DOCTORATE THESIS

Dynamics of particles in fluids: effects of correlations and
interactions

ANSHUMAN DUBEY

Department of Physics
University of Gothenburg
Goteborg, Sweden 2022



Dynamics of particles in fluids: effects of correlations and interactions
Anshuman Dubey

ISBN 978-91-8009-662-1 (PRINT)
ISBN 978-91-8009-663-8 (PDF)

This thesis is electronically published, available at
http://hdl.handle.net/2077/70250

Department of Physics

University of Gothenburg

SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31-786 00 00

Front cover: Probability of separations, P(R), on a Logarithmic colour scale for
non-dimensional settling parameter Q = 8.1 and radius ratio a,/a, = 0.9, see Paper
D and Chapter 9.

Printed by Stema Specialtryck AB
Goteborg, Sweden 2022


http://hdl.handle.net/2077/70250

ABSTRACT

Particles suspended in turbulent fluid flows are common in Nature and in
technological applications. In some cases, the relative dynamics of spherical
particles may be of interest. One example is small rain droplets in turbulent
clouds. The dynamics of nearby droplets is correlated because they expe-
rience a correlated airflow. But their relative dynamics is influenced also
by fluid-mediated droplet-droplet interactions, or by electrical forces due to
charges which the droplets may carry. Heavy particles may detach from the
fluid streamlines due to inertia and show inhomogeneities in their spatial
distributions, known as clustering. In other cases, the angular dynamics of
aspherical particles may be of interest, an example being long and slender
fibres in wood pulp used for papermaking. In this thesis, we start by studying
the separations and relative angles of non-interacting particles in turbulent
flows. This is followed by two studies on the relative dynamics of interacting
droplets in steady flows.

First, we analyse a discrete-time, toy model of inertial particles in turbu-
lence. The simplicity of the model allows us to understand in detail how the
distribution of inertial particles in turbulence depends on the particle inertia.

Second, we use a statistical model to study how slender rods align with
the Lagrangian stretching direction in a turbulent channel flow. We show
that the alignment is stronger near the channel wall, than near the channel
center. Nevertheless, the rods show large excursions away from alignment.
Our model explains the dynamics qualitatively near the channel center but
quantitatively near the channel wall.

Third, we use dynamical systems theory to unravel the mechanisms leading
to collisions of small, charged droplets in still air. We find that a saddle point
with its associated stable manifold determines whether droplets collide or
not. This mechanism causes the collision outcomes of droplets with large
charges to become independent of non-continuum effects.

Finally, we perform a bifurcation analysis of hydrodynamically interacting
neutral droplets settling in a straining flow. Our analysis explains a non-
monotonic dependence of their collision rate upon the strength of the strain
and that of gravity. We find that even for neutral droplets, there is a regime
where the steady-state collision rate becomes independent of non-continuum
effects. In addition, our analysis predicts strong inhomogeneities in the
distribution of separations.
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PART I
INTRODUCTION

Particles in fluid flows are present all around us. One example is water
droplets in clouds [1]. A second example is slender fibres in wood pulp used
in the papermaking industry [2]. Fluid flows in such systems are usually
in a state of complicated, chaotic motion, called turbulence [3]. Turbulent
flows exhibit velocities and pressures which fluctuate both in space and in
time. Two particles which are close to each other in such a flow can become
correlated because they experience approximately the same flow. Due to their
correlated motion and because the dynamics are dissipative due to viscous
friction [4, 5], the particles phase-space volume contracts over time and
they exhibit clustering [6]. Clustering is characterised by divergent spatial
densities in particle distributions, and can enhance the rate at which particles
collide [7, 8].

Yet, if the particles approach very close, they begin to interact directly,
through charges which they might carry [9], but also through the surround-
ing fluid [10, 11]. How interactions affect the rate at which droplets in air
collide with each other has been a subject of active research in the past 70
years [12, 13]. Hydrodynamic interactions tend to bend one particle’s trajec-
tory around the other [14]. From this one might expect that hydrodynamic
interactions prevent droplets from approaching each other. Yet, recent exper-
imental observations of the relative dynamics of particles in air exhibit large
distributions of separations and remain unexplained by current theories [15].

In this thesis we use simple models to understand the dynamics of particles
in flows. The questions considered in this thesis concern two aspects. First,
the correlated motion of non-interacting inertial particles, as well as the
angular dynamics on non-inertial rods is studied. In these cases the focus is
on describing the distributions of particle positions and angles. Second, the
relative dynamics of interacting spherical particles is studied: the effects of
electrical charges as well as fluid-mediated interactions are considered. In
these cases, the focus changes towards understanding collision dynamics of
interacting droplets.



2 MOTIVATION

Structure of this thesis

This thesis consists of a text forming a frame for the appended papers. Part I,
forms an introductory text which motivates our research. This is followed by
a layman’s introduction aimed at an undergraduate student or even a curious
highschool student, with the hope that an expert would find it informative as
well. Part II compiles the technical background required to understand this
thesis. Part III consists of backgrounds of the individual problems considered,
main results, and in some cases more detailed discussions of the contents of
the appended research papers. Part IV is the Appendix and Part V consists of
reprints of the appended paper A — D.

1 Motivation

The dynamics of non-interacting particles in turbulent flows has a long history
[6, 16]. One of the first steps was a theoretical model explaining how turbu-
lent strains increase the collision rate of droplets, ignoring any hydrodynamic
interaction [17]. Furthermore, this study ignored the effect of particle inertia
on the droplet dynamics. It was therefore valid for tracer particles advected
by the fluid.

But is it appropriate to ignore the inertia of the particles? After all, the
behaviour of inertial particles in a fluid-flow is qualitatively different from
that of tracer particles. While tracer particles tend to follow the streamlines
of the advecting fluid, inertial particles may detach from them. This detach-
ment from fluid streamlines has important consequences [6]. First, it allows
the particle trajectories to cross at non-zero relative velocities leading to
divergences in the spatial distributions of particles [6, 7]. Second, it causes
particles to deplete from regions of high vorticity and accumulate in regions
of large strains [8, 18].

The mechanisms outlined above indicate that inertia causes large, or even
divergent spatial densities to appear in distributions of particles in turbulence,
a phenomenon called clustering [6, 19]. On the other hand, clustering directly
implies that large regions in space are devoid of particles. In fact, particles
in turbulence are distributed on sets with interesting properties [20, 21, 22].
They do not fill out the complete volume of the space they inhabit, yet, neither
do they collapse on a point, or a line, or a surface. These sets are instead



somewhere in between, and are known as fractals [4, 23]. It is important to
quantify the properties of these fractals because one consequence of particles
distributing on fractal sets can be high probabilities of finding two particles
close together [6]. This could in turn increase their collision rates [16].

Despite accounting for particle inertia, the studies mentioned above ignore
how the fluid-mediated droplet-droplet interactions [ 10, 11] affect the particle
dynamics. This is a logical first step because firstly, the non-interacting
approximation discussed above is valid as long as the particles are farther
apart than a few particle radii. In that regime, the relative velocities and
distribution of separations of particles must be described by the models used
in the studies described above. Secondly, the experimental and numerical
complexities involved have proved it challenging to accurately study the
particle dynamics while accounting for droplet-droplet interactions [13].

Until very recently [ 15, 24], lack of high-resolution techniques have proved
it impossible to perform experimental observations of the relative dynamics of
droplets. On the other hand, solving this task computationally is challenging
because solving the fluid equations and simultaneously computing the force
on particles requires large amount of computing power [25]. The computing
power required increases both as the number of particles increases and as
the turbulence intensity increases.

In order to circumvent the problems with experiments and direct numerical
simulations discussed above, model simulations have been widely employed
in the past decades [13]. The simplest model of hydrodynamic interactions
computes how the relative dynamics of particles changes at large separation
in a slowly flowing fluid, the so called creeping-flow approximation [11].
While this model may be extended to describe the relative dynamics at any
value of particle separation [26], the studies summarised in Ref. [13] ap-
proximate these forces using ad-hoc schemes whose validity is hard to justify.
Most importantly, they fail to explain the distributions of relative separations
observed in recent experiments or illuminate the mechanisms which may give
rise to them [15].

In addition to hydrodynamic interactions, droplets in clouds carry electrical
charges [9] and may interact through electrical forces. Several studies have
considered the effect of droplet charges on the dynamics of settling droplets
[27, 28, 29]. They found that collision efficiencies increase with increasing
charge. Yet, these studies either ignore hydrodynamic interactions altogether
or only consider hydrodynamic interaction for widely separated droplets. How
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these approximations fail outside their regime of validity is not considered.

Finally, in some cases the angular dynamics of particles may be of interest.
For instance, wood pulp consisting of slender wood fibres is used to make
paper [2]. Fibres aligned in the same direction result in good quality paper.
More fundamentally, two nearby slender rods in a turbulent flow typically
align well with each other, but sometimes show large deviations away from
alignment [30]. Which mechanisms give rise to these large excursions is not
known.

In this thesis we start by considering the dynamics of non-interacting parti-
cles, which are nevertheless correlated through the fluid flow they experience.
In paper A we use a simple discrete-time, toy model of inertial particles in a
random flow to quantify how the particle distribution changes as the inertia
parameter is varied. In paper B we analyse the angular dynamics of slender
rods in a turbulent channel flow, an example of a turbulent flow with bound-
aries. Next, we consider the effect of interactions. In paper C we describe the
collision dynamics of hydrodynamically-interacting, charged water droplets
settling in quiescent air using dynamical systems theory. Finally, in paper D
we explain the collision dynamics of neutral droplets which interact hydro-
dynamically at interfacial separations larger than the mean-free-path of air.
But when this separation becomes comparable to the mean-free-path of air,
non-continuum forces between the droplets dictate their relative dynamics.

2 A layman’s introduction

In this chapter I give an introduction to the subject of particles in fluid flows.
This chapter is meant to introduce the subject not to an expert, but rather
to an undergraduate student, or perhaps even a particularly curious high-
school student. The focus is on qualitatively describing a system consisting of
particles in flows in terms of dimensionless numbers.

Fluid dynamics

In order to describe the dynamic motion of particles in flows, we must under-
stand basic properties of the fluid flow itself. In Nature, Fluid flow arises due
to the motion of many small molecules: water consists of water molecules,



air is a mixture of various different gases like oxygen and nitrogen. However,
when dynamics occurs at length scales much larger than the mean-free-path
of air, the description becomes much simpler: what we observe every day as
a fluid. One important aspect of fluids is the fluid viscosity. Fluid viscosity
refers to the propensity of the fluid to resist relative motion between two
layers of the fluid. Viscosity quantifies in a sense the internal friction of the
fluid to its own flow. For example, honey is more viscous than water. When
using a spoon to drizzle honey it flows in a slow and sluggish manner due to
high viscosity. Water on the other hand can be easily poured from a spoon
due to low viscosity.

Rigid particles

We model particles as rigid bodies. Rigid bodies are defined as objects that
either do not deform or deform so little that the deformation is negligible. In
the case of solids, it is the strong inter-molecular forces preventing the solid
from deforming, competing with the relatively weak fluid stress at the particle
surface, and so rigid particles are a good approximation. For water droplets
in air, the surface tension attempts to keeps the droplet spherical while the
stress at the droplet surface tries to deform it. When the droplets are small,
the surface tension is strong and thus the droplets remain spherical.

