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Sammandrag
Att simulera ett ekosystem kan vara ett krävande arbete, inte minst på grund av dess
komplexitet. Ekosystemet är modellerat för att vara en förenkling av dess verkliga
motsvarighet och skildrar en näringskedja bestående av kaniner, vargar, plantor,
träd och vatten. Syftet med arbetet är att studera hur mängden resurser, indi-
viduella egenskaper och beteenden påverkar det naturliga urvalet hos de simulerade
djuren. För att simulera naturligt urval, och på lång sikt evolution, introducerades
genetiska algoritmer för djuren. För att kunna värdera resultatet av simulationen
samlades data in. Den insamlade datan visar hur antalet djur av varje art fluktuerar
över tid, samt hur djurens hörsel- och synförmåga, hastighet och storlek utvecklar
sig över tid. I rapporten presenteras också teorin över de viktigaste komponenterna
för skapandet av djurens beteende och evolution, samt för verktygen och funktion-
aliteten i Unity som använts för att bygga upp simulationen.

Resultatet visar att det är möjligt att nå jämvikt i simulationen. Vidare visar re-
sultaten att antal djur beror på antalet plantor som finns i världen och att djurens
egenskaper förändras över tid.

Slutsatserna som kan dras av resultatet är att instanserna av simulationen utförda
med genetisk algoritm ger ett resultat där jämvikten håller längre jämfört med
instanserna utan genetisk algoritm, givet samma startvärden. Samt att simulationen
av ekosystemet skulle kunna förbättras ytterligare för att kunna möjliggöra att
simulationen utförs med fler resurser och större antal djur.
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Abstract
Simulations are computer programs based on models, used to imitate real-life sce-
narios. Simulating an ecosystem is a great challenge given the various factors that
interact and animals that coexist. The thesis work presented in this paper aims to
model an ecosystem and study what effect the number of resources, animal char-
acteristics, and animal behaviors have on the natural selection of the simulated
animals. The animals evolve through natural selection, implemented using genetic
algorithms. Specifically, the project aims to investigate how the population and the
traits of the animals change, based on interactions with the environment and with
other species. This is done by gathering data while running the simulation.

The ecosystem, with all its components, was built using the Unity game engine. The
rabbits and wolves, that constitute the food chain, were modeled to be accurate but
simplified versions of their real-life counterparts. The results show that reaching
equilibrium is possible, albeit difficult if the right start values and correct world
size are not chosen. Furthermore, the number of animals depends on the number of
plants, and the traits of the animals change over time.

The conclusions to be drawn from the results are that the instances of the simulation
with the genetic algorithm implemented were able to run for longer compared to the
instances without the genetic algorithm. The results also suggest even though it is
greatly simplified, that the simulation proved to be stable for certain initial numbers
of rabbits, wolves, and plants. This stability can be greatly improved in order for
the simulation to handle greater variations in resources and the number of animals.

Keywords: ecosystem, simulation, Unity, genetic algorithm, evolution, natural se-
lection.
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1
Introduction

1.1 Background

An ecosystem is defined as a biological community of interacting organisms and their
physical environment [10]. It contains biotic factors that are multicellular (animals,
plants) and unicellular (bacteria), as well as abiotic factors such as temperature
and humidity. These factors interact with each other either directly or indirectly
creating relations between the organisms and the environment.

Different types of ecosystems have developed over millions of years, resulting in
several millions of different species. Just by observing nature, Charles Darwin in his
book On the Origin of Species, presented his ideas that animals and plants adapted
to their surroundings by natural selection [11]. This book was groundbreaking at
the time and it is now the foundation for the modern evolutionary theory [12].

Simulating an ecosystem is interesting from a biological and technical point of view.
From a biological point of view, simulating an accurate ecosystem could potentially
be used to model how species might develop in the future. It could also predict
how changes in the environment could affect different species. For example, it could
showcase effects caused by humans, such as the destruction of natural habitats
through deforestation [13], and how the global rise in temperature affects animals
and plants [14]. However, only the effect of resources and characteristics will be
explored in this paper.

Meanwhile from a technical point of view, simulating an ecosystem could be both
challenging but interesting for several reasons: can something as intricate as DNA
be accurately translated into a computer model? Can current hardware support the
number of entities needed to simulate an ecosystem in real-time?

To investigate the viewpoints (mainly) from the technical aspects, this project’s aim
is to build a small ecosystem in Unity, a popular game engine, including resources
(water and plants), and animals (predators and herbivores). Each individual will
have different traits, for example, speed of motion, range of view, hearing, hunger,
thirst, and gender. By simulating natural selection, implemented using a genetic
algorithm, some of these traits will change over time.

1



1. Introduction

1.2 Purpose
The purpose of the project is to study what effect the number of resources and
individual characteristics have on the natural selection of the prey and predators
in the simulation. The genes in the animals will be implemented using a genetic
algorithm. By doing so, the goal is to see how genetic changes can be seen in the
animals’ offspring over time, thus simulating natural selection.

Additionally, we want to investigate whether an equilibrium can be reached where
two species can live in coexistence within the ecosystem. This is to examine whether
the genetic algorithm and subsequent natural selection can aid in keeping an ecosys-
tem stable. Answering these questions will give a better understanding of how evo-
lution and ecosystems work.

Finally, the created program used for running the simulation should be visually
appealing and easy to manage. This will make it more user-friendly and allow for
future use of the program.

1.3 Boundaries
Considering the complexity of a real-life ecosystem, it is necessary to include a num-
ber of boundaries in order to limit the scope of the project. The goal of the project
is to implement a single, simplified ecosystem. However, the project will be devel-
oped to make it as extensible as possible to allow the addition of more animals and
plants. Because of the intricacy of their real-life counterparts, limitations regarding
the complexity of the simulation’s animals and plants are needed. The animals in
the simulation have senses such as vision and hearing. There was discussion about
including a sense of smell. This idea was quickly discarded, since that in turn would
have introduced other types of complexities such as wind, the direction of the wind,
and animals and plants emitting smells.

The purpose of the plants in the simulation is simply to provide food for the rabbits.
The plants do not reproduce, disappear or reappear in other parts of the world.
Again, this would make the ecosystem more intricate thus making it more difficult
to try to reach an equilibrium. Therefore, the plants were kept relatively simple.
A real-life ecosystem normally consists of several tiers within a food chain. This
simulation only contains three tiers of the food chain, of which only two consist of
animals. The reason behind this is the complexity of reaching an equilibrium, which
increases with the number of variables introduced to the ecosystem.

Furthermore, the number of animals that can be simulated at a time is around 1 000
entities, depending on computer hardware. A greater number than this can result
in drops in FPS (frames per second), which may affect the results. The NavMesh is
another limitation in this project. With too many entities in the world at a time,
the NavMesh is limited to the number of paths it can calculate at the same time.
This problem might negatively impact the results since the animals die while being

2



1. Introduction

stuck in the terrain. A greater number of animals and plants would probably lead
to a stable ecosystem with more reliable data.

A majority of the boundaries mentioned exist due to the time constraints of the
project. With more time given, perhaps a greater complexity to some of the func-
tionality could have been introduced. However, given the relatively short amount of
time for this project, almost all of the components with varying factors had to be
kept simple.

1.4 Overview
Chapter 2 will describe the theory behind the most important components used
in the simulation. This includes a brief introduction to Unity, the real-time devel-
opment platform used for building the simulation. The different functionalities of
Unity will be presented, as well as how they are incorporated into the simulation.
Related works will be presented in chapter 3. Chapter 4 will describe the model of
the ecosystem. This includes the functionality of the animals and plants, how the
genetic algorithm is implemented, and what type of data is gathered from the sim-
ulation. The data gathered from the simulation will be presented in chapter 5 and
discussed in chapter 6. Finally, chapter 7 will finalize this paper with a conclusion.

3



1. Introduction
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2
Theory

This section covers the relevant theory used to create and understand the simulation.

2.1 Finite State Machine
A finite state machine (FSM) is a design pattern used to manage different types
of behaviors (states) and the transition between said behaviors [15]. As the name
implies, an FSM consists of a finite amount of states. Transitions between the states
depend on certain conditions. An example of a use case for an FSM is a traffic light.
A traffic light has four states, red light (stop), red-yellow (prepare to go), green
(go), and yellow (prepare to stop). An illustration of the traffic light’s states and
transitions can be seen in Fig. 2.1.

Figure 2.1: An example of an FSM for a traffic light. The nodes represent a state
and the directional arrows represent a possible transition between states.

Finite State Machines allows flexible code [16]. An FSM allows for modular function-
ality and can reduce code complexity. The FSM was an effective way to structure
the code for the animals in the simulation since they, similarly to a traffic light, have
a finite amount of states in which they can be. For example, an animal is either
hunting or eating, not both at the same time.

In real life, it is possible for animals to have several urges at the same time, for ex-
ample feeling hungry and thirsty. While having the states strictly divided might not
be analogous to real life, it gives a good enough approximation of real-life behavior.
Furthermore, building the FSM state by state is relatively straightforward: specify
what the state should do, how to reach the state, and how to move to the next state
(if applicable).

With that said, an FSM also comes with some drawbacks. As mentioned, the

5



2. Theory

animals can only be in one state at a time. For example, in the case that an animal
is simultaneously hungry and thirsty, it can be necessary to predetermine what the
animal should prioritize. Does it make sense for it to go after food or water first?
These kinds of decisions can lead to strange behavior when running the simulation.
If food is prioritized over water, the animal will go after food even though it is closer
to a water source, or vice versa. So, an animal can be simultaneously hungry and
thirsty, but they can only do the act of pursuing one of the resources.

