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Abstract

In this thesis we use a dynamic model to compute several margins required by

a central counterparty, the central clearing house (CCP), to the participants, called

clearing members (CM). These margins form the so called default waterfall. In this

market only credit default swaps (CDS) are exchanged. CDS are financial instruments

that work as an insurance against counterparties default. The CCP is the main infras-

tructure: it takes on counterparty credit risk between members and provides clearing

and settlement services in the trading activity. The first layer of the waterfall is the

variation margin (VM). It is defined as the value of a member’s portfolio in the previous

period (usually one day) and it is also needed for the next two layers computations.

The second layer is the initial margin (IM), which represents an added collateral for

market fluctuations and has a greater time horizon, equal to 5-10 days. The third layer

is the default fund (DF ). It represents the last margin of interest in this work and it is

used in order to cover losses deriving from defaults of one or more CM. This is the most

challenging margin because there is no consensus on the way it should be computed

and distributed among the members. Our final goal is focused on finding the optimal

DF/IM ratio for every CM. For the study we consider 8 CM and 4 CDS contracts.

First, we compute the values of the CDS contracts, that are subsequently pooled to-

gether composing the portfolios of the CM. The margins of the waterfall are computed

using dynamic time consistent risk measures and, in order to take into account the risk-

iness of the CDS contracts and CM, we extend the model of [Bielecki et al., 2018] to

the case of stochastic default intensities, in particular using Cox-Ingersoll-Ross (CIR)

processes. The results on DF/IM ratio for each CM suggest that our model is able to

scale appropriately the number of members and to take into account their riskiness.
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1 Introduction

The global financial crisis of 2007-08 is one of the main event of the recent history. It

brought down the GDP of several countries around the globe and people had been suffering

its effects several years after the official end.

On August 2007, the first signs of trouble were quite clear, with the housing prices that

started to fall after a huge increase in the earlier period.

On September 2008, the Lehman Brothers, the American fourth-largest investment bank

at that time, declared bankruptcy. This event represented the tip of the iceberg of a sick

financial system and had a huge impact also in the public opinion, considering that Lehman

Brothers’ bankruptcy was and remains the largest in U.S. history.

Meantime the Dow Jones Industrial Average (DJIA) was falling and, particularly, on Septem-

ber 29th, the index fell 777.68 points in intraday trading, the largest drop at that time. The

highest pre-recession peak was reached by the DJIA on October 9th 2007 and, by March 5th

2009, it had dropped more than 50%. The DJIA therefore had lost half of its total value in

only 18 months.

The financial instruments that caused the crisis where traded in the so called uncleared

over-the-counter (OTC) markets. OTC networks are markets in which participants trade se-

curities without the intermediation of a broker or a central exchange and have less stringent

regulation.

Moreover, OTC markets can be centrally cleared, namely a central authority brings together

supply and demand of securities and settles the trading activity between members and these

markets are then referred to as “cleared OTC markets”, in order to distinguish them from

the uncleared OTC case. Clearing is defined by the European Association of CCP Clearing

Houses as “the process of guaranteeing financial market transactions between the execution

of transaction and its settlement”. The settlement is the end of a transaction and takes

place when a security changes in ownership against a payment.

After the crisis, at Pittsburgh summit in 2009, G-20 leaders agreed that all standardised

derivatives contracts should be cleared through a central authority, named central clearing

counterparty (CCP), which is an infrastructure in the market that distributes the risk and

is responsible for netting 1 all the operations among the participants.

Moreover, several further reforms such as Dodd–Frank Wall Street Reform and Consumer

Protection Act., enacted in 2010, Basel III agreed in November 2010 and European Market

Infrastructure Regulation (EMIR) in 2012 have thereafter contributed to extend the regula-

tory system, in particular in the direction of fixing risk management standards.

1The activity of reducing transfers of funds to a net amount.
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The decision of imposing a CCP was due to the fact that the presence of a third party to

regulate better the trading activity was necessary, considering the crisis was triggered by the

financial system. The primary issue for regulators was to create a working and exhaustive

outline to ensure stability in the overall financial system.

The main actors in a centrally cleared OTC market are therefore the participants in

the trading activity, also called clearing members (CM), and the aforementioned CCP.

In a centrally cleared market, every contract between two counterparties (i.e. clearing mem-

bers) is replaced by two contracts between CCP and each counterparty. Hence CCP repre-

sents the pivotal infrastructure in the trading activity and acts as the buyer to every seller

and the seller to every buyer. In case of a member’s default, CCP activates the default

management procedure and uses the funds collected from all the clearing members in order

to avoid other defaults and keep the market working.

The goal of this thesis is to study the so called default waterfall for a CCP, that is the sequence

of funds that CCP uses to cover the loss resulting from the default of one or more clearing

members and to guarantee the stability and the efficient functioning of the market. In par-

ticular, the objective here is to quantify these funds under the relations presented below. In

this thesis we will work with and partly extend the CCP model in [Bielecki et al., 2018].

The variation margin (VM) is the first layer of the waterfall and is equal to the value of

member’s cleared portfolio of derivatives and it is daily transferred to the CCP.

When the VM is not sufficient to cover the losses at defaults, the initial margin (IM), posted

by the defaulted CMs, is used. The goal of the IM is to cover potential future market fluc-

tuations of the cleared derivatives over a horizon usually of 5/10 days.

If the IM is not enough to cover the losses at defaults, then the CCP draws from the default

fund (DF) which is aimed to cover potential losses in case of default of one or more mem-

bers. The DF is a loss mutualization tool where the survived clearing members share the

loss burden of the defaulted members, if the defaulted members’ VM, IM and DF do not

cover their losses. In a bilateral contract, the protection buyer is exposed to the protection

seller’s risk. The CCP, as central authority, groups all the resources of the sellers and makes

the losses from the default of an individual seller shared across all protection buyers if the

VM and IM of the defaulted clearing member do not cover the loss caused by CM.

Moreover, other two layers (that are not analyzed in this thesis) form the default waterfall,

namely the CCP equity (E), also known as “skin-in-the-game”, which is the amount pledged

by the CCP to cover losses, and the unfunded DF (uDF), that is additional amounts paid

by surviving members.
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The following scheme, taken from [Bielecki et al., 2018], summarises the default waterfall.

IM of the defaulted member(s) (IM)

⇓
(pre-funded) DF contribution of the defaulted member(s) (DF)

⇓
CCP equity, or skin-in-the-game (E)

⇓
(pre-funded) DF of the surviving members (DF)

⇓
Unfunded DF from the surviving members (uDF) and/or some additional capital from

CCP

Looking at the waterfall summarized above, we see that, in case of default, first the IM

and DF of the defaulting members are used and then, in case this amount is insufficient to

cover the total loss, also the surviving members’ DF are used.

At the writing moment, the DF represents the most problematic layer in the CCP lit-

erature, because there is not a common stand on how to compute it (see, for instance,

[Bielecki et al., 2018]). Moreover, there are other layers in the default waterfall, but they

will not be studied quantitatively in this thesis but will be mentioned later on for complete-

ness’ sake.

The computation of IM and DF are usually done by using the so called risk measures and in

this thesis, just as in [Bielecki et al., 2018], we will focus on consistent dynamic risk measures.

Risk measures are statistical measures that assign a value to a risk. Moreover, consistent

dynamic risk measures are measures that evaluate risk at different times and present the time

consistency property, that is the property of not having contradictory evaluations of risk at

different time points. Every risk measure presents attached a given significance level, usually

expressed in percentage, that indicates how sure we are about the value of risk obtained.

In order to compute IM and DF via risk measures, we need two significance levels, α and β,

respectively for IM and DF.

Concerning the financial instruments, we wil in this thesis, just as [Bielecki et al., 2018],

only consider credit default swap (CDS). A CDS is a credit derivative in which the seller

pays a certain amount the buyer in case of default of a reference entity, against a periodic

payment made by the buyer expressed as a percentage of a notional. These swaps gained

recently great popularity because of their role in the financial crisis of 2007-2008 and, from

then on, they have been remaining a trending topic in the financial literature.

In order to study the underlying CDS entity’s default time, we will use the reduced form
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model, that will be explained in Section 4 and such models will also be applied to the default

times of the CCP clearing members.

In this thesis we work with and partly extend the model of [Bielecki et al., 2018] to

a more realistic framework. [Bielecki et al., 2018] introduces a model where the default in-

tensities of the CDS are constant and clearing members default intensities are piecewise

constant and change according to the switching time of a Markov chain 2. In this thesis,

instead, we introduce stochastic default intensities to study both the default behaviour of

clearing members and CDS contracts. In particular in our case the default intensities are

modelled following a CIR process, which is a process belonging to the family of affine mod-

els, that allows for closed form representations of several important quantities, such as the

default probabilities and conditional default probabilities.

The choice of CIR processes is motivated by the fact that the hypothesis of constant in-

tensities is very simplistic, in particular for long time horizons. In order to model real life

riskiness, piecewise constant default intensities are often used as an approximation. In this

study, instead, default intensities change continuously and randomly in time.

Moreover, in order to take into account dependence among members’ default times, we con-

sider copulas, which are functions able to separate the marginal distributions to dependence

structure. More precisely, we use a one-factor Gaussian copula model, that will be analyzed

in the next sections.

In the section devoted to the numerical results, we conduct an extensive numerical anal-

ysis to confirm our theoretical findings and discuss the type of effects that can be caught

by our model. We compute VM, IM and DF and address the problem of the allocation of

DF among clearing members. As in [Bielecki et al., 2018], our final outcome of interest, that

summarizes the whole waterfall, is the DF/IM ratio and its behaviour depending on the risk

and the portfolio value of the members. The DF/IM ratios obtained change significantly

between the members, that present different riskiness, and therefore show the ability of our

model to take into account correctly the risk and to compute consistently the margins of the

default waterfall.

