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ABSTRACT 

Neuroblastoma (NBL) is the third most common pediatric cancer after leukemia and cranial 

tumours and accounts for around 15% of death in pediatric malignancy. NBL develops due to 

the poorly differentiated progenitor cells of the sympathetic nervous system. Even after 

extensive chemo and immune therapeutic options, high-risk and relapse NBLs are still hard to 

treat and needs better and efficient therapeutic treatment. The most common genetic 

abnormalities in NBL are chromosome 1p and 11q deletion, 2p and 17q gain, MYCN 

amplification and mutation in anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor, 

part of the insulin receptor (IR) family, which has been involved in several solid and liquid 

cancers. ALK mutations are found in about 10% of NBL cases but in the relapsed patient 

population, the ALK-positive percentage increases significantly. Crizotinib was the first ALK 

tyrosine kinase inhibitor (TKI), which was approved clinically to treat ALK-positive lung cancer. 

In NBL, crizotinib has had a less striking effect, which urges to discover more efficient and 

potent ALK TKIs for NBL treatment. The overall aim of this thesis was to investigate ALK 

inhibitors alone or in combination as therapeutic options for ALK-positive NBL patients. 

Alectinib is a second-generation ALK inhibitor and showed a dramatic effect in crizotinib 

resistant ALK-positive lung cancer patients. In our first project study, we interrogated the 

alectinib effect in preclinical settings of NBL. In vitro kinase assays and cell-based experiments 

examining ALK mutations show that alectinib is an effective inhibitor of gain-of-function ALK 

mutants in NBL models. Administration of alectinib showed efficient tumour effect in mouse 

xenograft model of NBL, in comparison to crizotinib 

In the second study project, we interrogated the inhibitory effect of dihydroorotate 

dehydrogenase (DHODH) in NBL preclinical settings. Pyrimidine nucleotides play a vital role 

in tumour progression and these pyrimidines can be synthesized through either salvage or 

the de novo pathway. Tumour cells fulfil their need for nucleotides through the de novo 

pathway. Dihydroorotate dehydrogenase (DHODH) is an important player of de novo 

pyrimidine synthesis and by inhibiting DHODH, tumour cells proliferation is inhibited. Low 

levels of DHODH in NBL tumours is linked to good clinical outcome. BAY2402234, a novel 



 
 

 
 

DHODH inhibitor has shown striking inhibition in acute myeloid leukemia (AML) and we 

investigated BAY2402234 in NBL settings. In BAY2402234 treated NBL cells and in transgenic 

mouse models, inhibition of cell proliferation and significant reduction of tumour growth 

were observed. Biochemical analysis showed that BAY2402234 treatment inhibited MYCN 

expression and increased p53 and cleaved PARP protein levels. Synergy was observed in ALK-

positive NBL cells upon the combination of BAY2402234 and lorlatinib treatment. 

This thesis study shows the significance of ALK in NBL. To summarize, alectinib is an efficient 

inhibitor of ALK kinase activity in ALK addicted NBL and BAY2402234 inhibits NBL cell 

proliferation in vitro and in vivo. The combination treatment of BAY2402234 and lorlatinib 

showed synergy and as a promising future therapeutic option for the NBL patients, this 

should be considered alone or in combination. 
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SAMMANFATTNING PÅ SVENSKA 

Neuroblastom (NBL) är den tredje vanligaste pediatriska cancern efter leukemi och kraniala 

tumörer och står för cirka 15 % av dödsfallen i pediatrisk malignitet. NBL utvecklas på grund 

av de dåligt differentierade progenitorcellerna i det sympatiska nervsystemet. Även efter 

omfattande kemo- och immunterapialternativ är NBL med hög risk och återfall fortfarande 

svåra att behandla och behöver bättre och effektiv terapeutisk behandling. De vanligaste 

genetiska abnormiteterna i NBL är kromosom 1p och 11q deletion, 2p och 17q gain, MYCN 

amplifiering och mutation i anaplastiskt lymfom kinas (ALK) är en tyrosinkinasreceptor, en del 

av insulinreceptorfamiljen (IR) som har varit involverad i flera fasta och flytande 

cancerformer. ALK-mutationer finns i cirka 10 % av neuroblastomfallen, men i den 

återfallande patientpopulationen ökar den ALK-positiva andelen signifikant. Crizotinib var det 

första ALK TKI-läkemedlet, som godkändes kliniskt för att behandla ALK-positiv lungcancer. I 

NBL har crizotinib haft en mindre slående effekt, vilket uppmanar till att upptäcka mer 

effektiva och potenta ALK TKI för NBL-behandling. Det övergripande syftet med denna 

avhandling var att undersöka ALK-hämmare ensamma eller i kombination med andra mål som 

ett potentiellt framtida terapeutiskt alternativ för ALK-positiva neuroblastompatienter. 

Alectinib är en andra generationens ALK-hämmare och visade en dramatisk effekt hos 

crizotinib-resistenta ALK-positiva lungcancerpatienter. I vår första projektstudie förhörde vi 

alektinibeffekten i prekliniska miljöer av NBL. In vitro kinasanalyser och cellbaserade 

experiment som undersöker ALK-mutationer visar att alectinib är en effektiv hämmare av 

förstärknings-of-function ALK-mutanter i NBL-modeller. Administrering av alectinib visade 

effektiv tumöreffekt mus xenograft modell av NBL, i jämförelse med crizotinib. 

I det andra studieprojektet undersökte vi den hämmande effekten av 

dihydroorotatdehydrogenas (DHODH) i NBL prekliniska miljöer. Pyrimidinnukleotider spelar 

en viktig roll i tumörprogression och dessa pyrimidiner kan syntetiseras genom antingen 

räddnings- eller de novo-väg. Tumörceller fyller sitt behov av nukleotider genom de novo-

vägen. Dihydroorotatdehydrogenas (DHODH) är en viktig aktör för de novo pyrimidinsyntesen 

och genom att hämma DHODH minskar tumörcellsproliferationen. Låga nivåer av DHODH i 

NBL-tumörer är kopplat till bra kliniskt resultat. BAY2402234, en ny DHODH-hämmare har 

visat slående hämning vid akut myeloid leukemi (AML) och vi undersökte BAY2402234 i NBL-

miljöer. I BAY2402234-behandlade NBL-celler och i transgena musmodeller observerades 

hämning av cellproliferation och signifikant minskning av tumörtillväxt. Biokemisk analys 

visade att BAY2402234-behandling hämmade MYCN-uttryck och ökade p53- och klyvda PARP-

proteinnivåer. Synergi observerades i ALK-positiva NBL-celler vid kombinationen av 

BAY2402234 och behandling med lorlatinib. 

Denna avhandling visar betydelsen av ALK i NBL. För att sammanfatta, är alectinib en effektiv 

hämmare av ALK-kinasaktivitet i ALK-beroende NBL och BAY2402234 hämmar NBL-

cellproliferation in vitro och in vivo. Kombinationsbehandlingen av BAY2402234 och lorlatinib 



 
 

 
 

visade synergi och som ett lovande framtida terapeutiskt alternativ för NBL-patienter bör 

detta övervägas ensamt eller i kombination. 
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ABBREVIATIONS 
 

ALCL = anaplastic large cell lymphoma  

ALK = anaplastic lymphoma kinase  

ALKAL1 = ALK and LTK Ligand 1 & 2 

ALO17 = ALK lymphoma oligomerization partner on chromosome 17 

ALT = alternative lengthening of telomeres 

ATIC = 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP 

cyclohydrolase 

ATM = ataxia telangiectasia mutated  

ATR = ataxia telangiectasia and Rad3 related  

ATRA = all-transretinoic acid, tretinoin 

ATRX = alpha thalassemia/mental retardation syndrome X-linked  

BMP = bone morphogenetic protein  

BIRC5 = baculoviral inhibitor of apoptosis repeat-containing 5 

BARD1 = BRCA1 Associated RING Domain 1 

CARS = cysteinyl-tRNA synthetase   

CC = chromaffin cells 

CDKs = Cyclin-dependent kinases 

CHEK2 = checkpoint kinase 2 

CLTC = clathrin heavy chain 

CAN = copy number alteration  

CNS = central nervous system 

CT = computerized tomography 

CXCR4 = C-X-C motif chemokine receptor  

DA = dorsal aorta  

DD = DNA damage  

DG = dorsal ganglia 

DHFR = Dihydrofolate Reductase 

DHODH = dihydroorotate dehydrogenase 

DLBCL = diffuse large B-cell lymphoma  

DLG2 = disc large homolog 2 



 
 

 
 

ECD = extracellular domain   

EFS = event-free survival  

EGFR = epidermal growth factor receptor 

EML4 = echinoderm microtubule associated protein-like 4 

ERK = extracellular signal-regulated kinase 

FAD = flavin adenine dinucleotide 

FDA = Food and Drug Administration 

FMN = flavin mononucleotide 

G1 = gap 1 phase  

G2 = gap 2 phase 

GAP = GTPase-activating proteins 

GDP = guanosine diphosphate 

GD2 = disialoganglioside 2  

GEF = guanine nucleotide exchange factors 

GOF = gain-of function  

GR = glycine-rich region 

GTP = guanosine triphosphate 

GWAS = genome-wide association studies  

IGF-1R = insulin-like growth factor receptor 1  

IMT = inflammatory myofibroblastic tumour  

InR = insulin receptor  

INSS = International Neuroblastoma Staging System  

JAK = Janus kinase  

KIF5B = kinesin family member 5B 

KLC1 = kinesin light chain 1 

LDLa = low density lipoprotein class A  

LOF = loss-of function  

LTK = leukocyte tyrosine kinase  

M = mitosis  

MAM = meprin A5 protein and receptor protein tyrosine phosphatse mu 

MAPK = mitogen-activated protein kinase 

MDM2 = Mouse double minute 2 homolog 



 
 

 
 

MHY9 = myosin, heavy chain 9 

MNA = MYCN amplified 

MIBG = metaiodobenzylguanidine  

MRI = magnetic resonance imaging 

MSN = moesin 

mTOR = mammalian target of rapamycin 

MYC = Myelocytomatosis Viral Oncogene Homologue 

MYCN = Neuroblastoma MYC oncogene 

NBL = neuroblastoma 

NC = neural crest 

NCA = Numerical chromosome alterations 

NCC = neural crest cells  

NPM = nucleophosmin  

NRG1 = neuregulin 1  

NRTK = non-receptor tyrosine kinase  

NSCLC = non-small cell lung cancer 

NT = neural tube 

OS = overall survival 

PC12 = pheochromocytoma 12 cells 

PFS = Progression-free survival 

PHOX2B = Paired-like homeobox 2b 

PI3K = phosphoinositide 3-kinase 

PINK1 = PTEN-induced kinase 1 

PK = protein kinase  

PLCγ = phospholipase Cγ 

PPFIBP1 = protein-tyrosine phosphatase receptor-type F polypeptide-interacting protein-

binding protein 1 

PTK = protein tyrosine kinase domain 

PTPN3 = protein tyrosine phosphate non-receptor type 3 

PTPN11 = Protein Tyrosine Phosphatase Non-Receptor Type 11 

RA = retinoic acid 

RANBP2 = Ras-related nuclear protein-binding protein 2 



 
 

 
 

RAF = Rapidly Accelerated Fibrosarcoma 

RAS = Rat sarcoma virus 

RB = retinoblastoma  

RS = replication stress  

RTK = receptor tyrosine kinase  

S = synthesis  

SAP = sympathoadrenal precursor cells  

SCA = segmental chromosomal alterations  

SEC31L1 = SEC31 homologue A 

SHANK2 = SH3 and Multiple Ankyrin Repeat Domains 2  

SN = sympathetic neurons  

SQSTM1 = sequestosome -1   

STAT = signal transducer and activator of transcription 

STRN = striatin 

SV = structural variation  

TAT = targeted alpha therapy  

TERT = telomerase reverse transcriptase 

TFG = TRK fused gene 

TKD = tyrosine kinase domain 

TMD = transmembrane domain 

TPM3/4 = tropomyosin 3 and 4 

TRAF1 = TNF receptor-associated factor 1 

TSG = tumor suppressor gene 

TT = targeted therapy 
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1. INTRODUCTION 

 

1.1. Cancer 
 

Cancer is classified as one of the most lethal diseases worldwide where major changes occur 

in the genome aggressively [1, 2]. During 2020, the mortality cases of cancer was around 10 

million, and until 2040, statistically the death cases would be increased to 16.4 million [3, 4]. 