The combined fluid-particle system

Solving a coupled fluid-particle system is a hard problem because the presence
of the particle disturbs the flow and this new flow in turn affects the particle
differently compared to the original flow. However, the disturbance that the
particle causes in the flow must be in some way related to the size of the
particle: the larger the particle, the larger the disturbance. In fact, when the
particles are small the motion of the particle in the fluid is not affected by
this disturbance. How small the particle needs to be requires dimensionless
numbers and is discussed in the next section. In a system consisting of a
fluid and many particles its possible that the particles interact directly, say
by colliding or by electric forces. Another possibility is that the wake of one
particle affects another particle. But when the particle number density is
small or the particle separation is large, these effects can be neglected.
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Dimensionless numbers

Dimensionless numbers allow us to compare things, and usually reduce the
number of parameter in the problem. For example, consider a plastic ball
and a metal ball in water. The plastic ball floats and the metal ball sinks.
In contrast, in air, both the plastic and metal balls sink. From this one
would conclude that the density of the ball as well as the density of the
fluid are important. In fact, due to Archimedes we know that it is only the
dimensionless ratio of the two densities which is important, thus the problem
is reduced from two dimensionful parameters to one dimensionless parameter.
In this Section we introduce six dimensionless numbers important for the
problems discussed in this thesis.

Stokes number

The Stokes number is a measure of the inertia of a particle in a flow. Particle
inertia can be imagined as the particle’s reluctance to respond to a force, in
our case the force is due to friction with the fluid at the particles surface.
This reluctance of the particle in the flow sets a time scale 7, the particle
relaxation time, related to particle dynamics. At the same time the flow itself
fluctuates with some characteristic time scale. The ratio of these two time
scales defines the Stokes number, St. Thus the Stokes number measures how
well a particle responds to changes in fluid velocity. A very small Stokes
number corresponds to particles that essentially change velocity very quickly
when the fluid velocity changes. On the other hand a very large Stokes
number corresponds to particles that behave like bullets and do not change
direction regardless of a change in the fluid velocity.

Kubo number

The Kubo number is a dimensionless number associated to a flow, and mea-
sures how persistent the flow is. Observe a flow at a fixed point in space. In a
gentle stream the flow at a fixed point might remain the same for a long time.
In contrast, in an energetic waterfall, the flow at any point changes quickly.
This defines a time scale called the correlation time of the flow. A second time
scale related to the flow can be formed by dividing the correlation length of
the flow by the magnitude of the flow velocity fluctuations. This is the so-



called advection time of the flow, named so because it is the time an advected
fluid parcel needs to travel one correlation length. Comparing the fluctuation
time of the flow to this advection time forms another dimensionless number
called the Kubo number, Ku.

Particle Reynolds number

The particle Reynolds number is a measure of the importance of fluid inertia
for particle dynamics. When a particle immersed in a fluid moves, the fluid
layers adjacent to it will stick to the particle and move along with it. But the
layers farther away will resist the motion due to their inertia. The faster a
particle moves, the thinner a layer is able to stick to the particle because by
the time the fluid with its inertia can respond, the particle has already moved.
This thickness of fluid that sticks to the particle defines the viscous length
scale. The particle Reynolds number is defined as the ratio of particle size to
the viscous length scale. Thus a particle much smaller than the viscous length
scale simply sees a viscous flow, without worrying about fluid inertial effects.

Strouhal number

The Strouhal number is a dimensionless parameter which compares the
timescale at which the particle accelerates to the timescale at which the fluid
accelerates. If a particle travelling in a fluid accelerates very slowly, the fluid
around it moves in a quasi-steady manner. This means that the fluid velocity
can relax to its quasi-steady value quickly and the time dependent term in
the Stokes (or Navier-Stokes) equation can be ignored. By contrast, if the
particle accelerates rapidly, the fluid surrounding it is accelerated as well.
The quasi-steady approximation is no longer valid. The ratio of timescale of
acceleration of the particle to the timescale of acceleration of the fluid forms
the dimensionless number, the Strouhal number, quantifying the importance
of unsteadiness.

Knudsen number

A hydrodynamic description of air is valid at length scales much larger than
the mean free path of molecules in air. However, when the length scales
of interest, such as the distance between the surfaces of two water drops
in air, becomes comparable to the mean free path of air, the hydrodynamic
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approximation must fail. The importance of this breakdown of the continuum
approximation is quantified by the ratio of the mean free path of air to the
radius of a droplet.

Coulomb number

The Coulomb number is a measure of the the importance of charges compared
to the relative velocity of two droplets. It is defined as the ratio of the Coulomb
potential energy upon contact, to the initial relative kinetic energy of the
droplets. A small Coulomb number corresponds to weak charges, while a
large Coulomb number corresponds to strong charges.



PART II
BACKGROUND
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3 Fluid flows

The description of particles in a flowing or steady fluid must necessarily refer
to the underlying flow. In this thesis, we are interested in flows which model
turbulent flows (used in papers A and B) but also quiescent fluids (paper C)
and steady flows (paper D).

In order to model turbulent flows sufficiently well so that their effects
on particle dynamics can be reproduced, it is useful to discuss some aspects
of turbulent flows. The Navier-Stokes equations are expected to contain all
aspects of turbulent flows observed in Nature [3]. These equations and some
characteristic aspects of its solutions far from any boundaries are discussed
in Section 3.1. Yet, not all flows of interest occur far from boundaries. How
the presence of a boundary affects turbulent flows is important in industrial
applications, one example is papermaking [2]. A simple model for wall-
bounded turbulent flows is a turbulent channel flow. This is the subject of
Section 3.2.

One way to approach the problem of understanding the dynamics of parti-
cles in turbulent flows is to numerically solve the Navier-Stokes equations and
use an effective equation of motion to integrate particle trajectories [31]. This
approach, while immensely successful, first, does not immediately illuminate
the physical mechanisms leading to an observed phenomenon, and second,
the control over physical parameters such as length and timescales of the flow
is limited by computational cost. These problems may be circumvented by
using synthetic, random flow fields which reproduce some but by no means
all properties of turbulent flows [6]. These random flows provide full con-
trol over the length and timescale characterising the flow. This control over
the timescales, in particular, allows to approach the white-noise limit which
might be analytically tractable through the Fokker-Planck equation [32]. We
introduce a synthetic, Gaussian flow in Section 3.3.

3.1 Navier-Stokes equations

In this Section I discuss the Navier-Stokes equations, and turbulence. A
discussion of two important quantities of the fluid flow, the velocity-gradient
and the left Cauchy-Green tensor follows. The fluid velocity-gradient will be
crucial for the angular dynamics of small rods. The left Cauchy-Green tensor
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describes how small fluid volumes stretch and rotate and thus can be used to
define a reference frame unique to flow streamlines. The leading eigenvector
of the left Cauchy-Green tensor was first used in Ref. [33] followed by Ref. [34]
to study alignment of rods in two-dimensional flows. The left Cauchy-Green
tensor will be important in studying alignment of slender rods in Chapter 7.

The discussion of the Navier-Stokes equations and turbulence in this
section closely follows Ref. [3]. The incompressible Navier-Stokes equations
describe how the fluid velocity u at a given position changes with time. The
equations read [3],

1
du+u-Vu=——Vp+»V?u+F, 3.1
Ps

V-u=0. (3.2)

Here p is the fluid pressure, v; its kinematic viscosity and p¢ its mass-density.
F is a forcing term which injects energy at large scales at a constant rate
e = (F -u). V denotes the gradient, and V? the Laplacian operator. Note
that the position dependence of the velocity and pressure is suppressed in
Egs. (3.1)-(3.2). We dedimensionalize the Navier-Stokes equation as follows:

x> Lyx, (3.3)
u—Uyu, (3.4)
U
— mp’ (3.5)
Ly
ve U,
F — fLZOF. (3.6)

0

Here U, and L, correspond to large scale velocity and length scales. This
gives the dedimensionalized equations,

Re(d,u +u-Vu)=—Vp+Vu+F, 3.7)
V-u=0. (3.8)

The dimensionless number Re is called the Reynolds number based on the
integral length and velocity scales, L, and U,. Note that this Reynolds number
was not discussed in the Chapter 2. The Reynolds number depends on the
length scale Ly and velocity scale U, of the system, and the viscosity u and
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mass-density ps of the fluid as follows,

piUZ/Lo  LoU
e=—0 2 = 200 (3.9)
MUO/LO 143

Here u = v¢py is called the dynamic viscosity of the fluid. The quantity uUy,/ Lg
is the typical magnitude of viscous terms in the Navier-Stokes equations: the
terms on the right-hand side of Eq. (3.1). While prg /Lo is the typical
magnitude of inertial terms, the terms on the left-hand side of Eq. (3.1).
Thus the Reynolds number determines the relative magnitude of fluid inertial
effects compared to viscous effects. This is important because the two effects
lead to qualitatively different solutions of the Navier-Stokes equations.

A purely viscous flow is obtained at Re = 0. This leads to the Stokes
equations [11], which read,

—Vp+V?u+F =0, (3.10)
V-u=0. (3.11)

Solutions to the Stokes equations, called Stokes flows depend only on the
geometry of the container and the boundary conditions. Stokes flows describe
purely viscous flows. Viscosity qualitatively corresponds to friction between
fluid layers and thus leads to dissipation and loss of energy. Dissipation is
also the reason for having the forcing term, F, in both the Stokes and Navier-
Stokes equations. Without the forcing term, or flowing boundary conditions
at infinity, the equations dissipate all energy injected initially and the fluid
stops flowing.

At large Reynolds numbers, Re > 1, fluids exhibit chaotic motion. Tur-
bulence does not have a well defined mathematical definition but may be
recognised by its characteristics, one of them being chaotic motion, while
others are discussed below. One way to visualise turbulence is by considering
what happens to nearby fluid particles. As time evolves, two fluid particles
which start close together separate rapidly from each other, on average. This
in turn leads to quick intermixing of the fluid.

Fully developed turbulence consists of eddies of a vast range of sizes. The
largest eddies have sizes comparable to the forcing scale Ly. These large
eddies themselves drive smaller eddies, which in turn drive even smaller
eddies. In this way, the energy injected at large scales cascades down to



NAVIER-STOKES EQUATIONS 13

smaller scales. This process does not continue indefinitely, but stops when
the smallest eddies with sizes comparable to the Kolmogorov length scale,

Nk = (%?)1/ 4 dissipate their energy due to viscous friction.

A third feature of turbulence is the sweeping of smaller eddies by larger
ones. This is a consequence of the self-advecting nature of the velocity field
due to the u - Vu term in Eq. (3.7). And lastly, the spatial gradients of
turbulent velocity fields can exhibit large deviations away from their mean
values [35].

At this point a relevant question is how is the Reynolds number relevant for
everyday life? It turns out that large Reynolds number flows are commonly
encountered. This is due to the small kinematic viscosity of water and air,
roughly of the order of 107® — 10~ m?/sec. Even a small gust with wind
velocity of a few m/s over a length of a few meters easily reaches large
Reynolds numbers of the order of 10* — 10°. Thus, high Reynolds number
turbulent flows are more the norm than the exception.

In summary, the intensity of turbulent flows is determined by its average
energy dissipation rate per unit mass, usually denoted &, with units m?/s°.
Turbulent flows exhibit several universal small-scale features which are im-
portant for particles in turbulence. The first is a length scale, called the
Kolmogorov length, defined above. Second, the Kolmogorov time scale is

defined as T = 4/ % This is the smallest timescale at which the fluid velocity
fluctuates.

Fluid velocity-gradient tensor

The spatial gradients of fluid velocity define how different is the velocity at
two points very close together. The fluid velocity-gradient tensor A reads,

A _3ui

97 ox;

(3.12)

This velocity-gradient tensor can be decomposed into its symmetric part S,
and anti-symmetric part O as follows:

S= %(A+AT), (3.13)

@:%%—M) (3.14)
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Here S is called the strain-rate matrix and quantifies the rate-of-strain of the
fluid flow. The vorticity O quantifies the rotation associated to the flow field
u.

The strain tends to deform infinitesimal volumes of the fluid. The vorticity,
on the other hand, simply rotates an infinitesimal volume of fluid around an
axis defined by the vorticity vector w,

w=VXxu. (3.15)

The vorticity vector can be expressed in index notation: w; = 2¢;;;O;;, where
€;jk is Levi-Civita tensor and repeated indices indicate the Einstein summation
convention. The magnitude of the vorticity vector, |w|, gives the angular
velocity of rotation.