Apart from the main setting with 8 clearing members, we also consider the case of 4 and 6

clearing members and test robustness of our model by performing some sensitivity analysis.

The results attest that our model is able to scale appropriately the DF/IM ratio according

to the number of clearing members. The capability to scale the DF/IM ratio in an appro-

priate way is particularly important because a widely used methodology for computing DF,

2It is a memoryless process characterized by transitions from one state to another according to specific
probability rules.
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the Cover 1 /Cover 2 principle, is not able to do so.

For 8 clearing members, we consider different derivatives portfolios. Our study shows how

the ratio changes according to the composition of members’ portfolios. Moreover, some sen-

sitivity analysis on the significance levels α and β of the dynamic consistent risk measure

chosen is performed. Using three-dimensional bar charts, we see that the DF/IM ratio

increases significantly in case of α and β equal to 0.999%, while it remains quite flat in all

the other cases.

Structure of the Thesis

The rest of the thesis is structured as follows. Section 2 contains the literature review, in

which we present the previous studies made on the topic which we started from in order to

carry out the thesis. Section 3 explores the concepts we presented in the introduction and, in

particular, the notion of credit risk, CDS and its regulation, CCP and default waterfall are

expounded. Section 4 deals with the model used in order to perform the study, presenting the

theoretical context and its assumptions. First, the mathematics behind default intensities

is presented, then we introduce some starting assumptions and finally there are all the

formulas of the default waterfall. Section 5 shows the numerical analysis and it presents

more in detail the formulas and tools used to perform the research and primarily the results

of the thesis, with comments and arguments with the aim of understanding in detail the

topic under study. Section 5 highlights our extension of the model in [Bielecki et al., 2018]

in which CCP related calculations in a model not previously used in clearing contexts. More

specific, we use a model with stochastic default intensities, results of each layer of the default

waterfall are shown and some sensitivity analysis is performed.

Finally, Section 6 closes the thesis, mapping out some conclusions and trying to suggest

potential future developments in this research field.
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2 Literature Review

In this section we analyze the existing literature on the main topics of the thesis. We

divide the section in two parts, the first analyzes the literature about CCP and the related

topics, while the second focuses on risk measures and capital allocation 3.

2.1 Central Clearing, Counterparty Risk and

Margins

There is a huge branch of literature in credit risk on CCPs, since their regulation has

been changing a lot in the last few years.

[Cecchetti et al., 2009] is one of the key paper on the topic and was published immediately

after the first changes arising out of the financial crisis of 2007-08. It is one of the first papers

to detect the prospective role of CCP as stabilising factor in the financial system.

Among papers that date back to the first stage of the studies after the crisis, [Pirrong, 2009]

analyzes the effect of central clearing counterparties on the overall system, exploring pros

and cons and it concludes saying that the benefits of central clearing are sometimes lower

than costs.

In [Cont and Kokholm, 2012] there is a comparison between bilateral and multilateral net-

ting. In particular, over-the-counter trades are analyzed with respect to different asset

classes, with heterogeneous characteristics.

Other important papers on the effect of central clearing are [Pirrong, 2011], which gives

a general overview on the topic, [Amini et al., 2016], with a focus on systemic risk 4, and

[Faruqui et al., 2018], which particularly explores the CCP-bank nexus.

[Duffie and Zhu, 2011] compares non-centrally cleared vs centrally cleared OTC trading and

concludes that sometimes you need a lot more CM to make the centrally cleared OTC mar-

ket better than without a CCP. The impact of central clearing counterparties is studied also

in [Loon and Zhong, 2014], with a focus on the CDS market.

Margins required to the participants are studied, for instance, in [Nahai-Williamson et al., 2013],

where the authors concentrate on the resources a CCP should have to face possible mem-

bers’ defaults and the amount of initial margins and default fund in a stylised setting. In

particular, it is shown that, in case of low probability of clearing member i ’s default and

high volatility of the underlying asset, the initial margin is preferred, while, in the opposite

situation, that is an high member’s probability of default and low volatility of the asset, the

default fund is a better resource.

3Capital allocation is considered in our case as the process of distributing financial resources among the
clearing members participating in a centrally cleared market.

4It is the risk of a collapse of the system rather than of individual members.
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[Cumming and Noss, 2013] focuses on the same basic problems of [Nahai-Williamson et al., 2013]

and moreover proposes a “top-down” approach to assess the funds’ sizes, in contrast with

the common “bottom-up” stress testing for the clearing members in extreme but plausible

conditions, as is given in [Russo et al., 2013]. A specific detection of the Cover 1 /Cover 2

principle is made in [Murphy and Nahai-Williamson, 2014], where the authors specifically

study the CCP’s buffers and how the losses caused by defaulting members are allocated in

the overall system.

[Duffie et al., 2015] analyzes the impact of new clearing and margin regulations on collateral

demand, using group of bilateral CDS. The relation between new informations available and

potential default contagion between members is considered in [Biais et al., 2016], where the

authors focus in particular on the fact that bad news, increasing expected liabilities, can po-

tentially reduce risk-prevention incentives and therefore can cause instability, as mentioned

earlier in Section 2.1.

The main reference to our work is [Bielecki et al., 2018]. In this paper the authors introduce

a dynamic model to describe default waterfall for derivatives CCPs and develop a new risk

sensitive methodology for the evaluation of the IM and the DF based on consistent risk

measures.

Further recent researches on CCP can be found in e.g. [Heckinger et al., 2016], [McPartland et al., 2017]

and [Giulia et al., 2018], amongst others.

2.2 Risk Measures and Capital Allocation

Risk measures and their applications is a classical topic in quantitative finance. In

[Delbaen, 1998] the authors present market and non-market risks and introduce some risk

measures used to assess their magnitude in a static model. Later, [Delbaen, 2000] ex-

tends the previous paper’s field to a general probability space. Other important papers are

[Artzner et al., 2002], whose attention is on multiperiod risk measures and [Bielecki et al., 2017],

where the authors provide an overview on the time consistency property of dynamic risk and

performance measures. The latter extends the previous literature to a dynamic setup and is

aimed to adapting the measurements throughout time at the current information available.

Capital allocation is a major issue in risk management and is established by Basel accords 5

in finance and solvency agreements 6 in insurance. Other previous studies about Euler al-

location are provided in [Koyluoglu and Stoker, 2002], [Urban et al., 2004] and the book

5Group of accords issued by the Basel Committee on Banking Supervision (BCBS) concerning primarily
banking regulation. The last agreement, known as Basel III, was reached in November 2010 and its imple-
mentation has been extended repeatedly because of continuous new updates. The next implementation date
is scheduled for January 2022.

6Directives in European Union law aimed to harmonise and modernise rules used by EU insurance com-
panies. Known also as “Basel for insurers”, after a series of delays, its last version, Omnibus II Directive,
became effective on January 2016.
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[McNeil, 2005]. More recently, [Embrechts et al., 2017] study the problem of risk sharing

among participants by using a two parameter class of quantile 7 based risk measures.

7A quantile is a value that represents the division of a variable in a group of intervals.
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3 The Credit Risk Market and the Central Clearing

Counterparty

In this section, we introduce the elements which will be studied in the subsequent parts

of this thesis. In particular, the main attention is on the central counterparty and the so

called default waterfall.

The first two parts of the section are dedicated respectively to the credit risk framework,

its definition and classifications and then to an overview of the credit default swaps, the

financial instruments object of study. Then, a more detailed part about CCP is presented,

and the last subsection deals with the default waterfall framework and specifies all the funds

required to the clearing members.

3.1 Credit Risk

Credit risk is the risk that at least one counterpart involved in a financial transaction

fail to honour its obligation, for instance due to default (see, e.g. [Hull, 2017]). Whether

the contemporary measurement and management tools for credit risk turns out to be inap-

propriate is a pivotal concern for financial institutions and regulators, particularly after the

financial crisis of 2007-08.

According to [Schönbucher, 2003], we may distinguish four components of credit risk, that

are:

• Arrival Risk. The risk connected to whether or not the default happens in a given

interval.

• Timing Risk. The risk regarding when default occurs, given that the default happens.

• Recovery Risk. The risk related to the amount to be recovered at default.

• Default Dependency Risk. The risk of observing a cascade of defaults due to

financial relations among several obligors.

3.2 Credit Default Swaps

Nowadays, the most popular financial instrument used to cover for the risk of a coun-

terparty default is represented by the credit default swap (CDS). This instrument can be

seen as a form of insurance against counterparty’s default. In particular, a CDS is an agree-

ment between two counterparties, the protection buyer and the protection seller. Looking

at Figure 1, the protection buyer A has the right to sell the bonds issued by a company C,
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also called the reference entity, to the protection seller B for their face value, or notional

principal N , immediately after the default of the issuer, know as credit event, if the credit

event happens before the maturity T of the CDS contract. For this default protection A

pays a quarterly fee, called CDS spread R(T ), expressed in basis points (bps) of the notional

principal up to time T or until the credit event, whichever comes first.

Figure 1 and Figure 2, taken from [Herbertsson, 2019], illustrate the functioning of a CDS.

Figure 1: The structure of a CDS contract. Source: Herbertsson (2019)

The protection buyer A pays (quarterly) an amount equal to R(T )N
4

to B, who pays the

credit loss of N`, if default of the reference entity C occurs before time T .

Figure 2 illustrates the CDS cash flows due to the default of C at time τ , where τ < T .

