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Abstract
As ecosystems are complex domains, both analytical and computer-aided models
can aid in gaining insights about their dynamics. One such computer-aided model
is the concept of ecosystem simulation. This project aims to build an interactive
and visual ecosystem simulation in the Unity game engine. The purpose is to ex-
plore how modelling of animal behavior, trait evolution and dynamic terrain can be
combined with a graphical representation to create an interactive ecosystem simula-
tor. Implementation of these aspects includes exploration of machine learning and
reactive behavior for animals, terrain generation, genetic reproductive algorithms as
well as run-time visualization and collection of data. The effects of these aspects are
evaluated using comparisons between animal behavior models, impact of terrain and
outcomes of genetic evolution, in addition to software interactivity. The outcome
of this project indicated that the machine learning prioritization animals performed
nearly as well as reactive rule based animals in terms of survival, while the machine
learning steered animals performed sub-par in comparison to the others. Further-
more, it showed that terrain changes seemingly has a greater impact on the predator
populations compared to the prey populations in the simulator. Additionally, as a
result of the proposed evolution model, genetic traits of animals indicated to be
potentially adaptive to the environment. Finally, the graphical representation pro-
vided visual feedback and information to users. In total, the final product resulted
in a working interactive ecosystem simulator. The implications of this thesis offers a
baseline framework for modelling a visual interactive ecosystem simulator in regards
to future research, academic and entertainment applications.

Keywords: Ecosystem, Simulation, Unity, AI, ML, RL, ABM, GA, PCG, Welford
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Sammandrag
Då ekosystem är komplexa domäner, kan både analytiska och dator-drivna modeller
av dessa verka som stöd för att få insikt i deras dynamik. En sådan dator-driven
modell är konceptet av att simulera ekosystem. Det här projektet avser att bygga
en interaktiv och visuell simulator av ekosystem i spelmotorn Unity. Syftet med
projektet är att utforska hur modellering av djurbeteende, evolution och dynamisk
terräng kan kombineras med en grafisk representation för att skapa en interaktiv
simulator av ekosystem. I implementationen av dessa aspekter ingår en utforskning
av maskininlärning och reaktivt beteende för djur, generation av terräng, algoritmer
för genetisk fortplantning, samt visualisering och insamling av data under körning.
Effekten av dessa aspekter evalueras genom jämförelser mellan djurens olika beteen-
demodeller, påverkan av terrängen, resultat av genetisk evolution, samt mjukvarans
interaktivitet. Resultaten visar att djuren med maskininlärd prioritering presterade
nästan lika väl som de reaktiva regelbaserade djuren gällande överlevnad, medan
djuren med maskininlärd styrning presterade undermåligt i jämförelse med de an-
dra metoderna. Vidare visar resultaten att terrängen verkar ha större påverkan på
rovdjurspopulationerna än bytesdjurpopulationerna i simulatorn. Dessutom, som
ett resultat av den givna evolutionära modellen, ger simulationer en indikation om
att djuren potentiellt kan vara adaptiva till miljön. Slutligen, den grafiska represen-
tationen bidrog med visuell återkoppling och information till användaren. Samman-
fattningsvis, den slutliga produkten resulterade i en fungerande interaktiv simulator
av ekosystem. Tesens slutsatser ger ett grundläggande ramverk för modellering av
en visuell simulator av ekosystem i avseende för vidare forskning, samt akademiska
och underhållningsrelaterade tillämpningar.

Nyckelord: Ekosystem, Simulation, Unity, AI, ML, RL, ABM, GA, PCG, Welford
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Glossary

AI Artificial Intelligence

FPS Frames Per Second

FSM Finite State Machine

GA Genetic Algorithm

MDP Markov Decision Process

ML Machine Learning

NavMesh Navigation Mesh, the area designating where agents can move

RL Reinforcement Learning
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1
Introduction

Recent improvements in concurrent programming allow developers to create games
with a large number of computer-controlled characters running simultaneously. A
few examples are games such as “They are billions” and the mobile game “Bad
North” [1][2]. Leveraging this technology allows for bigger and more complex games
and simulations which can be used in both entertainment and scientific studies.
One archetype in the field of scientific studies is ecosystem simulation where an
ecosystem and its characteristics are modelled approximately. Using computers for
the simulation is advantageous since real systems are chaotic and often too complex
to be accurately modelled analytically. Additionally, graphical representation of the
simulation allows for a clearer understanding of the results, particularly to people
outside of computer science and ecology. Furthermore, allowing for user control of
such a simulation increases its usefulness by allowing experimentation and promotes
insight.

1.1 Background
There are two approaches to ecosystem modelling: analytical and computer-aided,
where the first is mainly used for linear systems with defined mathematical ex-
pressions. Analytical ecosystem models can be represented as differential equa-
tions, such as the Lotka-Volterra equations which models a predator-prey system
[3]. Computer-aided modelling is used when it is difficult to form a mathematical
expression and when an approximate solution is sufficient. Regardless of the ap-
proach, ecosystem modelling allows for exploration of initial values and parameters
and their corresponding results in terms of population changes, behavior and evolu-
tion. This allows scientists to perform studies that would otherwise be hard or even
impossible due to lack of time or space.

In addition to providing a controlled environment for ecological studies, computa-
tional modelling can be combined with computer graphics to provide visual feedback.
Since ecosystems can be difficult to comprehend, visual representation might aid un-
derstanding. As a result, multiple visual simulators have lately been popularized, for
example the games “Eco” (figure 1.1a) and “Equilinox” (figure 1.1b) [4][5]. These
are examples of how graphics can be used to portray ecosystems for entertainment.

1



1. Introduction

(a) The Eco game1. (b) Equilinox game2.

Figure 1.1: Two games that are examples of graphical ecosystem simulators. The
games feature advanced terrain and life with graphical representations.

In addition to entertainment, the visual representation is valuable for simulations as
it makes results tangible. Furthermore, with visual feedback both small scale inter-
actions and emerging patterns on a larger time- and spatial scale can be observed.
This can not only be used to provide entertainment value, but also to create a more
immersive view of complex systems for other purposes.

Apart from visual technology, applications of traditional optimization techniques
have emerged in the past decade. Specifically the application of Genetic Algorithms
(GA), which is a search heuristic inspired by Darwin’s theory of natural selection,
in continuous virtual ecosystems [6]. Simulating evolution in such environments
has shown to be possible by the adaptive processes found in GAs as exemplified in
“Bloop’s world” [7, Chap. 9.13].

As the access to faster and cheaper computational power increases, so does the
prospect to simulate more complex systems. However, most real ecosystems are still
too complex to be simulated to their full extent. For natural systems, unmanageable
complexity appears already at the level of visible interactions and as result of the
large number of individual variables present in the system. Due to this, simplifi-
cations are required for both the living and inanimate components of ecosystems.
Concretely, simplifications can be made in the characteristics and behaviors of the
animals as well as the properties of the physical environment. These simplifications
are also useful to improve performance in simulations involving larger amounts of
entities. Examples of such simplified systems are the EcoSim research project, a
software project on which multiple research papers have been published [8].

1Source: https://wiki.play.eco/en/Eco_Wiki#/media/File:Cabin_Logs_Tomatoes_Corn.
jpg, used under Creative Commons: https://creativecommons.org/licenses/by-nc-sa/4.0/

2Source: https://equilinox.com/presskit/equilinox/images/foxHunt.png, from Equili-
nox press kit: https://equilinox.com/presskit/sheet.php?p=equilinox#images
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1. Introduction

1.2 Purpose
In this section, the purpose of the project is presented and motivated. The purpose
is to explore how modelling of animal behavior, trait evolution and dynamic terrain
can be combined with a graphical representation to create an immersive ecosystem
simulator. The purpose is substantiated in the three goals below.

1. Model a plausible ecosystem with interacting animals influenced by evolution
who perceive their own environment to make autonomous decisions.

2. Dynamically generate terrain from user input, which affects the ecosystem.
3. Create interactive software for use in other studies.

All decisions and implementations were made with the purpose of achieving one
or more of these goals. The first goal of modelling a plausible ecosystem, in point
one, requires studies and implementations of the interactions between entities in the
simulated world. Furthermore, these interactions depend on their environment and
can be categorized into different areas of responsibility. These areas include per-
ception, which implies hearing and vision, decision making that prioritizes actions
and the actions themselves. There is also a requirement of implementing genetic
reproductive evolution for these areas to be affected by evolution. Together, these
aspects make up the behavior of the animals. The second goal of dynamically creat-
ing terrain introduces the need for generating content procedurally. Additionally, to
create a usable simulation software for others, results of the simulation need to be
displayed in a clear way. This requires some form of data visualization, for instance
by using graphs to show statistics about animals and plants over time. Aggregating
statistics from a running stream of data requires specialized techniques. Finally, the
third point also gives rise to a need of interacting with the simulator during run-time
which requires a Graphical User Interface (GUI).

1.3 Scope
As with many projects, there is a need to outline aspects that will not be explored,
and how certain features will be limited. Below follows some points for clarity.

• Model a simplified ecological system without any intended specificity.
• Limit the food chain to only include select producers, herbivores and con-

sumers.
• The animals’ actions will function the same way throughout the duration of

the simulation.

These limits mainly exists to prevent unnecessary precision in the modelling which
might require time and effort better spent elsewhere. Simplifying the simulation
is required to avoid details and studies we as a group are not well equipped for.
The second limitation of not modelling a complete food chain originates from the
extreme level of detail needed for such a simulation. These details include chemical
interactions in the photosynthetic chain and microbial level in addition to longer

3



1. Introduction

systematic changes such as circadian rhythms and seasonal changes are outside of the
group’s domain knowledge. Finally, limiting to only immutable actions contributes
to system predictability, regulation and simplified design.

1.4 Thesis Outline
This thesis will present the implementation of an ecosystem simulator in Unity with
C#. In chapter 2, relevant background theory for Artificial Intelligence (AI) behav-
ior, GAs, environment generation, and statistical data collection is given. Chapter 3
presents the implementations and methodologies applied during the project. Chap-
ter 4 is dedicated to presenting the outcomes of some ecosystem simulations, as
well as determining the interactivity and performance of the software. Chapter 5
presents a discussion of whether the goals of the project are reached, some ethical
aspects and future improvements. Finally, the conclusion in chapter 6 summarizes
the project briefly.

4



2
Theory

In this chapter, the theory behind the projects technical implementations are cov-
ered. Firstly, an explanation of the theory behind the animals’ AI behavior. Sec-
ondly, the theory of GAs are explained. Thereafter, a description of theory used in
environment creation is presented, and finally a method for efficiently calculating
the sum of squares for statistical collection is presented.

2.1 AI Behavior
Action taken in conjunction with the environment, in other words behavior, is re-
quired for simulating an ecosystem and the living entities within it, since living
entities act. With the purpose of modelling entities that make autonomous deci-
sions, this takes on an Agent-based modeling (ABM) approach where the entities are
“modeled as a collection of autonomous decision-making entities called agents” [9].
The ABM approach implies that each agent acts based on its individual situation
and set of rules. In an ecosystem simulation, the behavior exhibited by such agents
contribute greatly to the survival of the animal and, by extension, the species. As
they are governed by natural selection, animals that survive longer have a greater
possibility of passing on their genes, thus behavior has a large impact on evolution
as well. Therefore, it is clear that behavior is an integral part of the simulator.

For the purpose of this simulation one could consider 2 different branches of AI.
These branches of AI and some of their respective techniques are:

• Reactive: Rule-based, actions taken based on current state.
– Finite State Machines (FSM).
– Behavior trees.

• Machine Learning (ML): Learning from data, performing the most optimal
action based on expected outcome.
– Reinforcement Learning (RL).

Different approaches has contrasting outcomes and difficulties of implementation,
which makes it important to choose approaches consciously. The following section
therefore explains the branches of AI further and details some of the algorithms that
might be applied in the respective branches. The advantages and disadvantages are
also covered briefly to provide a basis for the decisions made in the project.

5



2. Theory

2.1.1 Reactive AI
Reactive AI consists of mainly deterministic behavior using rules, and is synonymous
to a rule-based system [10]. As can be seen in figure 2.1, the reactive agent parses
the current state into actions based on simple rules.

Figure 2.1: Reactive agent behavior. The agent (blue) receives percept from the
environment (red), which are turned into actions that affect the environment.1

As shown in figure 2.1, a reactive agent’s perceptions of the environment are parsed
based on if-then rules into actions to be performed by the agent. A reactive agent
acts according to pre-programmed decision logic and while such systems are often
easy to implement, they also produce purely reactive results in terms of behavior, as
implied by the name. Reactive systems are often used for their transparency and for
ease of implementation in simple use cases. Common techniques used for reactive
AI are behavior trees and Finite State Machines (FSM).

An FSM is defined by a set of states and transitions between states. In the context
of FSMs, a state is defined as a predefined subset of the agent’s behavior. Only one
state can be active at a time and the active state determines the current behavior
of the agent. Conditions are also defined for when transitions between states occur,
and in the traditional sense of FSM, each state determines these conditions and thus
governs the transitions [11, Chapter 9]. An example of an FSM can be seen in figure
2.2, which shows the states, transitions and conditions.

1Heavily inspired by: https://en.wikipedia.org/wiki/Multi-agent_system#/media/
File:IntelligentAgent-SimpleReflex.png
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2. Theory

Figure 2.2: FSM example: the nodes correspond to states, edges are transitions
and weights are conditions. Inspired by: [11, Chap. 9].

