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Multi-objective optimization for placing airspace surveillance observers

AMANDA ANDERSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Reconnaissance is an important aspect of military planning. Tools that help an-
alysts monitor and make informed choices are vital for avoiding costly situations.
The use of ground-based radar sensors is a common method for monitoring for both
land-based and airborne threats. Manually finding optimal locations to install sen-
sors within an area of terrain can be difficult and time intensive, particularly when
multiple objectives exist. The purpose of this thesis is to implement and compare
two heuristic algorithms for automatically generating a set of optimal locations for
airspace surveillance sensors. The algorithms seek to find solutions that maximize
both total area coverage and coverage of a specific area of interest. They also seek so-
lutions that minimize sensor overlap and price. The research problem was formulated
into a multi-objective optimization. The two algorithms tested include the NSGA-II
and a multi-objective Ant Colony Algorithm (MOACO). A population-halving aug-
mentation and the Multi-resolution Approach (MRA) developed by Heyns [1] were
also applied to see if algorithm run time could be reduced without impacting final
solution quality. The NSGA-II outperformed the MOACO algorithm with respect to
diversity of the final solution set, however the algorithms performed similarly with
respect to run time and convergence. It was found that population-halving and the
MRA could result in computation time reduction for the tested scenario, however
not at a significant level.

Keywords: Facility location, multi-objective optimization, ant colony algorithm,
genetic algorithm, pareto optimal, observer placement, 3D viewshed
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1
Introduction

Reconnaissance has long been an important aspect in military planning. Track-
ing where threats are located provides a significant advantage when taking military
action. In modern times, military bases and infrastructure require protection not
only from terrain-based threats, but also airborne. Military drones and aircraft are
often employed as means of combat in the 21st century, and in many cases are used
in asymmetrical operations. Asymmetrical warfare typically involves a group with
fewer resources opposing an adversary with superior armed forces [2]. The tactics
used in asymmetrical combat are often unconventional or radically different from
what is expected, and can be difficult to predict [2]. The September 11 attacks on
the Twin Towers is one of the most well-known examples of asymmetrical warfare.
The American Air Force was completely unprepared, and an Air Force General later
admitted to never considering that possibility of attack [2]. Developing strategies
for countering asymmetric attacks can be challenging, and decisions must often be
made quickly and in the face of uncertainty. In many cases, a wrong decision results
in significant loss of human life. As such, tools to help analysts monitor threats and
make informed choices are vital.

Computers are often employed to aid in the military decision-making process. Con-
sider the example of an analyst tasked with setting up five radar sensors around a
base to detect hostile aircraft flying overhead. The terrain around the base contains
hills, a lake, and sheer cliffs. The sensors cannot be placed on the cliffs or in the
lake, and must be placed in the remaining terrain such that their signals cover as
much as possible of the overhead airspace. Any areas left uncovered by the signal
could allow for hostile drones or aircraft to enter undetected. If the five sensors
all have different levels of coverage, choosing the optimal location for each sensor
without a computer-based visualization aid is challenging. Airspace sensors are both
expensive to purchase and install, so placing them in the correct locations from the
outset is desirable.

The topic of airspace sensor placement for surveillance is the focus of the following
thesis. Sensors are formally referred to as airspace observers, and the volume of
airspace that each sensor’s signal covers is called the viewshed. The goal of the ana-
lyst is to then maximize the combined viewshed of all observers. This problem can
be complex, and finding optimal positions for sensors means every possible solution
has to be checked. To illustrate, consider two sensors that must be placed in 1km2

terrain. Assuming a sensor can be placed in one of 1500 possible locations, checking
every possible solution means we need to check all combinations for placing two
sensors in the 1500 terrain points. For each combination we would then check the

1



1. Introduction

resulting combined viewshed in order to determine which placement of the sensors
is the best. This leaves us with 15002 (2,250,000) solutions to assess. Even for this
simple scenario, a standard computer generally takes over an hour to compute the
optimal sensor placement [3].

The previous scenario is simple. However, many scenarios are far more complicated.
Terrain sizes are larger, more sensors are being placed, and additional objectives
may exist when placing sensors. Furthermore, observers with different field-of-view
or range characteristics might need to be placed simultaneously. As such, finding
solutions for these scenarios using brute-force is not feasible. Methods for reducing
the complexity of the computation are needed. A number of heuristic methods exist
for solving this problem, and the focus of this thesis is to build upon two previously
used heuristic algorithms to solve for more complicated scenarios.