Another drawback with FSMs is the decrease in code encapsulation. With FSMs,
much of the logic is extracted to classes outside of the core class containing the
state machine. The different states might depend on a specific property of a class,
thus the shared fields must be accessible from the entity having a state machine to
the different states (this can vary by methods of implementation). This could be
solved by not extracting the logic of each state to its own class, but rather choose to
implement it internally instead. However, this would result in the class being very
large. In the end, the FSM was chosen for the sake of modularity and simplicity.

2.2 Genetic Algorithms

In the year 1859, Charles Darwin published On the Origin of Species [11]. In the
book, Darwin presented the theory that in nature the individuals better suited for
their environment will have a higher chance of reproducing. Genes that make the
animal more suited to survive will have a greater probability to be passed on to
the next generation. This is the fundamental force that drives evolution forward.
Based on this idea of natural selection, genetic algorithms are used for optimizing
and finding solutions to problems in computer programs [17].

There are multiple ways of creating a genetic algorithm, but all of them share the
following components [18] [19]:

• One or more representations of the genes

• A generating function to generate new gene variations

• A fitness function that fits the genes by giving them a value to be able to judge
which genes are better

• A selection function which describes the selection from the genetic variants
based on the values from the fitness function

• A crossover function which describes how to combine the selected genetics

• A mutation function to change the result of the crossover function slightly,
most often at random

By using the components above, a genetic algorithm generally works in the following
way [18]: the genes are represented in binary encoding, i.e. a string consisting

6



2. Theory

of ones and zeros. These are generated by a generating function. The ones and
zeros have different meanings depending on implementation. Much like in real-
life evolution, every iteration of a genetic algorithm is divided into generations.
Generation 0 consists of a random selection of genes coming from a population (Fig.
2.2). Population size is dependent on implementation. The fitness function is used
to determine how fit each gene in the given generation is. The fitness function is also
dependent on implementation, but the general idea is that if a gene is fit enough,
it is given a score based on how fit it is. If a gene is not fit at all, it will be given
a score of 0. Based on the scores given by the fitness function, a new generation is
to be selected using a selection function. Two genes with high fitness scores have
a greater chance of being selected to be "parents", compared to genes with a low
fitness score.

Figure 2.2: A population of six genes where each gene consists of eight bits.

As two genes are paired up, the crossover function is used to cut the genes in a
random location and switch the bits of the genes (Fig. 2.3). These actions give two
new genes, i.e. two new solutions, and are repeated for every gene in a generation.
The idea of using a crossover function is to generate a better solution (a more fit
one) for the next generation. In order to make sure that the best solutions are
not destroyed in the process, the n top solutions from generation i is copied into
generation i+1, this practice is called elitism and is optional [19].

As mentioned above, a crossover function is a regular implementation when pairing
up the parents’ genes. However, there are other such functions that can be used as
well. For example uniform scanning or fitness scanning [20].

Uniform scanning works by bitwise operation of the parents’ genes. The ith bit of
the child has a 50 percent chance of coming from either parent’s corresponding bit.

Similarly, fitness scanning works by bitwise operation. However, the fitness function
is used here to determine what chance each parent has to pass on their bits to the
child. If parent i has a fitness of f(i) the probability P (i) of it passing on its genes
is P (i) := f(i)∑

f(i) [20].

In the case of this project, there are only two parents, resulting in a ratio between
their fitness scores. This means that the expected number of bits E(i) inherited
from parent i is: E(i) := P (i) ∗ String length
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As evolution progresses with a certain degree of randomness, a mutation function
is used to introduce random mutations to the genes. The mutation function goes
through every gene and changes a random bit. This is done to create new variations
of genes that otherwise would not have been created by only using the selection and
crossover functions. The steps above are repeated for each generation. Eventually,
the difference in the scores given by the fitness function will decrease between each
generation. As this difference becomes negligible, the genetic algorithm has reached
its goal by producing a result that could possibly be the best one.

Figure 2.3: An arbitrary crossover of two genes where one of the genes to the
right will belong to the child. The red and blue genes to the left originate from the
parents. Here the cutoff is at four bits, resulting in two new mixed genes with four
bits from each parent.

The main downside of implementing a genetic algorithm is that the complexity of
the components, mainly the fitness function, can contribute to the genetics becoming
difficult to model. Another issue with the genetic algorithm is that the solutions
tested are based on previous answers with some offset. If this offset is too small, the
given result might not be the best result as the best solution could be missed.

Evolution strategy is another algorithm that is very similar to a genetic algorithm
[21]. It could solve these issues in a better way, however, it is more complex. But
for this project, it would have taken a lot more time to learn and implement it in a
good way than the genetic algorithm.

2.3 Ecosystem Modeling
There exists many methods used to describe an ecosystem. Some of these methods
are presented in this section.

2.3.1 Lotka-Volterra Model
The Lotka-Volterra model is a common model for describing the relationship be-
tween the number of animals in an ecosystem [22]. The model makes the following
assumptions about the ecosystem: the ecosystem contains only two species, a preda-
tor and a prey (e.g. rabbits and wolves). The death rate of the rabbits is proportional
to the number of wolves. The birthrate of the wolves is proportional to the number
of rabbits.

The model is described by the following formula, where R is the size of the rabbit
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population and W the size of the wolf population.

dR/dt = rabbit birth rate * R − rabbit death rate ∗ R ∗ W

dW/dt = wolf birth rate ∗ R ∗ W − wolf death rate ∗ W

This model is displayed in Fig. 2.4

Figure 2.4: Example illustration of the Lotka-Volterra model [23]. License avail-
able at: https://creativecommons.org/licenses/by-sa/4.0/

The Lotka-Volterra model describes the dynamic equilibrium of an ecosystem that
has the same properties as the simulation presented in this paper [22]. It is therefore
interesting to see whether the resulting equilibrium from the simulation will follow
a trend similar to a Lotka-Volterra model.

There are extensions of the Lotka-Volterra model which are more realistic for ex-
treme values such as the nonlinear model worked on by G. F. Gause [22]. G. F.
Gause’s work is more realistic when the population of prey is high for example. Ul-
timately, a more realistic model is not needed to compare with the graphs produced
by the simulation as the ecosystem is simplified.

2.3.2 Pearson Coefficient
To further investigate the relationships in the resulting equilibrium, the Pearson
correlation coefficient will be used to evaluate if there is a correlation between entities
in the ecosystem [24]. A correlation of -1 means that the two variables are linearly
opposite, while a correlation of 1 means that the linear relationship is perfect. Lastly,
a value of 0 means that they have no correlation.

2.4 The Unity Platform
The Unity real-time development platform is a game engine used for making a
variety of 2D and 3D games, as well as a wide range of other types of applications
in a variety of industries [25].

The Unity platform uses the Unity editor. The Unity editor gives the developer a
diverse set of tools and applications, both built-in and downloadable, to be able to
create anything the developer has in mind.
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There are many reasons why Unity is a good tool to use for making different types
of applications. Because of its popularity within the gaming industry (both for in-
die developers [26] as well as industry giants [27]), there is an enormous amount of
material coming from tutorials, information, discussions on forums, Youtube videos,
the Unity asset store, etc. This provides developers with a great source for an-
swers to any problems that might arise during development. This has been helpful
throughout the process of creating the simulation in Unity since it has been easy
to find information on how to solve commonly occurring problems which have been
encountered.

Other popular game engines are Unreal Engine and Godot. Unreal Engine is an ad-
vanced real-time 3D creation tool that allows scripting with C++ or visual script-
ing with "Blueprint" [28]. Since Unreal Engine uses C++, it can be more fitting
for performance requiring tasks such as photo-realistic games [29]. However, as the
visualization of the simulation in this project will be simple and stylized, the visual
performance is not something that is of utmost concern. It is also very likely that
performance issues will be caused by inefficient implementations rather than limita-
tions of the programming language. Another reason Unreal Engine was not chosen
was due to the inexperience of C++ within the group.

A popular and rapidly growing game engine is Godot [30]. Godot is a free and
open-source game engine with 2D and 3D support, which allows scripting with
GDscript (Godots own scripting language), C#, and Visual Scripting. It also has
community-built bindings for other popular languages such as Python [31]. Since
Godot has great 3D support and supports C#, it would be an equally good fit as
Unity. However, Unity was chosen due to its maturity, popularity and because it
was implied in the project description.

2.4.1 Terrain Tool
The terrain of the simulation was built using Unity’s terrain tool, which is a built-in
function within the Unity editor [32]. The tools can be used for customizing any
terrain within any given project. For example, it is possible to lower/raise the ground
surface, paint textures on the surface, and quickly add trees and other objects in
bulk instead of adding them one by one.

The other options would have been either to piece together several different pre-made
planes, procedurally generate a world, or to use a heightmap which is essentially
a copy of a real-world place. The reason for the terrain tool being chosen was
because, unlike the other options, this was the best way to make a unique but
still realistic terrain. The other options could also result in almost the same results,
however, with the piece-together option it would be hard to find good matches for the
different planes while maintaining good edges. The results of eventual procedural
generation would be difficult to predict since the environment could potentially
negatively impact the simulation. Furthermore, the heightmap could end up being
too steep at some places and cut off some parts of the world. These problems can
all be avoided by using the terrain tool. The terrain tool also has built-in support
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for the NavMesh functionality which is described in the next section.

2.4.2 NavMesh
1.3 The NavMesh is a downloadable functionality for Unity that is used for making
game objects move on walkable surface areas. The NavMesh consists of several
components to provide the developer with additional control over the functionality of
the NavMesh itself [33]. The NavMesh surface is one such component. It represents
the surface area which a game object can move around on. The process of building
the surface is called NavMesh baking. This process is performed by the Unity editor.
During baking, the process gathers information about the meshes that make up the
geometry of the terrain surface (incline, trees, lakes, etc.), and produces a walkable
surface area from that information [34]. The walkable surface is the turquoise layer
visible in Fig. 2.5. A NavMesh agent is attached to the game object itself. The
NavMesh agent then uses the NavMesh surface to move the game object [35].