The figure displays how the actions transition into other actions based on condi-
tions. The figure also shows that the system is easy to understand and manage.
Nonetheless, imagining a similar FSM with 100 nodes illustrates a clear drawback
to the approach, as it would be complex upon scaling. Since it is difficult to achieve
more complex behavior with FSMs and reactive behavior in general, another more
flexible approach is required.

2.1.2 Machine Learning AI
Machine Learning (ML) is a set of AI techniques in which an algorithm improves as
it is exposed to more data. Reinforcement learning (RL) is in turn a subset of ML
problems concerned with training an agent to interact with its environment and thus
learn behavior. Conceptually, this is learning comparable to how humans learn, and
is therefore strikingly different in procedure from the previously mentioned reactive
approach. In combination with the rise of ML in recent years, it is therefore interest-
ing to explore in which areas the ML approach is useful or not. For this project, the
interest was to see what behavior it could produce in animals living in an ecosystem.

Mathematically, RL corresponds to maximizing reward by infinitely traversing a
Markov Decision Process (MDP). As seen in figure 2.3, an MDP is a directed graph
with rewards and actions. In the context of an MDP, and continuing in this chapter,
a state is defined as the agent’s observations about the environment and itself. The
nodes of the graph are states, from which multiple actions may be taken. As a result
of an action, a transition to another state occurs based on probability. Rewards can
then be given upon transition and the problem that needs solving is how to take
actions that would optimize the reward.

7



2. Theory

Figure 2.3: Machine Learning AI: MDP, represents the problem space of RL. A
directed graph with rewards (yellow arrows) and actions (red circles).2

Training an agent to traverse an MDP means teaching it mappings between state,
action and the expected utility of that action in that state. The expected utility
is the reward that the action yields as well as the expected rewards from future
actions. The rewards for future actions are discounted, which means that imminent
rewards are valued higher.

The set of all mappings between state, action and their corresponding utility, is
called a policy. A policy that maximizes reward, thus taking the best actions, is
called an optimal policy. An optimal policy can be viewed as a map which tells the
agent: “If you are in state S do action A since it is expected to give the highest
total reward”. The usage of such a policy to traverse an MDP is called inference. In
other words, inference means to follow the relationships defined by the pre-gathered
policy and by its guidance perform certain actions when in certain states.

In this project, inference corresponds to exhibiting animal behavior within an ecosys-
tem which means that the problem is modeled as an MDP. The states in this case are
made up of what the animal gathers from its senses in combination with its internal
parameters. The actions are how the animal may interact with the environment,
and the desired actions in certain situations can be rewarded or penalized.

There are many benefits of implementing RL over an FSM. With RL, dependencies
between states become easier to maintain, and the behavior becomes easier to ex-
tend. Furthermore, since the RL agent defines its own behavior through training,
it has the potential to be flexible and adaptable, which is covered further in section
3.2.3. These are good properties in a plausible ecosystem simulation making it in-
teresting to explore.

2Heavily inspired by: https://towardsdatascience.com/
reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
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2. Theory

However, one clear drawback of the ML approach and RL lies in the difficulty
of implementation, as achieving precise behavior is a challenging task. This also
means that the resulting behavior might be less successful at achieving its goal than
if produced by reactive AI, as is covered in section 3.2.3.

2.2 Genetic Algorithms
To mimic evolution in software, Genetic Algorithms (GAs) are often utilized. Ap-
plying GAs provides the simulator with a plausible system by which animals can
evolve and adapt their traits over time. While there are multiple alternative evolu-
tionary algorithms to simulate evolution, a GA is notably applicable in this context
due to the evident conceptual connection to an ecosystem.

GA is an abstraction of a procedure regarded as a metaheuristic procedure, which by
definition provides a solution to an optimization problem without depending on the
problem at hand, unlike a heuristic procedure which is designed specifically for the
problem [12]. The theory of GAs became popular through the works of J. Holland.
In particular Adaptation in Natural and Artificial Systems, in which the professor
introduced a formalized framework regarded as “Holland’s schema theorem”, also
labeled as “The fundamental theorem of genetic algorithms” [13][14].

One of the applications emerging from Holland’s theorem is the notion of GAs,
also based on Charles Darwin’s theory of “evolution by natural selection”, which
was presented in On the Origin of Species [15]. The literature proposes what is
considered to be the foundation of evolutionary biology. It outlines the process
where animals in an environment, each containing a set of genes, survives and passes
down their genes by reproduction. Thus, the animals with sufficiently adapted genes
survive and those not well adapted are unable to reproduce and pass their genes to
successive generations. Same concept is utilized in GAs where the algorithm process
is comprised of a sequence of steps visualized in the flow chart diagram in figure 2.4.
The idea is to continuously generate better solutions by utilizing good solutions
relative to the population for each new generation until a convergence is obtained.
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Figure 2.4: A flowchart diagram representation of a GA. Each container repre-
sents a step in the algorithmic sequence, ranging from chromosome representation,
evaluating fitness function and checking for termination criteria. Until termination
criteria is met, iterations of selection, crossover and mutation is processed between
the fitness evaluation step to improve the solution.

In the context of GAs, the term chromosome is what evolution acts on, and is
synonymous with the term individual [16]. As displayed in figure 2.5, a chromosome
contains a set of genes that can be represented in numerous ways depending on the
problem. A gene can for instance be encoded as a bit, an integer or a floating point
value. Consequently, a chromosome is usually conveyed as a data structure or solely
a string of bits in the case of a bit gene encoding. Additionally, a population is
comprised by multiple chromosomes.

Figure 2.5: The figure shows a population, which has a set of chromosomes. The
letters A, B, C and D refers to chromosomes (or individuals). A chromosome is in
turn a set of genes, where these genes are encoded as bits.

GA is a subclass of Evolutionary Algorithms and refers to algorithms inspired by
the core principles of Darwinian natural selection, notably heredity, variation and
selection [7]. Heredity describes the process of children inheriting the properties of
its parents for each new generation. Variation involves the concept of comprising a
population with varying genes. Excluding variety in a population would prompt the
population to pass down the same set of genes for each new generation, henceforth
new combinations of genes would never occur and nothing would evolve. Selection
is a mechanism where a subset of the population passes down its genes, particularly
the fittest of individuals. For example, if rabbits are being hunted by wolves, the
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fastest of rabbits would most likely be the ones surviving and passing their genes to
the next generation. The three Darwinian principles are encompassed by distinct
evolutionary operators such as parent selection, crossover and mutation.

2.2.1 Parent Selection
Parent selection is an operator where each individual is evaluated against a fitness
function f(x) and selected to pass down its genes depending on whether or not it
is a good solution relative to the population [7]. J. S. Arora defines fitness function
as “the relative importance of a design” [17]. In essence, it is an objective function
used to indicate how close a given solution is to achieving a termination criteria.
Such functions are usually implemented as algorithms or mathematical functions.

One of the traditional methods for selecting parents in a GA is fitness propor-
tionate selection, which is a stochastic selection method that uses a probability
ratio proportional to an individual’s fitness score for selecting parents [12]. As
an individual carry a higher fitness, its probability to be selected as a parent is
higher. Assuming f to be the fitness function, a probability p for a given individual
x ∈ Population = {x1, x2, ..., xn}, is calculated as

p(x) = f(x)∑n
i=1 f(i) .

Selection for Ecosystem Simulations

While the vast majority of selection methods in GAs assume a discrete flow of the
algorithm, where each generation is carried out by resetting the environment and
subsequently proceeding in discrete steps, a realistic model of an ecological system
entails a continuous approach. Furthermore, a realistic model of an ecosystem would
not assume that all children are born at the same time step, nor that parents are
selected by abstract methods which runs independently from the domain. Fitness
proportionate selection is an example of a method that is independent from the
domain, since it will allow for two animals to be selected as parents to a child inde-
pendently of their physical positions as long as their fitness is high enough.

A selection method which is domain dependant for a continuous ecosystem simu-
lation is demonstrated by D. Shiffman in The Nature Of Code [7], in which the
professor claims that “things that happen to live longer, for whatever reason, have a
greater chance of reproducing”. In the proposed method, a fitness function is found
in the form of survival and not a mathematical function. Thus, individuals that
are well fit for their environment will survive for longer and consequently have more
time for reproduction. The objective is to model natural selection such that the
fitness of the GA is representative of some aspects of Darwinian fitness. Darwinian
fitness is proportional to the ability to produce offspring and passing genes further
to successive generations [18].

11
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2.2.2 Crossover
During the crossover phase, which follows the selection phase, the genes that are
to be received by each child from its parents are determined. This operation can
be seen as creating a new chromosome with a set of genes constructed as a com-
bination of each parent’s genes. There are various methods for selecting genes in
the crossover phase. Among those are the more notably single point crossover and
uniform crossover. Uniform crossover works by treating each gene separately, and
for each gene to be assigned in the child’s chromosome, flip a coin to determine
which parent’s respective gene to choose, as can be seen in figure 2.6 [14]. The
coin can either be unbiased, thus, each gene assignment has an equal probability of
originating from either parent, or biased, such that the resulting chromosome has
a higher probability of consisting of more genetic material from the favored parent
[19]. Conversely, the idea of single point crossover is to randomly select a cutoff
point in the child’s chromosome, such that genes on the left of the cutoff point orig-
inates from one parent and genes on the right of the cutoff point originates from the
other, as figure 2.7 shows.

Figure 2.6: Uniform crossover operation on two parent’s chromosomes resulting in
two children’s chromosomes.

Figure 2.7: Single point crossover operation on two parent’s chromosomes resulting
in two children’s chromosomes.

2.2.3 Mutation
While crossover solely outputs chromosomes based on already existing genes, muta-
tion is applied afterwards to maintain genetic diversity in the population [6]. In the
context of GAs, mutation is used to alter genes in chromosomes in order to avoid
stagnating in a local maximum in the solution space. Consequently, diversity and
exploration for potentially better solutions are obtained through mutation. A pa-
rameter that has to be considered in order for the algorithm to work properly is the
probability of a mutation occurrence on a gene, namely the mutation probability [7].
In essence, for each gene in the chromosome there is a small probability of altering
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the gene. This works by iterating over all the genes in the chromosome and appoint-
ing them for mutation with the same probability as the mutation probability. If they
are not appointed for mutation, they are simply ignored. If mutation probability is
set too high, the algorithm will correspond to a random primitive search [6]. In this
case, the GA will mutate the chromosome too often, resulting in the optimal chro-
mosome having to be found through randomness rather than incrementally going
closer and closer to the optimal chromosome.

Since mutation is heavily dependant on chromosome representation, there exists
various ways of mutating a gene once it has been appointed for mutation. If the
chromosome is a binary encoding, a simple method like bit flipping is usually suffi-
cient [6]. Bit flipping simply takes the current gene, which is represented as a bit,
and inverts it as shown in figure 2.8.

Figure 2.8: Bit flipping mutation. The red arrow points to a gene appointed for
mutation.

However, in the case of a floating point number representation, a uniform mutation
or nonuniform mutation is to be used [6]. Uniform mutation is an operation equiva-
lent to bit flipping, where the current gene is assigned a value randomly from a range
[Lu, Uu] bounded by a user selected lower and upper limit. Nonuniform mutation
for floating point values works by adding a small positive or negative value ∆xi to
the gene in focus. In the case of floating point representation, the amount to be
added is usually randomly drawn from a Gaussian distribution with mean zero and
user selected standard deviation,

p(∆xi) = 1
σ
√

2π
· e− (∆xi−ε)

2

2σ2 ,

in which approximately two thirds of the drawn samples will lie within a standard
deviation around the mean. The amount is usually clamped by the bounds of user
selected lower and upper bound [Lu, Uu].

A common way of drawing samples from a Gaussian distribution is to use the Box-
Muller transform. Box-Muller transform is originally meant to sample two inde-
pendent random variables from a normal distribution using two separate equations
[20]. However, in the case of sampling a single number, one of the equations is suf-
ficient. The procedure starts with sampling two independent values U1 and U2 from
a uniform distribution on the unit interval [0, 1] and then inputting these values to

Xnorm =
√
−2 logU1 cos (2πU2),
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which outputs a normally distributed sample. Lastly, the sample is used as input in

Xgaus = Xnormσ + µ

to convert to a value derived from a Gaussian distribution with mean µ and standard
deviation σ [20].

2.3 Environment Generation
To understand how the environment affects the ecosystems, terrain can be gener-
ated from input to provide different environments in the simulations. Presented in
this section are the techniques in terrain generation which were applied within the
project.

2.3.1 Noise-Based Terrain Generation
Computers are good at creating flat and smooth surfaces, but to imitate the ran-
domness and imperfections of real environments, noise can be added. Using noise
to generate a height map is common practice in the field of procedural landscape
generation. Without a noise function, all valleys and mountains would need to be
handcrafted which would not be optimal when the aim is to generate multiple varied
environments [21].

In this implementation, the primary method used for generating the terrain mesh
is based on Perlin noise, which is structured and organic random noise. As can be
seen in figure 2.9, Perlin noise is not as random as truly random noise, and is more
organic and cohesive.

Figure 2.9: Example of Perlin Noise where values are represented as a gradient
between black and white depending on the value at the point.

This figure shows generated noise, which could resemble a top down birds-eye view
of a landscape, however, real world terrain is not as smooth as an image that Perlin
noise generates. To make the terrain more realistic, a common technique is stacking
different runs of the Perlin noise algorithms into multiple layers, called octaves [22].
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This layering is done by creating a new noise map where every point consists of
adding the same point from every layer, with each layer having less importance de-
pending on a set persistence value. These layers also increase in detail, or frequency,
the less persistence they have. Each succeeding octave has a diminishing effect but
an increasing detail level, which helps create details and ruggedness on the terrain.
Applying different numbers of octaves results in a more realistic height map that
generates results that are more organic, as can be seen in figure 2.10 below.

