIKE '% a x e t i l %' OR lower ( drugname ) LIKE '% b a c t o c i l l %'
OR lower ( drugname ) LIKE '% bactrim %' OR lower ( drugname ) LIKE '% b e t h k i s %'
OR lower ( drugname ) LIKE '% b i a x i n %' OR lower ( drugname ) LIKE '% b i c i l l i n l −a%'
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OR lower ( drugname ) LIKE '% cayston %' OR lower ( drugname ) LIKE '% c e f a z o l i n %'
OR lower ( drugname ) LIKE '%cedax%' OR lower ( drugname ) LIKE '% c e f o x i t i n %'
OR lower ( drugname ) LIKE '% c e f t a z i d i m e %' OR lower ( drugname ) LIKE '% c e f a c l o r %'
OR lower ( drugname ) LIKE '% c e f a d r o x i l %' OR lower ( drugname ) LIKE '% c e f d i n i r %'
OR lower ( drugname ) LIKE '% c e f d i t o r e n %' OR lower ( drugname ) LIKE '% c e f e p i m e %'
OR lower ( drugname ) LIKE '% c e f o t e t a n %' OR lower ( drugname ) LIKE '% c e f o t a x i m e %'
OR lower ( drugname ) LIKE '% cefpodoxime %' OR lower ( drugname ) LIKE '% c e f p r o z i l %'
OR lower ( drugname ) LIKE '% c e f t i b u t e n %' OR lower ( drugname ) LIKE '% c e f t i n %'
OR lower ( drugname ) LIKE '% c ef u ro xi m e %' OR lower ( drugname ) LIKE '% c ef u ro xi me %'
OR lower ( drugname ) LIKE '% c e p h a l e x i n %' OR lower ( drugname ) LIKE '% c h l o r a m p h e n i c o l %'
OR lower ( drugname ) LIKE '% c i p r o %' OR lower ( drugname ) LIKE '% c i p r o f l o x a c i n %'
OR lower ( drugname ) LIKE '% c l a f o r a n %' OR lower ( drugname ) LIKE '% c l a r i t h r o m y c i n %'
OR lower ( drugname ) LIKE '% c l e o c i n %' OR lower ( drugname ) LIKE '% cl indamycin %'
OR lower ( drugname ) LIKE '% c u b i c i n %' OR lower ( drugname ) LIKE '% d i c l o x a c i l l i n %'
OR lower ( drugname ) LIKE '%doryx%' OR lower ( drugname ) LIKE '% d o x y c y c l i n e %'
OR lower ( drugname ) LIKE '% d u r i c e f %' OR lower ( drugname ) LIKE '% dynacin %'
OR lower ( drugname ) LIKE '%ery−tab%' OR lower ( drugname ) LIKE '% eryped %'
OR lower ( drugname ) LIKE '% e r y c %' OR lower ( drugname ) LIKE '% e r y t h r o c i n %'
OR lower ( drugname ) LIKE '% erythromycin %' OR lower ( drugname ) LIKE '% f a c t i v e %'
OR lower ( drugname ) LIKE '% f l a g y l %' OR lower ( drugname ) LIKE '% f o r t a z %'
OR lower ( drugname ) LIKE '% f u r a d a n t i n %' OR lower ( drugname ) LIKE '%garamycin%'
OR lower ( drugname ) LIKE '% gentamicin %' OR lower ( drugname ) LIKE '%kanamycin%'
OR lower ( drugname ) LIKE '% k e f l e x %' OR lower ( drugname ) LIKE '% ketek %'
OR lower ( drugname ) LIKE '% l e v a q u i n %' OR lower ( drugname ) LIKE '% l e v o f l o x a c i n %'
OR lower ( drugname ) LIKE '% l i n c o c i n %' OR lower ( drugname ) LIKE '%macrobid%'
OR lower ( drugname ) LIKE '% macrodantin %' OR lower ( drugname ) LIKE '%maxipime%'
OR lower ( drugname ) LIKE '% mefoxin %' OR lower ( drugname ) LIKE '% m e t r o n i d a z o l e %'
OR lower ( drugname ) LIKE '% minocin %' OR lower ( drugname ) LIKE '% m i n o c y c l i n e %'
OR lower ( drugname ) LIKE '%monodox%' OR lower ( drugname ) LIKE '%monurol%'
OR lower ( drugname ) LIKE '%morgidox%' OR lower ( drugname ) LIKE '%moxatag%'
OR lower ( drugname ) LIKE '% m o x i f l o x a c i n %' OR lower ( drugname ) LIKE '%myrac%'
OR lower ( drugname ) LIKE '% n a f c i l l i n sodium%' OR lower ( drugname ) LIKE '% n i c a z e l doxy 30%'
OR lower ( drugname ) LIKE '% n i t r o f u r a n t o i n %' OR lower ( drugname ) LIKE '% noroxin %'
OR lower ( drugname ) LIKE '%ocudox%' OR lower ( drugname ) LIKE '% o f l o x a c i n %'
OR lower ( drugname ) LIKE '% omnicef %' OR lower ( drugname ) LIKE '% o r a c e a %'
OR lower ( drugname ) LIKE '% o r a x y l %' OR lower ( drugname ) LIKE '% o x a c i l l i n %'
OR lower ( drugname ) LIKE '%pc pen vk%' OR lower ( drugname ) LIKE '%pce d i s p e r t a b %'
OR lower ( drugname ) LIKE '% p a n i x i n e %' OR lower ( drugname ) LIKE '% p e d i a z o l e %'
OR lower ( drugname ) LIKE '% p e n i c i l l i n %' OR lower ( drugname ) LIKE '% p e r i o s t a t %'
OR lower ( drugname ) LIKE '% p f i z e r p e n %' OR lower ( drugname ) LIKE '% p i p e r a c i l l i n %'
OR lower ( drugname ) LIKE '%tazobactam%' OR lower ( drugname ) LIKE '% p r i m s o l %'
OR lower ( drugname ) LIKE '% proquin %' OR lower ( drugname ) LIKE '% r a n i c l o r %'
OR lower ( drugname ) LIKE '% r i f a d i n %' OR lower ( drugname ) LIKE '% r i f a m p i n %'
OR lower ( drugname ) LIKE '% r o c e p h i n %' OR lower ( drugname ) LIKE '%smz−tmp%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% s e p t r a ds%'
OR lower ( drugname ) LIKE '% s e p t r a %' OR lower ( drugname ) LIKE '% solodyn %'
OR lower ( drugname ) LIKE '% s p e c t r a c e f %' OR lower ( drugname ) LIKE '% streptomycin s u l f a t e %'
OR lower ( drugname ) LIKE '% s u l f a d i a z i n e %' OR lower ( drugname ) LIKE '% s u l f a m e t h o x a z o l e %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '% s u l f a t r i m %'
OR lower ( drugname ) LIKE '% s u l f i s o x a z o l e %' OR lower ( drugname ) LIKE '% suprax %'
OR lower ( drugname ) LIKE '% s y n e r c i d %' OR lower ( drugname ) LIKE '% t a z i c e f %'
OR lower ( drugname ) LIKE '% t e t r a c y c l i n e %' OR lower ( drugname ) LIKE '% t i m e n t i n %'
OR lower ( drugname ) LIKE '% t o b i %' OR lower ( drugname ) LIKE '% tobramycin %'
OR lower ( drugname ) LIKE '% trimethoprim %' OR lower ( drugname ) LIKE '%unasyn%'
OR lower ( drugname ) LIKE '% vancocin %' OR lower ( drugname ) LIKE '%vancomycin%'
OR lower ( drugname ) LIKE '% vantin %' OR lower ( drugname ) LIKE '% v i b a t i v %'
OR lower ( drugname ) LIKE '% vibra −tabs %' OR lower ( drugname ) LIKE '% vibramycin %'
OR lower ( drugname ) LIKE '% z i n a c e f %' OR lower ( drugname ) LIKE '% zithromax %'
OR lower ( drugname ) LIKE '%zmax%' OR lower ( drugname ) LIKE '% zosyn %'
OR lower ( drugname ) LIKE '%zyvox%'

)

SELECT ∗ FROM t_intakeoutput ;

A.6 antibio_1234.sql
DROP TABLE IF EXISTS antibio_1234 CASCADE;
CREATE TABLE antibio_1234 AS

WITH

t1 AS
(

SELECT
p a t i e n t u n i t s t a y i d ,
ant ibio_time

FROM
antibio_1

UNION

SELECT
p a t i e n t u n i t s t a y i d ,
ant ibio_time

FROM
antibio_2

UNION
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SELECT
p a t i e n t u n i t s t a y i d ,
ant ibio_time

FROM
antibio_3

UNION

SELECT
p a t i e n t u n i t s t a y i d ,
ant ibio_time

FROM
antibio_4

)

SELECT ∗ FROM t1 ;

A.7 bg_sepsis_subset.sql
DROP TABLE IF EXISTS bg_sepsis_subset CASCADE;
CREATE TABLE bg_sepsis_subset as −− get blood gas measures

WITH
t1 AS
(

SELECT
pivoted_bg . p a t i e n t u n i t s t a y i d ,
c h a r t o f f s e t AS o b s e r v a t i o n o f f s e t ,
f i o 2 ,
pao2 ,
b a s e e x c e s s

FROM
pivoted_bg , s e p s i s _ s u b s e t

WHERE
pivoted_bg . p a t i e n t u n i t s t a y i d = s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d
AND c h a r t o f f s e t < 4321

ORDER BY
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d , pivoted_bg . c h a r t o f f s e t

)

SELECT ∗ FROM t1 ;

A.8 hospi_unique.sql
DROP TABLE IF EXISTS hospi_unique CASCADE;
CREATE TABLE hospi_unique AS

WITH
t1 AS
(

SELECT
p a t i e n t . uniquepid

FROM
s e p s i s _ s u b s e t ,
p a t i e n t

WHERE
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d = p a t i e n t . p a t i e n t u n i t s t a y i d

AND (
s e p s i s _ s u b s e t . wardid = 369
OR s e p s i s _ s u b s e t . wardid = 413
OR s e p s i s _ s u b s e t . wardid = 376
OR s e p s i s _ s u b s e t . wardid = 391
OR s e p s i s _ s u b s e t . wardid = 312
OR s e p s i s _ s u b s e t . wardid = 324
OR s e p s i s _ s u b s e t . wardid = 408
OR s e p s i s _ s u b s e t . wardid = 1029
OR s e p s i s _ s u b s e t . wardid = 1026
OR s e p s i s _ s u b s e t . wardid = 1032
OR s e p s i s _ s u b s e t . wardid = 1039
OR s e p s i s _ s u b s e t . wardid = 1027
OR s e p s i s _ s u b s e t . wardid = 1035)

ORDER BY
p a t i e n t . uniquepid

) ,

t2 AS
(

SELECT

count ( t1 . uniquepid ) AS n
FROM
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t1
GROUP BY

t1 . uniquepid
ORDER BY

n DESC

) ,

t3 AS
(

SELECT
t2 . n ,
count ( t2 . n ) AS nb

FROM
t2

GROUP BY
t2 . n

ORDER BY
nb DESC

)

SELECT ∗ FROM t1 ;

A.9 ICD_Codes_9_10.sql
DROP TABLE IF EXISTS ICD_Codes_9_10 CASCADE;
CREATE TABLE ICD_Codes_9_10 AS

WITH
t1 AS
(

SELECT
patientUnitStayID ,
ICD9Code ,
d i a g n o s i s O f f s e t ,
d i a g n o s i s P r i o r i t y

FROM
d i a g n o s i s

WHERE ICD9Code LIKE '%995.92% ' OR ICD9Code LIKE '%785.52% '
OR ICD9Code LIKE '%R65.20% ' OR ICD9Code LIKE '%R65.21% '

)

SELECT ∗ FROM t1

A.10 ICU_unique.sql
DROP TABLE IF EXISTS ICU_unique CASCADE;
CREATE TABLE ICU_unique AS

WITH
t1 AS
(

SELECT
p a t i e n t . uniquepid

FROM
s e p s i s _ s u b s e t ,
p a t i e n t

WHERE
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d = p a t i e n t . p a t i e n t u n i t s t a y i d

AND ( s e p s i s _ s u b s e t . wardid = 369
OR s e p s i s _ s u b s e t . wardid = 413
OR s e p s i s _ s u b s e t . wardid = 347
OR s e p s i s _ s u b s e t . wardid = 337)

ORDER BY
p a t i e n t . uniquepid

) ,

t2 AS
(

SELECT
count ( t1 . uniquepid ) AS n

FROM
t1

GROUP BY
t1 . uniquepid

ORDER BY
n DESC

) ,
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t3 AS
(

SELECT
t2 . n ,
count ( t2 . n ) AS nb

FROM
t2

GROUP BY
t2 . n

ORDER BY
nb DESC

)

SELECT ∗ FROM t3 ;

A.11 input_fluid.sql
DROP TABLE IF EXISTS i n p u t _ f l u i d CASCADE;
CREATE TABLE i n p u t _ f l u i d AS

WITH
t1 AS
(

SELECT d i s t i n c t
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d ,
i n t a k e o u t p u t o f f s e t ,
i n t a k e t o t a l ,
d i a l y s i s t o t a l

FROM
intakeoutput ,
s e p s i s _ s u b s e t

WHERE
i n t a k e o u t p u t . p a t i e n t u n i t s t a y i d = s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d

ORDER BY
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d , i n t a k e o u t p u t o f f s e t

) ,

t2 AS
(

SELECT
t1 . p a t i e n t u n i t s t a y i d ,
t1 . i n t a k e o u t p u t o f f s e t ,
CASE

WHEN t1 . d i a l y s i s t o t a l > 0 THEN t1 . i n t a k e t o t a l + t1 . d i a l y s i s t o t a l
ELSE t1 . i n t a k e t o t a l

END AS i n t a k e t o t a l
FROM

t1
ORDER BY

t1 . p a t i e n t u n i t s t a y i d , t1 . i n t a k e o u t p u t o f f s e t
) ,

t3 AS
(

SELECT
t2 . p a t i e n t u n i t s t a y i d ,
t2 . i n t a k e o u t p u t o f f s e t ,
t2 . i n t a k e t o t a l

FROM
t2

WHERE
t2 . i n t a k e o u t p u t o f f s e t < 4321

ORDER BY
t2 . p a t i e n t u n i t s t a y i d , t2 . i n t a k e o u t p u t o f f s e t

)

SELECT ∗ from t3 ;