Lagrangian stretching direction

A fluid parcel advected by a fluid flow deforms and rotates due to the fluid
vorticity and strain. This effect can be described by following a tracer particle
at x, advected with the flow u,(x,), X, = u,(x). Consider how an infinitesi-
mal separation vector, dx ., at this tracers position deforms as it is advected
by the flow,

déx,
dt

=u(x,+6x,;)—u(x;), (3.16)
=A(x,)0x,, (3.17)

Here, we have assumed that the velocity field is smooth at very small scales,
so that the velocity gradient A, is well defined. Order 5x? terms have been
ignored in this equation. This equation has the formal solution,

b, = Telo S5y, (3.18)

where & denotes time ordering. The above equation describes how the sepa-
ration vector deforms as it is advected along with a tracer. We can define a

deformation tensor F, = eJoAsds , which describes this deformation. This
tensor describes not just how separations evolve but also how fluid volumes
deform in time. Assuming singlevaluedness of the flow u, it follows that
the deformation tensor must be invertible. When the matrix F, is invert-
ible, the polar decomposition theorem [36] ensures that F, can be uniquely
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decomposed into a rotational component, and a deformation component,
F, =R,U; = V;R,. Here R, is a rotation matrix, and U, and V, are called
the right stretch tensor and left stretch tensor, respectively. The difference be-
tween the two decompositions arises because either the rotation or the stretch
may be performed first in order to obtain the same deformation. Even though
the result is the same, the different ordering of stretching and rotation means
that the left and right stretch tensors have different eigenvectors. When the
stretch is performed first, with U,, the stretching of the fluid parcel takes place
along the direction of initial stretching, described by the eigenvectors of the
strain-rate matrix at time zero, Sj. Thus, the eigenvectors of U, coincide with
those of Sy. This deformed parcel is then rotated by R, to its final position. In
contrast, when the rotation is performed first, the fluid parcel is first rotated
by R;. This is followed by stretching by V, along the final main stretching
directions. Thus the information of the main directions of stretching after
time t can be obtained in two ways, either by knowing the eigenvectors of
U, (same as the eigenvectors of Sy) and the rotation matrix R,, or simply by
knowing the eigenvectors of V,.

Using the deformation tensor F,, it is possible to form two symmetric
tensors, M, = F,F] = Vf and C, =F|F, = Uf called the left Cauchy-Green
tensor and right Cauchy-Green tensor, respectively. Then, the left Cauchy-
Green tensor has the same eigenvectors as V,, which are the main stretching
directions of the fluid parcel after time t. In particular, the eigenvector with
the largest eigenvalue is termed the Lagrangian stretching direction. This
Lagrangian stretching direction forms a reference direction particular to the
flow which a tracer has experienced. It can be used as a reference even in
homogeneous and isotropic flows which do not have a preferred direction by
definition.

3.2 Turbulent channel flow

Turbulent flows with boundaries are ubiquitous in Nature. They have im-
portant differences compared to flows far from boundaries. In contrast to
homogeneous and isotropic flows, the presence of the boundary breaks ho-
mogeneity by breaking translational invariance of the flow in the direction
normal to the boundary. However, isotropy at the small scales has been
postulated to be restored at infinite Reynolds numbers [37]. Flows at more
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realistic Reynolds numbers however show small scale anisotropies [38, 39]
and have been a subject of much interest. A turbulent channel flow is a
prominent example of a wall-bounded flow relevant for industrial application.
In addition, the behaviour near a channel boundary is a good playground for
understanding wall-bounded turbulent flows which occur often in Nature,
one example is river beds. The description of the turbulent channel flow here
follows the discussion in Ref. [40].

A turbulent channel flow is usually taken to be a fluid flow in a straight
channel with a rectangular cross-section [41]. The length and width of the
channel are taken to be much larger than the height. The mean flow is
along the length of the channel, and this direction is called the stream-wise
direction. The direction along the height of the channel is called the wall-
normal direction, and the one along the width is called the span-wise direction.
The stream-wise, span-wise and wall-normal directions are denoted by X,y
and Z respectively in this thesis, see Fig. 3.1. The flow is typically driven
by a pressure gradient along the length of the channel. No-slip boundary
conditions are imposed for the velocity at the top and bottom boundary in
the wall-normal direction. Periodic boundary conditions are imposed in the
span-wise and stream-wise directions. The dimensional quantities for the
system then are the height of the channel 2h, the pressure gradient across the
channel Ap, the fluid kinematic viscosity v, and the fluid mass-density ps.
The pressure gradient in turn determines the wall shear stress 7. The wall
shear stress can be used to define the wall friction velocity as u, = v/ Tyan/pPs-

As mentioned in Section 3.1, turbulent flows are typically characterised
by the Reynolds number. In the case of a turbulent channel flow, the relevant
Reynolds number is called the friction Reynolds number, Re.. This is defined
in terms of the wall friction velocity u, and the channel half-height h as
Re, = hu, /.

The velocity in a turbulent channel flow exhibits both spatial and temporal
fluctuations. However, the average velocity profile gives an idea of the typical
flow velocities in different regions of the channel. Near the channel center, the
velocity is large and the velocity profile is rather flat, as shown in Figure. 3.1.
As the channel boundary is approached the mean velocity drops off, until
it approaches zero at the boundary, due to the no-slip boundary condition
imposed there. In all, the boundary layer consists of three pieces [40]: a layer
very close to the wall called the viscous boundary layer, a far layer called the
log-layer, and a crossover region called the buffer layer . The total thickness
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Figure 3.1: Illustration of an ellipsoidal particle with orientation vector n
suspended in a channel flow. The stream-wise and wall-normal directions are
denoted by x and Z respectively. The span-wise direction ¥ points into the plane

of the page. The black dotted line illustrates the mean stream-wise velocity (u),
and the green dash-dotted line illustrates the mean shear rate s.
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of the boundary layer decreases with increasing Reynolds number.

In a turbulent channel flow, near the channel center the flow resembles
homogeneous isotropic turbulence. In ref. [42] the authors examined inter-
mittency in a turbulent channel flow at Reynolds number Re & 3000 and
found that results near the channel center were consistent with homogeneous
isotropic turbulence. The authors of Ref. [43] analysed the distributions
of the second invariant Q = —%TrA2 in turbulent channel flows at friction
Reynolds number Re, = 180,400, 800, and 1270 and found good agreement
between the channel center and homogeneous isotropic turbulence. Pumir
[44] reported a small anisotropy near the channel center for turbulent chan-
nel flows at Re; ~ 999. However the anisotropy was larger for the third
moment of the velocity gradient tensor than the second moment. In Chapter
7 the highest moment we will be interested in will be the second moment so
we safely assume isotropy near the channel center. Note, however, in some
cases certain third order moments have been shown to be important for the
angular dynamics of particles in turbulent flows [45].

Near the channel boundary, the mean stream-wise velocity increases as
a function of the distance from the channel boundary. This also implies
that one of the mean shear-rates, (A,,) = s near the channel boundary is
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non-zero. In addition, due to the presence of no-slip boundary conditions,
the fluctuations in span-wise and stream-wise gradients of velocities are
dampened. In summary, the region near the channel boundary exhibits a
large mean shear-rate s as well as very small fluctuations. See Ref. [46] for a
detailed account of velocity-gradient statistics in turbulent channel flows.

3.3 Random velocity-fields

It turns out that not all properties of turbulent flow fields are important
to describe the distributions of particles in turbulence. When the particles
of interest are much smaller than the Kolmogorov length, and move slow
enough relative to the fluid, the properties which affect the particle dynamics
are: the small-scale fluid correlation length, the small-scale correlation time,
and the Lagrangian statistics of the fluid-flow fluctuations. In order to study
the dynamics of small,slowly moving particles, it siffices to use a random,
Gaussian velocity-field to model turbulence [6, 7, 19, 20, 47, 48, 49, 50]. The
physical parameters describing a single-scale, Gaussian random field are the
Eulerian correlation time T, the correlation length 7, and C,, the magnitude
of fluctuations.

The velocity field for a Gaussian random flow in d—spatial dimensions is
implemented as follows: first one generates a scalar random Gaussian field

¢(x,t) [51],

. k2 2
b(x, ) = (zn)d/‘*(%)d/z VCo Zak(t)elk'x_Tn. (3.19)
k

Here 1) sets the correlation length of the random flow, L is the system size, and
Co quantifies the magnitude of fluctuations. The coefficients aj, are complex
random numbers which must satisfy aj, = aik so that ¢ remains real. The
coefficient a; must be Gaussian distributed with mean zero and variance
1. The other coefficients must have their real and imaginary parts both dis-
tributed with mean zero and variance %, so that (aj aj.) = 1. The coefficients
can be generated from independent Ornstein-Uhlenbeck processes,

() == (D) + \Eg(t), (3.20)
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so that 7 sets the correlation time of the coefficients aj and of the field ¢.
Here £(t) is a complex-valued white-noise process. From this construction
one obtains Gaussian random fields ¢ (x, t) with correlation functions,

lx—x'|?  |t—t']

(p(x,0)p(x’,t)) =Coe 20°  © | (3.21)

Thus we have generated a scalar random field ¢ (x, t) which has Gaussian
spatial correlations and exponential time correlations. Velocities and velocity
gradients may be obtained from ¢ by considering spatial derivatives. A more
detailed discussion can be found in [51]. The two main advantages of using
the Gaussian random field are reduced computational complexity, and that
in the limit T — 0 it is possible to use the diffusion approximation in order to
obtain analytical results which can lead to important insights about physical
mechanisms.

Despite their successes, Gaussian random velocity fields differ from tur-
bulence in several aspects, here we state three. First, the distribution the
velocity gradients at a fixed position are usually chosen to be Gaussian dis-
tributed [6] whereas turbulent flows at high enough Reynolds numbers show
non-Gaussian fluctuations [35]. Second, the convective term, u - Vu, in the
Navier-Stokes equations leads to coupled modes. This in turn leads to an
energy cascade where energy is transferred from large scales to small scales
and dissipated at small scales by viscous friction [3]. At very small scales, the
velocity varies smoothly as a function of space [37, 40]. This importance of
various length scales leads to the multi-scale picture of turbulence [3, 40].
The statistical model we use has one length scale, and it is meant to model
the small scale smooth fluctuations [6]. Finally, turbulence is self advecting
due to the convective term, a phenomenon known as sweeping. The random
velocity field misses any effects due to sweeping. Nevertheless, statistical
models for particles in turbulence based on Gaussian, random velocity-fields
reproduce not only the qualitative [6], but also quantitative aspects of the
dynamics of particles in turbulence as shown in Refs. [52, 53] as well as
paper B.
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4 Four models for particles in flows

Having briefly discussed some fluid flows in Chapter 3, next we must ask
how these flows affect particles immersed in them. The force applied on a
particle by the surrounding fluid is a direct consequence of the stress applied
on the particle surface by the fluid [14, 54]. This force, however, can only be
calculated in closed form for slowly varying flows and simple particle shapes
[11]. One simple example is Stokes force [11, 14],

F =—6nvpralu(x)—v]. 4.1)

which gives the force experienced by a spherical particle of radius a in creeping
flow conditions. The force experienced by the particle, Eq. (4.1) depends
upon the particle velocity v relative to the undisturbed flow-velocity at the
particle position, u(x,t).

The Stokes force, Eq. (4.1), is valid when Re = 0 in the Navier-Stokes
equation, Eq. (3.7). It successfully predicts the hydrodynamic force on small
particles moving slowly compared to the flow. But it does not account for
the inertia of the fluid [55], nor for the effects of unsteadiness which may be
important when the flow around the particle changes with time [56].

In other words, the Stokes equations is an appropriate description of the
force on the particle when the approximations made in deriving it are satisfied.
However, which approximation to use depends not only on the system under
study, but also on the question of interest. In this chapter I introduce four
models which treat various aspects of the dynamics of particles in turbulence
relevant for the questions considered in this thesis.