1.1 Objective
There are two main objectives of this thesis. The first objective is to construct two
methods for finding optimal placement of airspace observers in a multi-objective
context. The methods should return a set of near-optimal locations for the observers
given the input of an elevation model, Area of Interest (AoI) and the number and
type of observers to be placed. The methods should handle cases with multiple types
of observers and function well in scenarios with natural or built environments. The
second objective is to reduce computation time without sacrificing solution quality.
Faster computation is more favourable to end-users and is particularly important
for time-sensitive decision-making within the military context.

1.2 Research Question
The research question is formalized as, "Given n observers of specific types, how
can they be placed in a terrain to achieve maximum viewshed coverage of the sur-
rounding airspace while minimizing costs?". This type of problem is referred to as
an Optimal Multiple Viewpoints (OMV) problem [3]. The research question can be
broken down into a set of four optimization goals:

1. Maximize cover of an overhead airspace.
2. Maximize cover of any specific Area of Interest (AoI) within the terrain.
3. Minimize overlap between sensor signals (Cost I).
4. Minimize price of the sensor solution (Cost II).

1.3 Limitations
There are a number of limitations placed on this project to maintain the scope. First,
this thesis does not include work on the 3D airspace viewshed calculation. Efficient
viewshed calculation is a broad and ongoing field in itself, and as such the focus for
this thesis is solely on the observer placement algorithms. A tool provided by the

2



1. Introduction

principal (Carmenta AB) is used for all airspace viewshed calculation. Additionally,
only the context of ground-based airspace observers will be investigated. Airborne
and submerged observers have different characteristics which are not addressed in
this thesis. As the primary goal of this thesis is to achieve solutions with greater
accuracy (rather than solely improving computation speed), methods that seek to
simplify the search space at the expense of solution quality will not be assessed. For
instance, the frequently used landform classification technique is not studied as it
generally results in a loss of final solution quality.

1.4 Scientific Contribution
While a number of analogous problems in the broader domain of camera sensing have
related studies (e.g. building surveillance camera placement), the specific combina-
tion of the airspace observation context, optimization goals and constraints in this
thesis have not been studied previously. Furthermore, searches for research assess-
ing Multi-objective Ant Colony Optimization algorithms (MOACO) for viewshed
or observer placement optimization were not successful, leading to the assumption
that this will be a novel approach for this particular research problem. Additionally,
the results of this research could impact the broader domain of camera sensing and
facility location problems.

The implementation of the NSGA-II genetic algorithm and multi-resolution tech-
nique in this thesis will also help validate earlier findings that these techniques
significantly improve both solution quality and computation time [1]. The effective-
ness of the multi-resolution technique with the MOACO algorithm will also be a
novel addition to the research field.

Lastly, the outcomes of this research will also help to identify future research op-
portunities and may illuminate any airspace-specific characteristics of the problem
which must be considered.

3
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2
Theoretical Background

This chapter presents the theoretical background for the thesis. The chapter begins
by providing an introduction to geospatial data in Section 2.1. The concept of vis-
ibility and viewshed analysis is explained in Section 2.2. The problem of geospatial
siting and location analysis and its historical development are outlined in Section 2.3.
Finally, multi-objective optimization and relevant optimization algorithms are dis-
cussed in Section 2.4.

2.1 Geospatial Data
Geospatial data refers to the digital representations of spatially-referenced, real-
world objects. As an example, the digital representation of road networks is often
portrayed as a network of lines covering specific coordinates in digital maps. To
represent real-world objects digitally, a data model is needed. There are two main
geographical data models: vector and raster.

2.1.1 Vector Data
Vector data contains three main types of objects: points, lines and polygons. Points
contain an X and Y coordinate, and can also have a Z coordinate if an elevation
attribute is included, see fig. 2.1a. Objects such as radar sensor locations can
be represented as points on a map. Line objects are constructed by two or more
connected points, see fig. 2.1b. A series of points connected by a line can be used
to represent objects such as roads and rivers. Polygons can be used to represent
objects with an area value, see fig. 2.1c. For example, city boundaries, lakes, and
building footprints can be represented using polygons. In the context of this thesis
project, observer locations are represented by points with X, Y and Z location data.
3D polygons are used to represent the volume of overhead airspace (viewshed) that
is covered by the sensors.