Figure 2.5: The walkable turquoise surfaces built with the NavMesh baking func-
tionality.

The reason why one might choose to use the NavMesh for pathfinding in a project
like this is that it is easy to use since most of the work is performed by the editor.
In order to make a NavMesh agent move to a point on the NavMesh it only needs
to call the GoTo() method which comes with NavMesh components. The NavMesh
does however come with some drawbacks such as on surfaces with a steep incline,
the game objects have a risk of getting stuck in the terrain. For more complex
surfaces, a 3D matrix might be better suited (further explained in Section 6.5).
Additionally, the NavMesh comes with some performance constraints as it is not
optimal for handling a large number of entities.

The Unity NavMesh consists of a set of connected walkable vertices (see Fig. 2.6a)
[36]. These vertices form a convex polygon (a polygon that does not intersect itself).

With these polygons, the NavMesh can calculate paths between two walkable points.
The NavMesh calculates its paths with the A* (A star) algorithm [36]. The A*
algorithm is an efficient search algorithm that can both find the optimal solution
(shortest path) and good estimates of the shortest path depending on the chosen
heuristic [37]. The NavMesh calculates a path (sequence of polygons) which the
NavMesh agent moves through. The agents move towards an edge of the next
polygon.
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(a) Visual representation of
NavMesh and Agent. (b) Simplified visualization of

Unity’s obstacle avoidance.

Figure 2.6: Visualisations of different aspects of the Unity NavMesh.

Unity’s NavMesh also handles collisions and collision avoidance between obstacles
and other agents. The collision avoidance is implemented using "reciprocal velocity
obstacles" (RVO) [36]. RVO moves towards a desired position whilst steering away
from possible future collisions (see Fig. 2.6b) [38].

2.4.3 Collision Handling

Unity provides components called colliders which can be attached to game objects
[39]. These are used to check if different objects collide with each other. The animals
in the simulation have vision and hearing senses (further discussed in Section 4.1.3).
To accurately represent their reaction of seeing and hearing other objects, colliders
are attached to the areas representing the senses so that a trigger can be created
once a collision occurs. Additionally, colliders are attached to all food resources and
animals. This ensures that when objects happen to enter within these sensory areas,
it triggers a collision, and the information about the triggering item is sent to the
appropriate method.

2.4.4 Particle Systems

Particle systems are commonly used to create a visual effect that represents non-
static visual elements such as water or smoke. The particles can be modified to work
in specific ways by using a special module connected to each particle system [40].
Using the particles module, it is possible to change the number of particles emitted
and the behavior of these particles. In general, particle systems are used to make
games feel less static and to give the player satisfying visual feedback.

In this simulation, the particle systems are used in order to visualize what the
animals are doing and how they interact with the environment (further discussed in
section 4.3.3).
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2.4.5 Render Pipeline
A render pipeline is used to take the content within the scene and render them on
the screen. Unity has three prebuilt render pipelines to choose from HDRP (High
Definition Render Pipeline), URP (Universal Render Pipeline), and the already
built-in render pipeline which functions as the standard pipeline. A developer also
has the option to create a custom pipeline if preferred [41].

The simulation is rendered using URP. This was chosen because, unlike the standard
pipeline, it allows for the use of shader graphs. It is also possible to add effects onto
game objects, and building these effects is easier using graphs, rather than having
to code it in scripts. Shader graphs give the developer a better overview of how the
different components connect (Fig. 2.7), it is thus easier to use for developers not
experienced in creating shader effects. Furthermore, URP was chosen over HDRP
because HDRP is suitable for graphics-heavy games running on computers with
appropriate hardware that can handle more complex calculations [42]. Also, the
URP makes it possible to add post-processing effects to the project. The difference
between shaders and post-processing effects is that shader effects are calculated at
runtime, while post-processing effects are added to the rendered frame, to simulate
camera and film effects [43] [44]. URP has several built-in post-processing effects,
but custom effects can be added if needed [45].

Figure 2.7: The part of the water shader that creates the ripple effect visible on
every water source.
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Related Work

During the course of the research for this project, it has become clear that the
field of simulation and evolution is broad, and that there are many types of works in
which simulation of creatures, ecosystems, and evolution are the primary topic. The
reasons for this could be many. First, research can be conducted in various ways.
For example, should an existing ecosystem be simulated? Or should new kinds of
creatures be given the opportunity to freely evolve, based on well-defined criteria?
Secondly, most of the research tends to focus on a single aspect of an ecosystem. For
example by only simulating evolving creatures [46][47], focus exclusively on how to
best model, simulate, and visualize trees [48], how to fastest render terrain or terrain
objects [49][50], how to most accurately simulate water [51], focus on researching
the implementation and application of genetic algorithms [19], etc. Notably, simu-
lations are a very popular genre of games as well. This includes everything from car
and flight simulators in varying degrees of "realness", life simulators, to simulations
developed for new technology such as virtual reality (VR) and augmented reality
(AR). Presented below are some work that has influenced the simulation presented
in this paper, games that influenced the simulation genre and the rising popularity
of VR games, as well as work that presents research in depicting simulated evolution.

3.1 Genetic Algorithms and Their Applications

The paper A Study on Genetic Algorithm and its Applications by Haldurai et al.
explains genetic algorithms and the components of them [19]. This is where we got
the idea about having bit strings as genes and how to do the crossover between par-
ents. In this paper, the authors go through the pros and cons and usages of a genetic
algorithm. The different parts of a genetic algorithm are also covered and explained
and with these there were a few alternatives covered as well. The alternatives for
selection and crossover functions have been a great help in understanding genetic
algorithms. The examples use bit strings which were easy to implement and adapt
to the simulation.
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3.2 Simulating Low-poly Ecosystems
Early on in the project, a resource that helped the simulation immensely was a
Youtube-video Coding adventure: Simulating an Ecosystem made by Sebastian
Lague [52]. It is a video that depicts a simulation of an ecosystem. Similar to
our work, this is a graphically simple (low-poly) simulation containing rabbits and
foxes. This work helped with conceptualizing the simulation presented in this paper:
the animals in the video have their hunger and thirst represented as bars hovering
above them that tick down as time passes. Below the bars, the current state of the
animal is visible. In the early stages of this project, bars and current state were
implemented to be visible in the same way but were later changed due to a large
number of animals being present in the simulation. Furthermore, the overall mini-
malist look of the ecosystem in the video was a look thought to be suitable for our
simulation.

3.3 Simulations in Games
In the field of video games, simulations are a popular genre. A well-known game
within this genre is The Sims, 2000. The Sims is a game where players control their
own created person [53]. This concept of designing your own human would later
evolve into creating your own creature, in the 2008 game Spore [54]. Here, the user
would actively be a part of the evolution from a simple cell to a complex creature
by designing and redesigning a creature between different stages of evolution.

Equilinox is a game in which the user controls an environment containing animals,
plants, and other abiotic factors [55]. The user can control the placement of plants,
trees, rocks, and different kinds of animals. The plants and animals will then evolve
based on the environment they live in. It is unclear if genetic algorithms are included
in this game for the evolution of plants and animals. It might be that the "evolution"
is modeled to be deterministic; that combining certain entities is pre-determined to
give a certain result. The look and feel of Equilinox have been an inspiration when
creating the visuals for our simulation.

3.4 Explaining Evolution
Natural selection and evolution is a complex subject. If one is not well-versed in it, it
is difficult to accurately describe how it works. A Youtube video series that succeeds
in explaining how natural selection works is the Evolution series made by Primer
[56]. The series does not present new ideas or findings regarding natural selection or
evolution. However, the series introduces experiments and scenarios to the viewer,
and subsequently explains the results, and presents improvements to reach a greater
accuracy in modeling natural selection. The video Simulating natural selection (a
part of the series mentioned above) was especially of great help at the beginning
of this project, as it focuses on the animals’ speed and size and would therefore be
useful information to plot for the results given by the simulation.
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3.5 Self-evolving Creatures
A paper that presents an ecosystem with further complexity is Evolution of a
Complex Predator-Prey Ecosystem on Large-Scale Multi-Agent Deep Reinforcement
Learning by Yamada et al. [47]. The ecosystem presented is relatively simple in
its presentation, with 2D squares representing the animals and larger squares sur-
rounding the predators to represent their predation area (the area where they can
catch their prey). However, by using reinforcement learning, a type of machine
learning, the researchers have developed a complex system capable of replicating
dynamic properties of predator-prey dynamics. Their results indicate that reinforce-
ment learning is particularly effective in improving the survivability of the preys. If
an evolutionary algorithm is used in conjunction with reinforcement learning, the
survivability is passed on to following generations.

Machine learning can be used to make programs or objects gradually improve their
accuracy or knowledge. A correctly implemented machine learning algorithm can
even exceed human knowledge [57]. With that said, there exist multiple machine
learning algorithms, and finding the right one for a certain problem may be diffi-
cult. Furthermore, implementing a machine learning algorithm can be both difficult
and time-consuming if one does not have the proper experience in implementing
and debugging such algorithms [58]. Because of our limited knowledge in machine
learning, as well as because of time constraints, machine learning was deemed to be
out of scope for the project presented in this thesis.
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Model

The ecosystem consists of several components which include animals and other en-
tities in the form of water and plants. These actors and entities form a simple food
chain, similar to real life. The actors of the ecosystem have their own goals and
functionality and affect each other. They search for their specific resources needed
to survive and procreate. This chapter will describe the different components of the
ecosystem in depth.

4.1 Animals
The simulation includes two species of animals: rabbits and wolves. The reason
why these species were chosen was that their interaction is easy to understand as
the wolves want to eat the rabbits and the rabbits want to stay away from the wolves.
The animals were created to be a simplified version of their real-life counterparts,
while still maintaining some accuracy in traits and behaviors.