Cancer is a genetic disease where cell proliferation is disturbed and imbalanced, these cancer 

cells can move to different bodily organs. The emergence of a cancerous cell from a normal 

cell takes place through several processes, e.g., mutation, deletion, amplification and the 

translocation of several genes, which leads to an abnormal protein expression and activity as 

well as modification in DNA repair genes and activation and inactivation of oncogenes and 

tumour suppressor genes respectively [5-7]. Cancer development can be caused by exposure 

to carcinogenic substances. Tumour initiation, promotion and progression take place through 

alterations to a normal cell, which leads to a malignant cell [2, 8] (Figure 1). Although, cancer 

is termed as a genetic disease but an abnormal cell signaling is an important and ultimate 

factor in tumour progression that is involved in aberrant activities of enzymes and other 

important biological process, for instance, apoptosis, cell cycle, differentiation and 

proliferation. It has been stated that soon cancer would be the top reason for death in the 

world [9]. There are two gene classes: oncogenes and tumour suppressor genes. Oncogenes 

cause tumour initiation and progression by acquiring dominant gain-of-function mutations. 

On the other hand, tumour suppressor genes become non-functional in a recessive aspect [1, 

2]. 



 
 

 
 

 

Figure 1. Transformation of malignant tumour: The stepwise transformation of tumour from a normal cell with 
a passage of time by possible different factors involved in this transformation. 

 

1.1.1. Oncogene and tumour suppressor 
 

Oncogene 

The normal cell characteristics are a tightly regulated and well-balanced cell division, 

differentiation and apoptosis (programmed cell death). Normal cells could undergo 

programmed cell death once their function has been perturbed [10]. Nevertheless, once the 

oncogenic signaling is activated this tightly regulated and well-balanced system is disturbed 

that cause tumour ultimately [11]. 

Proto-oncogene are responsible for translating numerous different proteins, which are 

important for cell division, proliferation and differentiation [1, 2, 11-15]. They can be 

oncogene from proto-oncogene through different ways: 

1. Point mutation: Gain-of-function (GoF) point mutation (e.g. in HRAS, KRAS, NRAS, ALK, 

EGFR). 



 
 

 
 

2. Amplified gene that drives to raise the protein levels (e.g. MYC, MYCN, EGFR, ERBB, DHFR, 

and RAS). 

3. Gene translocation, where one proto-oncogene is fused with other gene and setup a fusion 

protein that increases the tumorigenic properties (e.g. fusion of BCR with ABL, NPM with ALK, 

and EML4 with ALK). 

Also, epigenetic changes can induce a high protein expression and this can result in the 

enhanced activity of protein signaling, which disturbs the normal process of cell division, 

survival and growth, becoming cancer [11, 16-18]. 

The RAS family (H/K/N-RAS) is one of the most mutated oncogenes in human cancer to date. 

It can be activated by point mutation and is found in 16% of all cancers [19-25]. The RAS 

mutation percentage increases and depends on the cancer type [26] e.g., in pancreatic cancer, 

95% of mutations are present in the K-RAS. The figure is 50% for colon cancer. K-RAS is the 

most mutated (85%) among all RAS genes, with mutations for N-RAS (12%) and for H-RAS (3%) 

[27-29].  

All RAS proteins belong to the RAS-related small GTPase superfamily, where they play the role 

of a molecular switch that regulates intracellular signaling [21, 30, 31]. RAS is activated 

through the binding of guanosine triphosphate (GTP) and deactivated when it attaches to 

guanosine diphosphate (GDP). This switch is controlled by GTPase activating proteins (GAP) 

and guanine nucleotide exchange factors (GEF), which activates downstream signaling 

cascades e.g., the RAS-MAPK pathway concludes the fate of the cell by triggering and 

regulating key cellular processes, including cell division, survival and differentiation [28, 31-

35] (Figure 2). Receptor tyrosine kinases (RTKs) such as ALK (anaplastic lymphoma kinase) and 

EGFR (epidermal growth factor receptor) can also activate RAS/MAPK and PI3K/AKT pathways 

without any mutation in RAS/MAPK through ALK and EGFR [36, 37]. The RAS/MAPK pathway 

is a potential therapeutic target in many cancers [38-41]. 

 

 

 



 
 

 
 

Figure 2. RAS activation signaling pathway: The stepwise signaling of RAS to ERK1/2  

Tumour Suppressor Genes 

Oncogenesis is not a single step process and conversion to a cancer cell might not only be by 

the activation of an oncogene but rather by a combination of many other genetic 

modifications [31]. Tumour suppressor genes (TSGs) play a vital part in preventing the 

transformation of a normal cell into a cancer cell by checking cell growth, stimulating DNA 

repair and encoding the proteins that increase apoptosis and cell cycle checkpoints [16, 31, 

42-44]. 

As the activation of an oncogene is important and required to enhance tumorigenesis, 

deactivation or the loss of tumour suppressor genes also boosts cancer growth and in most 

tumour suppressor genes, mutations are loss-of-function mutations [31, 45, 46]. The famous 

‘two hit’ tumorigenesis hypothesis was provided by Knudson. This states that a single allele is 

not enough to induce a tumour. Instead, the loss of both alleles of the retinoblastoma (RB)  

gene is essential for the development of a rare paediatric eye tumour, the first tumour 

suppressor gene discovered in retinoblastoma [45, 47, 48]. In many cancers (breast, head & 

neck, lung and melanoma), RB is deregulated by upstream activators [49, 50].  



 
 

 
 

Many other tumour suppressor genes have been identified. The second tumour suppressor 

revealed was p53 [50-52]. During the normal process, an E3 ubiquitin ligase, mouse double 

minute 2 homolog (MDM2), binds and deactivates p53 activity by taking it to proteasomal 

degradation. Once stress activators like DNA damage, imbalance cell cycle and hypoxic 

conditions are activated then the complex dissembles and p53 triggers cell cycle arrest or 

apoptosis [50-52]. p53 is the most common and frequently mutated tumour suppressor gene 

in human malignancies and becomes a possible remedial target in many tumour types [51]. 

In colon cancer where p53 is intensely investigated and studied, around 80% of cases pursue 

the ‘two-hit theory’ [51], but in some cases, the opposite of Knudson's two-hit hypothesis has 

been identified where a mutation in one allele is ample to inactivate p53 activity in cells. This 

is called ‘dominant-negative mutation’ [53, 54]. The first p53 inhibitor was found by Kamarov 

and his team in 1999. They showed that mice were protected by serious damage from ionizing 

radiation by blocking p53-induced transcription with the help of pifithrin-α [55]. It is difficult 

to revive p53 in tumours when it is missing but this can be attained by employing genetic and 

pharmacological techniques [56, 57]. The restoration of the transcriptional activity of p53 was 

shown by Foster’s team in 1999 by discovering the small molecule, which showed anti-

cancerous activity in a mouse model [58]. Nowadays the technique to restore p53 activity is 

to target CDKs, MDM2 or RAS-MAPK pathway members [56, 59, 60]. 

Approximately one mutation occurs in 107 cell divisions and the mutation rate is very slow. 

These mutations cause genetic lesions, which activates gain-of-function in an oncogene or 

loss of function in a tumour suppressor gene. To induce tumorigenesis, multiple sequential 

mutations are required. As per the mutation rate, the tumour takes time to grow [61], which 

is why most tumours develop in the older age groups [62]. Cancer mostly seems to be found 

in age-related cases and the older population, but incidences of childhood tumours cannot 

be ignored, and special attention is needed. 

1.2. Neuroblastoma 
 

Neuroblastoma (NBL) is a cancer of immature nerve cells and a typical extracranial solid 

paediatric malignancy. NBL initiates from undifferentiated neural crest derived cells in the 

developing nervous system. Paediatric cancer-related deaths caused by NLB are around 15% 

and the tumour is located in the adrenal gland or sympathetic ganglia [63-71]. Worldwide, 



 
 

 
 

NBL is the 3rd most common childhood malignancy and just behind leukemia and cranial 

tumours [72]. NBL is a heterogeneous and complex disease with around 90% of NBL cases 

diagnosed under the age of 10 in children (40% of cases are diagnosed in children less than a 

year old). The median age is around 18 months at the time of diagnosis [67, 73, 74]. NBL can 

arise sporadically and in a familial form but familial cases are few, with an incidence rate of 

1-2% and the rest of cases are sporadic [75]. NBL can be developed along the sympathetic 

chain with half (around 47%) of the cases arising in the adrenal medulla of the adrenal glands 

and the other growing areas are the abdomen, thoracic, pelvis, neck and other areas with 

24%, 15%, 3%, 2.7% and 7.9% respectively [67, 76-79]. When NBL cases come and investigate 

in a clinic, it is diagnosed and subject to various factors like the patient’s age, the stage of the 

tumour, histology, the chromosomal aberration, and other markers e.g., MYCN and TrkA 

status [80-83]. These factors are used to clinically define the stages of NBL according to the 

International Neuroblastoma Staging System (INSS) [84]. There are five different stages (stage 

1 to 4 and 4S) [63, 68, 85]. Stages 1 and 2 of NBL are classified as initial stage tumours, with 

non-metastatic and localized properties, sensitive to chemo and radiation therapies. Stage 3 

tumours cannot be removed fully by surgery and a metastatic tumour cannot be removed 

remotely. Stage 4 tumours are metastatic and advance tumours with distant metastasis 

properties. The fifth and last stage is 4S, where the NBL tumour is localized as in stages 1 and 

2 and patients are under one year of age. The tumour can specifically spread to the bone 

marrow, liver and/or skin [63, 68, 85, 86]. This stage of NBL tumours shows spontaneous 

regression, with very little or no therapy [87-89]. The International Neuroblastoma Risk Group 

Staging System (INRGSS) divides and describes NBL into three risk groups: low, intermediate 

and high-risk. These risk groups depending on the INSS stage, the patient’s age, chromosomal 

aberration, histology, tumour differentiation status, MYCN and 11q status [86, 90-92]. 

1.2.1. Chromosomal and genetic abnormalities in NBL 
 

The precise cause of NBL and its origin (initiation) is not crystal clear but some factors are 

consistently associated with NBL development. These can either be familial and/or somatic 

aberrations [75]. Segmental chromosomal alterations, numerical chromosome alterations 

and mutations are NBL genetic aberrations. Most frequently somatic mutated genes are ALK, 

ATRX and PTPN11 with 10%, 2.5% and 2.9% of frequency respectively. Some other mutated 

genes are PHOX2B, NRAS, TERT, CHEK2, PINK1 and BARD1 [93-95]. Amplified MYCN levels are 



 
 

 
 

found in 25% of all NBL cases and about 50% are found in high-risk patients. The others are 

chromosomal gain in 17q (65%), loss in 11q (20-45%), loss in 1p and gain in 2p, which are most 

common and frequent in segmental chromosomal alterations [36, 63, 94-104].  