A.12 input_output_fluid.sql
DROP TABLE IF EXISTS input_output_fluid CASCADE;
CREATE TABLE input_output_fluid AS

WITH
t1 AS
(

SELECT d i s t i n c t
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d ,
i n t a k e o u t p u t o f f s e t ,
i n t a k e t o t a l ,
o u t p u t t o t a l ,
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d i a l y s i s t o t a l
FROM

intakeoutput ,
s e p s i s _ s u b s e t

WHERE
i n t a k e o u t p u t . p a t i e n t u n i t s t a y i d = s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d

ORDER BY
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d , i n t a k e o u t p u t o f f s e t

) ,

t2 AS
(

SELECT
t1 . p a t i e n t u n i t s t a y i d ,
t1 . i n t a k e o u t p u t o f f s e t ,
CASE

WHEN d i a l y s i s t o t a l < 0 THEN o u t p u t t o t a l + d i a l y s i s t o t a l
ELSE o u t p u t t o t a l

END AS o u t p u t t o t a l ,
CASE

WHEN t1 . d i a l y s i s t o t a l > 0 THEN t1 . i n t a k e t o t a l + t1 . d i a l y s i s t o t a l
ELSE t1 . i n t a k e t o t a l

END AS i n t a k e t o t a l
FROM

t1

ORDER BY
t1 . p a t i e n t u n i t s t a y i d , t1 . i n t a k e o u t p u t o f f s e t

) ,

t3 AS
(

SELECT
t2 . p a t i e n t u n i t s t a y i d ,
t2 . i n t a k e o u t p u t o f f s e t AS o b s e r v a t i o n o f f s e t ,
t2 . i n t a k e t o t a l ,
t2 . o u t p u t t o t a l

FROM
t2

WHERE
t2 . i n t a k e o u t p u t o f f s e t < 4321

ORDER BY
t2 . p a t i e n t u n i t s t a y i d , t2 . i n t a k e o u t p u t o f f s e t

)

SELECT ∗ from t3 ;

A.13 lab_sepsis_subset.sql
DROP TABLE IF EXISTS l a b _ s e p s i s _ s u b s e t CASCADE;
CREATE TABLE l a b _ s e p s i s _ s u b s e t as

WITH
t1 AS
(

SELECT
pivoted_lab . p a t i e n t u n i t s t a y i d ,
c h a r t o f f s e t AS o b s e r v a t i o n o f f s e t ,
c r e a t i n i n e ,
l a c t a t e

FROM
pivoted_lab ,
s e p s i s _ s u b s e t

WHERE
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d = pivoted_lab . p a t i e n t u n i t s t a y i d

AND c h a r t o f f s e t < 4321
ORDER BY

s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d , pivoted_lab . c h a r t o f f s e t
)

SELECT ∗ FROM t1 ;

A.14 output_fluid.sql
DROP TABLE IF EXISTS o u t p u t _ f l u i d CASCADE;
CREATE TABLE o u t p u t _ f l u i d AS

WITH
t1 AS
(

SELECT d i s t i n c t
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d ,
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i n t a k e o u t p u t o f f s e t ,
o u t p u t t o t a l ,
d i a l y s i s t o t a l

FROM
intakeoutput ,
s e p s i s _ s u b s e t

WHERE
i n t a k e o u t p u t . p a t i e n t u n i t s t a y i d = s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d

ORDER BY
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d , i n t a k e o u t p u t o f f s e t

) ,

t2 AS
(

SELECT
t1 . p a t i e n t u n i t s t a y i d ,
t1 . i n t a k e o u t p u t o f f s e t ,
CASE

WHEN d i a l y s i s t o t a l < 0 THEN o u t p u t t o t a l + d i a l y s i s t o t a l
ELSE o u t p u t t o t a l

END AS o u t p u t t o t a l
FROM

t1
ORDER BY

t1 . p a t i e n t u n i t s t a y i d , t1 . i n t a k e o u t p u t o f f s e t
) ,

t3 AS
(

SELECT
t2 . p a t i e n t u n i t s t a y i d ,
t2 . i n t a k e o u t p u t o f f s e t ,
t2 . o u t p u t t o t a l

FROM
t2

WHERE
t2 . i n t a k e o u t p u t o f f s e t < 4321

ORDER BY
t2 . p a t i e n t u n i t s t a y i d , t2 . i n t a k e o u t p u t o f f s e t

)

SELECT ∗ from t3 ;

A.15 pivoted_bg.sql
DROP TABLE IF EXISTS pivoted_bg CASCADE;
CREATE TABLE pivoted_bg AS −− get blood gas measures
WITH vw0 AS
(

SELECT
p a t i e n t u n i t s t a y i d

, labname
, l a b r e s u l t o f f s e t
, l a b r e s u l t r e v i s e d o f f s e t

FROM la b
WHERE labname i n
(

' paO2 '
, 'paCO2 '
, 'pH'
, ' FiO2 '
, ' anion gap '
, ' Base D e f i c i t '
, ' Base Excess '
, 'PEEP'

)
GROUP BY p a t i e n t u n i t s t a y i d , labname , l a b r e s u l t o f f s e t , l a b r e s u l t r e v i s e d o f f s e t
HAVING count ( d i s t i n c t l a b r e s u l t )<=1

)
−− get the l a s t la b to be r e v i s e d
, vw1 AS
(

SELECT
la b . p a t i e n t u n i t s t a y i d

, lab . labname
, lab . l a b r e s u l t o f f s e t
, lab . l a b r e s u l t r e v i s e d o f f s e t
, lab . l a b r e s u l t
, ROW_NUMBER( ) OVER

(
PARTITION BY lab . p a t i e n t u n i t s t a y i d , lab . labname , l ab . l a b r e s u l t o f f s e t
ORDER BY l ab . l a b r e s u l t r e v i s e d o f f s e t DESC

) AS rn
FROM la b
INNER JOIN vw0

ON lab . p a t i e n t u n i t s t a y i d = vw0 . p a t i e n t u n i t s t a y i d
AND l ab . labname = vw0 . labname
AND l ab . l a b r e s u l t o f f s e t = vw0 . l a b r e s u l t o f f s e t

X
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AND l ab . l a b r e s u l t r e v i s e d o f f s e t = vw0 . l a b r e s u l t r e v i s e d o f f s e t
WHERE

( la b . labname = ' paO2 ' and l ab . l a b r e s u l t >= 15 and l ab . l a b r e s u l t <= 720)
OR ( la b . labname = 'paCO2 ' and l ab . l a b r e s u l t >= 5 and l ab . l a b r e s u l t <= 250)
OR ( la b . labname = 'pH' and l ab . l a b r e s u l t >= 6 . 5 and la b . l a b r e s u l t <= 8 . 5 )
OR ( la b . labname = ' FiO2 ' and l ab . l a b r e s u l t >= 0 . 2 and la b . l a b r e s u l t <= 1 . 0 )
OR ( la b . labname = ' FiO2 ' and l ab . l a b r e s u l t >= 20 and l ab . l a b r e s u l t <= 100)
OR ( la b . labname = ' anion gap ' and l ab . l a b r e s u l t >= 0 and l ab . l a b r e s u l t <= 300)
OR ( la b . labname = ' Base D e f i c i t ' and l ab . l a b r e s u l t >= −100 and l ab . l a b r e s u l t <= 100)
OR ( la b . labname = ' Base Excess ' and l ab . l a b r e s u l t >= −100 and l ab . l a b r e s u l t <= 100)
OR ( la b . labname = 'PEEP' and l ab . l a b r e s u l t >= 0 and l ab . l a b r e s u l t <= 60)

)
SELECT

p a t i e n t u n i t s t a y i d
, l a b r e s u l t o f f s e t AS c h a r t o f f s e t

−− the a g g r e g a t e (max ( ) ) only e v e r a p p l i e s to 1 value due to the WHERE c l a u s e
, MAX( c a s e

when labname != ' FiO2 ' then n u l l
when l a b r e s u l t >= 20 then l a b r e s u l t / 1 0 0 . 0

e l s e l a b r e s u l t end ) AS f i o 2
, MAX( c a s e when labname = ' paO2 ' then l a b r e s u l t e l s e n u l l end ) AS pao2
, MAX( c a s e when labname = 'paCO2 ' then l a b r e s u l t e l s e n u l l end ) AS paco2
, MAX( c a s e when labname = 'pH' then l a b r e s u l t e l s e n u l l end ) AS pH
, MAX( c a s e when labname = ' anion gap ' then l a b r e s u l t e l s e n u l l end ) AS aniongap
, MAX( c a s e when labname = ' Base D e f i c i t ' then l a b r e s u l t e l s e n u l l end ) AS b a s e d e f i c i t
, MAX( c a s e when labname = ' Base Excess ' then l a b r e s u l t e l s e n u l l end ) AS b a s e e x c e s s
, MAX( c a s e when labname = 'PEEP' then l a b r e s u l t e l s e n u l l end ) AS peep

FROM vw1
WHERE rn = 1
GROUP BY p a t i e n t u n i t s t a y i d , l a b r e s u l t o f f s e t
ORDER BY p a t i e n t u n i t s t a y i d , l a b r e s u l t o f f s e t ;

A.16 pivoted_lab.sql
DROP TABLE IF EXISTS pivoted_lab CASCADE;
CREATE TABLE pivoted_lab AS −− remove d u p l i c a t e l a b s i f they e x i s t at the same time
with vw0 AS
(

SELECT
p a t i e n t u n i t s t a y i d

, labname
, l a b r e s u l t o f f s e t
, l a b r e s u l t r e v i s e d o f f s e t

FROM la b
WHERE labname i n
(

' albumin '
, ' t o t a l b i l i r u b i n '
, 'BUN'
, ' calcium '
, ' c h l o r i d e '
, ' c r e a t i n i n e '
, ' b e d s i d e g l u c o s e ' , ' g l u c o s e '
, ' b icarbonate ' −− HCO3
, ' Total CO2'
, ' Hct '
, 'Hgb '
, 'PT − INR '
, 'PTT'
, ' l a c t a t e '
, ' p l a t e l e t s x 1000 '
, ' potassium '
, ' sodium '
, 'WBC x 1000 '
, '−bands '

−− L i v e r enzymes
, 'ALT (SGPT) '
, 'AST (SGOT) '
, ' a l k a l i n e phos . '

)
GROUP BY p a t i e n t u n i t s t a y i d , labname , l a b r e s u l t o f f s e t , l a b r e s u l t r e v i s e d o f f s e t
HAVING count ( d i s t i n c t l a b r e s u l t )<=1

)
−− get the l a s t la b to be r e v i s e d
, vw1 AS
(

SELECT
la b . p a t i e n t u n i t s t a y i d

, lab . labname
, lab . l a b r e s u l t o f f s e t
, lab . l a b r e s u l t r e v i s e d o f f s e t
, lab . l a b r e s u l t
, ROW_NUMBER( ) OVER

(
PARTITION BY lab . p a t i e n t u n i t s t a y i d , lab . labname , l ab . l a b r e s u l t o f f s e t
ORDER BY l ab . l a b r e s u l t r e v i s e d o f f s e t DESC

) AS rn
FROM la b
INNER JOIN vw0
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ON lab . p a t i e n t u n i t s t a y i d = vw0 . p a t i e n t u n i t s t a y i d
AND l ab . labname = vw0 . labname
AND l ab . l a b r e s u l t o f f s e t = vw0 . l a b r e s u l t o f f s e t
AND l ab . l a b r e s u l t r e v i s e d o f f s e t = vw0 . l a b r e s u l t r e v i s e d o f f s e t

−− only v a l i d l ab v a l u e s
WHERE

( la b . labname = ' albumin ' AND l ab . l a b r e s u l t >= 0 . 5 AND lab . l a b r e s u l t <= 6 . 5 )
OR ( la b . labname = ' t o t a l b i l i r u b i n ' AND l ab . l a b r e s u l t >= 0 . 2 AND lab . l a b r e s u l t <= 7 0 . 1 7 5 )
OR ( la b . labname = 'BUN' AND l ab . l a b r e s u l t >= 1 AND la b . l a b r e s u l t <= 280)
OR ( la b . labname = ' calcium ' AND l ab . l a b r e s u l t > 0 AND lab . l a b r e s u l t <= 9999)
OR ( la b . labname = ' c h l o r i d e ' AND l ab . l a b r e s u l t > 0 AND lab . l a b r e s u l t <= 9999)
OR ( la b . labname = ' c r e a t i n i n e ' AND l ab . l a b r e s u l t >= 0 . 1 AND lab . l a b r e s u l t <= 2 8 . 2 8 )
OR ( la b . labname i n ( ' b e d s i d e g l u c o s e ' , ' g l u c o s e ' ) AND lab . l a b r e s u l t >= 25 AND l ab . l a b r e s u l t <= 1500)
OR ( la b . labname = ' bicarbonate ' AND l ab . l a b r e s u l t >= 0 AND lab . l a b r e s u l t <= 9999)
OR ( la b . labname = ' Total CO2' AND l ab . l a b r e s u l t >= 0 AND la b . l a b r e s u l t <= 9999)
−− w i l l c o n v e r t hct u n i t to f r a c t i o n l a t e r
OR ( la b . labname = ' Hct ' AND l ab . l a b r e s u l t >= 5 AND lab . l a b r e s u l t <= 75)
OR ( la b . labname = 'Hgb ' AND l ab . l a b r e s u l t > 0 AND la b . l a b r e s u l t <= 9999)
OR ( lab . labname = 'PT − INR ' AND l ab . l a b r e s u l t >= 0 . 5 AND lab . l a b r e s u l t <= 15)
OR ( lab . labname = ' l a c t a t e ' AND l ab . l a b r e s u l t >= 0 . 1 AND lab . l a b r e s u l t <= 30)
OR ( lab . labname = ' p l a t e l e t s x 1000 ' AND l ab . l a b r e s u l t > 0 AND la b . l a b r e s u l t <= 9999)
OR ( lab . labname = ' potassium ' AND l ab . l a b r e s u l t >= 0 . 0 5 AND lab . l a b r e s u l t <= 12)
OR ( lab . labname = 'PTT' AND l ab . l a b r e s u l t > 0 AND la b . l a b r e s u l t <= 500)
OR ( lab . labname = ' sodium ' AND l ab . l a b r e s u l t >= 90 AND la b . l a b r e s u l t <= 215)
OR ( lab . labname = 'WBC x 1000 ' AND l ab . l a b r e s u l t > 0 AND lab . l a b r e s u l t <= 100)
OR ( lab . labname = '−bands ' AND l ab . l a b r e s u l t >= 0 AND lab . l a b r e s u l t <= 100)
OR ( lab . labname = 'ALT (SGPT) ' AND l ab . l a b r e s u l t > 0)
OR ( lab . labname = 'AST (SGOT) ' AND l ab . l a b r e s u l t > 0)
OR ( lab . labname = ' a l k a l i n e phos . ' AND l ab . l a b r e s u l t > 0)

