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Rasmus Durgé, Johan Ek, Jonny Fredriksson, Emil Logren, Mohamad Melhem,
Rik Muijs

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis describes the development of an agent-based simulation of E. coli chemo-
taxis in C# and the Unity game engine. The agents use a mathematical model
of the chemical pathway underlying chemotaxis to produce either forward-motion
(running) or rotation (tumbling), in response to the concentration of ligand in their
immediate environment. This model consists of a system of ODEs from Edgington
and Tindall [1] and elements of survival analysis. A tool for analysing data from
these simulations was also developed, and used to make quantitative comparisons
between simulations. This is used to compare our model to a simplified model
of chemotaxis, designed to always display chemotactic behaviour. It is concluded
that both models display chemotactic movement, with the simplified model being
more effective at finding the ligand source, but the ODE-based model being more
adaptive.

Keywords: chemotaxis, computational biology, agent-based simulation, Unity engine
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Sammandrag
Denna rapport beskriver utecklingen av en agentbaserad simulation av E. coli-
kemotaxi i C# och spelmotorn Unity. Agenterna använder en matematisk mod-
ell av den kemotaktiska signalkaskaden som ger upphov till kemotaxi, uttryckt av
antingen framåtrörelse (running) eller rotation (tumbling), baserat på ligandkon-
centrationen i deras omedelbara omgivning. Denna modell består av ett system av
ODEer från Edgington och Tindall [1] och delar av överlevnadsanalys. Ett verktyg
för att analysera data från dessa simulationer utvecklades också som del av projektet
och användes för att göra kvantitativa jämförelser mellan körningar. Denna data
används för att jämföra vår modell med en simplifierad modell av kemotaxi, fram-
tagen för att alltid uppvisa kemotaktiskt beteende. Slutsatsen av denna jämförelse
är att båda modeller ger upphov till kemotaktiskt beteende, att den simplifierade
modellen mest effektivt hittar ligandkällan, samt att den ODE-baserade modellen
är den mest adaptiva.

Nyckelord: kemotaxi, beräkningsbiologi, agentbaserad simulation, Unity spelmotor
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1
Introduction

Chemotaxis is the phenomenon that describes how certain bacteria navigate their
environment towards sources of food through chemical reactions. Since bacteria
consist only of single cells, they cannot make decisions based on an understanding
of their surroundings, nor with the help of memory. For example, they only know
if they have found some ligand, e.g. food, if they have managed to collide with it.
They then have to somehow use this information to find more of the ligand, without
the ability to compare past collisions. Some bacteria thrive under these restrictions;
using only a handful of chemical reactions connected to form feedback loops — a
chemical pathway — bacterial species like Escherichia coli (E. coli) exhibit great
efficiency in ligand finding. The sensitive balance of the reactants and products of
these reactions is shifted in response to the bacterium finding ligand, and produces
differing responses in movement. Despite these reactions being simple in nature,
their emergent effect when connected yields highly adaptive behaviour [3]. This
simplicity also makes the problem suited for computational modelling, to see if
similarly effective results can be achieved in silico. This project aims to implement
an agent-based model, centred around a mathematical model developed by Matthew
Edgington and Marcus Tindall [1], and to see how it compares to a model that relies
on giving the bacteria enough information to guarantee chemotaxis. This process
will also be simulated graphically, in the Unity game engine.

1.1 Purpose
The main purpose of this project is to create an agent-based model to simulate
chemotaxis computationally. We also wish to introduce an interactive tool where a
user can see how the agents behave with each other, with regards to user configurable
settings.

1.1.1 Modelling
Commonly, models of chemotaxis are on the level of a population, using mathe-
matical models describing colony migration [4]. With the relative simplicity of the
internal chemistry of individual bacteria, our hope is that an agent based approach
can achieve the same observed behaviour. In addition to hopefully simulating the
phenomenon of chemotaxis, this approach carries the added benefits of connecting
population level dynamics to individual internal processes. The degree to which
different models used to represent the internals of the bacteria yield chemotactic
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1. Introduction

behaviour can be used for evaluation of and comparisons between these models.
With this in mind, we will implement two models of the chemotactic pathway, as
described in 2.1. One of these is taken from Edgington and Tindall [1], attempting
to model the internals accurately and without using information the bacteria should
not have. The second uses positive changes in concentration to nudge the bacteria
towards sources of some attractive ligand. These two models will be compared in
terms of fitness, i.e. how well the bacteria navigate towards sources of ligand and
how well they survive in the environment. An underlying goal of this project is
to see if emergent complexity can arise and yield adaptive behaviour from simple
and oblivious models. Having the second — chemotactic by design — model as a
point of reference, we are able to quantify the extent to which adaptation and fitness
emerges from our properly biological model.

1.1.2 Application
A secondary purpose is to build an interactive product around our agent-based sim-
ulation. This entails rendering our simulation in the Unity game engine, visualising
the internal chemistry, individual behaviour, and population dynamics immersively.
With advanced computer graphics, we hope to build an intuitive understanding of
the phenomenon and its underlying mechanics. Our application will also allow the
user to control parameters for the extracellular environment in which the bacteria
act, and include a tool for analysing data from one or several simulations.

1.2 Scope
The final application is centred around a computational model of the internal chem-
istry of E. coli underlying chemotaxis. E. coli was chosen for its role as a model
organism in the study of chemotaxis. The model will take a concentration of a single
type of ligand as input, and produce a state of either running or tumbling as its
output. This regulatory model is connected to graphical entities representing bac-
teria, which can either swim forward or stop completely and rotate. The movement
will be at a constant speed, and in straight lines in the direction the bacterium is
facing. This is an approximation of real E. coli motility, and will serve the pur-
pose of showcasing chemotaxis well enough. In general, it is only the chemotactic
pathway that is claimed to aim at biological accuracy; the rest of the bacterium’s
physiology is considered an abstraction. Furthermore, all bacteria will be restricted
to moving in the plane, and not in three dimensions. It was determined that the
costs of implementing three-dimensional models far outweighed their benefits with
regards to demonstrating chemotactic behaviour.

These simplified bacteria will inhabit a two-dimensional field with a distribution
of different concentrations of ligand. Parameters affecting the shape and layout of
this distribution will be possible to change through user input before the simulation,
along with population size and duration of the simulation. The bacteria themselves
do not affect the distribution, e.g. by eating from it, but the intake of ligand
at a given point can be set to decrease by the presence of neighbouring bacteria.
An exception to this is made for a proof-of-concept with complete environmental

2



1. Introduction

dynamics developed in Matlab. Further abstractions for how the bacteria interact
with their chemical surroundings are that they only have one type of receptor and
that this is simply located at its centre of mass. The mechanics of ligands binding to
the receptor and the bacterium absorbing and metabolising them is also omitted in
this project. While chemotaxis also works for movement away from chemorepellents,
such as toxins, these will not be included in our simulation. The extracellular
environment will be visualised graphically and be of a fixed size, outside which
bacteria cannot venture.

The simulation also includes simple cell division and -death. Just as with ligand
intake, the realistic details of these are outside the scope of this project. They are
included as a measure of the fitness of the bacteria as a population; by allowing
our bacteria to thrive or fail in some quantifiable way, we can get some metric for
biological success for a given population. Finished simulations can be analysed and
compared through an external tool also part of this project. This tool extracts data
from the simulation and performs statistical analyses and visualisations of one or
more simulations.

3



2
Theory

In this chapter, we introduce the underlying theory used to develop our simulation.
This theory includes the chemotactic pathway in biological detail; the extracellular
environment of ligand the bacteria inhabit; ordinary differential equations used for
chemical modelling; elements of survival analysis used to model triggering of events;
agent-based modelling; and the Unity game engine used to render our simulation.

2.1 Chemotactic Pathway
The chemotactic pathway in E. coli describes the signal cascade and feedback loop
of internal proteins that give way to chemotactic behaviour. The following section
is a description of this pathway, based on Prescott’s Microbiology [5].

E. coli bacteria move through the rotation of flagella, rotor like appendages
sticking out through their outer membrane. These flagella can rotate either counter-
clockwise (CCW) or clockwise (CW). When the flagella rotate CCW, the bacterium
swims forward, in an approximately straight line. We call this state running. When
the flagella instead rotate CW, the bacterium halts and rotates to face in a new di-
rection. This state is called tumbling. It is by alternating between these states that
E. coli navigate their environments. Adaptation to seek out favourable conditions
comes from shifting the ratio of tumbling to running, and this shift emerges from
intracellular signals in the chemotactic pathway.

These signals are transmitted through phosphorylation, which means the trans-
fer of a phosphoryl group from one chemical compound to another. We can view
phosphorylated chemicals as switched on, and those without as off. The signalling
cascade is mainly made up of a closed system of proteins phosphorylating and de-
phosphorylating each other. The rate at which these processes occur is shifted based
on the state of transmembrane receptors, or MCPs, which in turn are affected by the
presence of chemicals in the environment. It is finally the balance of phosphorylated
and unphosphorylated chemicals that affect the bacterium’s tumbling bias. The re-
sult is that when the receptor is sensing low concentrations of ligand, the tumbling
bias will increase, and vice versa. Figure 2.1 provides a graphical representation of
the pathway [2].

In more detail, the proteins involved in the chemotactic pathway of E. coli are
CheW, CheA, CheB, CheY, CheZ, and CheR. CheW is connected to the receptor, or
MCP, and CheY is what affects tumbling bias. CheA autophosphorylates constantly,
at a rate that is affected by the activity of the MCP. When activity is low in the
receptor, the rate of autophosphorylation of CheA decreases. The activity of the

4



2. Theory

Figure 2.1: Graphical overview of the chemotactic pathway, showing the dynamics
of the signalling proteins in a feedback loop. From [2]. Reproduced with permission.

MCP is, in part, decreased by binding with ligand or increased in their absence.
Phosphorylated CheA, or CheA-P, spontaneously transfers its phosphoryl group to
either CheB or CheY at set rates. The higher the levels of CheY-P, the higher
the frequency of tumbling. It thus follows that, in the absence of ligand, CheA
will autophosphorylate more rapidly, in turn yielding more CheY-P, finally leading
to more frequent tumbling. To prevent the bacterium from tumbling indefinitely,
CheY-P quickly loses its phosphoryl group both spontaneously and mediated by
CheZ. This part of the chemotactic pathway explains how E. coli can be responsive
to their environment. It is, however, lacking an explanation for how they manage
to be adaptive and continually seek to improve their position.