In Section 4.1, I introduce the correlated random-walk model which de-
scribes the dynamics of small but heavy particles. In Section 4.2 I describe
a model for the angular dynamics of advected spheroids. In Section 4.3
I discuss two models describing the effect of hydrodynamic and electrical
interactions on the dynamics of spheres settling under the effect of gravity.

4.1 Correlated random-walk model

The correlated random-walk model is a one-dimensional map with random but
spatially -correlated increments [57]. Deutsch first used this model to describe
a “path-coalescence” transition [58, 59]. The path-coalescence transition
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describes a bifurcation where nearby particle trajectories coalescence together,
instead of separating exponentially as a parameter is varied. Pikovsky [57]
studied the distribution of separations near the transition point. Wilkinson
& Mehlig [60] discussed the applications of the path-coalescence transition,
while Wilkinson et al. [61] described how distributions of separations depend
upon the parameters of the model. This model is used in paper A to study
the distributions of inertial particles in random flows.

In this model, the particles are restricted to a domain [0, L) with periodic
boundary conditions. This introduces a length scale L in the system. We
assume that a point particle located at position x,, at timestep n experiences
a displacement given by f,(x,,),

Xn+1 :Xn+fn(xn)- (42)

We further assume that the displacements f,,(x,) are Gaussian random func-
tions with zero mean, which are correlated in space but uncorrelated in
time,

2

FaX) fn(Ym)) = 8 im0 exp( & ”ZHZ’") ) (4.3)
Here, o is the mean-squared displacement, and 7 is the correlation length.
The average (-) denotes an average over different realizations of the Gaussian
random functions. The Gaussian random functions, f,(x,,), in Eq. (4.3) may
be generated as described in the previous chapter. In summary, Egs.(4.2)-(4.3)
define the correlated random walk model. Fig. 4.1, shows some realisations
of the correlated random walk model.

The model has two dimensionless parameters, a = % and [ = % The
parameter a is a measure of the magnitude of the particle position increments,
and is analogous to the inertia parameter in statistical models. The parameter
[ quantifies the separation of length scales in the system. In order to minimise
effects due to the system boundary, we will work in the regime [ > 1.

Relative separation of correlated random walkers

Consider two correlated random walkers, with positions at time step n given
by x, and y,. Linearising in the separation Ax, = x,, — y,, we obtain the
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Figure 4.1: A snapshot of the correlated random walk model simulation depict-
ing clustering. The Figure is borrowed from my Licentiate thesis [62].
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following set of equations:

Xn+1 = X +f(xn): (4-4)
AXpi1 = Axp + f/(x)AX,, (4.5)

where f’ denotes the derivative of the function f. Using Eq. (4.3) one can
show that f,(x,) and f,(x,) are uncorrelated. Thus the equation for the
separation Ax, decouples from the equation for x,,. We denote A, = f'(x,,),
whose correlation function can be derived using Eq. (4.3). The single point
statistics of A,, are easy to compute. We have simply that A, is a Gaussian
random variable with zero mean and variance (A, A,,) = §,,,a%. Thus we
end up with

Axp = (14+A,)Ax,. (4.6)

It is clear from Eq. (4.6) that A, < —1 for any n leads to Ax,; obtaining
a sign opposite to that of Ax,, meaning that the particles have crossed each
other. These trajectory crossings are analogous to caustics in continuous-time
models [6].

4.2 A model for angular dynamics of spheroids

The flow around small particles is well approximated by Stokes flow, also
known as creeping flow [11]. In this approximation, the equations describing
the motion of the center-of-mass x(t) of a small, advected spherical particle
read [18],

x(t) =u(t), 4.7)

where u is the fluid velocity. The equations describing the orientation n(t) of
a small, neutrally buoyant, inertia-less particle in a creeping flow were first
derived by Jeffery [63]. These equations, known as Jeffery’s equations, read,

n(t) =B(t) -n(t)—n(t)"B(t)n(t). (4.8)

where B = 0+ AS and O and S are the anti-symmetric and symmetric part

of the fluid velocity-gradient matrix, respectively. A is the particle shape

2_ . . .
parameter, defined as A = %Z—& where A is the aspect ratio of the spheroid.
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The aspect ratio A is defined as the ratio of the semi-axis from the center to
the pole, a, and the semi-axis from the center to the equator b,

A= (4.9)

a
5
Eq. (4.8) is used in paper B to study alignment statistics of rods in a turbulent
channel flow.

Here I sketch the derivation of Jeffery’s equation. In Section 3.1 we have
seen the dedimensionalised form of the Navier-Stokes equations, Eqs. (3.7)-
(3.8). We left the characteristic length scale L, and velocity scale U, unspeci-
fied because they depend on the system of interest. In the context of particles
in turbulent flows, a natural length scale is the size of the particle. Assuming
a spherical particle the size can be measured by the radius of the sphere, a.
Which gives the particle Reynolds number, Re,, = % Further since we are

interested in small particles, assuming a < %, we have that Re, < 1 and
thus the Stokes flow, described by solutions to Egs. (3.10), is justified for the
particle-flow system.

The equation (4.8) arises from a solution of the Stokes equations with no-
slip boundary conditions on a spheroidal particle’s surface, with a linear flow
at infinity. Due to no-slip boundary conditions, the flow induces a stress on
the particle surface. Formally, integrating the stress over the particle’s surface
gives the force and torque on the particle. Knowing the mass and moment-
of-inertia tensor of the particle, the translational and angular velocities are
obtained from the force and torque using Newton’s second law. Practically,
solving Stokes equations around a particle is hard, and thus it is hard to obtain
the fluid stress at the particle surface. One way to proceed is by realising that
this is a boundary value problem for the Stokes equation. Thus, a solution
can be found using the Green’s function for Stokes equations and using the
multipole expansion to obtain corrections to the point particle approximation
[11]. The result for spheroidal particles is given by (4.8).

4.3 Two models for two interacting spheres

So far we have considered models valid either for a single particle, or for two
particles whose separation is much larger than their radius. But what happens
when two spherical particles approach close enough so that they interact
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through the fluid and possibly collide? In order to model particle collisions,
their interactions at small separations must be taken into account. In this
Chapter I introduce two models which account for particle interactions.

The first model ignores fluid inertia, particle inertia (Stokes number, St ),
charges, and unsteady effects. But the upshot of this model is that it includes
hydrodynamic interactions valid for all separations and non-continuum effects
(quantified by the Knudsen number, Kn=[/a where [ is the mean-free-path
of air and a = (a; + a,)/2 is the mean droplet radius of two droplets with
radii a; and a,) near contact. This model was first used by Refs. [64, 65] in
order to study collisions of settling droplets in steady and turbulent flows.
This model is used in paper D to study how bifurcations affect the collision
dynamics of neutral droplets in a straining flow.

The second model includes fluid inertia (particle Reynolds number, Re,)

. . . VT . . . .
and particle inertia (St= —* where a is the droplet radius, v is the typical
_20p g2

droplet velocity, and 7, = s 7, is the particle relaxation time), unsteadiness

(Strouhal number, Sl= ;7 , and 7. is the droplet acceleration timescale taken
to be the acceleration due to electrical force), and charges (Coulomb number,

_ _ 2k.q1qp : )
Cu= V2 (artay) where k, is Coulomb’s constant, g; and g, are the charges
on the two droplets with radii a; and a,, respectively, m* = m11+n2 is the

reduced mass of the two droplets with masses m; and m,, and V = |V| is the
magnitude of the relative velocity of the droplets), but not non-continuum
effects. However, the downside of this generalisation is that the model is only
valid when the droplet separation remains larger than a few droplet radii.
This model is used in paper C to study the collision dynamics of charged
droplets settling in still air.

4.3.1 Uniformly valid model including Kn effects

We start by ignoring the effects of fluid inertia and unsteadiness, and by
assuming that the flow surrounding the particles is a linear function of position.
In this creeping flow approximation, the fluid surrounding the spheres is
described by the Stokes equation, Eq. (3.10). Because the Stokes equation is
linear, the slip velocity v; —u; of spheres i = 1,2 in a linear flow is a linear
function of the hydrodynamic forces, F {1 and Fg, acting on the particles and
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of the strain S that the particles experience [11],

(11)  .(12) (1) M_th
vi—up)_(a ) a g H_th (4.10)
va—uy) T \a® 2@ g )| # F2 | :

The tensors a(*?) and g(* are called mobility tensors and depend upon the
particle separation, R = x5, —x 1, upon the radii of the two spheres, a; and
a,, and upon the boundary conditions imposed at the fluid-particle boundary
[11]. The tensors a(®®) have rank 2 while the tensors g(® have rank 3. The
appropriate boundary conditions for small water droplets in air is the no-
slip boundary condition, and in this thesis we only consider this boundary
condition.

In the case of axisymmetric particles, such as spheres, the mobility tensors
may be written in terms of scalar functions:

RR; RR;

2B i i

a; gam?wam(gu_ =2 ) (4.11)

@ _ @R Lo \Re @ (Rig Rio _RiRiR

gijk_ Rz 3 YY) R yg R jk R ik R3 5
(4.12)

(@h) and y( *P) are the radial and tangential scalar functions, respec-

tively, corresponding to the mobility tensor a(*?), and x(aﬁ ) and y(a/j )

the radial and tangential scalar functions, respectively, correspondmg to the
mobility tensor g(®). Jeffrey & Onishi [26] and Jeffrey [66] described how
to compute the scalar functions with no-slip boundary conditions using the
twin-multipole method. Their results are summarised in Ref. [11]. Other
authors have used different methods to compute the mobility functions, such
as the reflection method [14] and bispherical coordinates [67, 68]. The
resulting mobility functions are uniformly valid for all particle separations:
from large separations all the way up to contact. Using Eq. (4.11) and a
similar equation for g*?), and assuming that the only external force acting
on the droplets is due to gravity, g = —gés, the relative velocity V=v, —v;

where x,
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can be written as,

R:R; R:R;
Vl:SURJ_I:A}l{_z +B(5ik_ 11{2 )]SklRl

RiRk)] 2p, (a5 —af)g
RZ 9pf Vf

RR
—[L};—Zk+M(5ik— 513, (4.13)

where now A and B are the radial and tangential mobility functions formed
using the functions xé"‘) and yé"‘), respectively, while L and M are the radial

and tangential mobility functions formed using the functions x((laﬁ ) and yéo‘/3 ),

respectively. In paper D, following Ref. [64] we implemented the radial
mobility functions using the results of Wang et al. [68] and the tangential
mobility functions using those of Jeffrey & Onishi [26].

Effect of continuum breakdown

In addition to the hydrodynamic effects affecting droplet motion, continuum
breakdown might become important if the interfacial separation between the
droplets becomes comparable to the mean free path of air. In fact, within the
continuum approximation, two spheres can never collide because the mobility
functions decay to O linearly in the interfacial separation £ = R — 2 [10].
Sundararajakumar & Koch [69] argued that a collision is, however, possible
due to continuum breakdown. They calculated how continuum breakdown,
quantified by the Knudsen number Kn, modifies the radial resistance functions
(related to the radial mobility functions by an inversion). They showed that
in the non-continuum approximation, the mobility functions decay to O as
(loglog K?n)_l. This allows droplets to collide in finite time [64]. In order to
obtain uniformly valid radial mobility functions, the non-continuum mobilities
(Egs. (4.2) — (4.6) in Ref. [64]) are matched to the mobility functions A and
L derived in the creeping-flow limit,
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4.3.2 Far-field model including St, Re,, SI, Cu

The equations of motion for two inertial droplets with masses m; and m,
read,

5('1 =V, (414)

.7'('2 =V, (415)

. 1

V= _Fl(xlax2’vl;v2)> (416)
m

) 1

Vo= m_Fz(Xbxz;Vsz)- (4.17)

2

Here, the forces F;,i = 1,2 depend on the positions and velocities of both
droplets. These forces can be written in terms of the contribution due to
hydrodynamic interaction and fluid inertia, F™!, the contribution due to the
unsteadiness, FP%  and the contribution due to electrical charges, F¢,

Fi — FfH +F1:1ist0rY+F?, 1= 1,2 (418)

In the following I describe how each contribution is computed.

