
Convolutions on graphs for
learning vehicle crash behaviour

Different methods to create graph embeddings

Master’s thesis in Computer science and engineering

Daniel Adin

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

ii

Master’s thesis 2021

Convolutions on graphs for
learning vehicle crash behaviour

Different methods to create graph embeddings

Daniel Adin

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Convolutions on graphs for learning vehicle crash behaviour
Different methods to create graph embeddings
Daniel Adin

© Daniel Adin, 2021.

Supervisor: Selpi Selpi, Department of Computer Science and Engineering
Advisor: Sandeep Shetty, Volvo Car Corporation
Examiner: Devdatt Dubhashi, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Description of the picture on the cover page (if applicable)

Typeset in LATEX
Gothenburg, Sweden 2021

v

Convolutions on graphs for learning vehicle crash behaviour
Different methods to create graph embeddings
DANIEL ADIN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Convolutional Neural Networks (CNN) have shown successful results in the recent
years, especially within the area of image analysis. The idea of learning to predict
the result of a crash simulation using machine learning rose from the analogy be-
tween images and Finite Element models (FE-models) used in crash simulations.
However, the data used when training a machine learning model using CNN needs
to be structured in a consistent way, as images are. FE-models however are repre-
sented as graphs and do not have the grid-like structure that images have and can
therefore not be directly processed using CNN. The purpose of this project was to
investigate the possibility to transform FE-models into image-like embeddings and
to use CNN to explore these embeddings.

Two graph convolutional methods were investigated for the creation of the em-
bedding. The first one was the Neural Graph Fingerprint (NGF) method suggested
in the literature for the original purpose of parsing molecular graphs. The second
one was developed during this project, called the FEMBEDDING method, and was
to parts inspired by NGF and the Graph Neural Network model that also has been
suggested in literature.

Three datasets of crash simulations with varying geometrical complexity were de-
veloped during the project. It is shown here that embeddings created by using both
methods can successfully be used to train a CNN and predict the outcome of the test
sets with a good level of accuracy already with only randomly initialized embedding
weights. The FEMBEDDING method made the embeddings richer in information
and performed consistently better than the NGF method. For the more geometri-
cal complex dataset it is shown that the value of the FEMBEDDING embeddings
increases with an increased neighbourhood depth taken into account while parsing
the the FE-graphs.

Keywords: Computer, science, computer science, engineering, graph, convolutions,
finite element method, project, thesis.

vi

Acknowledgements
Special thanks to my supervisors Selpi Selpi and Sandeep Shetty for their valuable
support during the work of this thesis.

Daniel Adin, Gothenburg, October 2021

viii

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Purpose and goals . 2
1.4 Related work . 2
1.5 Scope, limitations and ethical considerations 3

2 Theory 5
2.1 Crash simulations . 5

2.1.1 Pre-processing . 5
2.1.2 Simulation . 6
2.1.3 Post-processing . 6

2.2 Machine learning . 6
2.2.1 Machine learning basics . 6
2.2.2 Neural Networks . 7
2.2.3 Convolutional Neural Networks 8

2.3 Softmax . 10
2.4 Graph Theory . 10
2.5 Graph Based embeddings . 12

2.5.1 Neural Graph Fingerprint embeddings 12
2.5.2 Graph Neural Network embeddings 13

3 Methods and experiments 15
3.1 Properties of embeddings . 15
3.2 Algorithm for embeddings based on NGF 16
3.3 The FEMBEDDING algorithm . 17
3.4 Embedding analysis . 18
3.5 Creating embedding images . 21
3.6 Experiments . 21

3.6.1 Dataset 1 . 21
3.6.2 Dataset 2 . 24
3.6.3 Dataset 3 . 27
3.6.4 Data creation, extraction and pre-processing 30

xi

Contents

3.6.5 Training procedure and Network architecture 30
3.6.6 Hyperparameters for performed experiments 32
3.6.7 Software . 33

4 Results 35
4.1 Results using dataset 1 . 35
4.2 Results using dataset 2 . 36
4.3 Results using dataset 3 . 38

5 Conclusion 47
5.1 Discussion . 47
5.2 Future work . 48

Bibliography 49

xii

List of Figures

2.1 A square plate represented by nodes and elements. 5
2.2 Convolutional operation in neural networks 8
2.3 Max Pooling operation in neural networks 10
2.4 A simple FE-model with 8 nodes and 3 elements. 11
2.5 Molecular fingerprint algorithms. 13

3.1 Models for conceptual comparison. 19
3.2 Plots of embeddings for the conceptual models. 20
3.3 Loadcase definition of dataset 1. 22
3.4 Deformed state of a sample from dataset 1. 23
3.5 Target data as function of section side width. 24
3.6 Loadcase definition of dataset 2. 25
3.7 Deformed state of samples from dataset 2. 26
3.8 Target data as function of section curvature in dataset 2. 27
3.9 Loadcase definition of dataset 3. 28
3.10 Deformed state of samples from dataset 3. 29
3.11 Target data as function of section curvature in dataset 3. 30

4.1 Test loss as a function of neighbourhood size for dataset 1. 35
4.2 Test loss as a function of neighbourhood size for dataset 1 with dif-

ferent weight scales. 36
4.3 Test loss as a function of neighbourhood size for dataset 2. 37
4.4 Test loss as a function of neighbourhood size for dataset 2 with dif-

ferent weight scales. 37
4.5 Test loss as a function of neighbourhood size for dataset 3. 38
4.6 Test loss as a function of neighbourhood size for dataset 3 with dif-

ferent weight scales. 39
4.7 Histograms of target errors. 42
4.8 FEMBEDDING images from dataset 3. 43
4.9 CNN filter images from first CNN-layer with FEMBEDDING method

from dataset 3. 44
4.10 CNN feature map images from first CNN-layer with FEMBEDDING

method from dataset 3. 45
4.11 A 2D mesh and corresponding vertex feature values before and after

a mean message pass. 46

xiii

List of Figures

xiv

List of Tables

3.1 CNN architecture for dataset 1. 31
3.2 CNN architecture for dataset 2 and 3. 32
3.3 Experiments and hyperparameters. 33

4.1 Sample of the three most and least correctly predicted targets using
the FEMBEDDING method. 40

4.2 Test loss when evaluating models trained using different cost function
metrics. 41

4.3 Mean and standard deviation of target sample errors for different cost
function metrics. 41

xv

List of Tables

xvi

1
Introduction

1.1 Background
Feedforward Neural Networks (NNs) also called Multi Layered Perceptrons (MLPs)
have its roots in the perceptron algorithm invented already in 1958 by Frank Rosen-
blatt [1]. Early ambitions was to emulate the brain, hence the name. Recent years, a
special type of NN’s called Convolutional Neural Networks (CNN) have shown suc-
cessful results, especially within the area of image analysis. The idea of learning to
predict the result of a crash simulation using machine learning rose from the analogy
between images and Finite Element models (FE-models) used in crash simulations.
Images consist of pixels with corresponding RGB-values whereas FE-models consist
of elements with it’s properties. The data used when training a machine learning
model using CNN needs to be structured in a consistent way. An image is for exam-
ple a grid of pixels where each pixel is a feature with a value and have it’s specific
position in the grid. FE-models however are represented as graphs and do not have
this grid-like structure and can therefore not be directly processed using CNN. It
has been shown in literature [5] that if graphs are transformed into so called embed-
dings, meaningful information can successfully be extracted from these embeddings
in a downstream MLP, already with only randomly initialized weights, i.e without
actually training the weights used in the embeddings. The aim of the work in this
thesis project is to show that information can be extracted from FE-model embed-
dings in a downstream CNN and to investigate the value of different ways to create
these embeddings.

1.2 Motivation
The automotive industry is highly competitive, and successful companies are re-
quired to present attractive products at the right time. From a customer perspec-
tive, “attractive product” could refer to many things: price, design, safety, handling,
durability, usability etc.
In the area of vehicle safety, increasingly more of the safety development is done
through virtual testing, i.e. simulations. Physical testing is more characterized
by verification of a finalized product. However, even if the cost of simulating a
complete vehicle crash is a fraction of the cost of a physical crash test, it is still
both time consuming and costly. A finished car has gone through several thousand
complete vehicle crash simulations and each simulation takes 12-24 hours using
several hundreds of CPU-cores. A method that can reduce the response time of a

1

1. Introduction

crash simulation is the motivation behind this work.