(a) One octave (b) Two octaves (c) Five octaves

Figure 2.10: The difference of using octaves and layering with increasing number of
octaves from left to right. The only variable adjusted between the three sub-figures
are the number of octaves. Due to diminishing returns for each new octave, the only
visual difference between the results of figure 2.10b and 2.10c is the sharpness.

2.3.2 Poisson Sampling for Object Placement
There are many ways to generate positions for objects, with varying results. The
main criteria of the object placement system in this project is the ability to modify
the density of the placed objects, and that the objects are uniformly spread. The
uniform distribution minimizes the chances that animals gets placed in groups and
allows the animals to have a higher probability of surviving the first few seconds.
This also makes sure that no impassable walls of trees are created. Some examples
and comparisons of different methods are shown in figure 2.11.
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(a) Random placement (b) Poisson placement

Figure 2.11: Example of two point generation methods3. Selecting points with
completely random coordinates results in some clustering and some clear parts of
the field, as can be seen in 2.11a. The method presented in figure 2.11b visualizes
points generated with an algorithm used to create a Poisson Disk Sample Set [23].

Poisson Disk Sampling algorithms are very useful for placing objects in an environ-
ment, such that the objects are packed together but not closer to each other than
the selected minimum distance [23]. Poisson Disk Sampling can be combined with
the aforementioned noise algorithms, as described in section 2.3.1, to dynamically
modify the minimum distance between the points used in the algorithm. As each
point is generated using a radius from another point based on a set minimum dis-
tance, modifying this distance with a noise function creates a placement algorithm
that coincides with the noise function. This results in interesting object placement
that can look more natural than pure Poisson disk sample set points where each
point is a sample point from the Poisson disk set, as can be seen in figure 2.12.

Figure 2.12: Poisson Disk Sample modified with Perlin Noise. Where each white
point is a chosen location to place an object on the black background4.

The clustering comes from setting the minimum distance between the points with
the noise function. This is more natural clustering than the completely random
placement, as the clustering is based on more organic Perlin noise.

3Source: http://devmag.org.za/2009/05/03/poisson-disk-sampling/
4Source: http://devmag.org.za/2009/05/03/poisson-disk-sampling/
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2.3.3 Mesh Construction
To transfer the aforementioned techniques of generating a height map to a 3D envi-
ronment, a mesh needs to be created. A mesh, or polygon mesh, consists of vertices
connected with edges. A vertex consists of information about for example position,
color and normal vector, and the edges that connect these vertices creating faces.
These faces can usually either be triangles (three vertices) or quads (four vertices)
depending on the number of edges for the shape.

2.3.4 Navigation
A navigation system is a vital part in the brains of the simulated animals. Without
being able to find a path in the environment, the animal would not be able to move.
There exist many solutions to the standard problem of finding the shortest path,
one among them is A* (A star), which is used in Unity. A* is a standard path
finding algorithm that works for node networks, but a 3D environment is not a node
network. To adapt A* to a 3D environment, a method that can be used is the
creation of a navigation mesh, or navmesh. With a navmesh the environment is
divided into polygonal segments where each segment is fully walkable. An example
of a navmesh can be found in figure 2.13.

Figure 2.13: Visualization of a navmesh in a small environment where the gray
is the environment, the black objects are impassable walls, and the blue layer atop
the environment is the navmesh 5.

2.4 Calculating the Corrected Sum of Squares
To improve understanding of ecosystem simulations, it is useful to look at visu-
alized data. To collect and display such data in run-time, efficient calculations
are required. One algorithm that performs efficient statistical calculations is called
Welford’s method and is covered in this section.

4Source: https://upload.wikimedia.org/wikipedia/commons/6/62/D3D_Shading_Modes.
png

5Source: https://docs.unity3d.com/uploads/Main/NavMeshAgentSetup.svg
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In 1962 B. P. Welford presented a short paper in which he described a one-pass
algorithm for calculating the variance and mean of a data set [24]. A one-pass algo-
rithm is an algorithm for processing data streams which reads its input data once.
This is particularly useful in simulations or signal processing, where new data is
continuously arriving. Since most other solutions requires two passes over the data,
the entire collected data set need to be stored. Two-pass solutions also presents a
problem if the mean and variance is needed before the end of the data stream, since
the entire two-pass calculation would need to be executed each time a new value
arrives. Furthermore, the method presented by Welford is numerically stable, which
implies fewer errors even if the data set is large or the data points themselves differ
by some magnitude. The following section will first explain the method to com-
pute the mean, and the latter part will explain the recursion formula for variance in
Welford’s method.

The mean x of a set with n elements, where xN is the N th element, is defined as

x = 1
N

N∑
i=1

xi. (2.1)

Thus, to find the N th mean (xN) given the previous mean (xN−1) we can use the
recursion

xN = 1
N

((N − 1)xN−1 + xN).

This is, however, unstable numerically since the term 1
N

could be very small in
relation to the sum, which could cause instability when using floating point formats.
Rewriting the equation by distributing 1

N
and simplifying, results in the recursion

xn = xN−1 + xN − xN−1

N
. (2.2)

This can been shown to be numerically stable due to not using disproportionately
sized numbers in division or multiplication.

In order to demonstrate the recursion for calculating the variance, it is best to start
with the difference between two consecutive variances. The current variance is s2

N

and the previous s2
N−1 but for simplicity the derivation will instead use (N − 1)s2

N

and (N − 2)s2
N−1 since it allows for simpler summations. The result will be divided

by (N−1) for the correct variance. The difference between the consecutive variances
is

(N − 1)s2
N − (N − 2)s2

N−1. (2.3)

Using the definition of the variance in (2.3) and summation rules, this can be shown
to be equal to

s2
N = 1

N − 1((N − 2)s2
N−1 + (xN − xN)(xN − xN−1)). (2.4)

To conclude, (2.4) is a recursive formula requiring only the last known value of the
variance SN−1, the last known average xN−1 and the value to add to update the
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variance. To avoid numerical instability, (N −1)∗ s2
N may be stored and restored to

s2
N when needed. This method allows statistical data to be computed efficiently. It
also simplifies implementation since no data from deceased animals need to be saved
to memory during the simulation. Furthermore, it avoids calculating the statistical
data by using regular methods, some of which are not as stable. Ultimately, this
would have considerable impact on performance to serve live-data representations.
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Method

Presented in this chapter are the design choices and implementations required to
fulfill the purpose of the project. The following sections describe the chosen animals
and their features, their AI behavior, the evolutionary system, the generation of the
ecosystem’s environment and the method of data collection.

3.1 Modelling the Animals
This section covers the internal models of animals, namely how they are affected by
the environment via parameters, how they behave via traits and how they perceive
the environment through senses. The animals included in the simulation were cho-
sen based only on familiarity to the team and to achieve a predator-prey relationship.

This project has taken inspiration from other ecosystem simulations, which had lim-
ited the amount of animals to just one prey type and one predator type, specifically
rabbits and foxes [25] [26]. On account of the modular approach to the animal sys-
tem in this project, it was possible to expand the selection of animals without much
additional work. The four chosen animals were rabbits, wolves, bears and deer, as
seen in figure 3.1.

Figure 3.1: The animals featured in the simulation. Left: Deer and wolf, Right:
Bear and Rabbit

3.1.1 Parameters
In the context of the simulation, the various values of the parameters and traits
defined each individual animal (see appendix B). The parameters were simple ab-
stractions/representations of an animal’s need to eat, drink and procreate, and main-
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taining them would serve as the animal’s goals. The parameters would vary in value
during an animal’s lifetime. Additionally, the parameters were affected by the traits
(explained in section 3.1.2), both in terms of limits and in the rate of change.

The behaviors of the animals were affected by energy and hydration, as animals
needed to search for water and food to stay alive. The behavior outcomes of energy
and hydration were different, despite similarities in implementation and execution.
Notably, lack of energy became a reason for animals to leave the water sources to
explore.

Although not using any scientific formulas for the rate of depletion, both energy and
hydration were designed to deplete faster for larger animals and slower for smaller
animals [27]. Despite a lack of knowledge on the exact correlation between the rate
of depletion of water and body size, it was included for balance between the param-
eters. Like size, the speed of the animal would affect both energy and hydration
depletion at a linear rate, which is realistic in the sense that higher effort spends
more resources. With some basis in reality, vision affected the rate of depletion of
energy [28]. To keep the senses balanced, hearing also affected energy.

Contrary to energy and hydration, reproductive urge and age were not affected by
any traits in their rate of change. Furthermore, reproductive urge increased in value
only when energy and hydration levels were high, thus only thriving animals could
mate. This is loosely related to the fact that healthy animals have better capabilities
of reproducing in the natural world. Two animals with maximum reproductive urge
were able to mate and reproductive urge was depleted when the animals had mated.

3.1.2 Traits
The traits, unlike the parameters, were set only once at birth. Since the value of
the parameters defined the current objective of the animals, the traits affected their
ability to fulfill those goals. For the sake of clarity, the traits could be categorized
into three sets. Parameter limits, traits relating to the maximum speed (maxSpeed)
and the senses. See appendix B for a complete list of the traits.

The first set of traits, the parameter limits, were the simplest and relate to the
parameters, which were elaborated above in section 3.1.1. These were aptly named
maxEnergy, maxHydration, maxReproductiveUrge and ageLimit. The first three lim-
ited the otherwise infinite potential of regenerating the parameters. In the case of
ageLimit, when an animal’s age reached ageLimit it would die.

MaxSpeed relied on two other traits, size and acceleration. Unlike the other traits,
maxSpeed was the only one derived from a formula (see 3.1) using other traits, and
was consequently not directly inherited. In the evolutionary system, acceleration
was inherited in lieu of maxSpeed. The reasoning for this was merely to simplify
the method of how maxSpeed would otherwise be inherited, due to its reliance on
the formula. Size, like acceleration, was factored into the calculation of speed, but

21



3. Method

also affected the rate of change in the parameters. Size was the only trait that
constrained maxSpeed. The possibility of adding other constraints, such as age or
energy, was rejected due to the already complex nature of the simulation that such
constraints may have further muddied the trait and parameter relations. Due to
maxSpeed and size having the most visually noticeable changes, more focus was put
in developing their interactions within the simulation, compared to the other traits.
The formula used for maxSpeed was based on a formula in the article “A general
scaling law reveals why the largest animals are not the fastest” [29], which was based
on empirical data collected from 474 animal species. Using this formula increased
the realism of the simulation. The formula was declared

vMax = aM b · (1− e(−hM i)),
where

vMax = max potential velocity

M = body mass

b = power law increase in speed

i = d− 1 + g

d = muscle force

g = muscle mass

h = cf .

The constants a, c and f had little to no description in the article of what they
represented, and were therefore not defined further. Due to the linear effect of a on
the formula, and a desire to have a trait that could effectively modify vMax, it was
dubbed as acceleration, despite that being a misnomer. Because the animals did
not have any defined mass, M semantically referred to their size instead. However,
with the constraints given by the article, the curve plotted from vMax never had
the hump-shape as shown in the figures based on their collected empirical data.
Since it was desired for the simulation to include a noticeable impact of size on the
speed of animals, both positive and negative, some modification of the formula was
necessary. Furthermore, the constants, which were derived after some testing to find
suitable values, were applied and renamed to correspond to their respective traits
as following: vMax = maxSpeed, a = acceleration and M = size, and gave rise to
the final equation

maxSpeed = acceleration · size0.4 · (1− e(−1.5·size1.34))− size1.34. (3.1)
The last category of traits, where those used for the senses, named viewAngle,
viewRadius and hearingRadius. ViewRadius and hearingRadius both affected the
range of sight and hearing, whereas viewAngle defined the angle of the animal’s field
of view.

3.1.3 Senses
Animals were designed to perceive their environment through vision and hearing. In
terms of implementation, both vision and hearing worked similarly through scanning
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for targets within a sphere, then iterating through the resultant list to decide each
target’s type, be it another animal, a plant or a water source. To differentiate
the senses, and to keep them realistic, distinct constraints were outlined for each
sense. Vision was limited by the viewAngle, and to not see through objects or
terrain. Animals were able to notice not only other animals, but also plants and
water. Hearing, on the other hand, was not limited by any angles, nor by terrain
or objects, but could not detect plants. To detect plants, animals therefore had to
use their vision. Hearing thus functioned primarily as an aid for the predator-prey
interactions, and for animals to find potential mates.

3.2 Behavior
To quickly achieve basic behavior of the animals and in the interest of prototyping,
it was initially decided that a reactive AI was sufficient for behavior. Within this
category there exists a handful of solutions (described in section 2.1.1), one of them
is an FSM and another is behavior tree. There exists both free and paid (visual)
tools for behavior trees, and for FSM there is even a built-in tool in Unity called the
Animator. While behavior trees could host more complex behavior, state machines
were easier to implement in code, which was a priority. The built-in tool for state
machines was found to not allow for a suitable degree of control, thus a code-based
FSM implementation was chosen.

3.2.1 FSM Implementation
The implemented FSM was altered from standard practice to suit the needs of the
project. According to common practice, transitioning from one state to the next
should be handled in the current state. For this project however, an alteration
of this approach was needed, which included separating most of the decision-logic
(which state to switch to when) from the FSM to create modular and exchangeable
decision making (see figure 3.2). The main reason for interchangeability was to
allow exploration of different decision models (Decision Makers), while minimizing
the development time needed for such exploration.