1.2.1.1. Gain of chromosome 2p (ALK, ALKAL2 & MYCN) 
  

Three main players of the ALK signaling cascade are present on the distal arm of chromosome 

2, ALK, ALKAL2 (ALK ligand) and MYCN. These players are linked to a poor prognosis in NBL 

patients [100, 105]. The position of ALK is at 2p23.2-2p23.3, MYCN at 2p24.3 and ALK ligand, 

ALKAL2 is 2p25.3. All of them are present on chromosome 2p. In NBL patients, the mutation 

in the ALK gene is found in around 10% of cases [97, 99, 106-108]. In both familial and sporadic 

NBL cases. ALK point mutation in the kinase domain has been described and is around 10% of 

all NBL [97, 99, 106-109]. Several mutations in the ALK kinase domain have been revealed but 

three mutations are known as “hot spot” mutations found in 85% of all ALK kinase domain 

mutation cases in NBL. These are F1174 (30%), F1245 (12%) and R1275 (45%) [94, 97, 99, 106-

108, 110]. Tumour-inducing capabilities have been shown in the combination of ALK-F1174L 

and MYCN in the transgenic mouse system [111]. Inhibition of ALK activity has been observed 

in NBL by ALK TKIs treatment that showed striking cell proliferation inhibition and tumour 

growth reduction in NBL cell lines and mouse models respectively [112-116]. MYCN 

amplification is one of the hallmarks of NBL and is found in 20-25% of NBL cases. The 

percentage spikes to 50% in high-risk NLB and relates to advanced-stage NBL with a poor 

prognosis, the worst survival and with an aggressive phenotype [68, 98, 117]. The MYCN gene 

encodes a transcription factor, MYCN, which plays a key role in apoptosis, survival and 

differentiation [63, 68, 118]. As in NBL, MYCN amplification is also reported in other cancers 

[36, 119-121]. Several genetically engineered mouse models have been generated where 

MYCN overexpression shows tumour initiation of NBL and MYCN collaborates with other 

oncogenes to induce NBL pathogenesis [111, 122]. ALK, MYCN and ALKAL2 show evidence of 

the development, evolution and propagation of NBL [100]. Considering their strong role in 

NBL development, targeting ALK, its downstream targets MYCN and ALKAL2 would be the 

viable therapeutic option for NBL patients. 



 
 

 
 

1.2.1.2. Chromosome 11q deletion 
 

One of the most common genetic abnormalities in NBL is the deletion of 11q, which accounts 

for 20-45% of NBL patients. 11q is correlated with a poor prognosis, advanced stage NBL and 

MYCN-independent amplification [98, 123-125]. 4S stage tumours have a better clinical 

outcome but relapse cases are increased upon 11q deletion in these NBL cases [123, 126]. As 

it is an effective NBL patient prognosis tool, the International Neuroblastoma Risk Group 

(INRG) has defined 11q deletion as an important and independent risk factor [90]. Some very 

important tumour suppressor genes that sit on chromosome 11 are deleted due to the loss 

of the long arm of chromosome 11. NBL pathogenesis has evolved upon a loss of 

chromosomes and/or point mutation in tumour suppressor genes [127]. For instance, Disc 

Large Homolog 2 (DLG2) is a newly published tumour suppressor gene that sits on 11q14.1. 

DLG2 is revealed as an ALK downstream signaling target and its overexpression in NBL cells 

shows an increased differentiation and a decreased tumour burden in the xenograft mouse 

model system [128]. Some other examples of a loss of the tumour suppressor gene due to 

11q deletions are immunoglobulin superfamily 4 (IGFSF4), tumour suppressors in lung cancer 

1/cell adhesion molecule 1 (TSLC1/CADM1) [86, 129, 130], DNA damage response (DDR) 

genes (ATM, CHK1, MRE11 and H2AFX) [63, 97, 98] and postsynaptic adaptor protein-coding 

gene, SHANK2. The induced expression of SHANK2 drives differentiation and inhibits 

proliferation in NBL cells with retinoic acid [131].  

1.2.1.3. Chromosome 17q gain 
 

Another abundant abnormality in NBL is the chromosomal 17 gain of the long arm (17q), 

which refers to a poor patient outcome and found in around 40-50% of cases of NBL [86, 96]. 

Contrary to 11q loss, 17q gain is directly proportional to MYCN amplification or 1p deletion, 

which drives a poor prognosis in NBL patients under 12months [132, 133]. During 

chromosomal gain of 17q, an uneven rearrangement happens with other partner 

chromosomes. 1p is the most common translocation partner, which, in turn, results in a 17q 

gain and a concurrent 1p deletion [132, 134, 135]. BIRC5 (survivin), NM23A and PPM1D are 

the most important genes, which are found on this chromosome 17. These genes help in 

tumour cell progression [86, 136-138]. Survivin correlates to a poor patient outcome, 

overexpressed in NBL tumours and acts as an apoptosis inhibitor [86, 137, 139]. Survivin 



 
 

 
 

inhibition and a PPM1D knockdown trigger apoptosis and could be a possible curative clinical 

target for NBL patients [137, 138, 140, 141]. 

1.2.1.4. Chromosome 1p deletions 
 

The fragmental deletion of the short arm of chromosome 1 (1p36), occurs in around 35% of 

NBL cases but the percentage spikes in high-risk NBL where it corresponds to MYCN 

amplification and a poor prognosis in cases of NBL [142-144]. The normal fragment of the 

short arm of chromosome 1 was transferred into the NBL cell line, resulting in increased 

neuronal differentiation and abrogated proliferation [145]. ARID1A, calmodulin-binding 

transcription activator 1 (CAMTA1), CASZ1, chromo-domain helicase DNA-binding domain 5 

(CHD5), kinesin superfamily protein 1Bβ (KIF1Bβ) and microRNA 34a (mir-34a) are the 

important tumour suppressor genes located on the 1p36 site, which correlates to reduced 

proliferation and induced apoptosis [146-152]. 

1.2.1.5. Aneuploidy 
 

Ploidy, describes the complete chromosomal sets is also another powerful prognostic factor 

in NBL. Near diploid or tetraploid forms of DNA are associated with chromosomal 

abnormalities, for instance, unequal translocation, the gain and loss of fragments and with 

aggressive primary tumours. On the other hand, the near triploid and hyperploid state of DNA 

are associated with a better prognosis and low aggression, where whole chromosomal gain 

and less structural translocation are observed [63, 127]. 

1.2.2. Diagnostic tools in NBL 
 

When an NBL patient comes to the clinic, they are mostly in the advanced NBL stage with 

swelling in body parts along with the sympathetic ganglia (such as the abdomen, chest, neck 

or pelvis), a loss of body weight, increased belly size and with breathing issues. Blood and 

urine tests are conducted initially to check biochemical levels. In case of elevated levels of 

catecholamine (adrenaline/epinephrine and nor-epinephrine), the chromaffin cells of the 

adrenal medulla produce these hormones, and the presence of tumour cells in bone marrow 

is ample for an NBL diagnosis. Once the patient has been diagnosed based on biochemical 

analysis, imaging of the tumour has to be performed through computed tomography (CT) 

scan, magnetic resonance imaging (MRI), a metaiodobenzylguanidine (MIBG) scan, 



 
 

 
 

ultrasound and X-ray. Intravenous injections of MIBG (with a low level of radioactive iodine) 

are performed to investigate the metastatic NBL cells in skeletal and soft tissues. Further 

diagnostics are performed by biopsy. 

1.2.2.1. Treatment strategies in neuroblastoma 
 

As mentioned before, NBL is divided into 3 risk groups: low, intermediate and high by the 

Children's Oncology Group (COG). These risk groups and other factors serve to choose the 

best possible therapeutic option [153]. The most common treatments in NBL patients are 

surgery, chemotherapy, differentiation therapy, immunotherapy and radiotherapy [154]. 

1.2.2.2. Surgery 
 

In the low and intermediate-risk groups for non-metastatic NBL tumours, surgery is 

performed to remove most of the tumour tissue from the primary tumour, with as little 

tumour tissue left over as possible, showing a therapeutic effect of 97% with a 5-year OS in 

low-risk groups [155]. The complete removal of the tumour is not possible due to 

angiogenesis and neighbouring nerves. In intermediate-risk groups, chemotherapy is 

performed before surgery to reduce the tumour mass and metastatic abrogation [156, 157]. 

40-50% OS within 5-years has been shown in high-risk NBL, where surgery and multiple 

chemotherapy sessions are used in the treatment of the disease. [158, 159]. The 4S group of 

patients under 18 months of age are not exposed to surgery as the regression of tumours 

takes place spontaneously with no treatment needed [67, 68]. 

1.2.2.3. Chemotherapy 
 

Chemotherapy is one of the preferred treatment strategies in NBL and the inclusion of 

chemotherapy as a treatment is based on the patient’s risk group [69]. The low-risk group 

needs just a few chemotherapy cycles and the intermediate-risk group requires 2-8 

chemotherapy cycles [160]. In chemotherapy, one or more (combination) drugs can be used 

in the clinics. Chemotherapeutic drugs are highly destructive for dividing cells and trigger 

growth inhibition and increased apoptosis. At the same time, these drugs are highly toxic to 

normal cells. Hair loss, vomiting, diarrhoea and anaemia are the most frequent side effects of 

chemotherapy. Carboplatin, cyclophosphamide, doxorubicin, and etoposide are used for the 

intermediate-risk group of NBL patients, but for high-risk groups of patients, cisplatin, 



 
 

 
 

cyclophosphamide, topotecan, vincristine and etoposide are employed [160, 161]. For high-

risk NBL treatment strategies are: (i) To inhibit metastasis and to reduce the primary tumour 

size, with 5-8 rigorous chemo cycles employed. (ii) To eradicate the leftover tumour cells, first, 

an elevated quantity of chemotherapy is used followed by autologous stem cell transplant 

(ASCT) and radiotherapy. (iii) Immunotherapy and/or differentiation drugs like 13-cis retinoic 

acid (RA) are employed [69, 162]. 

1.2.2.4. Retinoid and differentiation therapy 
 

NBL cells are distinguished as poorly differentiated, which gives rise to unsuccessful 

differentiation of neural crest-derived sympathoadrenal precursor cells with the highest level 

of spontaneous regression [87, 163, 164]. These indications show a strong need for NBL 

differentiation-inducing agents, which can induce differentiation and inhibit proliferation. 

Some agents are used to induce differentiation, for instance, fenretinide, nerve growth 

factors (NGF) and derivatives of vitamin A (13-cis-RA & all-trans-retinoic acid (ATRA)) are used 

and have been described to activate differentiation of neurons and proliferation inhibition in 

vitro [165-168]. In high-risk NBLs, a striking improvement with event-free survival has been 

reported with 13-cis RA treatment [169]. In high-risk NBL, studies have shown the clinical 

potency of 13-cis RA as maintenance therapy for minimal residual disease [162, 170]. In 

clinics, 13-cis-retinoic acid has a better effect than ATRA [165]. Combination treatments with 

RA give a better survival rate [171]. In high-risk NBL, RA and anti-GD2 monoclonal antibodies 

are used in combination as maintenance therapy [162, 172]. Further clinical investigations are 

ongoing for the combo treatment between RA and anti-GD2 antibodies in patients with high-

risk NBL (clinicaltrials.gov). 

1.2.2.5. Immunotherapy 
 

Four decades ago, increased levels of sialic acid and gangliosides on NBL cell surfaces have 

been described but this was not associated with a prognosis [173]. They play their role in 

adhesion, migration and metastasis [174]. GD2 stands for disialoganglioside, mostly 

expressed on neural crest surface or neuroectodermal derived cells and tissues like skin 

melanocytes, mature neurons, astrocytes and peripheral pain fibres [172]. These findings 

made a strong case for targeting GD2 for immunotherapy. Initially, for NBL surface glycolipid 

antigen, four monoclonal antibodies were introduced, with three IgM and one IgG [175]. In 



 
 

 
 

NBL, chimeric anti-GD2 antibodies (ch14.18) known as dinutuximab and mouse 3F8 are two 

frequently examined anti-GD2 monoclonal antibodies [176]. The combination of dinutuximab 

with granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2) and 13-

cis-RA show better EFS. After intense chemotherapy, these combinations are used in 

treatment as maintenance therapy for the minimal residual disease [171, 177]. In 2015, the 

FDA permitted dinutuximab (Unituxin) to be used as a first and frontline therapy treatment 

in high-risk NBL patients [178-180]. At present, anti-GD2 monoclonal antibodies like 3F8 

(NCT00072358) clinical trials is completed and Hu3F8 (NCT02650648) is under clinical 

investigations for NBL (clinicaltrials.gov). 