)
SELECT

p a t i e n t u n i t s t a y i d
, l a b r e s u l t o f f s e t AS c h a r t o f f s e t
, MAX(CASE WHEN labname = ' albumin ' THEN l a b r e s u l t e l s e NULL END) AS albumin
, MAX(CASE WHEN labname = ' t o t a l b i l i r u b i n ' THEN l a b r e s u l t e l s e NULL END) AS b i l i r u b i n
, MAX(CASE WHEN labname = 'BUN' THEN l a b r e s u l t e l s e NULL END) AS BUN
, MAX(CASE WHEN labname = ' calcium ' THEN l a b r e s u l t e l s e NULL END) AS calc ium
, MAX(CASE WHEN labname = ' c h l o r i d e ' THEN l a b r e s u l t e l s e NULL END) AS c h l o r i d e
, MAX(CASE WHEN labname = ' c r e a t i n i n e ' THEN l a b r e s u l t e l s e NULL END) AS c r e a t i n i n e
, MAX(CASE WHEN labname i n ( ' b e d s i d e g l u c o s e ' , ' g l u c o s e ' ) THEN l a b r e s u l t e l s e NULL END) AS g l u c o s e
, MAX(CASE WHEN labname = ' bicarbonate ' THEN l a b r e s u l t e l s e NULL END) AS b i c a r b o n a t e
, MAX(CASE WHEN labname = ' Total CO2' THEN l a b r e s u l t e l s e NULL END) AS TotalCO2
, MAX(CASE WHEN labname = ' Hct ' THEN l a b r e s u l t e l s e NULL END) AS h em at oc r i t
, MAX(CASE WHEN labname = 'Hgb ' THEN l a b r e s u l t e l s e NULL END) AS hemoglobin
, MAX(CASE WHEN labname = 'PT − INR ' THEN l a b r e s u l t e l s e NULL END) AS INR
, MAX(CASE WHEN labname = ' l a c t a t e ' THEN l a b r e s u l t e l s e NULL END) AS l a c t a t e
, MAX(CASE WHEN labname = ' p l a t e l e t s x 1000 ' THEN l a b r e s u l t e l s e NULL END) AS p l a t e l e t s
, MAX(CASE WHEN labname = ' potassium ' THEN l a b r e s u l t e l s e NULL END) AS potassium
, MAX(CASE WHEN labname = 'PTT' THEN l a b r e s u l t e l s e NULL END) AS ptt
, MAX(CASE WHEN labname = ' sodium ' THEN l a b r e s u l t e l s e NULL END) AS sodium
, MAX(CASE WHEN labname = 'WBC x 1000 ' THEN l a b r e s u l t e l s e NULL END) AS wbc
, MAX(CASE WHEN labname = '−bands ' THEN l a b r e s u l t e l s e NULL END) AS bands
, MAX(CASE WHEN labname = 'ALT (SGPT) ' THEN l a b r e s u l t e l s e NULL END) AS a l t
, MAX(CASE WHEN labname = 'AST (SGOT) ' THEN l a b r e s u l t e l s e NULL END) AS a s t
, MAX(CASE WHEN labname = ' a l k a l i n e phos . ' THEN l a b r e s u l t e l s e NULL END) AS alp

FROM vw1
WHERE rn = 1
GROUP BY p a t i e n t u n i t s t a y i d , l a b r e s u l t o f f s e t
o r d e r by p a t i e n t u n i t s t a y i d , l a b r e s u l t o f f s e t ;

A.17 quality2014_2015_vf.sql
DROP TABLE IF EXISTS quality2014_2015_vf CASCADE;
CREATE TABLE quality2014_2015_vf AS

WITH
t _ i n f u s i o n AS
(

SELECT
patientUnitStayID ,
i n f u s i o n o f f s e t AS vaso_time

FROM
i n f u s i o n D r u g

WHERE
lower ( drugname ) l i k e '% e p i n e p h r i n e %'
or lower ( drugname ) l i k e ' e p i (mcg/min ) '
or lower ( drugname ) l i k e '% n o r e p i n e p h r i n e %'
or lower ( drugname ) l i k e '% levoph %'
or lower ( drugname ) l i k e '% p h e n y l e p h r i n e %'
or lower ( drugname ) l i k e '%neo−s y n e p h r i n e %'
or lower ( drugname ) l i k e '% neosynephr ine %'
or lower ( drugname ) l i k e '% n e o s y n s p r i n e %'
or lower ( drugname ) l i k e '% s y n e p h r i n e %'
or lower ( drugname ) l i k e '% v a s o p r e s s i n %'

ORDER BY patientUnitStayID
) ,

t2_2014v AS
(
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SELECT
t _ i n f u s i o n . patientUnitStayID ,
h o s p i t a l D i s c h a r g e Y e a r ,
h o s p i t a l i d ,
t _ i n f u s i o n . vaso_time ,
round ( u n i t d i s c h a r g e o f f s e t , 3 ) AS icu_los_min

FROM
t _ i n f u s i o n ,
p a t i e n t

WHERE
t _ i n f u s i o n . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID

AND h o s p i t a l D i s c h a r g e Y e a r = 2014
ORDER BY t _ i n f u s i o n . patientUnitStayID , t _ i n f u s i o n . vaso_time

) ,

t3_2014v AS
(

SELECT
t2_2014v . h o s p i t a l D i s c h a r g e Y e a r ,
t2_2014v . patientUnitStayID ,
t2_2014v . h o s p i t a l i d ,
count ( t2_2014v . vaso_time ) AS nb ,
t2_2014v . icu_los_min

FROM
t2_2014v

GROUP BY
t2_2014v . h o s p i t a l D i s c h a r g e Y e a r , t2_2014v . patientUnitStayID , t2_2014v . h o s p i t a l i d , t2_2014v . icu_los_min

ORDER BY t2_2014v . pat ientUnitStayID
) ,

t4_2014v AS
(

SELECT
t3_2014v . h o s p i t a l D i s c h a r g e Y e a r ,
t3_2014v . patientUnitStayID ,
t3_2014v . h o s p i t a l i d ,
t3_2014v . nb ,
t3_2014v . icu_los_min ,
CASE

WHEN t3_2014v . icu_los_min = 0 THEN 0
ELSE ( t3_2014v . nb/ t3_2014v . icu_los_min )∗1440

END AS nb_day
FROM

t3_2014v
GROUP BY

t3_2014v . h o s p i t a l D i s c h a r g e Y e a r , t3_2014v . patientUnitStayID , t3_2014v . h o s p i t a l i d , t3_2014v . nb , t3_2014v . icu_los_min , nb_day
ORDER BY t3_2014v . pat ientUnitStayID

) ,

t5_2014v AS
(

SELECT
t4_2014v . h o s p i t a l D i s c h a r g e Y e a r ,
t4_2014v . h o s p i t a l i d ,
AVG( t4_2014v . nb_day ) AS mean_dose_day

FROM
t4_2014v

GROUP BY
t4_2014v . h o s p i t a l D i s c h a r g e Y e a r , t4_2014v . h o s p i t a l i d

ORDER BY t4_2014v . h o s p i t a l i d
) ,

t6_2014v AS
(

SELECT
t5_2014v . h o s p i t a l D i s c h a r g e Y e a r ,
t5_2014v . h o s p i t a l i d ,
t5_2014v . mean_dose_day ,
CASE WHEN t5_2014v . mean_dose_day >= 6 THEN 1 ELSE 0 END AS good_quality

FROM
t5_2014v

ORDER BY
t5_2014v . h o s p i t a l i d

) ,

t7_2014v AS
(

SELECT
t6_2014v . h o s p i t a l D i s c h a r g e Y e a r ,
t6_2014v . h o s p i t a l i d

FROM
t6_2014v

WHERE
good_quality = 1

ORDER BY
t6_2014v . h o s p i t a l i d

) ,

t1_2014f AS −− Every time p a t i e n t has an intake −Output o b s e r v a t i o n
(

SELECT
d i s t i n c t patientUnitStayID ,
i n t a k e O u t p u t O f f s e t

FROM
i n t a k e o u t p u t
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ORDER BY patientUnitStayID , i n t a k e O u t p u t O f f s e t
) ,

t2_2014f AS
(

SELECT
t1_2014f . patientUnitStayID ,
h o s p i t a l D i s c h a r g e Y e a r ,
h o s p i t a l i d ,
t1_2014f . intakeOutputOffset ,
round ( u n i t d i s c h a r g e o f f s e t , 3 ) AS icu_los_min

FROM
t1_2014f ,
p a t i e n t

WHERE
t1_2014f . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID
AND h o s p i t a l D i s c h a r g e Y e a r = 2014

ORDER BY t1_2014f . patientUnitStayID , t1_2014f . i n t a k e O u t p u t O f f s e t
) ,

t3_2014f AS
(

SELECT
t2_2014f . h o s p i t a l D i s c h a r g e Y e a r ,
t2_2014f . patientUnitStayID ,
t2_2014f . h o s p i t a l i d ,
count ( t2_2014f . i n t a k e O u t p u t O f f s e t ) AS nb ,
t2_2014f . icu_los_min

FROM
t2_2014f

GROUP BY
t2_2014f . h o s p i t a l D i s c h a r g e Y e a r , t2_2014f . patientUnitStayID , t2_2014f . h o s p i t a l i d , t2_2014f . icu_los_min

ORDER BY t2_2014f . pat ientUnitStayID
) ,

t4_2014f AS
(

SELECT
t3_2014f . h o s p i t a l D i s c h a r g e Y e a r ,
t3_2014f . patientUnitStayID ,
t3_2014f . h o s p i t a l i d ,
t3_2014f . nb ,
t3_2014f . icu_los_min ,
CASE WHEN t3_2014f . icu_los_min = 0 THEN 0 ELSE ( t3_2014f . nb/ t3_2014f . icu_los_min )∗1440 END AS nb_day

FROM
t3_2014f

GROUP BY
t3_2014f . h o s p i t a l D i s c h a r g e Y e a r , t3_2014f . patientUnitStayID , t3_2014f . h o s p i t a l i d , t3_2014f . nb , t3_2014f . icu_los_min , nb_day

ORDER BY t3_2014f . pat ientUnitStayID
) ,

t5_2014f AS
(

SELECT
t4_2014f . h o s p i t a l D i s c h a r g e Y e a r ,
t4_2014f . h o s p i t a l i d ,
AVG( t4_2014f . nb_day ) AS mean_observ_day

FROM
t4_2014f

GROUP BY
t4_2014f . h o s p i t a l D i s c h a r g e Y e a r , t4_2014f . h o s p i t a l i d

ORDER BY t4_2014f . h o s p i t a l i d
) ,

t6_2014f AS
(

SELECT
t5_2014f . h o s p i t a l D i s c h a r g e Y e a r ,
t5_2014f . h o s p i t a l i d ,
t5_2014f . mean_observ_day ,
CASE WHEN t5_2014f . mean_observ_day >= 6 THEN 1 ELSE 0 END AS good_quality

FROM
t5_2014f

ORDER BY
t5_2014f . h o s p i t a l i d

) ,

t7_2014f AS
(

SELECT
t6_2014f . h o s p i t a l D i s c h a r g e Y e a r ,
t6_2014f . h o s p i t a l i d

FROM
t6_2014f

WHERE
t6_2014f . good_quality = 1

ORDER BY
t6_2014f . h o s p i t a l i d

) ,

t_2014_vf AS
(

SELECT
t7_2014v . h o s p i t a l D i s c h a r g e Y e a r ,
t7_2014v . h o s p i t a l i d
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FROM
t7_2014v

INTERSECT
SELECT

t7_2014f . h o s p i t a l D i s c h a r g e Y e a r ,
t7_2014f . h o s p i t a l i d

FROM
t7_2014f

) ,

t2_2015v AS
(

SELECT
t _ i n f u s i o n . patientUnitStayID ,
h o s p i t a l D i s c h a r g e Y e a r ,
h o s p i t a l i d ,
t _ i n f u s i o n . vaso_time ,
round ( u n i t d i s c h a r g e o f f s e t , 3 ) AS icu_los_min

FROM
t _ i n f u s i o n ,
p a t i e n t

WHERE
t _ i n f u s i o n . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID

AND h o s p i t a l D i s c h a r g e Y e a r = 2015
ORDER BY t _ i n f u s i o n . patientUnitStayID , t _ i n f u s i o n . vaso_time

) ,

t3_2015v AS
(

SELECT
t2_2015v . h o s p i t a l D i s c h a r g e Y e a r ,
t2_2015v . patientUnitStayID ,
t2_2015v . h o s p i t a l i d ,
count ( t2_2015v . vaso_time ) AS nb ,
t2_2015v . icu_los_min

FROM
t2_2015v

GROUP BY
t2_2015v . h o s p i t a l D i s c h a r g e Y e a r , t2_2015v . patientUnitStayID , t2_2015v . h o s p i t a l i d , t2_2015v . icu_los_min

ORDER BY t2_2015v . pat ientUnitStayID
) ,

t4_2015v AS
(

SELECT
t3_2015v . h o s p i t a l D i s c h a r g e Y e a r ,
t3_2015v . patientUnitStayID ,
t3_2015v . h o s p i t a l i d ,
t3_2015v . nb ,
t3_2015v . icu_los_min ,
CASE

WHEN t3_2015v . icu_los_min = 0 THEN 0
ELSE ( t3_2015v . nb/ t3_2015v . icu_los_min )∗1440

END AS nb_day
FROM

t3_2015v
GROUP BY

t3_2015v . h o s p i t a l D i s c h a r g e Y e a r , t3_2015v . patientUnitStayID , t3_2015v . h o s p i t a l i d , t3_2015v . nb , t3_2015v . icu_los_min , nb_day
ORDER BY t3_2015v . pat ientUnitStayID

) ,

t5_2015v AS
(

SELECT
t4_2015v . h o s p i t a l D i s c h a r g e Y e a r ,
t4_2015v . h o s p i t a l i d ,
AVG( t4_2015v . nb_day ) AS mean_dose_day