Effect of fluid inertia including hydrodynamic interactions

In some physical situations, deviations from the creeping-flow approximation
can have a significant qualitative affect on the relative dynamics of two
droplets. One example is the dynamics of two droplets with precisely the
same size, examined by Klett & Davis [70]. Due to time-reversibility of Stokes
flow, the separation between two spheres with the same radius cannot change
in time. This symmetry, however, is broken by fluid inertia, quantified by the
Reynolds number.

While no theory exists quantifying the effect of fluid inertia for arbitrary
Reynolds number, modelling the fluid around the droplets by the Oseen
equation allows for approximate solutions when Re < 1. The Oseen equation
is an approximate linearisation of the Navier-Stokes equation [14]. Candelier
& Mehlig [55] used the Oseen to equation compute the effect of fluid inertia
to leading order in Re,,, and in 1/R using the reflection method. The result is
the force on the droplets as a function of the particles radii, their separation
and the Reynolds number.
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Effect of unsteadiness

The unsteadiness of the fluid flow due to breakdown of the quasi-steady
approximation around an accelerating sphere might affect the spheres relative
dynamics. The effect of unsteadiness, quantified by the Strouhal number SI,
was computed to leading order in Sl and for widely separated spheres by
Ardekani & Rangel [71].

In order to obtain an equation of motion correct to leading order in the
inverse inter-particle distance, I computed the asymptotic expressions in the
limit of large separation for the forces described by Ardekani & Rangel [71].
The results are presented in the Appendix of paper C.

Electrical interactions

Finally, in addition to hydrodynamic interactions, the spheres might carry
electrostatic charges. When two spheres carrying charges q; and q, are far
apart, the electrostatic force F(®) between them is well approximated by
Coulomb’s law,
(&) _ 1. 9192 5
F _ke_R2 R. (4.19)

This equation assumes that the two droplets are so far apart that they may
be treated as point particles. However, when the droplets approach each
other, the point-particle approximation breaks down giving rise to multipole
interactions which cause the force between them to deviate from Coulomb’s
law. Assuming two perfectly conducting spheres, so that the charges on
them redistribute much faster than the distance between the spheres changes,
Lekner [72] computed the force between the spheres valid for all separations.
In this thesis, however, we restrict ourselves to Coulomb’s law.
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5 Observables

Physical observables are measurable quantities which help to characterise
the dynamics of particles in fluid flows. In this Chapter, I will discuss three
observables of interest for particles in fluids. First, the Lyapunov exponent
which determine the long-time behaviour of small separations or relative
angles of particles. Second, multifractal dimensions which help to quantify
the distribution of particles on a fractal attractor. Third, I discuss collision
rates for spherical droplets.

5.1 Lyapunov exponent

The Lyapunov exponent describes how the separation between two particles
which are initially infinitesimally close to each other evolves in time [73]. In
one dimension it is defined as [4],

A= lim lim 1ln}i. (5.1
t—00 Ry—0 t RO
Here R, denotes the separation between the particles at time t. Consider how
to compute the Lyapunov exponent in a one-dimensional system defined by
the equation of motion,
x. = f(x,). (5.2)

Two particles, whose positions at time t are xgl) and sz), and which evolve

according to the above equation satisfy,
D =iV = D)= F (). (5.3)

Assuming that the function f is smooth, the equation of motion for the

separation R, = XEZ) - xgl) <1 can be written,

R, =f'(x)R,, (5.4)

where f’ denotes the derivative of f, and terms of order Rf are ignored. The
Lyapunov exponent then reads,

t
A= tl_l)I(l;lo %f dsf'(xs(l)). (5.5)
0
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5.2 Multifractal dimensions

Particles in turbulent flows are distributed on self-similar sets, called fractals,
which are different from usual familiar sets such as points, lines or surfaces
[20, 21, 22]. Where a line or a surface is characterised by an integer dimen-
sion, which is 1 for a line and 2 for a surface, a fractal instead has a fractional
dimension. In other words, fractals do not fill out the complete volume of
the space they inhabit, yet, neither do they collapse on a point, or a line, or a
surface [4].

Yet, where a single dimension suffices to characterise familiar sets such as
lines or surfaces, complicated fractals known as multifractals, may require
more than one, and sometimes even an infinity of dimensions to completely
characterise them [23]. The reason is that while points on a line are uniformly
distributed: any two segments have the same density of points, the points
on a multifractal may be inhomogeneously distributed. In order to quantify
the degree of inhomogeneity, a spectrum of dimensions called multifractal
dimensions may be used [74, 75].

The multifractal dimensions are denoted by D, where the parameter g can
take any real value [23, 74]. The dimension D, is called the box counting
dimension and it quantifies the dimension of the set spanned by the fractal.
In the case of simple familiar sets mentioned above, Dy = 1 for a line and
Dy = 2 for a surface. But in the case of a fractal, D, takes a non-integer
value. For a simple fractal with a homogeneous density everywhere, called a
monofractal, the general fractal dimension D, = D,. But for a multifractal this
is not the case. When q is an integer, and at least for dynamics restricted to
one dimension, D, has a physical interpretation: it quantifies the probability
of finding g particles close together [23], discussed in more detail below.

Let us first discuss how particle distributions are quantified using multi-
fractal dimensions. In d spatial dimensions, and for uniformly distributed
particles, the probability of finding two particles at a distance R is

P(R) ~R™ 1. (5.6)

This is true of tracer particles in incompressible flows. However, observations
of inertial particles in both compressible and incompressible flows lead to
a different picture. Snapshots of simulations, see Fig. 2 in Ref. [76], show
clearly that particles bunch together. Similar clustering is observed also for the
correlated random-walk model, see Fig. 4.1. Numerical [76] and analytical
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[77] calculation of the distribution of relative separations for inertial particles
leads to a result which looks qualitatively similar to Eq. (5.6) but quantitatively
different,

P(R) ~RP>71, (5.7)

Here D, is known as the correlation dimension. Inertia affects the distribution
of relative separations, and in fact, D, depends smoothly on the inertia of the
particles [6, 76].

The fractal dimensions, D, for general g, can be defined by considering the
statistics of the particle number distribution associated to the fractal attractor.
Consider the number of particles my in a sphere of radius R. The fractal
dimensions D, can be defined by a Lagrangian average of powers of mg,

(mI™"y ~RE@™DP: a5 R 0. (5.8)

In the one dimensional correlated random walk model, the Lagrangian aver-
age of my may be alternatively defined as [23],

(mg_l) = P(Yn(q) <R) with erq) = max {|x,(1i) —X,(lj)”- (5.9)
<i,j<q

Then, using Eq. (5.8) it follows that,
P(Y®W <R)~RU™P: a5 R—0. (5.10)

This equation shows that in a one-dimensional system, the multifractal di-
mension D, can be related to the statistics of the separation between the two
furthermost particles out of a set of q particles.

5.3 Collision rate

The study of collision rate of rain-droplets in clouds has a long history [10].
The collision rate is important in understanding the rapid formation of rain in
turbulent clouds [7, 13, 17, 47, 78]. Droplets may collide due to gravitational
settling [79] or because they are pushed towards each other due to turbulent
strains [17]. The particles inertia may allow them to collide at large relative
velocities [7, 47], increasing the collision rate. In this Section, I define the
collision rate between two droplets of different radii, a; and a,. I then discuss
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how this collision rate depends on the strain-rate and on the relative settling
velocities of two non-interacting droplets.

Consider a test droplet with radius a;, surrounded by n, droplets per unit
volume with radius a,. The influx of droplets entering a sphere of radius R
around the test sphere between times 0 and T, j(R, T), is given by,

T
j(R,T):—nOJ dtfdQP(R,Q,t)VR(R,Q,t)@[—VR(R,Q,t)]. (5.11)
0

Here P(R,,t) is the pair-probability at time t of finding two droplets at
separation R, and at solid angle Q defined from the center of the test droplet.
Vr(R, 9, t) is the radial velocity at separation R and solid angle Q2 at time
t. Finally, the Heaviside step-function ©[—V3(R,,t)] ensures that only
trajectories entering the sphere of radius R are counted.

The steady-state collision rate can be defined using the droplet influx as,

Z= lim lim ](R—’T)

R—a;+a; T—o0 T

(5.12)

The first limit T — oo ensures that the collision rate does not depend on
any transients. Note that it is assumed that the particle number density n,
does not change as this limit is approached. Physically, this corresponds to
assuming that T is much larger than all timescales associated to the particle
relative-dynamics. But much smaller than the timescale at which the particle
number density n, changes. The second limit R — a; + a, ensures that the
collision rate is well defined even if the relative velocity vanishes upon contact,
or the pair-probability diverges upon contact.

Consider a simple model of non-interacting spheres with radii a; and a,
settling in a simple straining flow defined by the flow field, u(x) = 5&; +
5&, —sé&;. The collision rate in this model depends upon the ratio of the

2 Pp

. . _ 2 2 . e .
settling velocity v, = 5 E(GZ —aj)g/v and the characteristic velocity due to

strain, v, = as. The collision rate can be computed exactly as a function of
v
Q= [64],

%z _®
nys(a; +a,)® 108

c.(Q) = (12+Q2)% +Q(36 —Q3). (5.13b)

[c:(Q+H(2—-Q)c(Q)], (5.13a)
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Here, H is the Heaviside step function.

When the dynamics is dominated by strain, Q < 1, Eq. (5.13a) reproduces
how the collision rate scales with the strain-rate first computed by Saffman
& Turner [17], Z ~ nys(a; + a,). In the other limit, Q > 1, when the
gravitational settling dominates over strain, the collision rate reproduces the
result of Von Smoluchowski [79], Z ~ ny(a; + a,)? Vg-
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6 Correlated random-walk model

Distributions of heavy particles in turbulent flows exhibit strong inhomo-
geneities, even when the underlying fluid flows are incompressible [19, 76,
80, 81]. Such inhomogeneities are important because they affect how often
heavy particles in turbulent flows collide [16]. But which mechanisms give
rise to these inhomogeneities? And how can one precisely quantify them?
Much progress has been made on these questions, summarised in the review
by Gustavsson & Mehlig [6]. Bec et al. [76] studied the distributions of heavy
particles in DNS of turbulence. Statistical models of particles in random flows
[19, 81] show similar clustering. The control over timescales in the statistical
model allows to understand mechanisms such as caustic formation which
contribute to small-scale clustering.

While Bec et al. [82] quantified the detailed distributions of advected
particles in compressible flows by computing the multifractal dimensions of
the attractors on which the particles cluster, only the correlation dimension
D, was well understood for inertial particles [6]. Wilkinson et al. [77] used
perturbation theory to compute the correlation dimension in the white-noise
limit. Meibohm et al. [83] showed that in a one-dimensional continuous time
model, the exponent D, depends non-analytically on the inertia parameter to
leading order, and argued that this leads to failure of perturbation theory in a
small inertia parameter [77]. While it was expected that this is a general phe-
nomenon, the precise non-analytic dependence of the correlation dimension
on the inertia parameter for other models was not known. The question then
was, whether the correlation dimension in the simpler correlated random
walk model shows similar non-analytic behaviour and if it could be computed
to higher accuracy?