1.3 Purpose and goals
The first aim of this project is to investigate the possibility to transform FE-model
graphs into image-like embeddings and use CNN to extract meaning from these
embeddings. The second aim of this project is to investigate different algorithms
to create the embeddings and their ability to express the underlying geometry of
FE-models and thereby their ability to predict the outcome of a crash event. The
long term goal of the idea at hand is to be able to reduce the time and resources
needed to reach the overall safety requirements in a vehicle development program
through the use of experience in terms of previously performed simulations. As an
example of incentive, optimization of complete vehicles is in practice impossible, due
to the needed resources and time to complete such a task.

1.4 Related work
In the bio-mechanical domain there are examples of usage of machine learning to
leverage the analysis speed to different Finite Element Analysis problems, for ex-
ample [23], [17] and [20]. Also in the area of material property predictions machine
learning is used, for example [24] and [14]. A few examples exists where the constitu-
tive properties are modeled, [15] and [18]. Articles that aim at predicting mechanical
behaviour using ML are [16] and [22]. However, in none of the aforementioned stud-
ies, the graph-based nature of FE-models have been addressed. Instead the models
have been adjusted to match a pre-defined structures, e.g. the number of input
nodes/elements and its order is held constant for each sample and mapped to it’s
corresponding output variable.

In recent years deep learning on graphs have emerged as a new "hot" topic. With
reference to the success of CNNs within computer vision, there are many proposals
to capture this success but with graphs as underlying data structure. There are
two main tracks when pursuing the convolutional operation on graphs, Spectral
methods (for example [3] and [6]) and Spatial methods (for example [5], [4] and
[12]). In spectral methods filters are applied to the eigenmodes of the graph Fourier
transform. In spatial methods, local features in the graph are extracted through
propagation between neighboring vertices, so called message passing. When dealing
with 3D-shape analysis it has been suggested in literature that the spatial methods
are better choices [11].

The primary application area for graph embeddings is for classification of molecule
graphs [7, 5, 10, 9]. To the best of the author’s knowledge, there are no examples of
studies where the underlying graph data in FE-models have been explored in order
to predict the outcome of FE-simulations.

2

1. Introduction

1.5 Scope, limitations and ethical considerations
The datasets used in this project are quite simple and were created specifically for
the purpose of this project. The intention is not at this stage to capture all aspects
of a crash event but the focus lies in decoding the geometry into embeddings and to
extract meaning from these embeddings.

The following stake holders can be identified within the scope of this work:
• The data scientist (the author of this thesis)
• The University of Gothenburg
• Volvo Cars Corporation

It is hard to see any ethical implications in any way at this stage for any of the
stakeholders. A question could perhaps be raised asking why customers of cars, or
other people in the traffic around a car produced by VCC, are excluded as stakehold-
ers. The reason for this is that the data used in this project is uniquely produced
for the purpose of this project. It is not directly connected to the product sold to
customers and therefore not an issue for now. Outside the scope this work, consid-
erations could perhaps be made taking the probabilistic nature of machine learning
into account and how this could affect the safety of the vehicle that is developed
using these kind of methods. However, once the optimum design is found using a
probabilistic model, the deterministic model could of course be used for validation
purposes.

3

1. Introduction

4

2
Theory

2.1 Crash simulations
Crash simulations are performed using the Finite Element method (FE-method). In
this section the different parts of this process will be briefly described.

2.1.1 Pre-processing
The process of building an FE-model ready to be simulated is called pre-processing.
There are many things to consider when building an FE-model for predicting crash
events. There are large deformations, the material ruptures and parts that are in
contact with each other. All these properties needs to be captured in the model.
The model needs also to be prepared for which type of solver that will be used and
what type of computer resources that we have at hand.
A physical object can be arbitrary complex in shape. The FE-model discretize this
shape into a finite number of nodes and elements. The process of discretizing the
physical object is called meshing and usually include some kind of pre-processing of
the geometry. In Figure 2.1 an example can be seen, where the middle surface is
first extracted from the geometry and the resulting surface is meshed with elements
of constant thickness.

Figure 2.1: A square plate represented by nodes and elements.

The nodes carry the spatial information (x, y and z coordinates) while the elements
carry information of constitutive relations, i.e. how the elements respond to forces
acting on it. Groups of connected elements with the same constitutive relations
are grouped together into parts. The parts can in that way be collectively assigned
information as material data, thickness, element type etc.

5

2. Theory

2.1.2 Simulation
When simulating the FE-model that has been built a solver is used. A crash event is
dynamic (large inertia) and transient (short pulse or initial velocity). The solution
to the problem formulated by the FE-model can be obtained through numerical
integration of the equations of motion. For crash events this is usually done by
a solver using the explicit time integration method where the nodal displacement
for the next time step is a function of previous nodal displacement and derivatives
thereof.

2.1.3 Post-processing
The process to analyze the results of a FE-simulation is called post-processing.
Results in the form of deformations, stresses or accelerations are analyzed and com-
pared with requirements. Models of passengers, so called dummies, are also anal-
ysed. Loads, accelerations and deflections of the dummy-body are analysed and
compared with requirements thereof. Since an FE-model of a complete vehicle is a
very complex model, it can be hard to understand exactly why a certain result is
received. Experience plays an important role in terms of trying out efficient coun-
termeasures to improve a result.

2.2 Machine learning
In this section the Machine Learning (ML) methods used in this project is described.
There are many ML methods to choose from. The reason behind choosing Neural
Networks as the main architectures to work with is because these can mimic non-
linear functions. Since crash events normally are non-linear in several aspects, this
seems like a natural choice. Convolutional Neural Networks are proven to be effi-
cient and have the ability to capture complex patterns which could be an attractive
property when parsing FE-models for information.

2.2.1 Machine learning basics
FE-analysis is a deterministic approach to make predictions about some field of
study. We gather all (important) circumstances and use an inferred model to make
the prediction. In contrast, ML is a probabilistic approach, i.e. we use prior knowl-
edge of how the circumstances were when a specific outcome was seen and assume
that the same outcome will occur if the circumstances are similar. Broadly speaking,
machine learning can be categorized into the following:

• Supervised learning: Learning a model how to map input data to an output.
• Unsupervised learning: Trying to find structure or patterns in the input and

group the occurrences so that similar samples are grouped together
• Reinforcement learning: The model interacts with a dynamic environment and

is adjusted so that it is continuously improved.
This study is in the area of supervised learning, where we have access to both
input, which in this case is the FE-model, and output that is the result of the

6

2. Theory

FEM-simulation. Supervised learning can be further categorized into the following:
• Classification: Learning a model to map the input to a label.
• Regression: Learning a model to map the input to real numbers

The problem at hand is a typical regression problem, where we strive to map a
certain input to real numbers. In the following method descriptions only supervised
regression will be considered.

2.2.2 Neural Networks
For this section inspiration has been taken from [8]. The idea of a Neural network is
to act as a function that maps some input X to an output y. The training data and
training process is used to shape this function to be able to generalize in a way that
when given an input it will produce an approximation ŷ of the true output y. The
approximation that is done during training is that the true input distribution and
true output distribution are replaced by a limited number of samples that represents
these true distributions. However, the larger (or more representative) this limited
number of samples is, the better is the approximation.
The network is built up by layers:

• input layer: X = [X1, X2, ..., XN]
• hidden layers: z[l] = W[l]a[l−1] + b[l], a[l] = σ(z[l]), l ∈ [1...M], and a[0] = X
• output layer: ŷ = a[M]

where X is a vector containing the input features of a sample, N is the number of
features, M is the number of hidden layers and ŷ is the predicted output from the
network. σ is a non-linear activation function. The most commonly used activation
function in modern neural networks is the Rectified Linear Unit, ReLU, that outputs
a zero output value for all negative inputs and equal to the input otherwise, i.e.
ReLU(z) = max{0, z}. The trainable parameters in the network are the weights
[W [1], ...,W [M]] and biases [b[1], ..., b[M]] and is summarized with the notation Θ,
hence the output from the network can be written

ŷ = f(Θ,X)

The error between the predicted output and the true output for a sample is called
loss, L(f(Θ,X), y). Since we want to achieve a model that performs well for all
samples in the training set, we formulate a function that accumulates the loss for
all samples, a so called cost function

J(Θ) = 1
m

m∑
i=1

L(f(Θ,X), y)

where m is the number of sample in the training set.
The most common cost function is probably the mean squared error, MSE:

J(Θ)MSE = 1
m

m∑
i=1

(f(Θ,X)− y)2

Other popular cost functions are the mean absolute error, MAE and the root mean
squared error, RMSE:

7

2. Theory

J(Θ)MAE = 1
m

m∑
i=1
|f(Θ,X)− y|

J(Θ)RMSE =
√√√√ 1
m

m∑
i=1

(f(Θ,X)− y)2

So, the target of the training of our model is to vary the trainable parameters in
such way that we minimize the cost:

Θ∗ = arg min
Θ

J(Θ)

During training, the cost function is optimized using Stochastic Gradient descent or
a variant thereof.