B pays to A the amount that the defaulted reference entity is not able to repay to the

protection buyer.

Figure 2: Description of the flow in case of a credit event. Source: Herbertsson (2019)

If the default of C does not occur before the CDS, the spread is paid until the end of the

contract, at time T . Figure 1 and Figure 2 show the functioning of a CDS contract where

the CDS spread is paid quarterly. In the pricing of a CDS contract, we can also assume the

spread is paid continuously, as we will see in Section 4.3.1.
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For any time point t with 0 ≤ t ≤ T we define the value St of a CDS contract as the

difference between the present value of the protection leg (PV prott), that is the amount

paid by the protection buyer A, and the present value of the premium leg (PV premt),

namely the amount paid by the protection seller B in case of reference entity’s default.

Hence, St is given by

St = PV prott − PV premt.

Furthermore, the CDS spread R(T ) is determined so that S0 = 0, that is R(T ) is set so

that the expected present value of the cash flows between A and B are equal at the start of

the CDS contract.

With the great increase in their trading during the period 2001-2007, CDS became very

popular credit derivatives among investors and naked positions, namely the possession of

the CDS without the security to insure, were very common.

In the period concurrently with the financial crisis of 2007-2008, CDS were used mainly for

speculating. The chaotic increase of these financial instruments, their poor regulation and

inappropriate pricing models, which underestimated default probabilities and barely took

into account contagion costs in case of defaults, made the CDS one of the main responsible

of the economic collapse of 2007-08.

After the crisis, the market structure of the CDS changed rapidly due to the increasing im-

portance of the central counterparties, as shown by Figure 3, taken from the BIS Quarterly

Review of June 2018 ([Aldasoro and Ehlers, 2018]).

Figure 3: The outstanding gross-notional value of different OTC-derivatives traded via different
intermediaries for 2005-2017. Source: BIS Quarterly Review (June 2018)

Figure 3 shows the trend of the market share of CCPs in comparison with the inter-dealer
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trades as a percentage of the notional amounts outstanding, in the period 2005-2017.

3.2.1 CDS Regulation

We dedicate a specific section to the regulation of CDS, because of the huge impact it

had on the functioning of these swaps.

Since the credit default swaps are a type of OTC credit derivatives 8, they were initially

poorly regulated. After the financial crisis of 2007-2008 a lot of changes have been made

with the main goal to increase the stability and transparency of the CDS market. In March

2008, as argued by [White, 2013], the Working Group on Financial Markets outlined three

aspects to work on in order to make the market more efficient after the financial crisis. These

points are

• Trade compression. The goal is reducing the amount outstanding and use net

compensation among participants.

• Timely trade matching. In order to make the market faster, trade processing needs

to be reduced up to the trade date.

• Central clearing. The third goal is creating a centrally cleared market.

The Security and Exchange Commission (SEC) is the regulatory agency for securities

trading in USA, while in Europe, since 2011, there is the European Securities and Markets

Authority (ESMA).

In April 2009, one of the biggest change was made by CDS market participants that agreed

on standardize the contracts. The reform, also known as the “Big Bang”, was made by

the International Swaps and Derivatives Association (ISDA), that gathers into one all the

participants in OTC derivatives market. The Big Bang reform, as reported in [White, 2013],

standardized mainly three aspects, that are the legal effective date, the accrued interests

and the coupons. With the Big Bang, now the CDS contracts are traded with fixed spreads,

namely spreads set a priori and not decided by the market, equal to 100 or 500 bp in the

United States and 25, 100, 500 or 1000 bp in Europe. Therefore, an upfront payment, that

is the amount required to make the contract fair (CDS contract’s value equal to zero), is

paid and therefore the contracts’ offset is made easier.

3.3 The Central Clearing Counterparty

The central clearing counterparty, in short CCP, is a financial market infrastructure

(FMI) that takes on counterparty credit risk between parties in a transaction and provides

8Type of derivatives that enable to handle credit risk.
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clearing and settlement services for trades in foreign exchange, securities, options, and deriva-

tive contracts. As central institution, it is usually referred to be “the buyer to every seller

and the seller to every buyer”, as said in [Russo et al., 2013].

CCP also performs risk checking among members and it must guarantee the overall stability

of the system, preventing and managing the potential defaults among its members.

Our main focus is on the clearing and settlement activity of the CCP. In contrast with bilat-

eral netting, in which every party settles its own position singularly with the other members,

the CCP becomes the counterparty to both the buyer and the seller, and defines what is

required from each party to reduce counterparty credit risk and to guarantee the settlement

of the operation, even in case of defaults.

The number of members that a CCP manages varies a lot ; for example, as reported in

[Bielecki et al., 2018], we go from ICE Clear US, that handles 28 members, to OCC that has

more than 100.

Figure 4 focuses on the mentioned central role of CCP, which represents a connection point

for the OTC network. In particular it typically connects large financial institutions to each

other, which in turn have connections with the rest of the financial system, namely with

smaller firms and, finally, the end-users.

Figure 4: Bilateral v. Central Clearing. Source: Reserve Bank of Australia, Central Clearing of
OTC Derivatives in Australia (June 2011)

The conditions for having a centrally cleared transaction are listed in [Gregory, 2020] and

are summarized as follows:

• Standardisation. Products traded in the centrally cleared market must be standard-

ised, in order to have an easier management of transactions.

• Complexity. Centrally cleared transactions only apply to vanilla financial products,

which, citing [Gregory, 2020], are “easily and robustly valued”. Complex products

often cause problems in the margins calculations and make the overall system less

efficient.
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• Liquidity. Products must be liquid 9 in order to have exact pricing informations that

can be used for the required margins and also because liquid products can be more

efficiently replaced by the CCP in default scenarios.

• Wrong-way Risk. Centrally cleared products are not subject to wrong-way risk

(WWR), that is defined by the International Swaps and Derivatives Association (ISDA)

as the risk that arises whenever “exposure to a counterparty is adversely correlated

with the credit quality of that counterparty”.

• Market Volume. The market volume must always be high enough to let the central

institution work without losses in the product development process.

CCP has another important task, that is to require to the clearing members a given

amount of money, a collateral − whose relevance has increased since the financial crisis of

2007-08 − as a stability tool and an incentive to make the members behaving correctly. All

the members’ collaterals are pooled and controlled by the CCP, which in case of member de-

faults are used to absorb the loss among survived clearing members. Hence, central clearing

allows mutualization of counterparty risk, while margins provide incentives to avoid coun-

terparty risk. In particular, as stated in [Biais et al., 2016], margins are more worthwhile

than CCP’s equity capital, because they potentially eliminate moral hazard.

An important difference between central clearing counterparties and commercial banks is

the following: while commercial banks are mainly in the business of taking risks, CCPs are

in the business of sharing risks. As reported in [Faruqui et al., 2018], almost two thirds of

over-the-counter interest rate derivative contracts are now cleared through central counter-

parties.

3.4 Default Waterfall

The default waterfall, also known as loss waterfall, is a pivotal concept in central coun-

terparty risk management as it hopefully guarantees stability through capital requirements.

The default waterfall represents the sequence of funds that must be used to cover the loss

resulting from the default of one or more clearing members and it defines how counterparty

risk is allocated and managed.

The waterfall requirements, claimed to each member in the market, are generally set accord-

ing to the Basel Committee on Banking Supervision (BCBS) for Europe, while in US the

regulatory work follows the indications of Federal Reserve System (FED) or the Securities

and Exchange Commission (SEC).

9Liquid products are widely traded and therefore easily converted into cash.
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In the default waterfall there are several funds, used for absorbing losses from defaulted

clearing members, explained in [BCBS, 2014]. Here we summarize the mechanism.

The first two amounts which are used by the CCP in case of a member defaulting are the

variation margin (VM) and the initial margin (IM).

The VM is the daily margin account with the CCP and is equal to the mark-to-market 10

(MtM) of the open positions 11. The VM quantity is sometimes computed intraday, that is

several times during a trading day. The VM is used to cover everyday market fluctuations

of participants’ portfolios.

The next layer of resources available for the CCP in the default waterfall is the IM, whose

goal is to cover the risk exposure of the clearing members towards the central counterparty,

with a time horizon usually of 5 or 10 days 12.

Figure 5: How VM and IM are used by CCP. Source: Nahai-Williamson et al. (2013)

Figure 5 shows the relation between VM and IM. We see that in case of default, first the

loss is covered by the VM, while the IM, that enters in the waterfall in case the first margin

VM is not sufficient, covers the loss resulting from the fluctuation of the portfolio value in

the period between the default and the close-out point, namely the time when the portfolio

is liquidated.

The variation margin is notably required by the CCP to cover the portfolio’s net present

value (NPV) of the clearing members derivatives portfolios, which means that the variation

margin aims to cover the difference between the present value of the inflows and the out-

flows deriving from the specific portfolio of OTC-derivatives. In our specific case the only

OTC-derivatives will be CDS. The IM is added in order to cover for the potential exposure

of the CCP in the time period between the last VM is collected and the point at which the

10Method to measure security’s value over time by considering the current market price.
11An open position is a trade that has been established, but not closed yet.
12This time horizon is called margin period of risk (MPOR)
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CCP liquidates the defaulting member’s position, i.e. the close-out point (see Figure 5).

Another contribution is required to form the pre-funded default fund (DF), usually collected

every month. According to the Cover 1 /Cover 2 principle of the CPSS and IOSCO (see

[Russo et al., 2013]), DF is defined as the necessary amount to cover for the default of the

two members “that would potentially cause the largest aggregate credit exposure for the

CCP in extreme but plausible market conditions”.