4.1.1 Health, Nutrition, and Energy
The animals have the properties health, saturation, hydration, and stamina. These
properties are visualized in Fig. 4.1. The saturation and hydration decrease at a
fixed rate as the animal grows hungry and thirsty. At the beginning of the project,
these were the only properties the animal had. However, the animals died instantly
if their nutritional values reached zero, therefore a property was created that was
modeled as health. The final property added to the simulation was stamina. This
was a way of giving the animals different perseverance. The stamina decreases
whenever a wolf hunts a rabbit or when a rabbit flees from a wolf (Subsection 4.1.2),
and it increases whenever the animals do something else.

As time progresses, the animals become dehydrated and their saturation decreases.
This will cause the animals to seek out food and water. When the animals reach
a water or food source, they begin to eat or drink, thus increasing their hydration
and saturation. If either of the properties reaches zero, it negatively impacts their
health due to malnutrition. If an upper threshold (50% of animal’s max hydration
and saturation values) is met by both hydration and saturation, the animal will
regenerate lost health. This threshold also needs to be met in order for the animals
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Figure 4.1: The progress bars belonging to an animal. Starting from the top:
health, saturation, hydration, stamina.

to be able to mate. The rates which these properties increase/decrease will be
discussed further in Section 4.1.4.

4.1.2 Behavior
To create life-like behaviors, the animals have an internal finite state machine (Sec-
tion 2.1) with species-specific states and transitions (Fig. 4.2 for the wolves’ states
and Fig. B.2 in appendix for the rabbits’ states). The purpose of each state is to
represent the real-life behavior of the animals. At the beginning of the project, the
state machine only consisted of the wander state. This functioned not only as a
means for the animals to move around, but also to make sure the state machine
worked as intended. As the project progressed and food and water were added, so
was the pursue food, pursue water, hunt, eat and drink states. The dead state and
flee state were added in conjunction with the hunt state, to allow the rabbits to flee
from an incoming attack, and to make it so the animals could die. The pursue mate
and birth state was added in order to facilitate reproduction. Search world state
was added to allow for longer traversal across the world, making it easier for the
animals to find food and water. The introduction of the idle state was for cosmetic
reasons. Without it, the animals moved quite erratically, which did not look good.

Wander and Idle states are the two default states that the animals will be in if
they are neither hungry nor thirsty, have not seen a mate or a predator to escape
from. As the animals get progressively hungry, they will react to food and water
sources and enter Pursue Food, Pursue Water, or Hunt states depending on
their species. These states will in turn transition over to Eat and Drink states,
where the animals will eat and drink until they are full or until the nourishment
given from their respective food sources is exhausted. If an animal is well-fed and
discovers a potential mate, the animal will transition to the Pursue Mate state.
The females will get pregnant from such an encounter and will eventually enter the
Birth state. If the animals are either hungry or thirsty and do not know the location
of any food or water source, they will transition to the Search World state. In
this state, the animals will traverse greater distances in order to find the necessary
resources to survive. If the rabbits at any time encounter a wolf, they will transition
to the Flee state. This state will cause the rabbits to run in the opposite direction
of their enemy. Eventually, the animals’ health will reach zero, either by old age,
by getting killed, or simply by starving to death. When this occurs the animals will
transition to the Dead state. Once the animals have reached this state, no other
transitions can be made.
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Figure 4.2: The state diagram for a wolf.

To a large degree, the animals have similar states and behaviors. However, there
are a few distinct differences:

Rabbits: Since rabbits are (predominantly) herbivores [59], they survive by living
off the plants in the simulation. When a plant is detected it is stored in the rabbits’
memory and once it is hungry it will go to one of the plants which it has previously
seen. They are also able to enter the flee state in the FSM, in order to have a chance
of escaping an incoming attack from a wolf. Fleeing will cause the stamina bar to
decrease (Section 4.1.1). When the stamina bar reaches zero, the rabbits are more
vulnerable to attacks since they cannot run as fast anymore. The rabbits are slower
than the wolves in general but they have better endurance. Furthermore, rabbits
are notorious for their reproduction [60]. This is represented by a short gestation
time as well as a short time between pregnancies (see Section 4.1.4 for details) and
a litter of up to 12 rabbits, allowing them to propagate at an exceedingly high rate.
Their lifespan in the simulation is 15 days.

Wolves: The wolves are the apex predators of the simulation and their only source of
food is the rabbits. If they are hungry they will start chasing any rabbit within their
field of view/hearing. If the rabbits are within physical range they will attack the
rabbit, hurting the rabbit with a set attack damage, until the rabbit is dead and can
be eaten. Whenever the wolves are in the hunt state their stamina bar will decrease.
When the stamina has reached zero, they are unable to continue pursuing their prey
and will be forced to leave the hunt state until their stamina has been recharged.
The wolves have a gestation time approximately double that of the rabbit, as well
as a longer time between pregnancies (see Section 4.1.4 for details) and a litter of
up to 4 wolves. This gives the wolves a lower speed of reproduction although they
have a longer lifespan of 30 days in the simulation.
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4.1.3 Senses
The animals use auditory and visual senses to find food and water while traversing
the world. They can be seen in Fig. 4.3. The senses, which are implemented using
Unity’s collision handling (Subsection 2.4.3), function such that when an object
enters the area representing a sense, the Unity method OnTriggerEnter() is invoked
[61]. Inside this method, several checks are performed in order to make sure the
animals react correctly to the triggering object. For example, rabbits react when
their visual areas collide with plants, water sources, other rabbits (for mating), and
wolves. They also react to other rabbits and wolves when their hearing areas collide
with such objects. Plants and water sources (in the simulation) cannot be heard
and thus cannot be reacted upon with the auditory sense. Pseudocode representing
the behavior can be seen in Fig. 4.4.

Figure 4.3: Visual representation of the animals’ eyesight (left) and hearing (right).
Unity handles collisions with the areas to represent animals seeing or hearing some-
thing.

object_entered_sensor_area(object):
if object is plant:

eat_plant(object)
else if object is animal:

notice_animal(object)

Figure 4.4: Pseudocode for the behavior of the senses.

4.1.4 Traits
The animals have a set of traits that differ between the species. There are two
different types of traits, dynamic traits which change over time through evolution
and which vary between individuals of the same species. The implementation of the
evolution for the dynamic traits will be presented in section 4.4. The second type
is the static traits which only differ between species and do not change over time.
The reason why some traits are static is to reduce the complexity of the simulation.
The traits are shown in the table 4.1. The values of the traits were originally set
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to replicate the real-life traits of the animals. They have been tweaked during
development to try to reach an equilibrium between the species. One example of
a tweak that does not correspond to real-life animals is that the wolves get hungry
much faster than the rabbits. This is to make sure that the population of the wolves
starts to decrease quickly once there are few rabbits in the simulation and thus
preventing the rabbits from going extinct.

Table 4.1: This table shows the trait values for the wolves and the rabbits.

Animal Rabbit Wolf
Static traits
Thirst decrease factor 0.29 0.25
Hunger decrease factor 0.33 0.56
Stamina decrease factor 4 7
Stamina increase factor 5 3
Fertility time (hours) 78 190
Max animal litter size 12 4
Pregnancy time (hours) 11 27
Hours between pregnancies 11 190
Old age (days) 15 30
Running speed factor 3 3.8
Dynamic traits
Speed average 1.2 1.2
Size average 1.2 1.2
Hearing percent 50 50
Vision percent 50 50

Speed and size are both independent of each other. These traits affect how fast
and big the animals are. In addition to the normal speed, there is a running speed
factor that the animals use whenever they are in the hunt state, flee state, search
world state, pursue food state, or pursue water state. In these states, the animals
run faster than usual. As mentioned in (4.1.1) the animals have different values for
their nourishment. The hydration and saturation depend on the animal species as
well as the size and the speed of the animal.

Max saturation = size3 ∗ 100

Max hydration = size3 ∗ 100

Hydration decrease = (size3 + speed2) ∗ Thirst decrease factor

Saturation decrease = (size3 + speed2) ∗ Hunger decrease factor

For the max values, a base multiplier of 100 was used to get a readable scale.
Furthermore, it seemed logical that if an animal grew in size then the stomach
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would grow in three dimensions, and that is why the size cubed factor is used to set
the nourishment max values.

The nourishment decrease rates were inspired by the law for kinetic energy E =
mv2/2 [62]. In the decrease formulas, it is assumed that m is equivalent to size
cubed, v is equivalent to speed and then a new constant is added in order to tweak
the performance of the species to get a good balance in the ecosystem.

When the animals enter the flee and hunt state respectively, their stamina will
decrease with a set stamina decrease factor. This factor is slightly higher for wolves,
to prevent them from catching up to the rabbits too often. To compensate for having
a higher decrease factor, they have a higher running speed factor which makes them
a bit faster than the rabbits. The stamina increase factor is the rate at which
stamina is recharged once the animals leave the flee and hunt state.

The animals’ hearing and vision senses are dependent on each other. The animals are
modeled to have a fixed amount of brainpower. The distribution of this brainpower
to either get a better vision or better hearing is dependent on the genetic algorithm.
The values for the distribution range from 0 to 100 percent. This is because it was
difficult to define the energy cost for having a good vision/hearing. The data from
the simulation will show which of these traits is more favorable (see Section 5).

The number of children an animal can birth at a time is set by a random function that
ranges between one and the max number of children trait. The intervals for gestation
and time between pregnancies are not set to replicate the accurate gestation and
pregnancy time interval of the animals in real life but are rather set in such a way
to increase the chances of reaching an equilibrium in the ecosystem. All traits
connected to the reproduction of the animals were initially set to replicate those of
the real animals. However as the project progressed, it was necessary to tweak these
in order to make an equilibrium between the two species more likely to occur.