Figure 3.2: Modular decision making. The Decision Maker parses parameters and
senses into decisions which are passed to the FSM. The FSM then acts based on the
decisions, producing behavior.

While the decision making had been extracted from the states of the FSM, a re-
quirement function was introduced to each of the states. This requirement function
governed whether the state could be entered and was dependent on the parameters
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and observations of the animal. Once entered, the states would then carry out its
associated action. Despite the decoupling of transition control from the states, some
transitions were still being made directly from states. Sometimes the animal would
forcibly be put in the next state bypassing the decision making module. This was
only due to somewhat poor definitions as two states could be joined together.

Initially, the decision maker was rule-based as it parsed the parameters of the ani-
mal, the current FSM state and its perception of the environment gathered from its
senses. The parsing meant manual discretization of these values into simple yes/no
statements that were then asked in order of prioritization. When an animal was
deemed as both hungry and thirsty it would prioritize finding water over finding
food due to the manual specification of such.

As the decision-maker had the added effect of decoupling states, the behavior model
used could hardly be called an FSM at this point since one of the main characteristics
of an FSM is that the states are tightly coupled (see chapter 2.1.1). Furthermore,
to explore a more advanced solution, it was decided that another decision model
was to be used altogether. The implementation of ML behavior was opted for as
the prospect of applying ML behavior to animal behavior was deemed interesting
to the team. There also existed sufficient tools and similar efforts using these tools,
which produced behavior that could fit within a plausible ecosystem1. The usage of
ML to simulate the behavior of animals in a graphical ecosystem simulation was to
our knowledge also novel.

States

To better distinguish between the various actions that the animals could take, they
had to enter a corresponding state before making the respective action and each
state represented one distinguished action. The states encapsulated the essence of
the actions, which would provide clearly defined boundaries, in terms of both code
and simulation.

Firstly, there were three states that defined animal movement toward a specific tar-
get, GoToFood, GoToWater and GoToMate. These states depended on the target
type, which could be either water, food (prey or plant), or a mate. The states were
considered different enough in implementation to be kept separate, however, from a
software perspective these could with benefit be joined together. Additionally, there
were three states that represented what would happen when the animal reached its
target: DrinkingState, EatingState, or MatingState. The motivation behind sepa-
rating these from the GoTo states was also lacking and these could likely have been
joined together with their respective GoTo state.

Two other states were the Fleeing and Dead states. The fleeing state would be
1Example ML behavior: https://www.youtube.com/watch?v=la9ZjD3YXdA

and https://github.com/Unity-Technologies/ml-agents/blob/main/docs/
Learning-Environment-Examples.md#food-collector
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entered when an animal saw a predator. For the sake of simplicity, no predator
would flee from or hunt its own species, and all prey would flee from all predators.
Due to their size, bears were able to hunt wolves, thus the wolves would flee from
bears. The Dead state represented death and was an absorbing state, thus it was
not possible to enter another state once the Dead state had been entered.

Finally, Wandering and Waiting were the two states that an animal could enter
when no other state would be possible or allowed. An animal would usually enter
the Wandering state when it was currently satisfied enough to not want to eat, drink
or mate. It was meant to allow for the animals to spread out somewhat, rather than
staying in one area. If an animal was not satisfied and there was no food, water, or
mates available, the Wandering state would also function as a pseudo searching state.
The likelihood of the animal finding what it wanted could therefore improve if it
explored further away. For simplicity, it was decided that none of the animals would
have a specified gender. This way the animals only needed to find another of their
species to be able to mate. To prevent cases where the animals would impregnate
each other, only one animal was permitted to be in the mating state when they
were mating. Thus, to keep the non-mating animal from otherwise wandering off, it
would instead enter the Waiting state. It would wait for the duration of the mating
before it returned to the Wandering state.

3.2.2 ML-Agents Toolkit
To explore other solutions and introduce a level of flexibility into the behavior, an
ML model was implemented. To implement ML in Unity, the open-source package
ML-Agents2 was used [30]. The ML-Agents toolkit made it possible to use Unity as
an environment for the training of RL models in Python. Additionally, the toolkit
provided state-of-the-art RL algorithms and an easy way to interface between the
algorithms and Unity. The reasons for adopting this toolkit in this project therefore
included:

• Faster setup time than implementing a custom solution. Alternatives would
have been to write our own package directly in C# or our own communicator
between Unity and Python. These approaches would have put the focus more
on the implementation of such functionality rather than applied training of
ML agents. The results in terms of functioning behavior was prioritized, so
the ML-Agents toolkit was favored.

• Good documentation with references to scientific articles. This meant being
introduced to RL in a top-down manner.

• Possibility of diving deeper. The toolkit provides the possibility to use custom-
written RL algorithms in Python, which allows for customization later down
the line once the learning process works in general. This meant that the toolkit
would not inhibit progress towards more custom RL solutions.

2The toolkit’s repository can be found here: https://github.com/Unity-Technologies/
ml-agents
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Despite many advantages, there was also some limitations of the toolkit. Examples
of disadvantages include: exclusively run-time training, which resulted in less flexible
behavior, and general communication with the toolkit interface.

ML Algorithm

As mentioned above in section 3.2.2, the main focus of implementing ML behavior
was practical application of RL to achieve acceptable results. The specific algorithms
used behind the scenes were therefore less prioritized and were subsequently explored
only at a shallow level. The ML algorithm used was treated as a black box (see figure
3.3).

Figure 3.3: The black box perspective was applied during ML implementation.
Input was fed into the black box that produced actions as output based on the
policy. Heavily inspired by [31, p.5].

Figure 3.3 shows how the algorithm was omitted from close analysis, but was in-
stead simply applied. The black box accepted inputs in the form of numbers or
vectors (vn) concatenated into one vector, after which the policy parsed the in-
put into actions. An action (am) was a value and each value was bounded by a
set of possible values declared in a set of actions (Am). Subsequently, the tuple
(a0, a1, . . . , am) represented a combination of actions drawn from all possible com-
binations described as the Cartesian product of all sets of actions A0×A1×· · ·×Am.

The black box perspective was applied during inference as well as the training of the
policy. This shifted the focus of the implementation more toward practical aspects
of RL, such as the reward strategy, observations and training environment. Conclu-
sively, this meant that more time could be allocated towards achieving acceptable
behavior which is covered in chapter 3.2.3.

3.2.3 Machine Learning - Prioritization Behavior
The first clear step to introducing ML behavior was to exchange the reactive deci-
sion making module with an ML decision maker. The goal of this ML model was
to teach it to prioritize certain actions, depending on its parameters as well as its
observations about the environment. The actions would still be static and predeter-
mined which included predetermined movement patterns. In the context of ML and
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RL a state concerns the agent’s parameters and observations at a point in time, and
an action is what the RL model produces from the state. The goal was to still rely
on the states of the FSM to represent actions, but transitions between them would
be handled by the ML implementation.

Implementing an ML behavior model that performed better than, or on par with,
a well-planned reactive model proved to be a difficult task. In addition to learning
and working with the toolkit, there were many RL related hurdles to overcome to
eventually arrive at a desirable behavior such as: proper reward strategy, providing
proper observations, training environment definition and bugs in the simulation.

Rewards

The reward strategy was crucial to the training in order to steer the agent towards
desired behavior. Later, this gave rise to a problem, since the model would only
learn based on what it experienced. For instance, not fleeing upon the presence of
a predator had to be penalized directly instead of relying on the implication that
nearby wolves meant imminent death for the rabbit. The magnitude of the rewards
also played an important role to the outcome of the learning. If the rewards or
penalties were set too low or high, undesirable behaviors would occur. The final
reward strategy that produced a desirable behavior was designed as follows:

• Each decision tick (continually occurring process of observation, decision and
action):
– Not fleeing while perceiving a predator was penalized by -1.
– Being alive was penalized as described in (3.2) below.

• Successfully mating was rewarded once by +2.

−(hunger + thirst)
maxAge

(3.2)

The penalization of not fleeing when in danger was intentionally very high to dis-
suade any attempt at doing anything but fleeing in dangerous scenarios. The pe-
nalization of being alive is a function of hunger and thirst. Therefore, lower hunger
and thirst would lower the penalty, which would encourage being satiated in terms
of hunger and thirst. However, being alive was still penalized to induce urgency of
completing the task of mating. If being alive was rewarded instead, the rabbit could
bypass the goal of mating and just try to stay alive as long as possible.

Observations

The observations provided to the model were also critical to the learning outcome.
For instance, providing unnecessary information would impact the learning speed as
it would clutter the input with noise, and it could even prevent learning altogether.
Another important aspect of the observations was to ensure that enough information
was provided such that the agent would not get surprised by for example occasion-
ally receiving fewer rewards without adequate reasoning from the observations. This
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too could confuse the model leading to unsatisfactory results.

Another aspect of the observations to consider was normalization. Normalization
means to scale the input to within the range of [0, 1], which ensures each input value
will be of the same magnitude. Normalization reportedly speeds up the training of
neural networks and by extension the model used in the ML-agents toolkit [32].The
final observations that produced a desirable behavior was as follows:

• Energy percentage (E for energy) calculated as currentE
maxE

.

• Hydration percentage (H for Hydration) calculated as currentH
maxH

.

• Boolean values (One for each) corresponding to all requirements for entering
the following states being met or not:
– goToFoodState
– goToWaterState
– goToMateState
– fleeingState

Environment Efficacy

Closely related to the above points was the efficacy of the simulation itself. Minor
bugs in the behavior of the animals or the environment such as faulty navigation,
perception etc. could critically affect the learning process. For instance, if the
wolves were non-hostile due to them not perceiving the rabbits, it would result in
the rabbits not being afraid of the wolves. Furthermore, if the rabbits themselves
were unable to eat food at certain times due to some bug in the simulator, this
would send the message that eating might not have been worthwhile. Such bugs
can be viewed as observations not appearing to the agent, which was as mentioned
detrimental (or outright fatal) to the performance of the model.

Training Environment

The training environment was crucial, as successful training relied on the presence of
a controlled training environment that was defined in a way that facilitated learning
of the wanted behavior. For instance, the training environment was initially very
similar to the simulation environment. This required multiple rabbit and wolf agents
with reactive behavior that interacted within a small and flat environment. This
environment failed to train the rabbits likely due to many reasons. One such reason
was the aforementioned problem of wolves not acting as expected, which might have
introduced uncertainty into the training. Furthermore, it proved difficult to train
multiple agents that interacted with the same environment and each other. This
might be explained with the rabbits competing for food as well as unpredictable
behavior in the agents’ mating partners, thus introducing uncertainty of the value
of food and mating respectively.
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Training an agent on a completely static environment would likely result in desired
behavior in precisely that environment, however, the agent would fail to generalize
to other environments. This issue is generally known as overfitting. Parameter
randomization is the process of introducing variability to the agent’s environment
during training which is based on the concept of “domain randomization” [33]. This
way, the agent learns not only how to handle a specific type of environment, but
becomes adaptable and flexible enough to survive in many types of environment, thus
reduces overfitting. Throughout the project, multiple forms and levels of parameter
randomization were tested. The earlier attempts randomized amounts and positions
of food, water, wolves and rabbits as well as environment size. Although, the final
successful training environments randomized much less (see figure 3.4).

Figure 3.4: The final training environment for the ML prioritization. Two wolves
and four rabbits (one outside the image) have fixed positions and only one rabbit
agent is training in each environment. Multiple environments are running simulta-
neously. Lines represent what the rabbit perceives: food (green), water (blue), mate
(purple) and the red line shows the path that the animal is following.

The final environment included one rabbit agent to be trained with randomized
starting position, a fixed size environment, two stationary non-agent wolves, two
stationary non-agent rabbits as well as randomized food and water positions. Fur-
thermore, multiple environments used to train at the same time sped up training.
The final environment was in conclusion very controlled which might prove, similar
to the reward system, that simplicity is a winning concept when training ML agents.

An episode is the period from which an agent enters the training environment until
it achieves its goal or fails. In this context, this refers to either mating or dying,
respectively. Every episode began with populating the environment with food and
water as well as moving the agent to a random position. At the end of each episode
food and water was removed to be re-spawned next episode, and the agent’s param-
eters were reset.
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The ML model that was trained on a rabbit agent was subsequently applied to all of
the animals. This was possible since the wanted behavior only differed in details, for
instance, a rabbit walks towards its food since mushrooms do not run away, while a
wolf has to chase its food. Such dissimilarities were instead handled in the actions
and prioritization is handled the same between animals.

3.2.4 Machine Learning - Steering Behavior
An alternative approach to ML behavior was also explored, taking the prioritization
approach one step further. This replaced the predetermined movement patterns for
most of the actions in the previous approach. The idea was to train an agent to not
only prioritize actions but also choose where to move. Subsequently the agent would
interact with objects and other agents upon collision. The objective of the specified
approach was to have an agent that would move to food, water and potential mates
depending on internal observations such as energy, hydration and reproductive urge.
Additionally, all external observations such as perceived entities from senses were
considered. The only exception was fleeing, which still used predefined movement
due to difficulties in training the agents to flee properly.

The steering approach to ML proved a great challenge. While the animals could
learn the desired behavior in the training environment, they failed to generalize to
the final simulation. The implementation of the approach is nevertheless covered in
appendix C for the interested.