Note that the pre-funded DF is usually defined in a qualitative way. As a matter of fact,

see [Ghamami, 2015], while VM and IM depend on the value of the underlying asset, the

pre-funded DF is often computed with an ad-hoc method based on a priori quantities.

Then, if VM and IM are not able to cover the total losses, there are other funds, the defaulter-

pay layers, that enter in the waterfall.

The pre-funded default fund contribution is paid by all clearing members while the so called

unfunded default fund (uDF ) contribution is only paid by the clearing members that still

are alive after all of the prefunded default funds have been wiped out.

Finally, there is the CCP’s equity contribution E, often referred as “skin-in-the-game” such

as in [Bielecki et al., 2018], as an incentive to use proper risk management, in which CCP

pledges usually 20-25% of its total equity value.

Figure 6 below shows a scheme of the margins and the likelihood of reaching the dif-

ferent layers of the waterfall.

Figure 6: Default waterfall and probabilities. Source: Faruqui et al. (2018)

In [Nahai-Williamson et al., 2013], the authors state that the IM is less collateral efficient

than the Default Fund, because of the way it is used by CCP. As a matter of fact, IM covers

only for the losses of the member that posts it, whereas the DF are pooled into a common

fund used to potentially absorb losses from all clearing members.
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4 A Stochastic Model for Central Cleaning Counter-

party

In this section we present the theory used for the default times in our CCP model, which

are modelled using so called reduced form models via so called default intensities. First, we

give a brief discussion of so called structural models and reduced form models.

4.1 Structured Models vs Reduced Form Models

In order to study entity’s default time, the literature proposes several models, which can

be grouped in structural models and reduced form models.

Concerning structural models, the central idea is that a default happens when the entity’s

assets value goes below a given threshold and therefore it is not able to pay back its debt.

Thus, the model provides an intuitive, endogenous explanation of the default. In this type

of models the asset value is typically represented by a diffusion process, which implies that

the default times are predictable.

In reduced form models, often called intensity based models, the default time is modeled

using an exogenous jump process 13 and in particular it is characterized by the use of so

called default intensities λ, representing the instantaneous “rate” default. In reduced form

models, the default time is a totally inaccessible random time, i.e. it is not predictable

because of its jump nature (see, e.g. [McNeil, 2005]). In this thesis we follow the reduced

form approach to describe the riskiness and default times of the CDS contracts and the

clearing members. Then we address the topic of default intensities, analyzing the case of

constant, deterministic and stochastic intensities. Then the dependence structure among

the clearing members’ default times is presented. Next we move to the starting assumptions

of our model, analyzing the CDS pricing formula and finally we present the mathematics

behind the default waterfall, dividing the margins of the waterfall in subsections.

4.2 Default Intensities

In this subsection we provide the construction of a default time according to the intensity

approach.

The notation used is taken from [Herbertsson, 2019] and follows the theory presented in

[Lando, 2004].

Let default intensity λt be a non-negative stochastic process, i.e. λt ≥ 0 for each t ≥ 0, and

13A type of stochastic process in which the changes between discrete states, called jumps, happen at
random arrival times.
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let the market information available at time t be represented by the σ-algebra 14 Ft 15. We

assume that

P[τ ∈ [t, t+ ∆t)| Ft] ≈ λt∆t, if τ > t, (1)

This condition implies that the default intensities λt models the rate of the conditional

probability of default in the time period [t, t+ ∆t), given that the default has not happened

up to time t.

Let (Xt)t≥0 be a d-dimensional stochastic process and assume that λt is of the form λt =

λ(Xt) for some non-negative function λ : Rd 7→ (0,∞).

Let E be an exponentially distributed random variable, with E[E] = 1, independent on the

process (Xt)t≥0. The default time τ is defined as

τ = inf

{
t ≥ 0 :

∫ t

0

λ(Xs) ds ≥ E

}
. (2)

The definition of τ in Equation (2) is called the canonical construction of a default time

and τ is thus the first time the integrated intensity process reaches the random level E.

Given the construction of τ in Equation (2), one can prove that

P [τ > t] = E[ exp (−
∫ ∞
0

λ(Xs) ds) ], (3)

see e.g. [Lando, 2004], [McNeil, 2005] or [Herbertsson, 2019].

The intensity based approach for default times is often used in the credit literature and in

the industry, as it has several advantages. In particular, the reduced form approach allows

to calibrate the parameters from the market, while the firm value approach requires several

firm’s values, such as assets value or total debt, usually hard to know and to compute regu-

larly.

In the following subsections, we will describe the intensity based approach under three dif-

ferent assumptions on the default intensities: constant, as done by [Bielecki et al., 2018] for

the CDS contracts, deterministic and stochastic default intensities.

4.2.1 Constant Default Intensities

We briefly describe here the setting of [Bielecki et al., 2018], under constant default in-

tensities λ. Under constant default intensities, the default time τ is given by

τ = inf { t ≥ 0 : λt ≥ E},
14A σ-algebra on a set X is a collection Σ of subsets of X that includes X itself, is closed under complement,

and is closed under countable unions.
15The filtration Ft represents the information available up to time t, generated by some stochastic process.
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which allows for a simple closed formula for the default time is available, that is

τ =
E

λ
.

For what concerns the default probability up to time t, the formula is

P(τ < t) = 1− exp (−λ t).

and we thus clearly see that in the case of constant default intensity λ for τ , then τ is

exponentially distributed with density fτ (t) given by fτ (t) = λ exp (−λ t) for t ≥ 0.

In the next subsection, we change the basic assumption, developing a more realistic environ-

ment through a deterministic function λ(t).

4.2.2 Deterministic Default Intensities

Before studying stochastic default intensities, we analyze an intermediate step, where

λ(t) is now a deterministic function of time t, where we write λ(t) to distinguish it from

the general stochastic process notation λt used in the general setup in Equation (1) and

Equation (2). Thus, Equation (2) can then be rephrased as

τ = inf

{
t ≥ 0 :

∫ t

0

λ(s) ds ≥ E

}
and, from Equation (3), the default probability up to time t is then given by

P(τ < t) = 1− exp(−
∫ t

0

λ(s) ds ). (4)

4.2.3 Default Intensities by a CIR Process

We next present the case with stochastic default intensities and we will focus on so called

CIR processes. Such CIR processes will in this thesis be used in order to simulate the

proceeding of the default intensities for the clearing members. Let the default intensities λt

be driven by the so called Cox-Ingersoll-Ross (CIR) model, which means that λt satisfies

dλt = κ(θ − λt)dt+ σv
√
λtdWt, (5)

where Wt in our case is a Brownian motion under the risk neutral measure P and κ, θ

and σv are all positive parameters.

The CIR process was first introduced in [Cox et al., 1985] and it is also known as a one

factor model, because its behaviour is described through one source of market risk only.

We consider the CIR model because of its property of being non-negative. The preference for
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the CIR model is straightforward since the intensities cannot be negative, because, referring

to Equation (1), it would mean that the probability of default is negative.

The parameter κ in Equation (5) represents the speed of the adjustment of the process

towards the central location or long term value θ and σv is the volatility.

Following [Broadie and Kaya, 2006], one can show that the process λt has a transition law

as follows

λt
d
=
σ2
v(1− e−k(t−u))

4k
χ2
d

(
4ke−k(t−u)

σ2
v(1− e−k(t−u))

λu

)
, (6)

where, given 4ke−k(t−u)

σ2
v(1−e−k(t−u))

λu = a, χ2
d(a) represents a noncentral chi-squared random vari-

able, with a as noncentrality parameter and d = 4θk/σ2
v degrees of freedom.

According to [Broadie and Kaya, 2006], given λu, λt is distributed as σ2
v(1−e−k(t−u))

4k
times a

noncentral chi-squared distribution with parameter d.

Moreover, the condition 2κθ > σ2 guarantees that λt stays strictly positive, see [Cox et al., 1985].

Equation (6) is very useful when one needs to simulate λt, since we can avoid more problem-

atic simulations of the intensities based on discretization of Equation (5), which for example

can lead to negative values of the approximation to λt. Such negative values will never

happen with Equation (6).

Let Ft be the total information available at time t, defined as

Ft = GWt
∨
Ht

where GWt = σ(Ws; s ≤ t) is the filtration generated by the Brownian motion (Ws)s≥0 up to

time t and

Ht = σ(1φ≤s; s ≤ t)

is the filtration generated by the indicator function 1φ≤s where we remind the reader that

for any event A then

1A =

1, if A happens;

0, if Ac happens.

Then, given the construction of τ in Equation (2), one can prove that for any T ≥ t, the

conditional survival probability P[τ > T |Ft] is given by

P[τ > T |Ft] = 1τ≥t E
[

exp

(
−
∫ T

t

λs ds

)
| GWt

]
, (7)
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see, for example, [Lando, 2004], [McNeil, 2005], [Bielecki and Rutkowski, 2013],

[Herbertsson, 2019].

Under a Cox-Ingersoll-Ross determination, one can prove that, see e.g. [McNeil, 2005],

E
[

exp

(
−
∫ T

t

λs ds

)
| GWt

]
= exp(A(t, T )−B(t, T )λt), (8)

where

A(t, T ) =
2κθ

σ2
v

ln

(
2γe(γ+κ)(T−t)/2

(γ + κ)(eγ (T−t) − 1) + 2γ

)
,

γ =
√
κ2 + 2σ2

v ,

B(t, T ) =
2(eγ (T−t) − 1)

(γ + κ)(eγ (T−t) − 1) + 2γ
.