The old-age trait is a threshold for when the performance of the animals starts to
decline. After the animal has passed the threshold, its speed will decrease by 20%
each day. The animal will die automatically when its speed has dropped below 0.1
if it has not already died from starvation or thirst. This trait has also been tweaked
in order to fit the ecosystem in the simulation.

4.2 The Environment
This section covers the environment of the simulation.

4.2.1 Plants
Plants are a vital part of the ecosystem since they make up the basis of the food
chain. Similar to the animals, the plants have their own internal finite state machine
(Section 2.1). However, the state machine belonging to the plants is simple compared
to the animals’ state machine, as it only has three possible states (Fig. 4.5a).
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Plants begin in a seed state which is followed by a growing state after a certain
number of days. Plants that are in the growing state can be noticed by the rabbits,
but are not yet eatable. After some time, the plants have increased in nutritional
value and enters the mature state. Plants can be consumed while in the mature
state, where they continuously increase in nutritional value until they reach their
maximum capacity. Plants that have lost their nutrition due to being fully eaten
by an animal will transition back to the seed state. The different states of the plant
can be seen by the color of the flower where the seed, growing, and mature states
are represented using different colors (Fig. 4.5b).

(a) The state transition diagram
for the plants. (b) The seed, growing, and ma-

ture state is represented in green,
yellow, and violet color.

Figure 4.5: A visualization of the different states which a plant can be in.

4.2.2 Terrain
The terrain in the simulation was made to represent a real-life forest with trees,
changes in amplitude, and waterholes. A forest is a natural habitat for both rabbits
and wolves [63] [64] and was therefore deemed appropriate to have as an environment.
The terrains were created using the Terrain-tool in Unity (Subsection 2.4.1).

There are three sizes of terrains to choose from: a small, a medium, and a large-sized
terrain. The simulation started off with only a small world with the size of 150x150
game engine units. It has two big lakes which are easy to find, see (Fig. 4.6a). The
small world had some performance issues because animals were in close proximity
to each other, causing a lot of calculations to be done for the collisions between the
animals.

(a) The small world (b) The medium world. (c) The large world.

Figure 4.6: The three different worlds which were created throughout the project.
They all have different sizes and amounts of lakes.
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A larger world was subsequently created to solve the performance issues from the
small world. The large world has a size of 500x500 game units and has 11 lakes
of different sizes scattered across the world, see Fig. 4.6c. Unfortunately, the large
world also proved a bit troublesome as the size of the world required a greater
number of animals in order for them to be able to find mates. This was especially
noticeable for the wolves. The distance between the lakes caused the animals to
constantly search for water sources. It also introduced a higher cost for calculating
paths for the animals that overloaded the NavMesh (Further discussed in section
4.5.1).

Finally, a medium-sized world was created in order to fix the different problems the
other two worlds had. The medium world has the size of 300x300 game units and
has 16 lakes positioned across the world, see Fig. 4.6b. The higher density of lakes
makes it easier for the animals to find water sources. The medium-sized world is also
big enough to avoid the high amount of collisions from the small world. Another
new aspect of the medium-sized world was that the trees were removed. This was
an attempt to reduce the complexity of the path calculations, as the trees make the
walkable Navmesh more complicated. However, it did not have a significant impact
on the performance.

4.2.3 Terrain Effect on Animal Behavior

The original plan was to make it so that the terrain itself does not impact the
behavior of either animals or plants. Instead, it works as a limiting factor where
the smaller terrain is too small to sustain a large population of animals and plants.
This is mostly true but there is one exception. Whenever the wolves enter the
search world state and the rabbits enter flee state (Section 4.1.2) they forget any
remembered water source location for a period of time, or until they see a new water
source. For the small world, the wolves forget the lakes for 66 hours in the simulation
and for the medium-sized world, they forget them for 20 hours. Rabbits forget the
water source for 1 hour on both the small and the medium world. The difference
in time between the two worlds depends on the number of water sources and the
distance between them. The large world currently does not make the animals forget
any water location, since the animals have a difficult time surviving in that world.
The fact that the animals forget the lakes makes them able to explore the world
more which enables them to find new lakes. It also prevents the wolves from always
staying next to a lake all the time which gives the rabbits a chance to reach the water
without being chased away. This is especially notable in the small world where there
are only two water sources. It also prevents the rabbits from continuously running
back and forth from a water source if there are wolves gathered near it. The rabbits
forget the water source for a much shorter time compared to the wolves because the
rabbits enter flee state every time they encounter a wolf. Thus, the time they forget
a water location accumulates faster for the rabbits.
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4.2.4 Time in the Simulation
There are two different units of time used in the simulation: hours and days. One
hour in the simulation is equivalent to 0.5 real-life seconds. One day is 24 hours
in the simulation and is thus equivalent to 12 real-life seconds. The relation of in-
simulation hours to real-life seconds is configurable to allow running the simulation
faster or slower. However, this is not changed in any simulations in the report.

4.3 User Interface & Visual Effects
This section covers the user interface and visual effects of the simulation.

4.3.1 Menu
The simulation is configured and launched via a start screen. The screen has three
buttons, "Start", "Options" and "Quit". Under the "Options" menu, the user can
configure the number of species and the number of plants to be included in the
simulation. The timescale of the simulation can also be changed. Moreover, users
can enable/disable a few extra functionalities such as running the simulation in
performance mode (no animation or visual cues will be played), enable collisions
between animals (collisions require more computations and thus has a bigger impact
on performance. Note: this does not turn off collisions that trigger on food and
water), or log the results from the simulation (used to gather data). Finally, the
user can specify which world to run the simulation in.

Figure 4.7: The options-menu of the user interface.

4.3.2 Overlay
An overlay was added in order to display the statistics of the ecosystem. It displays
how many entities there are of each species, as well as how many (simulated) days
have passed since the simulation was started, see Fig. 4.8a. When an animal or
plant is clicked, the statistics panel will instead show the stats of the clicked entity.
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(a) Nothing selected. (b) Selected wolf. (c) Selected plant.

Figure 4.8: Three different overlays for when inspecting different parts of the
ecosystem.

The statistics panel was added to provide context to the different aspects of the
ecosystem. Both an overarching overview concerning the whole ecosystem, as well
as detailed information about animals and plants (Fig. 4.8b, 4.8c). The information
on the panel is connected directly to the ecosystem and to the entities within it.
The script (Subsection 3.2) that handles the statistics panel continuously listens to
changes concerning the entities it displays. This ensures instantaneous information
regarding the ecosystem or the selected entity being presented. The panel for the
animals can be viewed in Fig. 4.8b The four progress bars in the top left corner is
displaying health, saturation, hydration, and stamina, further described in Section
4.1.1.

4.3.3 Visual Cues
Another approach to visualizing information regarding the animals is the imple-
mentation of a number of visual cues that trigger during certain events. This way,
information about the animals can be communicated to the user without having to
actively click on an entity. The visual cues were created using the particle system in
Unity (Subsection 2.4.4). The cues help the user see and interpret what is happen-
ing in the simulation. Furthermore, they can aid in understanding why the animals
decide to behave as they do without having to actively follow an animal.

4.3.4 Shader Effects
As mentioned in Section 2.4.5, the URP made it possible to include shader graphs
in the project. Shader graphs are used to add additional visual effects to a surface
or object. There are a total of three shader graphs included in the simulation, giving
the following effects:

• A toon cel-shader on the animals that is used to give a cartoon look to them.
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Figure 4.9: Visual cues, starting from top left: mating, flee (rabbits only), preg-
nancy, death, drinking, eating plant (rabbits only), eating flesh (wolves only), at-
tacking (wolves only).

• A shader on the trees to give them the appearance of swaying in the wind.
The shader also adds a dithering transparency effect to the trees, in order to
not block the view of the camera.

• A shader on the water, used to give the appearance of a moving body of water,
complete with foam on the edge of the shore.

Moreover, an outline effect has been added to the animals and plants, to make
them easier to discover from far distances. This effect was not added as a shader,
but instead as a post-processing effect. The effect works in the following way: For
every animal and plant mesh, a second, larger mesh is rendered. The front face of
the second mesh is subsequently culled, making the first mesh visible again. The
difference between the first and the second mesh is colored black, thus giving the
appearance of a thick line around the object.

All shaders and the outline effect were made using tutorials found online (see Ac-
knowledgments).

4.4 Implementation of a Genetic Algorithm
The reason for using a genetic algorithm for reproduction is because the implemen-
tation is inspired by the process of natural selection. Thus, by implementing it in
the animals, the idea is that the genes will trend towards the fittest point. This is
particularly interesting since the question is what the best values of the traits, for
each species, actually are. Moreover, the genetic algorithm allows several different
ways of defining how genes are passed on, and how they can be mutated.

Since the best values for the traits are unknown it is a complicated task to decide
a fitness function for the genes (Section 2.2), and thus it does not make much
sense to use fitness scanning in the simulation. Instead, uniform scanning is being
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used. Both uniform and crossover scanning introduce randomness in their logic, but
uniform scanning is more easily understood.

Furthermore, the mutations of the genes only occur at birth. This is simply for the
sake of making conclusions about the data. If mutations could occur anytime during
a lifespan, the resulting data could potentially be more difficult to interpret. The
mutation is implemented as a bit flip mutation, where each bit in the gene string
has a certain chance to be flipped.

Each gene represents some trait, such as speed. Thus, an evaluation method is
required to calculate the value of a gene. The bit string of a gene is eight bits
long, making a total of 28 = 256 possible combinations. The value of a child’s
gene is determined by the value of the parents’ genes and the number of set bits
in the child’s bit string. The number of set bits will determine in what interval
the resulting value will be. All children’s values will thus together make something
similar to a distribution curve. If the child receives a bit string with zero or one set
bits (9 combinations total), its value will fall below the lowest value of the parents.
Similarly, for seven and eight set bits it will get a value above the highest value of the
parents. Otherwise, it will get a value between the parents’ values. This description
is illustrated in Fig. 4.10. The intention with this is for the genes to eventually end
up in a state with a distribution similar to the real world. However, if the child has
an equal amount of set bits as both parents, the child’s value will fall between the
parents’ values to stop it from increasing/decreasing indefinitely.