Adaptation is explained by what happens to the phosphorylated CheB, which
is the second byproduct of phosphotransfer from CheA-P, and CheR. In parallel to
the signalling described so far, the protein CheR constantly adds methyl groups to
the MCP. These methyl groups slowly increase the activity of the MCP, similar to
the effect of a low-ligand environment. The purpose of this is to make the bacterium
more prone to seek better conditions, by tumbling, at a constant concentration of
ligand. Counteracting this constant methylation is the demethylation performed by
CheB-P. When CheB-P removes methyl groups from the MCP, it lowers its activity,
allowing for longer smooth runs. This force drives the cell from standing still after
high frequencies of tumbling. Just like CheY-P is dephosphorylated constantly,
CheB-P steadily loses its phosphoryl group.

The result is a handful of simple reactions, each nudging the internal state of the
bacterium. When put together, the balance of these counteracting forces produces
a highly efficient adaptation in the swimming behaviour of E. coli.

5



2. Theory

2.2 Chemical Modelling
In chemistry, the law of mass action states that the kinetic rates at which reactions
occur are proportional to the concentrations of its reactants [6]. We can model chem-
ical reactions mathematically with ordinary differential equations (ODEs). These
would express the rates of change in concentration of reactants as a function of
their concentrations. When regarding a chemical reaction network [7] with multiple
reactions, reactants, and products, we can construct a system of ODEs to capture
the dynamics of the entire network. One step further, there are cases in which the
products of one such reaction serve as reactants in another, in which case the kinetic
rate of the latter depends on the former. Generally, we can have networks of reac-
tions in which the sets of reactants and products intersect on multiple counts. Since
the kinetic rates of the reactions of such a network are interdependent, the entire
system of ODEs has to be solved simultaneously, which is often done numerically.

2.2.1 Chemotactic Pathway Model
The chemotactic pathway of Section 2.1 can be mathematically modelled as a chemi-
cal reaction network. For this system, we are interested in expressing the quantity of
each non-constant signalling protein — CheA, CheB, and CheY — that is phospho-
rylated, as well as the methylation level of the MCP. We should have four equations
describing these four quantities. We see that CheY-P and CheB-P will depend on
the amount of CheA-P. CheA-P will in turn depend on the methylation of the MCP,
which depends on CheB-P, CheR, and external stimuli. The signalling proteins also
phosphorylate and dephosphorylate spontaneously, depending on the current levels
of phosphorylation. Edgington and Tindall [1] have developed just such a system of
ODEs, which can be seen in (2.1). These equations describe methylation, followed
by concentrations of CheA-P, CheY-P, and CheB-P.

dm

dτ
= γR(1− φ)− γBb

2
pφ

dap

dτ
= φk1(1− ap)− k2(1− yp)ap − k3(1− bp)ap

dyp

dτ
= α1k2(1− yp)ap − (k4 + k6)yp

dbp

dτ
= α2k3(1− bp)ap − k5bp

(2.1)

φ = 1
1 + eF

, (2.2)

F = N(1− m

2 + ln(1 + L/Koff
a

1 + L/Kon
a

)) (2.3)

φ can be seen as the overall receptor activity and F is the free energy of a receptor
signalling team [1]. It is the free energy that is directly affected by current ligand
concentration, L. Other than that, F depends on the number of receptors of the
cell, N , current methylation, and ligand dissociation constants Kon

a /Koff
a .
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The other factors of the first equation, γR and γB, are the constant rates at
which CheR and CheB-P methylate and demethylate the MCP. The factors k1− k6
are the kinetic rates at which the different reactions that make up the chemotactic
pathway occur, and are, along with all other factors, explained in more detail in
Table 3.1.

We can use this system of equations to express the underlying mechanics of
chemotaxis, and then use the level of CheY-P to determine tumbling-bias. This
is a detailed bottom-up approach, where the observed dynamics of the chemical
reactions alone are responsible for reacting to the environment. It should also be
noted that this ODE-system is a so-called stiff system of equations, which means
that it is prone to sudden spikes that might be missed with traditional solvers [8].
Numerical solvers suitable for stiff problems take into account that step sizes have
to be small enough to detect such rapid changes. For more details about differential
equations and how to solve them, see Appendix C.

2.3 Survival Analysis
Survival analysis is a field of stochastic modelling used to investigate the time it
takes for an event of interest to occur [9]. Survival analysis has applications in
many fields, such as survival time for a patient after the onset of some disease, or
the time until a component breaks in a production line. In this thesis, survival
analysis is used, among other things, to investigate the time it takes for a bacterium
to tumble after it has started running. There are two features to describe survival
data: the survival probability and hazard rate. The survival probability, denoted
S(t), is defined as P(T > t), 0 < t < ∞, the probability that something survives
beyond a certain time t. The hazard rate, h(t) can be interpreted as the frequency
of failure per time unit.

Figure 2.2 shows an example depicting the probability of death for a human.
In the graph, we can see that the most critical stages in a human’s life are at the
start- and endpoint, while there is a relatively low probability of dying in the middle.
The hazard rate tells us that the probability of having died grows at a higher rate
at the beginning and end of the age distribution, with a constant rate of growth
between these two. Note that the hazard rate only has an impact on the overall
survival probability at a certain time; the probability of death for a single human is
cumulative over her lifespan.

7
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Figure 2.2: The hazard rate function h(t) showing the probability of death for a
human at any particular age.

The survival function is often modelled with the ordinary differential equation

h(t) = S ′(t)
1− S(t) , (2.4)

where h(t) returns the propensity of failure for a subject depending on the age it
has reached.

In terms of chemotaxis, survival analysis is used for tumbling, division, and
death. The reason survival analysis is useful in this project is because it returns a
value that is then used in conjunction with a probability threshold. This threshold
is the defining factor that decides if our objective remains in "status quo" or if it
should tumble or divide/die depending on what is calculated in each time step. The
survival function always grows towards this threshold, but at a rate that depends
on the hazard function.

This feature provides a stochastic method for modelling chemotaxis and cell
division and -death, events that are stochastic in nature. Finally, the hazard rate
for tumbling and division for a bacteria grows higher in areas with greater ligand
concentration, and similarly, the growth factor makes is so that even in areas with
no concentration the bacteria will eventually tumble/divide given that they are still
alive.

2.4 Extracellular Environment
A completely accurate description of the environment in which an actual E. coli bac-
terium would realistically live is far beyond the scope of this project, if even possible
at all. Therefore, a series of simplifications and approximations were necessary.

8
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Our underlying model scenario consists of an environment with a single type of
ligand, distributed in a square-shaped petri dish. The medium in which the ligand
is distributed does not affect bacterial movement. Even though the distribution
of ligand is in part arbitrary, some specifications are necessary when modelling
chemotaxis.

First of all, trivially, the distribution must vary spatially, or else it would be
pointless. The phenomenon of chemotaxis is dependent on an environment where
some areas are higher in ligand than others.

Secondly, when cell division is included, there must be dynamics in the dis-
tribution that depend on the population. A constant source of ligand would lead
to an exponentially growing population of cells. This project examines different
approaches with increasing complexity.

2.4.1 The Static Model
The model introduced by Edgington and Tindall [10], which is the main inspiration
for the project, uses a static ligand distribution. The function used to describe the
distribution in that model is

L(x, y) = l0 + exp
−

√
x2 + y2

d

 (2.5)

where l0 is an arbitrary minimum ligand concentration and d is a parameter that
regulates the slope of the function. This equation describes a single centred source
with a rotationally symmetric distribution, where

√
x2 + y2 is the distance from the

source. To account for multiple ligand sources, the equation can be extended to

L(x, y) = l0N +
N∑

i=1
exp

−
√

(x− xi)2 + (y − yi)2

d

 (2.6)

where N is the number of sources and (xi, yi) is the position of the i:th source.
This model entails that all bacteria are completely independent of each others’

existence, in addition to the function L(x, y) being time independent and thereby
represents a constant source of ligand. While being perfectly adequate in the mod-
elling of the phenomenon of chemotaxis motility-wise, it is insufficient when adding
the possibility of cell division, for reasons discussed above.

2.4.2 The Dynamic Model
In reality, a spatially varying ligand distribution would even out, or diffuse, with
time. By thereto adding consumers, e.g. bacteria eating from the environment, the
ligand would ultimately become depleted. To model this more realistic environment
is, at least from a mathematical perspective, a slightly more complicated task.

The concept of ligand diffusion can be described with a partial differential
equation, or PDE, described in Appendix C.1.1. More specifically, the well-known
diffusion equation [11].

∂

∂t
L(t, x, y) = D

(
∂2

∂x2 + ∂2

∂y2

)
L(t, x, y) (2.7)

9
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where L(t, x, y) is the ligand concentration at a position (x, y) at time t. D is
the diffusivity constant, which describes the rate of diffusion in the medium. Both
an initial condition, or IC, and a boundary condition, or BC, are needed to solve
Equation (2.7). While the IC comes directly from Equation (2.5), the BC need to be
properly specified. In the case of a solid boundary, like that of a petri dish, without
flux into or out of the system, the BC can be formulated as

∂

∂x
L(t, x, y) = ∂

∂y
L(t, x, y) = 0 for (x, y) at the boundary (2.8)

which is a homogeneous Neumann BC.
To address the aspect of consumption there’s a need to modify Equation (2.7)

by adding a term that subtracts ligand given the position of a bacterium. This leads
to

∂

∂t
L(t, x, y) = D

(
∂2

∂x2 + ∂2

∂y2

)
L(t, x, y)−

n∑
i=0

fi(t, x, y) (2.9)

where n is the total number of bacteria in the system. The function fi(t, x, y) de-
scribes the consumption contribution by the i:th bacterium in respect to its position
at time t.

The problem can now be formally described by using equations (2.6), (2.8) and
(2.9)

∂
∂t
L(t, x, y) = D

(
∂2

∂x2 + ∂2

∂y2

)
L(t, x, y)−∑n

i=0 fi(t, x, y) (x, y) ∈ Ω

L(0, x, y) = l0N +∑N
i=1 exp

(
−
√

(x−xi)2+(y−yi)2

d

)
(x, y) ∈ Ω

∂
∂x
L(t, x, y) = ∂

∂y
L(t, x, y) = 0 (x, y) ∈ ∂Ω

(2.10)

where Ω is the region, i.e. the square petri dish, and ∂Ω denotes the boundary of
the region.