FROM
t4_2015v

GROUP BY
t4_2015v . h o s p i t a l D i s c h a r g e Y e a r , t4_2015v . h o s p i t a l i d

ORDER BY t4_2015v . h o s p i t a l i d
) ,

t6_2015v AS
(

SELECT
t5_2015v . h o s p i t a l D i s c h a r g e Y e a r ,
t5_2015v . h o s p i t a l i d ,
t5_2015v . mean_dose_day ,
CASE WHEN t5_2015v . mean_dose_day >= 6 THEN 1 ELSE 0 END AS good_quality

FROM
t5_2015v

ORDER BY
t5_2015v . h o s p i t a l i d

) ,

t7_2015v AS
(

SELECT
t6_2015v . h o s p i t a l D i s c h a r g e Y e a r ,
t6_2015v . h o s p i t a l i d

FROM
t6_2015v

WHERE
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good_quality = 1
ORDER BY

t6_2015v . h o s p i t a l i d
) ,

t1_2015f AS −− Every time p a t i e n t has an intake −Output o b s e r v a t i o n
(

SELECT
d i s t i n c t patientUnitStayID ,
i n t a k e O u t p u t O f f s e t

FROM
i n t a k e o u t p u t

ORDER BY patientUnitStayID , i n t a k e O u t p u t O f f s e t
) ,

t2_2015f AS
(

SELECT
t1_2015f . patientUnitStayID ,
h o s p i t a l D i s c h a r g e Y e a r ,
h o s p i t a l i d ,
t1_2015f . intakeOutputOffset ,
round ( u n i t d i s c h a r g e o f f s e t , 3 ) AS icu_los_min

FROM
t1_2015f ,
p a t i e n t

WHERE
t1_2015f . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID
AND h o s p i t a l D i s c h a r g e Y e a r = 2015

ORDER BY t1_2015f . patientUnitStayID , t1_2015f . i n t a k e O u t p u t O f f s e t
) ,

t3_2015f AS
(

SELECT
t2_2015f . h o s p i t a l D i s c h a r g e Y e a r ,
t2_2015f . patientUnitStayID ,
t2_2015f . h o s p i t a l i d ,
count ( t2_2015f . i n t a k e O u t p u t O f f s e t ) AS nb ,
t2_2015f . icu_los_min

FROM
t2_2015f

GROUP BY
t2_2015f . h o s p i t a l D i s c h a r g e Y e a r , t2_2015f . patientUnitStayID , t2_2015f . h o s p i t a l i d , t2_2015f . icu_los_min

ORDER BY t2_2015f . pat ientUnitStayID
) ,

t4_2015f AS
(

SELECT
t3_2015f . h o s p i t a l D i s c h a r g e Y e a r ,
t3_2015f . patientUnitStayID ,
t3_2015f . h o s p i t a l i d ,
t3_2015f . nb ,
t3_2015f . icu_los_min ,
CASE

WHEN t3_2015f . icu_los_min = 0 THEN 0
ELSE ( t3_2015f . nb/ t3_2015f . icu_los_min )∗1440

END AS nb_day
FROM

t3_2015f
GROUP BY

t3_2015f . h o s p i t a l D i s c h a r g e Y e a r , t3_2015f . patientUnitStayID , t3_2015f . h o s p i t a l i d , t3_2015f . nb , t3_2015f . icu_los_min , nb_day
ORDER BY t3_2015f . pat ientUnitStayID

) ,

t5_2015f AS
(

SELECT
t4_2015f . h o s p i t a l D i s c h a r g e Y e a r ,
t4_2015f . h o s p i t a l i d ,
AVG( t4_2015f . nb_day ) AS mean_observ_day

FROM
t4_2015f

GROUP BY
t4_2015f . h o s p i t a l D i s c h a r g e Y e a r , t4_2015f . h o s p i t a l i d

ORDER BY t4_2015f . h o s p i t a l i d
) ,

t6_2015f AS
(

SELECT
t5_2015f . h o s p i t a l D i s c h a r g e Y e a r ,
t5_2015f . h o s p i t a l i d ,
t5_2015f . mean_observ_day ,
CASE WHEN t5_2015f . mean_observ_day >= 6 THEN 1 ELSE 0 END AS good_quality

FROM
t5_2015f

ORDER BY
t5_2015f . h o s p i t a l i d

) ,

t7_2015f AS
(

SELECT
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t6_2015f . h o s p i t a l D i s c h a r g e Y e a r ,
t6_2015f . h o s p i t a l i d

FROM
t6_2015f

WHERE
t6_2015f . good_quality = 1

ORDER BY
t6_2015f . h o s p i t a l i d

) ,

t_2015_vf AS
(

SELECT
t7_2015v . h o s p i t a l D i s c h a r g e Y e a r ,
t7_2015v . h o s p i t a l i d

FROM
t7_2015v

INTERSECT
SELECT

t7_2015f . h o s p i t a l D i s c h a r g e Y e a r ,
t7_2015f . h o s p i t a l i d

FROM
t7_2015f

) ,

t_2014_2015_vf AS
(

SELECT
t_2014_vf . h o s p i t a l D i s c h a r g e Y e a r ,
t_2014_vf . h o s p i t a l i d

FROM
t_2014_vf

UNION
SELECT

t_2015_vf . h o s p i t a l D i s c h a r g e Y e a r ,
t_2015_vf . h o s p i t a l i d

FROM
t_2015_vf

)

SELECT ∗ FROM t_2014_2015_vf ;

A.18 sepsis_distribution_hospital.sql
DROP TABLE IF EXISTS s e p s i s _ d i s t r i b u t i o n _ h o s p i t a l CASCADE;
CREATE TABLE s e p s i s _ d i s t r i b u t i o n _ h o s p i t a l AS

WITH
t1 AS
(

SELECT
h o s p i t a l i d ,
count ( h o s p i t a l i d ) AS n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l

FROM
s e p s i s _ t o t a l

GROUP BY
h o s p i t a l i d

)

SELECT ∗ FROM t1

A.19 sepsis_distribution_icu.sql
DROP TABLE IF EXISTS s e p s i s _ d i s t r i b u t i o n _ i c u CASCADE;
CREATE TABLE s e p s i s _ d i s t r i b u t i o n _ i c u AS

WITH
t1 AS
(

SELECT
wardid ,
count ( wardid ) AS nb_sepsis_patients_wardid

FROM
s e p s i s _ t o t a l

GROUP BY
wardid

)

SELECT ∗ FROM t1
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A.20 sepsis_largest_hospital.sql
DROP TABLE IF EXISTS s e p s i s _ l a r g e s t _ h o s p i t a l CASCADE;
CREATE TABLE s e p s i s _ l a r g e s t _ h o s p i t a l AS

WITH
t0 AS −− s e l e c t the 5 b i g g e s t h o s p i t a l s
(

SELECT
h o s p i t a l i d ,
n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l

FROM
s e p s i s _ t o t a l

GROUP BY
h o s p i t a l i d ,
n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l

ORDER BY
n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l

DESC
LIMIT 5

) ,

t1 AS −− r e t r i e v e the p a t i e n t s f o r t h o s e 5 h o s p i t a l s
(

SELECT
s e p s i s _ t o t a l . patientUnitStayID ,
s e p s i s _ t o t a l . so fa_score ,
s e p s i s _ t o t a l . seps is_type ,
s e p s i s _ t o t a l . h o s p i t a l i d ,
s e p s i s _ t o t a l . h o s p i t a l D i s c h a r g e Y e a r ,
s e p s i s _ t o t a l . wardid ,
s e p s i s _ t o t a l . n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l

FROM
s e p s i s _ t o t a l ,
t0

WHERE
s e p s i s _ t o t a l . h o s p i t a l i d = t0 . h o s p i t a l i d

ORDER BY
s e p s i s _ t o t a l . n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l

DESC

) ,

t2 AS
(

SELECT
t1 . wardid ,
unitType ,
t1 . n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l ,
t1 . patientUnitStayID ,
t1 . so fa_score ,
t1 . seps is_type ,
t1 . h o s p i t a l i d ,
t1 . h o s p i t a l D i s c h a r g e Y e a r ,
h o s p i t a l . numbedscategory ,
h o s p i t a l . t e a c h i n g s t a t u s ,
h o s p i t a l . r eg i on ,
CASE

WHEN age LIKE '%>%' THEN ' 9 0 '
ELSE age

END AS age , −− age > 89 y e a r s a re a r b i t r a r i l y s e t to 90 y e a r s
CASE

WHEN gender = ' Female ' THEN ' female '
WHEN gender = ' Male ' THEN ' male '
ELSE ' unknown '

END AS gender ,
CASE

WHEN e t h n i c i t y = ' A f r i c a n American ' THEN ' African_American '
WHEN e t h n i c i t y = ' Asian ' THEN ' Asian '
WHEN e t h n i c i t y = ' Caucasian ' THEN ' Caucasian '
WHEN e t h n i c i t y = ' Hispanic ' THEN ' Hispanic '
WHEN e t h n i c i t y = ' Native American ' THEN ' Native_American '
ELSE ' Ethnicity_Other_Unknown '

END AS e t h n i c i t y ,
CASE

WHEN admissionWeight > 0 THEN admissionWeight
ELSE NULL

END AS admissionWeight , −− remove weight = 0
CASE

WHEN admiss ionHeight = 0 THEN NULL −− remove h e i g h t = 0
WHEN admiss ionHeight > 0 AND admiss ionHeight < 3 THEN admiss ionHeight ∗ 100 −− c o n v e r t ( s u s p e c t e d ) c e n t i m e t e r to meter
ELSE admiss ionHeight

END AS admissionHeight ,
CASE

WHEN unitAdmitSource = ' Emergency Department ' OR unitAdmitSource = ' Chest Pain Center '
OR unitAdmitSource = ' Observation ' THEN 'adm_ED'
WHEN unitAdmitSource = ' D i r e c t Admit ' THEN ' adm_direct '
WHEN unitAdmitSource = ' Floor ' OR unitAdmitSource = ' Acute Care / Floor ' THEN ' adm_floor '
WHEN unitAdmitSource = ' Operating Room' OR unitAdmitSource = ' Recovery Room'
OR unitAdmitSource = 'PACU' THEN 'adm_OR_Recovery '
WHEN unitAdmitSource = 'ICU to SDU' OR unitAdmitSource = 'ICU '
OR unitAdmitSource = ' Other ICU ' THEN 'adm_ICU'
WHEN unitAdmitSource = ' Step−Down Unit (SDU) ' THEN 'adm_SDU'
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WHEN unitAdmitSource = ' Other Hospita l ' THEN ' adm_other_hosp '
WHEN unitAdmitSource = ' Other ' OR unitAdmitSource IS NULL THEN 'adm_unknown '
ELSE 'adm_unknown '

END AS unitAdmitSource ,
ROUND( u n i t d i s c h a r g e o f f s e t /60) AS icu_los_hours ,
u n i t D i s c h a r g e S t a t u s ,
h o s p i t a l d i s c h a r g e s t a t u s

FROM
t1 ,
p a t i e n t ,
H o s p i t a l

WHERE
t1 . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID
AND p a t i e n t . h o s p i t a l I D = h o s p i t a l . h o s p i t a l I D

) ,

t _ i n f u s i o n AS −− ICU s t a y s with v a s o p r e s s o r s
(

SELECT
patientUnitStayID

FROM
i n f u s i o n D r u g

WHERE
lower ( drugname ) LIKE '% e p i n e p h r i n e %'
OR lower ( drugname ) LIKE ' e p i (mcg/min ) '
OR lower ( drugname ) LIKE '% n o r e p i n e p h r i n e %'
OR lower ( drugname ) LIKE '% levoph %'
OR lower ( drugname ) LIKE '% p h e n y l e p h r i n e %'
OR lower ( drugname ) LIKE '% s y n e p h r i n e %'
OR lower ( drugname ) LIKE '%dopamine%'
OR lower ( drugname ) LIKE '% v a s o p r e s s i n %'

GROUP BY patientUnitStayID
) ,

t3 AS
(

SELECT
t2 . patientUnitStayID ,
1 AS vaso

FROM
t2 , t _ i n f u s i o n

WHERE
t2 . pat ientUnitStayID = t _ i n f u s i o n . pat ientUnitStayID

) ,

t4 AS
(

SELECT
t2 . wardid ,
t2 . unitType ,
t2 . n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l ,
t2 . patientUnitStayID ,
t2 . so fa_score ,
t2 . seps is_type ,
t2 . h o s p i t a l i d ,
t2 . h o s p i t a l D i s c h a r g e Y e a r ,
t2 . numbedscategory ,
t2 . t e a c h i n g s t a t u s ,
t2 . re g io n ,
t2 . age , −− age > 89 y e a r s a re a r b i t r a r i l y s e t to 90 y e a r s
t2 . gender ,
t2 . e t h n i c i t y ,
t2 . admissionWeight , −− remove weight = 0
t2 . admissionHeight ,
t2 . unitAdmitSource ,
t2 . icu_los_hours ,
t2 . u n i t D i s c h a r g e S t a t u s ,
t2 . h o s p i t a l d i s c h a r g e s t a t u s ,
t3 . vaso

FROM
t2 LEFT JOIN t3
ON t2 . pat ientUnitStayID = t3 . pat ientUnitStayID

) ,

t5 AS
(

SELECT
t4 . wardid ,
t4 . unitType ,
t4 . n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l ,
t4 . patientUnitStayID ,
t4 . so fa_score ,
t4 . seps is_type ,
t4 . h o s p i t a l i d ,
t4 . h o s p i t a l D i s c h a r g e Y e a r ,
t4 . numbedscategory ,
t4 . t e a c h i n g s t a t u s ,
t4 . re g io n ,
t4 . age , −− age > 89 y e a r s a re a r b i t r a r i l y s e t to 90 y e a r s
t4 . gender ,
t4 . e t h n i c i t y ,
t4 . admissionWeight , −− remove weight = 0
t4 . admissionHeight ,
t4 . unitAdmitSource ,
t4 . icu_los_hours ,
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t4 . u n i t D i s c h a r g e S t a t u s ,
t4 . h o s p i t a l d i s c h a r g e s t a t u s ,
CASE WHEN t4 . vaso = 1 THEN 1 ELSE 0 END AS v a s o p r e s s o r

FROM
t4

)

SELECT ∗ FROM t5 ;

A.21 sepsis_largest_icu.sql
DROP TABLE IF EXISTS s e p s i s _ l a r g e s t _ i c u CASCADE;
CREATE TABLE s e p s i s _ l a r g e s t _ i c u AS