2.1.2 Raster Data
The raster data model represents objects using a grid of pixels. Each pixel is as-
sociated with a specific geographical location. Examples of raster data can include
photographs (whereby pixels hold a colour value), continuous structures (e.g. tem-
perature or elevation data) or categorical structures (e.g. land use) [4]. For elevation
data, each pixel corresponds to a geographical location and holds the height at that
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2. Theoretical Background

Figure 2.1: Vector data objects.

location, see Figure 2.2. Grid-based raster data also has a specific spatial resolu-
tion. The resolution relates to the size of the pixel (i.e. the real-world distance that
one pixel represents). A raster dataset with pixels representing 1m2 is thus finer in
resolution than a dataset with pixels representing 5m2.

Figure 2.2: 1m resolution elevation raster for a 5km2 area. Lighter pixels
correspond to a higher elevation value.

2.1.3 Elevation Models

Digital Elevation Models (DEMs) act as a model of the Earth’s surface [5]. They are
typically represented in one of two ways: raster or Triangulated Irregular Network
(TIN). Each pixel in a raster DEM holds a height value associated with that location
in the real-world. Tools can be used to convert raster DEMs into 3D models [5], see
Figure 2.3. TINs represent a 3D mesh by using a network of connected triangles.
In this thesis, a raster-based DEM is used.

6



2. Theoretical Background

Figure 2.3: 3D visualization of elevation raster shown in Figure 2.2.

2.2 Visibility
Visibility analysis is frequently used in the field of geomatics and Geographical
Information Systems (GIS). In the context of digital terrain, visibility refers to
whether two objects on the terrain are visible from one another [6]. Line of Sight
(LoS) and viewshed are two important concepts in visibility. LoS refers to the
visibility between two points, see Figure 2.4. Viewshed refers to the total volume
that can be seen from a point.

Figure 2.4: LoS between an observer and two targets (T1 & T2). The observer
only sees T1 as T2 is obstructed by the terrain.

2.2.1 3D Airspace
In the context of this thesis, the viewshed from a point is considered to be the 3D
volume of air that an observer can see. Each observer is thus required to specify
the sensor range and both vertical and horizontal field of view so a viewshed can
be calculated. In the case of multiple observers being placed in an Area of Interest

7



2. Theoretical Background

(AoI), the combined viewshed is the total 3D volume of air that at least one observer
can see. All 3D viewshed calculation and analysis used in this thesis is provided by
the principal. As such, the specific implementation used for calculating 3D viewshed
is not a focus in this project.

2.3 Geospatial Siting
The field of location theory began in 1909 when Alfred Weber sought to select
an optimal location for a new warehouse that minimized the geographical distance
to customers [7]. A number of related problems have since been identified after
the inception of the field, but all focus on the basic problem of finding an optimal
location for a facility considering a set of objectives. Elevation models are continuous
structures, and placing an object in a DEM means that it can be placed anywhere
on an infinite plane [8]. As such, testing all locations is not possible. Selecting only
certain points to use as possible siting locations (i.e. a discrete set of locations) is
often done for simplification. However, a large number of discrete points can still
be computationally challenging. Small scenarios (e.g. 1500 discrete siting locations)
can still take over an hour for a standard computer to find optimal locations [3].

Nowadays, siting is not only limited to buildings. Wind farms [9], solar panels [10],
and telecommunication networks [11] are also placed in terrain, and often have a
number of objectives for optimal placement. Indoor and built environment location
siting has also been explored. Namely, finding optimal locations for surveillance
sensors or cameras [12]. Brute-force testing of all possible siting configurations in a
problem is not normally feasible, and as such multi-objective heuristics to optimize
the process are often employed. These heuristics and relevant optimization concepts
are discussed in the following section.

2.4 Multi-objective Optimization
This section will describe concepts for multi-objective optimization problems as well
as common performance metrics. The research question stated in Section 1.2 was
broken down into four separate objectives. Each objective thus represents an inde-
pendent objective function, see Definition 2 (notation from Li [13]). The decision
variables are the information used when calculating the values of objectives, see Def-
inition 1 (notation from Riquelme [14]). In the context of this thesis, the decision
variables are the sensor locations and configuration (direction and sensor type) for
a solution. In multi-objective problems, the objective functions conflict with one
another. For example, a solution with a low price (perhaps through incorporating
cheaper sensors with smaller ranges) will not be able to provide maximal airspace
coverage compared to a more expensive solution with longer-range sensors. Likewise,
a more expensive solution will not be able to be made cheaper without sacrificing
airspace coverage. As such, these objectives are in conflict with one another - price
and airspace coverage cannot be simultaneously optimal in a single solution. Multi-
objective problems thus do not have a single solution. Instead, they have a number

8



2. Theoretical Background

of solutions that are equally optimal with regard to the different objectives. An
optimal solution is found when none of the objectives can be improved without de-
grading one of the others. A solution that is more optimal than another is said to be
dominating, see Definition 3 (notation from Collette [15]). A non-dominated solu-
tion is referred to as a Pareto optimal solution. All optimal solutions for a problem
are collected into a set of solutions called a Pareto front or Pareto set. The analyst
is then tasked with selecting which Pareto optimal solution from the set to use.