3.3 Evolutionary System
In order to model an evolutionary system in the simulator, animals needed to apply
genetic operations upon reproduction. The fundamental principles of GAs were uti-
lized to accommodate the need for this. Henceforth, selection was not implemented
as a concrete algorithmic step, but rather represented animals viability to be se-
lected by a partner within the observable area, with the constraint of both animals
having maximum reproductive urge. Reproductive urge could only be gained while
having high energy and high hydration as explained in 3.1.1. As a consequence,
fitness would be associated with how well the animal fared in the environment. An
animal that would eat, drink and survive effectively would also live longer, thus
having more survival time leading to a higher chance of reproduction and in turn
higher fitness. In other words, it corresponds to the simulated biological fitness,
making the evolutionary system model mimicking natural evolution.

Crossover was implemented such that it genetically favors the parent with highest
age at the time of mating. The motivation for introducing this bias was that if
parent 1 had lived longer than parent 2 it would be an indication that the child
would benefit more from parent 1’s genes. As this differed from traditional ways
of implementing crossover such as basic uniform crossover and one point crossover
(see section 2.2.2), a uniform implementation with bias towards the parent with
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longest survival time would potentially speed up convergence towards an optimal
set of genes. The implementation of crossover is shown in listing 3.1 below.

1 Tra i t s Crossover ( Tra i t s p1Traits , Tra i t s p2Traits ,
2 f l o a t p1Age , f l o a t p2Age )
3 {
4 Random rng = new Random( ) ;
5 Tra i t s c h i l d T r a i t s = p1Tra i t s . DeepCopy ( ) ;
6 f l o a t tota lAge = p1Age + p2Age ;
7 f l o a t th r e sho ld = p2Age / tota lAge ;
8

9 Type type = c h i l d T r a i t s . GetType ( ) ;
10 f o r each ( PropertyIn fo i n f o in type . GetPropert i e s ( ) ) {
11 double rnd = rng . NextDouble ( ) ;
12 i f ( rnd < thre sho ld ) {
13 i n f o . setValue ( ch i l dTra i t s , i n f o . GetValue ( p2Tra i t s ) ) ;
14 }
15

16 }
17 re turn c h i l d T r a i t s ;
18 }

Listing 3.1: Implementation of crossover algorithm with bias towards the oldest
parent. Note that Traits is a chromosome encoded as a class type with each instance
variable corresponding to a gene.

Mutation was also implemented to maintain variety in traits. The implementation
is shown in listing 3.2 and is inspired by the non-uniform mutation approach for
floating point values described in section 2.2.3.

1 void Mutation ( f l o a t mutat ionProbabi l i ty , Tra i t s c h i l d T r a i t s ) {
2 Random rng = new Random( ) ;
3 Type type = c h i l d T r a t i s . GetType ( ) ;
4 f o r each ( PropertyIn fo in type . GetPropert i e s ( ) ) {
5 double rnd = rng . NextDouble ( ) ;
6 i f ( rnd <= mutat ionProbab i l i ty ) {
7 f l o a t currentGene = ( f l o a t ) i n f o . GetValue (

c h i l d T r a i t s ) ;
8 f l o a t mutationPercentage = Mathf . Clamp ( ( f l o a t )
9 SampleGaussian ( rng , 0 , 5) /100 f , −0.1 f , 0 . 1 f ) ;

10 f l o a t mutatedGene = mutationPercentage ∗ currentGene
11 + currentGene ;
12 i n f o . SetValue ( ch i l dTra i t s , mutatedGene ) ;
13 }
14 }
15 }
16

17 double SampleGaussian (Random random , double mean , double stddev )
{
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18 double u1 = 1 − random . NextDouble ( ) ;
19 double u2 = 1 − random . NextDouble ( ) ;
20 double xNorm = Math . Sqrt (−2 ∗ Math . Log ( u1 ) ) ∗
21 Math . Cos (2 ∗ Math . PI ∗ u2 ) ;
22 re turn xNorm ∗ stddev + mean ;
23 }

Listing 3.2: Implementation of mutation using Gaussian sampling (with mean 0
and standard deviation 5) for mutating the gene’s value.

3.4 Environment
This section explains two essential factors of the environment for animals. This
includes the landscape with different features such as trees and other obstacles, as
well as variable land height. In addition to this, there are also plants present, which
are modeled according to simple rules.

3.4.1 Resources
To survive, the animals required a source of food and water. Water was distin-
guished between the purely visual and the invisible water sources, to provide the
animals with places to drink. Water was an infinite resource, therefore, any number
of animals could drink from it without depleting it. Since animals drinking from
lakes has a negligible effect on water levels in real life, accordingly, infinite water
approximates reality in this regard. The water was thus a very static aspect of the
resources, while vegetation was more dynamic.

Since vegetation in nature can deplete when there are too many animals in one area,
it was decided to be modeled more dynamically than water. There were two types
of plants in the simulation, mushrooms and grass. Mushrooms had a nutritional
value, age and a small chance to spread, while grass spawned continuously from
water sources. Mushroom’s nutritional value increased with age, and would only
spread if above a certain age. If it were eaten, its nutritional value would reset to
zero, and it would regrow some time later at the same spot. The mushrooms were
also limited in density to avoid exponential spread. While the constraint put on
mushroom expansion lowered the theoretical maximum for the plant availability,
the never-ending supply of grass raised the practical minimum. This had the effect
of decreasing herbivore population extinction rate.

3.4.2 Terrain and Landscape Generation
Understanding how the terrain affected the ecosystem was an important part of
this project. The terrain generation in this report consisted of four separate parts,
heightmap generation, mesh generation, water generation and object placement.
During the early stages of the development of the heightmap generation and mesh
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generation, the implementations were based on Sebastian Lague’s tutorial series
Procedural Terrain Generation3.

3.4.3 Height-Map Generation
The basis of the terrain generation system was the heightmap generator. Heightmaps
were generated with the built-in Perlin noise function in Unity, which generated a
value based on x and y coordinates. The heightmap could be modified with the
following parameters:

Scale: Applies a zoom or modifies the distance between the probed coordinates.
Octaves: The number of octaves that will be layered into the heightmap.
Persistence: The factor of the value that is carried over from the lower octave,

adjusts amplitude.
Lacunarity: Adjusts the amount of detail that is added or removed each octave,

effects frequency.
Seed: A seed for the Perlin noise function.

A visualization mode for a colored texture based on the heightmap was created.
The mode consisted of a list of colors and thresholds for these, which allowed for
editing the cutoffs for the different colors. Figure 3.5 displays a comparison between
the value map that comes directly from the noise function and the colorized and
visualized map.

(a) Value map (b) Colorized Map

Figure 3.5: This figure shows the visualization of the heightmap in two different
ways. Figure 3.5a is where every height is represented by a value between 0 and 1,
where 1 is white and 0 is black. Figure 3.5b visualizes the heightmap by colors to
present a more appealing and understandable image.

3.4.4 Creating a Mesh
The first step in creating the environment from the height map, was to create a
mesh that matched the selected settings. This mesh consisted of multiple vertices
connected into triangles, which was calculated by first creating a grid of points, or
vertices, that would then be connected into triangles. Furthermore, a normal vector

3Sebastian Lague’s tutorial series:
https://www.youtube.com/playlist?list=PLFt_AvWsXl0eBW2EiBtl_sxmDtSgZBxB3
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was calculated for each vertex depending on the neighboring vertices. All this data
was then used to apply a mesh to a Unity game object.

The necessity of the following step in the mesh generation process arose from a lim-
itation in Unity where meshes could only contain roughly 64000 vertices. To create
maps with larger sizes a technique called chunking was used. With chunking, the
map was split into manageable segments called chunks, each with their own mesh.
Connecting these chunks allowed circumvention Unity’s vertex limit and permitted
the creation of larger environments. Dividing the terrain into chunks created some
issues with both the height-map generation and the mesh generation, where the
edges of the meshes generated did not connect and the normal vectors of the bor-
der vertices were calculated incorrectly. The first issue was solved by adding global
normalization that normalized over all chunks instead of in each chunk, and the
second issue by adding another set of border vertices that were only used for normal
calculations.

A stylistic choice was made to have the terrain be flat shaded. This provided the
restriction that flat shaded chunks needed to be smaller than non-flat shaded chunks
as flat shaded chunks needed more vertices while still limited to 64000 vertices.

3.4.5 Coloring the Mesh
Without colors or textures, the environment would look very bleak and unnatural.
A simple method used for coloring the mesh was to color based on the height of
the environment, similar to the heightmap visualized in figure 3.5. Another method
more difficult to implement was a slope based coloring algorithm, that would set the
color of the mesh based on the slope of the terrain. The first method was chosen as
other parts of the project needed a higher level of prioritization than coloring the
map. With the height mesh method, blending between the color layers created more
realistic transitions between the layers. Texturing and coloring the map preceded
through many iterations. The methods were divided into two sections, texture-based
coloring and shader-based coloring.

Texture-Based Coloring

The first method implemented was built on techniques for visualizing noise- and
height-maps, see figure 3.5. This simple method consisted of rendering the color
map, see figure 3.5b, straight on the mesh. Coloring the mesh in this way created
results where the height levels would look a bit jagged, and the pixels from the
visualization texture would be clearly distinguishable. An example of this type of
color rendering can be seen in figure 3.6.
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Figure 3.6: Early version of the environment generation with the simple coloring
based method on the height-map visualization texture.

The main problem with this method of coloring, was the visibility of the pixels and
the lack of smoothness, which resulted in an unnatural look. Blending between the
different height levels was difficult, as the coloring worked with large pixels. There-
fore, this method was scrapped, and a shader-based implementation was researched
instead.

Shader-Based Coloring

Unlike the height-map visualization, the shader-based coloring method did not de-
pend on the heightmap data. The shader-based approach depended on the envi-
ronment height of each point on the mesh, instead of the generated height value
in the heightmap. This resulted in coloring that was not pixelated based on the
height-map, and instead contained straight horizontal dividers between the different
terrain types, as can be seen in figure 3.7.

Figure 3.7: Early environment-generation with the first version of the shader
colorization.

A shader-based approach solved both the smoothness and the pixelation problems
of the texture-based colorization. With blending of the layers an even, natural look
was achieved, which was implemented in the final version of the simulator.

3.4.6 Water System
Water was an essential part of an ecosystem, and there were many different ways
water could be implemented. The chosen method for this simulation consisted of
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two parts: the water plane, and the water source blocks. The water plane con-
sisted of a visual water cube, where the bottom was always set to the bottom of
the environment and the top set to the selected water level. This part was mostly
visual, except for its interaction with object placement and navigation calculations.
A more technical part of the water system was the water source block placement.
The animals in the simulation were dependent on drinking water, and they looked
for a game object with the tag Target. Placing this tag on the visual water would
have lead to the animals looking for the center of this block instead of finding the
edge of the water to drink. The solution was to place small invisible cubes, with the
correct tag, on vertices that were within a selected distance of the water level.

The water plane described in the previous paragraph was shaded with a very sim-
ple opaque shader with a turquoise color. Shading the more advanced water cube
required a more advanced shader. This shader was implemented based on a tutorial
by Binary Lunar4 and provided transparency, refraction, coloring and foam shading.
The result of this shading can be seen in figure 3.8.

Figure 3.8: The water shader.

3.4.7 Object Placement
When designing a solution to the problem of placing trees and animals on the ter-
rain, a generalized solution was conceptualized. This generalized solution would be
able to place every object that needed to be placed in the game. The method was
built on the Poisson set distribution, explained in section 2.3.2, and allowed place-
ment of all different types of game objects.

Firstly, the algorithm described by Tulleken was implemented to generate a set of
plausible points [23]. On these points, the objects were instantiated around ten units
above the max height of the environment. A ray was emitted from each placed ob-
ject and if the hit surface was tagged as ground, not water. If the hit surface was not
ground, the placed object would get destroyed. The objects that were over ground
got their y-coordinate set so the object was placed on the ground. An interesting

4Based on source: https://www.youtube.com/watch?v=MHdDUqJHJxM
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observation was that when placing an animal with a navmesh agent component,
instead of just placing the object, one had to call the warp function on the agent to
make sure that the agent knew it was on the navmesh.

The distortion of the placement with noise mentioned in section 2.3.2 was not im-
plemented, but could be an interesting improvement to the object placement imple-
mentation. One limitation of this approach was the fact that it was not possible to
set the number of animals, only the distance between the spawned animals. Another
possible improvement would be to make sure that objects were unable be placed on
top of each other.

3.4.8 Navigation
The navigation system chosen for this project was Unity’s built-in navigation system
in combination with the NavMeshComponents5 package from Unity’s GitHub page.
Navigation was implemented by adding a game object with the NavMeshSurface
component attached. When the environment had finished generating, before the
object placement, the navigation mesh construction function would be executed.
The navmesh needed to be generated before the object placement, as the object
placement needed to warp agents to attach them to the navmesh. An improve-
ment to code design would be to place all the objects and subsequently generate
the navmesh, and finally before the simulation start, warp on all the agents in the
scene. This was not implemented due to time constraints in the later parts of the
project.

When implementing the navigation system, many obstacles were discovered that
limited the possible size of the environment. It was noticed that when increasing
the environment size, or adding more chunks, the simulation would take too long to
start. Using profiling, the cause was found to be the build time of the navmesh. One
method tested was to modify the agent settings. Increasing the radius of the agent
decreases the resolution of the navmesh, which possibly could increase performance,
but no significant increase was noticed. The second and more plausible method
of allowing larger environment sizes was to implement a system to pre-generate the
terrain. This would result in that only the animals would be placed at run-time. This
solution was implemented and researched but not finalized, although the solution
was plausible. The last, untested, method was to exchange the built-in Unity system
for some other navigation system. This could have been the best solution but due
to time constraints this was not possible.