2.5 Agent-Based Modelling
Agent-based modelling (ABM) is a modelling technique where a system can be
described as a set of individual autonomous decision making units called agents. In
an ABM, each agent assesses its own individual situation and performs an action
based on a set of rules [12]. ABMs can exhibit complex behaviour patterns even with
a simple model and provide valuable information about the dynamics of the system
that it emulates and is used in fields such as biology, epidemiology, and finance to
name a few.

One feature of ABM is that it can gauge one’s comprehension about a complex
system by modelling it on a microscopic level. An advantage of this approach is that
the complexity of the model can be reduced by looking at individual parts instead
of the entire system at once [13]. Being able to model the system through ABM also
provides flexibility since each agent can follow a simple set of rules independently.
This would not be the case in a complex system since there would be more param-
eters to take into account and where the selection of each parameter would have to
be made with consideration of every part of the system.

10
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Finally, ABM is particularly useful when modelling a biological system. This
is because it yields emergent behaviour stemming from the individual modelling
approach. One weakness with ABM however is that requires a lot of computational
power since calculations need to be performed for each entity in the system, meaning
that as the system grows larger so does the toll on the computer’s RAM.

2.6 Continuum Description of Populations
Using an ABM approach, the population can only be controlled indirectly, through
individual level models. Two parameters were used to investigate whether any pop-
ulation level pattern emerged from the ABM approach. These were the growth rate
of the population, r: how fast the population grows in an environment with optimal
conditions and the carrying capacity, K, which yields the value at which the popu-
lation growth plateaus given a sufficient time interval. These parameters were used
since they were quite easy to determine and also because they were sufficient to make
some population level analysis. When the population had reached an equilibrium
state, the carrying capacity was determined by calculating the mean population size.
The growth rate r was calculated by simulating the evolution of a population and
then fitting it with a logistic curve. A logistic model is a common approach for mod-
elling a population where there is some scarcity of resources impairing its growth.
Equation (2.11) is a differential equation describing the population dynamics given
the parameters mentioned above,

dP

dt
= rP

(
1− P

K

)
(2.11)

where P (t) is the size of the population at time t. Note that when P is low, the
growth rate can be regarded as rP . However, as the population size increases, P

K

becomes larger and slows down the growth. Figure 2.3 shows an example of how the
evolution of a population would enfold given that there is some scarcity in resources.

Figure 2.3: A logistic curve showing the evolution for a population.
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2.7 Game Engines
To make a graphical simulation immersive, features such as 3D graphics, different
textures and animations, and physics are almost necessary. By implementing the
simulation like a computer game, incorporating these features is easier than one
might think. Games get developed on top of a so-called game engine. These engines
control the logic and rules which are needed for the game to run properly. These en-
gines include things such as a graphics engine, physics engine, sound- and animation
support, and much more. Game engines can be developed from the ground up or
used as a tool to build games or other programs. As these engines can be quite com-
plex to develop, using an already existing engine can save considerable time when
developing games. This approach allows one to solely focus on the implementation
of game specific details, while the engine handles the underlying aspects such as how
the graphics are rendered to the screen.
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3
Method

This chapter will describe techniques, based on our theoretical foundation, used to
model and simulate chemotaxis, and to develop the application around this simula-
tion. We also go over the two different algorithms used to control the bacteria. We
finish the chapter with the description of a study conducted within our application,
with the goal of measuring and comparing the different models of the chemotactic
pathway.

3.1 ODE-Regulator
The ODE-Regulator is the model of the chemotactic pathway based on Edging-
ton and Tindall’s system of ODEs [1], presented in equations (2.1). Around these
equations, an algorithm for deciding whether a bacteria should run or tumble was
developed, taking as input some concentration of ligand. In conjunction with the
system of ODEs, we use survival analysis with a hazard function that grows at a
rate dependent on the concentration of CheY-P to trigger tumbling

S ′(t, x) = h(x)(1− S(t, x)), (3.1)

h(x) = 0.02 + 0.5x, (3.2)

where we use CheY-P for x. This is added to the system of ODEs from [1] shown
in (2.1).

3.1.1 Parameters
The parameter values used in the system of ODEs in (2.1) were taken directly from
[1], with the exception of N = 30.
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k1 48.571 Autophosphorylation of CheA
k2 1385.714 Phosphorylation of CheY by CheA
k3 6 Phosphorylation of CheB by CheA
k4 8.686 CheY dephosphorylation by CheZ
k5 1 Autodephosphorylation of CheB-P
k6 0.121 Autodephosphorylation of CheY-P
α1 0.814 Ratio of total CheA to total CheY
α2 28.214 Ratio of total CheA to total CheB
γR 8.57 · 10−3 Methylation of MCP by CheR
γB 0.352 Demethylation of MCP by CheB-P
N 30 Number of receptors

Table 3.1: Parameter values used in ODE system taken from Edgington and Tin-
dall [1]. These describe chemical kinetics and other properties of the bacteria and
their chemical reactions.

3.1.2 ODE-Regulator Algorithm
We add the variable U ∈ [0, 1] to serve as a threshold for tumbling. When our
accumulating survival variable S exceeds U , a tumble occurs, and U is resampled
uniformly.

Algorithm 1: ODE-Regulator Algorithm
Input: L, ligand concentration
Output: State run or state tumble
Use L to solve for new φ according to (2.2)
Solve ODEs from (2.1) and (3.1) with current concentrations
Update concentrations of signalling proteins and S
if S > U then

S := 0
U ∼ Unif[0, 1]
return tumble

else
return run

3.2 Delta-Regulator
The Delta-Regulator is a simplified model of the chemotactic pathway, consisting of
just a function that triggers tumbling based on the difference in ligand concentra-
tion, presented in Equation (3.3). This function grows with a step function, (3.4),
depending on whether the ligand concentration increased or decreased from the pre-
vious position. This regulator will tumble more frequently when moving against
the ligand gradient, which is the directly desired outcome of chemotaxis. This way,
chemotactic behaviour is guaranteed, but without a description of its underlying
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mechanics.

S(t+ 1, x) = S(t, x) + h(x)(1− S(t, x)), (3.3)

h(x) =

0.5 if x < 0
0.09 otherwise

(3.4)

Around these functions, an algorithm taking as input some ligand concentration and
producing a state of either running or tumbling was developed.

3.2.1 Delta-Regulator Algorithm
Just as with the ODE-Regulator Algorithm in Algorithm 1, we use U ∈ [0, 1] as a
threshold for tumbling; when S exceeds U , the bacteria tumbles.

Algorithm 2: Delta-Regulator Algorithm
Input: Lnew, new ligand concentration
Output: State run or state tumble
Calculate ∆L = Lnew − Lold

Use ∆L to calculate S according to (3.3)
Lold := Lnew

if S > U then
S := 0
U ∼ Unif[0, 1]
return tumble

else
return run

3.3 Bacterial Model
The bacterium can, at any point of the simulation, be in one of two different states:
tumbling or running. Which of these states the bacterium is in is governed by the
previously described regulators. The bacterium changes its directional angle while
in the tumbling state and its positions while in the run state.

3.3.1 Running
The movement of a bacterium is governed by

∆x = v∆t cos(θ)
∆y = v∆t sin(θ)

(3.5)

where θ is the directional angle of the bacterium, v is the velocity and ∆t is the time
step of the simulation. This means that the bacterium will continue moving with a
constant velocity towards the same direction until it tumbles.
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3.3.2 Tumbling
The calculation of the tumble angles is performed in a stochastic manner by sampling
a value from the uniform distribution of values within the intervals [-98, -18] and [18,
98]. The sampled value is then added to the current angle. This choice of intervals is
motivated by [10] where the authors chose to use the same intervals when calculating
their turning angles.

3.3.3 Division and Death
Both the division and the death of the bacteria is modelled using survival analysis in
a similar manner to the way that the tumbling is modelled in the Delta-Regulator.
Their h-functions are shown in equations (3.6) and (3.7). The main difference to
the previously described implementations of survival analysis that when the death
hazard function reaches 1, the cell dies, terminating the process.

hdivision(L) = 0.002 + 0.002L (3.6)

hdeath(L) = 0.05− 0.001L (3.7)
When a bacterium divides, the newly created bacterium inherits the position

and internal state history of its "parent". Similarly, when a bacterium dies, all of its
future positions and internal states are set to the current position and state.

3.4 Extracellular Environment
With the increasing complexity and therefore increasing computational load, the
evolution from the initial static model to a dynamic model was simplified, thus
leading to the implementation of a quasi-dynamic model. While the dynamic model
was never implemented in the application, it was simulated in Matlab. It there-
fore serves as a proof-of-concept, highlighting the obvious next step in the further
development of the product.

3.4.1 The Static Model
The desired possibility of regulating the amplitude of the ligand concentration, for
optimisation purposes, issues the need of adding a scaling factor to Equation (2.6).
Along with a squared distance term, the distribution becomes

L(x, y) = l0N + Λ
N∑

i=1
exp

(
−(x− xi)2 + (y − yi)2

d

)
, (3.8)

where Λ is a parameter that regulates the maximum ligand concentration and (xi, yi)
is the coordinates of the i:th ligand source.

These modifications result in a slightly different graph compared to Equation
(2.5). These differences can be seen in Figure 3.1. The differences are mainly the
effect of the squared distance term which leads to a normal distribution of the ligand
concentration.
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Figure 3.1: Comparison between (2.5) (blue) and (3.8) (orange) with a single
concentric source. The figure on the left uses the same values for the constants
for both of the functions, while the one on the right uses different values for the
constants.

3.4.2 The Quasi-dynamic Model
The addition of death and division for the bacteria necessitates a dynamic environ-
ment to prevent the bacterial population from growing exponentially. However, this
poses a problem as a fully dynamic model, for example the one described in Section
2.4.2, requires a large number of expensive calculations in each of the time steps. To
avoid these expensive calculations a simplified model of a dynamic environment was
chosen. The model, demonstrated in Equation (3.9), scales the ligand concentration
in a given position based on the number of bacteria within a radius of 1 p.d.u. A
procedure defined unit, or p.d.u., is an arbitrary unit defined by the unit of length in
the Unity game engine. This method emulates the bacteria competing to consume
the ligand that is available around them since it decreases the amount of ligand that
is available for a given bacterium as the total population increases.