Definition 1 (Decision Variables [14])
Decision variables can be denoted as xj, j = 1,2,...n. A vector containing n decision
variables can be represented by: x = [x1, x2..., xn]T . The solution space S is the
vector space containing all possible decision variables.

Definition 2 (Objective function [13])
Let S be the solution space. For k objective functions f1,...,fk, fi : S 7→ R. The
decision variables yield the value for an objective function.

Definition 3 (Domination [15])
Vector x = (x1, x2, ...xn) dominates vector y = (y1, y2, ...yn) iff ∀i ∈ [1, ...n], fi(x) ≤
fi(y) and ∃i ∈ [1, ...n], fi(x) < fi(y).

The Pareto front for a problem will have a diverse range of solutions that maximize
or minimize the different objectives. As such, algorithms that seek to approximate
the Pareto front should try to find diverse solutions that cover the full extent of the
front (not only solutions that are close to the front) [16].

2.4.1 Performance Metrics
To measure how well an algorithm is able to approximate the Pareto front, a number
of performance metrics exist. These metrics are also required to be able to compare
the performance of algorithms with one another. Metrics typically consider one of
three aspects of a solution set [14]:

• Convergence or closeness of the solutions to the Pareto front
• Diversity of solutions across the front
• Number of solutions

Four commonly used metrics include: computation time, spread, hyperarea, and
inverted generational distance. Computation time refers to the total time required
to complete one run of an algorithm. Spread (or spacing) measures the diversity of
solutions across the Pareto front, see Definition 4 (notation from Tigerström [17]).
A low spacing value is preferred as it means the solutions are more evenly dispersed
along the front [17]. Hyperarea refers to the area of the objective space that the so-
lution set covers, see Definition 5 (notation from Tigerström [17]). When objectives
are to be minimized, a larger area is preferred as it means more of the objective space
is covered by the solutions. Inverted generational distance is used to measure how
far a solution set is from the Pareto front (i.e. convergence to the front), see Defi-
nition 6 (notation from Liu [18]). Solution sets with a lower inverted generational
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distance value are thus a closer approximation of the Pareto front.

Definition 4 (Spread [17])

S =
√√√√ 1

n− 1

n∑
i=1

(d̄− di)2

where
di = min

j
(|f i

1(~x)− f j
1 (~x)|+ |f i

2(~x)− f j
2 (~x)|)

and
d̄ =

∑n
i di

n

Definition 5 (Hyperarea [17])

H =
∑

i

ai|vi ∈ PFknown

where ai is the area of dominated objective space under solution vi, in the estimated
Pareto front PFknown.

Definition 6 (Inverted Generational Distance [18])

IGD =
∑

u∈U dist(u, V )
|U |

where u is an element in U (the objective vector of a reference point). V is the set
of all objective vectors, and dist(u,V) is the nearest distance from u to V.

2.4.2 Genetic Algorithms
Genetic algorithms are based on the theory of evolution, which is the process of
change in a species’ genes over time. Evolution does not occur to a single individ-
ual, but instead occurs during reproduction and over generations. Individuals that
are better suited to surviving in their environment have a greater chance of reach-
ing the reproductive stage and thus transferring their genes to offspring. As such,
these individuals’ genes have a greater chance of accumulating in a population. This
concept is called natural selection, and the measure of an individual’s suitability in
their environment is called fitness [19].

Random mutation of chromosomes during reproduction is an important feature of
evolution. Mutations can result in new traits for individuals that may improve or
worsen their fitness. Mutations can sometimes result in special adaptations for an
environment, which may then become more prevalent in populations due to natural
selection. These concepts serve as the backbone for genetic algorithms.

Genetic algorithms have been successfully applied to many different types of prob-
lems. The process begins by initializing a random population of individuals, with
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each individual representing a potential solution to the problem at hand. Each in-
dividual is associated with a measure of fitness for solving the problem, and those
with greater fitness levels are then permitted to reproduce. The parents and off-
spring are then used to create the population for the following generation of the
algorithm. The goal of genetic algorithms is to converge to near optimal solutions
over a number of generations. Each subsequent generation should result in better
solutions to the problem.