By taking the expected value of Equation (8) and using Equation (7) and the law of

iterated expectations (see e.g [McNeil, 2005]), we immediately get

P[τ > T ] = exp(A(T )−B(T )λ0) , (9)

which provides the unconditional survival probability.

Note that the CIR is an affine process. An affine process is a stochastic process which has a

characteristic function to the integrated process which looks like Equation (8). For a detailed

analysis on affine processes, see [Duffie et al., 2000].

Starting from the CIR process just presented, we are able to construct the default times for

the clearing members. In particular, in the next section we present the topic of modelling

the members’ default times so that the dependence is taken into account.

4.3 Dependent Default Times

In order to take into account default dependence among members, we use the so called

one-factor Gaussian copula model. The notation and setup in this setting is taken from

[Herbertsson, 2019] and similar outlines can also be found e.g. in [McNeil, 2005].

Let Fi(t) be the default distribution of the i -th member so that Fi(t) = P[τi ≤ t].

Let Yi be a standard normal for each member i, namely with zero mean and unit variance,

and let Z be a standard normal independent of the variable Yi. Then, the random variable

Xi is defined as

Xi =
√
ρZ +

√
1− ρ Yi, (10)
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where ρ is a correlation coefficient and ρ ∈ [0, 1]. Next, the threshold Di(t) is introduced as

Di(t) = N−1(Fi(t)), (11)

namely the threshold is the inverse of the default distribution for the member i. Finally we

define the member’s default time τi as

τi = inf { t > 0 : Xi ≤ Di(t)} (12)

so the default times τi are constructed as the first time Di(t) exceeds the random level Xi.

It is important to say that this construction of default times is independent on the model

considered. In our case, the distribution Fi(t) will be given by the formulas presented in

Section 4.2.3, about the CIR process. From Equation (12) we have that

τi ≤ t⇐⇒ Xi ≤ Di(t)

and consequently

P[τi ≤ t] = P[Xi ≤ Di(t)].

In view of the construction of Di(t) in Equation (11), we have that

P[τi ≤ t] = P[Xi ≤ Di(t)]

= N(Di(t))

= N(N−1(Fi(t)))

= Fi(t)

and hence the construction of the default time τi is consistent with the marginal default

distribution considered. Recalling the definition of Xi in Equation (10) and the default time

in Equation (12), we have that

τi ≤ t⇐⇒ √ρZ +
√

1− ρ Yi ≤ Di(t)

which implies that the default time τi is driven by a common factor Z, that creates the

default dependence among members, and a specific factor Yi, unique for each member i.

Concluding this section, we see that, conditional on the aforementioned common factor Z,
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the default times τi are independent, namely

P[τ1 ≤ t, τ2 ≤ t, ... , τm ≤ t|Z] =
m∏
i=1

P[τi ≤ t |Z].

The default times τi are thus conditionally independent given the variable Z.

Using the setting presented in this subsection, we are able to construct default times so that

there is dependence between the clearing members.

4.4 CDS Pricing Formulas

In this section, we aim to compute the mark-to-market 16 (MtM) of the CDS contracts.

We study the CDS pricing formulas under three different assumptions on the default inten-

sities, namely constant, deterministic and stochastic intensities and in later sections CDS

formulas will be used in our numerical studies.

As presented in the sections above, we model the time of default using an intensity-based

approach and we first assume the default intensity is constant. Let Rec be the recovery rate,

namely the part of the notional is recovered in case of default, which is also assumed to be

constant.

The CDS spread is is given by some constant R(T ) which we will denote by R, i.e. R(T ) = R.

The discount factor β is assumed to be 1, therefore we have interest rates equal to zero, just

as in the numerical examples in [Bielecki et al., 2018].

The default time of the reference entity underlying the CDS is represented by φ. We define

the default indicator process by Ht = 1φ≤t, t ≥ 0 and H = (Ht, t ≥ 0) represents its natural

filtration. Recalling Section 3.2 about credit default swaps, the CDS value is the difference

between the present value of the protection leg (PV prott) and the present value of the pre-

mium leg (PV premt). We will consider CDS with continuous premium payments, as done

in [Bielecki et al., 2018], in contrast with the quarterly payments considered in Section 3.2.

Let the loss given default, i.e. the amount of money lost when the borrower defaults be

denoted by LGD = 1− Rec. Then, the general formula for the CDS value with continuous

premium payments is given by

PV prott = E[LGD1t<φ≤T | Ft] (13)

PV premt = E[(T ∧ φ− t)R1φ>t| Ft] (14)

St = PV prott − PV premt (15)

16The mark-to-market of a derivative contract is the net present value of the cash flows under the risk
neutral pricing measure discounted using current forward market interest rates.
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where we remind the reader that R(T ) = R is the CDS spread. Hence, in view of (13), (14)

and (15), we have that

St = E[ LGD1t<φ≤T − (T ∧ φ− t)R1φ>t| Ft] (16)

where, as in [Bielecki et al., 2018], we have used zero interest rates. We will consider

CDS with continuous premium payments, as done in [Bielecki et al., 2018], in contrast with

the quarterly payments considered in Section 3.2. Note that the assumption of continuous

premium payments leads to an analytical expression for PV premt that is more compact

compared with the case of quarterly payments. In real life, quarterly payments are used and

continuous payments are not used in trading and only exist in theory.

We here also remark that Equation (16) is a modified version of the corresponding CDS

formula (C.1) in Appendix C in [Bielecki et al., 2018]. More specific, in Equation (C.1)

in [Bielecki et al., 2018], the indicator function 1φ>t is missing, which is wrong, since the

premium payments are only done as long as the reference entity is alive at time t, that is as

long as φ > t. By construction of R = R(T ), it should hold that S0 = 0, that is, in view of

Equation (15), R is set so that

PV prot0 = PV prem0. (17)

Next note that in Equation (16), we have two sources of risks, that are the default process

and the Brownian motion, with filtrations H and G = (GWt , t ≥ 0) (recall the notation in

Equation (7) and the description of Ft, GWt and Ht). Still referring to Equation (16), in

the CDS evaluation the CDS spread R is assumed to be paid continuously, as done in

[Bielecki et al., 2018].

For constant and deterministic λ, the only source of risk is represented by the indicator

function 1φ>t. If the default intensities are constant or deterministic, filtration F coincides

with the natural filtration of the default process H, because there is no other source of risk.

Therefore we have

St = E[ LGD1t<φ≤T − (T ∧ φ− t)R(T )1φ>t| Ht] (18)

and recall that R(T ) is set so that S0 = 0 at time t = 0, that is

R(T ) =
LGD P[φ < T ]

E[min(T, φ)]
. (19)

In the case with constant default intensities one can derive a closed formula for St, see

in [Herbertsson, 2021a] and [Herbertsson, 2021b] so that
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St = LGD 1φ>t [1− e−λ(T−t)] − R(T )1φ>t

[
(λt+ 1)e−λt − e−λT

λe−λt
− t
]

(20)

and

R(T ) = LGDλ (21)

where the relation (21) is the so called “credit triangle”, connecting λ, R(T ) and LGD.

For details about the derivation of (20) and (21) see [Herbertsson, 2021a] and [Herbertsson, 2021b].

Note that letting t = 0 in Equation (20) together with Equation (21) give that S0 = 0, which

is in line with Equation (17). We here also remark that [Bielecki et al., 2018] in the con-

stant intensity case states a closed form expression for St, see in Equation (C.2) and (C.3)

in Appendix C. However, we note that their formula for S0 does not satisfy S0 = 0, where

we remind that 1φ>t is missing in Equation (C.1) in [Bielecki et al., 2018]. In fact, in the

constant intensity case λ(t) = λ, by using Equation (21), one can show that

PV prott = PV premt = 1φ>tLGD(1− e−λ(T−t)) for 0 ≤ t ≤ T (22)

and this in Equation (20) will then yield that

St = 0 for 0 ≤ t ≤ T (23)

in the constant default intensity case. For details, see [Herbertsson, 2021a] and [Herbertsson, 2021b].

Equation (23) can also be obtained by inserting Equation (21) into Equation (20) with some

trivial computations. In the case with general deterministic default intensities λ(t) one can

prove that St is given by, see [Herbertsson, 2021a] and [Herbertsson, 2021b], that

St = LGD 1φ>t [1−e
∫ T
t λ(s)ds]−R(T )1φ>t

[∫ T
t
sλ(s)e

∫ s
0 λ(u)duds+ T (1−

∫ T
0
λ(s)e

∫ s
0 )λ(u)duds

e
∫ t
0 λ(s)ds

− t

]
(24)

and

R(T ) =
LGD(1− e(−

∫ T
0 λ(s)ds))∫ T

0
sλ(s)e−

∫ u
0 λ(u)duds+ T (1−

∫ T
0
λ(s)e−

∫ s
0 λ(u)duds)

(25)

for more details, see [Herbertsson, 2021a] and [Herbertsson, 2021b].

Again, note that St in Equation (20) satisfies S0 = 0 which is in line with Equation (15).

Equation (16) will be used from now on for the computations of the MtM value of CDS

contracts.

31



4.5 The Default Waterfall

In the next section we aim to compute VM, IM, DF and its allocation. We now in-

troduce some further notation. The IM and VM are computed at discrete times T f =

{0, δf , 2δf , ..., T − δf}, with δf equal to one business day, while DF is computed according to

the discrete tenor t ∈ T F = {T0, T1, T2, ..., T −∆f} and where Tj = j∆f , with j = 0, 1, 2, ...

and with ∆f as a multiple of δf , is made to have 30 business days length. The MPOR δ

is the period during which, in case of member’s default, its portfolio is either liquidated or

auctioned. In our case we have δ = 10 business days.