L̃i(t, x, y) = L(xi(t), yi(t))
ni(t)

(3.9)

where ni(t) is the number of bacteria within a given radius of the i:th bacterium
at time t. xi(t) and yi(t) represents the respective coordinates of that bacterium at
time t.

3.4.3 The Dynamic Model
The dynamic problem (2.10) will now be specified. The choice of function f(t, x, y)
was inspired by topical educational literature from J.D. Murray [14]

fi(t, x, y) = a1exp(−a2[(x− xi(t))2 + (y − yi(t))2]) (3.10)

where a1 and a2 are parameters which regulates the intensity and area of consump-
tion respectively. (xi(t), yi(t)) represents the position of the i:th bacterium at time
t. For reasons explained in Section 3.4.1 the IC now comes from Equation (3.8).
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These specifications constitutes the problem
∂
∂t
L(t, x, y) = D

(
∂2

∂x2 + ∂2

∂y2

)
L(t, x, y)−∑n

i=0 fi(t, x, y) (x, y) ∈ Ω
L(0, x, y) = l0N + Λ∑N

i=1 exp
(
− (x−xi)2+(y−yi)2

d

)
(x, y) ∈ Ω

∂
∂x
L(t, x, y) = ∂

∂y
L(t, x, y) = 0 (x, y) ∈ ∂Ω

(3.11)

The region Ω is a square shaped petri dish of size 28x28 p.d.u.
The problem (3.11) was solved using the ADI-method, described in C.1.2. By

applying (C.10) on (2.7), after some rearranging, the result for the first half time
step becomes

−αLn+1/2
i,j−1 + βL

n+1/2
i,j − αLn+1/2

i,j+1 = αLn
i−1,j + γLn

i,j + αLn
i+1,j (3.12)

where α = D∆t/(∆x)2, β = 2(1+α), γ = 2(1−α), n indexes the time step and (i, j)
indexes the lattice points in the discretised region Ω, such that Ln

i,j = L(n, xi, yj)
where (xi, yj) are the coordinates of the node indexed (i, j). Similarly the second
half time step follows from applying (C.11) to (2.7) resulting in

−αLn+1
i−1,j + βLn+1

i,j − αLn+1
i+1,j = αL

n+1/2
i,j−1 + γL

n+1/2
i,j + αL

n+1/2
i,j+1 (3.13)

Note that in order to account for the Neumann BC it is implied that Li−1,j = Li+1,j

for i ∈ ∂Ω, or equivalently Li,j−1 = Li,j+1 for j ∈ ∂Ω, as discussed in appendix
C.1.2.

The bacterial consumption was implemented with the use of a matrix defined
as

Fij =

F̂ for i = j

0 for i 6= j
(3.14)

where F̂ is an operator inspired by Equation (3.10) such that

F̂Ln
i,j =

∑
k

fk(n, xi, yj)

where k indexes bacteria and (xi, yj) is the coordinates related to the lattice point
indexed (i, j).

The region Ω was discretised as a 60x60-grid. The result is one equation for
each lattice point, that is 61 · 61 = 3721 equations per half time step, which can
be expressed with matrix equations Ax(n+1/2)

1 = (B − F )x(n)
1 and Ax(n+1)

2 = (B −
F )x(n+1/2)

2 respectively, where

x1 =
[
L1,1 L1,2 ... L1,61 L2,1 L2,2 ... L61,60 L61,61

]T
for the the first half-time-step and

x2 =
[
L1,1 L2,1 ... L61,1 L1,2 L2,2 ... L60,61 L61,61

]T
for the second half time step.

The matrices A, B and F stays the same though.
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A has the following form

A =



β −2α 0 . . . 0
−α β −α
0 −α β . .

. . .
. . . −α .

−2α β 0
. 0 β −2α .

−α β .
. . . . 0

. . −α
0 . . . 0 −2α β



(3.15)

Since A is tridiagonal and β = 2(1 + α) > 2α the problem was solved using the
Thomas algorithm, as explained in Appendix C.1.2.

The matrix B has the form

B =



γ 0 .. 0 2α 0 . . 0
0 γ 2α
: . . .
0 . .
α γ α .
0 . . .

. . . 0
. α γ α

2α γ 0
. . . :

. . 0
0 . . 0 2α 0 .. 0 γ



(3.16)

The mechanics behind the bacterial movement uses the same ODE system (2.1)
as the other two models. The system was solved using the Matlab solver ode15s,
which is specifically designed to solve stiff ODEs. The discrete ligand distribution
is addressed by first determining in which grid square a bacterium is positioned and
then calculating the average ligand concentration based on the value in the four
corners, weighted by the distance to each corner. This can be formulated as

L(x, y) = y1(x2Li−1,j−1 + x1Li−1,j) + y2(x2Li,j−1 + x1Li,j)
(∆x)2 (3.17)

where x1, x2, y1, and y2 are defined as in Figure 3.2.

3.5 Model Evaluation
We concluded this project by conducting a study meant to evaluate the performance
of the ODE-Regulator. Indicators of performance come both from how well the
bacteria navigate towards sources of ligand, and from how well the population of
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x1 x2

y1

y2

(i-1,j-1) (i-1,j)

(i,j-1) (i,j)

(x,y)

Figure 3.2: The bacterium is positioned at (x, y) located in the grid square of size
(∆x)2 defined by the corners (i− 1, j − 1), (i− 1, j), (i, j − 1) and (i, j).

bacteria manages to grow with a given regulator. With this in mind, we split
the study into two parts, one for each purpose. To compare just the motility of
the bacteria, we switch off competition for ligand between individuals, as well as
death and division. This means that the environment is static and all bacteria are
independent of each other. For population growth, we keep these dynamics switched
on. This split is appropriate as the dynamics of the environment and the population
interferes with the individual bacterium’s strive towards the ligand source.

For each experiment, we ran a batch of five simulations per regulator, for a
total of 20 simulations. All simulations were initialised with parameters N = 30,
d = 100, l0 = 0. The statistics from each batch was aggregated to compensate
for the possibility of randomised starting positions of bacteria affecting the result.
These statistics show the progression over time of average distance to the ligand
source and population size. The average distance is used to measure effectiveness in
motility, while population size is used to measure survivability.

The evaluation of the fully dynamic model described in Section 3.4.3 is of
an ocular nature. By plotting the bacterial migration responding to the temporal
variations in the ligand distribution, the phenomenon of chemotaxis should become
apparent.
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4
Implementation

This chapter will focus on the implementation of the extracellular environment;
the algorithms for running and tumbling, as well as cell division and -death. A
description of the analytical tool will also be given. Lastly, we will have software-
related decisions around tooling and development.

4.1 Bacterial Movement
The movement of each of the bacterium is governed by Algorithm 3 (which is also
demonstrated in Figure A.1), which uses the previously described method to de-
termine the state of the bacterium. If the bacteria is in the tumbling state, a new
angle is calculated according to the method outline in Section 3.3.2 and the al-
gorithm moves on to the position calculation stage. If the bacteria is not in the
tumbling state, it directly moves to the position calculation stage, where the delta
values for the x- and y-coordinates are calculated according to Equation (3.5). If
adding these values to the current x- and y-coordinates would result in a position
outside the simulation, a new angle is calculated and the process is repeated until
the new position is inside the simulation area. When a valid position has been found
the location for the bacteria is updated and the algorithm terminates.

Algorithm 3: Calculate next position
Input: (x,y), the current position for the bacterium
Output: The next position for the bacterium
L := ligand concentration for (x,y)
if Tumble given L then

Calculate a new angle θ
∆x := v∆t cos(θ)
∆y := v∆t sin(θ)
while x+δx and y+δy outside simulation area do

Calculate a new angle θ
∆x := v∆t cos(θ)
∆y := v∆t sin(θ)

x := x + ∆x
y := y + ∆y
return((x,y))
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Algorithm 4 (see Figure A.2) is a slightly more complex version of Algorithm
3 that is used when running the simulation in the pre-calculation mode. In this
version, Algorithm 3 is repeated N times, where N is the number of iterations that
the simulation will run. The internal state and position for the bacterium are saved
in each of the iterations and this data is later used when visualising the results of
the simulation. Each of the tumbles and run segments take 1 iteration of time each,
and both, therefore, result in a saved position and state.

Algorithm 4: Forward simulate movement
Input: n, the number of time steps that the simulation should run
i := 1
position0 = the starting position of the bacteria
while i < n do

positioni := positioni−1
L := ligand concentration for positioni

if Tumble given L then
Calculate a new angle θ
Save internal state
i = i + 1
if i ≥ n then

return
positioni := positioni−1

∆x := v∆t cos(θ)
∆y := v∆t sin(θ)
while position.x+∆x and position.y+∆y outside simulation area do

Calculate a new angle θ
∆x := v∆t cos(θ)
∆y := v∆t sin(θ)

position.x := x + ∆x
position.y := y + ∆y
Save internal state
i = i + 1

return

4.2 Application
The code base of the application can be divided into two distinct parts: the model,
which manages the data and performs the calculations that are required for the
simulation, and the view layer, which manages the visualisation of the simulation.
The view depends on the model since it can not visualise the simulation without
it, while the model does not depend on the view or any Unity specific code. This
makes it possible to use the existing model in another C#-based context, greatly
increasing the value of the simulation. It is for this reason that this section will
primarily focus on the model since it the most important part of the program.
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4.2.1 Cell Object
The Cell object acts as the central representation of the E-coli bacteria in the
model, the structure of which can be seen in Figure A.3. Cell delegates all of its
functionality to an object of the type IInternals which manages the internal processes
of the bacterium.

4.2.2 Internals
The IInternals object manages the internal processes of the Cell object, mainly by
performing the calculations required to determine the next position that the bacte-
ria should move to. There exists three concrete implementations of the IInternals
interface (see Figure 4.1): SmartInternals, Internals, and ForwardInternals.

Internals is the most basic variant of the internals objects, it uses Algorithm 3
to calculate the next position that the bacteria should visit. This type of Internal is
used when the program is run in the procedural mode, where it executes until the
user terminates it.