In summary, this work was based on two fundamental questions. First,
what is the precise functional dependence of the correlation dimension D,
on the inertia parameter for the correlated random walk model. Second,
how can one completely classify the fractal attractor as a function of particle
inertia. More precisely, how do the higher fractal dimensions, D, for integer
q = 2, depend upon the inertia parameter.
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6.1 Results

In paper A we found a relation between the different fractal dimensions D,

D, = &, (6.1)
g—1

for integer q > 2. These fractal dimensions D, characterise the multifractal
attractor on which particles cluster in the correlated random-walk model. We
found this expression by analysing how particle trajectories cross when the
particles are close together. Consider q particles with positions at time-step n
labelled by xr(li),i =1,2,...,q. The positions are updated using a realisation
of the random function, f,, at time step n. Now assume that the particles are
close to each other so that it is possible to linearise the dynamics around the
position of the first particle. The updates then read,

1
Xy = X0+ folx(M),
2
xipy = %+ fulxPT PP - x0),

xr(l‘fl =xD + £, [xM]+ £/ [xP](xD — x D),

In this approximation, we find that xfgl - x,%r)l =1+ [xfll)]) (xr(f) - x,gl)),
fori = 2,...,q. This equation shows that in this linearised regime, the
separations between any particle and the first particle is scaled by the same
factor (1 + f, [xfll)]). This, in turn, means that the spatial ordering of the
particles remains the same if fn’[x,(ll)] > —1, and reverses if f,:[xfll)] < —1.
We called these crossings linear crossings, because they are the only allowed
crossings in the linear regime. We term any crossing where the ordering
neither remains the same, nor simply reverses a non-linear crossing.

This observation has important consequences for the exponent D,. In
particular, using Egs. (5.9) — (5.10) to compute D,, it suffices to consider
only the two furthest particles out of a set of q particles. In other words,
P(Yn(q) < R) should scale the same way as P(Yn(z) < R) in the limit R — 0
which gives (¢ —1)D; = D;.

Eq. (6.1) is strictly valid only in the limit R — 0 through Eq. (5.10). This
means that numerical verifications of this equation were sensitive to whether
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the particles spent long times close together or whether they separated quickly,
quantified by the Lyapunov exponent. In the regime where the Lyapunov
exponent was negative, Eq. (6.1) was clearly visible in numerics. By contrast,
when the Lyapunov exponent was positive, it became harder to observe this
relation numerically. The reason is that in this regime, it was likely that
non-linear trajectory crossings occured, leading to deviations from Eq. (6.1).

In this model, the correlation dimension D, exhibits a non-analytic depen-
dence on the inertia parameter a given by,

—1/20%) 05
Dy~ —14—(4a— 1403+ 63a5— 2267+ ..)
V2T 2
e~ 1/a? 1

70
5 [16ya?—4(3 +28y)a*+ (T +7007)a’—...]
T

—1/a?

+

+

log(a?/2)[—8a?+ 56a*—350a®+...]. (6.2)

This equation gives D, to next-to-leading non-perturbative order in a. In
this model, for a < 1, no analytic terms in a contribute to D, meaning that
perturbation theory in a predicts D, ~ —1. This is in contrast to Ref. [77]
where perturbation theory works very well for small inertia parameters. But
it does not explain, not even qualitatively, the minimum in D, as a function
of the inertia parameter. It is expected [83] that this minimum results from
non-analytic contributions, which are missed in a perturbative expansion.

Note that both Refs. [82] and [84] reported that (¢ — 1)D, becomes in-
dependent of q for g larger than a critical value in their models. Ref. [82]
considered multifractal statistics for advected particles in compressible flows.
Ref. [84] computed the spectrum of multifractal dimensions in a one-dimensional,
continuous-time model of inertial particles in turbulence. Ref. [82] found
that the reason (q —1)D, becomes independent of q is because of rare events
when large number of particles become localised in infinitesimally small vol-
umes. This is consistent with our model, where the analogous phenomenon
is trajectory crossings.
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7 Angular dynamics in a turbulent channel flow

This chapter briefly introduces paper B and the results described there. This
study of angular dynamics in a turbulent flow was a collaboration with our
colleagues Zhiwen Cui and Lihao Zhao in Beijing, China. They are experts
in direct numerical simulations (DNS) of turbulence and the simulations of
particles in turbulent channel flows discussed here are performed by Zhiwen
Cui. We at the University of Gothenburg developed the theory and I performed
the analytical calculations.

The goal of this project was to describe the alignment behaviour of slender
rods in turbulent flows. While a turbulent channel flow is anisotropic, so
the channel geometry defines a fixed reference frame [85], homogeneous
isotropic turbulence (HIT) no such reference frame exits. Previous works
studied alignment of small, slender rods in HIT with quantities local to
the flow such as the eigenvectors of the strain-rate matrix and the vorticity
vector [38], and the Lagrangian stretching direction [86]. We find that the
Lagrangian stretching direction, defined as the leading eigenvector e;; of
the left Cauchy-Green tensor is the ideal candidate for studying alignment of
slender rod-like axisymmetric particles for two reasons. First, it is statistically
stationary in the long time, and second, infinitely slender rods align perfectly
with e;; in the long time limit.

A second motivation is that the relative angles of nearby particles in
homogeneous isotropic turbulence show rare large fluctuations, quantified
by the angular structure functions [30]. These angular structure functions,
S,(r), are defined as [30],

Sp(r) = (W (x +r)—p(x)IF),. (7.1

Here 1(x) denotes an angle describing the orientation of a particle at position
x, and the angle brackets denote an average over particle-pairs with inter-
particle distance r. However, direct numerical simulations (see paper B)
showed that for particles in a turbulent channel flow, the relative angles
between nearby particles are larger for particles near a channel boundary than
particles near the channel center. The question then is, which mechanisms
lead to larger relative angles between nearby rods near the channel wall. One
hope was that understanding relative alignment with a local direction might
also shed some light on relative alignment of close-by particles.
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€11

Figure 7.1: Euler angles used in analyzing the alignment of the particle-
symmetry vector n. (a) Coordinate system defined by the eigenvectors
€.1(t),&.,(t), é5(t) of the left Cauchy-Green tensor M(t). Here &; and &5 are
the expanding and contracting directions, while &, , is chosen to keep the coordi-
nate system right-handed, and a, 8 are Euler angles in this reference frame. (b)
Fixed Cartesian channel-coordinate system with basis vectors X, ¥, and Z. Here
X is the stream-wise direction, ¥ the span-wise, and z the wall-normal direction
of the channel flow. The Euler angles are ¢ and 6.

A third aspect is the importance of slender fibre dynamics in industrial
applications. The discussion in this paragraph follows Ref. [2]. A paper
making machine uses paper pulp consisting of slender wood fibres suspended
in a liquid. This pulp is pushed through a headbox into a thin layer which
is further pressed and dried in order to make paper. The headbox serves
two functions: (1) a compressing flow causes the slender fibres to align with
the headbox wall, and thus with each other, and (2) turbulent fluctuations
that lead to a more uniform distribution of fibres. Both are important for
good quality paper. Thus for industrial applications it is interesting to study
alignment of axisymmetric particles.

This work uses Jeffery’s equations to model angular dynamics, both for
simulations and theory. An important aspect is the use of a two dimensional
toy model to understand the dynamics near the center of the channel. Near
the channel boundary, approximating the mean shear-rate to be much larger
than the magnitude of fluctuations of velocity-gradient matrix allow us to
use a simplified equation of motion to describe the angular dynamics.

The notation used here is shown in Fig. 7.1. Here, X, ¥, Z denote the stream-
wise, span-wise, and wall-normal directions of the turbulent channel flow.
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We use two of the three Euler angles ¢ and 6 in the flow-shear plane and out
of this plane, respectively. The third Euler angle describes how the particle
rotates around its axis of symmetry. This aspect is not considered. The vectors
€1, €3, &, denote the Lagrangian stretching direction, the Lagrangian con-
tracting direction and the middle eigenvector of the left Cauchy-Green matrix
M. In this coordinate frame, two of the three Euler angles are denoted by a
and .

The following sections present some results obtained in this study:.

7.1 Alignment with the Lagrangian stretching direction

In this section we argue that the dynamics of an infinitely thin rod precisely
follows the Lagrangian stretching direction in the long time limit. In Section
3.1 we discussed the left Cauchy-Green tensor. The Lagrangian stretching
direction e;; is the leading eigenvector of the left Cauchy-Green tensor. The
steady state dynamics of the Lagrangian stretching direction follows the
equation of motion [87],

de
—dil = AeLl — (e{lAeLl). (72)

Here A denotes the velocity-gradient matrix. First, this is the same as Jeffery’s
equation, Eq. (4.8), for A = 1. Second, the relative angle between e;; and an
infinitely slender rod always decreases, explained next. In two dimensions,
assuming white-noise fluctuations for the velocity gradients, the Lyapunov
exponent between an infinitely slender rod and the Lagrangian stretching
direction can be calculated, Eq. (7.6), and is given by A(*) = —4. In addition,
there is no mechanism for ejecting the relative angle away from zero. This
shows that in two dimensions with white-noise velocity gradient fluctuations
the relative angle between e;; and an infinitely slender rod exponentially
decreases. DNS of turbulent channel flow show that the relative angle de-
creases exponentially there as well and that in the long time limit e;; and an
infinitely slender rod align perfectly. Thus, in the steady state, the orientation
of an infinitely slender rod coincides with the Lagrangian stretching direction.
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7.2 Tumbling time for slender rods near channel bound-
ary

A slender rod advected near a turbulent channel boundary experiences a
strong shear component as well as small fluctuations. We discussed in Paper
B that the angular dynamics of this rod displays two qualitatively different
regimes: the deterministic regime corresponding to strong shear and the
stochastic regime corresponding to the effect of fluctuations close to alignment
with the stream-wise direction. The equation for the angle ¢, the Euler angle
in the flow shear plane, reads (Eq. 4.5 in paper B),

. s
¢ =—§(1—Ac052¢)+n¢. (7.3)

Here ny, = A, is white noise with mean zero and variance 2D. Fig. 7.2
shows some realizations of this process. The tumbling time for the rod, the
time required for ¢ to go from ¢ = /2 to ¢ =—m/2 is a random variable.
In order to understand the statistics of the first time the process exits the
interval (—m/2, /2], we compute the mean first exit time. For a theoretical
background on calculation of mean exit times, see Ref [32], also discussed in
Appendix of this work, and Appendix of Paper B.

In the Appendix of Paper B we presented an integral expression for the
mean exit time along with the lowest order asymptotics. In fact, using
a perturbation expansion it is possible to obtain the small and large 6 A
asymptotics to all orders, the result is presented in the Appendix.

The exit-time computed theoretically using a white-noise model matches
extremely well with that computed in DNS of turbulence, see Fig. 6(a) in
paper B. The reason is that near the channel boundary, the timescale of
angular dynamics of slender rods is much slower than timescale of velocity-
gradient fluctuations. This is precisely the white-noise approximation used in
the calculation.

7.3 Large excursions of relative angles and relative sepa-
rations

In this Section I discuss how the relative angular dynamics of two slender
rods relates to their relative separation dynamics.



LARGE EXCURSIONS OF RELATIVE ANGLES AND RELATIVE SEPARATIONS

NI

o[

Figure 7.2: The process ¢ defined by Eq. (7.3) for values of the parameters

D =0.01,s =20,A = 0.95. The dashed gray trajectories show typical behaviour.
The red and blue trajectories show two extremes with exit times smaller and

larger than the mean. The Figure is borrowed from my Licentiate thesis [62].

In the two dimensional toy model used for the center of the channel
flow, the equations of motion of the interparticle distance r (where r

r[cosfB3,sin 3]7 ) between two small inertia-less, neutrally buoyant particles
reads,

F =r(cos2f3S,, +sin2fS,).