Figure 4.10: The distribution of the genes’ values depending on the number of set
bits. Each bar represents a value interval.

4.5 Performance Optimization
In order to make the simulation run as smoothly as possible, some optimizations
had to be made.
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4.5.1 NavMesh Optimization
In order for the animals to survive in the simulation, they need to be able to move
to different parts of the world. For example, if there are a lot of wolves in one part
of the world, the rabbits will die there. In order for the wolves to survive, they need
to search the world for new rabbit hot spots. Likewise, the rabbits need to find
spots free from wolves in order to survive. The simulation uses the Unity NavMesh
in order to calculate paths for the animals. As the simulation progressed and the
animals got a larger urge to explore the world, the NavMesh became a bottleneck as
it became clear that it was not able to handle the increased amount of calculation of
longer paths. To improve the performance of the navigation through the NavMesh it
was necessary to reduce the number of long path calculations across the world while
still allowing entities to be able to explore new parts of the world. The solution was
to create a 2D matrix that represents the x and z coordinates of the world. Each
animal exists within a box of this matrix and when it goes into the search world
state it randomly chooses a point in one of the adjacent boxes of the matrix (Fig.
4.11). This prevents excessively long pathfinding to be done by the NavMesh and
enables the simulation to run with around 1 000 entities.

Figure 4.11: A rabbit in the search world state. The black dots represent the
points the animal can choose to walk to.

4.5.2 Reduce Method Calls
The method GoTo() makes the animals move to a selected position on the Navmesh.
While not being an expensive call if used sparingly, the number of animals that called
on it made it into one of the most expensive methods when running the simulation.
As such, some logic had to be rewritten in order to call the method only when
necessary.

4.6 Data
To be able to analyze the simulation, data about the simulation must be collected.
The animals have a wide variety of properties that generates data. The collected
data includes movement speed, size, age, species, percentage of brainpower used for
vision and hearing, cause of death, amount of rabbits and wolves.
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The simulation gathers data via logger classes. To allow an easy and extensible way
of collecting data, a generic way of gathering data was created. This allowed multiple
types of data to be collected with ease. This was done through an interface for
logging with two methods, Snapshot(EntityManager) which saves the current state
of the simulation with data relevant to the specific logger in memory. This is saved
for every day of the simulation. Then, the data can be persisted with Persist()
which saves the data on the disk and removes the saved data from memory. This
was done as writing and reading files can be expensive operations, so with this setup,
the data could be saved at a regular interval of every day but persisted locally less
often to prevent performance issues.

The different loggers include DeathCauseLogger which logs the cause of deaths for
the animals, DetailedIndividualLogger which logs the current state of every indi-
vidual animal, FpsLogger which logs the current average frames per second and
OverviewLogger which logs the total amount of animals, plants, and the average
values of the animals’ traits.

The collection of data is important for analysis. The data allows discussion of
whether the results gathered are analogous to real-life scenarios. The data is visual-
ized with Plotly.py [65]. Plotly.py allows easy visualizations of data from .json and
.csv files.

4.7 Additional Information
Source Code - github.com/AronSeamountain/eco-simulation
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As mentioned in the purpose of the report, it is of interest to study what effect
the number of resources, the individual characteristics, and behaviors have on the
natural selection of the animals. Therefore data has been gathered at selected
instances of the simulation 4.6. The simulations have been selected by running
several instances of the simulation with the same settings. These instances are all
plotted in the graphs, and all but one of the plotted lines are faded slightly. This
is done in order to give a sense of the average distribution while still displaying one
instance to be able to refer to that instance specifically. The instance selected is the
one that was able to persist the most amount of days without any of the species
going extinct. It is important to note that the highlighted values are the same for
all graphs for the same simulation settings. For example Fig. 5.1a, 5.3a, and 5.2a
highlight a statistical plot from the same instance.

An in-depth discussion about the results is conducted in Section 6.3.

The reason for plotting several instances with the same settings of the simulation is
because the simulation is non-deterministic. It varies by every instance even if the
world and the number of entities are the same at the initiation. Furthermore, the
genetic algorithm introduces random mutations and therefore the result can vary a
lot between each instance.

Additionally, the simulations in the result section were run on different computers.
The reason for this was because of time constraints. As such, the information in the
graphs in the following sections consists of data gathered from multiple computers.
This could be another cause for the variations in the result, further discussed in
Section 6.1.

Every instance of the simulation were run with the following configurations on the
"Options"-screen:

• 1 hour in real seconds 0.5

• Performance ON

• Collisions OFF
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• Log data ON

5.1 Simulation of Only Rabbits
Three different types of instances of the simulation were executed with only rabbits.
This was done in order to see how the number of plants affects the traits of the
rabbits, as well as the number of rabbits. The simulations were run with 50, 200,
and 400 plants, all in the small world and all starting with a population of 100
rabbits. The simulations were run for 500 days as this was proved to be enough
time for the traits to stabilize.

5.1.1 Amount of Rabbits
As can be seen in Fig. 5.1 a higher amount of plants can support a larger population
of rabbits. 50 plants can support around 100-250 rabbits, 200 plants can support
300-600 rabbits and 400 plants can support 700-900 rabbits. The amount of mature
plants stays very low in the 50/200 plants simulations which means that the rabbits
find almost all plants and are constantly eating them to survive. Whereas in the 400
plant simulation there are between 150-200 mature plants at all times, indicating
that there are more than enough plants available for the rabbits, see Fig 5.1c.

(a) 50 initial plants.

(b) 200 initial plants. (c) 400 initial plants.

Figure 5.1: The number of animals and eatable plants with the initial number of
rabbits being 100. Green indicates the number of eatable plants, blue indicates the
number of rabbits and red indicates the amount of wolves (always zero).
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5.1.2 Speed of the Rabbits

All simulations show an increasing trend in the speed of the rabbits, see Fig. 5.2.
The average speed for the rabbits in the simulations with 50 and 400 plants are
almost the same, see Fig. 5.2a 5.2c. They end up between 1.30-1.52. Whereas the
simulations with 200 plants end up between 1.37-1.66 except for an outlier which
ended up at 1.97, see Fig. 5.2b.

(a) 50 initial plants.

(b) 200 initial plants. (c) 400 initial plants.

Figure 5.2: The average speed of the rabbits with the initial number of rabbits
being 100.

5.1.3 Size of the Rabbits

The rabbits’ size distribution from the simulations can be seen in Fig. 5.3. For
the simulations with 50 plants Fig. 5.3a shows some similarities with a normal
distribution around the initial size of 1.2. It does not appear to be a trend that
increases or decreases. In the simulations with 200 plants, an increasing trend can
be seen for the size, which stabilizes between 1.24-1.46, Fig. 5.3b. Finally, the
simulations with 400 plants show the most consistent increasing trend for the size
which ends up at around 1.32-1.48.
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(a) 50 initial plants.

(b) 200 initial plants. (c) 400 initial plants.

Figure 5.3: The average size of the rabbits with the initial number of rabbits being
100.

5.1.4 Vision and Hearing of the Rabbits

Based on the results it seems that hearing is favored over vision for the rabbits. This
can be seen in Fig. 5.4. The senses do not seem to be affected significantly by the
number of plants in the simulation and the percentage for hearing lands somewhere
between 55-60% after having run the simulations for 500 days.

(a) 50 initial plants.

(b) 200 initial plants. (c) 400 initial plants.

Figure 5.4: The percentage of brainpower utilized for the vision and hearing with
the initial number of rabbits being 100.
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5.2 Equilibrium

This section covers different simulations with both rabbits and wolves. As well as
searching for equilibriums in the different worlds, a comparison is made between the
genetic algorithm and no genetic algorithm by running simulations with the same
initial values in the medium-sized world. This comparison can be found in Section
5.3.

The initial values were chosen as they produced the most stable equilibriums that
were found during testing.

5.2.1 Equilibrium with 200 Plants in the Small World

Running the simulation with these values was proven not to be very stable. In most
of the instances, either the wolves or rabbits died out within 50 days. Fig. 5.5 shows
that there is no cyclic dependency between the rabbits and the wolves. Thus the
graph has few similarities with a Lotka-Volterra model. All of the simulations in
this subsection were run with 25 wolves, 100 rabbits, and 200 plants. The Pearson
correlations of the highlighted curve are:

• Wolves and rabbits: -0.66.

• Plants and rabbits: -0.89.

• Plants and wolves: 0.71.

Figure 5.5: The number of animals and plants in the small world with the initial
values of rabbits, plants, and wolves being 100, 200, and 25.

The traits of the animals are displayed in 5.6.
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(a) The percentage of brainpower utilized for the vision
and hearing.

(b) The average speed of the animals. (c) The average size of the animals.

Figure 5.6: The traits of the animals with the initial amount of rabbits, plants,
and wolves being 100, 200, and 25 respectively.

5.2.2 Equilibrium with 400 Plants in the Medium World
The simulations presented in this subsection were stable, compared to the instances
run on the small and large world, with several that ran for more than 400 days.
As seen in Fig. 5.7, in a run of 1000 days, the system ended up in an equilibrium.
The figure also displays similarities with a Lotka-Volterra model, in that there is
a cyclic trend in the relation between the number of plants, rabbits, and wolves.
As the amount of rabbits increase, the number of plants decreases. When the
rabbit population is large, the population of wolves starts to increase until the
rabbit population sharply decreases. Over the whole duration of the simulation, the
Pearson correlations are the following:

• Wolves and rabbits: -0.49.