WITH
t0 AS −− s e l e c t the 5 b i g g e s t ICU
(

SELECT
wardid ,
nb_sepsis_patients_wardid

FROM
s e p s i s _ t o t a l

GROUP BY
wardid ,
nb_sepsis_patients_wardid

ORDER BY
nb_sepsis_patients_wardid

DESC
LIMIT 5

) ,

t1 AS −− r e t r i e v e the p a t i e n t s f o r t h o s e 5 ICUs
(

SELECT
s e p s i s _ t o t a l . patientUnitStayID ,
s e p s i s _ t o t a l . so fa_score ,
s e p s i s _ t o t a l . seps is_type ,
s e p s i s _ t o t a l . h o s p i t a l i d ,
s e p s i s _ t o t a l . h o s p i t a l D i s c h a r g e Y e a r ,
s e p s i s _ t o t a l . wardid ,
s e p s i s _ t o t a l . nb_sepsis_patients_wardid

FROM
s e p s i s _ t o t a l ,
t0

WHERE
s e p s i s _ t o t a l . wardid = t0 . wardid

ORDER BY
s e p s i s _ t o t a l . nb_sepsis_patients_wardid

DESC

) ,

t2 AS
(

SELECT
t1 . wardid ,
unitType ,
t1 . nb_sepsis_patients_wardid ,
t1 . patientUnitStayID ,
t1 . so fa_score ,
t1 . seps is_type ,
t1 . h o s p i t a l i d ,
t1 . h o s p i t a l D i s c h a r g e Y e a r ,
h o s p i t a l . numbedscategory ,
h o s p i t a l . t e a c h i n g s t a t u s ,
h o s p i t a l . r eg i on ,
CASE

WHEN age LIKE '%>%' THEN ' 9 0 '
ELSE age

END AS age , −− age > 89 y e a r s a re a r b i t r a r i l y s e t to 90 y e a r s
CASE

WHEN gender = ' Female ' THEN ' female '
WHEN gender = ' Male ' THEN ' male '
ELSE ' unknown '

END AS gender ,
CASE

WHEN e t h n i c i t y = ' A f r i c a n American ' THEN ' African_American '
WHEN e t h n i c i t y = ' Asian ' THEN ' Asian '
WHEN e t h n i c i t y = ' Caucasian ' THEN ' Caucasian '
WHEN e t h n i c i t y = ' Hispanic ' THEN ' Hispanic '
WHEN e t h n i c i t y = ' Native American ' THEN ' Native_American '
ELSE ' Ethnicity_Other_Unknown '

END AS e t h n i c i t y ,
CASE

WHEN admissionWeight > 0 THEN admissionWeight
ELSE NULL

END AS admissionWeight , −− remove weight = 0
CASE

WHEN admiss ionHeight = 0 THEN NULL −− remove h e i g h t = 0
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−− c o n v e r t ( s u s p e c t e d ) c e n t i m e t e r to meter
WHEN admiss ionHeight > 0 AND admiss ionHeight < 3 THEN admiss ionHeight ∗ 100
ELSE admiss ionHeight

END AS admissionHeight ,
CASE

WHEN unitAdmitSource = ' Emergency Department ' OR unitAdmitSource = ' Chest Pain Center '
OR unitAdmitSource = ' Observation ' THEN 'adm_ED'
WHEN unitAdmitSource = ' D i r e c t Admit ' THEN ' adm_direct '
WHEN unitAdmitSource = ' Floor ' OR unitAdmitSource = ' Acute Care / Floor ' THEN ' adm_floor '
WHEN unitAdmitSource = ' Operating Room' OR unitAdmitSource = ' Recovery Room'
OR unitAdmitSource = 'PACU' THEN 'adm_OR_Recovery '
WHEN unitAdmitSource = 'ICU to SDU' OR unitAdmitSource = 'ICU '
OR unitAdmitSource = ' Other ICU ' THEN 'adm_ICU'
WHEN unitAdmitSource = ' Step−Down Unit (SDU) ' THEN 'adm_SDU'
WHEN unitAdmitSource = ' Other Hospita l ' THEN ' adm_other_hosp '
WHEN unitAdmitSource = ' Other ' OR unitAdmitSource IS NULL THEN 'adm_unknown '
ELSE 'adm_unknown '

END AS unitAdmitSource ,
ROUND( u n i t d i s c h a r g e o f f s e t /60) AS icu_los_hours ,
u n i t D i s c h a r g e S t a t u s ,
h o s p i t a l d i s c h a r g e s t a t u s

FROM
t1 ,
p a t i e n t ,
H o s p i t a l

WHERE
t1 . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID
AND p a t i e n t . h o s p i t a l I D = h o s p i t a l . h o s p i t a l I D

) ,

t _ i n f u s i o n AS −− ICU s t a y s with v a s o p r e s s o r s
(

SELECT
patientUnitStayID

FROM
i n f u s i o n D r u g

WHERE
lower ( drugname ) LIKE '% e p i n e p h r i n e %'
OR lower ( drugname ) LIKE ' e p i (mcg/min ) '
OR lower ( drugname ) LIKE '% n o r e p i n e p h r i n e %'
OR lower ( drugname ) LIKE '% levoph %'
OR lower ( drugname ) LIKE '% p h e n y l e p h r i n e %'
OR lower ( drugname ) LIKE '% s y n e p h r i n e %'
OR lower ( drugname ) LIKE '%dopamine%'
OR lower ( drugname ) LIKE '% v a s o p r e s s i n %'

GROUP BY patientUnitStayID
) ,

t3 AS
(

SELECT
t2 . patientUnitStayID ,
1 AS vaso

FROM
t2 , t _ i n f u s i o n

WHERE
t2 . pat ientUnitStayID = t _ i n f u s i o n . pat ientUnitStayID

) ,

t4 AS
(

SELECT
t2 . wardid ,
t2 . unitType ,
t2 . nb_sepsis_patients_wardid ,
t2 . patientUnitStayID ,
t2 . so fa_score ,
t2 . seps is_type ,
t2 . h o s p i t a l i d ,
t2 . h o s p i t a l D i s c h a r g e Y e a r ,
t2 . numbedscategory ,
t2 . t e a c h i n g s t a t u s ,
t2 . re g io n ,
t2 . age , −− age > 89 y e a r s a re a r b i t r a r i l y s e t to 90 y e a r s
t2 . gender ,
t2 . e t h n i c i t y ,
t2 . admissionWeight , −− remove weight = 0
t2 . admissionHeight ,
t2 . unitAdmitSource ,
t2 . icu_los_hours ,
t2 . u n i t D i s c h a r g e S t a t u s ,
t2 . h o s p i t a l d i s c h a r g e s t a t u s ,
t3 . vaso

FROM
t2 LEFT JOIN t3
ON t2 . pat ientUnitStayID = t3 . pat ientUnitStayID

) ,

t5 AS
(

SELECT
t4 . wardid ,
t4 . unitType ,
t4 . nb_sepsis_patients_wardid ,
t4 . patientUnitStayID ,
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t4 . so fa_score ,
t4 . seps is_type ,
t4 . h o s p i t a l i d ,
t4 . h o s p i t a l D i s c h a r g e Y e a r ,
t4 . numbedscategory ,
t4 . t e a c h i n g s t a t u s ,
t4 . re g io n ,
t4 . age , −− age > 89 y e a r s ar e a r b i t r a r i l y s e t to 90 y e a r s
t4 . gender ,
t4 . e t h n i c i t y ,
t4 . admissionWeight , −− remove weight = 0
t4 . admissionHeight ,
t4 . unitAdmitSource ,
t4 . icu_los_hours ,
t4 . u n i t D i s c h a r g e S t a t u s ,
t4 . h o s p i t a l d i s c h a r g e s t a t u s ,
CASE

WHEN t4 . vaso = 1 THEN 1
ELSE 0

END AS v a s o p r e s s o r
FROM

t4
)

SELECT ∗ FROM t5 ;

A.22 sepsis_subset.sql
DROP TABLE IF EXISTS s e p s i s _ s u b s e t CASCADE;
CREATE TABLE s e p s i s _ s u b s e t AS

−− 3174 ICU s t a y s i n s e p s i s _ t o t a l
−− The f i v e b i g g e s t ICUs : 369 413 347 601 337
−− The f i v e b i g g e s t H o s p i t a l s : 420 167 176 157 243

−− In h o s p i t a l 420 , ICUs : 1029 1026 1032 1039 1027 1035
−− In h o s p i t a l 167 , ICUs : 413 324 408
−− In h o s p i t a l 176 , ICUs : 376 391 312
−− In h o s p i t a l 157 , ICU : 369
−− In h o s p i t a l 243 , ICUs : 601 607 609 594

−− ICUs with bad v a s o p r e s s o r data complet ion ( c o n c e n t r a t i o n . . . ) : 601 607 609 594
−− At the end we s e l e c t a s u b s e t o f s e p s i s _ t o t a l with ICUs
−− where v a s o p r e s s o r d r u g r a t e s a re a v a i l a b l e :
−− The " f o u r " b i g g e s t ICUs : 369 413 347 337
−− The " f o u r " b i g g e s t H o s p i t a l s : 420 167 176 157

−− In h o s p i t a l 420 , ICUs : 1029 1026 1032 1039 1027 1035
−− In h o s p i t a l 167 , ICUs : 413 324 408
−− In h o s p i t a l 176 , ICUs : 376 391 312
−− In h o s p i t a l 157 , ICU : 369

−−−−−− ICUs r e t a i n e d f o r a n a l y s i s :
−− 369 413 347 337 376 391 312 324 408 1029 1026 1032 1039 1027 1035
−− 1088 ICU s t a y s i n s e p s i s _ s u b s e t

WITH
t1 AS
(

SELECT
patientUnitStayID ,
sofa_score ,
seps is_type ,
h o s p i t a l i d ,
h o s p i t a l D i s c h a r g e Y e a r ,
wardid ,
u n i t D i s c h a r g e O f f s e t

FROM
s e p s i s _ t o t a l

WHERE
wardid = 369
OR wardid = 413 OR wardid = 347 OR wardid = 337
OR wardid = 376 OR wardid = 391 OR wardid = 312
OR wardid = 324 OR wardid = 408 OR wardid = 1029
OR wardid = 1026 OR wardid = 1032 OR wardid = 1039
OR wardid = 1027 OR wardid = 1035

) ,

t2 AS
(

SELECT
t1 . patientUnitStayID ,
t1 . so fa_score ,
t1 . seps is_type ,
t1 . h o s p i t a l i d ,
t1 . h o s p i t a l D i s c h a r g e Y e a r ,
t1 . wardid ,
t1 . u n i t D i s c h a r g e O f f s e t

FROM
t1

)

SELECT ∗ FROM t2 ;
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A.23 sepsis_subset_vital_aperiodic.sql
DROP TABLE IF EXISTS s e p s i s _ s u b s e t _ v i t a l _ a p e r i o d i c CASCADE;
CREATE TABLE s e p s i s _ s u b s e t _ v i t a l _ a p e r i o d i c AS

WITH
t1 AS
(

SELECT
v i t a l a p e r i o d i c . p a t i e n t u n i t s t a y i d ,
v i t a l a p e r i o d i c . o b s e r v a t i o n o f f s e t ,
v i t a l a p e r i o d i c . n o n i n v a s i v e s y s t o l i c ,
v i t a l a p e r i o d i c . noninvasivemean ,
v i t a l a p e r i o d i c . n o n i n v a s i v e d i a s t o l i c

FROM
s e p s i s _ s u b s e t , v i t a l a p e r i o d i c

WHERE
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d = v i t a l a p e r i o d i c . p a t i e n t u n i t s t a y i d

AND v i t a l a p e r i o d i c . o b s e r v a t i o n o f f s e t < 4321
ORDER BY

v i t a l a p e r i o d i c . p a t i e n t u n i t s t a y i d , v i t a l a p e r i o d i c . o b s e r v a t i o n o f f s e t
)

SELECT ∗ FROM t1 ;

A.24 sepsis_subset_vital_periodic.sql
DROP TABLE IF EXISTS s e p s i s _ s u b s e t _ v i t a l _ p e r i o d i c CASCADE;
CREATE TABLE s e p s i s _ s u b s e t _ v i t a l _ p e r i o d i c AS

WITH
t1 AS
(

SELECT
v i t a l p e r i o d i c . p a t i e n t u n i t s t a y i d ,
v i t a l p e r i o d i c . o b s e r v a t i o n o f f s e t ,
v i t a l p e r i o d i c . s y s t e m i c s y s t o l i c ,
v i t a l p e r i o d i c . systemicmean ,
v i t a l p e r i o d i c . s y s t e m i c d i a s t o l i c ,
v i t a l p e r i o d i c . h e a r t r a t e ,
v i t a l p e r i o d i c . sao2

FROM
s e p s i s _ s u b s e t , v i t a l p e r i o d i c

WHERE
s e p s i s _ s u b s e t . p a t i e n t u n i t s t a y i d = v i t a l p e r i o d i c . p a t i e n t u n i t s t a y i d

AND v i t a l p e r i o d i c . o b s e r v a t i o n o f f s e t < 4321
ORDER BY

v i t a l p e r i o d i c . p a t i e n t u n i t s t a y i d , v i t a l p e r i o d i c . o b s e r v a t i o n o f f s e t
)

SELECT ∗ FROM t1 ;

A.25 sepsis_total.sql
DROP TABLE IF EXISTS s e p s i s _ t o t a l CASCADE;
CREATE TABLE s e p s i s _ t o t a l AS

WITH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− At l e a s t one ICD Code 9 or 10 f o r s e p s i s or s e p t i c shock during ICU s t a y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t1 AS −− 13936 ICU s t a y s
(

SELECT
d i s t i n c t pat ientUnitStayID

FROM
ICD_Codes_9_10

) ,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− SOFA s c o r e > 1 f i r s t day o f ICU s t a y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t2 AS −− 140 716 ICU s t a y s
(

SELECT
patientUnitStayID ,
s o f a t o t a l AS s o f a _ s c o r e

FROM
s o f a

WHERE
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s o f a t o t a l > 1
) ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− ICU s t a y s with a n t i b i o t i c i n [ day−1 ; day +1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t3 AS −− 63 862 ICU s t a y s
(

SELECT
d i s t i n c t pat ientUnitStayID

FROM
antibio_1234

WHERE
antibio_time between −1440 and 1440

) ,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− ICU s t a y s with ICD Codes , SOFA, a n t i b i o t i c s and admiss ion d i a g n o s i s = s e p s i s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t4 AS −− 6313 ICU s t a y s
(