2.2.3 Convolutional Neural Networks
For this section inspiration has been taken from [8]. A convolutional neural network
is a neural network where one or more layers are convolutional layers. From a more
general mathematical point of view a convolution is mathematical operation (see
for example [25]) on two functions (f and g) that produces a third function (f*g)
that expresses how the shape of one is modified by the other. In deep learning a
convolutional operation is interpreted a bit more flexible. It is the sum of element
wise multiplication between a limited area of an input matrix and an equally sized
kernel matrix. This operation is repeated throughout the input matrix while striding
the kernel over the area of the input matrix (left to right, top to bottom). The
result from each element is placed in the corresponding place in an output matrix,
see Figure 2.2.

Figure 2.2: Convolutional operation in neural networks, image from [8]

8

2. Theory

A way to intuitively look upon the convolutional operation is that the convolution
compares the kernel with all the different areas in the input matrix. If a certain area
resembles the kernel, the response will be magnified in the output for this specific
position in the input. It should also be noted how the receptive field grows. One
element position in the output now represents 4 element positions in the input. If
one more layer is stacked sequentially after this one, one single position of an output
in the downstream layer will now represent 9 elements in the original input (the
third one 16, 4:th one 25 etc) assuming the same kernel-size. This way detailed
patterns of an input matrix can be associated with larger combinations of small
patterns and in the end mapped to a class/or regression value. This sense of details
is very attractive when it comes to FE-analysis and especially vehicle crash analysis.
Often small, subtle variations in the input FE-model can change the outcome quite
dramatically.
Almost all convolutional neural networks has also a layer called a pooling layer,
where the result from the convolutional layer is down sampled to reduce the number
of parameters. This has proven to be a efficiency increase that comes quite cheap
from a accuracy perspective. Different types of pooling layers exist, max-pooling,
mean-pooling etc.
The pooling is a kind of convolution as well, however this time we simply summarise
the elements in the kernel while striding. A popular choice is max-pooling of a
certain size and stride with the same size. This means that we will pick the largest
element in each kernel position to represent the down-sampled version of the input
as output, see example in Figure 2.3.

9

2. Theory

Figure 2.3: Max Pooling operation in neural networks, image from [26]

2.3 Softmax
The softmax function is used in all methods developed in this work and deserves a
separate description. It is defined as

σ(z) = ezi∑K
j=1 e

zj
(2.1)

where z = [z1, ..., zK] and i = 1, ..., K. The result is vector of same size but where
the sum of the elements in σ(z) is 1. The elements of σ(z) can now be interpreted
as the probability of belonging to one of K classes.

2.4 Graph Theory
In this section graph theory will be covered in the context of a FE-model. The
simple FE-model with 8 nodes and 3 elements will be used to exemplify the different

10

2. Theory

concepts.

Figure 2.4: A simple FE-model with 8 nodes and 3 elements.

A graph is a way to define relations between objects. It is defined as

G = (V,E) (2.2)

where
V = {v1, ..., vN} (2.3)

is the set of N vertices and

E = {e1, ..., eM}, em = (vi, vj),m ∈ (1,M), (i, j) ∈ (1, N) (2.4)

is the set of M edges connecting the vertices.
Notice that the order in which we assign the vertices to the set of vertices does not
matter and that, if the graph is undirected, each edge is defined in the direction of
each member vertice.
A convenient way to structure the connectivity that the edges represent is through
the adjacency matrix. To assemble the adjacency matrix we first decide upon an
(arbitrary) order of the vertices and form a vertex feature vector, X. In our sample
FE-model for example

X = [v1, v2, v3]T (2.5)

Now we can assemble the adjacency matrix, A of size (N × N), according to this
order. We indicate a connection with a 1 in the rows and columns where there is a
connection and a 0 otherwise:

A =

V ertices v1 v2 v3 v1 0 1 0
v2 1 0 1
v3 0 1 0

(2.6)

In order to explore the surroundings of the vertices in the graph the so called message
pass can be used. The sum message pass is the matrix multiplication of the adjacency
matrix and the vertex feature matrix:

MPsum = A×X =

0 1 0
1 0 1
0 1 0

×
v1
v2
v3

 =

 v2
v1 + v3
v2

 (2.7)

11

2. Theory

Notice how the feature of the explored vertex itself is excluded from the sum. If we
want to include the vertex we are exploring, we can add the identity matrix to the
adjacency matrix and we get the sum message pass with self-loops:

MPsum = (I + A)×X =

1 1 0
1 1 1
0 1 1

×
v1
v2
v3

 =

 v1 + v2
v1 + v2 + v3
v2 + v3

 (2.8)

Another central concept within graph theory is the degree matrix. It is defined as
the number of neighbours to each vertex positioned along the diagonal. This can
easily be derived from the adjacency matrix (with or without self-loops) by counting
the non-zero terms on each row and position them along the diagonal. The degree
matrix (including self-loops) in our example becomes:

D =

2 0 0
0 3 0
0 0 2

 (2.9)

Normalizing the adjacency matrix (with self-loops) with the degree matrix we get
Ans and we can use that to calculate the mean message pass, i.e. the average of the
features in the neighborhood of each vertex:

Ans = D−1 × (I + A) (2.10)

MPmean = Ans ×X =

1
2(v1 + v2)

1
3(v1 + v2 + v3)

1
2(v2 + v3)

 (2.11)

2.5 Graph Based embeddings
During the literature study of this project two concepts were chosen to be studied
more carefully in the project. In this section a brief summary of each of the concepts
is presented.

2.5.1 Neural Graph Fingerprint embeddings
Neural Graph Fingerprint (NGF) embeddings is based on the work of Duvenaud
et al. in [5]. The origin of this method was the ambition to replace an earlier
algorithm, the so called circular molecular fingerprint algorithm with an algorithm
that is trainable for specific purposes. The two algorithms can be seen in Figure
2.5.

12

2. Theory

Figure 2.5: Molecular fingerprint algorithms from [5] reprinted here with permis-
sion from David Duvenaud (via email).

The main idea was to use the algorithm for the circular fingerprint and to replace
each discrete operation with a differentiable analog. The sorting function is replaced
with a permutation invariant function, the hash function is replaced with a single
layer neural network and the modulo operation is replaced with a softmax function.
With all parts of the algorithm being differentiable, it is possible to do backpropaga-
tion, i.e. we can train the weights in the fingerprint algorithm for specific purposes.
For the specific implementation of the NGF method in this project, see Section 3.2.
NGF was an inspiration in the sense that only a limited number of layers needs to be
considered when designing the FEMBEDDING-method developed during the work
of this project, see Section 3.3.

2.5.2 Graph Neural Network embeddings
Graph Neural Network (GNN) embeddings is based on the work in [2]. Here a
transition function F calculates a vertex state ht based on the previous state.

ht = F (ht−1) (2.12)

An output function G produces an output ot based on the state.

ot = G(ht) (2.13)

The state is updated in a recurrent way until a fixed value is reached, hence the
transition function needs to fulfill certain conditions. According to the paper a
sufficient condition is if the transition function is a contraction map with respect to
the state, i.e. shrinks the distance between two points after applying the transition
function to them.
GNN was an inspiration in the sense that a contraction map function can be use-
ful when designing the FEMBEDDING-method developed during the work of this
project, see Section 3.3.