3.5 Statistical Calculations
Since interactive software was emphasized in the project purpose, accurate measures
of statistics were needed. This implied data structures to collect, store and present

5Github page for NavMeshComponents: https://github.com/Unity-Technologies/
NavMeshComponents
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the data. This was done by recording data on the births, deaths of animals, in addi-
tion to sampling data each minute. Animal traits, generation and species birthrate
were reported on birth. Age, distance travelled and cause of death were reported on
death. Birthrates and population amounts per minutes were sampled from this data
each minute. When data was recorded, the corresponding structure for each species
and generation of the entity updated its mean and variance values using Welford’s
method, which is explained in section 2.4. The algorithm was implemented in C#
as shown in listing 3.3.

1 NewMeanVaraiance ( f l o a t m, f l o a t s , f l o a t n , f l o a t valueToAdd )
2 {
3 i f (n <= 1) re turn ( valueToAdd , 0)
4 f l o a t oldM = m;
5 s = s ∗ (n − 2) ;
6 m += ( valueToAdd − m) / n ;
7 s += ( valueToAdd − m) ∗ ( valueToAdd − oldM) ;
8 re turn m, s / (n − 1)
9 }

Listing 3.3: Implementation of the Welford algorithm to calculate the mean and
variance as each measurement arrived from the simulation. The variables m, s and
n are the old mean, the old variance and the current population size, respectively.
The method returns a tuple of the new mean and the new variance.
The algorithm in listing 3.3 was useful, since only the relevant measurements needed
to be stored. This simplified implementation and increased performance as the
statistics were calculated with constant complexity.

The structure for storing statistics was mostly implemented as C# lists, where
each species was assigned a list for mean and a list for variance, and each index
in these lists corresponded to a generation. This implementation was useful since
the presentation-class for data used C# lists for input. Furthermore, methods were
implemented to export the collected data to structured JSON text files. This was
practical if the user would want to analyze the data to a greater extent than what
is possible in the built-in functionality of the graph.

3.6 Graphics and Visualization
To improve the feel of the simulator, which was explained in section 1.1, some
work was done to the graphical representation of the simulation. 3D models and
animations were provided to vastly speed up development time, however, other
graphical improvements and effects were made such as: creating a toon shader6 (flat
color shading and hard shadows) for the animals and trees, a shader for the water
(figure 3.8), a transparency effect for the trees (figure 3.9a), a simulated wind sway
for the trees7 and some post processing effects. The post processing effects were

6Based on source: https://www.youtube.com/watch?v=3SvyJrENsgc
7Based on source: https://www.youtube.com/watch?v=ZsoqrHHtg4I

38

https://www.youtube.com/watch?v=3SvyJrENsgc
https://www.youtube.com/watch?v=ZsoqrHHtg4I


3. Method

primarily used for a depth of field effect and to unify the tone of the colors in the
scene. These effects were provided by Unity as a part of its post processing effects
system.

(a) Transparency based on the
camera’s proximity.

(b) Particles indicating
mating.

(c) Particles indicating
pregnancy.

Figure 3.9: Examples of the graphical effects implemented for the simulation. 3.9b
and 3.9c show the particles created by the team.

Some further work was also done using Unity’s particle systems. These particle
systems were used to indicate some of the animal states. The states that were given
a particle system were: mating (figure 3.9b), fleeing and death. The particle systems
were also used for situations that needed indication, specifically when an animal was
pregnant (figure 3.9c), got attacked by a predator and when born. The particles in
the particle systems for mating and pregnancy were custom made by the team using
pixel art tools, and the pregnancy particle differed for each animal species. Aside
from those particle systems, to avoid spending too much time on aesthetic work,
the other particle systems used (fleeing, death, getting hit, birth) were third-party
assets8.

3.7 User Interface
As the purpose of the project is to create a simulator usable to others, a UI was
necessary. This was achieved with a graphical UI, GUI, to make interaction for
almost anyone. When starting the software a simple main menu appears hosting 3
options: Play, settings and quit. Pressing quit exits the application while pressing
settings will take the user to a settings menu. In the settings menu the user can
adjust the sound volume as well as select whether animal parameters should always

8Source: https://assetstore.unity.com/packages/vfx/particles/
cartoon-fx-free-109565
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3. Method

be shown or not. Pressing play navigates the user to the environment creation
scene where the user can adjust parameters of the environment to be created. The
environment creation menu allows for control over the physical environment as well
as the living and non living entities of the simulation (see figure 4.2).
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Results

The results of the project is summarized in this chapter. As the goals in section 1.2
states, the outcome will partly be presented based on the ability of the simulator
to model ecosystem characteristics. Moreover, the interactivity and performance of
the software is described.

4.1 Ecosystem Simulation Outcomes
The ecosystem consists of terrain generation and interacting animals, establishing
the relations within the simulation. Thus, the results in this section covers how the
ecosystem reacts to different environments and animal populations.

The project has produced a considerable amount of possible configurations for an
ecosystem. It was thus important to limit experimentation to a few representative
tests to evaluate the software. It was deemed that the most interesting concepts to
analyze were:

1. A comparison of ML-controlled and reactive rabbits in the same environment.
2. A comparison of terrain impact on survival.
3. A comparison of developed traits between rabbits living with and without

predators.

To clarify, in the following sections all tests were limited to 2 hours of run-time.
As an ecosystem reached this limit, it was declared to be a stable ecosystem if
all the species included in the simulation were alive at the point of termination.
Furthermore, to focus the results, the only animals represented in the tests are
rabbits and wolves. All references to reactive, ML prioritization and ML steering
behavior only refers to rabbits. Wolves were always reactive in these simulation runs.
There was also randomness present in the simulation concerning initial placement of
animals and plants as well as the movement of the animals. This gave rise to some
level of uncertainty in the simulations, which was controlled for by running multiple
tests for each configuration and subsequently comparing means. Besides the factor
of randomness, the tests were executed as controlled experiments, where only one
factor was changed and studied at a time. The plots for the simulations are found
in appendix D.
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4.1.1 Behavior Performance Results
The survival of the behavior models, which are described in section 3.2, are compared
in in this section. Survival is defined as how long, and in what quantity, the species
are able to survive. The tests were made to evaluate how well the simulation models
animal behavior, as is the first goal of the project (see section 1.2). The parameters
for the environment were kept constant between runs, which included: terrain shape,
environment size, initial plant availability and initial water availability.

Rabbits only

The first comparison investigated the relative survival achieved with different be-
havior models for rabbits living without predators present, of which all results can
be seen in section D.1.1. The behavior models compared were reactive, ML prioriti-
zation and ML steering. All tests were executed separately, with only one behavior
model on each run, and with equal seeds. The seed corresponds to the terrain factor
for which the terrain shape will be equal on all runs with the same seed. The ML
steering rabbits went extinct around the 20 minute mark. The two other models, re-
active and prioritization ML, survived until the end. The reactive rabbits appeared
to be slightly more populous than the ML prioritization rabbits. The plant popu-
lation stabilized after 20 to 40 minutes, and appeared to be slightly more populous
with ML prioritization rabbits, than reactive rabbits.

Rabbits and Wolves

The second comparison investigated the same configurations as above, but with
the addition of wolves. All plots can be seen in appendix D.1.2. Similarly to the
tests with rabbits only, the ML steering rabbits went extinct before 20 minutes and
the other two models survived until the end of the simulation. The wolves living
with the ML steering rabbits also went extinct before 20 minutes. The wolves in
the other two tests went extinct around the 60 minute mark. Again, the reactive
rabbits appeared to be slightly more populous than the ML prioritization rabbits.
The plant populations increased at the beginning, before stabilizing around similar
values for all tests.

4.1.2 Trait Evolution Results
The evolution of traits were tested to evaluate the first goal of the project (see sec-
tion 1.2). Trait evolution of the rabbits in simulations on seed 0 with only rabbits,
and rabbits with wolves are displayed in appendix D.3. The effect that predators
may have had on the evolution of the traits of rabbits is compared to when rabbits
could develop without the threat of predators. As the first goal in section 1.2 states,
finding the perfect combination of traits lies outside of the scope of the project.
Hence, merely a select subset of all traits are showcased to display change and ten-
dencies of genes as a result of evolution.

Both max speed and age limit had increasing mean value for both simulations with
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only rabbits, and simulations with rabbits and wolves. The max speed comparison
had a few instances of simulations with contradicting values in respect to the mean
value. In contrast, the mean max energy remained unchanged, although a few
simulations with rabbits and wolves deviated notably from the mean both positively
and negatively for greater generations. The mean value of max reproductive urge
declined for both types of simulations. Finally, the mean view radius deviated
between the two simulation types. The view radius for ecosystems with both rabbits
and wolves did not change, whereas the view radius for ecosystems containing only
rabbits declined. In essence, dynamic gene alteration between generations was a
result of the GA implementation described in section 3.3.

4.1.3 Terrain Impact Results
The impact on the ecosystem that different terrain shapes brings, were also investi-
gated. Plots of the results can be found in appendix D.2. Only the seeds and height
multiplier was changed between runs, and all other parameters were kept constant.
These tests were made to evaluate how the ecosystem was affected by the generated
terrain. In other words, whether the second goal of the project was fulfilled (see sec-
tion 1.2). The examined terrain types were seed 0 (figure 4.1a), seed 32536 (figure
4.1b) and seed 32536 with increased height difference (with height multiplier set to
35, in figure 4.1c). Comparisons were split between differences in seed and height.

(a) Seed 0 terrain.

(b) Seed 32536 terrain.

(c) Seed 32536 terrain with different height settings.

Figure 4.1: Two terrains generated by specified seed in height map settings and a
third with more hilly terrain.
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The rabbit populations were similar when comparing seed 32536 and 0 in size.
The wolf population was more populous and survived on average longer in the
environment with seed 32536 than in seed 0. Lastly, the plants in the environment
with seed 0 became more abundant compared to plants in the environment with seed
32536. When comparing between height differenced maps, the rabbits population
living in the flatter map appear to vary more compared to the population in the
HDIFF map. The wolves where more populous, on average, in flatter map compared
the HDIFF map where no population made it past 40 minutes. The plant population
appeared to decrease after the initial increase. Plants in the HDIFF map was on
average more populous.

4.2 Interactivity
The simulation aims to allow the user to create their own ecosystem that requires
interaction, which was covered in the third goal in section 1.2. The focus was on
giving control, and less effort has been put into achieving high Usability as defined
in [34].

Figure 4.2: The environment creation menu. High level of control is offered al-
though the usability may be lacking.

As can be seen in figure 4.2, there are multiple tabs that contain settings for differ-
ent aspects of the environment. High level of control is offered, allowing the user to
change most aspects of the simulation. Once the user has settled on a configuration
for the environment, the simulation can be started by pressing play.

There are a few ways that the user can interact with the simulation at run-time: the
simulation speed can be adjusted, the animals’ parameters can be viewed as well
as the current state of the animal. There is also an in-game graph view, seen in
figure 4.3, which allows the user to view how different aspects of the animals in the
simulation change through time.
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Figure 4.3: The graph view. The user can view graphs based on a selection of
statistics.

As seen in figure 4.3, the buttons to the right of the graph allows the user to switch
between viewing different statistics. The available statistics are population, ani-
mal traits, birth rate and active plants (available plants). Run-time visualization of
statistics has also been useful during development, providing a convenient method
for both verifying the simulation and adjusting parameters to achieve a stable ecosys-
tem. Nonetheless, the python library Matplotlib was used for displaying results in
this report, as it is more advanced.

Performance of Software

Software needs to exhibit, to the user, satisfactory performance for it to be consid-
ered interactive. The performance was therefore also tested to measure how well
this aspect of interactivity was met.

The performance was evaluated in two categories, compared to the number of active
rabbits. These categories are the Frames per Second (FPS) in combination with
CPU load and secondly the memory usage. The metrics were measured during the
simulation of the stable rabbit- and plant-system. Machine used for the testing used
a GTX 2060 with 6 GB VRAM GPU, AMD Ryzen 5 5600X CPU, 16 GB RAM.
The results in appendix A show FPS and memory statistics at minute 11 in figure
A.1, when slightly less than 700 rabbits were alive. In figure A.2 the test machine
provided 60 FPS with some short, periodical, drops to as low as 15 FPS. The memory
usage with slightly less than 700 rabbits remained below 1 GB of utilized RAM.
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This section interprets the results as well as discusses other approaches and future
improvements.

5.1 Ecosystem Simulation Outcomes Evaluation
This section interprets the results from the tests covered in the result. Firstly, the
behavior models are discussed, where the three different models of rabbits were
tested with and without wolves in the environment. Secondly, the terrain impact on
animal population in environments with rabbits and wolves are discussed. Finally,
the evolution of traits are discussed.

5.1.1 Behavior Performance Evaluation
From the results in section 4.1.1 and plots in appendix D.1, the vector steered rabbits
performed worst of the three models. This was true both in the case of environments
with and without wolves. Furthermore, the reactive model seemed to fare slightly
better than the prioritization model. There is however much variation around the
mean and from the plots in section D.1 there are multiple simulation in which the
reverse is true. It is thus said with caution that the reactive and prioritization mod-
els performed somewhat equally.

The wolves, all using the same model (reactive), went extinct before the end of the
simulations as seen in figure D.4. Rabbit populations did not seem notably affected
by wolves as time progressed. One exception is the first 20 minutes where the rab-
bit population size was slightly lower in those simulations with wolves, indicating
a weak negative relationship between the two populations. However, the goal of
the project was never to fully create an ecosystem in equilibrium so this is not a
fundamental problem in the simulator. There are probably environment parameters
which generate stable ecosystems over long time, however, this was outside the scope
so no results explicitly expected this.