ForwardInternals can be seen as an extension of Internals with the main dif-
ference being the fact that ForwardInternals uses Algorithm 4 instead of Algorithm
3. In other words, it calculates and stores all positions that the bacteria will visit
before the simulation begins. ForwardInternals is also the only type of internals
that implements cell division and -death.

Lastly, SmartInternals uses a completely different movement algorithm to the
previously described Internals. This object uses the ligand gradient to calculate the
optimal movement angle. The angle is then disturbed using a value sampled from a
normal distribution. Which results in the object performing a random walk towards
the ligand source.

4.2.3 Regulators
The IRegulation interface is used to determine whether the bacterium should tum-
ble or run at a given point in the simulation. Each of the different models for the
internals of the bacterium, ODE- and Delta-Regulator, have a concrete implemen-
tation of this interface which is then used in Internals or ForwardsInternals when
calculating the movement of the bacteria.

4.2.4 Forward-Simulation
The expensive calculations required by the ODE-Regulator made it impractical to
run the calculations in real time, since they had a considerable impact on the frame
rate of the simulation. To amend this problem, we decided to switch over to a
forward-simulation approach where the entire simulation is calculated before being
played out to the user. This was initially quite simple since we only needed to store
all of the positions that the bacteria should visit as well as their internal states.
However, the addition of cell division and -death complicated matters significantly
since we also had to store which bacteria should be alive in any given time step. This
was handled by storing the bacteria in a matrix where the object on the i:th row
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<<Interface>>
IInternals

+ GetNextLocation(): IPointAdapter

+ GetInternalState():State

+ GetAngle():float

+ Copy():IInternals

+ IsSplit():bool

+ IsDead():bool

Internals

- location:IPointAdapter

+ GetNextLocation(): IPointAdapter

+ GetInternalState():State

+ IsSplit():bool

+ IsDead():bool

+ Copy():IInternals

SmartInternals

- location: IPointAdapter

- dT: float

- model:Model

- v:float

- smartnessFactor:float

+ GetNextLocation(): IPointAdapter

+ GetInternalState():State

+ GetAngle():float

+ IsSplit():bool

+ IsDead():bool

+ Copy():IInternals

ForwardInternals

- lifeRegulator:IlifeRegulator

- positions:IPointAdapter[]

- states:State[]

- currentIteration:int

- iterations:int

- initialAngle: float

- isDone: bool

- children: Dictionary<int, Cell>

- cellDeathListener: List<ICellDeathListeners>

+ SimulateMovement():void

+ SimulateMovementStep(int):void

+ GetNextLocation(): IPointAdapter

+ GetInternalState():State

+ GetAngle():float

+ IsDone():bool

+ GetInternalStates():State[]

+ GetPosition(int):IPointAdapter

+ IsSplit():bool

+ IsDead():bool

+ SetPartentObject(Cell):void

+ AddListener(ICellDeathListener):void

+ Copy():IInternals

AbstractInternals

- model:Model

- regulator:ICellRegulation

- v:float

- dT:float

- angle:float

+ GetAngle():float

# CalculateNextLocation(IPointAdapter):void

# GetRunningState(float, float):bool

# CalculateTumbleAngle():float

+ GetNextLocation(): IPointAdapter

+ GetInternalState():State

+ Copy():IInternals

+ IsSplit():bool

+ IsDead():bool

Figure 4.1: Class diagram showing the relationship between the different types of
internals.
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and j:th column is the j:th bacteria that is alive in the i:th time step. The forward-
simulation simulates all of the bacteria one time step at a time to adequately capture
any interactions between bacteria as well as to handle cell division and -death in as
good of a manner as possible.

4.2.5 Unity GameObjects
There are two main GameObjects that are handled by scripts. These are the cell
itself and the heat map. The cell is constructed out of several GameObjects. These
are the body of the cell which is a basic cylinder as well as four custom modelled
flagella. At the start of the simulation, these cell GameObjects are instantiated with
a random position in the environment.

The heat map is made out of a 120x120 grid that spans across the whole envi-
ronment. Each square in the grid is given a value based on the concentration value
the specific square is in. Each square is then given a colour with varying intensity,
the higher the concentration value, the higher the intensity of the colour.

4.2.6 GUI
The Graphical User Interface (GUI) is designed with simplicity in mind, only dis-
playing necessary information. Before starting a new simulation, the user has to go
through an initial simulation wizard shown in Figure 4.2. Here, the user can set
various parameters with the help of sliders and input fields. The simulation can be
started when these initial conditions have been set. When a bacterium is selected
during the simulation, the UI view shown in Figure 4.3 is displayed. It displays
detailed information about the selected bacterium, such as the various chemical
concentration values and more.

Figure 4.2: The two setup screens of the simulation wizard. Here the user can set
desired parameters which are taken into account when simulating.

Figure 4.3: User interface shown at the bottom of the screen when the simulation
is running and a cell is selected.
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4.3 Analytical Tool
Early in the process, we identified the need of analysing data generated from the
application in order to evaluate and test the performance and accuracy of our mod-
els. Our initial thought was to perform the data analysis using the Unity engine.
However, as the complexity of our application kept on growing, and the Unity engine
having little to no support for data plotting we decided to perform the data analysis
using a separate tool. The choice of what programming language the analytical tool
is going to be developed with landed on Python. Python, with its built-in and open
source libraries, provides extensive and immense support for data parsing, analysing
and plotting. The exported data from the Unity application is fed into the analyt-
ical tool to be parsed. Using open-source libraries like Numpy [15], Scipy [16] and
matplotlib [17], we were able to analyse, illustrate, and visualise the parsed data.
The analytical tool supports different types of analysis, more specifically:

• Single file analysis: Generate plots for a single file,
• Double file analysis: Generate plots comparing two files, and
• Batch analysis: Generate plots for a batch with multiple files along with av-

erage plots for the whole batch.
To make the analytical tool more user friendly and easier to use, we developed

a fairly simple and responsive GUI using Python built-in library Tkinter. The GUI
allows the user to specify what type of analysis to perform and browse for files or
folders with proper data (see Figure 4.4).

Figure 4.4: Analytical tool GUI showing the different analysis options represented
using radio buttons. Multiple buttons with relevant functionality are included, as
well as progress bar and status label to show the progress of the simulation.
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4.4 Tools
This section will cover the tools and programming languages used during develop-
ment. The structure of the workflow of the group will also be explained.

4.4.1 Game Engine and 3D Modelling
The game engine Unity [18] was used as it allowed the development to start off
quickly without the need of having to create an engine from scratch. It was chosen
as it is well-documented and there are many useful tutorials available. Furthermore,
Unity has a fairly gentle learning curve. This fits the project well, as no group
member had any previous experience with game engines, making Unity the obvi-
ous choice. The modelling software Blender [19] was used in order to create more
complex 3D models and animations like the flagella of the cell.

4.4.2 Programming Languages
C# was the main programming language used, as Unity offers a primary scripting
API in C#. The programming language Python was used to create the external
data analytical tool. Initially, Matlab was used to develop a proof-of-concept of the
ODE-Regulator, before converting it to C#. The reason is simply that we have
more experience using Matlab for mathematical modelling, and it would therefore
be too time consuming to get us acquainted with another language. The dynamic
model described in 2.4.2 was implemented solely in Matlab.

4.4.3 Workflow
Three main working areas were identified at the start of the project: Intracellular,
Extracellular and Graphics. Since group members came from different fields of
expertise, it was decided to equally divide the members among these areas in order
to maximise work efficiency. As the project progressed, problems arose which did
not fit into any of the previous working areas. In these cases, tasks were allocated
to the most appropriate members with flexibility.

Due to the project being performed in a pandemic, communication between the
group members was of utmost importance. Weekly meetings with the supervisor and
group members were performed over Zoom. These meetings would generally include
discussions about the current state of the project as well as future development
possibilities. Furthermore, a detailed weekly journal was written, summarising what
had been accomplished and discussed during the week. Discord was also used, as
it allowed for the creation of communication channels in which written discussions
could be easily organised and saved. A GitHub repository was created, which allowed
for easy version control as well as the use of branches. Two primary branches were
used, the main branch which always contained a stable version of the application
and the development branch in which all new development was performed.
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This chapter will focus on the data from our study evaluating the fitness of the
ODE-Regulator as compared to the Delta-Regulator. We also go over what we
have achieved in the implementation of the application we have developed around
the simulation. Using the analytical tool to analyse the experiments described in
3.5 we were able to obtain several plots and figures which were used to compare
the performance and fitness of the different model types. Amidst the various plots
obtained from the analytical tool, we will mainly focus on population level plots,
namely average distance from the ligand source and population changes.

As the phenomenon of chemotaxis describes how the bacteria population mi-
grates towards the ligand source, we can utilise an average distance from ligand
source plot to study the performance of chemotaxis. The desired outcome is a
shorter distance to the ligand source as the simulation progresses. This should carry
on until the simulation reaches a steady state where the distance for the bacteria
population fluctuates at a specific interval, as the population moves closer to the
ligand source.

The population change plot can be used to study the evolution of the bacteria
population for the quasi-dynamic models. Given different starting parameters, such
as regulator type and minimum ligand concentration and -distribution steepness, it
is intriguing to analyse the evolution of the bacteria population. Specifically, the
growth rate and the carrying capacity for a simulation with a specific parameter
configuration are of interest. That being said, the amount of time it takes the
bacteria population to reach its equilibrium state, and what carrying capacity it
can possibly have, is completely governed by the start parameters of the simulation.
Therefore, we can compare the bacteria population evolution for the different types
of regulators we have.

Along with the aforementioned plots, screenshots from the Unity simulation
will be shown as well. These screenshots show the initial and final positions of all
bacteria in the population. This is a simple yet effective way to observe the outcome
of the migration process and population size evolution.
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5.1 Results from static models
In this section we will show data, plots and graphics from running the different regu-
lators in a simulation with neither a quasi-dynamic environment nor any population
changes. The regulators will be evaluated based on the bacteria’s average distance
from the ligand source. The differences between the regulators performance will also
briefly be discussed.

5.1.1 ODE-Regulator
Figure 5.1 shows how the bacteria have positioned themselves more highly concen-
trated in the centre of the simulated environment, where ligand concentration is
higher, at the end of the simulation.

Figure 5.1: Initial (left) and final (right) states of the static simulation with the
ODE-Regulator.