1.2.2.6. Radiation therapy 
 

Radiotherapy came into the NBL therapeutic protocol when cells of NBL origin, the adrenergic 

neuroblast, had shown radiation sensitivity, especially in high-risk patients [181]. 

Improvements in both the PFS and OS of intermediate and high-risk NBL patients has been 

seen after radiation therapy was included along with chemotherapy [182]. The use of 

radionuclide (radiolabel iodine) and MIBG (131I-MIBG) in combination with radiotherapy has 

shown better results in NBL [154, 183]. NBL cells are keen to uptake MIBG due to the 

norepinephrine transporter (NET) and the later pile up in neurosecretory granules in the 

cancer cells where these cells are significantly destroyed by 131I-MIBG radiation [184, 185]. 

Even with a 66% striking response rate with 131I-MIBG targeted therapy, long term dose-

limiting toxicities are reported [183, 186, 187].  

1.2.2.7. Novel targeted treatment in neuroblastoma 
 

Surgery, chemo and radiation therapies have displayed significant potential and effects in low 

and intermediate-risk NBL cases, but for high-risk cases, the prognosis is still the worst [140]. 

Conventional therapies are unsuccessful in refractory/relapsed NBLs cases and within five 

years, almost 90% of patients are dead [140, 188, 189]. These investigations reflect that in 

high-risk NBL, especially in refractory NBL, clinical therapeutic resources are restricted or 

deficient and can also trigger severe toxicity, leading to the need for better, efficient, less-

toxic, novel, potent, specific and targeted therapeutic agents [190]. The main strategy to 

identify a targeted therapy compounds or a combination of compounds is to kill the tumour 

cells without disturbing the normal cell [191, 192]. Intensive preclinical research is ongoing to 



 
 

 
 

identify novel agents, but as NBL is a rare disease, there have been only a few phase III clinical 

trials (https://clinicaltrials.gov/). Currently, many novel targets have been discovered by 

investigating the mechanistic insight of NBL tumorigenesis and relapse. For instance, these 

factors are ALK, BIRC5, CDK4/6, CHEK1, MEK, MYCN etc., which can be targeted through 

targeted therapies in NBL [140, 193]. 

NBL is a well-known disease of an abnormal signaling protein in cells. Due to this aberrant 

activity in NBL, the Neuroblastoma New Drug Development Strategy (NDDS) has been 

endorsed so that protein products that trigger the increase of tumour propagation and 

growth should be given more consideration for targeted therapy [140, 193]. ALK, ALT 

(alternative lengthening of telomere lengthening), ATRX, Aurora kinase, BCL2 BET, BIRC5, 

BRIP1, CHEK1, CDK4/6, CDK2/9, CDK7, MDM2, MEK, mTORC1/2, PARP, TERT telomerase and 

WEE1 are the updated targets of NDDS [140]. 

In preclinical studies, ALK tyrosine kinase was targeted and inhibited by a small molecule that 

displayed growth hindrance of ALK-positive NBL cells in cell lines and in the mouse model 

system [112, 113, 194-198]. 

At present, the MAPK signaling pathway MEK inhibitors, the PI3K and CDK4/6 inhibitors are 

being tested in clinical trials [193]. Bromodomain (BET), CHEK1 and MDM2 inhibitors are also 

in the initial stages of clinical trials [140]. 

In normal cells, with each DNA replication, telomere length decreases gradually, which later 

triggers senescence and apoptosis [199]. These telomeres are present at both chromosome 

terminals, which blocks the degradation and fusion of chromosomes [200]. Tumour cells avoid 

the normal telomere shortening process and disturb the normal balance of the cell by 

inducing increased telomerase activity that leads to unlimited cell replications [2, 201-203]. It 

has been reported that telomerase is activated in about 90% of cancers [201, 204]. 

Telomerase has a catalytic unit known as telomere reverse transcriptase (TERT) [203]. 

Correlation of TERT with alternative lengthening of telomeres (ALT), a mechanism does not 

depend on telomerase, another method, which cells use to keep their telomeres elongated 

via homologous recombination [205-207]. TERT rearrangement and MYCN amplification 

activate telomere maintenance, which is a marker for poor prognosis in NBL and associate 

with high-risk NBL. It would be beneficial if novel therapeutical agents for telomerase activity 

https://clinicaltrials.gov/


 
 

 
 

and ALT could be explored to treat high-risk NBL [69, 208-213]. One inhibitor that could inhibit 

telomerase enzymatic activity was part of the clinical trial named Imetelstat (GRN163L), but 

this was discontinued to its highly toxic properties [214, 215]. There is another agent, 6- thio-

2’-deoxyguanosine that shows great potential to inhibit telomerase activity. To treat high-risk 

NBL, targeting the telomerase and ALT pathway therapeutically might be a beneficial 

approach [140]. 

1.2.2.8. Apoptosis activation 
 

Tumour cells escape from apoptosis (programmed cell death) and keep proliferating. One 

interesting way to handle these cells is to enhance apoptosis, which would inhibit the 

progression of the tumour and induce cell death. Dihydroorotate dehydrogenase (DHODH) 

inhibitors have shown a significant induction in apoptosis and a reduction in NBL cell 

proliferation both in cell lines and in mouse models [216]. Recently, the highly potent and 

novel DHODH inhibitor, BAY2402234, has shown striking proliferation inhibition and has 

induced apoptosis in acute myeloid leukemia (AML) [217]. In the year 2000, a group published 

a retinoid called Fenretinide, which triggers apoptosis in NBL cells [218]. Synergy has been 

seen in apoptotic enhancement upon a combination of fenretinide with chemotherapy agents 

in NBL [219]. TrkB is a neurotrophic receptor associated with high MYCN levels and shows a 

poor prognosis in NBL patients [86, 220]. Entrectinib is a Trk inhibitor approved by the FDA as 

an orphan drug to treat NBL patients [221]. Survivin (BIRC5) belongs to the apoptosis inhibitor 

family and targets BIRC5, which correlates to poor patient outcomes but is another very 

interesting way to induce apoptosis and to treat NBL patients. Sepantronium bromide 

(YM155) is a small potent molecule that degrades the promoter activity of BIRC5 and induces 

apoptosis in retinal progenitor cell lines [222]. YM155 inhibits BIRC5 expression and induces 

apoptosis in NSCLC [223]. 

1.2.2.9. Inhibition of MYCN 
 

MYCN expression is one of the most important prognostic markers that correlate to poor 

patient outcomes in NBL and targeting MYCN could be valuable [63, 68, 127]. As it is 

impossible to target MYCN directly due to the absence of a proper motif for a therapeutic 

agent to bind to its DNA binding site, indirect targets to block MYCN are required and are 

currently necessary [224]. NVP-BEZ235 is a PI3K/mTOR inhibitor that abrogates MYCN activity 



 
 

 
 

indirectly through mTORC inhibition but not PI3K activity and induces apoptosis [225]. Some 

other investigations conclude that MYCN is transcriptionally regulated by ALK through 

AKT/ERK5 [111, 226, 227]. Some examples of indirect MYCN inhibition are Aurora kinase A/B 

inhibitors, BET, MYCN and the MAX interaction inhibitor, ornithine decarboxylase (ODC1) 

inhibitors, [171, 226, 227]. Additional targeted therapies could be beneficial in NBL like DNA 

methylation, suppression of the heat shock protein 90 (Hsp90), cell cycle checkpoint 

inhibitors, targeting noncoding RNAs and protein glycosylation [171, 228].  

1.2.3. Receptor Tyrosine Kinase superfamily 
 

There is a huge protein kinase family, which transfers high energy phosphate (PO4) to serine 

(S), threonine (T) or tyrosine (Y) in substrate proteins [229, 230]. The superfamily of tyrosine 

kinase consists of 90 and is further divided into two different groups; (i) Receptor tyrosine 

kinases (RTKs) 58 and (ii) Non-receptor tyrosine kinases (NTRKs) 32 [231, 232]. The 58 RTKs 

are additionally classified into 20 subclasses [37, 231, 232]. All RTKs have a similar domain 

structure comprising an extracellular domain containing a ligand-binding domain (ECD), a 

transmembrane domain (TMD) and an intracellular protein tyrosine kinase domain (TK) [37, 

233-236] (Figure 3). The receptor can be activated by four steps: biding to the ligands, ligand 

activates receptor dimerization, autophosphorylation of tyrosine and activated protein 

signaling [37, 234, 237]. The ligand binds to ECD and enhances the dimerization of receptors 

triggering the trans-auto-phosphorylation of tyrosine and downstream signal activation [238, 

239]. Various important cell processes e.g., growth, differentiation, proliferation, survival, 

migration, metabolism etc. are controlled by RTKs [240, 241]. The constitutive activation of 

RTKs can be carried out by point mutation (gain-of-function), overexpression and 

chromosomal translocation, which activates tumorigenesis. The constitutive expression 

activation of RTKs induces numerous key cellular processes [241, 242]. Since tumorigenic 

kinase signaling activity is associated with a poor prognosis, a beneficial option would be to 

inhibit tyrosine kinase activity by tyrosine kinase inhibitors (TKIs). The journey of TKIs started 

two decades ago, when the FDA approved Gleevec/Imatinib, the first TKI to cure chronic 

myelogenous leukemia (CML) by inhibiting the activity of Abl, and after seven years, Gleevec 

received FDA approval for KIT receptor-positive gastrointestinal stromal tumours (GISTs) 

[243, 244]. The successful targeted therapeutical entry of TKI made this an important target 

and several pharma drugs came to the market [245-253]. TKIs work in four different ways, 



 
 

 
 

competing with:  

(i) ATP 

(ii) Kinase substrate  

(iii) Both  

(iv) Act in an allosteric manner [254]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The structure of human ALK and LTK: ALK has 1620 aa, (A and B) Both ALK and LTK have an extracellular 
domain (ECD), a transmembrane domain(TM) and a tyrosine kinase domain (TKD). The difference between ALK 
and LTK is that in ALK ECD, there are two meprins, A-5 protein and receptor protein tyrosine phosphatase mu 
(MAM) domains and one of each low-density lipoprotein class A (LDLa) and glycine-rich (GR) domain, but LTK 
contains only one GR. C. The crystal structure of an inactive form of ALK kinase domain (PDB: 3LCT), which 
contains: a GR loop (green), an α-C helix (magenta), a catalytic loop (orange) and an activation loop (blue). The 
ALK “hotspot” mutations: F1174, R1275, F1245 (red balls). Adaption was done with permission [36]. 

1.2.3.1. Anaplastic lymphoma kinase (ALK) 
 

ALK was initially revealed and named in 1994 after it was found to be a fusion partner with 

nucleophosmin (NPM), by the chromosomal translocation of the kinase domain of ALK (2p23) 

with the N-terminal site of NPM (5q35) [255-257]. Three years later, two independent 

research groups discovered full-length ALK [258, 259] and its expression was found in the 



 
 

 
 

development of the central and peripheral nervous system. The human ALK protein consists 

of 1620 amino acids (aa), which is translated from the ALK gene and localized at chromosome 

2p. The 1620 aa encodes a 177 KDa protein and due to the modification of full-length ALK 

through the N-linked glycosylation mature form of ALK, it is detected at 200 KDa [258, 259]. 

The shortened form of ALK is detected at 140 kDa due to the proteolytic cleavage [36, 260]. 

Due to ALK’s 47% sequence similarity with the insulin receptor (InR), ALK is a member of the 

IR superfamily [257]. ALK and leucocyte tyrosine kinase (LTK) has around 50% similar 

sequences and belong to an Insulin receptor (IR) superfamily [258, 259]. ALK expression was 

found in a specific region of the growing brain with more expression in the peripheral ganglia 

and other regions of mice brains [258, 259, 261]. Significantly, abrogated sympathetic neuron 

proliferation is observed once ALK is inhibited [262]. No lethal or big phenotype difference 

has been detected in ALK loss-of-function mice, but neurogenesis, testosterone and a 

behavioural response are defected [263-266]. On the other hand, mice with ALK gain-of-

function triggers neurogenesis and leading to propagation along with MYCN [111, 267, 268]. 