The goal of modeling interacting animals was achieved in the sense that at least
two of the approaches produced rabbits that could interact and survive reasonably
well. While the reactive behavior produced the highest survival in rabbits, the ML
prioritization approach was comparable. Further exploration of this approach or the
finalization of the ML-Steering approach might give interesting results in the future,
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contributing to a more interesting or plausible simulation.

5.1.2 Trait Evolution Evaluation
The dynamics of traits highlighted by section 4.1.2 entailed some interesting observa-
tions. The result of maxSpeed indicated a general importance of higher max speeds
relative to the starting value, as it increased in both rabbit simulations with and
without wolves. This seemed to be the case despite the parameter currentSpeed hav-
ing an inverse effect on energy consumption as described in 3.1.1. A possible cause
being that quick rabbits arrive at food earlier and thus survive longer than its com-
petitors. The same seemed to be indicated by the ageLimit trait change. Although
ageLimit didn’t have any direct or indirect theoretical disadvantages for higher val-
ues, which could potentially be the reason to why almost no simulation showed a
decreasing trend regarding ageLimit. An additional interesting observation was the
discrepancy of viewRadius between the two types of simulations. With the selective
pressure of wolves, rabbits could potentially be required to retain their visual radius
value to avoid stumbling across a predator, while the same selective pressure could
be absent in an environment with solely rabbits. The effect of increased energy
consumption could potentially be the reason for why the visual radius mean didn’t
increase uncontrollably over generations. As visual radius becomes higher in value,
more energy is drawn, which is outlined in 3.1.1.

Despite results showing what is supposed to be trends of evolving traits, it should
be noted that the number generation should be greatly considered before making
any assumptions or conclusions about the evolving traits. Traditional runs of GAs
usually iterates through magnitudes of greater number of generations before con-
verging in a definitive solution. This process also usually involve visiting multiple
local optimum points before convergence, which arguably none of the results pre-
sented seems to be doing. Given this detail, the goal of the project was not to find
an optimal set of trait values, but simply to showcase a model for evolution which
the results satisfies.

5.1.3 Terrain Impact Evaluation
Following the behavior model comparisons, different terrain was studied. In the re-
sults section D.2 a comparison between seed 0 and 32536 was studied. In figure D.6
comparing the rabbit populations in these two environments, little difference can be
seen. It is different however when comparing wolf populations in figure D.7. In the
environment with seed 32536, an environment with more water, the wolf population
increased and more than doubled for some time compared to wolf population in the
environment with seed 0. This big difference in wolf population did however, have
negligible impact on the rabbit population, with only a slight reduction in rabbits
between 20 and 40 minutes. Looking at plant availability in figure D.8, plants in
the environment with seed 0 does seem more abundant compared to the other en-
vironment. This is probably due to larger landmass plants can spread to in this
environment, in contrast to greater water abundance in the environment with seed

47



5. Discussion

32536.

Comparing between the two environments with different height multiplier settings
(HDIFF) in figure D.9 plotting the rabbits and figure D.4 plotting the wolves the
rabbit population living in the HDIFF environment appears more stable. This
could be explained by studying the wolf population, where it was significantly more
populous in the flatter environment. This could indicate difficulty for wolves hunting
in environments with higher height multiplier, one cause being reduced vision range
as this is limited by the ground. Furthermore, weak relationships between rabbit
and wolf populations could be established when comparing the environment height
setting, since the increase of wolf population in figure D.10 is accompanied by a
reduction of rabbit population in figure D.9. There is however no proof of this
with causation, only correlation. Plant differences in figure D.11 appear to favor
the HDIFF-environment slightly, which could indicate either easier spread in the
HDIFF environment or less pressure from rabbits. The latter case could be due
to rabbits’ restrained vision or constrained navigation in environments with higher
height multiplier.

5.1.4 General Comments
One of the main difficulties encountered was to obtain a stable ecosystem with preda-
tors surviving throughout the whole simulation run. As the simulation runs were
heavily influenced by randomness in for instance wandering direction, vegetation
and many other mechanisms, it proved to be difficult to encompass the desired out-
come beyond what was influenced by deterministic variables such as animal traits.
This difficulty imposed high volatility simulation results and usually led to not ob-
taining a fully stable ecosystem for all species involved. This was as mentioned,
somewhat controlled for in the results by using multiple simulation with equal input
parameters.

Another contributing factor regarding unstable ecosystems with predators was the
population size of the predator. Since majority of simulations involving a predator
included a predator population of around 5 to 25 units, it was evident that the prob-
ability of wolves stumbling across each other induced a relatively volatile predator
population. To enable a more stable ecosystem, magnitudes higher population sizes,
especially predator population in combination with more environment space would
be preferred. The limit in the animal numbers were due to lack of computational
resources or lack of performance in the software. Due to this, simulations with larger
initial populations took too long to finish since the time progression speed in unity
was limited and the simulation could simply not finish computing in time between
frames.

5.2 Interactivity Evaluation
From looking at the object placement menu (figure 4.2), it is apparent that the con-
trol offered to the user is not very intuitive. The environment creation menu is very
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closely linked to the underlying implementation, meaning that much of the controls
offered have dubious effects. This could likely be much improved by abstracting and
combining parameters for increased usability. Not much work has been put into the
layout of the menu either which means there is no clear visual hierarchy to guide
the user. Although, the creation menu serves its purpose in the sense that control
is offered to the user, potential improvements to the interface are much needed [34].
The first thing that might be done to improve the usability would be to carry out
user-test to gain insights into the real usage of the software.

The simulation might also benefit from more methods of interaction. This could
increase usability and in turn the User Experience as it might increase utility by
allowing more control [35]. Examples of such potential interactions include allowing
the user to: spawn or remove animals in run-time, control animals, get more in-
formation about animals and change the terrain in run-time. These features would
also need testing to indicate at their real value.

Performance Evaluation

As presented in chapter 4.2 and in appendix D, the simulator could, on a mod-
ern desktop, simulate almost 700 rabbits with 60 FPS, with some drops in frame
rate. This is acceptable performance for a simulator so heavily reliant on 3d-visuals,
however, not great in comparison to real scientific ecosystem simulation studies. In
the EcoSim project, prey entities number to as much as 150 000 [8]. In comparison,
Ecosim is a 2d-visual simulator with colored dots, which naturally reduces rendering
load, but it is a comparative mark of trusted scientific ecosystem studies. In its cur-
rent implementation the simulator is not designed for optimal performance. There
has been optimizations on aspects that clearly negatively impacted performance but
the simulator was not created with this as a main goal. As already mentioned in
section 5.5, one improvement would have been to create the simulator with Unity’s
Entity Components System (ECS). Beyond architectural changes there are however
a few problems worth noting in the current form of the simulator.

The performance is also influenced by animals perception. The complexity when an
animal does not perceive other animals is linear (O(n), where n is the number of
animals) to the amount of entities since each animal need one check of their sur-
roundings. Further, objects can be hidden in view, and thus a raycast is calculated
to each object found inside the animals field of vision. This can be problematic if
the simulated environment is small with many entities since it causes a quadratic
complexity (O(n2)) when all animals need to check all seen entities. The worst
case of quadratic complexity is rarely reached since most simulations are performed
with sizeable environments but is a factor of concern. There were attempts to use
a part of ECS for multi-threading purposes. However, since ECS supports prim-
itive types exclusively, the implementation of sensing, which requires support for
reference types, is not directly compatible.
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5.3 Applications
The applications of this project are found mainly in its combination of ecosystem
simulation and graphical representation. This lends itself for applications in peda-
gogy to introduce intuition of ecosystems for biology students or the general public.
Furthermore, the simulation allows for highly approximate ecological experiments
where the user can for instance compare the impact on an ecosystem caused by the
terrain, water availability, forest density (affects sight) and presence of predators.

Adapting ML models to ecosystems has only recently been made practical due to
the new frameworks of ML-tools made available. This particular application is
interesting since most known simulators apply GAs to agents with reactive behavior
in their systems. This is however not how real ecosystems function since most
species apply some level of functional adaption between the brain and the body.
The ML model used in the project are trained to adapt to their internal state and
the environment. While we compared this with an FSM-based model comparing
this with other behavioral models provides for interesting future experiments.

5.4 Social and Ethical Aspects
The main focus of the ecosystem simulation is not an undertaking of social and eth-
ical aspects. Nonetheless, a critical area to discuss regarding the project’s success,
are the influences the project might have on society and science. Altogether, this
can be summarized on whether the project causes harm, and whether it constitutes
benefit for society and science.

A simulation tool will rarely depict reality with absolute accuracy. Therefore, a sim-
ulation that is interpreted as being more correct than it is, can result in distributing
incorrect knowledge. As a result, it is of grave importance that this report carefully
defines to which degree components of the simulation mimics reality. It is advised
that users of the simulation has knowledge about the benefits and inadequacies of
the implementation, when it is used as an educating tool.

For this project to be deemed an ethical success, it should provide value to society
and science. The behavior of ecological systems, their intricacies and the hardships of
creating a somewhat stable system, has surely been discovered by the participants
of this project. This newfound knowledge has shed light on the importance of
tending to the real world ecological systems. Hopefully, this realization will be
achieved by future users of the project. The simulation, we feel, provides a good
basis for future users to gain high-level insights into the dynamics of ecosystems. The
simulation allows the user to explore ecosystems in different settings, with different
preconditions, also enabling experimentation on the impact of different aspects on
the environment. Although the ecosystem model is highly approximate, we deem it
to be an ethical success since the value it provides is apparent.
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5.5 Alternative Solutions
As in most software projects there are multiple components which could have been
structured differently. As this is a multi agent simulation it would most likely
have benefited from Unity’s ECS which is especially designed to handle independent
agents and systems at a larger scale than what was used in this project. The ECS
is however very different in structure from regular object oriented programming and
requires knowledge about Unity. This limited the project in scale of entities since
the group did not have the expertise beforehand. Beyond this underlying architec-
ture choice there are also alternatives in certain features.

Other than using outside libraries, there was also a possibility to use a 2-dimensional
simulator. This approach was considered and discarded since one of the main goals
is to create a simulator for use of people outside the project. A 3 dimensional repre-
sentation is subjectively more immersive and was so valued above the 2 dimensional
approach. The slightly simpler approach in 2 dimensions might however have re-
sulted in more interesting results regarding evolution since the project could spend
more time with the models rather than solving the complications that arise in 3
dimensions.

Another choice of implementation lays in time progression. There are arguments
for a synchronized simulations where each time step is carried out simultaneously,
mainly in the simplification of development since actions and reactions are easier to
design. This would as in the section above result in more time to spend on other
parts, such as the model. As aforementioned, the immersion was valued high and
subjectively higher in a asynchronous world which acted as in real life.

5.6 Future Improvements
Since the project was limited in time there are still features to be implemented and
potential improvements to the simulator. One core change would be to, with the
help of other expertise, change the model by which animals are affected and which
actions they can be taken. This project was solely carried out by computer science
students but would have benefited from the help of ecologists or biologists. This
would hopefully result in more interesting results which would provide more insight
on actual ecosystems.

Beyond core model changes in the animals, a more dynamic or accurate environ-
ment could benefit the results of evolving and adaptive traits. There were many
suggestions during the project with seasons, day and night cycles and more diverse
food resources. This would in turn impact the animal model so that animals could
react to these environments and could create interesting behaviors. In addition, this
would create a better representation of a given ecosystem, increasing both immersion
and educational value to users.
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5.6.1 Machine Learning Model
Currently, a single ML agent is trained to survive and mate, and the same trained
model is thereafter used for both predators and prey. As an alternative to this, mul-
tiple agents could be allowed to train in the same environment and work towards
a common goal. Furthermore, the predators and prey could be divided into teams
which would allow them to compete with each other for survival during training.
The ML-Agents toolkit has tools that can be used for both of these concepts and
is defined as Multi-agent Scenarios1. This approach would shift the classification of
the system in general more towards Multi-Agent rather than Agent-based since the
agents would work towards a common goal [36]. Exploring this approach would be
interesting as it could provide a different result.

Another technique that could improve the behavior or training is Curriculum Learn-
ing2. With this technique, a complex task is broken down into a series of smaller
tasks to be learned. This could improve learning speed and the resulting behavior.

One could potentially improve the performance of the ML model further by creating
a custom RL algorithm for the ML-agents toolkit. The algorithm currently used,
PPO, is not claimed to be the most performant and custom-made solutions tend to,
in general, achieve higher performance than general ones.

Other improvements might entail a change in tooling altogether. The training is
performed entirely before simulation run-time (As explained in 3.2.2), a side effect
of the ML-agents toolkit. Alternatively, in-simulation training would have enabled
the agents to adapt to run-time changes in the environment. Although, this would be
performance heavy which likely would reduce the number of supported agents in the
simulation. This approach would also be necessary if the project was to be extended
to support evolving behavior and dynamic terrain. Presently, the only aspect of
adaptability present in the agents comes from the parameter randomization, the
extent of adaptability from this approach is likely not comparable. In-simulation
training could be achieved by writing a C# ML library in Unity or using an existing
one.