4.5.1 Variation Margin

The VM of each member i at time tk is the mark-to-market (MtM) of the member’s

portfolio at time tk−1, i.e.

VM i
tk

= V i
tk−1

, (26)

for every k, where V i
tk−1

is the i -th member’s portfolio value at time tk−1.

In practice, only values above a specific threshold are transferred from the members to the

CCP. For the VM layer, computations are very straightforward and do not require further

reasoning. Numerical quantification of variation margins are explained in detail in Section

5.

Figure 7: Simulations of MtM. Source: Lomibao and Zhu (2005)

Following [Corelli, 2019], the fundamental steps for computing the portfolio value of

member i (and consequently VM i
tk

) are:

• Scenario Generation. Future market factors are simulated.

• Instrument Valuation. Based on the market values, instrument valuation is per-

formed for each date time and each simulation.
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• Portfolio Aggregation. All the instruments are pooled and the portfolio’s value Vi

is computed.

4.5.2 Initial Margin

The first amount to be computed is the net exposure of the CCP towards each clearing

member. The amount X i
tk

captures this quantity, subtracting to the portfolio value of

clearing member i the sum of possible dividends Di and the variation margin VM i, that is

X i
tk

= β−1tk βtk+δV
i
tk+δ

+ β−1tk

tk+δ∑
u=tk

βuD
i
u − VM i

tk
(27)

where all the factors β represent discount factors that in our case will be equal to 1, consid-

ering that we hypothesize zero interest rates, as pointed out in Section 4.4.

Then, according to [Acciaio and Penner, 2011] and [Bielecki et al., 2017], a coherent risk

measure 17 is applied to the outcome of Equation (27) and, finally, the initial margin is

computed, that is

IM i
tk

= ψtk(−(X i
tk

)+) (28)

where ψtk is the coherent risk measure aforementioned. We consider a time horizon of 10

business days for the initial margins’ computations.

Recalling the notation of [Bielecki et al., 2018], it is noteworthy focusing on the amount

attached to the risk measure ψ, i.e. the quantity −(X i
tk

)+. It means that, starting from the

CCP’s exposure, we consider only the losses in the distribution, namely the positive values

of X i
tk

, and then we change the sign, in order to have only negative values that represent the

loss for the CCP. That means we are interested in the distribution’s left tail of −(X i
tk

)+.

Expected Shortfall as Coherent Risk Measure Two of the most widely used risk

measures in practice, which are also suggested in Basel accords, are value at risk (VaR)

and Expected Shortfall (ES). VaR does not satisfy sub-additivity in general and hence is

not coherent. ES is obtained in a sense by averaging values at risk that exceed a certain

confidence level and it is well known to be coherent and hence applies to our scope.

17A risk measure is said to be coherent if, according to [Artzner et al., 1999], the following four properties
are satisfied:

• Monotonicity: for L1 ≤ L2, we have ρ(L1) ≤ ρ(L2)

• Sub-additivity: ρ(L1 + L2) ≤ ρ(L1) + ρ(L2)

• Positive homogeneity: ρ(aL) = aρ(L)

• Translation invariance: ρ(L+ a) = ρ(L) + a

33



Our goal is to provide an empirical evaluation of VaR and ES from data. To this we will

first need to estimate the empirical distribution of X and its α-quantile, qα

The empirical distribution is given by

Fn(x) =
1

n

n∑
k=1

1[Xk,∞)(x).

Hence, the VaR at level α is given by

qα(Fn) = inf{x ∈ R : Fn(x) ≥ α} = F←n (α),

where F←n (α) indicates the pseudo-inverse 18 of the empirical distribution of x.

Sorting the sample X1, ..., Xn from the highest to the lowest value, namely X1,n ≥ ... ≥ Xn,n,

the empirical α quantile is given by

qα(Fn) = X[n(1−α)]+1,n

which in turn implies that the empirical ES is given by

ÊSα(F ) =

∑[n(1−α)]+1
k=1 xk,n

[n(1− α)] + 1
.

4.5.3 Default Fund

In this section, we present the general framework for the total default fund’s computations

and next a specific part is dedicated to the allocation scheme.

The default fund is the amount formed by all members’ contributions via a mutualization

of the loss in order to prevent the default of one or more of the parties. The default fund

layer is aimed to cover only extreme losses and it is used only when the initial margin is not

sufficient. Figure 8 shows the dynamic elapsing the IM and the DF.

18Suppose f : A→ B is a function with range R. A function g : B → A is a pseudo-inverse of f if for all
b ∈ R, g(b) is a preimage of b.
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Figure 8: Relation between IM and DF. Source: Gregory (2020)

Looking at Figure 8, for small losses the IM is able to cover everything, while, in case of

higher, rarer losses, the DF enters in the waterfall. According to [Bielecki et al., 2018] the

exposure of the CCP towards the i -th member at time Tk, net of VM and IM is

EP i
Tk

= β−1Tk

Tk+1∑
tm=Tk+δf

(βtm+δ[V
i
tm+δ − V̂ i

tm+δ] +
tm+δ∑
u=tm

βuD
i
u

−βtm [VM i
tm + IM i

tm ])+1τi=tm

(29)

where V i
tm+δ − V̂ i

tm+δ in Equation (29) represents the actual portfolio value lost by the CCP,

considering that V̂ i
tm+δ = Rec V i

tm+δ, where Rec is the recovery rate. Furthermore, recall that

from the definition of discrete tenor t ∈ T F in Section 4.4, we know that EP , the exposure

just presented in Equation (29), is computed every Tk, namely 30 business days.

As stated in [Bielecki et al., 2018], in the current regulatory practice the exposure does not

take into account the possible amount recovered during the margin period of risk, therefore

we do not consider the recovery rate Rec in our study and hence the actual EP value is

EP i,reg
Tk

= β−1Tk

Tk+1∑
tm=Tk+δf

(βtm+δV
i
tm+δ − βtm(VM i

tm + IM i
tm))+1τi=tm . (30)

For the sake of simplicity, from now on, we will always refer to EP i,reg
Tk

as EP i
Tk

.

The values VM i
tm and IM i

tm are computed daily, and the indicator function 1τi=tm takes into

account the possible default of the clearing member i, namely it is equal to 1 in case the

default occurs and 0 otherwise. In particular, be reminded that member’s default time τi is

constructed according to Equation (12) and in general to the procedure explained in Section

4.3.

Following [Bielecki et al., 2018], all individual exposures EP i
Tk

are added together in order

to create the total exposure EPTk , whereby the total DF at time Tk is calculated, namely
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DFTk = ηTk(−
∑
i∈I

EP i
Tk

), (31)

where ηTk represents a coherent, dynamic time-consistent monetary risk measure, as in the

previous case with the initial margins.

4.5.4 Default Fund Allocation

[Bielecki et al., 2018] proposes an alternative criterion with respect to the classic practice,

which involves the allocation of the total default fund proportionally to the initial margins.

The problem is that, applying the risk measure ηTk to the single CMi, we would not satisfy

the full allocation property, which requires that the total amount of the default fund is

allocated among the clearing members and it must run out in the allocation. Put in other

words,

∑
i∈I

DF i
Tk

= DFTk .

Therefore we need a different allocation scheme than a simple application of a risk mea-

sure to all the EPis. The scheme proposed in [Bielecki et al., 2018] first assumes the following

representation for the risk measure η, namely

ηt(X) = ess supEQ[−X|Ft], (32)

where Ft is the available σ-algebra at time t, Q ∈ Q, Q is a set of probability measures

which are absolutely continuous with respect to P 19 and ess sup is the essential supremum

of EQ[−X|Ft]. It is clear that if we consider X instead of −X in Equation (32), we will

have an essential infimum. Essential infimum and essential supremum have basically the

same meaning of infimum and supremum in mathematics, but adapted to measure theory.

[Bielecki et al., 2018] next proposes that the allocation in the default fund is given by

ηTk(−
∑
i∈I

EP i
Tk

) = E[Z∗Tk

∑
i∈I

EP i
Tk
|FTk ].

Here Z∗ is the Radon-Nikodym derivative of Q∗ with respect to P , where Q∗ is the mea-

sure that provides the essential infimum, and hence we have Z∗Tk = dQ∗Tk/dP
20. Therefore,

according to the default fund allocation scheme, we have

19A probability measure Q is said to be absolutely continuous with respect to P if, for every event A ∈ Ft
such that P (A) = 0, then Q(A) = 0.

20Z∗ is a strictly positive martingale that provides the density of the measure Q∗ with respect to P .
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DFTk =
∑
i∈I

E[Z∗TkEP
i
Tk
|FTk ]

and for clearing member i, we then get

DF i
Tk

= E[Z∗TkEP
i
Tk
|FTk ]. (33)

The allocation rule presented above satisfies the full allocation property, that is

DFTk =
∑
i∈I

DF i
Tk
.

Radon-Nikodym Derivative for the Allocation We dedicate a specific paragraph to

the Radon-Nikodym derivative and how it is constructed in the model following the notation

and setup of [Bielecki et al., 2018]. The significance level is indicated as β. The martingale

Z∗ is given by

Z∗Tk =
1

β
(1XTk<q

±
β (X|FTk )

+ ε1XTk=q
±
β (X|FTk )

), (34)

where q±β (X|FTk) is the conditional upper/lower β quantile of X, that in our case is the loss,

at time Tk, which is the sample of the n simulations performed.