(7.4)
From the above equation, it is possible to compute the finite time Lyapunov
exponent A" = fot dst,

t
A = J ds (cos2fS,, +sin2pS,.). (7.5)
0

Similarly, the finite time Lyapunov exponent for the relative angle a be-
tween two infinitely slender rods in two dimensions with angular orientations
¢ and ¢ + a reads,

t
AEO‘) = —Zf ds (cos2¢ Sy, +sin2¢S,,). (7.6)
0

The dynamics of the angle 8 in Eq. (7.5) and the angle ¢ in Eq. (7.6) are
described by Jeffery’s equation with A = 1. Thus we see that in the long-time
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limit, A = —22{. Similar conclusions hold for the dynamics near the
channel boundary. The Lyapunov exponent for the angular separations near
a channel boundary can be calculated to obtain

A9~ _oA(s2D)V/5. (7.7)

Except for the factor of —2A, this is the same as the Lyapunov exponent for
polymer elongation (and thus for particle separations) calculated in [88].
Thus, it seems that same quantities are responsible for large relative angles
and large spatial separations. The mean spatial Lyapunov exponent for tracer
particles is positive. Large negative fluctuations of the spatial finite time
Lyapunov exponents cause tracers to approach each other. The situation for
angular dynamics is reversed.

This relation between the spatial and angular Lyapunov exponents is a
consequence of the way in which the fluid velocity-gradient matrix appears
in both the equations of spatial and angular separations.

7.4 Distribution of relative angles between slender rods
and the Lagrangian stretching direction

The DNS of slender rods in turbulence in paper B showed that distributions
of relative angular separations between slender rods and the Lagrangian
stretching direction showed plateaus at small relative angles and power
law tails at large relative angles, both near the channel center and channel
boundary.

Near the channel center we used a two dimensional toy model to qualita-
tively explain this behaviour in terms of large excursions caused by multiplica-
tive amplification. Near the channel wall, however, the velocity-gradients
fluctuate much faster than the slender rod rotates. Thus, we used a white
noise model to predict exponents for the tails of the relative angle distribu-
tions,

P56, 191 < o) ~ 571K, 7.8)
P(5¢,1p1> $o) ~ 5 /M, (7.9)
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Here ¢ is the Euler angle in the flow-shear plane of the Lagrangian stretching
direction, 6 ¢ is the relative angle in the flow-shear plane between a slender
rod and the Lagrangian stretching direction, and ¢ is the mean value of
¢. Computations of joint distributions of ¢, d¢ in DNS by Zhiwen Cui [89]
suggest that the the exponent in the two regimes for slender rods A ~ 1 are
very nearly —2 and —1.5, respectively, showing excellent agreement with
theory.

Mathematically, the power-law tails in the distribution of relative sepa-
rations is a result of the scale invariance of the equations for motions for
relative angles much larger than 6 A.
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8 Collisions of charged droplets

In this chapter, I present the context for paper C, review the main results
presented there, and discuss their implications. The goal of this study was
to understand the dynamics of charged water droplets settling in quiescent
air. The most important difference to papers A and B is that this study takes
droplet interactions, both electrical and hydrodynamic, into account. The
model used in this Chapter is described in Section 4.3.2. The problem is com-
plicated by the myriad of competing effects that affect the droplet dynamics.
Qualitatively, hydrodynamic interactions tend to bend the trajectory of one
droplet around the other. On the other hand electrical forces are attractive for
oppositely charged droplets and cause the droplets to approach each other.
Both particle and fluid inertia allow droplets to detach from streamlines, and
thus approach closer than in the absence of inertia. On the other hand, un-
steady effects can cause a stronger hydrodynamic repulsion between droplets,
compared to creeping flow. Finally, when the distance between the droplets
surfaces is comparable to the mean free path of air, non-continuum effects
become important. In summary, how should one account for these various
effects?

8.1 Background and history of the problem

Historically, collisions of hydrodynamically interacting droplets have been
analysed using the collision efficiency [10]. Consider how the collision ef-
ficiency is defined using grazing trajectories in the simple case of droplets
settling under gravity. One starts from the equations of motion for the posi-
tions x; and velocities v; of the droplets i = 1, 2,

Xi =V (81)
. 1
V= RFi(xlaXZ:vlaVZ)' (8.2)

1

Due to hydrodynamic interactions, the forces F; are complicated functions
of the positions and velocities [11, 14]. Therefore, the above equations
are numerically integrated to find the grazing trajectory which delineates
collisions from no-collisions. The impact parameter of the grazing trajectory
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b, is used to compute the collision efficiency, E,

b2
= —° , 8.3
(a; +ay)? 83

where a; and a, are the radii of the two droplets. For comparison, in the
absence of interactions, the critical impact parameter leading to collisions
equals the sum of radii of two spheres, b. = a; + a,. This gives a collision
efficiency E = 1. Because hydrodynamic interactions cause one droplets
trajectory to bend around another, they reduce the impact parameter from its
value in the non-interacting case.

While the picture presented above is insufficient when the droplets expe-
rience a steady or turbulent background flow, a similar comparison can be
made in terms of the collision rate with hydrodynamic interactions, %Zy;, and
without it, %, [90],

g =2
Zo
This general definition allows to extend the idea of the collision efficiency
beyond the simple case of settling droplets. Yet, the key component is still
the grazing trajectory which differentiates collisions from no-collisions, at
least for steady background flows.

In summary, the collision efficiency allows to understand the effect of
any kind of interactions, regardless of whether they arise due to charges,
hydrodynamics or non-continuum effects, using a single numerical quantity:
the collision efficiency. However, the trajectory analysis employed to compute
the collision efficiency might miss important physical effects which allow or
prohibit collisions. While it allows a numerical quantification of the collision
efficiency, it fails to illuminate the physical mechanisms which give rise to
the observed collision efficiencies.

We took an alternative approach to analysing droplet collisions in paper
C. In order to understand the mechanisms which lead to collisions of charged
droplets settling in turbulence, we analysed the dynamics using dynamical
systems theory. The field of dynamical systems was born more than 100 years
ago as a tool to explain the motion of celestial bodies [91, 92]. Since then,
it has been applied with great success to explain the behaviour of various
physical systems [4, 73], chemical reactions [93], and biological processes
[94].

(8.4)
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8.2 Results

Using dynamical systems theory, we showed that the collision dynamics of
charged droplets were qualitatively different from neutral ones, in a way
that is mathematically well defined. Let us recap the mechanisms leading
to neutral droplet collisions: neutral droplets settling under gravity collide
because the breakdown of the continuum approximation at small interfacial
separations [69] allows them to touch [64]. In other words, the collisions of
neutral droplets are sensitive to strength of non-continuum effects, quantified
by the Knudsen number, defined in Section 4.3. The smaller the Knudsen
number, the stronger the hydrodynamic lubrication at small separations and
the smaller the collision efficiency.

By contrast, we found that collisions of charged droplets are determined
by stable manifolds of a saddle point. The saddle point in the dynamics
results due to a balance between differential settling and Coulomb attraction.
Differential settling tends to pull two differently-sized droplets apart, at long
times. Coulomb attraction, however, competes with differential settling and
tends to hold the droplets together giving rise to a fixed point in the relative
dynamics. This fixed point is a saddle, whose location depends upon the
relative strength of differential settling versus Coulomb attraction. The stable
manifold of this saddle point delineates collision from no-collisions.

An important effect of the dynamics described in the previous paragraph
is that it makes the collision outcomes independent of non-continuum effects
as long as the stable manifold of the saddle point is far from the collision
sphere. The reason is precisely that now the collision outcome is determined
not by a grazing trajectory but by a stable manifold. A grazing trajectory,
by definition, is tangential to the collision sphere upon contact and thus is
sensitive to dynamics infinitesimally close to the collision sphere. A stable
manifold, however, may occur arbitrarily far from the collision sphere, well
outside the continuum breakdown regime. In that case, the stable manifold
does not graze the collision sphere.
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9 Bifurcations in droplet collisions

In this chapter, I present the context for paper D, review the main results
presented there, and discuss their implications. In paper D, we explain the
collision rate of neutral droplets settling in a straining flow, first studied by
Dhanasekaran et al. [64]. The model used here is described in Section 4.3.1.
Hydrodynamic interactions to all orders are taken into account, in contrast to
paper C where only leading order effects were considered. Continuum break-
down at separations comparable to the mean free path of air is considered as
well [69]. On the other hand, electrical interactions, fluid inertia, particle
inertia, and unsteadiness are ignored. The non-dimensional parameter in the
problem is the non-dimensional settling velocity Q, defined in Section 5.3.

9.1 History of the problem

The collision rate for non-interacting droplets is described in Section 5.3. To
summarise, Saffman & Turner [17] showed that the collision rate increases
linearly with the strain rate in turbulent flows, indicating that the same scaling
should exist for pure straining flows. By contrast, when the droplet dynamics
is dominated by gravity, the strain-rate is proportional to the differential
settling-velocity. Between these two extreme cases, the collision rate interpo-
lates smoothly and monotonically as a function of non-dimensional settling
velocity Q.

Including hydrodynamic interactions, however, drastically changes the
collision rate in the intermediate regime between strain dominated and
settling dominated extremes, as shown by Dhanasekaran et al. [64]. The
collision rate in this regime shows two important properties. First, it is no
longer a monotonic function of the parameter Q. It exhibits a local maximum
and a local minimum in the intermediate regime. Second, the collision rate
no longer depends smoothly on Q, but shows sharp kinks at the maximum
and minimum values.

Hydrodynamic interactions modify not just the collision rate but also the
relative dynamics. The authors of Ref. [64] report that closed trajectories,
which start and end on the collision sphere, appear for a range of values of Q.
They explain that these closed trajectories give rise to the non-monotonic col-
lision rates mentioned above. In fact, several other studies such as Batchelor
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& Green [95] and Zeichner & Schowalter [96] have reported the existence
of closed trajectories in relative dynamics of hydrodynamically interacting
spherical particles. In particular, Ref. [96] related an observed decrease in
the collision rate to appearance of closed trajectories.

However, there are several open questions. First, no quantitative theory
exists which relates a decrease in collision rate to appearance of closed
trajectories. Second, the sharp kinks in the collision rate as a function of Q
are not understood, not even quantitatively. While the initial goal of paper D
was to explain these two observations using a dynamical systems analysis
similar to that performed in paper C, we could go much further and found
phenomenon in the relative dynamics which was not known before. The
detailed results are explained in the next Section.

9.2 Results

We explained the observed non-monotonic dependence of the collision rate
on Q, seen in Fig. 2(g) in paper D, using bifurcation analysis. We explained
the appearance of closed trajectories and showed that they cannot explain the
non-monotonic dependence of the collision rate. We found that the system
exhibits three qualitatively different kinds of bifurcations. First, smooth
bifurcations described by usual dynamical systems theory [73] occur at R > 2,
where R is the center-to-center distance of the droplets, dedimensionalised
by the mean droplet radius a = (a; + a,)/2 for two droplets with radii a,
and a,. Second, non-smooth bifurcations occur at the boundary R = 2.
The reason is that the mobility functions discussed in Section 4.3 are not
Lipschitz continuous at the boundary, R = 2, not even in the continuum
case Kn= 0. Lipschitz continuity for the velocity field is assumed even in
texts discussing non-smooth dynamical systems [97, 98]. No general theory
describing bifurcation of non-Lipschitz continuous dynamical systems exists.
Third, the existence of the boundary at R = 2 leads to grazing bifurcations,
not observed in smooth systems [98]. These bifurcations explain the observed
dependence of the collision rate on the parameter Q.

Surprisingly, we found that there exists a regime of Q where the steady-
state collision rate becomes independent of Kn, even for neutral droplets.
This is in contrast to the usual understanding that droplets cannot collide
in the continuum approximation [10, 16, 99, 100], from which one might
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conclude that the collision rate vanishes when Kn= 0. The mechanism that
causes this is similar to that discussed in paper C, described below.

We explain the mechanisms which determine collision outcomes, and how
they are affected by the bifurcations described above. At very small and very
large values of Q, collision outcomes are determined by grazing trajectories.
These are trajectories which stretch from R — o0 to the collision sphere
at R = 2, and are tangential to the collision sphere at the point of contact.
The grazing trajectory is sensitive to the dynamics close to R = 2, and thus
depends upon the Knudsen number. Consequently, the collision rate depends
upon the Knudsen number, through the grazing trajectory.