SELECT
t1 . patientUnitStayID ,
sofa_score ,
a d m i s s i o n _ d i a g n o s i s . s e p s i s _ t y p e

FROM
t1
INNER JOIN t2
ON t1 . pat ientUnitStayID = t2 . pat ientUnitStayID
INNER JOIN t3
ON t1 . pat ientUnitStayID = t3 . pat ientUnitStayID
INNER JOIN a d m i s s i o n _ d i a g n o s i s
ON t1 . pat ientUnitStayID = a d m i s s i o n _ d i a g n o s i s . pat ientUnitStayID

) ,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− ICU s t a y s with ICD Codes , SOFA, a n t i b i o t i c s and admiss ion d i a g n o s i s = s e p s i s
−− and i n h o s p i t a l s with good data q u a l i t y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t5 AS
(

SELECT
t4 . patientUnitStayID ,
t4 . so fa_score ,
t4 . seps is_type ,
p a t i e n t . h o s p i t a l i d ,
p a t i e n t . h o s p i t a l D i s c h a r g e Y e a r ,
p a t i e n t . wardid ,
p a t i e n t . u n i t D i s c h a r g e O f f s e t

FROM
t4 ,
p a t i e n t

WHERE
t4 . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID

) ,
t6 AS −− 3174 ICU s t a y s
(

SELECT
t5 . patientUnitStayID ,
t5 . so fa_score ,
t5 . seps is_type ,
t5 . h o s p i t a l i d ,
t5 . h o s p i t a l D i s c h a r g e Y e a r ,
t5 . wardid ,
t5 . u n i t D i s c h a r g e O f f s e t

FROM
t5 ,
quality2014_2015_vf

WHERE
t5 . h o s p i t a l D i s c h a r g e Y e a r = quality2014_2015_vf . h o s p i t a l D i s c h a r g e Y e a r
AND t5 . h o s p i t a l i d = quality2014_2015_vf . h o s p i t a l i d

) ,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−− LIMITATION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t7 AS −− Flag ICUstays with c a r e l i m i t a t i o n ( 1 ) such as : −−−−291

−− Comfort measures only
−− No v a s o p r e s s o r s / i n o t r o p e s
−− No augmentation o f c a r e

(
SELECT

t6 . patientUnitStayID ,
t6 . u n i t D i s c h a r g e O f f s e t ,
t6 . so fa_score ,
t6 . seps is_type ,
t6 . h o s p i t a l i d ,
t6 . h o s p i t a l D i s c h a r g e Y e a r ,
t6 . wardid ,
cplgroup ,
c p l i t e m v a l u e ,
CASE

WHEN ( cplgroup = ' Care Limitat ion ' AND c p l i t e m v a l u e = ' Comfort measures only ' ) THEN 1
WHEN ( cplgroup = ' Care Limitat ion ' AND c p l i t e m v a l u e = 'No v a s o p r e s s o r s / i n o t r o p e s ' ) THEN 1
WHEN ( cplgroup = ' Care Limitat ion ' AND c p l i t e m v a l u e = 'No augmentation o f care ' ) THEN 1
ELSE 0

END AS c a r e _ l i m i t a t i o n
FROM

t6
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LEFT OUTER JOIN
c a r e p l a n g e n e r a l

ON t6 . pat ientUnitStayID = c a r e p l a n g e n e r a l . pat ientUnitStayID
) ,
t8 AS
(

SELECT
t7 . patientUnitStayID ,
t7 . u n i t D i s c h a r g e O f f s e t ,
t7 . so fa_score ,
t7 . seps is_type ,
t7 . h o s p i t a l i d ,
t7 . h o s p i t a l D i s c h a r g e Y e a r ,
t7 . wardid ,
SUM( t7 . c a r e _ l i m i t a t i o n ) AS c a r e _ l i m i t a t i o n

FROM
t7

GROUP BY
t7 . patientUnitStayID ,
t7 . u n i t D i s c h a r g e O f f s e t ,
t7 . so fa_score ,
t7 . seps is_type ,
t7 . h o s p i t a l i d ,
t7 . h o s p i t a l D i s c h a r g e Y e a r ,
t7 . wardid

ORDER BY
t7 . pat ientUnitStayID

) ,
t9 AS
(

SELECT
t8 . patientUnitStayID ,
t8 . u n i t D i s c h a r g e O f f s e t ,
t8 . so fa_score ,
t8 . seps is_type ,
t8 . h o s p i t a l i d ,
t8 . h o s p i t a l D i s c h a r g e Y e a r ,
t8 . wardid ,
CASE WHEN c a r e _ l i m i t a t i o n > 0 THEN 1 ELSE 0 END AS c a r e _ l i m i t a t i o n

FROM
t8

ORDER BY
t8 . pat ientUnitStayID

) ,
t10 AS −− Flag p a t i e n t s with age < 18 ( 1 ) −−−−1
(

SELECT
t9 . patientUnitStayID ,
t9 . u n i t D i s c h a r g e O f f s e t ,
t9 . so fa_score ,
t9 . seps is_type ,
t9 . h o s p i t a l i d ,
t9 . h o s p i t a l D i s c h a r g e Y e a r ,
t9 . wardid ,
t9 . c a r e _ l i m i t a t i o n ,
age ,
CASE

WHEN ( age = '0 ' OR age = '1 ' OR age = '2 ' OR age = '3 ' OR age = '4 ' OR age = '5 '
OR age = '6 ' OR age = '7 ' OR age = '8 ' OR age = '9 ' OR age = '10 '
OR age = '11 ' OR age = '12 ' OR age = '13 ' OR age = '14 ' OR age = '15 '
OR age = '16 ' OR age = '17 ') THEN 1
ELSE 0

END AS a g e _ l i m i t a t i o n
FROM

t9 ,
p a t i e n t

WHERE
t9 . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID

ORDER BY
t9 . pat ientUnitStayID

) ,
t11 AS −− Flag p a t i e n t s with u n i t D i s c h a r g e O f f s e t < 360 min ( 1 ) −−−− 34
(

SELECT
t10 . patientUnitStayID ,
t10 . u n i t D i s c h a r g e O f f s e t ,
CASE WHEN t10 . u n i t D i s c h a r g e O f f s e t < 360 THEN 1 ELSE 0 END AS LOS_limitation ,
t10 . sofa_score ,
t10 . seps is_type ,
t10 . h o s p i t a l i d ,
t10 . h o s p i t a l D i s c h a r g e Y e a r ,
t10 . wardid ,
t10 . c a r e _ l i m i t a t i o n ,
t10 . age ,
t10 . a g e _ l i m i t a t i o n

FROM
t10

ORDER BY
t10 . pat ientUnitStayID

) ,
−−−−−−−−−−−−−−− EXCLUSION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t12 AS
(

SELECT
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t11 . patientUnitStayID ,
t11 . u n i t D i s c h a r g e O f f s e t ,
t11 . LOS_limitation ,
t11 . sofa_score ,
t11 . seps is_type ,
t11 . h o s p i t a l i d ,
t11 . h o s p i t a l D i s c h a r g e Y e a r ,
t11 . wardid ,
t11 . c a r e _ l i m i t a t i o n ,
t11 . age ,
t11 . a g e _ l i m i t a t i o n

FROM
t11

WHERE
t11 . c a r e _ l i m i t a t i o n = 0
AND t11 . a g e _ l i m i t a t i o n = 0
AND t11 . l o s _ l i m i t a t i o n = 0

ORDER BY
t11 . pat ientUnitStayID

) ,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− ICU s t a y s with ICD Codes , SOFA, a n t i b i o t i c s and admiss ion d i a g n o s i s = s e p s i s
−− and i n h o s p i t a l s with good data q u a l i t y
−− and excluded p a t i e n t s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Number o f s e p s i s p a t i e n t s /ICU and s e p s i s p a t i e n t s / h o s p i t a l
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t13 AS
(

SELECT
t12 . wardid ,
COUNT( t12 . wardid ) AS nb_sepsis_patients_wardid

FROM
t12

GROUP BY wardid
) ,
t14 AS
(

SELECT
t12 . patientUnitStayID ,
t12 . age ,
t12 . sofa_score ,
t12 . seps is_type ,
t12 . h o s p i t a l i d ,
t12 . h o s p i t a l D i s c h a r g e Y e a r ,
t12 . wardid ,
t12 . u n i t D i s c h a r g e O f f s e t ,
t13 . nb_sepsis_patients_wardid

FROM
t13 ,
t12

WHERE
t12 . wardid = t13 . wardid

) ,
t15 AS
(

SELECT
t12 . h o s p i t a l i d ,
COUNT( t12 . h o s p i t a l i d ) AS n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l

FROM
t12

GROUP BY h o s p i t a l i d
) ,

t16 AS
(

SELECT
t14 . patientUnitStayID ,
t14 . sofa_score ,
t14 . seps is_type ,
t14 . h o s p i t a l i d ,
t14 . h o s p i t a l D i s c h a r g e Y e a r ,
t14 . wardid ,
t14 . nb_sepsis_patients_wardid ,
t15 . n b _ s e p s i s _ p a t i e n t s _ h o s p i t a l ,
t14 . u n i t D i s c h a r g e O f f s e t

FROM
t14 ,
t15

WHERE
t14 . h o s p i t a l i d = t15 . h o s p i t a l i d

) ,
−−−−−−−−−−−−−−−−−−−−−− JUST TO RETRIEVE THE NUMBER OF UNIQUE PATIENTS −−−−−−−−−−−−−−−−−−−−−−−
t17 AS
(

SELECT
p a t i e n t . uniquepid

FROM
t16 ,
p a t i e n t

WHERE
t16 . p a t i e n t u n i t s t a y i d = p a t i e n t . p a t i e n t u n i t s t a y i d

ORDER BY
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p a t i e n t . uniquepid
) ,
t18 AS
(

SELECT
count ( t17 . uniquepid ) AS n

FROM
t17

GROUP BY
t17 . uniquepid

ORDER BY
n DESC

) ,
t19 AS
(

SELECT
t18 . n ,
count ( t18 . n ) AS nb

FROM
t18

GROUP BY
t18 . n

ORDER BY
nb DESC

)

SELECT ∗ FROM t16 ; −− 2820 ICU s t a y s

A.26 sofa.sql
DROP TABLE IF EXISTS s o f a CASCADE;
CREATE TABLE s o f a AS −− SOFA s c o r e , f i r s t ICU day f o r every ICU s t a y .

WITH
cohort1 AS (
SELECT ∗ FROM p a t i e n t ) ,
s o f a AS
(
SELECT

pt . p a t i e n t u n i t s t a y i d ,
s o f a c a r d i o v a s c . sofa_cv
+ s o f a r e s p i . s o f a _ r e s p i
+ s o f a r e n a l . s o f a r e n a l
+ s o f a G C S l i v e r p l a t e l e t s . s o f a c o a g
+ s o f a G C S l i v e r p l a t e l e t s . s o f a l i v e r
+ s o f a G C S l i v e r p l a t e l e t s . s o f a c n s
AS s o f a t o t a l

FROM cohort1 pt
LEFT OUTER JOIN s o f a c a r d i o v a s c
ON pt . p a t i e n t u n i t s t a y i d=s o f a c a r d i o v a s c . P a t i e n t u n i t s t a y i d
LEFT OUTER JOIN s o f a r e s p i
ON pt . p a t i e n t u n i t s t a y i d= s o f a r e s p i . P a t i e n t u n i t s t a y i d
LEFT OUTER JOIN s o f a r e n a l
ON pt . p a t i e n t u n i t s t a y i d= s o f a r e n a l . P a t i e n t u n i t s t a y i d
LEFT OUTER JOIN s o f a G C S l i v e r p l a t e l e t s
ON pt . p a t i e n t u n i t s t a y i d= s o f a G C S l i v e r p l a t e l e t s . P a t i e n t u n i t s t a y i d
ORDER BY pt . p a t i e n t u n i t s t a y i d
)

SELECT ∗ FROM s o f a ;

A.27 sofacardiovasc.sql
DROP TABLE IF EXISTS s o f a c a r d i o v a s c CASCADE;
CREATE TABLE s o f a c a r d i o v a s c AS −− SOFA c a r d i o v a s c s c o r e , f i r s t ICU day f o r every ICU s t a y .
−− Average admiss ion weight = 8 3 . 9 3 kg

WITH
cohort1 AS (
SELECT ∗ FROM p a t i e n t ) ,
t1 AS −− MAP
(
WITH t t 1 AS
(
SELECT p a t i e n t u n i t s t a y i d ,
min (CASE WHEN noninvasivemean IS NOT NULL THEN noninvasivemean ELSE NULL END) AS map
FROM v i t a l a p e r i o d i c
WHERE o b s e r v a t i o n o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
) ,
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t t 2 AS
(
SELECT p a t i e n t u n i t s t a y i d ,
min (CASE WHEN systemicmean IS NOT NULL THEN systemicmean ELSE NULL END) AS map
FROM v i t a l p e r i o d i c
WHERE o b s e r v a t i o n o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
)
SELECT pt . p a t i e n t u n i t s t a y i d , CASE WHEN t t 1 . map IS NOT NULL THEN t t 1 . map
when t t 2 . map IS NOT NULL THEN t t 2 . map
ELSE NULL END AS map
FROM p a t i e n t pt
LEFT OUTER JOIN t t 1
ON t t 1 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t t 2
ON t t 2 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
ORDER BY pt . p a t i e n t u n i t s t a y i d
) ,
t2 AS −−DOPAMINE
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
max(

CASE
WHEN lower ( drugname ) LIKE '%(ml/ hr )% ' AND d r u g r a t e NOT LIKE '%UD%' AND d r u g r a t e NOT LIKE '%Date%'
THEN round ( c a s t ( d r u g r a t e AS numeric ) / 3 . 1 4 , 3 )
−− r a t e i n ml/h ∗ 1600 mcg/ml / 8 3 . 9 3 kg / 60 min , to c o n v e r t i n mcg/kg/min
WHEN lower ( drugname ) LIKE '%(mcg/kg/min)% ' AND d r u g r a t e NOT LIKE '%OFF%'
THEN c a s t ( d r u g r a t e AS numeric )
ELSE NULL