These investigations show and highlight how important ALK expression is in brain and testis 

growth. Several fusion partners of ALK have been discovered and published up to now. These 

activated ALK and played a key role in several tumours [269-271]. The role of ALK as a fusion 

gene like EML4-ALK in non-small cell lung cancer (NSCLC) [272, 273] and gain-of-function 

mutations ALK in NBL [97, 99, 106, 108, 274] have made ALK an important and beneficial 

therapeutic target [109, 275, 276]. 

Structure of ALK 

The 1620 aa of full length ALK is divided into 3 parts; an extracellular ligand-binding domain 

with 1020 aa, a transmembrane spanning domain with 21 aa and an intracellular tyrosine 

kinase domain with 561 aa [36, 258, 259] (Figure 3). 

Extracellular domain 

The extracellular domain carries two Meprin, the A-5 protein and the receptor protein 

tyrosine phosphatase Mu (MAM) region, a low-density lipoprotein class A (LDLa) region, and 

a glycine-rich (GR) region [258, 259, 277, 278] (Figure 3). The extracellular part of ALK seems 

to be for ligand binding, co-receptor interaction and dimerization, which could trigger 



 
 

 
 

intracellular kinase domain activation due to conformational changes [271, 279]. Two ALK 

ligands, ALKAL1 and ALKAL2, have been discovered recently [280, 281]. 

ALK intracellular kinase domain 

Just as for other RTKs, the intracellular kinase region of ALK comprises a small conserved N-

terminal lobe and a large C-terminal lobe [282-284] (Figure 3). N and C terminal lobes are 

merged by a ‘hinge’ domain, which creates a binding pocket of ATP or a substrate [282, 284]. 

There are five stranded antiparallel β-sheets and a regulatory αC-helix, responsible for 

catalytic activity. The activation loop sits in the helical large C-terminal lobe and this A loop 

has an inhibitory property. Upon inactive conformational change, it inhibits the substrate-

binding domain of the kinase domain [36, 282, 284]. It has been shown that protein kinase 

consists of regulatory (R-spine) and catalytic (C-spine) spines [283, 285]. These spines are 

similar in all kinases, where the R-spine plays an important role in defining the active and 

inactive conformation of the ALK kinase. In ALK I1171, C1182, H1247, F1271 and D1311 are 

hydrophobic in the regulatory spine. The C-spine contains residues like V1130, A1148, L1256, 

C1255, L1257, L1204, L1318, I1322 and plays a catalytic controller role through ATP binding 

[271, 283, 285, 286]. Interestingly, just as for the IR superfamily, the A-loop of the C-terminal 

has an auto-phosphorylation motif Y’XXX’YY. A small difference is observed in IR and ALK 

tyrosine phosphorylation. In NPM-ALK fusion, ALK phosphorylation goes in order from the 

first to the third (like Y1278, Y1282 and Y1283) but in IR the second tyrosine is phosphorylated 

first, then the first and the third are phosphorylated [282, 284, 287, 288]. This observation 

states that upon ALK inactivation, Y1278 cannot be accessed and its phosphorylation is critical 

[282, 284, 285]. Contrary to previous reports, Guan et al investigated the phosphorylation 

preferred sequence in wild type ALK and found that the third tyrosine (Y1283) is critical 

instead of the first tyrosine (Y1278). The authors made their statement stronger by inducing 

the single mutation of phenylalanine to Y1278F, Y1282F and Y1283F. Only Y1283F showed 

efficiently inhibited ALK phosphorylation (ligand mediated) of and its downstream signaling 

ERK1 and ERK2 [289]. 

 

 



 
 

 
 

The biological role of ALK in model organisms 

The specific and accurate role of ALK in mammalians is still uncertain, even though ALK 

participates in several tumour types, both in childhood and adult cancers. ALK seems to be a 

key player of neurogenesis in several animal models and homo sapiens [36, 258, 261]. 

Drosophila melanogaster, an experimental model system, has DAlk similar to mammalian 

ALK, which consists of an extracellular ligand-binding domain, a transmembrane domain and 

an intracellular kinase domain, where the kinase domain shows a high sequence similarity 

with the IR superfamily [277]. It has been shown that visceral mesoderm development needs 

ALK in embryogenesis and embryos without ALK do not survive since the fonder cells are 

missing [290-292]. Once the Drosophila ALK (DAlk) binds to its ligand jelly belly (Jeb), ALK 

signaling is activated via the MAPK-ERK1/2 pathway to intervene in the specification of 

founder cells [290-293]. It has been claimed that Jeb/DAlk signaling is critical for the synaptic 

connectivity in motor circuits development and the visual system of the fruit fly [294, 295]. 

Also, ALK mRNA is found in Drosophila CNS and visceral muscles [277]. The gut-less phenotype 

has been found in loss-of-function DAlk mutants [293]. In early embryogenesis, DAlk plays a 

critical role in the development of the gut visceral musculature [277, 293]. Strikingly, tiredness 

and vision defects are the main side effects in cancer patients treated with ALK inhibitors 

[296, 297]. Another study shows that by controlling the decapentaplegic (Dpp) transcription, 

which is a homolog of mammalian TGF- β, DAlk helps in embryonic endoderm development 

[298]. Neuroblast growth has been protected by DAlk via the PI3K/AKT signaling pathway in 

starvation conditions [299]. Some other studies have discovered that DAlk signaling is 

involved in body weight and associative learning in the fruit fly [300]. 

Another animal model widely used in cancer research is Caenorhabditis elegans (C.elegans). 

HEN1 and SCD-2 (suppressor of constitutive dauer formation) in C.elegans is the same as jeb 

and ALK respectively. SCD-2 is required for dauer development, which was suppressed at the 

3rd larval stage in C.elegans [301-303]. Initially, it was found as a suppressor in TGF-β mutant 

screening and was given this name [302]. C.elegans ligand, Hen-1, is the same as Jeb, which 

has an LDL receptor repeat and participates in sensory integration [304]. The function of SCD-

2 and Hen-1 belong to a similar pathway and to confirm the double mutant has been 

performed no difference was found between the single or double mutant [305]. 



 
 

 
 

In the kinase signaling investigation in zebrafish, Danio rerio has been performed in both Alk 

(DrAlk) and Ltk (DrLtk) [306-308]. DrAlk shows a strong expression in the developing CNS. 

Serious problems in neuronal differentiation of the CNS have been observed when DrAlk is 

inhibited, with no effect on neuron progenitor development [308]. However, another 

investigation showed ligands for zebrafish Alkal (Alkal1, Alkal2a and Alkal2b), which are 

important for iridophores (NC-derived pigment cells) formation [306, 309, 310]. There are 

more similarities in human ALK and DrLtk in the extracellular ligand-binding domain. Both 

DrLtk and hALK have two MAM domains but no MAM domain exists in human LTK [310]. 

Intense investigations have been carried out on dAlk and DrAlk ligands, but the human ALK 

receptor was known as an orphan receptor for a very long time [304, 311]. Two closely similar 

proteins have been discovered to be LTK ligands and are named FAM150A and FAM150B, now 

have new names as ALKAL1 and ALKAL2 [312]. ALKAL1 and ALKAL2 activity have been shown 

in the cell line [280, 281]. 

Neurogenesis and testosterone levels are disturbed in loss-of-function ALK double mutant 

mice but this is not life-threatening [264-266]. The expression of ALK mRNA found in specific 

areas of the CNS and PNS in the sympathetic chain, which highlights the role of ALK in the 

nervous system development [258, 259, 261]. Mouse NCCs show ALK expression, which 

shows the effect of ALK on NCC’s migration [313]. The increment in ganglia and neurogenesis 

has been detected in gain-of-function knock-in mice, where ALK mutant induction promotes 

the proliferation of neuroblasts in ganglia of the sympathetic chain [264, 268, 314]. To get a 

full insight into NBL tumorigenesis, understanding the role of ALK in neural crest cell 

development is required. 

1.2.3.2. ALK in cancer and signaling 
 

Many different fusion partners of ALK have been revealed and discovered to date in several 

cancer types, which shows ALK is a translocation hotspot target [36] (Figure 4). In ALCL, 

around 80% of cases depend on NPM-ALK fusion [315, 316] and the other ALK fusion 

cancerous protein is EML4-ALK, which is around 9% in NSCLC [272, 273, 315, 317]. The 

activation of transcription, subcellular localization is carried out by a fusion partner in ALK 

fusion, with an outcome of constitutive activation [36]. Point mutation is not described in 

primary ALK fusion but it normally spikes in relapsed cases as a resistance mutation [36, 318]. 



 
 

 
 

The fusion of ALK is reported in adult tumours but in childhood tumour abnormality in full-

length ALK has been described [36]. CRKL-C3G-RAP1, MEK5/ERK5, RAS/MAPK, PI3K/AKT, PLCγ 

and STAT3/STAT5 pathways have been activated through the constitutive activation of fusion 

and full length ALK [36, 315, 319] (Figure 4). Several adaptor proteins have been activated 

through ALK activation [36, 271, 315, 319]. Different cancer types have shown that 

constitutive activation of ALK leads to tumorigenesis, which makes ALK a potential 

therapeutic target for drug development [97, 99, 106, 108, 272-274, 320] (Figure 4). 

Figure 4. ALK signaling cascades and downstream targets: Modes of activation is shown in this figure, where 
ALK signaling can be activated through three ways. (i) ALK wild type activates through ligands binding (ligand 
dependent manner) (ii) ALK GoF mutant (ligand-independent manner) (iii) ALK binds with fusion protein (ligand-
independent manner). ALK activation activates numerous signaling pathways, for instance, Janus kinase (JAK)–
signal transducer and activator of transcription (STAT), PI3K-AKT, RAS-MAPK etc., through numerous 
transcription factors such as MYCN, JUNB, HIF1α etc., that leads to distinct cell responses involve in survival, anti-
apoptotic signals, differentiation, proliferation, transformation and metastasis. Adaption was done with 
permission [36]. 



 
 

 
 

1.2.3.3. ALK positive cancers 
 

In NBL, normally the ALK activation is done through tyrosine kinase domain mutation and ALK 

overexpression. There are some other cancers, which are related to oncogenic ALK 

abnormalities. As mentioned, ALK was first identified as a fusion partner to NPM in ALCL [257], 

since then around 30 fusion partners has been described, which makes locus of ALK as a hot-

spot target for translocation [315]. Some examples of ALK fusion partners are ALCL, DLBCL, 

IMT and NSCLC 

1.2.3.4. Anaplastic large cell lymphoma (ALCL) 
 

ALCL was first identified as a neoplasm, having Ki-1 antigen (CD-30) [321]. ALK got its name 

and was first identified as a fusion gene along with NPM in ALCL in 1994, where initial 117 

amino acids of NPM fused with last 563 amino acids of ALK, which includes an ALK kinase 

domain. This dimerization facilitates the auto-phosphorylation of the kinase domain of ALK 

leads to oncogenic signaling of ALK [255-257]. The NPM-ALK fusion happens in about 80% of 

ALCL cases (Amin and Lai, 2007). Other than NPM-ALK, several more ALK fusion partners 

found in ALCL are MSN, ALO17, TFG, TPM3, TPM4, MHY9, ATIC, CLTC, TRAF1 [322]. 

1.2.3.5. Diffuse large B-cell lymphoma (DLBCL) 
 

The DLBCL is a disease where neoplasia occurs in B-cells. DLBCLs are the most common 

lymphomas, represent about 40% of all lymphomas. The location of primary tumour is lymph 

nodes, but rarely present in nasopharynx, stomach and tongue [323, 324]. Although, in DLBCL, 

ALK aberration represents >1%, but ALK rearrangements are correlated to poor outcome and 

not effective to chemotherapy treatment [323, 325]. ALK targeted therapy seems to be a good 

option to treat ALK positive DLBCL [326]. The ALK fusion partners found in DLBCL are CLTC 

[327], NPM, SEC31A [328], SQSTM1 [329-331]. 