By contrast, there is an intermediate regime, where collision outcomes are
determined by a stable manifold stretching from a saddle point to R — oo.
In the model considered, and for this intermediate regime, both the saddle
point, and its stable manifold are far enough from the collision sphere so
that they are unaffected by the effects of continuum breakdown. Then, the
collision rate becomes non-zero and independent of the Knudsen number for
small Kn. This is surprising, because droplets cannot collide when Kn= 0
[10, 16,99, 100]. From this one may be tempted to conclude that the collision
rate vanishes as Kn — 0 [64, 65]. Our results, however, show that this is not
always the case.

Spatial clustering

For the model considered, in the regime Q > 7.88, there are two saddle points
at R > 2. These are labelled saddle points V and VI and are shown in Fig. 9.1.
A saddle point may lead to spatial clustering in its vicinity and on its unstable
manifold, if its stability exponents satisfy a certain condition. In paper D we
showed this by solving the steady-state continuity equation in the vicinity of
the saddle-point. Here I present a slightly different derivation. The continuity
equation has the formal solution,

t
P =P, exp (—J dsV - VS). (9.1)
0

Where the integral must be performed along particle trajectories. Near a
saddle point, using V-V, = A, + A_ we find P = Py exp[—(A, +A_)t].
Consider the dynamics close to saddle point VI in Fig. 9.1 whose stable
and unstable directions point along the R; and Rj axis, respectively. The
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-3 —2 -1 0 1 2 3

Figure 9.1: Logarithmic density of particle separations, log P(R), for Q = 8.1
and a;/a, = 0.9. Encircled red crosses show saddle points V and VI. The
unstable manifolds of saddle point VI show large densities. The green sphere
at the center shows the smaller droplet, while the dashed circle is the collision
sphere. The gray region cannot be reached by droplets approaching from afar.
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separation vector from the saddle point is denoted by (R;, dR3). Next we use
5R3 = 6R5 " exp(A_t) to eliminate t in Eq. (9.1) and find,

()
2
P~ 0R, . (9.2)
In summary, P diverges algebraically with exponent = —1 — % as 6R; — 0.

The above derivation allows to interpret the mechanism leading to a
divergent density not just close to the saddle point but also on its unstable
manifold. The reason is that the exponentially slow approach to 6R; =0
causes the integral in Eq. (9.1) to diverge.
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10 Conclusions

The most exciting aspect of this thesis, for me, was the realisation that the
collision dynamics of droplets can become independent of the Knudsen num-
ber (discussed in papers C and D), and that non-trivial fixed points can give
rise to clustering (paper D). First, these results were entirely unexpected for
me, after having spent the past couple of years going through the known
literature on collisions of droplets in fluids. Second, the results went beyond
the initial question we asked, both in scope and in applicability to models.
Despite the successes in the simple models considered, the most important
questions regarding these results is whether they survive a time-dependent
flow and their implications for experiments, discussed in the Outlook below.

A particularly satisfying aspect of the angular dynamics of slender rods
considered in paper B was the excellent agreement obtained between direct
numerical simulations and theoretical predictions using a statistical model
with rapidly fluctuating velocity gradients [30]. While several numerical
studies before us had discussed alignment between slender rods and the La-
grangian stretching direction in homogeneous isotropic turbulence, no theory
existed describing how this alignment depends upon the particle shape or on
the properties of the flow near boundaries. Near the channel wall, we could
obtain quantitative agreement with direct numerical simulations because
the timescale of angular dynamics was much slower than the timescale of
fluctuations of velocity gradients. Yet, several aspects remain unexplained,
see the Outlook below.

The relation between multifractal dimensions, Eq. (6.1), gives insight into
the rich mathematical structure underlying this simple model of dynamics
of particles in turbulence. Both Ref. [82] which came before paper A and
Ref. [84], which came after found relations similar to Eq. (6.1), at least in
certain regimes. While Ref. [82] considered dynamics of particles advected
in compressible flows in more than one dimension, Ref. [84] considered
inertial particles in one spatial dimension. This means that the dynamics
occurs in two-dimensional phase space. In those studies, the independence
of (g —1)D, from q seems to occur due to rare events where large number
of particles are concentrated in small volumes. This effect is captured by
trajectory crossings in our simple one-dimensional toy model. Despite the
mathematical successes, one must ask what the implications of these results
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are for experiments. This is discussed below.

11 Outlook

Fractal dimensions in the correlated random-walk model

The relation between the fractal dimensions, Eq. (6.1) is strictly valid only
when the separation between particles remains infinitesimally small. When
the Lyapunov exponent is positive, this relation is satisfied only when the
particles travel at small separations for long times. Fig. 5(b) in paper A
suggests that in order to observe Eq. (6.1) R < 10~®n, where 7 is the cor-
relation length of the flow. This observation has important implications for
the physical situation of particles in turbulent flows. Weakly inertial particles
in a turbulent flow separate exponentially with a rate given by the largest
Lyapunov exponent [101]. Moreover, in Nature, particles have a finite size
and hydrodynamic interactions are expected to become important at parti-
cle separations of the order 10xparticle radius. In typical experiments this
corresponds to about 0.1xthe correlation length of the flow [15, 24]. The
dynamics of hydrodynamically interacting particles is the subject of paper C
and paper D.

Angular dynamics of slender rods

The results obtained close to the channel boundary in paper B show quan-
titative agreement with DNS results. However, we analysed only the Euler
angles in the flow-shear plane, ¢. I expect that the exponent for P(0), the
distribution of the Euler angle out of the flow-shear plane can be computed
using the same method. The distribution of angles near the channel center
are qualitative because the analysis was performed in two dimensions for
the white-noise model. While this qualitatively described the power-laws
observed, it cannot predict the quantitative exponents. Such a quantitative
theory would require extending the theory to three dimension.

Finally, the angular dynamics in a slowly varying fluid velocity-field, the so
called persistent-flow limit [6, 102], are not understood. The persistent-flow
limit is interesting because fluid flows in homogeneous isotropic turbulence
exhibit Kubo numbers somewhat larger than unity [103].
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Effects of interactions on droplet dynamics

The dynamical systems analysis employed in Papers C and D worked because
the fluid flows in those problems are time independent. In paper D we
presented a mechanism which predicts a divergent pair-correlation function,
at least in the time independent case. The most important question is what are
the consequences of this divergent pair-probability for experiments. Recent
experiments by groups at Eindhoven University of Technology [24], and at
University at Buffalo [15] show that the pair-correlation function exhibits
values several orders of magnitude larger than those predicted by existing
theories. These theories do not account for hydrodynamic interactions at
separations of the order of a few droplet radii. The next step is to understand,
first by performing numerical simulations, if this divergent pair-probability
survives an average performed over fluctuating velocity-gradients.

The bifurcation analysis performed in paper D successfully explains the
collision rate when the external strain and gravity are aligned with each other.
The problem is degenerate due to rotational symmetry about the gravity axis.
However, preliminary model simulations show that the qualitative dynamics
remains the same for a small but non-zero misalignment between gravity
and strain. The collision rates for this case were computed by Ref. [64]. The
results show that the peak in the collision rate close to Q = 5.67 is replaced
by a minimum close to Q ~ 7. How this is explained using the dynamical
systems approach mentioned here is an open question.

The effect of electrical charges was considered in paper C. Water droplets
in warm rain clouds are known to carry small charges, about 100 electrons
for a 10 micron droplet [9]. In order to understand how these small charges
affect the collision rates, it is important to account for electrical forces at close
approach. Lekner [72] calculated the exact force between two conducting
spheres as a function of their separation. But one must ask, do the results
for conducting spheres apply to water droplets? The timescale 7, associated
to charge redistribution on a water droplet depends on the ratio of the
permittivity of water, ¢, to its electrical conductivity, o, 7, = ¢,,/0 [104].
The conductivity of water is higher in the presence of ionic impurities, but
even using the conductivity of pure water, it turns out that 7, ~ 1.4 x 107
sec. Comparing this to the particle relaxation time for relative dynamics,
T = a/v, for a 9 micron and a 10 micron droplet (so that the radius ratio
a,/a, = 0.9) gives, 7,/7 ~ 0.03 < 1. This indicates that charge on the
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droplets redistributes much faster than the droplet separation changes. Thus,
we conclude that the conducting sphere approximation holds. In the future,
we intend to include electrical forces described by Ref. [72] into the model
considered here, and study how this affects the collision rate.

How charges affect spatial clustering of particles in turbulence is only
understood for the case of small, non-hydrodynamically interacting particles
with large charges [105, 106, 107]. How this clustering is modified when
the charges are smaller so that hydrodynamic interactions become important
is not understood. The phase space picture presented in paper C might help
to understand how the pair-probability of separations behaves in the regime
where both charges and hydrodynamic interactions are important. This study
considered charges larger than those observed for thunderstorm droplets
[9], yet smaller than those considered by previous studies [105, 106, 107].
At the charges considered, neither the saddle point nor its stable manifold
passes through the non-continuum layer close to the collision sphere. At
small charges, the saddle point and its stable manifold may pass close to the
collision sphere causing collisions to depend upon the Knudsen number. How
the transition from the Knudsen independent, large charge regime to the
Knudsen dependent small charge regime occurs is an open question.

Finally, the dynamics of charged droplets in thunderstorm clouds involves
background electrical fields [ 12]. How the distributions of relative separations
of charged droplets change when a background electrical field is taken into
account is not known.
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PART IV
APPENDIX

A Exit times

Let a stochastic process x satisfy the Fokker-Planck equation,

op
E = ‘ZFPP; P(X, O|XO’ 0) = 5(X _XO), (A]-)
P(x, t|x0,0) = 0 if x € 5Q. (A.2)

So that we impose absorbing boundary conditions on the boundary 612 of the
domain Q. The probability that x has not reached the boundary 612 at time ¢
is given by f qdxP(x, t|xo,0), so that the cumulative distribution function
for the exit time p(t) reads,

p(t)= i(l—J dxP(x, t|xg,0)), (A.3)
at Q
=— dxiP(x t|xg,0) (A4)
N q Ot 0 '

The n—th moment of the first exit time, T, (xy) can be written,

Ty(x0) = f de t"p(t), (A.5)
(0]

:J de t"p(¢), (A.6)
0

:J dxp,(x,xq) (A.7)
Q

where p,(x,xq) = —fooo dt t”%P(x, t|xg,0). From applying the Fokker-
Planck operator to this expression one obtains the hierarchy of equations,
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"%FP(X)pl(X’ xO) = _5(X - XO)’ (A8)
.ng(X)pz(X, xO) = _p].(x’ XO): (A9)
Lrp(x)p3(x, xg) = —pa(x, x0),

(A.10)

here p,(x, x,) satisfy the same boundary conditions as the transition proba-
bility P(x, t|xg,0).

A.1 Mean tumbling time asymptotics

We start with the integral expression, Eq.(A17) in Appendix A, paper A,

ﬁlzé D\ [ 1 (3)%( )§5_A
T, = D (S—A) J dy —e \2
0 vy

% Al/3 y=y (A. 1 1)
Small 6 A asymptotics
First we change notation to simplify the expressions. Denote,
1 2
126 ( D\3
c= ki (—) (A.12)
D sA
1 2
d=(3)°(5)° x> (A13)
so that Eq. (A.11) reads,

* 1
T, = cf dy ﬁe—d“y—yg. (A.14)
0
to obtain,

2
Now 6 A K (%) 3 coresponds to d5A < 1. Thus we Taylor expand e~4°AY
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oo o0 _ n
T =cf dy Le—}’?’Zﬂyn’ (A.15)
0 JY o n!
oo _ n o0 1
:CZ@J dy y"2e (A.16)
—0 n: 0
o (—dSA)" 1 (2n+1)
= -T Al
>3 2 3 U 6 (A.17)
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