END) AS dopa

FROM i n f u s i o n d r u g i d
WHERE lower ( drugname ) LIKE '%dopamine%' AND i n f u s i o n o f f s e t between −120 AND 1440
AND drugrate <>'' AND drugrate < > '. '
GROUP BY p a t i e n t u n i t s t a y i d
ORDER BY p a t i e n t u n i t s t a y i d
) ,
t3 AS −−NOREPI
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
max(CASE

WHEN lower ( drugname ) LIKE '%(ml/ hr )% '
AND drugrate <>''
AND drugrate < > '. '
AND d r u g r a t e NOT LIKE '%UD%'
THEN round ( c a s t ( d r u g r a t e AS numeric ) / 3 1 4 . 8 , 3 )
−− r a t e i n ml/h ∗ 16 mcg/ml / 8 3 . 9 3 kg / 60 min , to c o n v e r t i n mcg/kg/min
WHEN lower ( drugname ) LIKE '%(mcg/min)% '
AND drugrate <>''
AND drugrate < > '. '
AND d r u g r a t e NOT LIKE '%OFF%'
AND d r u g r a t e NOT LIKE '%Documentation undone%'
THEN round ( c a s t ( d r u g r a t e AS numeric ) / 8 3 . 9 3 ,3)−− d i v i d e by 8 3 . 9 3 kg
WHEN lower ( drugname ) LIKE '%(mcg/kg/min)% '
AND drugrate <>''
AND drugrate < > '. '
THEN c a s t ( d r u g r a t e AS numeric )
ELSE NULL END ) AS n o r e p i

FROM i n f u s i o n d r u g i d
WHERE lower ( drugname ) LIKE '% n o r e p i n e p h r i n e %' AND i n f u s i o n o f f s e t between −120 AND 1440
AND drugrate <>'' AND drugrate < > '. '
GROUP BY p a t i e n t u n i t s t a y i d
ORDER BY p a t i e n t u n i t s t a y i d
) ,
t4 AS −−DOBUTAMINE
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
1 AS dobu

FROM i n f u s i o n d r u g i d
WHERE lower ( drugname ) LIKE '%dobutamin%'

AND d r u g r a t e <>''
AND drugrate < > '. '
AND d r u g r a t e <>'0'
AND i n f u s i o n o f f s e t between −120 AND 1440

ORDER BY p a t i e n t u n i t s t a y i d
) ,
s o f a c v AS
(
SELECT

pt . p a t i e n t u n i t s t a y i d ,
t1 . map ,
t2 . dopa ,
t3 . norepi ,
t4 . dobu ,
(CASE WHEN dopa>=15 OR norepi >0.1 THEN 4

WHEN dopa>5 OR ( norepi >0 AND n o r e p i <=0.1) THEN 3
WHEN dopa<=5 OR dobu > 0 THEN 2
WHEN map <70 THEN 1
ELSE 0 END) AS SOFA_cv −−COMPUTE SOFA CV

FROM
cohort1 pt
LEFT OUTER JOIN t1

XXVIII



A. Appendix 1

ON t1 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t2
ON t2 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t3
ON t3 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t4
ON t4 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
ORDER BY pt . p a t i e n t u n i t s t a y i d

)

SELECT ∗ FROM s o f a c v ;

A.28 sofaGCSliverplatelets.sql
DROP TABLE IF EXISTS s o f a G C S l i v e r p l a t e l e t s CASCADE;
CREATE TABLE s o f a G C S l i v e r p l a t e l e t s AS
−− SOFA GCS, l i v e r , p l a t e l e t s s c o r e , f i r s t ICU day f o r every ICU s t a y .

WITH
cohort1 AS
(

SELECT ∗ FROM p a t i e n t
) ,
t1 AS −−GCS
(

SELECT
p a t i e n t u n i t s t a y i d ,
sum(CAST( phys ica lexamvalue AS numeric ) ) AS gcs

FROM physicalexam pe
WHERE ( lower ( physicalexampath ) LIKE '% gcs / e y e s %'

OR lower ( physicalexampath ) LIKE '% gcs / v e r b a l %'
OR lower ( physicalexampath ) LIKE '% gcs / motor % ')
AND p h y s i c a l e x a m o f f s e t between −1440 AND 1440

GROUP BY p a t i e n t u n i t s t a y i d , p h y s i c a l e x a m o f f s e t
) ,
t 1 b i s AS
(
SELECT t1 . p a t i e n t u n i t s t a y i d , MIN( t1 . gcs ) AS gcs
FROM t1
GROUP BY p a t i e n t u n i t s t a y i d
) ,
t2 AS
(

SELECT
pt . p a t i e n t u n i t s t a y i d ,
max(

CASE
WHEN lower ( labname ) LIKE ' t o t a l b i l i %' THEN l a b r e s u l t
ELSE n u l l

END) AS b i l i , −−BILI
min (

CASE
WHEN lower ( labname ) LIKE ' p l a t e l e t %' THEN l a b r e s u l t
ELSE n u l l

END) AS p l t −−PLATELETS
FROM p a t i e n t pt
LEFT OUTER JOIN l ab
ON pt . p a t i e n t u n i t s t a y i d=lab . p a t i e n t u n i t s t a y i d
WHERE l a b r e s u l t o f f s e t between −1440 AND 1440
GROUP BY pt . p a t i e n t u n i t s t a y i d

) ,
s o f a G C S l i v e r p l a t e l e t s AS
(

SELECT
d i s t i n c t pt . p a t i e n t u n i t s t a y i d ,
min ( t 1 b i s . gcs ) AS gcs ,
max( t2 . b i l i ) AS b i l i ,
min ( t2 . p l t ) AS plt ,
max(

CASE
WHEN plt <20 THEN 4
WHEN plt <50 THEN 3
WHEN plt <100 THEN 2
WHEN plt <150 THEN 1
ELSE 0

END) AS sofacoag ,
max(

CASE
WHEN b i l i >12 THEN 4
WHEN b i l i >6 THEN 3
WHEN b i l i >2 THEN 2
WHEN b i l i >1.2 THEN 1
ELSE 0

END) AS s o f a l i v e r ,
max(

CASE
WHEN gcs =15 THEN 0
WHEN gcs >=13 THEN 1
WHEN gcs >=10 THEN 2
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WHEN gcs >=6 THEN 3
WHEN gcs >=3 THEN 4
ELSE 0

END) AS s o f a c n s
FROM cohort1 pt
LEFT OUTER JOIN t 1 b i s
ON t 1 b i s . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t2
ON t2 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
GROUP BY pt . p a t i e n t u n i t s t a y i d , t 1 b i s . gcs , t2 . b i l i , t2 . p l t
ORDER BY pt . p a t i e n t u n i t s t a y i d

)

SELECT ∗ FROM s o f a G C S l i v e r p l a t e l e t s

A.29 sofarenal.sql
DROP TABLE IF EXISTS s o f a r e n a l CASCADE;
CREATE TABLE s o f a r e n a l AS
−− SOFA r e n a l s c o r e , f i r s t IUCU day f o r every ICU s t a y .

WITH
cohort1 AS (
SELECT ∗ FROM p a t i e n t ) ,
t1 AS −−CREATININE
(
SELECT

pt . p a t i e n t u n i t s t a y i d ,
max(

CASE
WHEN lower ( labname ) LIKE ' c r e a t i n %'

THEN l a b r e s u l t
ELSE NULL

END) AS c r e a t
FROM p a t i e n t pt
LEFT OUTER JOIN l ab
ON pt . p a t i e n t u n i t s t a y i d=la b . p a t i e n t u n i t s t a y i d
WHERE l a b r e s u l t o f f s e t between −1440 AND 1440
GROUP BY pt . p a t i e n t u n i t s t a y i d
) ,
t2 AS −−UO
(
WITH uotemp AS
(
SELECT

p a t i e n t u n i t s t a y i d ,
CASE WHEN dayz=1 THEN sum( o u t p u t t o t a l ) ELSE NULL END AS uod1

FROM
(

SELECT d i s t i n c t p a t i e n t u n i t s t a y i d ,
i n t a k e o u t p u t o f f s e t ,
o u t p u t t o t a l ,
(CASE

WHEN ( i n t a k e o u t p u t o f f s e t ) between −120 AND 1440 THEN 1
ELSE NULL

END) AS dayz
FROM i n t a k e o u t p u t
WHERE i n t a k e o u t p u t o f f s e t between 0 AND 5760
ORDER BY p a t i e n t u n i t s t a y i d , i n t a k e o u t p u t o f f s e t

) AS temp
GROUP BY p a t i e n t u n i t s t a y i d , temp . dayz
)
SELECT

pt . p a t i e n t u n i t s t a y i d ,
max(

CASE
WHEN uod1 i s not NULL THEN uod1
ELSE NULL

END) AS UO
FROM p a t i e n t pt
LEFT OUTER JOIN uotemp
ON uotemp . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
GROUP BY pt . p a t i e n t u n i t s t a y i d
) ,
s o f a r e n a l AS
(
SELECT

pt . p a t i e n t u n i t s t a y i d , −− t1 . c r e a t , t2 . uo ,
(CASE −−COMPUTE SOFA RENAL

WHEN uo <200 or c r e a t >5 THEN 4
WHEN uo <500 or c r e a t >3.5 THEN 3
WHEN c r e a t between 2 AND 3 . 5 THEN 2
WHEN c r e a t between 1 . 2 AND 2 THEN 1
ELSE 0

END) AS s o f a r e n a l
FROM cohort1 pt
LEFT OUTER JOIN t1
ON t1 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t2
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ON t2 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
ORDER BY pt . p a t i e n t u n i t s t a y i d
)

SELECT ∗ FROM s o f a r e n a l

A.30 sofarespi.sql
DROP TABLE IF EXISTS s o f a r e s p i CASCADE;
CREATE TABLE s o f a r e s p i AS
−− SOFA r e s p i , f i r s t ICU day fOR every ICU s t a y .

WITH
cohort1 AS
(

SELECT ∗ FROM p a t i e n t
) ,
tempo2 AS
(
WITH tempo1 as
(
WITH t1 AS −−FIO2 FROM r e s p c h a r t
(
SELECT ∗
FROM
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
max( c a s t ( r e s p c h a r t v a l u e AS numeric ) ) AS r c f i o 2

FROM r e s p i r a t o r y c h a r t i n g
WHERE r e s p c h a r t o f f s e t between −120 AND 1440 AND r e s p c h a r t v a l u e <> ' '

AND r e s p c h a r t v a l u e NOT LIKE '%C%'
AND r e s p c h a r t v a l u e NOT LIKE '%O%'
AND r e s p c h a r t v a l u e NOT LIKE '%S%'
AND r e s p c h a r t v a l u e NOT LIKE '%o%'
AND r e s p c h a r t v a l u e NOT LIKE '%T%'
AND r e s p c h a r t v a l u e NOT LIKE '%H%'
AND r e s p c h a r t v a l u e NOT LIKE '%Y%'
AND r e s p c h a r t v a l u e NOT LIKE '%N%'
AND r e s p c h a r t v a l u e NOT LIKE '%C%'
AND r e s p c h a r t v a l u e NOT LIKE '%%%'

GROUP BY p a t i e n t u n i t s t a y i d
) AS tempo

WHERE r c f i o 2 >20 −− many v a l u e s are l i t e r s per minute !
ORDER BY p a t i e n t u n i t s t a y i d
) ,
t2 AS −−FIO2 FROM n u r s e c h a r t i n g
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
max( c a s t ( n u r s i n g c h a r t v a l u e AS numeric ) ) AS n c f i o 2

FROM n u r s e c h a r t i n g nc
WHERE lower ( n u r s i n g c h a r t c e l l t y p e v a l l a b e l ) LIKE '% f i o 2 %' AND n u r s i n g c h a r t e n t r y o f f s e t between −120 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
) ,
t3 AS −−sao2 FROM v i t a l p e r i o d i c
(
SELECT

p a t i e n t u n i t s t a y i d ,
min (CASE WHEN sao2 IS NOT NULL THEN sao2 ELSE n u l l END) AS sao2

FROM v i t a l p e r i o d i c
WHERE o b s e r v a t i o n o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
) ,
t4 AS −−pao2 FROM la b
(
SELECT

p a t i e n t u n i t s t a y i d ,
min (CASE WHEN lower ( labname ) LIKE ' pao2%' THEN l a b r e s u l t ELSE n u l l END) AS pao2

FROM la b
WHERE l a b r e s u l t o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
) ,
t5 AS −−airway type combining 3 s o u r c e s (1= i n v a s i v e )
(
WITH t1 AS −−airway type FROM r e s p c a r e (1= i n v a s i v e ) ( by r e s p t h e r a p i s t ! ! )
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
max(CASE WHEN airwaytype i n ( ' Oral ETT' , ' Nasal ETT' , ' Tracheostomy ' ) THEN 1 ELSE NULL END) AS airway
−− e i t h e r i n v a s i v e airway OR NULL

FROM r e s p i r a t o r y c a r e
WHERE r e s p c a r e s t a t u s o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
) ,
t2 AS −−airway type FROM r e s p c h a r t i n g (1= i n v a s i v e )
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
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1 AS v e n t i l a t o r
FROM r e s p i r a t o r y c h a r t i n g r c
WHERE r e s p c h a r t v a l u e LIKE '% v e n t i l a t o r %'
OR r e s p c h a r t v a l u e LIKE '% vent %'
OR r e s p c h a r t v a l u e LIKE '% bipap %'
OR r e s p c h a r t v a l u e LIKE '%840%'
OR r e s p c h a r t v a l u e LIKE '%cpap%'
OR r e s p c h a r t v a l u e LIKE '% d r a g e r %'
OR r e s p c h a r t v a l u e LIKE 'mv%'
OR r e s p c h a r t v a l u e LIKE '% s e r v o %'
OR r e s p c h a r t v a l u e LIKE '%peep%'
AND r e s p c h a r t o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
) ,

t3 AS −−airway type FROM treatment (1= i n v a s i v e )
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
max(CASE WHEN t r e a t m e n t s t r i n g i n

( ' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | t r a c h e a l s u c t i o n i n g ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | venti latOR weaning ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | a s s i s t c o n t r o l l e d ' ,
' pulmonary | r a d i o l o g i c p r o c e d u r e s / bronchoscopy | e n d o t r a c h e a l tube ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | oxygen therapy (> 60%) ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | t i d a l volume 6−10 ml/kg ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | volume c o n t r o l l e d ' ,
' s u r g e r y | pulmonary t h e r a p i e s | mechanical v e n t i l a t i o n ' ,
' pulmonary | s u r g e r y / i n c i s i O N AND d r a i n a g e o f thorax | tracheostomy ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | s y n c h r o n i z e d i n t e r m i t t e n t ' ,
' pulmonary | s u r g e r y / i n c i s i O N AND d r a i n a g e o f thorax | tracheostomy |

performed during c u r r e n t admissiON fOR v e n t i l a t o r y support ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | venti latOR weaning | a c t i v e ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | p r e s s u r e c o n t r o l l e d ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | p r e s s u r e support ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | venti latOR weaning | slow ' ,
' s u r g e r y | pulmonary t h e r a p i e s | venti latOR weaning ' ,
' s u r g e r y | pulmonary t h e r a p i e s | t r a c h e a l s u c t i o n i n g ' ,
' pulmonary | r a d i o l o g i c p r o c e d u r e s / bronchoscopy | r e i n t u b a t i o n ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | lung r e c r u i t m e n t maneuver ' ,
' pulmonary | s u r g e r y / i n c i s i O N AND d r a i n a g e o f thorax | tracheostomy | planned ' ,
' s u r g e r y | pulmonary t h e r a p i e s | venti latOR weaning | rapid ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | prone p o s i t i o n ' ,
' pulmonary | s u r g e r y / i n c i s i O N AND d r a i n a g e o f thorax | tracheostomy | c o n v e n t i o n a l ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | p e r m i s s i v e hypercapnea ' ,
' s u r g e r y | pulmonary t h e r a p i e s | mechanical v e n t i l a t i o n | s y n c h r o n i z e d i n t e r m i t t e n t ' ,
' pulmonary | m e d i c a t i o n s | neuromuscular b l o c k i n g agent ' ,
' s u r g e r y | pulmonary t h e r a p i e s | mechanical v e n t i l a t i o n | a s s i s t c o n t r o l l e d ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | volume assured ' ,
' s u r g e r y | pulmonary t h e r a p i e s | mechanical v e n t i l a t i o n | t i d a l volume 6−10 ml/kg ' ,
' s u r g e r y | pulmonary t h e r a p i e s | mechanical v e n t i l a t i o n | p r e s s u r e support ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | non−i n v a s i v e v e n t i l a t i o n ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | non−i n v a s i v e v e n t i l a t i o n | f a c e mask ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | non−i n v a s i v e v e n t i l a t i o n | n a s a l mask ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | non−i n v a s i v e v e n t i l a t i o n ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | non−i n v a s i v e v e n t i l a t i o n | f a c e mask ' ,
' s u r g e r y | pulmonary t h e r a p i e s | non−i n v a s i v e v e n t i l a t i o n ' ,
' s u r g e r y | pulmonary t h e r a p i e s | non−i n v a s i v e v e n t i l a t i o n | f a c e mask ' ,
' pulmonary | v e n t i l a t i O N AND oxygenation | mechanical v e n t i l a t i o n | non−i n v a s i v e v e n t i l a t i o n | n a s a l mask ' ,
' s u r g e r y | pulmonary t h e r a p i e s | non−i n v a s i v e v e n t i l a t i o n | n a s a l mask ' ,
' s u r g e r y | pulmonary t h e r a p i e s | mechanical v e n t i l a t i o n | non−i n v a s i v e v e n t i l a t i o n ' ,
' s u r g e r y | pulmonary t h e r a p i e s | mechanical v e n t i l a t i o n | non−i n v a s i v e v e n t i l a t i o n | f a c e mask '
) THEN 1 ELSE NULL END) AS i n t e r f a c e
FROM treatment
WHERE t r e a t m e n t o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
ORDER BY p a t i e n t u n i t s t a y i d −− , t r e a t m e n t o f f s e t
) ,
t4 as
(
SELECT

d i s t i n c t p a t i e n t u n i t s t a y i d ,
max(CASE WHEN c p l i t e m v a l u e LIKE '% Intubated %' THEN 1 ELSE NULL END) AS airway
−− e i t h e r i n v a s i v e airway OR NULL

FROM c a r e p l a n g e n e r a l
WHERE c p l i t e m o f f s e t between −1440 AND 1440
GROUP BY p a t i e n t u n i t s t a y i d
)

SELECT pt . p a t i e n t u n i t s t a y i d ,
CASE

WHEN t1 . airway IS NOT NULL OR t2 . venti latOR IS NOT NULL OR t3 . i n t e r f a c e IS NOT NULL THEN 1
ELSE n u l l

END AS mechvent −−summarize
FROM cohort1 pt
LEFT OUTER JOIN t1
ON t1 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t2
ON t2 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t3
ON t3 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t4
ON t4 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
)

XXXII



A. Appendix 1

SELECT pt . p a t i e n t u n i t s t a y i d , t3 . sao2 , t4 . pao2 ,
(CASE

WHEN t1 . r c f i o 2 >20 THEN t1 . r c f i o 2
WHEN t2 . n c f i o 2 >20 THEN t2 . n c f i o 2
WHEN t1 . r c f i o 2 =1 OR t2 . n c f i o 2 =1 THEN 100
ELSE n u l l END) AS f i o 2 , t5 . mechvent

FROM cohort1 pt
LEFT OUTER JOIN t1
ON t1 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t2
ON t2 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t3
ON t3 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t4
ON t4 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
LEFT OUTER JOIN t5
ON t5 . p a t i e n t u n i t s t a y i d=pt . p a t i e n t u n i t s t a y i d
)
SELECT ∗ ,
c o a l e s c e ( pao2 , 1 0 0 ) / c o a l e s c e ( c o a l e s c e ( n u l l i f ( f i o 2 , 0 ) , 2 1 ) , f i o 2 , 2 1 ) AS pf ,
c o a l e s c e ( sao2 , 1 0 0 ) / c o a l e s c e ( c o a l e s c e ( n u l l i f ( f i o 2 , 0 ) , 2 1 ) , f i o 2 , 2 1 ) AS s f

FROM tempo1
) ,
s o f a r e s p i AS
(
SELECT p a t i e n t u n i t s t a y i d ,
(CASE WHEN pf <1 OR s f <0.67 THEN 4 −−COMPUTE SOFA RESPI

WHEN pf between 1 AND 2 OR s f between 0 . 6 7 AND 1 . 4 1 THEN 3
WHEN pf between 2 AND 3 OR s f between 1 . 4 2 AND 2 . 2 THEN 2
WHEN pf between 3 AND 4 OR s f between 2 . 2 1 AND 3 . 0 1 THEN 1
WHEN pf > 4 OR s f > 3 . 0 1 THEN 0 ELSE 0 END ) AS SOFA_respi
FROM tempo2
ORDER BY p a t i e n t u n i t s t a y i d
)

SELECT ∗ FROM s o f a r e s p i

A.31 vaso.sql
DROP TABLE IF EXISTS vaso CASCADE;
CREATE TABLE vaso AS

WITH
t1 AS
(

SELECT
patientUnitStayID ,
drugname ,
i n f u s i o n o f f s e t ,
drugRate ,
i n f u s i o n R a t e ,
drugAmount ,
volumeOfFluid

FROM
i n f u s i o n D r u g

WHERE
lower ( drugname ) l i k e '% e p i n e p h r i n e %'
or lower ( drugname ) l i k e ' e p i (mcg/min ) '
or lower ( drugname ) l i k e '% n o r e p i n e p h r i n e %'
or lower ( drugname ) l i k e '% levoph %'
or lower ( drugname ) l i k e '% p h e n y l e p h r i n e %'
or lower ( drugname ) l i k e '%neo−s y n e p h r i n e %'
or lower ( drugname ) l i k e '% neosynephr ine %'
or lower ( drugname ) l i k e '% n e o s y n s p r i n e %'
or lower ( drugname ) l i k e '% s y n e p h r i n e %'
or lower ( drugname ) l i k e '% v a s o p r e s s i n %'

ORDER BY patientUnitStayID
) ,
t2 AS (

SELECT
t1 . patientUnitStayID ,
t1 . drugname ,
t1 . i n f u s i o n o f f s e t ,
t1 . drugRate ,
t1 . i n f u s i o n R a t e ,
t1 . drugAmount ,
t1 . volumeOfFluid

FROM
t1 ,
s e p s i s _ t o t a l

WHERE
t1 . pat ientUnitStayID = s e p s i s _ t o t a l . pat ientUnitStayID

) ,
t3 AS
( SELECT

t2 . patientUnitStayID ,
p a t i e n t . wardid ,
t2 . drugname ,
t2 . i n f u s i o n o f f s e t ,
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t2 . drugRate ,
t2 . i n f u s i o n R a t e ,
t2 . drugAmount ,
t2 . volumeOfFluid

FROM
t2 ,
p a t i e n t

WHERE
t2 . pat ientUnitStayID = p a t i e n t . pat ientUnitStayID

)

SELECT ∗ FROM t3 ;

A.32 vaso_subset_icu.sql
DROP TABLE IF EXISTS vaso_subset_icu CASCADE;
CREATE TABLE vaso_subset_icu AS

WITH
t1 AS
(

SELECT
patientUnitStayID ,
wardid ,
drugname ,
i n f u s i o n o f f s e t ,
drugRate ,
i n f u s i o n R a t e ,
drugAmount ,
volumeOfFluid

FROM
vaso

WHERE

( wardid = 369 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 413 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 347 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 337 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 376 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 391 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 312 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 324 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 408 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 1029 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 1026 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 1032 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 1039 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
OR
( wardid = 1027 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )
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OR
( wardid = 1035 AND drugRate IS NOT NULL
AND LOWER( drugRate ) NOT LIKE ' '
AND LOWER( drugRate ) NOT LIKE ' 0 ' )

ORDER BY
patientUnitStayID , i n f u s i o n o f f s e t

) ,
t2 AS
(

SELECT
t1 . patientUnitStayID ,
t1 . wardid ,
t1 . drugname ,
t1 . i n f u s i o n o f f s e t ,
t1 . drugRate ,
t1 . i n f u s i o n R a t e ,
t1 . drugAmount ,
t1 . volumeOfFluid

FROM
t1

WHERE
t1 . i n f u s i o n o f f s e t < 4321

)

SELECT ∗ FROM t2 ;
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B
Appendix 2

In this appendix we present supplementary information for both the ICU and hos-
pital analysis in each section.

B.1 Estimator of treatment propensity
Table B.1 and Table B.2 displays the number of patient stays and the total number
of periods per site after splitting the extracted dataset into training and testing sets
with a split ratio of 80/20 without overlapping stays. These figures are identical for
each imputed dataset.

Dataset Stays Periods Covariates
Train 458 6330 9
ICU 1 90 1251 9
ICU 2 95 1352 9
ICU 3 142 1857 9
ICU 4 131 1870 9

Test 115 1596 9
ICU 1 22 318 9
ICU 2 23 322 9
ICU 3 31 423 9
ICU 4 39 533 9

Total (train & test) 573 7926 9

Table B.1: ICU - train and test data for the estimator of site propensity
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Dataset Stays Periods Covariates
Train 669 9716 9
Hospital 1 139 1819 9
Hospital 2 171 2491 9
Hospital 3 148 1962 9
Hospital 4 211 3444 9

Test 168 2475 9
Hospital 1 34 461 9
Hospital 2 36 488 9
Hospital 3 50 742 9
Hospital 4 48 784 9

Total (train & test) 837 12191 9

Table B.2: Hospital - train and test data for the estimator of site propensity

B.2 The treatment variable
Table B.3 and Table B.4 shows the marginal distribution of treatments across sites in
the subset of sepsis patients retained after the first step. The marginal distribution
is similar for each imputed dataset since the treatment variable was not imputed
with MCE.

Site Treatment
1 2 3 4 5 6 7 8 9

ICU 1 100 292 307 8 100 118 6 70 52
ICU 2 103 248 185 6 131 97 4 81 89
ICU 3 157 438 399 5 144 210 7 138 154
ICU 4 255 649 505 0 173 157 1 95 300
Total 615 1627 1396 19 548 582 18 384 595

Table B.3: ICU - marginal distribution of treatments

Site Treatment
1 2 3 4 5 6 7 8 9

Hospital 1 196 623 490 7 184 234 12 208 203
Hospital 2 274 789 605 3 241 215 5 144 384
Hospital 3 216 646 562 10 269 279 24 225 270
Hospital 4 317 1083 964 26 420 457 15 251 422
Total 1003 3141 2621 46 1114 1185 56 828 1279

Table B.4: Hospital - marginal distribution of treatments
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B.3 Estimator of treatment propensity
Table B.5 and Table B.6 displays the distribution of patient stays, periods and
treatments over the sites for the training and the testing sets.

Dataset Stays Periods Treatment Features
1 2 3 4 5 6 7 8 9

Train 341 4584 497 1229 1112 18 470 479 12 317 450 13
ICU 1 64 875 84 225 265 7 95 97 2 54 46 13
ICU 2 57 770 93 200 142 6 111 77 4 69 68 13
ICU 3 100 1268 130 301 325 5 113 163 5 117 109 13
ICU 4 120 1671 190 503 380 0 151 142 1 77 227 13

Test 86 1200 118 398 284 1 78 103 6 67 145 13
ICU 1 13 178 16 67 42 1 5 21 4 16 6 13
ICU 2 11 174 10 48 43 0 20 20 0 12 21 13
ICU 3 30 384 27 137 74 0 31 47 2 21 45 13
ICU 4 32 464 65 146 125 0 22 15 0 18 73 13

Total (train & test) 427 5784 615 1627 1396 19 548 582 18 384 595 13

Table B.5: ICU - train and test data for the estimator of treatment propensity
(including treatment information)

Dataset Stays Periods Treatment Features
1 2 3 4 5 6 7 8 9

Train 620 9060 1 2 3 4 5 6 7 8 9 13
Hospital 1 127 1668 180 477 362 6 140 183 11 174 135 13
Hospital 2 158 2262 245 672 516 3 194 174 4 128 326 13
Hospital 3 142 1938 154 496 420 8 200 221 22 188 229 13
Hospital 4 193 3192 258 868 793 15 326 387 9 195 341 13

Test 155 2213 1 2 3 4 5 6 7 8 9 13
Hospital 1 36 489 16 146 128 1 44 51 1 34 68 13
Hospital 2 28 398 29 117 89 0 47 41 1 16 58 13
Hospital 3 42 563 62 150 142 2 69 58 2 37 41 13
Hospital 4 49 763 59 215 171 11 94 70 6 56 81 13

Total (train & test) 775 11273 1003 3141 2621 46 1114 1185 56 828 1279 13

Table B.6: Hospital - train and test data for the estimator of treatment
propensity (including treatment information)
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