A number of researchers simultaneously began working on genetic (or evolution-
ary) algorithms in the 1960s and 1970s [20, 21, 22]. A vast number of genetic
algorithms have been developed since the 1960s, and one of particular interest for
multi-objective problems is the non-dominated sorting genetic algorithm II (NSGA-
II), see Algorithm 1 [23]. Compared to previously used algorithms, the NSGA-II
has improvements in computational complexity, required parameters, and includes
the concept of elitism for faster convergence [23]. The NSGA-II algorithm employs
a fast non-dominated sorting method, which reduces the computational complexity
from O(MN3) to O(MN2), where M is the number of objectives and N is population
size [23].

Algorithm 1: NSGA-II [23]
Data: genMax, popSize, pMut
Result: Set of non-dominated solutions.

P ← Random population of size popSize * 2
Q ← ∅
t ← 0
while t < genMax do

Rt = Pt
⋃ Qt ; // Combine parent and children population

F = fast-non-dominated-sort(Rt) ; // Sort into domination fronts
while |Pt+1| < N do

crowding-distance-assignment(Fi) ; // Assign crowding values
Pt+1 = Pt+1

⋃ Fi

end
Sort(Pt+1, >= n) ; // Sort population by rank and crowding
Pt+1 = Pt+1[0:N] ; // Fill parent population
Qt+1 = make-new-pop(Pt+1) ; // Selection, crossover and mutation
t=t+1

end

2.4.3 Ant-Colony Optimization
Ant Colony Optimization (ACO), first proposed by Dorigo et al. [24], is an opti-
mization strategy based on simulating the behaviour of ants in a colony searching
for food [24]. Many different types of ACO algorithms exist, however the basic idea
is that a group of ants use heuristic data and information from past exploration
to make decisions as they search the solution space for optimal solutions. When
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high-quality solutions are explored, they are assigned "pheromone", which then at-
tracts more ants to explore in that direction. Worse solutions have their pheromone
evaporated over time, discouraging further exploration. This collective pheromone
information is shared between the ants, and over time leads to convergence to a near
optimal solution.

Multi-objective versions of ACO are diverse, and many different configurations ex-
ist. Some common design considerations include a single versus multi-colony ap-
proach, using weighted versus non-weighted objectives, sharing information between
colonies, and augmenting the algorithm with an additional local search strategy.
Each design choice can greatly impact the effectiveness of the algorithm. As such,
implementation of a MOACO algorithm requires greater consideration compared to
the straight-forward implementation of the NSGA-II. The lack of a standardized
design framework for MOACO algorithms has led to a diverse range of implemen-
tations which can make comparisons between MOACO algorithms challenging [16].
A specific configuration of MOACO is implemented in this thesis for the particular
research context, which is described in greater detail in Section 4.3.2 of the Methods
chapter.

Algorithm 2: Standard Multi-objective ACO [25]
Data: maxIterations
Result: Set of non-dominated solutions.

T ← Initialize pheromone trails
n ← Initialize heuristic matrix
P ← Pareto set as ∅
while i < maxIterations do

construct-ant-solution();
apply-local-search(); // Optional
update-pareto-set();
update-pheromone-matrix();
i=i+1

end

The construction of an ant solution in Algorithm 2 involves the movement of an ant
from a starting point to a new point through consideration of the decision policy [25].
Consideration of both the pheromone data and heuristics is included in the decision
policy. A local search may then be conducted to try and improve the solution. Once
all solutions have been generated, the dominating solutions are added to the Pareto
set. Pheromone is then added to the well-performing solutions and old pheromone
is evaporated according to a predefined rate. After a set number of iterations have
run, the final Pareto set of solutions is returned.
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2.4.4 Multi-resolution Technique
Facility location problems such as the problem presented in this thesis have been
shown to be computationally expensive [3, 26, 27]. Techniques for reducing com-
plexity and computation time are vital particularly for time-sensitive use cases.
Algorithms with faster computation-time will thus be more valuable for a military
analyst compared to those with longer run times. The multi-resolution technique
(MRA) as described by Heyns [1] has previously been used with great success for
improving both computation time and final solution quality [1]. Before the intro-
duction of this technique, multi-objective observer placement problems used only a
single spatial resolution of candidate points (e.g. a grid of candidates 10m apart).
As such, one could reduce computation time by using a coarser grid of points, but
at the expense of final solution quality. Heyns [1] sought to eliminate this trade-off
between computation time and solution quality, and results from the initial 2014
article show improvements in both computation time and final solution quality by
using the MRA. Improvement in solution quality occurred as poorly-performing ar-
eas were identified and discarded earlier. As such, more time was able to be spent
exploiting well-performing locations.