In Figure 5.2, we see the average distance to the ligand source for five separate
runs as well as a fitted mean curve. In the figure, we can see that in all simulations
the average distance to the ligand source reduces as time goes on and this aligns
with Figure 5.1 where we saw the final positions for the cells in the population.
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Figure 5.2: Average distance to ligand source for five separate runs and a fitted
mean curve with the ODE-Regulator.

5.1.2 Delta-Regulator
Figure 5.3 shows that the population of bacteria are more highly concentrated in
the centre of the simulated environment at the end of the simulation. Most notably,
fewer bacteria are positioned at the outskirts of the field.

Figure 5.3: Initial (left) and final (right) states of the static simulation with the
Delta-Regulator
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Figure 5.4: Average distance to ligand source for five separate runs and with a
fitted mean curve with the Delta-Regulator.

In Figure 5.4, we again see a downward trend for all the simulations, meaning
they are moving towards the ligand source. We also notice that there appears to
be less variation for each simulated population, meaning that once they reach the
ligand source they tend to stay closer to it for the remainder of the simulation.

5.1.3 Comparison
In Figure 5.4, we can see that the bacteria reach a distance of roughly 3 p.d.u. at 250
iterations, while in Figure 5.2 the bacteria are only at around 5.5 p.d.u. This means
that the bacteria more quickly get to the ligand source with the Delta-Regulator.
We can also see that the Delta-Regulator bacteria stays around 2 p.d.u. from the
ligand source with little variation as the simulation progresses. On the other hand,
the ODE-regulator bacteria stays around 4 p.d.u. with more variation between
simulations.

5.2 Quasi-dynamic Models
In this section, we will show data, plots, and graphics from running the different
regulators in a simulation with a quasi-dynamic environment and cell division and
-death. The regulators will be evaluated based on the bacteria’s average distance
from the ligand source as well as the population size. The differences between the
regulators performance will also briefly be discussed.
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5.2.1 ODE-Regulator
In Figure 5.5, we see how the population has increased from the 30 initial bacteria
over the course of the simulation. The bacteria also appear to radiate outwards from
the centre of the simulated environment.

Figure 5.5: Initial (left) and final (right) states of the dynamic simulation with
the ODE-Regulator.

Figure 5.6: Average distance to ligand source for five separate runs and with a
fitted mean curve with the ODE-Regulator.
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Figure 5.6 shows us the average distance to the ligand source for the entire
population. We can see that all the curves follow a general trend, but there are also
big oscillations for some populations. Towards the end, all curves seem to stabilise
and no longer show any oscillations like in the earlier stages.

Lastly, Figure 5.7 shows how the size of the population climbs quickly, only to
taper off and oscillate around 160-175 individuals.

Figure 5.7: Population size evolution for five separate runs fitted with a logistic
curve.

5.2.2 Delta-Regulator
Figure 5.8 shows a population boom within the centre of the simulated environment,
radiating outwards.

In Figure 5.9, we can see the average distance to the ligand source. We notice
that the general downward trend is there, though the population seem to deviate
further away from the ligand source and there are also large oscillations.
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Figure 5.8: Initial (left) and final (right) states of the quasi-dynamic simulation
with the Delta-Regulator.

Figure 5.9: Average distance to ligand source for five separate runs and with a
fitted mean curve with the Delta-Regulator.

In 5.10, we see an initial rapid increase in population, followed by a somewhat
steady population size of between 100 and 140 individuals.
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Figure 5.10: Population size evolution for five separate runs fitted with a logistic
curve.

5.2.3 Comparison
Comparing the two population sizes shown in Figure 5.10 and Figure 5.7 we can note
that the carrying capacity differ. We can make a rough estimation of the carrying
capacity for the ODE-Regulator to beKODE ∼ 160−175 and for the Delta-Regulator
we get KDelta ∼ 100 − 140. We can thereby conclude that the ODE-Regulator can
sustain a higher number of cells than the Delta-Regulator. Furthermore, comparing
the results in Figure 5.6 with Figure 5.9 we can see a substantial difference. Looking
at the distance graphs in the ODE-Regulator we can note that it has a general
uptrend, whilst the Delta-Regulator has a general downtrend. However, the two
regulators seem to both have large oscillations at the start of the simulation whilst
stabilising towards the end.
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5.3 Proof-of-concept: Dynamic Environment
This section aims to illustrate the ODE-Regulator’s adaptation to a dynamic envi-
ronment where diffusive ligand distribution as well as bacteria induced consumption
are implemented. The model was only implemented in Matlab and therefore, these
results serves as a proof-of-concept, illustrated through Matlab-plots.

The results emerge from solving a system of equations, AL(n+1) = (B−F )L(n),
where A and B are matrices which regulate the diffusion through dependence on the
time step ∆t, the spatial step ∆x and the diffusion rate D, as described in Section
3.4.3. The matrix F describes the total consumption by the whole population of
bacteria. Each bacterium’s consumption depends on its current position, the con-
sumption area a1 and the consumption rate a2. L(n) is a vector where each element
corresponds to the ligand concentration in a certain point in the discretised region
Ω, at time step n. The initial ligand distribution depends on number of sources, the
minimum l0, the amplitude Λ and the steepness coefficient d, such that the maxi-
mum ligand concentration for a single source is l0 + Λ, positioned in its centre (see
Figure 5.11).

All calculations were executed with ∆t = 1 s, on a 60x60 grid of size 28x28
p.d.u., that is with ∆x = 28/60 = 0.467 p.d.u.

Figure 5.11: Illustration of diffusion with a single centred ligand source with
Λ = 49, d = 100, l0 = 0, D = 0.5 and a1 = 0, that is without bacterial consumption.
The diffusion is shown for t = 0, t = 125 and t = 250 time steps respectively.
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Figure 5.12: Illustration of effective bacterial migration through chemotaxis, with
diffusing ligand distribution and consuming bacteria. One source S1 was placed in
(-10,-10) with Λ = 49 and a second source S2 was placed in (10,10) with Λ = 58.8,
both with l0 = 0, D = 0.2 and d = 95. The consumption parameters were a1 = 0.3
and a2 = 6. The initial positions of all 30 bacteria were within 2 p.d.u. of S1,
illustrated on the first figure on the top left. The figure on the top right, at t = 500
time steps, illustrates the depletion of S1 and the start of bacterial migration. The
last figure on the bottom, at t = 2000 time steps, illustrates the bacterial migration
at the end of the simulation.

5.4 Application
The application consists of three main parts: an initial setup screen, the simulation
itself and lastly the end screen and analytical tool. The setup screen contains a user
interface in which different parameters can be set which will be taken into account
when simulating. The different parameters are the following:

• Number of sources: The user can choose up too 5 ligand sources which have
a fixed position in the simulation area,

• d & c_0: Governs the characteristics of the ligand sources,
• Dynamic Environment: Determines if the environment should be dynamic

or static,
• Number of cells: Specifies how many cells should be created at the start of
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the simulation,
• Regulation Type: The two regulators can be chosen here are Delta- and

ODE-Regulator,
• Forward simulation: Determines if all the calculations should be done in

real time or before the simulation starts,
• Number of iterations: Defines how many iterations the simulation should

run for,
• Number of runs: Specifies how many times the simulation should run, and
• Cell division and -death: Determines if the cells should be able to die and

divide.
A preview of how the concentration is distributed is also shown in this view to give a
more intuitive feeling when changing the characteristics of the ligand sources. When
the user has set the desired parameters they can choose to start the simulation. Note
that none of the parameters can be changed when the simulation has started.

When the simulation has started it can be seen in real time, see Figure 5.13, it
contains the bacteria themselves, see Figure 5.14, the boundary in which they reside,
as well as a concentration heat map. This heat map shows the ligand concentrations
spread out over the simulation space. One can move the position of the camera
freely around the environment with the help of the keyboard and mouse. It is also
possible to press G on the keyboard to get a top-down view of the whole simulation
area. Furthermore, the simulation can be paused as well as sped up to 25 times
the normal speed. Specific information about the simulation is displayed at the
bottom of the screen while it is running. Information such as current amount of
bacteria, elapsed simulation time, environment type and simulation speed is shown.
The different bacteria that exists in the simulation can be selected with the cursor
to show bacterium specific information. Details like concentration of the internal
chemicals CheY-P, CheA-P, CheB-P, and methylation level are shown, as well as
current ligand concentration. Furthermore, if cell division and -death has been
enabled, the bacterium’s lifespan and time until cell division is also shown in this
view.

Lastly, when all iterations have been simulated, the simulation stops and an
end screen is shown. This screen shows the results of the simulation, displaying
basic data such as number of existing cells at the end of the simulation, number of
iterations run, simulation time elapsed, and average ligand concentration. A graph
is also shown which displays ligand concentration over time. A higher value of
the ligand concentration means that the bacteria where closer to the ligand source.
It is also possible to export the data collected from the simulation onto a JSON
(JavaScript Object Notation) file. This file can then be analysed using the analytical
tool described in Section 4.3. This external tool allows the data to be compiled into
useful plots which can be used for further analysis.
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Figure 5.13: Screenshot of the main simulation scene.

Figure 5.14: Close-up view of one of the many bacteria which can be seen in the
simulation scene.
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Discussion

In this chapter, we reflect on the results from the evaluation study, as well as insights
that have come up during the course of the project.

6.1 ODE-Regulator Performance
The ODE-Regulator displays clear chemotactic behaviour, which is supported by
the data. From a uniform distribution over the environment initially, the bacteria
quickly find their way towards where the ligand concentration is at its highest. We
use a static environment to investigate chemotactic behaviour since the bacteria have
a clear goal to strive towards and then stay close to. In Figure 5.2, we see that the
bacteria stay at approximately 4 p.d.u. from the peak of the ligand concentration
stably. One might wonder why they do not decrease this distance continually, to
come to a rest at the absolute epicentre. The answer lies in the fact that the bacteria
do in fact continually seek to improve their positions. Once they have reached
an optimal position, they will try to find something even better by tumbling and
running in a new direction. The stability around 4 p.d.u. comes from the dynamic
equilibrium around which the bacteria try to do this and the time it takes for them
to realise that their position has worsened. In a radial distribution like the one in our
simulation, every position outside of the ligand source is worse than the source, so
there is no direction that the bacteria can travel to get better conditions. Hence, the
fact that the results do not reveal optimal ligand finding is supportive of chemotaxis
having emerged.