13

2. Theory

14

3
Methods and experiments

In this chapter the different methods and related experiments are described. The
Neural Graph Fingerprint method was specifically designed to parse information in
molecular graphs and can be trained for specific purposes but was shown to perform
already with randomly initialized weights in [5], i.e. a downstream Neural Network
could be trained based on the embeddings without actually modifying the weights
of the embeddings themselves. The Graph Neural Network (GNN) method is a
generic method and in some sense the origin of neural network on graph data. Both
the NGF method and the GNN method were used as inspiration when designing
the FEMBEDDING method described in this section. To set the methods into the
context of FE-models, the vertex feature vector X is the center of gravity for the N
elements in the FE-model, A is the corresponding adjacency matrix and Ans is the
normalised adjacency matrix as described in Section 2.4.

3.1 Properties of embeddings
During the development of the algorithms that create the embeddings a set of re-
quirements have been considered. These are

1. The embeddings from graphs of different sizes need to have fixed size in order
to be able to use them in a neural network.

2. The embedding needs to be invariant to the order of the input of the features,
i.e. how we order/renumber elements/nodes in the FE-model.

As a complement to these requirements a set of desired properties have also been
considered. These are

1. The embedding should be invariant to translations and rotations, i.e. moving
or rotating an FE-model in space should still give the same geometry encoding.
The motivation behind this property is that we strive to separate the geometry
encoding from the response to loads acting on the geometry. This would give
an increased generalization of the embedding.

2. Two embeddings should be similar if the FE-models represent similar physical
objects, i.e. element size should not matter.

3. The embeddings should pay attention to details, i.e. small variations that are
important to identify important events, should be present in the embedding.

15

3. Methods and experiments

3.2 Algorithm for embeddings based on NGF
The initial state can be written as

r0 = X ∈ RN,3 (3.1)

For each neighbourhood layer a message pass is performed to gather information
from the neighbours into a diffusion vector vl.

vl = A× rl−1 ∈ RN,3, l = (1, ..., L) (3.2)

where L is the number of neighbourhood layers considered. Here we can choose
whether to use the mean message pass or the sum message pass, i.e. whether the
adjacency matrix is normalised with the degree matrix or not, see Section 2.4. Both
variants are studied in this project.
The updated state is received by convolving the diffusion vector with a randomly
initialized hidden weight matrix Hl of size 3×3 and applying an activation function
σ to remove symmetries.

rl = σ(vl ×Hl) ∈ RN,3 (3.3)

The contribution from each neighbourhood layer is derived by convolving rl with a
randomly initialized output weight matrix Wl of size 3 × S and apply the softmax
function to the rows.

il = softmax(rl ×Wl) ∈ RN,S (3.4)

Here S is the length of the final embedding vector. The contribution from each layer
is calculated through a graph level pooling operation where we use a permutation
invariant function to summarise the output from all the vertices. This can be done
in several ways, but for simplicity and efficiency reasons summation is used in this
project.

il,pool =
N∑

n=1
il ∈ R1,S (3.5)

Finally we sum the contributions from all the layers to get the final embedding

embedding =
L∑

l=1
il,pool ∈ R1,S (3.6)

Algorithm 1 shows the pseudo code of the NGF method used in this project, based
on interpretation from [5].

16

3. Methods and experiments

Algorithm 1 Creation of NGF embeddings.
1: Input: Adjacency matrix A or Ans, coordinate vectorX, hidden weight matrices
H1, ..., HL, output weight matrices W1, ...,WL

2: Initialize: embedding vector embedding = 0, r0 = X
3: for l = 1...L do
4: vl = A× rl−1
5: rl = (vl ×Hl).relu()
6: il = (rl ×Wl).softmax(rows)
7: embedding = embedding + i.sum(columns)
8: end for

3.3 The FEMBEDDING algorithm
The FEMBEDDING method was developed during this project as an alternative
to the NGF method. Inspiration was found in the GNN-method in the sense that
it uses a transition function that is a contraction map. The calculation of center
of gravity is a function that fulfills the requirement as contraction map since an
expanding neighbourhood of an element will eventually contain the information
from all elements of the FE-model and consequently result in the center of gravity
for all elements in the FE-model. This means that the mean message pass described
in Section 2.4 is a candidate to be used in the creation of the embedding. Inspiration
was also found in the NGF-method since it seems we do not need to exhaust the
iterations to convergence in order to get a valuable embedding.
The initial state can be written as

h0 = X ∈ RN,3 (3.7)

and the update of the state can be written as

ht = Ans × ht−1 ∈ RN,3 (3.8)

where the mean message pass is applied as described in Section 2.4. The updated
state is simply the center of gravity for the increased neighbourhood.
To get an output that eventually will converge towards zero we can calculate the
difference between the current state and the last state,

difft = ht − ht−1 ∈ RN,3 (3.9)
where difft is the vector between the center of gravity between two differently sized
neighbourhoods.
The output from this state can now be formulated as

ot = σ(difft ×W) ∈ RN,S (3.10)
where σ is an activation function and W is the output weight matrix of size 3× S.
We sum the contributions from each iteration up to t = T

em =
T∑

t=0
ot ∈ RN,S (3.11)

17

3. Methods and experiments

The softmax function is applied to this sum in order to calculate the probability of
each vertex belonging to any of the S classes indicated by the output weight matrix.

classificationmatrix = softmax(em) ∈ RN,S (3.12)

The classification matrix now consists of N rows where the elements of the row sum
to 1.
The final embedding is calculated through a graph level pooling operation in the
same manner as for the NGF method.

embedding =
N∑

i=1
emi ∈ R1,S (3.13)

Algorithm 2 shows the pseudo code of the FEMBEDDING method developed in
this project, based on inspiration both from [2] and [5].

Algorithm 2 Creation of FEMBEDDINGs.
1: Input: Normalized adjacency matrix Ans, coordinate vector X, output weight

matrix W , number of iterations T
2: Initialize: embedding matrix em = 0, h0 = X
3: for t = 1...K do
4: ht = Ans × ht−1
5: difft = ht − ht−1
6: ot = (difft ×W).relu()
7: em = em+ ot

8: end for
9: classificationmatrix = em.softmax(rows)

10: embedding = classificationmatrix.sum(columns)

3.4 Embedding analysis
Both Algorithm 1 and Algorithm 2 fulfill requirement 1 due to that the algorithms
output a fixed size embedding vector independent of the size of the FE-model. Re-
quirement 2 is also fulfilled for both algorithms since all vertex features are combined
with all columns in the output weight matrices, the order in which this is done is
not of importance and the final embedding is the sum of all rows, hence permu-
tation invariant. In terms of the desired property 1 (invariant to translations and
rotations) the FEMBEDDING-method fulfill this property because in the algorithm
we convolve the difference between the center of gravity of 2 layers while it is not
fulfilled by the NGF-method since we convolve the absolute value of each layers
center of gravity. In order to judge how the desired properties 2 (insensitivity to
mesh) and 3 (attention to details) is fulfilled by the two algorithms, a set of small
FE-models was constructed to showcase these properties. In Figure 3.1 the models
are shown.

18

3. Methods and experiments

(a) Model0 (b) Model1

(c) Model2 (d) Model3

Figure 3.1: Models for conceptual comparison.

Model0 is a reference model. Model1 is geometrically identical as Model0 but with
a different mesh. Model2 has exactly the same mesh as Model1 except that a few
nodes have been moved a small distance. Model3 has exactly the same mesh as
Model2 except that one element is deleted.
Embeddings were created using Algorithms 1 and 2. In Figure 3.2 the embedding
value has been plotted in the order it appears in the embedding vector for the
different models and different number of layers taken into account in the embeddings.

19

3. Methods and experiments

Figure 3.2: Plots of embeddings for the conceptual models. The columns represent
the three embedding creation methods that is studied, NGF with sum message pass,
NGF with mean message pass and the FEMBEDDING method. The rows show
different number of layers included when creating the embeddings, 1, 2, 3, and 20
layers respectively.

From the plots in Figure 3.2 one conclusion is that both methods have problems to
create embeddings that are similar for FE-models that just have different meshes.
However it appears that in the FEMBEDDING method the error is reduced as more
layers are included when creating the embedding. Another conclusion is that the
NGF method does not seem to capture the small geometry change between Model1
and Model2, the curves are placed on top of each other, while there is a difference
between Model2 and Model3. The FEMBEDDING method seems to capture both
these differences, i.e. it appears it gives attention to details as geometrical changes
and holes.