1.2.3.6. Inflammatory myofibroblastic tumours (IMT) 
 

The IMT is a rare disease, where neoplasia occurs in mesenchymal cells that mostly initiates 

in the abdomen, lungs soft tissues, retroperitoneal region and pelvis mostly present in young 

adults and kids [332, 333]. In approximately 50% cases of IMT, ALK fusion have been involved 

with TPM3, present on chromosome-1 [334]. Numerous other ALK fusion partners have been 



 
 

 
 

described, for instance, ATIC [335], CARS [336], CLTC1 [337, 338], PPFIBP1 [339], RANBP2 

[338, 340], SEC31L1 [341] and TPM4 [334] 

1.2.3.7. Non-small cell lung cancer (NSCLC) 
 

Lung cancer has the highest rate of death among all cancer types in the world. In 2020, 1.80 

million death cases were registered [3]. Lung cancer is divided into two types, non-small cell 

lung cancer (NSCLC), which accounts for 85% cases and small cell lung cancer, occurs in 15%. 

Smoking of cigarette is one of the most important risk factor associated to NSCLC 

development [342, 343]. ALK rearrangement has been found in NSCLC and around forty 

thousand cases register each year with ALK-dependent NSCLC worldwide [344, 345]. The 

cases register with ALK-dependent NSCLC are mostly young, with a casual or non-smoking 

background [346, 347]. The fusion of EML4 with ALK is the most common and both present 

on the same chromosome-2, where N-terminal region of EML4 gene fuses with tyrosine 

kinase domain of ALK gene [272]. Until date approximately fifteen different EML4-ALK 

variants have been identified [272, 344]. Several different partners of ALK translocation in 

NSCLC are KIF5B [348, 349], KLC1 [350], PTPN3,STRN [351] and TFG [273]. 

1.2.3.8. ALK in neuroblastoma 
 

ALK gain-of-function mutations have been found in familial and sporadic NBL cases, making 

this an interesting target to investigate the mechanism of action of ALK and its downstream 

signaling partners [97, 99, 106, 108] (Figure 4). Heritable mutations are quite common in 

familial NBL, but most cases are sporadic [45]. Mendelian-based familial cases are just 1-2% 

and most have ALK mutations. Point mutation has been found in around 10% of sporadic NBL 

cases [94, 95, 110] and this percentage is increased to 26% in refractory NBL [352, 353]. The 

point mutation of ALK happens and sits in the intracellular kinase domain of ALK [36]. In NBL, 

the mutation in ALK has been divided into (i) gain-of-function ligand-independent, (ii) ligand-

dependent, (iii) kinase-dead mutations [354]. Gain-of-function mutation in the tyrosine kinase 

domain of ALK induces constitutive activation of ALK, which leads to the oncogenic signaling 

activation of ALK and its downstream pathways [36, 354]. This constitutive activation 

correlates with poor patient outcomes in high-risk NBL patients [110]. The most common and 

hot spot ALK mutations found in NBL are Phe1174 (30%), Phe1245 (12%), and Arg1275 



 
 

 
 

(45%), approximately 85% among all ALK kinase domain mutations [94, 110]. ALK activation in 

these mutations is known to be ligand-independent [115, 274, 354] (Figure 4). 

The low copy number of an unbalanced gain of the short arm of chromosome 2, the location 

of ALK and MYCN, is described in around 23% of NBL, which induces ALK mRNA leading to a 

high ALK protein expression and showing a poor prognosis [94, 355]. Interestingly, it has also 

been shown that the ALK copy number gain and point mutation in the ALK kinase domain 

rarely happens [94]. 

ALKAL2, the ALK ligand, is located at chromosome 2p.25 in proximity to ALK and MYCN and is 

found in the gain of an unbalanced chromosome 2p abnormality along with ALK and MYCN 

[100]. Deletion of exons has also been reported to activate ALK signaling in NBL, leading to 

ALK extracellular domain truncation [356-358] (Figure 4). 

ALK kinase domain mutation has been found in about 10% of primary NBL patients during 

diagnosis and this number spikes to 20% in refractory patient samples [94, 95, 352]. 

Mutations in the RAS/MAPK signaling pathway have been found in patients who receive 

chemotherapeutic treatment [359, 360]. These results describe how important ALK may be 

as a driver in primary as well as relapse NBL cases [353, 360, 361]. ALK as a therapeutic target 

for primary and refractory ALK-positive NBL would be beneficial. Interestingly, in adult 

animals, the mRNA and protein levels of ALK go down in every tissue and further drop to a 

lower level until the age of 3 weeks where it is maintained at the minimum level [258]. Mice 

are viable in ALK loss of function [264, 266]. All these results and investigations are a strong 

indication to employ an ALK inhibitor as a targeted therapeutic agent in adult and childhood 

ALK-driven NBL. 

1.2.3.9. Synergistic collaboration between ALK and MYCN in neuroblastoma 
 

Chromosomes 2p.23 & 2p.24 have two important oncogenes, ALK and MYCN respectively. 

Amplification of this combination occurs in 2-3 % of NBL cases [94, 108, 110, 362]. Most ALK 

gain-of-function mutants and especially F1174 (one of the hotspot mutations) are correlated 

to MYCN amplified cases which relates to a poor prognosis in NBL patients [94]. These 

investigations have shown the link and combinatory effect of these two abnormalities. This 

mechanistic link was initially revealed where the group showed that both wild type and 

mutated ALK induces MYCN transcription in neuronal cell lines and NBL [226]. 



 
 

 
 

Synergistic cooperation of ALK and MYCN incudes transformation in mouse fibroblastic cells 

(NIH3T3) [226]. This synergistic tumorigenic correlation was observed in mouse and zebra fish 

models of NBL [111, 314, 363] (Figure 5). Combined expression of ALK kinase domain mutant 

and MYCN showed complete and higher tumour penetrance, induced development and 

earlier onset of tumour [111, 314, 364]. MYCN overexpression abrogates the differentiation 

of the chromaffin cell and induces the proliferation of sympathetic neuroblasts, but ultimately 

arose the apoptosis response appears in the NC-derived progenitor, which gives low 

penetrance tumorigenesis in NBL [111, 364]. On the other hand, no tumorigenesis was seen 

in constitutive ALK gain-of-function neuroblasts alone [111, 364]. Neuroblast proliferation is 

increased in gain-of-function ALK knock in mouse, with elongated ganglia and enhanced 

neurogenesis [268]. These studies showed that transformed cell of MYCN are dependent on 

ALK signaling to induce tumorigenesis, which strengthen the therapeutic advantage to target 

ALK in ALK-addicted and MYCN-amplified NBLs (Figure 5). 

Figure 5. Mechanistic illustration of NBL progression and development in synergistic cooperation between 
gain-of-function ALK mutants with MYCN: MYCN overexpression in neuroblast induces cell proliferation and 
drives apoptosis in few cells that leads to low tumour penetrance. The overexpression of ALK gain of function 
alone does not induce tumour, rather increases neuronal differentiation. Cooperation of activated ALK and MYCN 
leads to high tumour penetrance [111, 268, 364]. 



 
 

 
 

1.2.3.10. Role of ALK in neuroblastoma differentiation  
 

In chicken, sympathetic neuroblast-induced neuronal differentiation has been observed when 

ALK is activated [365]. Another investigation in mice showed a proliferation induction and 

differentiation inhibition when ALK-F1174 activation is driven via the SOX10 promoter [366, 

367]. Early sympathetic progenitor cells of mice have shown a blocked differentiation and 

induced proliferation when ALK-F1174 is expressed ectopically in migrating NCCs, but no 

tumorigenic activity has been observed [366]. In NBL tumours, the induced protein expression 

of ALK (41%) and MYCN (39%) has been found, with around 86% of NBL tumours with high 

protein expression of ALK and MYCN, displayed poorly or undifferentiated histology [368].  

These investigations showed the importance of ALK and MYCN activity in neural crest cells 

differentiation and its role in NBL initiation and propagation 

1.2.3.11. Targeting ALK in cancer 
 

The Pathogenic activity of ALK signaling was revealed in ALCL [255-257] and several other 

cancer types showed the involvement of oncogenic ALK signaling [271, 369-371]. ALK 

chromosomal translocation leads to the formation of a constitutively active oncogenic ALK 

fusion protein, which is the most frequent form of ALK aberration in human cancer. This ALK 

translocation in ALCL is about 55%, about 50% in IMT and as much as 9% in NSCLC [316, 317, 

372]. 

Mostly point mutations happen in the ALK kinase domain, which is around 10% in NBL [36, 

94, 99, 108]. To treat ALK-driven cancers, tyrosine kinase inhibitors (TKIs) are generated, 

which bind to the ATP binding pocket and inhibit the activity of ALK signaling. Some of these 

are crizotinib, alectinib, brigatinib and lorlatinib [274, 373]. Below is a summary of some of 

the TKIs used in the experiments. 

 

 
 

 

  



 
 

 
 

Crizotinib 
 

Crizotinib (PF-2342066/XalkoriTM) is the first approved ALK TKI, known as a first-generation 

ALK inhibitor. It was initially discovered as an efficient c-MET kinase inhibitor, which is potent 

for other RTKs such as ALK and ROS-1 [247]. In 2011, an exceptional clinical result hastened 

its approval by the FDA, during the first and second clinical trial of NSCLC patients for advance 

ALK-positive NSCLC and it has been suggested for use in NBL patient treatments [275, 317, 

374]. It is an ATP competitive TKI and is orally bioavailable [320].  In phase 3 of the clinical 

trial, crizotinib displayed a better effect than chemotherapy [370, 375]. Even after the initial 

response, the development of secondary resistance mutation needs the next generation of 

ALK TKIs [375]. In the first clinical trial of eleven NBL patients with a known ALK status, 

response was observed only in 1 patient [374] but the other paediatric cancers with ALK-

fusion like ALCL and IMT showed a remarkable response, with 80% and 86% respectively 

[376]. Informal evidence of crizotinib treatment for chemotherapy-relapsed NBL patients 

observed a complete initial response where high levels of ALK protein expression were 

reported [377]. These investigations draw important attention to discover new and more 

potent ALK TKIs to treat NBL patients. 

 

Figure 6. ALK tyrosine kinase inhibitor (TKI)-Crizotinib: Chemical structure [378] is shown to the left side and on 
the right side, crizotinib (light blue) binding into the ATP binding pocket of the ALK kinase domain (dark pink). 

 

 

  



 
 

 
 

Alectinib 
  

Alectinib is an ATP-competitive, second-generation, selective and orally available ALK TKI 

[379-382], initially approved in Japan in July 2014 and later in December 2015 in the USA. 

Alectinib was approved to treat recurrent ALK-positive NSCLC especially for those patients 

who were intolerant to crizotinib [380]. Better ALK inhibition and blood-brain barrier 

transport in alectinib comparing to crizotinib and longer median progression-free survival 

were observed [383-385], with an augmented safety profile has observed when compare with 

crizotinib in NSCLC [384, 386]. Additionally, alectinib displayed robust activity towards 

L1196M gatekeeper mutation and the F1174L and R1275Q, known as hot spot mutations 

[380]. Even V1180L and 1171T showed resistance to alectinib [387] but hotspot mutations are 

the most frequent in all NBL mutated cases and the use of alectinib as a therapeutic drug 

could be beneficial with these mutations. About crizotinib, while the naïve NSLCLC median 

survival for the patient treated with alectinib is 28 months, in crizotinib resistance the PFS is 

around nine months [383]. Alam et al. showed abrogation of ALK activation in NBL cell lines 

and exogenously expressed ALK activity in xenografts mouse model when treated with 

alectinib [112]. 

 

Figure 7. ALK tyrosine kinase inhibitor (TKI)-Alectinib: Chemical structure [378] is shown to the left side and on 
the right side, alectinib (light blue) binding into the ATP binding pocket of the ALK kinase domain (dark pink). 