The data also suggests that the ODE-Regulator is a favourable tool to have for
simulated bacteria in our given environment. Figure 5.7 shows a steep population
growth that tapers off and oscillates around a population size roughly five times
larger than the initial population.

Looking only at bacteria with the ODE-Regulator, we can surmise that it does
give rise to chemotaxis to some degree. This is shown in a static simulation in which
only the motility of bacteria is measured, without competition for ligand. We then
have evidence that suggests that this degree of chemotaxis is favourable in terms of
survivability in an environment with competition. Without any point of comparison,
however, this merely suggests that it is better for the bacteria to have chemotaxis
than it is to not have it.
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6.2 Comparison Between Regulators
The results of our two experiments reveal seemingly conflicting conclusions. The
static simulations show that bacteria with the Delta-Regulator are better at finding
and staying close to the ligand source. The equilibrium of the movement pattern
of circling the ligand source is about 2 p.d.u. for the Delta-Regulator, compared to
4 p.d.u. for the ODE-Regulator. The different simulations also show less variation
between different populations of Delta-regulated bacteria. Keeping in mind that
the Delta-Regulator was implemented specifically to be very good at navigating
towards ligand-sources, these results are not very surprising. If anything, one might
argue that it is a wonder that the ODE-Regulator comes as close to the Delta-
Regulator as it does. The great coherence of the populations with Delta-Regulator
also suggests that this optimisation for ligand finding is the main, singular influence
for the motility of these bacteria.

The most surprising results are the ones from the quasi-dynamic experiment.
While the Delta-Regulator is clearly better at finding the ligand source, the ODE-
Regulator is superior for population growth. The populations grow at similar rates,
with rODE ≈ rDelta. We believe that this comes from the implementation of cell
division being the dominant factor when determining the rate. The biggest difference
between the regulators are the different carrying capacities, with KODE = 164 and
KDelta = 119. The most likely explanation for this is that the ODE-Regulator is
more flexible and adaptable than the Delta-Regulator. As previously mentioned,
the bacteria with the Delta-Regulator seem to be more strongly inclined to find the
ligand source than the ODE-bacteria. When there is competition between bacteria
for ligand availability, however, it is not favourable to concentrate all bacteria at the
same position. While ODE-regulated bacteria adapt to these new conditions, the
Delta-bacteria seem to get stuck closer to the ligand source. Looking at figures 5.6
and 5.9, we see that the average distance to the ligand source increases for the ODE-
population, while it decreases for the Delta-population. This discrepancy shows the
dangers of looking only at movement patterns: the emergent adaptability of ODE-
Regulator trumps the movement-wise better performing Delta-Regulator in terms
of survivability. This is a case for bottom-up modelling in general, as comprehensive
understanding of components can yield surprising results in novel circumstances.

6.3 ODE-Regulator in the Dynamic Model
The successful implementation of both a diffusive ligand distribution and consum-
ing bacteria is likely the clearest testimony to the adaptive properties of the ODE-
Regulator. The fact that a significant portion of the bacterial population never
manages to migrate towards another source of ligand, highlighting its stochastic
nature, only adds to its applicability. This in particular makes the possible imple-
mentation of cell division and -death tremendously more interesting. These exciting
results immediately spark ones imagination and inspires a desire to keep experiment-
ing with even more complex environments. By, for example, dramatically increasing
the size of the region and consistently adding new ligand sources as time progresses,
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the survivability and adaptability of bacterial populations would become immensely
more intriguing.

6.4 Stochastic Regulator
The ODE-based approach to chemical modelling adopted in this project views the
chemical reaction network as a whole, and describes observed relationships between
the reactants. An alternative approach to modelling coupled chemical reactions is
to view them as stochastic processes. What is needed for this type of method is a
collection of individual reactant particles, a set of reactions, and some probabilistic
method of choosing a reaction to occur. An initial distribution of reactants would
then morph according to a series of reactions. Typically, the rules for discriminating
between reactions would involve both that reaction’s isolated kinetic rate and the
concentration of its constituent reactants. This way, reactions that happen quickly
and reactions with abundant reactants would occur with larger probability. The
available reactants get updated after each reaction, which shifts the probabilities of
each reaction to occur. Examples of this approach are the Stochastic Simulation
Algorithm of Gillespie [7], and surface CRN simulations [20].

The benefits of simulating a chemical reaction network on the level of individ-
ual molecules mirrors the benefits of agent-based modelling. In a sense, it is a more
realistic approach: chemicals cannot solve differential equations. Rather than trying
to capture and express the complexity of a system, the modelling effort is directed
at its basic components. This approach runs the risk of emergent behaviour being
inaccurate compared to what is observed. The claim, however, is that the interac-
tion between comprehensively modelled components can give rise to nuances and
complexity not otherwise attainable. Gillespie makes a similar claim when compar-
ing ODEs to his Stochastic Simulation Algorithm: the latter captures fluctuations
that the former does not [7]. An interesting experiment would be to implement a
stochastic regulator and compare its performance to our ODE-Regulator. We at-
tempted just this, but found it hard to get the implementation done right within
the timeframe of the project.

6.5 Credit to Biology
The good performance of the ODE-Regulator begs the question of how something
seemingly oblivious to its surroundings could adapt to them so well. The rather
crude, but adaptive-by-design Delta-Regulator is, in our study, outperformed in
terms of overall score in fitness metrics. This achievement suggests that there are
nuances within the simple chemical network of the chemotactic pathway that allow
these bacteria more complex responses to their environment. The sensitivity of CheY
to be phosphorylated leads to the possibility of rapid changes in behaviour, while
the methylation and demethylation of the MCPs gives the bacterium a rudimentary
memory. The intricacies of how these chemicals work and are intertwined is likely
beyond the scope of our simulation, but their observed changes and effects let us
access their emergent complexity. One big difference between our computational
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model and real E. coli is the cost of this emergent complexity. Solving the ODEs
is computationally expensive, and still most likely misses important details in the
natural reactions. In bacteria, these reactions happen spontaneously, and there is
no mechanism for monitoring and controlling the system as a whole. Instead, the
balance between all components making up a bacterium are, through evolution,
so carefully balanced that no coordination is needed: it all just happens. As has
been mentioned before, these spontaneous reactions are also simple chemically; a
single transfer of a phosphoryl group between two reactants is not very complex.
Rather than extending the responsibility of each component in the pathway, E.
coli have evolved to let complexity arise through their interactions. These single
celled organisms are truly great examples of making the most out of very little.
Both economic efficiency and biological fitness is achieved by letting go of control
and leaning on simplicity, rather than micromanagement and complex rule systems.
This effect is paralleled on a higher level of abstraction is the adoption of a method
like ABM. It is tempting to model the entire system with top-down understanding
of observed behaviour, but in letting our agents act independently, we see similarly
complex results, and at times are even surprised by the unexpected.

6.6 Possible Use
Our application can be of use mainly for education and research purposes. We
have striven to make the simulation as immersive as possible, to highlight the link
between intracellular processes and population level phenomena. We believe that
seeing chemotaxis from the view of individual bacteria in congregation helps connect
the biological theory with intuition. With regards to research, both environmental
factors and alternative regulators can be investigated with our provided tools. The
distribution of ligand can be configured before each simulation; insofar as these
settings are of interest, their effect on the bacteria can be compared directly in the
application. Of more interest is the evaluation of different models of the chemotactic
pathway, or other types of regulators. The structure of the application makes it easy
to implement new regulators and have our simulated bacteria use them to guide their
movement. With the addition of our analytical tool, different regulators can also be
compared quantitatively. An interesting research question would be to compare an
implementation of the Stochastic Regulator to our ODE-Regulator.

6.7 Further Development
The application contains several areas that would benefit from further develop-
ment. First and foremost, the previously described model for a dynamic environ-
ment should also be implemented in the Unity application, since it would add further
value to the simulation. In the same vein, anything that makes the general simula-
tion application richer should be implemented. This includes additional models of
chemotaxis, like the Stochastic Regulator from 6.4, for the purpose of comparison
and deeper insight. The goal is to reach as good of an understanding of the biology
as possible. Parallel to the chemotaxis modelling, other bacterial functions could be

43



6. Discussion

made more realistic, most notably division and death.
Secondly the currently used ODE-solver is extremely slow, which results in very

long loading times for larger simulations. This also acts a limiter on the complexity
of the simulations that can be run in the application. The previously mentioned
dynamic environment would almost be impossible to run using the current ODE-
solver since it would add many extra calculations for it to handle which would further
lengthen the loading times. It would therefore be highly advantageous to change to
faster solver if one is available or optimise the ODEs so that they run faster using the
current solver. Alternatively, efforts into making the regulators of different bacteria
run in parallel would be useful. Some thought went into this with regards to using
compute shaders in Unity, but translating the ODE solvers into shader language
would be too much of an undertaking.

Additionally, the current approach that is used when exporting data from the
simulation results in large amounts of duplicate data. Since child bacteria share
their pre-birth movement history with their parent and dead bacteria have their
death position saved for all future time steps in the simulation. This means that
in a simulation of 200 time steps, a bacterium that is created in time step 100 and
dies in 101 would have 200 saved positions, even though it should only have 1. This
results in longer loading times, since the data is exported during the loading, and
substantially larger export files which in turn slows down the data analysis.

Lastly, further aesthetic improvements to the current cell models and its anima-
tions could be implemented. The cells could be made more realistic by, for example,
adding dynamically sized and positioned flagella. In the current simulation, all cell
models and their colours are the same. This could be improved by altering each
cell’s appearance slightly to make them more realistic. Furthermore, the tumble-
and run animations can be enhanced by letting the cell rotate CW and CCW around
its own axes respectively. More realistic custom animations could also be added for
when the cell divides as well as dies.

6.8 Workflow
Creating the three different groups at the start of the project turned out to be
very rewarding. The group members could solely focus on their work area resulting
in the development to speed up substantially. However, these groups where not
kept the same during the whole project. As the development progressed, areas
like the extracellular quickly became fully finished, and it was thus important to
always arrange the tasks in such a way that everyone in the group had things to do.
The weekly meetings with the supervisor was a big help for the group and for the
project as a whole. There where many situations where knowledge and experience
was lacking from the group members; many of these problems where solved when
discussed with the supervisor, which resulted in the project being led in the right
direction. The weekly group meetings also worked very well: it gave everyone in the
group a chance to talk about what they had done in the week and to discuss about
the project in general. Two of these weekly meetings were scheduled throughout
the week, although if there where any urgent deadlines approaching, extra meetings
would be arranged. Structuring the meetings in this way was very healthy for the
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project as it kept the development going and important deadlines where always met.