20

3. Methods and experiments

3.5 Creating embedding images
In order to use convolutional neural network architectures, the embedding vectors
needs to be transformed to image-like structures, which is simply done by changing
the dimensionality of the embedding vectors. The dimensionality of the embeddings
are initially [1, S] where S is the length of the embedding vectors. The dimensionality
for an image-like structure is [C,W,H] where C = 1 is the number of channels and
W , H is the width and height of the image respectively. For the sake of simplicity
a design choice was to set W = H =

√
S. The notation of the width/height is

embedding image size.

3.6 Experiments
The experiments conducted in this project is done by first creating the embeddings
based on the methods described earlier. These embeddings are used when training
Convolutional Neural Networks to predict the target values. This is done for three
different datasets described below.

3.6.1 Dataset 1
A simple loadcase was setup in order to compare the different ways to create em-
beddings. The way this loadcase is defined can be seen in Figure 3.3. It consists of
a steel beam with wall thickness of 1.5mm with a square cross-section. The beam
is constrained in all directions in one end. The other end is also constrained except
for the axial direction. A rigid wall with a weight of 75 kg hits the beam axially in
this end with a velocity of 7.5m/s. The loadcase is simulated for 30 ms while the
traveling distance of the rigid wall and the load that acts upon the wall is registered.

21

3. Methods and experiments

Figure 3.3: Loadcase definition of dataset 1.

The width of the side was linearly varied between 20 and 80 mm. In total 1998
simulations was executed. In Figure 3.4 the deformed state of a sample from dataset
1 is shown.

22

3. Methods and experiments

Figure 3.4: Deformed state of a sample from dataset 1.

In Figure 3.5 the targets are plotted as a function of the section side width.

23

3. Methods and experiments

Figure 3.5: The studied target data maximum load, mean load and maximum
deformation respectively are plotted as function of cross-section width.

3.6.2 Dataset 2
The second dataset was setup to have a slightly increased complexity. The definition
of this dataset can be seen in Figure 3.6. It consists of a steel beam with wall
thickness of 1.5mm with a square or circular cross-section. The beam has a variable
curvature along its axis. The beam is constrained in all directions in one end. The
other end is also constrained except for the axial direction. A rigid wall with a
weight of 75 kg hits the beam axially in this end with a velocity of 10.0m/s. The
loadcase is simulated for 100 ms while the traveling distance of the rigid wall and
the load that acts upon the wall is registered.

24

3. Methods and experiments

Figure 3.6: Loadcase definition of dataset 2.

The width w of the side of the beam with a square cross-section was varied between
60 and 100 mm. The radius r of the beam with a circular cross-section was varied
between 30 and 50 mm. The curvature c of the beams was varied between 0 and
50 mm. In total 5000 simulations was executed. The resulting dataset consisted
of 4958 simulations because in 42 simulations, the kinetic energy had not reached
0 when the simulation reached the final time-step, hence these 42 simulations were
removed from the dataset. In Figure 3.7 the deformed state of two samples from
dataset 2 is shown.

25

3. Methods and experiments

Figure 3.7: Deformed state of samples from dataset 2.

In Figure 3.8 the targets are plotted for a quadratic section of width 80mm and a
circular section with radius 40mm as a function of the curvature.

26

3. Methods and experiments

Figure 3.8: Target data as function of curvature in dataset 2.

3.6.3 Dataset 3
The third dataset was setup to have an increased geometrical complexity. The
definition of this dataset can be seen in Figure 3.9. As in dataset 1 and dataset 2 it
consists of a steel beam with wall thickness of 1.5mm, 4 different section geometries
and a curvature along its axial direction. The beam is constrained in all directions
in one end. The other end is also constrained except for the axial direction. A
rigid wall with a weight of 75 kg hits the beam axially in this end with a velocity

27

3. Methods and experiments

of 10.0m/s. The loadcase is simulated for 100 ms while the traveling distance of the
rigid wall and the load that acts upon the wall is registered.

Figure 3.9: Loadcase definition of dataset 3.

The height h and width w of the side of the beams with rectangular sections were
varied between 50 and 100 mm. The radius r1 and r2 of the beam with an elliptic
cross-section was varied between 25 and 50 mm. The curvature c of the beams was
varied between 0 and 50 mm. In total 4000 simulations was executed. The resulting
dataset consisted of 3972 simulations because in 28 simulations, the kinetic energy
had not reached 0 when the simulation reached the final time-step, hence they were
removed from the dataset. In Figure 3.10 the deformed state of 4 samples from
dataset 3 is shown, one from each main section geometry layout.

28

3. Methods and experiments

Figure 3.10: Deformed state of samples from dataset 3.

In Figure 3.11 samples of the targets are plotted as function of the curvature for
rectangular sections with h = 80mm and w = 50mm. The corresponding elliptic
section had r1 = 40mm and r2 = 25mm.

29

3. Methods and experiments

Figure 3.11: Target data as function of curvature in dataset 3.

3.6.4 Data creation, extraction and pre-processing
Normally when working with FE-analyses a lot of the work is done manually or
partly with scripts. Since there was a need for many samples to train the models,
this was fully done through scripts. In total over 10000 models were built, simulated
and post-processed. To form the datasets, the geometry file for each simulation is
considered as the source of input to extract the vertex feature vector X from the
graph data. From the results of the simulations the values of the maximum load
ymax−load, mean load ymean−load and maximum deformation ymax−def were extracted
and chosen as target data during training and validation of the CNN models.

3.6.5 Training procedure and Network architecture
The general training procedure consists of the following steps:

• Split the data-set in training and test set. These sets are saved to disc and
reused for all embedding types. The training set is used to train the parameters
of the CNN model and the test set is used to validate the model performance
after training.

• The geometry files are pre-processed so that graph data and target data is
available for each sample.

30

3. Methods and experiments

• Embeddings are created from the graphs and saved to disc.
• The embeddings are normalized so the mean is 0 and the variance is 1.
• The CNN model is trained on the training data using a cost function that is

the sum of the cost functions related to each target value, i.e.

J(Θ)max−load = 1
m

m∑
i=1

(f(Θ,X)max−load − ymax−load)2 (3.14)

J(Θ)mean−load = 1
m

m∑
i=1

(f(Θ,X)mean−load − ymean−load)2 (3.15)

J(Θ)max−def = 1
m

m∑
i=1

(f(Θ,X)max−def − ymax−def)2 (3.16)

J(Θ) = J(Θ)max−load + J(Θ)mean−load + J(Θ)max−def (3.17)

where m is the number of samples in the training set. The training results in
a model where the parameters have values such that total cost is minimized,
i.e.

Θ∗ = arg min
Θ

J(Θ) (3.18)

• The trained model is evaluated using the test set, i.e. the total cost for the
samples in the test set is calculated.

For dataset 1 the embedding image size was chosen to be 8 and the corresponding
CNN architecture can be seen in Table 3.1.

Table 3.1: CNN architecture for dataset 1.

Layer no Layer type in channels out channels kernel size stride
1 2D CNN 1 16 (3,3) (1,1)
2 Batch Norm 16
3 ReLU activation
4 2D CNN 16 32 (3,3) (1,1)
5 Batch Norm 32
6 ReLU activation
7 2D CNN 32 64 (3,3) (1,1)
8 Batch Norm 64
9 ReLU activation
10 Flattening
11 Linear 256 128
12 Batch Norm 128
13 ReLU activation
11 Linear 128 3

For dataset 2 and 3 the embedding image size was chosen to be 16 and the corre-
sponding CNN architecture can be seen in Table 3.2.

31

3. Methods and experiments

Table 3.2: CNN architecture for dataset 2 and 3.

Layer no Layer type in channels out channels kernel size stride
1 2D CNN 1 16 (3,3) (1,1)
2 Batch Norm 16
3 ReLU activation
4 2D CNN 16 32 (3,3) (1,1)
5 Batch Norm 32
6 ReLU activation
7 Maxpool (2,2)
8 2D CNN 32 64 (3,3) (1,1)
9 Batch Norm 64
10 ReLU activation
11 2D CNN 64 128 (3,3) (1,1)
12 Batch Norm 128
13 ReLU activation
14 Flattening
15 Linear 512 256
16 Batch Norm 256
17 ReLU activation
18 Linear 256 128
19 Batch Norm 128
20 ReLU activation
21 Linear 128 3

3.6.6 Hyperparameters for performed experiments
During the experiments, the Adams optimizer was used. The initial learning rate
was 1e− 2. It turned out that the training could be performed efficiently with the
whole training set read into memory and that the convergence was the most effective
with the complete training set as batch size, i.e. so called batch gradient descent
was used. In Table 3.3 the different experiments and hyperparameters are shown.