• Plants and rabbits: -0.92.

• Plants and wolves: 0.50.

The animals’ traits were logged in the simulation which is displayed in Fig. 5.8. It
can be seen from the figures that it is favorable for both species to be both larger
and faster. Both species reach their full speed factor potential at 1.55. The rabbits
did not get as big as the wolves did with a consistently larger size in most of the
runs.
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Figure 5.7: The number of animals in the medium world with 400 plants. The
number of rabbits alternates roughly between 200 and 1000 while the amount of
wolves alternates between 30 and 115. The initial number of rabbits, plants, and
wolves are 230, 400, and 75 respectively.

(a) The percentage of brainpower utilized for the vision
and hearing. The gap in the upper graph is caused by a
plotting error.

(b) The average speed of the animals. (c) The average size of the animals

Figure 5.8: The traits of the animals for the instances with the initial number of
rabbits, plants, and wolves being 230, 400, and 75 respectively.
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5.2.3 Equilibrium with 800 Plants in the Large World
In this equilibrium, the Pearson correlations are the following:

• Wolves and rabbits: -0.56.

• Plants and rabbits: -0.79.

• Plants and wolves: 0.83.

The instances executed in the large world ended quite fast compared to the instances
in the other worlds. It is therefore difficult to draw any type of conclusions from
these results. A short discussion can be found in Subsection 6.3.3.

Figure 5.9: The number of animals in the large world with 800 plants. The initial
number of rabbits, plants and, wolves are 700, 800, and 200 respectively.

5.3 Genetic Comparison
This part will cover medium world instances with 400 plants, where there was no
genetic algorithm implemented. Thus the wolves and rabbits had equal speed and
size, consequently making the only difference in desire for food their specific factors
(as explained in Section 4.1.4). Unlike with the genetic algorithm implemented, the
majority of instances with no genetic algorithm ended quickly with the wolves going
extinct, as can be seen in Fig. 5.11. The highlighted curve is the longest simulation,
which went on for 363 days with the following correlations:

• Wolves and rabbits: -0.81

• Plants and rabbits: -0.97

• Plants and wolves: 0.78
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(a) The percentage of brainpower utilized for the vision and hearing.

(b) The average speed of the animals. (c) The average size of the animals.

Figure 5.10: The traits of the animals with the initial number of rabbits, plants,
and wolves being 700, 800 and, 200 respectively.

Figure 5.11: The number of animals in an iteration without genetic algorithms
implemented.
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Discussion

This section covers the discussion of the results, a discussion about performance,
societal and ethical aspects regarding the project, as well as a discussion about
potential improvements that can be made to the project.

6.1 Randomness Effects the Results
Every instance of the simulation produces different results, even on the same com-
puter, since the mutations that occur in the animals are random. It could also be
the case that the simulation runs differently depending on hardware but it is difficult
to measure the magnitude of this factor because of the inherent randomness in the
simulation. Nevertheless, because of time constraints, it was deemed necessary to
gather as much data as possible from several computers, rather than presenting a
low amount of data coming from one computer.

This randomness is why it is important to run the simulation several times when try-
ing out values. Multiple instances with the same starting values give more certainty
to the results. This enables us to look closer at certain simulations that behave
interestingly and place them in a context.

6.2 Performance
When there is a large number of animals in the simulation, it is common for them to
get stuck in place. This is because the NavMesh cannot handle the path calculations
for all the entities concurrently. This causes the animals to stop in place while
running and as a result, they starve to death. This causes the animals to get worse
at surviving when there is a large amount of entities in the simulation. This is one
of the reasons why it is difficult to reach an equilibrium in the large world. This
problem was not discovered until it was too late to change the navigation system. If
this information would have been known at an earlier stage of development, another
approach would have been selected for the navigation which is further discussed in
6.5.

Another issue is related to when the FPS is low in the simulation is that the collision
triggers (hearing and vision) seem to work inadequately. This problem has most
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likely negatively affected the results from the simulation since animals have been
observed to die when they potentially could have reached the resources needed to
survive. A discussion about potential fixes to this problem can be found in 6.5.

6.3 Analyzing the Results
The compiled data retrieved from the simulation gave some results that were ex-
pected and some that were not. The following subsections will present a discussion
about these results.

6.3.1 Trends for Hearing and Vision
For all simulations, there did not seem to be much preference between either hear-
ing or vision. This could be because the changes reflect small changes. For most
instances of the simulation, the plants are not that scarce and the animals move
around a lot combined with the animals’ memory of food and water. Even a small
hearing range or small vision area is enough to find mates and plants just as easily
as they would otherwise because of their memory. There might have been more of a
preference if the resources were rarer. This result was somewhat surprising since it
was presumed that it would be more advantageous for the rabbits to have a larger
hearing range. As for the wolves, it was presumed that their vision and hearing
ranges would be somewhat evenly divided.

This could also be the cause for why the percentage of hearing and vision for the
rabbits is close to 50%. Since there does not seem to be much of an advantage for
hearing nor vision, the distribution is even. And since rabbits often exist in a larger
amount, the sample size is higher and that is why it is closer to the 50% distribution
which is expected if it was completely randomly distributed. The wolves are, in the
instances of the simulation, often fewer and thus have a smaller sample size which
could explain the greater variation of the vision and hearing graphs.

6.3.2 Simulation of Only Rabbits
Based on the results, it is not surprising that the rabbits thrive in instances where
there are no predators. Fig. 5.1 indicates that for every start value, whether it be
50, 200, or 400 plants, the rabbits do not die out a single time over all the instances
being run. From these graphs, it is clear that there is a correlation between the
number of plants and the number of rabbits in the ecosystem. This was expected
since a larger amount of plants should be able to support a greater amount of rabbits.

The size of the rabbits had an increasing trend in the simulations with 200 and 400
plants, unlike the simulations with 50 plants where there was no apparent trend.
The reason for this could be the the amount of rabbits in the 50 plants simulations
were too low to produce any apparent trend. Another reason could be that the
amount of food is so low that it is not able to support the hunger for the larger
rabbits which need more food.
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In general, the speed of the rabbits (Fig. 5.2) is higher in the simulations with fewer
plants. This is most likely due to more competition for plants, where the faster
rabbits manage to get to them quicker.

As seen in Fig. 5.3a, with 50 plants it does not seem to be favorable to be big
or small but the size seems to increase when there are more plants available. The
reason for this could be because a larger size means that the animals do not get
hungry as fast, but they need to eat more to be saturated. This is expected to be
better as the amount of rabbits increases. The reason why the rabbits tend to get
larger in the instances with more plants is that an increase in plants leads to an
increase in rabbits. Thus the competition for the food increases, leading to larger
rabbits being able to hold out longer without food.

In Fig. 5.1b the number of sustained rabbits goes down. This happened in all
the instances but was most prominent in the highlighted run shown in the graph.
Looking at the speed of the rabbits in Fig. 5.2b, it was much higher compared
to the other instances with 200 plants. This is likely because when a majority of
rabbits increased their speed, it made the rabbits race for food more and in turn
wanting to get even faster. This selfish behavior made the rabbits having to eat
more often and compete with each other which caused the total number of rabbits
that the environment can support lower. Hence the more significant drop in amount
of rabbits in Fig. 5.1b.

6.3.3 Equilibrium

As seen in Fig. 5.7, an equilibrium that lasts over 1000 days with both wolves and
rabbits could only be reached in the medium world. This could be because the
start values used in these instances of the medium world were enough to support a
number of entities small enough for the NavMesh to function reasonably well. The
medium world also has more lakes to which the rabbits can migrate if the number
of wolves increases, which enables them to survive better. The Pearson coefficient
for plants and rabbits indicates a strong correlation between them, as was expected.
However, a stronger correlation between the wolves and the rabbits was expected.
This could explain why in Fig. 5.7, the amount of wolves does not perfectly follow
the trend of the rabbits as well as the number of plants does.

In order for the large world to reach an equilibrium, it is required that there are
many more entities present than in the other worlds. This in turn will enable the
wolves to find both prey and mates to create offspring to populate the vast world.
This causes the performance issues related to the NavMesh, which is discussed in 6.2,
which subsequently reduces the survivability of the wolves. This is most likely the
reason why the shortest equilibriums come from the large world, see Fig. 5.9. The
poor performance can also be deduced in the Pearson coefficients. The correlation
between the plants and the rabbits, as well as the correlation between wolves and
rabbits, is noticeably lower compared to the instances run on the medium world and
the instances without genetics.
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The small world, on the other hand, has the issue that the wolves make the rabbits
go extinct if they are too many at any time. The reason for this is likely because
there is nowhere for the rabbits to run due to the limited space. There are only
two water sources in the small world. Because of this, the rabbits do not have as
many options to find a water source free from wolves. Similarly, if there are too few
wolves there is a low probability for the wolves to find any mates. The conclusion is
that the small world seems to have a narrow span for which the number of wolves
needs to be in for the equilibrium to persist. Out of the three equilibriums, the
small world indicates the strongest correlation between wolves and rabbits. The
correlation is quite unexpected as the resulting graph does not seem to indicate a
strong correlation. The relatively high correlation between wolves and plants is likely
due to the fact that an increased number of plants leads to an increased number of
rabbits, subsequently leading to an increase in the number of wolves. Similarly to
the other equilibriums, a high correlation between plants and rabbits is expected.

It might seem like the simulations could have started out with more wolves since
it usually is the wolves that die out. However, all simulations have been tried with
different starting values and increasing the number of wolves, drastically reduces
the ability of the rabbits to survive. This is partly because of the wolves eating the
rabbits but also because of the rabbits not being able to reach their water or food
because of nearby wolves that force them into the flee state.