The MRA as described by Heyns [1] is of particular interest given its specific success
with the NSGA-II algorithm which is implemented in this thesis [1]. The goal of
the MRA is to reduce the search of poorly-performing candidate points, thereby
reducing total computation time [1]. The technique works by first running an op-
timization algorithm with a coarser spatial resolution of candidate points. After a
solution set is generated from coarse points, the algorithm is run again with a set
of finer resolution points — but only those within a neighborhood of the coarser
solution points. This is then repeated for finer resolutions until the finest resolution
of points is assessed.
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3
Related Work

This chapter discusses the related work with regard to multi-objective observer place-
ment in both terrain and airspace contexts. Previous research has addressed the
OMV problem using two main strategies:

1. Using only a subset of the DEM as candidate observer locations
2. Using heuristic algorithms for finding optimal or near-optimal solutions

Both of these strategies have been shown to greatly reduce viewshed optimization
computing time while still resulting in near-optimal solutions [26, 3, 28, 27].

3.1 Subset of DEM
Using only a subset of a DEM typically involves using a landform classification
scheme that assigns each elevation point in the DEM a particular type. These can
include landforms such as peaks, pits, passes, ridges, and numerous others. Specific
landforms (e.g. ridges) are often correlated with areas with high visibility of the
surrounding area [3, 26]. The main idea for this strategy is to then find a solution
using only candidate observer points that are classified as high-visibility landforms.
This has been shown to result in nearly-optimal solutions (typically within 10% of
the optimal brute-force solution) with significantly reduced runtimes [3, 26]. Specif-
ically, Rana [26] saw a reduction in computation time by 3 orders of magnitude
(from approximately 8000 seconds to 10 seconds).

Research pertaining to using landform classification for candidate subsets specifically
for the airspace context was not found, however it is assumed that certain landforms
would also result in increased visibility of overhead airspace (e.g. peaks/ridges with
360° views as opposed to valleys surrounded by high peaks). The main drawback to
this method is some trade-off between solution quality and computation time. Cer-
tain scenarios require solutions of the highest quality, and any trade-off to improve
computation time is not permitted.

Another subset technique is to do viewshed analysis using a TIN as opposed to a
grid-based raster DEM, as there are fewer points in a TIN [29]. When using a TIN,
homogenous terrain with little variation (e.g. a flat plain) will use fewer points (thus
larger triangles) to represent the area. In grid-based DEMs, evenly spaced points are
used regardless of the variation in the terrain, meaning that flat areas may become
over-sampled, and thus contain extra points which are not necessary. However, care
must be taken if TINs are used. If a TIN simplifies terrain too much, the loss of
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quality can introduce errors into the viewshed computation.

As described previously in subsection 2.4.4, the more modern multi-resolution ap-
proach (MRA) has shown promising results, without any loss of solution quality [1].
However, no studies by other researchers were found that corroborated the results
found by Heyns [1]. As such, it is unclear how this method performs when used for
other scenarios, datasets, and heuristic algorithms.

3.2 Heuristic Algorithms
The second strategy involves using heuristic algorithms to efficiently find near-
optimal solutions. Heuristics offer a faster alternative to the traditional brute-force
approach by using more sophisticated techniques to search the solution space. How-
ever, it is important to note that heuristics do not always result in optimal solutions.
More often, they result in near-optimal ones. There are many different heuristic ap-
proaches, however genetic algorithms have been shown to be particularly successful
for the OMV problem [27, 17]. Variations of Simulated Annealing Algorithms, Swap
Heuristics, and Ant Colony Algorithms have also been successfully applied to multi-
objective problems [3, 27, 30, 31, 32].

In the particular context of airspace surveillance, it was found that research on this
topic often investigates the problem from the point of view of a drone or Unmanned
Aerial Vehicle (UAV) trying to avoid hostile sensors or obstacles (generally called
"Seek and Avoid") [33, 34]. However, the problem as described in this thesis is
from the point of view of an analyst setting up the ground sensors for detecting
hostile aircraft. Thus, the context is opposite to a large portion of related airspace
surveillance research, leaving a noticeable gap in the literature.