32

3. Methods and experiments

Table 3.3: Experiments and hyperparameters (lr df/int = learning rate decay factor
and update interval, i.e. the learning rate is updated by multiplying with the decay
factor every stated interval, tlf = target loss function)

Dataset Layers lr df/int Epochs Trials Method tlf
1 1-10 0.9/50 2000 10 NGF smp MSE
1 1-10 0.9/50 2000 10 NGF mmp MSE
1 1-10 0.9/50 2000 10 FEMBEDDING MSE
2 1-10 0.9/50 2000 10 NGF mmp MSE
2 1-10 0.9/50 2000 10 FEMBEDDING MSE
3 1-10 0.95/50 3000 10 NGF mmp MSE
3 1-10 0.95/50 3000 10 FEMBEDDING MSE
3 10 0.95/50 3000 10 FEMBEDDING RMSE
3 10 0.95/50 3000 10 FEMBEDDING MAE

3.6.7 Software
PyTorch [13] was used as the main platform to train the CNN-models and some of
the functionality in PyTorch Geometric [19] was used for handling graph data.

33

3. Methods and experiments

34

4
Results

4.1 Results using dataset 1
Dataset 1 consisted of in total 1998 samples. The training set had 1598 samples
and the test set had 400 samples. In Figure 4.1 the average test loss of 10 tri-
als/embedding type has been plotted as a function of increasingly larger neighbour-
hood when creating the embeddings.

Figure 4.1: Test loss as a function of neighbourhood size for dataset 1.

As can be seen in the figure, the FEMBEDDING method has in general lower test
loss then the NGF method with sum message pass (smp) and NGF method with
mean message pass (mmp). It was indicated in [5] that the scale of the randomly
initialized weights had influence on the possibility to take advantage of the neigh-
bourhood size. The embeddings used in the results in Figure 4.1 had weights that
was initialized in the range [−0.5, 0.5]. In Figure 4.2 the weights were instead ini-
tialized in the range [−0.25, 0.25] and [−1.0, 1.0] respectively.

35

4. Results

Figure 4.2: Test loss as a function of neighbourhood size for dataset 1 with different
weight scales (left: [-0.25, 0.25], right: [-1.0, 1.0]).

From 4.2 we can see that the NGF smp consistently performed worse then the NGF
mean message pass, hence the other studies will be limited to NGF mmp. We can
also conclude that the FEMBEDDING method consistently performed better than
the NGF method and that the tendency to take advantage of the neighbourhood is
clearer for somewhat smaller weight scales. However, so far we can not draw the
conclusion that this overall leads to smaller average loss.

4.2 Results using dataset 2
Dataset 2 consisted of in total 4957 samples. The training set includes 3965 sam-
ples and the test set had 992 samples. In Figure 4.3 the average test loss of 10
trials/embedding type has been plotted as a function of increasingly larger neigh-
bourhood when creating the embeddings.

36

4. Results

Figure 4.3: Test loss as a function of neighbourhood size for dataset 2.

In Figure 4.4 the weights were initialized in the range [−0.25, 0.25] and [−1.0, 1.0]
respectively.

Figure 4.4: Test loss as a function of neighbourhood size for dataset 2 with different
weight scales (left: [-0.25, 0.25], right: [-1.0, 1.0]).

As can be seen in the figures, the loss levels are in general higher than for dataset 1.
Also for this slightly more complex dataset, embeddings from the FEMBEDDING
method showed to be more valuable and reach in general a lower loss level than the
NGF method. Furthermore it seems to take advantage of an increased neighbour-
hood depth for smaller weight scales as was the same for dataset 1. However the
lowest loss levels are roughly the same independent of neighbourhood depth. The
NGF method seems to show a value of increasing the neighbourhood depth for this

37

4. Results

dataset, but for a bit higher weight scales, i.e. not in line with the FEMBEDDING
method.

4.3 Results using dataset 3
Dataset 3 consisted of in total 3972 samples. The training set includes 3177 sam-
ples and the test set had 795 samples. In Figure 4.5 the average test loss of 10
trials/embedding type has been plotted as a function of increasingly larger neigh-
bourhood when creating the embeddings.

Figure 4.5: Test loss as a function of neighbourhood size for dataset 3.

In Figure 4.6 the weights were initialized in the range [−0.25, 0.25] and [−1.0, 1.0]
respectively.

38

4. Results

Figure 4.6: Test loss as a function of neighbourhood size for dataset 3 with different
weight scales (left: [-0.25, 0.25], right: [-1.0, 1.0]).

As can be seen in the figure, the loss levels are in general higher than for datasets
1 and 2. It seems that an increased complexity is making it harder for the models
to separate between different geometries. This might also be dependent on that
the embedding length is not large enough. The embedding length used for dataset
3 was 256 while the largest model to encode contained more than 6000 elements.
Again the FEMBEDDING method performs better than the NGF method and for
this dataset the FEMBEDDING method consistently show a benefit of including an
increased neighbourhood depth when creating the embeddings.
In Table 4.1 the three samples from the test sets in dataset 3 having the largest and
smallest error compared with the true value for each target are listed for the FEM-
BEDDING method where 10 neighbourhood hops was considered when creating the
embedding.

39

4. Results

Table 4.1: Sample of the three most and least correctly predicted targets using the
FEMBEDDING method.

Target Id True Predicted Error [%]
Max load section2_555 142.850998 142.849854 0.000801
Max load section2_990 170.145004 170.147644 0.001551
Max load section2_299 149.714996 149.712051 0.001967
Max load section4_102 69.113098 66.846153 3.280051
Max load section1_192 119.416000 115.011078 3.688720
Max load section1_41 92.486099 96.404068 4.236279
Mean load section1_709 9.839859 9.839802 0.000582
Mean load section1_354 20.143547 20.144085 0.002670
Mean load section4_720 9.771930 9.772328 0.004079
Mean load section1_632 23.376562 31.898949 36.456971
Mean load section1_812 17.404263 24.252714 39.349278
Mean load section4_102 7.403901 12.868861 73.811911
Max def section4_107 465.670013 465.677277 0.001560
Max def section4_329 456.589996 456.610687 0.004532
Max def section4_565 251.339996 251.366394 0.010503
Max def section4_94 85.945 114.159622 32.828696
Max def section4_373 75.209 101.327560 34.727973
Max def section1_912 94.777 140.206757 47.933313

From Table 4.1 we can see that the prediction of the maximum load seems to be
the easiest and that the prediction of the mean load and max deformation seems
harder.
In order to find out if there are other metrics then the MSE that could be used as
target cost function when training the models and possibly reduce the errors in the
test set, two other metrics were evaluated, namely the Mean Absolute Error (MAE)
and the Root Mean Squared Error (RMSE). 10 trials was done on dataset 3 using
the FEMBEDDING method with 10 neighbourhood hops included when creating
the embeddings. In Table 4.2 the result from this study can be seen.

40

4. Results

Table 4.2: Test loss when evaluating models trained using different cost function
metrics.

Trial MSE-loss MAE-loss RMSE-loss
1 48.26 5.38 10.52
2 54.73 5.66 10.32
3 51.97 5.28 10.22
4 57.53 5.49 10.35
5 65.60 5.56 10.35
6 51.43 6.05 10.35
7 48.32 5.50 10.02
8 54.89 5.73 10.59
9 56.73 5.69 10.15
10 55.18 5.35 9.85

Average: 54.46 5.57 10.27

From Table 4.2 we can see that in comparison with the square-root of the MSE
metric (to get the same units), the MAE metric in general gives a lower loss and
that the RMSE in general gives a higher loss. To get a better comparison the mean
and standard deviation of the sample error was calculated for the 10 trials and the
result can be seen in Table XX.

Table 4.3: Mean and standard deviation of target sample errors for different cost
function metrics.