The quantity ε is equal to

ε =

0, if P (XTk = q±β (X|FTk)) = 0
β−P (XTk<q

±
β (X|FTk ))

P (XTk=q
±
β (X|FTk ))

, otherwise

Since ε is equal to 0 in the event XTk = q±β (X|FTk), we can rewrite Equation (34) omit-

ting the second indicator function 1XTk=q
±
β (X|FTk )

.

As pointed out in [Bielecki et al., 2018], with this choice for Z∗, the allocation scheme coin-

cides with the Euler allocation scheme for ηt( · ) = ESβ( · |Ft) 21.

21The Euler allocation scheme in case of ES has a closed form (see [Tasche, 2007]), that is:

ESβ(Xi|X) = −β−1 E[Xi 1X≤qβ(X)].
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5 Numerical Analysis

This section is dedicated to the numerical implementation of our model. In order to com-

pute the margins of the default waterfall, first we present the computations of the default

intensities for the CDS contracts and the CM. The CDS pricing and the exposure of the

CCP towards the members are then shown. Next, the computations of the default waterfall

margins are presented, with a focus on the DF/IM ratio. Finally, some sensitivity analysis

is performed to check the robustness of the model. The numerical analysis here is done using

the software MATLAB® .

In order to compute the amounts required to the clearing members we followed [Bielecki et al., 2018].

5.1 Default Intensities and Default Times

First of all, we start with the default intensities of the CDS contracts and the clearing

members. We present the numerical results deriving from the simulation of the Cox–Ingersoll–Ross

(CIR) model for the default intensity process presented in Section 4.1.3. See, for instance,

[Cox et al., 1985] and [Broadie and Kaya, 2006] for the theoretical part.

5.1.1 CDS Contracts

This section analyzes a modification from the proceeding presented in [Bielecki et al., 2018],

where, for the CDS contracts, they use constant default intensities, while we use CIR inten-

sities.

In order to have a better reasoning on the impact of the hypothesis of the stochastic default

intensities, we consider default intensities being constant, deterministic and then stochastic.

For what concerns the deterministic default intensities, we consider their proceeding being

described first by a simple increasing functions and then by periodic functions.

As said before, we consider four different CDS contracts as done in [Bielecki et al., 2018]. In

all the four settings, we consider default intensities λ(0) at time 0 for the reference entities,

as given in Table 1

CDS1 CDS2 CDS3 CDS4

0.02 0.03 0.045 0.075

Table 1: λ(0) for every CDS contract.

In the constant default intensities hypothesis the values is obviously the same for the

whole time period. The reasoning behind the values in Table 1 is that we pick the differ-
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ent λ(0) in order to have, within one year, realistic default probabilities for the four CDS

contracts and we get the following results, rounded to the fourth decimals

P[τ1 < T ] = 0.0198,

P[τ2 < T ] = 0.0296,

P[τ3 < T ] = 0.0440,

P[τ4 < T ] = 0.0723,

(35)

with T = 1 year, where we used Equation (4) on p.25. Then, we hold these as starting values

for the other three cases.

The proceedings for the first three cases, namely constant, increasing and periodic default

intensities are now presented. The three types of default intensities that will be used in the

CDS contracts have the following three functions

λ(t) = λ, (36)

λ(t) = λ+ a t, (37)

λ(t) = λ+ b sin (c t) (38)

where the parameters a, b, c have been calibrated to match the default probabilities

in (33). The constant case in (36) is easily obtained via Equation (21), that is λ = R(T )
LGD

.

Then, we show in Table 1 the starting values for λ used in all the three cases, constant,

increasing and periodic default intensities. Then, for what concerns increasing and periodic

default intensities, we calibrated our model in order to have, after one year, the default

probabilities shown in (33). In Table 2 we present, besides the parameters λ(0) already

shown, the parameters a, b and c used.

λ(0) a b c

CDS1 0.02 0.008 1 0.01

CDS2 0.03 0.008 1 0.01

CDS3 0.45 0.008 1 0.01

CDS4 0.75 0.008 1 0.01

Table 2: Parameters for the functions (34), (35) and (36) so that (33) is satisfied

Then, the graphs for the constant,increasing intensities and periodic default intensities

are shown graphically.
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(a) Constant default intensities.
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(b) Increasing default intensities.
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(c) Periodic default intensities.

Figure 9: Default intensities trend depending on the assumption about the default intensities.

Looking at (c) in Figure 9, we see that the cycle is concluded around at T = 1.5. We

will further study the different assumptions, when we will compute the CDS spreads and

the MtM values. Then, in the next section the simulations of CIR processes for the CM are

made.

5.1.2 Clearing Members

We assume that the clearing members have default intensities that follow CIR processes

as discussed in Section 4.2.3. We will calibrate the CIR parameters for each CM via default

probabilities obtained from rating agencies. This implies that we set the parameters such

that, depending on the rating of clearing member i, its default probability within a year is

coherent with the rating. In the calibration, we use Equation (9) and from this we got the

parameters for the CIR process. Figure 10 displays displays the default probabilities, taken

from a report by Scope, one of the major European rating agencies, which we use in our

calibration of the CIR parameters.
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Figure 10: Default cumulative probabilities of a firm for 5 years depending on the rating. Source:
Scope (2019)

For our computations, we pick ratings BBB, B, B- and CCC for our clearing members

and the calibration then implies the following CIR parameters κ, θ, σ and λ0 displayed in

Table 3.

κ θ σ λ0

BBB 0.0097 0.0995 0.1003 0.0016

B 0.0100 0.0998 0.1001 0.0612

B- 0.0100 0.1000 0.1000 0.0970

CCC 0.0085 0.1009 0.0993 0.2854

Table 3: Parameters for the CIR processes depending on the rating.

Clearing members have the following ratings: CM1 and CM5 have a BBB rating, CM2

and CM6 a B, CM3 and CM7 a B- and finally CM4 and CM8 have a CCC rating.

Figure 11 displays one (of our 105 simulated) trajectories of the CIR default intensities λi,t

for our 8 clearing members (i=1,2,...,8) with parameters given as in Table 3.
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(c) CM3 and CM7, rating B-.
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(d) CM4 and CM8, rating CCC.

Figure 11: CIR process for the clearing members’ default intensities.

The four panels in Figure 11 represent the four different classes of rating in which the

clearing members are organized. The biggest difference looking at the four graphs is in the

starting values λi,0 of the processes, coherent with the different CMs’ riskiness.

Recalling Section 4.2 in the CIR setting, we can obtain the default distribution Fi(t), required

to have Di(t) in Equation (10) and, finally, the dependent default times τi are computed

according to Equation (11).

5.2 Mark-to-Market Value

Before studying the MtM values, we present the CDS spreads obtained in our different

types of deterministic default intensities discussed in Section 5.1.1.

The different assumptions on the default intensities behaviours have an impact on the cor-

responding CDS spreads computed in all the settings.

Hence, we show the CDS spreads for the three deterministic default intensities cases specified

in Equation (36), (37) and (38).
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λ CDS1 CDS2 CDS3 CDS4

Constant 0.0100 0.0150 0.0225 0.0375

Increasing 0.0140 0.0189 0.0264 0.0414

Periodic 0.0107 0.0157 0.0232 0.0382

Table 4: CDS spreads depending on the assumption on the default intensities behaviour.

Table 4 shows that the highest CDS spreads are in the case of increasing default intensi-

ties. This is due to the higher overall riskiness of the contracts, that have the same starting

values as in the other cases, but in this case default intensites are intended to increase con-

stantly. The different cases for the default intensities have also an impact on the MtM values

St. In Section 4.4 we displayed explicit or semi-explicit formulas for St with the different

equations for two cases, namely constant and deterministic default intensities.

Next, we present the graphs for St in three different models for λ(t) given of the upfront

payments. We plot the graphs below in order to have an insight on the different proceeding

of the MtM values depending on the assumptions made on the default intensities behaviour.
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(a) Constant default intensities.
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(b) Increasing default intensities.
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(c) Periodic default intensities.

Figure 12: The CDS MtM values St for a 2-year CDS with φ > 2 for the different default
intensities.

All the three graphs in Figure 12 show St = 0 for t = 0 and t = 2, namely at the beginning
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and at the end of the protection period for the CDS which has a maturity of T = 2 years.

Also recall that from Equation (23) St = 0 for 0, which explain the flat lines shown in Figure

12 (a).

5.3 CCP Exposure

In this section the matrix concerning the positions of the CCP towards the clearing

members is presented. Let Hij be the matrix

H8×4 =



6 −1 −3 −2

2 −1 2 −3

1 3 −1 −3

5 1 −1 −5

−5 1 1 3

−3 1 −1 3

−7 −1 5 3

1 −3 −2 4


, (39)

where i represents the i -th CM, while j is the j -th contract.

The matrix H in Equation (39) shows the position of each CM for every contract, with the

perspective of the clearing house. The positive values in the matrix represent the CCP is

buying the contract (long position), while the negative values mean that the CCP is selling

(short position). In general, from now on, all the clash flows are seen from the CCP’s

perspective and therefore a positive value corresponds to an inflow for it, while a negative

value means an expense. Since the CCP runs a matched order book it must hold that

∑
i∈I

Hij = 0. (40)

In the following section, each subsection focuses on a specific part of the default waterfall.

In addition, there is a part for the default fund allocation and its computations and besides,

there is a specific section concerning the DF/IM ratio.

5.4 Default Waterfall

In the following subsections, we adopt other assumptions of [Bielecki et al., 2018]. We

assume 252 business days in a year, the fundamental unit of time is δt, equal to one business

day and the margin period of risk (MPOR) , represented by δ, is equal to 10 business days.