 
 

 

  



 
 

 
 

Ceritinib 
 

Ceritinib, an ALK competitive second-generation ALK TKI, is in capsule form and taken through 

the mouth [388]. FDA approval was given in 2014 to treat crizotinib resistant ALK-positive 

NSCLC patients [389] and has been shown remarkable tumour reduction in both resistant and 

sensitive crizotinib ALK-mutations in ALK-arranged NSCLC mouse models [388, 390]. 

Ceritinib’s clinical trials have been shown much higher efficacy compared to the crizotinib and 

showed median PFS of 7-8 months in NSCLC [391]. Ceritinib inhibits not only ALK but also IGF-

1R, INSR and STKK22D [390, 392]. Several drug-related side effects of ceritinib are found e.g. 

tiredness, diarrhoea, vomiting, stomachache, high aminotransferase levels and low serum 

phosphate levels [389, 391]. Alectinib and crizotinib resistant ALK mutations have shown 

sensitivity to ceritinib [387, 390]. During phase 3 clinical trial, ceritinib shows twice better PFS 

than chemotherapy as first-line therapy in ALK-rearranged NSCLC [393]. Another study shows 

the synergistic effect of ceritinib and ribocilib (CDK 4/6 inhibitor) on reduced tumour growth 

in NBL xenograft [394]. The phase 1 trials are done for IMT, NBL and ALCL (NCT01742286).  

For high-risk NBL cases, combination treatment of ceritinib with several drugs is going on 

(NCT02559778). 

 

Figure 8. ALK tyrosine kinase inhibitor (TKI)-Ceritinib: Chemical structure [378] is shown to the left side and on 
the right side, ceritinib (light blue) binding into the ATP binding pocket of the ALK kinase domain (dark pink). 

 

 

  



 
 

 
 

Brigatinib 
 

Brigatinib is another ALK competitive ALK TKI that inhibits ALK kinase activity and other 

targets, for instance, EGFR, IGFR-1 and ROS1 [395]. During brigatinib preclinical trials on ALK-

addicted NSCLC has been shown more potent on all ALK resistant mutants of alectinib, 

crizotinib and ceritinib [395]. FDA approval was given to brigatinib in 2017 to treat those 

patients who are crizotinib resistant [396]. In NSCLC patients which were resistant to 

crizotinib, ALK mutants showed around 13 months PFS during phase I and II trials [389]. 

Several drug-related side effects of brigatinib are found e.g. nausea, fatigue, dyspnoea, 

vomiting, pyrexia, arthralgia and diarrhoea [389]. Siaw et al investigated and found the effect 

of brigatinib in NBL, which shows ALK activity abrogates strikingly and better than crizotinib 

both in vitro and in vivo [116]. Another study has shown an interesting result of brigatinib 

induced PFS in CNS metastatic and CNS non-metastatic cases, as normally ALK TKIs displays 

bad CNS penetration [397]. 

 

Figure 9. ALK tyrosine kinase inhibitor (TKI)-Brigatinib: Chemical structure [378] is shown to the left side and on 
the right side, brigatinib (light blue) binding into the ATP binding pocket of the ALK kinase domain (dark pink). 

 

 

 

 

 

 



 
 

 
 

Lorlatinib 
 

Lorlatinib (PF-06463922) is an ATP-competitive molecule that is an effective and potent 

ALK/ROS-1 with an ability to cross the blood-brain barrier and gives better efficacy to all AK 

resistant mutations compared to all other generations of ALK TKIs both in the cell lines and 

also in animal models [197, 198, 398, 399]. Due to its unique macrocyclic structure, it 

conquers ALK-TKI resistant mutations with enhanced and better CNS activity and can inhibit 

[400]. In preclinical data, it abrogates to those mutations where resistance was observed with 

all other ALK TKIs. It is also shown in biochemical assays that when including the ALK wild 

type, almost all other ALK mutations were inhibited at very low concentrations [398]. Phase 

I/II clinical trials for NBL is ongoing for lorlatinib (NANT, NCT03107988) [193]. Since lorlatinib 

efficacy is remarkable, lorlatinib could be the best therapeutic target to treat ALK-driven NBL 

in a mono treatment, as well as in combination with other signaling targets to escape acquired 

long-term treatment resistance.  

 

Figure 10. ALK tyrosine kinase inhibitor (TKI)-Lorlatinib: Chemical structure [378] is shown to the left side and 
on the right side, lorlatinib (light blue) binding into the ATP binding pocket of the ALK kinase domain (dark pink). 

 

 

 

 

 



 
 

 
 

1.2.4. Dihydroorotate dehydrogenase (DHODH) 
 

1.2.4.1. Characterization of DHODH enzymes 
 

DHODH gene sits on an ORF region of human chromosome 16q22 with 1191 bp length, which 

translates the DHODH protein of 397 amino acids [401]. The crystal structure of the DHODH 

enzyme has flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and iron [402]. 

Several organisms express dihydroorotate dehydrogenase (DHODH) and this enzyme is 

divided into two classes (i) Class 1 and (ii) Class 2 based on many factors like co-factor, 

localization, sequence similarity and substrate. Class 1 is classified into class 1A, class 1B and 

class 1S. These three classes are localized in the cytoplasm [403, 404]. Class 1A enzymes are 

homodimers and FAD and FMN are their co-factors, present in gram-positive bacteria [405, 

406]. While Class 1B enzymes are heterodimers and NAD+ acts as an electron acceptor, 

usually present in gram-negative bacteria [407, 408]. Class 1S utilizes serine as a catalytic base 

as it is not able to use a natural electron acceptor [403, 404].  Eukaryotes and prokaryotes 

(some) both express class 2 enzymes, where DHODH in eukaryotes is attached to an inner 

mitochondrial membrane while attached with the cytosolic membrane in prokaryotes [404, 

409]. Humans relate to Class 2 monomeric group and DHODH is present in the inner 

membrane of mitochondria [410]. DHODH is an iron-containing flavin-dependent enzyme, 

participates in the de novo synthesis of pyrimidine [401]. There is around 30% sequence 

similarity between class 1A and class1B, and 20% similarity between soluble class 1 and class 

2 DHODH [404].  

1.2.4.2. Structure and function of human DHODH 
 

The first DHODH structure was discovered from Lactococcus lactis in 1997 [411], and in 2000 

DHODH structure of human was identified. In the structure of humans DHODH, there are two 

domains (i) A large C-terminal catalytic domain (CAT), which has an enzyme active site and (ii) 

the little N-terminal membrane-bound domain, both are attached by the loop [404, 412]. The 

redox site is at the C-terminus while the mitochondrial localization signal is at the protein N-

terminal. Then there is a hydrophobic region that keeps holding it with membrane [413]. The 

α-helical domain is the binding domain for many inhibitors and the binding domain for 



 
 

 
 

ubiquinone Q10, which goes down during catalysis [412, 414]. R136 and Y356 residues 

interact with ubiquinone are found an interactive partner to DHODH inhibitors [412, 415].  

 

Figure 11. The schematic illustration of the six enzymatic reactions of the de novo pyrimidine synthesis 
pathways: In this figure, CAD is abbreviated for Carbamoyl-Phosphate Synthetase 2, Aspartate 
Transcarbamylase, And Dihydroorotase, DHODH is abbreviated for Dihydroorotate Dehydrogenase and UMPs is 
abbreviated for Uridine Monophosphate Synthetase. This illustration is adapted and modified [416], copyrights 
reserved for MDPI 2019. 

1.2.4.3. Role of DHODH in cancer and as a drug target 
 

In total there are six universally conserved enzymatic reactions in the pyrimidine de novo 

synthetic pathway and DHODH catalyses the fourth enzymatic reaction step and for tumour 

treatment, it would be a potential drug target [403, 417] (Figure 11). The function of DHODH 

in humans is to catalyse the fourth step which oxidises the dihydroorotate to orotate, by a 

redox reaction where ubiquinone (CoQ) converting to ubiquinol (CoQH2), a substrate of 

respiratory complex III, in the mitochondria [404, 418, 419] (Figure 11). The cofactor of this 

redox reaction is FMN that works as an electron acceptor [419, 420].  

DHODH is a key player in the synthesis of pyrimidine through the de novo synthesis pathway. 

In idle or complete differentiated cells salvage pathway fulfils the nucleotide while to 

complete the nucleotide requirement of highly proliferating cells de novo synthesis pathway 



 
 

 
 

is used [419]. In contrast with the proliferation of normal cells, cancerous cells have disturbed 

metabolism of pyrimidine which is correlated to tumour development and transformation 

[421]. In addition, DHODH is a crucial player in tumour progression by supplying rapidly 

proliferating cancer cells with nucleic acids [422] thereby making DHODH a potential drug 

target in cancer. Several cancers have shown anti-proliferative and apoptotic effect by 

inhibiting DHODH e.g. acute myeloid leukemia AML [217, 423], breast cancer [424], cervical 

cancer [425], colorectal cancer (CRC) [426], glioblastoma stem cells (GSCs) [427], lung cancer 

[428], multiple myeloma cells [429], NBL cells [216, 430], pancreatic cancer [431], renal cell 

carcinoma (RCC) [432]. Another group has recently been described that MYCN, which is 

associated to poor clinical outcome in NBL, induces the pyrimidine nucleotide production via 

transcriptional upregulation of DHODH, and DHODH suppression reduces the proliferation of 

MYCN-amplified NBL cells [430]. 

Inhibition of DHODH displayed proliferation inhibition due to pyrimidine depreciation. Studies 

have shown that DHODH inhibition is more potent to treat cancers that are addicted to 

pyrimidine through the de novo pathway rather than the salvage pathway. For example, 

inhibition of DHODH activates ATR, which increases DNA damage and cell death [433]. 

Hypoxic and low nutrient environments make DHODH inhibitors more sensitive to the tumour 

cells [434, 435]. Several important transcription factors regulate DHODH for instance, GATA2, 

MYC, NF-kB1, p300 and POU2F2 [436]. 

In another study, where DHODH activity has measured through fluorescence in cancer cells 

and neighbouring normal cells of the same patient, striking induction of DHODH activity has 

observed in cancerous tissue then compare with nearby normal tissue [425]. 

DHODH play an important role in tumour development and metastasis, which makes it an 

important therapeutic target for the development of the drug. Cancer cells have shown an 

inhibitory effect upon treatment with DHODH inhibitor. Several inhibiting compounds of 

DHODH have been published, for instance, brequinar (BRQ) [437], which was initially used as 

an immunosuppressant, and later it displayed anti-tumorigenic properties in different cancers 

in vivo and in vitro [438]. Another DHODH inhibitor is leflunomide [419]. Leflunomide inhibits 

proliferation and enhanced apoptosis in multiple myeloma cells, NBL cells and mouse models 

[216, 429]. Leflunomide inhibition has also shown an anti-proliferative effect on renal 

carcinoma cells [432]. Leflunomide decreases cell movement and shows a metastasis 



 
 

 
 

inhibitory effect in breast cancer cells [439]. Leflunomide inhibits cell movement in breast 

cancer cells, which shows its anti-metastatic effect [439]. An active metabolite of leflunomide 

is teriflunomide [440] initially used for rheumatoid arthritis (RA) and multiple sclerosis (MS), 

also involved in antitumour activity through DHODH inhibition [427]. There are other known 

DHODH inhibitors for instance ALASN003 [441], till date FDA only approved ASLAN003 as an 

orphan drug designation. 

BAY2402234 is a novel and potent DHODH inhibitor, which has shown prolific results in acute 

myeloid leukemia (AML) cell lines and mouse models, where proliferation inhibition and 

induced differentiation have been observed in a monotherapy treatment [217]. Additionally, 

omics data has shown increase expression of differentiation, apoptotic and p53 pathway 

levels and inhibition of many kinases phosphorylation of MAPK pathway [217]. Currently, 

there is a planned clinical trial (NCT05061251) of BAY2402234 for recurrent glioma, which will 

be starting soon (https://clinicaltrials.gov/ct2/home). 
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2. GOALS/AIMS 
 

Thesis main goal is to understand the novel and different therapeutic strategies to overcome 

NBL and to target ALK and other oncogenic signaling pathways.    