Cost function Target Sample error Sample error
metric mean [%] standard deviation
MSE Max load 0.60 0.56
MAE Max load 0.42 0.50
RMSE Max load 0.41 0.42
MSE Mean load 5.38 6.17
MAE Mean load 4.25 5.57
RMSE Mean load 4.68 5.74
MSE Max def 3.02 4.20
MAE Max def 2.75 4.02
RMSE Max def 3.00 4.53

As can be seen in Table 4.3 the MAE metric perform better and has both lower
mean error and lower error standard deviation for the two targets having the largest
levels of error.
To get an idea of the error distribution for the three metrics sample histograms of
the sample error is shown in Figure 4.7 for the three targets.

41

4. Results

Figure 4.7: Histograms of target errors. The top row shows sample error distri-
bution of the maximum load predictions while the middle and last row show the
corresponding error distributions for the mean load and maximum deformation tar-
gets respectively.

From Figure 4.7 we can see that the vast majority of the samples in the test set
have errors less than 10% for any of the targets.
Since the embeddings has been treated as images in this project, a few different
embeddings using the FEMBEDDING method from dataset 3 are shown in Figure
4.8.

42

4. Results

(a) Section 1, sample 55. (b) Section 2, sample 55.

(c) Section 3, sample 55. (d) Section 4, sample 55.

Figure 4.8: FEMBEDDING images from dataset 3.

A closer look at these images reveals that there are patterns, however subtle. Notice
for example that the embedding image for Section 4 is in general darker then for
the rectangular section geometries. Also it seems that the images for section 2
and 3 have in general a few red/brown pixels that positioned more towards the
yellow/green colours. But what patterns are captured in the CNN for these images?
As an attempt to answer that question the trained filters from the first CNN-layer
has been plotted as images in Figure 4.9

43

4. Results

(a) Filter 0. (b) Filter 1. (c) Filter 2. (d) Filter 3.

(e) Filter 4. (f) Filter 5. (g) Filter 6. (h) Filter 7.

(i) Filter 8. (j) Filter 9. (k) Filter 10. (l) Filter 11.

(m) Filter 12. (n) Filter 13. (o) Filter 14. (p) Filter 15.

Figure 4.9: CNN filter images from first CNN-layer with FEMBEDDING method
from dataset 3.

What does the feature maps look like when applying these filters on an embedding
image? In Figure 4.10 the feature maps are plotted as images when the embedding
image from Section 1 sample 55 is passed through the first layer of the trained CNN.

44

4. Results

Figure 4.10: CNN feature map images from first CNN-layer with FEMBEDDING
method from dataset 3.

From Figure 4.9 and Figure 4.10 we can see that it is very hard for the human eye to
comprehend the complex patterns that the trained CNN use to predict result from
unseen embeddings.
For the FEMBEDDING method, the initial motivator to convolve the difference
between a neighbourhood and the next larger neighbourhood was that this will
eventually converge to a vector of zeros. However, it turns out that this seems to
be an efficient way of encoding geometry. Why is that the case? In Figure 4.11 an
attempt to explain this in a 2D geometry is shown.

45

4. Results

(a) A corner.

(b) A hole.

Figure 4.11: A 2D mesh and corresponding vertex feature values before and after
a mean message pass. The red arrows indicate how the vertex feature values have
changed between the states.

Notice how the vertex feature values change between states only for elements having
neighbours where the mean of the coordinate values is different from the coordinate
value of the element itself. Hence important details as holes and corners can be
detected using the FEMBEDDING method.

46

5
Conclusion

The purpose of this project was to investigate the possibility to transform FE-graphs
into image-like embeddings using only randomly initialized weights and to use Con-
volutional Neural Networks to explore these embeddings. Two graph convolutional
methods were investigated for the creation of embedding images from FE-model
graphs. The first one was the Neural Graph Fingerprint (NGF) method suggested
in [5] and the second one was developed during this project, called the FEMBED-
DING method, with inspiration from both [2] and [5].
From for example Figure 4.1, 4.3 and 4.5 we can see that the embeddings as created
in this project are valuable already with randomly initialized weights and that it is
possible to treat the embeddings as images and successfully train CNN’s using those
embedding images, i.e. with low test losses. From these Figures we can also draw
the conclusion that FEMBEDDING-method, as it was designed in this project, is
a better choice in comparison with the NGF-method when creating the embedding
images, since it consistently performed better than the NGF method. From Figure
4.5 and Figure 4.6 we can see that for the more geometrically complex dataset 3,
the FEMBEDDING method consistently show an increased value with increased
neighbourhood depth taken into account when creating the embeddings.

5.1 Discussion
The three datasets of crash simulations developed during the project had a varying
level of geometric complexity. As can be seen in Figure 4.1, 4.3 and 4.5 the general
loss levels for the test sets increase for datasets with increased geometric complexity.
This might indicate that for even larger geometric complexity it could be hard to
use embeddings of complete FE-models (as was the case in this project) without
training the weights of the embeddings.
An attempt was done to present the embeddings, filters and feature maps as images,
but it seems those images are very abstract and it is not meaningful to think of these
image-like embeddings as more than means to the usage of 2D CNN architecture
which in general has proven to be an efficient way of training a Neural Network.
In [5] it was shown that the value of the embeddings increase with increasingly
large neighbourhood taken into account when creating the embeddings. For the
datasets used in this project, this could not be clearly shown when applying the
NGF method, while there was a clearer tendency for the FEMBEDDING method.
For the less geometrically complex datasets 1 and 2 it seems that if the weights are
initialized with larger random values, less neighbourhood layers need to be included

47

5. Conclusion

when creating the embeddings. However, the lowest loss level seems to be roughly in
the same range independent of weight scale, hence a certain neighbourhood depth is
recommended. In general it seems that neighbourhood depth above 7-8 layers seems
to give very little improvements for the studied datasets.
In Table 4.3 the sample error mean and standard deviation were compared when
training using dataset 3 but with different metrics. It seems that the Mean Absolute
Error (also known as L1 Loss) is a better choice for a multi target cost function. It
appears that the most difficult targets to predict (mean load and max deformation
in this project) are handled in a better way and both the mean error and the error
standard deviation are improved when using MAE as metric.

5.2 Future work
In this project the embeddings were built up by summing layer wise contributions
from increasingly larger neighbourhood. It has been suggested in literature [21] that
these layer wise contributions instead could be concatenated. An idea worth inves-
tigating could be to evaluate this method in the setting of FE-models.
A natural next step on a principal level would probably be to include time depen-
dency but to predict the true dynamics of a crash, contact between parts would
also need to be predicted. Attempts were done on an early stage in this project
to split the FE-models in a predefined number of sub-models where the geometry
of the sub-models were encoded into an embedding while tracking the position of
each sub-model. Something similar could be of interest for a future study. In the
work at hand the purpose was to use only randomly initialized weights when creat-
ing the embeddings, but the result indicated that for more complex geometries, the
loss levels increase. In future work it could therefore be of interest to investigate
if training also the embedding weights would lead to improvements for these more
complex datasets.

48

Bibliography

[1] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Labora-
tory, 1957. url: https://books.google.se/books?id=P%5C_XGPgAACAAJ.

[2] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. “The
Graph Neural Network Model”. In: IEEE Transactions on Neural Networks
20 (2009), pp. 61–80. doi: 10.1109/TNN.2008.2005605.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral
Networks and Locally Connected Networks on Graphs”. In: (2014). arXiv:
1312.6203 [cs.LG].

[4] James Atwood and Don Towsley. “Diffusion-convolutional neural networks”.
In: arXiv preprint arXiv:1511.02136 (2015).

[5] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. “Convolutional Net-
works on Graphs for Learning Molecular Fingerprints”. In: Advances in Neural
Information Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M.
Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015. url: https:
//proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-
Paper.pdf.

[6] Mikael Henaff, Joan Bruna, and Yann LeCun. “Deep Convolutional Networks
on Graph-Structured Data”. In: (2015). arXiv: 1506.05163 [cs.LG].

[7] Hanjun Dai, Bo Dai, and Le Song. “Discriminative Embeddings of Latent
Variable Models for Structured Data”. In: Proceedings of The 33rd Interna-
tional Conference on Machine Learning. Ed. by Maria Florina Balcan and
Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research.
New York, New York, USA: PMLR, June 2016, pp. 2702–2711. url: http:
//proceedings.mlr.press/v48/daib16.html.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. url: http://www.deeplearningbook.org/.