3.3 Multi-objective Optimization
For multi-objective viewshed optimization, a more limited selection of research ex-
ists. Optimization with distance constraints on observer locations can be found in
research investigating signal tower placement, as signal towers have transmission
ranges and overlap requirements [30]. For example, Kim et al. [30] investigates sig-
nal tower placement and provides a case where a genetic algorithm is successfully
implemented with distance constraints. Tigerström [17] researches a multi-objective
scenario where there are three distinct criteria: observer cover/safety, maximizing
viewshed, and minimizing required number of observers. In Tigerström’s [17] study,
three heuristic algorithms are assessed, with the NSGA-II genetic algorithm being
the best performing. While this study focuses on observing surrounding terrain (as
opposed to airspace), the optimization method and core problem are the same and
as such applicable to the problem context focused on in this thesis.

The NSGA-II algorithm has been particularly successful and widely applied to
multi-objective problems. The study by Tigerström [17] found that the NSGA-II
performed better than both Tabu Search and Multi-objective Simulated Annealing
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(MOSA) for a multi-objective observer placement problem. In a water-reservoir
optimization study, the NSGA-II significantly outperformed a multi-objective par-
ticle swarm optimization (MOPSO), resulting in both a better diversity of solutions
and approximation of the Pareto front [35]. When applied to a vehicle suspension
problem, the NSGA-II performed marginally better than the SPEA-II and PESA-II
algorithms in terms of minimizing the objectives, however the final solution set had
poorer diversity [36]. It is highlighted in this study the importance of maintain-
ing diversity in the population for NSGA-II [36]. When applied to a centrifugal
pumps problem, the MOPSO outperfomed the NSGA-II in finding the extremes of
the Pareto front [37]. The results suggest that in the specific scenario the NSGA-II
population lacked diversity and converged more to compromise (balanced) solutions,
rather than extremes for each objective. It is evident from prior research that the
NSGA-II has performed quite well for a large number of different optimization prob-
lems.

The work by Heyns [38] whereby a population-halving augmentation was used with
the NSGA-II is of particular interest to this thesis. By measuring convergence be-
tween populations, this technique decreases the population by half for all remaining
generations when a certain threshold is achieved. This is meant to decrease com-
putation time while still allowing exploitation of the best solutions [38]. Heyns [38]
found that using a similarity threshold of 80% was able to significantly reduce run
time with no effect on solution quality.

MOACO algorithms are a diverse group of algorithms that have been applied to
a wide range of optimization problems. While often used to solve path-planning
problems, they are effective for a number of different problems [39]. Comparison
of the different configurations is challenging, and multiple efforts have been made
to create a taxonomy for MOACO algorithms [40, 16, 41]. In-depth explanation of
each taxonomy and the numerous ACO configurations is outside the scope of this
thesis. However, an important finding from literature is that in some applications
of MOACO the algorithms are competitive with or outperform the highly-regarded
NSGA-II [42, 43, 44]. No relevant studies using MOACO for the observer place-
ment problem as described in this thesis were found. Previous studies often used
tailored or custom MOACO algorithms for the specific research context, and as such
it is unclear how effective MOACO will be for the research problem investigated in
this thesis. Furthermore, selecting the best configuration requires identifying rec-
ommendations in literature and potentially creating a custom implementation of a
MOACO algorithm. The analysis performed and final algorithm used is described
in the Methods section.

With regard to placing different types of observers in the same terrain, no current
research was located within the context of terrain or airspace viewshed optimization.
However, in the broader geospatial domain, research in surveillance camera planning
can offer additional insight. A number of different camera types can be used when
setting up building surveillance systems. As a result, to optimize the locations of
these cameras, the specific camera types and corresponding properties (e.g. fixed vs
rotating, field-of-view, view angle) must also be considered. This problem is thus
analogous to airspace viewshed optimization where observers have different field of
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view characteristics. Gonzalez et al. [45] investigates this problem using a binary
integer programming algorithm and is able to optimally place a mixture of binary
and omni-directional surveillance cameras in a scenario.
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4
Methods

This chapter describes the method of the thesis. Section 4.1 reiterates and describes
the research problem from an implementation perspective. Section 4.2 describes the
experimental setup used for testing the algorithms. Section 4.3 outlines algorithm
design and implementation. Section 4.4 describes implementation of the multi-
resolution technique. Section 4.5 describes the evaluation metrics and data collection
procedures.