 

Specific aims of paper I  

 To interrogate the therapeutic potential of alectinib in the cell lines and the pre-clinical 

models of NBL. 

 

 To establish better profile of inhibition of alectinib in comparison to previous TKIs for ALK 

gain-of-function mutant alleles found in NBL. 

 

 

 

 

Specific aims of paper II 

 To investigate the effect of DHODH inhibitor (BAY2402234) on NBL cell lines and 

transgenic mouse models. 

 

 To analyse the synergy between BAY2402234 and lorlatinib in ALK-addicted NBL. 

 

 

 

 

 

 



 
 

 
 

3. MATERIALS AND METHODS: 
 

Below is a short introduction of the common materials and methods used to produce all the 

data. Detailed materials and methods are written in a published paper and manuscript. 

3.1. Cell culture 
 

Collagen pre-coated dishes are used to culture NBL cells. RPMI-1640 medium in addition to 

10% fetal bovine serum (FBS) and 1% penicillin and streptomycin (PE/ST) are used to grow 

NBL cell lines at 37°C with 5% CO2 and 95% humidity. A MEM/EBSS medium is used to grow 

PC-12 cells with 7% horse serum (HS), 3% FBS and 1% PE/ST.  

3.2. Immunoblotting 
 

Whole cells were harvested in a RIPA buffer, kept on ice and 10 minutes centrifugation at 4°C. 

Protein concentrations were calculated, run on bis-acryl-tris gels and subjected to SDS 

polyacrylamide gel electrophoresis (PAGE). Samples were then transferred to polyvinylidene 

difluoride (PVDF) membrane., 5% bovine serum albumin (BSA) or skimmed milk were used 

for blocking and primary antibodies were added to the membrane overnight at 4°C. They were 

then washed with PBS-T and then secondary antibodies were added at room temperature for 

1 hr. ECL prime was used to detect western blot. Western blot was quantified by Image 

Studio™ Lite software (LI-COR Biotechnology - UK).  

3.3. Apoptosis assay 
 

NBL cells were plated and incubated with indicated concentrations of inhibitor for 24 hrs or 

48 hrs. Lysates were collected and the protein concentration was calculated. Western blotting 

was performed, the membrane was blocked in milk and then PARP antibody was used to 

immunoblot the membrane. PARP antibody detects full length PARP and cleaved PARP1 both. 

Respective actin/GAPDH concentration was used to normalize cleaved PARP1 levels for 

quantification. 

3.4. Proliferation assay 
 

NBL cells were plated on 48 or 96-well plates and left to grow overnight. The next day, the 

specified concentrations of drugs were used to treat cells, either in mono drug treatment or 



 
 

 
 

in combinations (for synergy experiments). The analysis of the experiment was carried out 

either in Incucyte S3 (Essen BioScience, USA) or by a resazurin assay. 

3.5. Neurite outgrowth assay 
 

Wild type ALk or mutant ALK were transfected in 100 μl of Ingenio electroporation solution 

(Mirrus Bio LCC) with 2 x106 PC-12 cells. After electroporation, a fresh medium was added to 

the cells and seeded into 24-well plates. Specified concentrations of inhibitors were used on 

transfected cells for 48 h. Neurite outgrowth was quantified/scored 48 h post-transfection. 

The scoring is carried out by counting neurite-carrying cells (double the length compared to 

normal cells) GFP-positive cells vs GFP-positive cells (all) by using a Zeiss Axiovert 40 CFL 

microscope. 

3.6. Cell cycle analysis 
 

1 x 106 NBL cells were seeded in a 6-well plate. Type I Bovine collagen solution (0.4%) (Advance 

BioMatrix, LOT#7434) was used to pre-coat the plates. The next day, cells were treated with 

the desired concentration and for the desired time. After treatment, the cells were harvested, 

fixed and followed the instruction protocol of “fixed cell cycle-DAPI assay protocol” 

(NucleoCounter NC-3000, Chemometec, Denmark). Analysis of the cell cycle was performed 

by using NucleoCounter NC-3000 (Chemometec, Denmark) and following the manufacturer’s 

protocol. Cell cycle data were determined by the plot manager in NucleoView NC-3000 

software. 

3.7. Mouse xenografts model 
 

4-6 weeks old BALB/cAnNRj-Foxn1nu (Janvier Labs, France) or Balbc/nude female mice 

(Charles River, Germany) were hypodermically injected 1 x 106 in the left flank. The tumour 

size was measured continuously, once the tumour size reached 150 mm3, the mice were 

divided into a drug or vehicle-treated group, which were orally administrated. Xenograft 

tumours were excised and weighed at the end of the experiment and fixed in 4% 

paraformaldehyde for 3days. All experimental protocols and procedures were conducted by 

following the Regional Animal Ethics Committee approval, Jordbruksverket (230-2014, 01890-

2018). 



 
 

 
 

3.8. Transgenic mouse model  
 

Alk-F1178SKI/0; TH-MYCNTg/0 on a 129X1/SvJ background (JAX stock #000691) were screened 

by ultrasound, 2–3 times a week from approximately 35 days old. Tumours were monitored 

until they reach a size of 3–6 mm in average diameter when mice were randomized into 

treatment groups. Mice were treated P.O. once daily with BAY2402234 at 2.5 mg/kg of body 

weight (n=6), or vehicle control treatment (2% DMSO/30% PEG300). Tumour imaging was 

performed on days 0, 7 and 14 by ultrasound. On day 14, the animals were sacrificed and the 

tumour was harvested except for two mice in the treated group that were released and 

imaged after an additional 7 days (day 21). Screening and 3D image acquisition were 

performed using the Vevo 3100 imaging systems (FUJIFILM VisualSonics, Toronto, Canada). 

The VisualSonics MX550D (25-55 MHz, 40 μm axial resolution) linear array transducer was 

used for all image acquisition. For 3D scanning the probe was attached to a step motor, 

animals were anaesthetized with isoflurane and their respiration rate, ECG and body 

temperature were monitored during the procedure. Images were analysed and the tumour 

volume was measured in VevoLab (Fujifilm VisualSonics, Toronto, Canada). ‘ 

3.9. Immunohistochemistry 
 

Tumour samples fixation was done in 10% neutral buffered formalin, dehydrated, cleared and 

embedded in paraffin, then sectioned at 5 µm. After deparaffinization and rehydration, Heat-

Induced-Epitope-Retrieval was performed with 10mM citric acid, 0.05%Tween 20. Blocking 

was performed with 5% of normal goat serum before sections were incubated with primary 

antibody and diluted in Signalstain® Antibody Diluent (CST, #8112) overnight at 4°. Sections 

were incubated with Signalstain® Boost IHC Detection Reagent (HRP, Rabbit; CST, Cat. #8114). 

The signal was developed with Signalstain® DAB Substrate Kit (CST, Cat. #8059). Slides were 

counterstained with Mayer's hematoxylin solution (Sigma‐Aldrich, Cat. #MHS1‐100ML), 

before dehydration and mounting. Digital images of sections were obtained with a 

Hamamatsu NanoZoomer‐SQ Digital slide scanner. 

 

 

 



 
 

 
 

4. RESULTS AND DISCUSSION 
 

4.1. Paper I 
 

“Alectinib, an Anaplastic Lymphoma Kinase Inhibitor, Abolishes ALK Activity and Growth in 

ALK-Positive NBL Cells” 

Alectinib has been used in the clinic for relapsed ALK-positive NSCLC and for those patients 

who are intolerant to crizotinib. We have shown that ALK activity is inhibited by alectinib and 

the growth of ALK-addicted NBL cell lines in a dose-dependent manner. Alectinib showed a 

nearly two-fold inhibition over the first generation ALK inhibitor, crizotinib. Mutated ALK 

variants found in NBL cases were examined and the capability of alectinib to block 

phosphorylation, on Y1604, in PC12 cells. Interestingly, the activation of ALK gain-of-function 

alleles were inhibited by alectinib, with IC50 values of 2.2 to 22 fold less than those observed 

with crizotinib. In a mouse xenograft model of NBL, alectinib has shown potent anti-tumour 

growth. Tumour volume showed a relatively significant reduction in a treatment group. No 

effect on mice weight and no observable side effects were observed after treatment with 

alectinib. ALK dependent NBL cell lines have shown increased PARP cleavage and cell cycle G1 

arrest after 24 h of treatment. Cell cycle progression is delayed in ALK-addicted cells and 

induced apoptosis has been shown after alectinib treatment 

To summarize: Alectinib suppresses the activation of ALK in NBL cell lines, in biochemical 

assays and ALK activity in mice xenografts, which was exogenously expressed. In conclusion, 

these results suggest that alectinib is a potent inhibitor for ALK and highlights further 

investigation of alectinib in the ALK-positive NBL setting. 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

Figure 12. Project I workflow illustration: The preclinical analysis of alectinib in NBL setting. 

 

 

 

 

 



 
 

 
 

4.2. Paper II 
 

“BAY2402234, a Dihydroorotate Dehydrogenase (DHODH) Inhibitor, Mediates Abrogation of 

The Proliferation and Apoptosis of NBL Cells”.  

Pyrimidine nucleotides play a vital role in tumour progression and these pyrimidines can be 

synthesized through either salvage or de novo pathway. Tumour cells fulfil their need for 

nucleotides through the de novo pathway. Dihydroorotate dehydrogenase (DHODH) is an 

important player of de novo pyrimidine synthesis and by inhibiting DHODH tumour cells 

proliferation is decreased. BAY2402234, a novel DHODH inhibitor has shown striking 

inhibition in acute myeloid leukemia (AML) and we investigated BAY2402234 in NBL 

preclinical settings. In BAY2402234 treated NBL cells and transgenic mouse models, inhibition 

of proliferation and tumour growth are observed respectively. Once the low levels of DHODH 

confirm better prognosis in NBL on an online tool, R2 database, we employed the panel of 

NBL cell lines. BAY2402234 showed proliferation inhibition in nM concentrations. The 

combination of BAY2402234 and ALK inhibitor (lorlatinib) showed synergy in the proliferation 

of ALK addicted NBL cell lines, showing the better therapeutic effect of the drug combination. 

BAY2402234 treatment induced p53 and cleaved PARP and reduction of MYCN proteins 

levels. In Alk-F1178S; Th-MYCN mouse model, a significant reduction of tumour growth has 

been observed once treated with BAY2402234 and the immunohistochemistry result of Ki-67 

on tumour samples displayed a significant anti-proliferative effect. 

Summary: BAY2402234 is an efficient inhibitor of DHODH, which inhibits NBL proliferation 

and growth in NBL cell lines and transgenic mice respectively. The combination treatment of 

BAY2402234 and lorlatinib showed synergy and as a promising future therapeutic option for 

the NBL patients, this should be considered alone or in combination. 

 

 

 

 

 



 
 

 
 

 

 

 

 

Figure 13. Project II workflow illustration: The preclinical analysis of BAY2402234 in NBL setting. 

 

 

 

 



 
 

 
 

5. CONCLUSIONS 
 

 

 

5.1.  Paper I 
 

 Alectinib inhibits ALK activity in NBL cell lines. 

 Alectinib efficiently abrogated NBL cell proliferation and reduced tumour burden in NBL 

mice model. 

 Alectinib abrogates the ALK downstream signaling with better efficiency than crizotinib 

 Alectinib showed better potency in inhibition of ALK-wt and ALK mutants compare with 

crizotinib 

 Alectinib induces apoptosis and inhibits the cell cycle progression 

 

 

 

 

 

5.2.  Paper II 
 

 Low DHODH expression is associated with good overall survival in NBL tumours. 

 BAY2402234 inhibits the proliferation of NBL cells in nM concentrations comparing with 

leflunomide where µM concentrations were used. 

 BAY2402234 and lorlatinib showed synergy in ALK-addicted NBL cell lines. 

 BAY2402234 treatment showed a significant reduction of tumours in the transgenic 

mouse model. 

 BAY2402234 should be used alone or in combination with ALK TKIs, as a prospective future 

therapeutic strategy for ALK positive NBL patients. 
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