6.3.4 Trends for Size and Speed
The animals tend to increase in speed and size in most of the instances of the
simulation. The speed increase is likely because the rabbits all race to reach the
food and to escape the wolves. To catch the rabbits, the wolves also need to increase
their speed. The reason why the animals’ speed does not reach incredulous heights
is presumably due to the fact that the cost of being fast increases and outweighs
the benefits of being fast. The increase in size is probably to mitigate the negative
effects of the speed increase, with the cost that the animals need to eat more to
reach full saturation.

It was noted that the rabbits evolve faster than wolves since their speed and size
tend to increase at a faster rate. This is believed to be a result of the rabbits having a
shorter reproduction cycle and more offspring with each litter, as well as the rabbits
existing in greater numbers compared to the wolves.

6.3.5 Genetics
The difference between instances of the simulation with genetics and the ones with-
out genetics is easily distinguishable. Normally, in the no-genetics instances, the
wolves almost or completely eradicated the rabbits. This was most likely due to the
species having the same speed. Because of this, the wolves often went extinct just
after roughly 150 days due to the lack of food. Meanwhile, in the instances with
genetics, faster rabbits were fitter to survive. Consequently, the wolves did not kill
the rabbits to the same extent, which lead to the equilibrium lasting for longer. As
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one can see, the simulations with genetics generally held on for 400 days or longer.

The Pearson coefficient for the instances without genetics shows that the correlation
between plants and rabbits is somewhat similar to the instances with genetics, and
this is expected. The coefficient for wolves and rabbits is stronger than the instances
with genetics. This result is also expected since the wolves are able to keep pace
with the rabbits as the rabbits do not evolve an increase in speed. The increase
in correlation between plants and wolves follows as the correlation between both
wolves and plants, and plants and rabbits, have increased.

In short, the results given by the simulation indicate that it is possible to reach an
equilibrium, particularly with the start values used in the medium world. The reason
for this is most likely due to two reasons. First, the medium world contains more
water sources and is thus large enough for the animals to seek out new resources
if needed. Second, the values used were large enough to sustain the number of
rabbits and wolves, without them being so many that the NavMesh got negatively
impacted. Furthermore, the differences in the results between the instances with
and without the genetics included, indicate that some simulations without genetics
were not stable but managed to be with genetics.

6.4 Societal and Ethical Aspects
Depending on the scope of a project in Unity, developers may or may not choose
to create all necessary assets by themselves. As mentioned in subsection 2.4, when
creating a product in Unity, the developer has access to the Unity asset store. Here,
the developer can purchase the license to download assets to incorporate into the
product[66]. Furthermore, code repositories such as GitHub and Bitbucket are two
other alternatives where developers have the opportunity to use scripts written by
other developers. When incorporating such material, it is important to know the
formalities regarding the rights to distribute the final product. This is important
because creators spend a considerable amount of time creating assets, thus, their
work should be accredited appropriately.

Regarding simulations in general, they are of great use in different types of academic
and scientific fields. Simulations can be used for educational purposes and aid
researchers in their work by simulating a wide variety of different systems.

The simulation presented in this report is too simplified and inaccurate to be used
for any sort of real-life approximation of an ecosystem. As mentioned in chapter 3,
simulations, in general, tend to focus on a small section of a greater subject: instead
of simulating an entire ecosystem, researchers tend to focus on simulating weather
or the population of only one species and do so accurately.

However, it is important to remember that simulations are approximations of real
life. An ecosystem depends on many factors that may be very difficult to foresee.
Simulations depicting ecosystems should therefore not be seen as an exact represen-
tation of their real-life counterparts, but instead as good enough representations.
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Thus, decisions based on conclusions drawn from results coming from a simulation
should be taken with this into account.

6.5 Improvements
If time would not have been a limit, there are a number of improvements and
additional content that could be added.

The first improvement would be to implement a 3D matrix to be used for animal
movement across the terrain. The 3D matrix would encompass the terrain, with
positions that animals can go to mapped out within the matrix. These positions
would correspond to a position in the terrain. By switching the navigation of the
animals from the NavMesh to a 3D matrix, it would allow for more hilly terrain,
something that is not possible when using the NavMesh since the animals get stuck
in the ground on steep inclines. However, the current implementation is more life-
like as animals are not stuck to a grid.

Furthermore, the matrix implementation would potentially increase performance for
several reasons. Firstly, all logic that is currently performed by the Unity colliders
could instead be transcribed to 2D-matrix logic. Although the logic would not be as
precise as with the colliders, it would most likely not make a noticeable difference
in the outcome of the simulation. An example of how this logic would work in 2D
is pictured in Fig. 6.1. Secondly, since the matrix would be very simple compared
to the Navmesh terrain, the pathfinding would have to calculate far fewer possible
paths.

Figure 6.1: An example illustration of the ecosystem modeled as a 2D matrix.

Another possible improvement would be to fine-tune the behaviors and traits of
the animals. This could include adding dens and burrows for the animals to seek
shelter in, include pack behavior for both rabbits and wolves, and improve the vision
areas for the animals, to further emulate real-life behavior. Furthermore, another
improvement that could be implemented is that all animals should have a different
amount of stamina instead of just 0 to 100 percent where all the animals of the same
species have the same decrease and increase amount in their different states.

Several possible improvements can be made to the plants. One such improvement
would be to add genes to the plants. This could potentially have an effect on where
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plants choose to grow, how fast they grow or die, how many offspring each plant
can have, if the plants become poisonous or not, etc. Other types of plants could
also be introduced. To further build on this idea, making it possible to crossbreed
between different species of plants could possibly give way to new kinds of plant
species. Lastly, another minor improvement could be to make the plants disappear
when fully consumed. Then having new plants immediately reappear in the vicinity
of the old plant. This would not have a significant impact on the simulation but
would give the simulation a more life-like appearance.

Using the start screen (see Fig. 4.7) a user can set their own parameters of the
ecosystem. The idea of users impacting the ecosystem can be further built upon.
For example, by further gamifying the ecosystem, it would be possible to give the
user more control: being able to change the outcome of the ecosystem in real-time
by adding and removing resources and animals on a whim.
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7
Conclusion

The aim of the project was to study what effect the number of resources, individual
characteristics, and behaviors have on the natural selection of simulated animals.
Working with these questions has given us more insight into the intricate balance
that is required for an ecosystem to stay stable. This has highlighted the importance
for a species to be able to adapt over generations through the phenomenon of natural
selection and evolution. The results indicate that the simulated ecosystem managed
to stay stable with evolution while it did not without evolution, given the same
starting values. Moreover, the results show that it is possible to reach an equilibrium
with correct start values and in a reasonably sized world. The limitation to reach an
equilibrium in a larger world is caused by the NavMesh used to move the animals
around. Meanwhile, the limitation in the small world is likely due to a lack of water
sources and space for the animals to move around.

A more stable relationship between the species in the simulation is something that
could be useful to further develop given more time. An improved equilibrium would
give the animals a longer time to evolve. This in turn would give greater accuracy
to the collected data, thus increasing the accuracy of the results that show what
traits and characteristics are more favorable.

The genetic algorithm implemented made it possible for the animals to change size,
speed, hearing, and eyesight. This resulted in the animals mostly becoming both
larger and faster to be able to survive better. In most cases, there was no clear
advantage for the animals having better hearing or eyesight.

To conclude this project, an ecosystem has been created where the number of re-
sources and the characteristics and behaviors of the animals affects the traits of the
animals over time. The model also includes an implemented genetic algorithm that
can affect the traits of the animals’ offspring. This was proven to keep the ecosys-
tem stable by running comparative instances without the genetic algorithm active.
Further improvements need to be implemented in order to support a larger amount
of resources and animals.
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A
Performance

A simulation with a wide range of amount of animals was picked. The simulation
was run on the medium sized world and the data is displayed in Fig A.1. From
there we can extract that the simulation can run with an interactive fps over 30 for
around 1200 animals simultaneously.

Figure A.1: The average frames per second for every day.
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A. Performance
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B
Finite State Machine

The state machine for the wolves and rabbits can be seen in Fig. B.1 and B.2

Figure B.1: The states for the wolves.

III



B. Finite State Machine

Figure B.2: The states for the rabbits.

IV


	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Boundaries
	Overview

	Theory
	Finite State Machine
	Genetic Algorithms
	Ecosystem Modeling
	Lotka-Volterra Model
	Pearson Coefficient

	The Unity Platform
	Terrain Tool
	NavMesh
	Collision Handling
	Particle Systems
	Render Pipeline


	Related Work
	Genetic Algorithms and Their Applications
	Simulating Low-poly Ecosystems
	Simulations in Games
	Explaining Evolution
	Self-evolving Creatures

	Model
	Animals
	Health, Nutrition, and Energy
	Behavior
	Senses
	Traits

	The Environment
	Plants
	Terrain
	Terrain Effect on Animal Behavior
	Time in the Simulation

	User Interface & Visual Effects
	Menu
	Overlay
	Visual Cues
	Shader Effects

	Implementation of a Genetic Algorithm
	Performance Optimization
	NavMesh Optimization
	Reduce Method Calls

	Data
	Additional Information

	Results
	Simulation of Only Rabbits
	Amount of Rabbits
	Speed of the Rabbits
	Size of the Rabbits
	Vision and Hearing of the Rabbits

	Equilibrium
	Equilibrium with 200 Plants in the Small World
	Equilibrium with 400 Plants in the Medium World
	Equilibrium with 800 Plants in the Large World

	Genetic Comparison

	Discussion
	Randomness Effects the Results
	Performance
	Analyzing the Results
	Trends for Hearing and Vision
	Simulation of Only Rabbits
	Equilibrium
	Trends for Size and Speed
	Genetics

	Societal and Ethical Aspects
	Improvements

	Conclusion
	Bibliography
	Performance
	Finite State Machine