For what concerns the DF’s time window ∆t, it is 30 business days. The recovery rate is

Rec = 0.5 and the default intensities follow a CIR process.
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It is important to note that the margins depend also on the position, long or short, assumed

by the clearing member toward the CCP.

5.4.1 Variation Margin

We begin with the computations of the variation margin (VM). The portfolio value at

time tk for each of clearing member i is given by

V i
tk

= Hij × Sjtk , i = 1, ..., 8 (41)

where Sjtk denotes the MtM value of the CDS contract for entity j and Sjtk is given by the

formulas in (20) and (22) for different parametrizations of λ(t) given in (34), (35) and (36).

Figure 13 represents the portfolio values at time t for each of the eight clearing members

given that at time t all the reference entities are still alive. The default intensities used from

now on for the CDS contracts are periodic, following Equation (38).
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Figure 13: Portfolio value for every CM obtained via Equation (38) with same parameters as in
Table 2.

It is worth saying that VM i
tk

cannot be negative, because this would mean the clearing

member has to receive an amount by the CCP, that is impossible. Therefore, variation

margins’ values are the positive part of the portfolio values, that is

VM i
tk

= max(V i
tk−1

, 0) (42)

and Figure 14 displaying VM i
tk

is obtained from Figure 13 via Equation (38).
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Figure 14: Variation margin for every CM obtained via Equation (38) with same parameters as
in Figure 13.

Figure 14 shows the proceeding of the individual VM for all the clearing members and,

as we said before, we consider only positive values for this margin, otherwise this would

mean the CCP has to pay something to the members. This fact explains the graph with

only values greater or equal to zero.

5.4.2 Initial Margin

In this subsection we will follow the notation and setup as in [Bielecki et al., 2018]. Be

reminded that all the CDS contracts have maturity of 2 years. In order to compute the

initial margin (IM), we start from the mark-to-market’s empirical distribution of the j -th

CDS contract. Recall that, as in our CDS computations in Section 4.4, we assume, without

loss of generality, that interest rate is equal to zero. Let Šjt denote the difference between the

MtM value of a CDS contract on reference entity j at time tk+δ and the MtM value at time

tk+1, namely the CCP exposure for the entity j at time tk, as stated in [Bielecki et al., 2018].

Then, the CCP exposure for one such CDS contract on reference entity j towards the clearing

members is given by

Šjtk = Sjtk+δ +

tk+δ∑
u=tk

dju − S
j
tk−1

, (43)

which refers to the j -th contract. Note that Equation (43) is essentially the same as (27),

without the discount factors β, because of the zero interest rates hypothesis. The variable

dju is the dividend of the CDS contract on reference entity j at time tk. If the next coupon

payment is at TD > tk and the previous payment occurred at tD ≤ tk, we have that the

factor
∑tk+δ

u=tk
dju is equal to
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tk+δ∑
u=tk

dju =

−R(T )(TD − tD)1tk<TD≤tk+δ, φj > tk + δ

−R(T )(φj − tD), tk < φj ≤ tk + δ

We assume that at time tk every CDS contract is alive and the clearing members are alive

too. Hence we can simply use Šjtk in the formulas so that Equation (43) can be rewritten as

Šjtk =

S
j
tk+δ
−R(T )(TD − tD)1tk<TD≤tk+δ − S

j
tk−1

, φj > tk + δ

Rec−R(T )(φj − tD)− Sjtk−1
≈ Rec−R(T )(tk − tD)− Sjtk−1

, tk < φj ≤ tk + δ

(44)

If a default of reference entity happens during the period (tk, tk+δ], considering that our

unit of time is small, we can approximate the default time φj with the valuation date tk,

which leads to the second line in (41).

Hence, we end up with 105 trajectories for the CDS in case of no default prior to tk+δ (first

line) and in case of default over the time interval (tk, tk+δ] (second line), for every tk.

Combining each value with its corresponding probability yields

P (Šjtk = S̃jtk+δ −R(T )(TD − tD)1tk<TD≤tk+δ − S̃
j
tk−1
| φj > tk) = pj,

P (Šjtk = Rec−R(T )(φj − tD)− S̃jtk−1
≈ Rec−R(T )(tk − tD)− S̃jtk−1

| φj > tk) = 1− pj

see also Equation (4.2) - (4.4) in [Bielecki et al., 2018].

Finally, we take the expected value for every tk and we get Šjtk for each time point. Consid-

ering what we said so far, we still have a group of trajectories for any time point tk for the

quantity Šjtk . Then, the exposure X i
tk

is computed using the matrix H8×4 presented at (37).

The formula is

X i
tk

=
4∑
j=1

HijŠ
j
tk
. (45)

Finally, the ES of X i
tk

is computed and for the initial margins we use a 99% significance

level α, that is

IM i = ESα(X i
tk

)

and the results are shown in Figure 15 below. Be reminded that the results shown are

obtained using periodic default intensities for the reference entities underlying the CDS

contracts according to (36) and then using CIR processes for the clearing members.
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Figure 15: Initial margin for every CM.

Figure 15 shows the initial margins for all the clearing members. We see an initial peak

and then a periodic trend that ends at T = 2 years.

5.4.3 Default Fund

Next we compute the default fund (DF) for the clearing members with CIR parameters

as in Table 3. We start with the CCP exposure towards the clearing members net of VM and

IM, as presented in Equation (30). The computations of the exposure produce 17 values,

one for every month for the 2 years of the CDS contracts. Then all the individual exposure

are added together (and the sign is changed).

Having total exposure available, the total default fund is computed, using the ES as risk

measure, with a significance level β equal to 99%.

Figure 16 shows the total default fund depending on the correlation coefficient ρ we used in

Section 4.3 for the one-factor Gaussian copula. Be reminded that the CDS contracts have

maturity of 2 years.
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Figure 16: Total default fund depending on the default correlation ρ.

Looking at Figure 16, we see a huge increase in the total DF when the default correlation

coefficient ρ switches from 0.1 to 0.5. This results shows the importance of taking into

account the relation between the potential defaults of all the clearing members. We do not

see a great difference between ρ = 0.5 and ρ = 0.9. For the DF allocation, we consider the

case of ρ = 0.5. In order to find Z∗Tk , we have to compute first X = −
∑

i∈I EP
i
Tk

, following

the procedure shown in Section 4.5.2. Now, Equation (33) is used to find the individual

default funds and we show the results in Figure 17.
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Figure 17: Default fund for every CM.

Individual default funds are aggregated together in order to check that the full allocation

property is satisfied.
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5.4.4 Default Fund over Initial Margin

The last subsection of the section is dedicated to the DF/IM ratio to further investigate

the relation between these two layers of the default waterfall. The results for the DF/IM

ratios are shown for α = 0.99 and β = 0.99. We want to detect how this ratio changes ac-

cording to the clearing members rating of belonging (recall from Section 5.1.2 that members’

ratings are different).

Table 5 gives the average of the ratios, one for each CMi.

CM1 CM2 CM3 CM4

0.0001 0.0015 0.0029 0.0092

Table 5: DF/IM ratio for the first 4 CM for p-values α and β equal to 0.99 and for correlation
coefficient ρ = 0.5.

The results at Table 5 show a DF/IM ratio equal to 0.0001 for CM1, CM2 shows a

ratio of 0.0015, CM3 presents a DF/IM of 0.0029 and CM4 of 0.0092. Hence, we see how

this ratio changes according to the 4 ratings considered. The main problem in the default

waterfall is due to the DF computations, considering that there is no accordance among

practitioners on the model that should be used for this layer of the waterfall.

Due to the assumption on the classification in ratings for the clearing members, we see the

results are consistent with the individual riskiness. As a matter of fact, from CM1 to CM4

we see an increasing DF/IM ratio.

Therefore, our model is able to differentiate from the single members’ position, being the

default funds’ weight with respect to the initial margin gradually increasing as the rating

decreases.
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6 Conclusions

This thesis deals with the problem of computing the margins that compose the de-

fault waterfall in a market with a CCP and CMs who can only trade CDS. Starting from

[Bielecki et al., 2018], we extend the model setting in two directions by considering a more

realistic framework where default intensities of CDS and CMs are stochastic and represented

via CIR processes. To assess the individual riskiness, the reference paper [Bielecki et al., 2018]

uses constant default intensities for CDS contracts, while it uses a Markov chain for the

clearing members default intensities. Being the constant default intensities an unrealistic

hypothesis, we apply the CIR process in both cases, in order to study deeper its impact on

the riskiness evaluation. Moreover, we use the reduced model also to assess the members’

riskiness, in order to have a more uniform model.

First of all, for all the 8 clearing members, we construct balanced portfolios, namely port-

folios that for each member have an overall exposure equal to 0 offsetting long and short

positions. We focus on the first 4 CM, which have the 4 ratings into account (BBB, B, B-,

CCC). We construct their portfolios such that they have positive and similar values. In this

way, we are able to obtain DF/IM ratios whose differences are mainly due to the different

riskiness of the CM.

Our model represents an alternative to the aforementioned Cover 1 /Cover 2 principle of

the CPSS and IOSCO, that, despite its convenience due to the simplicity of its definition,

suffers from some drawbacks that we have been described in the thesis.

It is worth noticing that some aspects of this work should be studied deeper. The first one

is related to the underlying probability space. In our case we directly started working under

the risk neutral measure. However how this measure is specified is not addressed. The mar-

ket, in fact, is clearly incomplete, and hence infinitely many risk measures exist. This issue

is left unsolved in [Bielecki et al., 2018] as well. Moreover, we focused on IM and DF, but

CCP equity (E) and the unfunded DF (uDF) should be studied deeper and included in the

whole discussion, in order to have a complete analysis on the default waterfall.
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