[9] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Ri-
ley. “Molecular graph convolutions: moving beyond fingerprints”. In: Journal
of computer-aided molecular design 30.8 (2016), pp. 595–608.

[10] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning Con-
volutional Neural Networks for Graphs”. In: Proceedings of The 33rd Inter-
national Conference on Machine Learning. Ed. by Maria Florina Balcan and
Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research.
New York, New York, USA: PMLR, June 2016, pp. 2014–2023. url: http:
//proceedings.mlr.press/v48/niepert16.html.

49

https://books.google.se/books?id=P%5C_XGPgAACAAJ
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1312.6203
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://arxiv.org/abs/1506.05163
http://proceedings.mlr.press/v48/daib16.html
http://proceedings.mlr.press/v48/daib16.html
http://www.deeplearningbook.org/
http://proceedings.mlr.press/v48/niepert16.html
http://proceedings.mlr.press/v48/niepert16.html

Bibliography

[11] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. “Ge-
ometric Deep Learning: Going beyond Euclidean data”. In: IEEE Signal Pro-
cessing Magazine 34.4 (2017), pp. 18–42. doi: 10.1109/MSP.2017.2693418.

[12] Thomas N. Kipf and MaxWelling. “Semi-Supervised Classification with Graph
Convolutional Networks”. In: (2017). arXiv: 1609.02907 [cs.LG].

[13] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
“Automatic differentiation in PyTorch”. In: NIPS-W. 2017.

[14] Ivanna Baturynska, Oleksandr Semeniuta, and Kristian Martinsen. “Opti-
mization of Process Parameters for Powder Bed Fusion Additive Manufac-
turing by Combination of Machine Learning and Finite Element Method: A
Conceptual Framework”. In: Procedia CIRP 67 (2018). 11th CIRP Conference
on Intelligent Computation in Manufacturing Engineering, 19-21 July 2017,
Gulf of Naples, Italy, pp. 227–232. issn: 2212-8271. doi: https://doi.org/
10.1016/j.procir.2017.12.204. url: http://www.sciencedirect.com/
science/article/pii/S2212827117311484.

[15] Tom Gulikers. An Integrated Machine Learning and Finite Element Analysis
Framework, Applied to Composite Substructures including Damage. Dec. 2018.
url: http://resolver.tudelft.nl/uuid:615f2151-bcae-4e78-a2cb-
3f1891a28275.

[16] Oleksiy Kononenko and Iryna Kononenko. “Machine learning and finite ele-
ment method for physical systems modeling”. In: arXiv preprint arXiv:1801.07337
(2018).

[17] Liang Liang, Minliang Liu, Caitlin Martin, and Wei Sun. “A deep learning
approach to estimate stress distribution: a fast and accurate surrogate of
finite-element analysis”. In: Journal of The Royal Society Interface 15.138
(2018), p. 20170844. doi: 10 . 1098 / rsif . 2017 . 0844. eprint: https : / /
royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0844. url:
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.
0844.

[18] German Capuano. “Smart Finite Elements: An application of Machine Learn-
ing to Reduced-Order Modeling of Multi-Scale Problems”. PhD thesis. Georgia
Institute of Technology, 2019.

[19] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning with
PyTorch Geometric”. In: ICLR Workshop on Representation Learning on Graphs
and Manifolds. 2019.

[20] Ali Madani, Ahmed Bakhaty, Jiwon Kim, Yara Mubarak, and Mohammad
R. K. Mofrad. Bridging Finite Element and Machine Learning Modeling: Stress
Prediction of Arterial Walls in Atherosclerosis. 084502. May 2019. doi: 10.
1115/1.4043290. eprint: https://asmedigitalcollection.asme.org/
biomechanical/article- pdf/141/8/084502/6390325/bio_141_08\
_084502.pdf. url: https://doi.org/10.1115/1.4043290.

[21] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. “SIGN: Scalable Inception Graph Neural Net-
works”. In: (2020). arXiv: 2004.11198 [cs.LG].

50

https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1609.02907
https://doi.org/https://doi.org/10.1016/j.procir.2017.12.204
https://doi.org/https://doi.org/10.1016/j.procir.2017.12.204
http://www.sciencedirect.com/science/article/pii/S2212827117311484
http://www.sciencedirect.com/science/article/pii/S2212827117311484
http://resolver.tudelft.nl/uuid:615f2151-bcae-4e78-a2cb-3f1891a28275
http://resolver.tudelft.nl/uuid:615f2151-bcae-4e78-a2cb-3f1891a28275
https://doi.org/10.1098/rsif.2017.0844
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0844
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0844
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0844
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0844
https://doi.org/10.1115/1.4043290
https://doi.org/10.1115/1.4043290
https://asmedigitalcollection.asme.org/biomechanical/article-pdf/141/8/084502/6390325/bio_141_08_084502.pdf
https://asmedigitalcollection.asme.org/biomechanical/article-pdf/141/8/084502/6390325/bio_141_08_084502.pdf
https://asmedigitalcollection.asme.org/biomechanical/article-pdf/141/8/084502/6390325/bio_141_08_084502.pdf
https://doi.org/10.1115/1.4043290
https://arxiv.org/abs/2004.11198

Bibliography

[22] Zhenguo Nie, Haoliang Jiang, and Levent Burak Kara. “Stress field prediction
in cantilevered structures using convolutional neural networks”. In: Journal of
Computing and Information Science in Engineering 20.1 (2020).

[23] Oscar J. Pellicer-Valero, María José Rupérez, Sandra Martínez-Sanchis, and
José D. Martín-Guerrero. Real-time biomechanical modeling of the liver using
Machine Learning models trained on Finite Element Method simulations. 2020.
doi: https://doi.org/10.1016/j.eswa.2019.113083. url: http://www.
sciencedirect.com/science/article/pii/S0957417419308000.

[24] Biaojie Yan, Rui Gao, Pengchuang Liu, Pengcheng Zhang, and Liang Cheng.
“Optimization of thermal conductivity of UO2–Mo composite with continu-
ous Mo channel based on finite element method and machine learning”. In:
International Journal of Heat and Mass Transfer 159 (2020), p. 120067. issn:
0017-9310. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.
120067. url: http://www.sciencedirect.com/science/article/pii/
S0017931020330039.

[25] Convolution. https://en.wikipedia.org/wiki/Convolution. Accessed: 2020-11-
05.

[26] Mohit Deshpande. Introduction to Convolutional Neural Networks for Vision
Tasks. Accessed: 2020-11-05. url: https://pythonmachinelearning.pro/
introduction-to-convolutional-neural-networks-for-vision-tasks/.

51

https://doi.org/https://doi.org/10.1016/j.eswa.2019.113083
http://www.sciencedirect.com/science/article/pii/S0957417419308000
http://www.sciencedirect.com/science/article/pii/S0957417419308000
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.120067
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.120067
http://www.sciencedirect.com/science/article/pii/S0017931020330039
http://www.sciencedirect.com/science/article/pii/S0017931020330039
https://pythonmachinelearning.pro/introduction-to-convolutional-neural-networks-for-vision-tasks/
https://pythonmachinelearning.pro/introduction-to-convolutional-neural-networks-for-vision-tasks/

Bibliography

52

	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Purpose and goals
	Related work
	Scope, limitations and ethical considerations

	Theory
	Crash simulations
	Pre-processing
	Simulation
	Post-processing

	Machine learning
	Machine learning basics
	Neural Networks
	Convolutional Neural Networks

	Softmax
	Graph Theory
	Graph Based embeddings
	Neural Graph Fingerprint embeddings
	Graph Neural Network embeddings

	Methods and experiments
	Properties of embeddings
	Algorithm for embeddings based on NGF
	The FEMBEDDING algorithm
	Embedding analysis
	Creating embedding images
	Experiments
	Dataset 1
	Dataset 2
	Dataset 3
	Data creation, extraction and pre-processing
	Training procedure and Network architecture
	Hyperparameters for performed experiments
	Software

	Results
	Results using dataset 1
	Results using dataset 2
	Results using dataset 3

	Conclusion
	Discussion
	Future work

	Bibliography