6.9 Ethical and Societal Aspects
Neither the process of developing this simulation and application, nor their results,
carries the risk of harm unto others. Given the currently ongoing pandemic, it is
important not to provide sources of potential misinformation. Since this simulation
is so narrowly focused on the movement of individual cells, and since no claims
about viruses or large-scale migration patterns can be made from our data, we
determine that the two issues are far enough separated. The extent of the impact this
product could have is within the field of understanding bacterial chemotaxis. Most
of this potential, we determine to be positive; researchers can use our tool for data
analyses, and students can use it to build intuitive and quantitative understanding.
Insofar as negative consequences could arise, they would have to do with these
data and visualisations misrepresenting the phenomenon or underlying mechanics
of chemotaxis. Given the transparency between the underlying model and observed
behaviour, we feel that these risks are outweighed by the potential good a tool like
ours could bring about. Furthermore, we have built the product in such a way as to
make it easy to extend with other models of the chemotactic pathway. Ultimately,
this means that our product could be used to measure and compare different models
of the pathway, deepening our understanding of how to simulate it computationally.
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7
Conclusion

At the core of this project, we have implemented a computational model of the
chemotactic pathway. This model — called ODE-Regulator — is based on the
mathematical model introduced by Edgington and Tindall [1], and is implemented
in the programming language C#. Alongside the model of the chemotactic path-
way, we implemented a simplified model — called Delta-Regulator — that uses
differences in concentration to achieve chemotaxis. We have also created an agent-
based simulation in the Unity engine, in which simulated E. coli-bacteria governed
by these models navigate an environment with spatial differences in ligand concen-
tration. Comparing the results simulating these models, Delta-Regulator is more
effective at finding the ligand source, while ODE-Regulator performs much better in
terms of population growth. Both display chemotaxis, but the more comprehensive
ODE-Regulator appears more flexible to environmental challenges like competition
for ligand. To analyse the data from our simulations, we have also developed a tool
in the programming language Python to run statistics.

We surmise that our detailed bottom-up model of the chemotactic pathway
yields population level phenomena corresponding to observed chemotaxis and pop-
ulation dynamics. In doing so, we provide a connection between population level
dynamics and the internal dynamics of the oblivious individual. We also make the
case that our agent-based model displays emergent complexity akin to population
level simulations. The tools we have developed around our model can be used in
the future to evaluate models of chemotaxis both with immersive visuals and with
statistics.
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Figure A.1: Flowchart for the calculate next position algorithm.
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Figure A.3: Class diagram showing the structure of the cell object.
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Figure A.4: Simplified class diagram of the model.
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Appendix 2: Tables

Constant Value Description
d 100 Determines the slope of the ligand concentration
Λ 49 Determines the maximum ligand concentration
l0 0 Base amount of ligand concentration in each position
n 30 Number of cells at the start of the simulation
iterations 2000 The number of iterations that the simulation will run
nsources 1 The number of ligand sources in the simulation
r 1 Determines the radius within which the cells impact each other

Table B.1: The parameters that where used in the simulations with descriptions
of their purpose
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Appendix 3: Mathematical Theory

C.1 Differential Equations

C.1.1 Background
A differential equation is an equation consisting of one or more functions and their
respective derivatives. Differential equations is a very powerful mathematical tool
and is usually implemented when we want to describe the rate of change of an object
rather that its absolute value at some point [21]. There are many types of differential
equations and (C.1) is an example of a simple differential equation.

y′(t) = f(t, y(t)) (C.1)
where y′(t) = dy

dt
and f(t, y(t) is a arbitrary given function. A differential

equation can also be divided into different categories depending on what the right
and left hand side of the equation states and what we wish to describe. Equation
(C.2) shows a differential equation of order n, where n is order of derivative on y,
also if Q(x) = 0 we say that it is a homogeneous differential equation and non-
homogeneous otherwise.

an(x)y(n) + an−1(x)y(n−1) + ..a1(x)y′ = Q(x) (C.2)
We can also distinguish differential equations into partial and ordinary equations
where (C.3) is a partial differential equation, or PDE, since it depends on several
variables: t, x, y, z and each respective partial derivative is present in the equation.
An ordinary differential equation only depends on one variable and (C.1) is an
example of a ordinary differential equation or ODE.

∂2u

∂t2
(t, x) = v2

(
∂2u

∂x2 (t, x) + ∂2u

∂y2 (t, x) + ∂2u

∂z2 (t, x)
)

(C.3)

We can also have system of ordinary differential equations. Below we can see
(C.4) which is a first order linear ODE where A(t) is a nxn coefficient matrix, b is
a source vector and y(t) is the unknown function vector.

y′(t) = A(t)y(t) + b(t) (C.4)

A(t) =


a11(t) . . a1n(t)
. . .
. . .

a1n(t) . . ann(t)

 , b(t) =


b1(t)
.
.

bn(t)

 , y(t) =


y1(t)
.
.

yn(t)
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C.1.2 Numerical solutions
Often in practise the task of analytically solving a system of differential equations
is difficult, if not impossible. There are however numerical methods which ap-
proximates the solution with adequate precision. Numerical differentiation can be
accomplished with finite difference approximations [11].

Observe the definition of derivative as a limit, shown in Equation (C.5).

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)
∆x (C.5)

If ∆x has a fixed non-zero value the result is Equation (C.6), the forward finite
difference approximation.

f ′(x) ≈ f ′forward(x) = f(x+ ∆x)− f(x)
∆x (C.6)

By evaluating the function at x and x−∆x the result is the backwards finite difference
approximation, both of which has an error proportional to ∆x. By evaluating the
function at x + 1

2∆x and x − 1
2∆x instead the result is Equation (C.7), the central

finite difference method.

f ′(x) ≈ f ′central(x) =
f(x+ 1

2∆x)− f(x− 1
2∆x)

∆x (C.7)

which has an error proportional to (∆x)2. Trivially, the precision increases with
smaller steps ∆x. To approximate the second order derivative one simply applies
the central finite differential approximation again, which results in Equation (C.8)

f ′′(x) ≈ f ′central[f ′central(x)] = f(x+ ∆x)− 2f(x) + f(x−∆x)
(∆x)2 (C.8)

An appropriate method of numerically solving the diffusion equation, see (2.7),
is the alternating-direction implicit method, or ADI. In fact it was developed specif-
ically to solve the two-dimensional diffusion equation in a square region using finite
differences. It’s derived from the implicit Crank-Nicolson method [11] which uses
Equations (C.7) and (C.8) to produce Equation (C.9)

cn+1
ij − cn

ij

∆t = 1
2(∆x)2 (δ2

x + δ2
y)(cn+1

ij + cn
ij) (C.9)

where the region Ω has been discretised with a square grid, i.e. ∆x = ∆y, and a
lattice-point (i, j) is denoted ij. δ2

x and δ2
y are operators defined through (C.8) as

δ2
xcij = ci+1,j − 2ci,j + ci−1,j

δ2
ycij = ci,j+1 − 2ci,j + ci,j−1

The concept of the ADI-method is splitting (C.9) into two half time-steps

c
n+1/2
ij − cn

ij

∆t/2 =
δ2

xc
n+1/2
ij + δ2

yc
n
ij

(∆x)2 (C.10)
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cn+1
ij − cn+1/2

ij

∆t/2 =
δ2

xc
n+1
ij + δ2

yc
n+1/2
ij

(∆y)2 (C.11)

the first half with the x-derivative taken explicitly ((C.10)) and the second half with
the y-derivative taken explicitly ((C.11)), hence alternating-direction. The result
is a tri-diagonal system of equations, or a matrix-equation, that can be easily be
solved, e.g. with the Thomas algorithm.

A tridiagonal matrix A has the form

A =



b1 c1 0 . . 0
a2 b2 c2 .
0 a3 b3 . .
. . . . 0
. . . cn−1
0 . . 0 an bn


(C.12)

with the lower diagonal lA =
[
a2 a3 ... an

]
, the middle diagonalmA =

[
b1 b2 ... bn

]
and the upper diagonal uA =

[
c1 c2 ... cn−1

]
. The Thomas algorithm is basically

a simplified Gaussian elimination, that’s applicable on tri-diagonal matrices. The
algorithm for solving a matrix-equation of the type Ax = b is as following

c′i =


ci

bi
for i = 1

ci

bi−aic′i−1
for i = 2, 3, ..., n− 1

d′i =


di

bi
for i = 1

di−aid
′
i−1

bi−aic′i−1
for i = 2, 3, ..., n

xi =


d′i for i = n

d′i − c′ixi+1 for i = n− 1, n− 2, ..., 1

(C.13)

The solution is acquired in O(n) calculations, compared to O(n2) for Gaussian elim-
ination. The algorithm isn’t stable in general, however it is for diagonally dominant
matrices. For the case of a tri-diagonal matrix, as observed in (C.12), it is diagonally
dominant if |bi| ≥ |ai|+ |ci| for i = 1, 2, .., n, where a1 = cn = 0

C.2 Matrices for reproduction purposes
The dynamic problem in Section 3.4.3 is formulated as Ax = (B − F )x, i.e. as a
matrix-equation.
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The diagonals of A is

uA[61k + 1 : 61(k + 1)] =


[
−2α −α −α ... −α 0

]
for k = 0, 1, 2, ..., 59

[
−2α −α −α ... −α

]
for k = 60

mA =
[
β β ... β

]

lA[61k + 1 : 61(k + 1)] =


[
−α −α ... −α −2α 0

]
for k = 0, 1, 2, ..., 59

[
−α −α ... −α −2α

]
for k = 60

The matrix B has the following form

Bij =



γ for i = j

2α for (i, j) =

(k, k + 61)
(61(61− 2) + k, 61(61− 1) + k)

k = 1, 2, ..., 61

α for (i, j) = (k, k ± 61), k = 62, 63, ..., 61(61− 2)

0 elsewhere
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