1Multi-Agent Scenarios: https://github.com/Unity-Technologies/ml-agents/blob/main/
docs/Learning-Environment-Design-Agents.md#defining-multi-agent-scenarios

2Curriculum Learning: https://github.com/gzrjzcx/ML-agents/blob/master/docs/
Training-Curriculum-Learning.md
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Conclusion

This project set out to create a usable and immersive simulator with a plausible
model for the ecosystem with multiple animal species and a dynamically generated
terrain. The implemented species included rabbits, wolves, bears and deer. There
were three decision models for the rabbits, rule based (reactive) and two ML models.
The two ML models had different approaches, where one controlled the changes of
internal animal states (ML prioritization) and the other used pure vector steering
(ML steering). All animal agents implement both reactive and ML prioritization
models, but only the rabbits implement an ML steering model. The environment
was generated at run-time and populated with selected samples of the four species
to allow the user to customize the environment. The hope was for the simulator
to show interesting results emerging from the evolved traits and some population
relationships in the independent animal models which in combination resulted in a
plausible visual ecosystem. The project also aimed to make the software usable to
people outside the project to allow for more insight into ecosystems.

From the results (see chapter 4 and appendix D) it was evident that the ML steering
model in the rabbits performed worse than reactive and ML prioritization models in
rabbits, who performed similarly to each other. This was probably due to the sub-
jectively easier implementation of ML prioritization and reactive rabbits, where the
former used a library and the latter had lower complexity in implementation. The
ML steering rabbits used the same library as the ML prioritization model, however,
it was utilized differently, which resulted in unexpected difficulties. The simulation
showed some relationships between the wolf and rabbit populations. This was seen
when comparing terrain impact on ecosystems in section 4.1.3. Furthermore, evo-
lution of animal genes (traits) were showcased when comparing rabbits living with
and without wolves (see section 4.1.2). Finally, users can interact with the simulator
through GUIs to set up a simulation, view live statistics of the simulations and out-
put the result to JSON formatted text files for further study, which all contribute
to a understanding and interactability in the simulator.

The simulator does not easily generate stable ecosystems over a longer period of
time. Wolves tend to go extinct during the first hour. Furthermore, since no tests
with deer or bears were conducted, few conclusions may be drawn regarding these
species and their successful implementation. However, it is possible that these sys-
tems would struggle to reach equilibrium between species, since simpler rabbit and
wolf systems did so. Stable ecosystems was, however, not a goal of the project and
is thus not critical. Nonetheless, it may be possible to find stable ecosystems over
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longer periods of time by investigating different parameter settings

This project shows the possible applications of ML models in visual ecosystem simu-
lations. This is mainly due to the new ML libraries (see section 3.2.2) which combine
ML APIs with game engines. This allows for easier exploration of trained agents in
visual systems, which can be interpreted more easily by a wider audience. Further-
more, the study of ecosystem simulations is useful in order to understand ecosystems
in the real world, both for scientists, but also for the public. It is in this intersection
this project has been focused and is subsequently relatively successful.

Finally, the project goals have been sufficiently reached as the simulation provides
results from evolved animals in different environments with subjectively immersive
graphics. The software is reasonably simple, yet powerful enough to provide results
for most users. There are some improvements to be made, some in animal models
with more accurate modelling and an increased dynamic environment but also in
its user experience and performance. Increased usability would make the simulator
more accessible to others, which fulfills the project’s purpose. Better models with
higher performance would increase the scientific value provided when exploring the
simulator.
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A
Performance Profiling Results

Performance Profiling with the Unity Profiler with finished build Perfor-
mance measurements were done with only rabbits and food. Test machine used a
RTX 2060 with 6 GB VRAM GPU, AMD Ryzen 5 5600X CPU, 16 GB RAM.

Figure A.1: Rabbits per minute when profiling

Figure A.2: Frame rate over the last 2000 frames at the end of the simulation in
figure A.1. The y-axis supplies the time to render a frame, converted to FPS in
parentheses. Lower means higher frame rate.

Figure A.3: Memory usage over the last 2000 frames at the end of the simulation
in figure A.1, lower means less memory usage.
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B
Animal Parameters and Traits

Parameters
• Energy
• Hydration
• ReproductiveUrge
• Age

Traits
• maxEnergy
• maxHydration
• maxReproductiveUrge
• ageLimit
• maxSpeed
• acceleration
• size
• viewAngle
• viewRadius
• hearingRadius
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C
Machine Learning - Steering

Implementation

While the Steering approach to ML was not used in the final product, the effort put
into implementing it and the insights gained from this deserves to be mentioned here.
The implementation in general followed the same procedure of the ML prioritization
(see section 3.2.3), although it differed in details such as in which observations were
used.

The observations for the steering agent included the following:

• Energy percentage (E for energy) calculated as currentE
maxE

.
• Hydration percentage (H for Hydration) calculated as currentH

maxH
.

• Reproductive viability (RU for Reproductive Urge), shown in figure (C.1).
• Direction of Agent’s relative velocity (x and z value).
• Position (x and z value) of nearest food relative to agent’s position.
• Distance to nearest food relative to agent’s position.
• Position (x and z value) of nearest water relative to agent’s position.
• Distance to nearest water relative to agent’s position.
• Position (x and z value) of any perceived potential mate relative to agent’s

position.
• Distance to any perceived potential mate relative to agent’s position.

currentRU

maxRU
= 1 (C.1)

All metrics in the observation space were normalized to avoid skewed policy updates.
Unity’s ML agent documentation specifies that ”the greater the variation in ranges
between the components of your observation, the more likely that training will be
affected” [37].

The action space was kept as minimal as possible. The model would therefore not
require as much training, since there would be fewer actions to choose from in each
RL state. Actions included two continuous actions CA1andCA2 which were clamped
in the range of [−1, 1]. CA1 would dictate the speed of the movement. The value
range had to be limited within [0, 1] using a linear equation y = 0.5 − 0.5x where
y = 0 represented no speed and y = 1 represented maximal speed. CA2 would
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C. Machine Learning - Steering Implementation

dictate rotation of the moving direction around the y-axis, which was derived from
the animal’s forward direction. The value range was mapped to [−110◦, 110◦].

The reward system was implemented in a straightforward manner. Reward for eating
was given as the minimum of nutrition gained from the food and the difference of
maximal energy and current energy as:

Reating = min(foodNutrition,maxE − currentE)
maxE

0.1.

Similarly, reward for drinking water was given as the difference between max hydra-
tion and current hydration according to:

Rdrinking = maxH − currentH
maxH

· 0.1.

A negative reward would be given depending on the speed of the agent, such that
a maximal speed would minimize the value of negative reward given, hence the
equation:

Rlocomotion = (0.5 · CA1 + 0.5) · 0.0025− 0.0025.

According to Unity’s documentation on ML Agents it is common practice to give a
small reward for forward movement in locomotion tasks [37]. Additionally, a small
negative reward was given proportional to the amount of rotation for each action
step, Rrotation = (−0.0025) · |CA2| to prevent the agent from exploiting oscillating
movement. Furthermore, a negative reward was given for dying Rdying = (−1), and
a positive reward was given for achieving the goal of reproducing Rreproducing = 2.

Training of each steering agent was carried out similarly to the prioritization ap-
proach (see section 3.2.3), in an environment with a specified length and width.
However, in this environment the dummy rabbits were not statically placed and
there were no dummy wolves. Subsequently, on episode start, the environment was
populated with food, water blocks and a dummy mate for the agent, all with a
random position on the platform. At the end of each episode everything in the
environment except the agent was removed, whose parameters instead were reset.
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D
Population and Trait Results

This appendix intends to highlight results derived from running the simulator with
different settings. The results are arranged to compare the outcome of running the
simulator with predefined settings from chapter 4. A mean value line is plotted
for each type of simulation which is discontinued at the point of the first ending
simulation of respective type. Continuing the mean for the remaining simulations
would defeat the purpose of a mean line plot. In addition to the mean curve,
individual runs are plotted in a similar color, albeit in a thinner line. The notion of
simulation type is used to describe a predefined configuration for a simulation, for
example RW-P-32536-HDIFF which corresponds to a simulation type; rabbit and
wolves (RW), with rabbits having the machine learning prioritization behavior type
(P) on seed 32536 (32536) with an abnormal height difference compared to standard
configuration (HDIFF).

D.1 Behavior Results
The following results displays how the three different behavior models for rabbits
(reactive, prioritization ML and steering ML) perform in equal environments. Sec-
tion D.1.1 compares an ecosystem with just rabbits and food. Section D.1.2 uses
identical environments, but wolves are added to the ecosystem in addition to the
rabbits and food. Stable simulations ran for 2 hours in simulation time unless the
rabbits went extinct.

D.1.1 Rabbits and Plants
In figure D.1 the compared models fared differently. The ML steered rabbits went
extinct and did not survive while the two other models resulted in persisting popula-
tions. Note that the reactive model resulted in more rabbits than the prioritization
model after the simulations had stabilized by minute 20. Figure D.2 shows the
plant population over time in the different models. R-P-0 seems to have produced
slightly more plants than R-R-0.
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D. Population and Trait Results

Figure D.1: This plot shows how the three different behavior models resulted in
different populations over time. The ML steered rabbits went extinct before 20
minutes, whereas the other models survived for 2 hours.

Figure D.2: This plot shows the population of the plants in the simulations com-
paring the three behavior models. All three simulations invoked an initially growing
plant population, but both R-P-0 and R-R-0 had less volatility after the 20
minute mark. All the R-S-0 simulations ended before the 20 minute mark, thus
these simulations were not investigated further.

D.1.2 Rabbits, Wolves and Plants
Figure D.3 shows that the three models fared differently again. Much like in figure
D.1 above, ML steered rabbits went extinct before 20 minutes, but the other two
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D. Population and Trait Results

models survived. Note how the overall rabbit populations are smaller compared to
the previous result. The reactive model also generated slightly bigger populations
overall as before, however, this seems less certain given the final minutes where the
prioritization model yields increases in population.

Figure D.3: This plot shows how the three different models for rabbits living with
wolves resulted in different rabbit population numbers. The ML steered rabbits
went extinct before 20 minutes, whereas the other models continued to 2 hours.

Figure D.4: This plot shows the wolf population for the three different simulation
types with wolves. RW-R-0 and RW-P-0 ran for 2 hours and concluded in extinction
usually around the 1 hour mark, while RW-S-0 ended before the 20 minute mark.
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D. Population and Trait Results

Figure D.5: This plot shows the plant population for each simulation type. The
plant population had an initial growth for all the simulation types. RW-R-0 and
RW-P-0 ran for 2 hours and had a less volatile plant population after the 20 minute
mark. RW-S-0 was ended before the 20 minute mark.

D.2 Terrain Impact Results
The following results displays the impact of terrain changes. These simulations
are carried out in seed 32536, with more accessible water throughout the map, as
compared to seed 0 where most water sources are found along one edge of the map.
Additionally, a comparison between two types of simulations where the height setting
is different is presented.

D.2.1 Seed Difference
Figure D.6, D.7 and D.8 shows rabbit population, wolf population and amount
of food, respectively. These comparisons are conducted on an environment with
reactive rabbits, wolves and seed 0 and 32536.
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D. Population and Trait Results

Figure D.6: This plot shows the rabbit populations in seed 0 and 32536 with the
reactive rabbit model. The average populations on both seeds are similar.

Figure D.7: This plot shows the wolf population over time for the two simulations
with RW-R-0 and RW-R-32536. The simulation on seed 32536 saw greater wolf
populations on average.
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D. Population and Trait Results

Figure D.8: This plot shows the available food over time for the two simulations
with RW-R-0 and RW-R-32536, where the food available to the rabbits in the
former is more abundant.

D.2.2 Height Difference
This section displays the differences in rabbit, wolf and plant populations over time
when using two different height settings for the environment. The simulations com-
pared are RW-R-32536 and RW-R-32536-HDIFF. The worlds where identical
except for the height multiplier, set to 35 in the HDIFF map. The standard setting
is 10.85. Thus, the HDIFF map is more hilly than the other.

Figure D.9: This plot shows the rabbit population over time for the RW-R-32536
and RW-R-32536-HDIFF worlds. Notably, the simulations with higher height
multiplier appear more stable.
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D. Population and Trait Results

Figure D.10: This plot shows the population of wolves over time. The simulation
on the standard height multiplier (RW-R-32536) had larger wolf populations.

Figure D.11: This plot shows the available plants during the simulations RW-R-
32536 and RW-R-32536-HDIFF. Notably, the mean of HDIFF contains slightly
more plants from 40 minutes onwards.

D.3 Evolution of Traits Results
This section presents evolution of select traits in rabbits in some simulations. The
traits presented are the maxSpeed, ageLimit, maxEnergy, maxReproductiveUrge
and viewRadius. These are not all traits, but a subset that are representative to the
purpose of the project. Two simulation setups are compared, namely R-R-0 and RW-
R-0. These are selected to show any difference of rabbits traits when living under
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D. Population and Trait Results

no selective pressure from wolves versus living with wolves. Note that each trait is
a floating point value with no unit or real metric representation. Also note that the
plots in this section are focused to give a more detailed view of the mean value line
for each simulation type. Given this detail, it should be noted that simulations did
not end where the x-axis limit of the plots lies.

Figure D.12: This plot shows the maxSpeed trait of rabbits changing over gener-
ations. The trait increases in both simulations.

Figure D.13: This plot shows the ageLimit trait of rabbits changing over genera-
tions. The simulation with only rabbits (R-R-0) display a larger increase compared
to the simulation with wolves RW-R-0.

XII



D. Population and Trait Results

Figure D.14: This plot shows the maxEnergy trait of rabbits changing over gen-
erations. In both simulations the floating point value is roughly unchanged.

Figure D.15: This plot shows the maxReproductiveUrge trait of rabbits chang-
ing over generations. In both simulation the floating point value decreased over
generation.
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D. Population and Trait Results

Figure D.16: This plot shows the viewRadius trait of rabbits changing over gener-
ations. In RW-R-0 the trait remain mostly unchanged during the simulation, while
the mean value decreased in the simulation type R-R-0.
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