4.1 Problem specification
As described in Section 1.2, the multi-objective research problem has four main
objectives. To make analysis and visual plotting simpler, it was decided that hence-
forth the minimization type would be used for all objectives. This was done by
using the complement of the airspace coverage. The complement is calculated by
subtracting the 3D volume of airspace covered from the total volume of the input
Area of Interest. In other words, the complement is the volume that none of the
observers can see, thus leaving it uncovered. As such, a lower complement value
represents a higher coverage of the area. Minimization was also used for price and
sensor overlap. In this thesis, sensor overlap for redundancy was not considered a
goal for sensor placement. However, the objective was included as for other use
cases consideration of overlap may be very important (e.g. placing signal towers),
and well-spaced sensor solutions were preferred for this project. The four objectives
were thus restated as:

1. Minimize the complement of the cover of an overhead airspace.
2. Minimize the complement of the cover of any specific Area of Interest.
3. Minimize overlap between sensor signals.
4. Minimize price of the sensor solution.

The decision variable as described in Section 2.4 was chosen to be a vector of sensor
locations following the advice presented by Tigerström [17]. As a small number of
observers are being placed in a large solution space, keeping a fixed-length vector
representing all candidate locations (and then marking which has a sensor) is more
costly than using a variable-length vector that keeps only the points where sensors
are located [17]. The 3D visibility calculations including coverage, overlap, and
clipping to the AoIs were all completed using the principal’s product Carmenta
Engine.
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Table 4.1: Sensor specifications used in experiment.

Sensor Type Horizontal FoV Vertical FoV Range (m) Price
A 360◦ 80◦ 750 $200k
B 40◦ 80◦ 1000 $100K

4.2 Experiment setup
To test the algorithms, input data representing a realistic use case was required. Sec-
tion 4.2.1 describes how the input geodata was used, Section 4.2.2 describes how the
sensor types were specified, and Sections 4.2.3 and 4.2.4 describe the experimental
scenario used and AoIs.

4.2.1 Data preparation
A high-resolution digital elevation model was required as input for both the algo-
rithm implementation and multi-resolution technique. The 2013 USFS Lake Tahoe
0.5m DEM from ©OpenTopography was selected given it’s large areal coverage, fine
resolution, and mountainous terrain type. Additionally, usage of Open Source data
was preferred for reproducibility. The Lake Tahoe DEM served as input to the prin-
cipal’s airspace coverage tool and was used to generate a grid of candidate locations
at a range of resolutions. The finest resolution (0.5m) DEM contains approximately
22 million candidate points.

4.2.2 Sensor specifications
Two models of sensors were used in this thesis. Each model is based off a general
specification for real-world, low-range sensors. Low range sensors were selected as
they were most appropriate for the terrain size and resolution used in the experiment.
As the focus of the optimization is on combining a number of different objectives,
variation within sensor types is limited to just two distinct sensors. This allowed for
the price objective of any solution to fall within one of a smaller number of groups,
and made interpretation of the resulting 3D Pareto plots clearer. No additional
information pertaining to the research objective outlined in Section 1.1 would be
elucidated if additional sensor types were included. Table 4.1 contains the field of
view, range, and price specifications for the two sensor types A and B. Given that
sensor B has a horizontal field of view less than 360◦, sensor direction as well as
placement was important. Direction was handled by using a random initial value,
with possibility for change during the algorithm run based on random mutations.

4.2.3 Experimental Scenario
A small-scale scenario was created and modelled after a real-life civilian use case
for testing the algorithms. A civilian use case was selected as opposed to a military
one as civilian cases tend to be less complicated and cover a smaller area. A small
scenario was better suited for data collection within the time constraints of this
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thesis. The area selected was a 5km2 plot south of Lake Tahoe, California. The
area contains a flat valley near the center of the DEM, which in civilian use cases
could have an industrial complex or small airport which requires surveillance. The
surrounding area contains mountains and hills with a number of valleys and passes
between them. This scenario is meant to mimic the use case of protecting a base or
building of interest from surrounding threats. A mountainous environment repre-
sents a challenging area for airspace surveillance given the number of obstructions
to line of sight, and as such was selected as an appropriate way to test the strengths
of the optimization algorithms.

4.2.4 Areas of Interest
In the 5km2 scenario described above, the valleys between the mountains in the
terrain represent specific Areas of Interest (AoIs). Airborne threats such as civilian
drones and small aircraft would be more likely to fly through these passes, and as
such monitoring of these areas should be prioritized. The final scenario used with
the total area to be monitored as well as two AoIs is shown in Figure 4.1.

Figure 4.1: Scenario with area to be monitored and two AoIs.

4.3 Algorithm implementation
The following sections describe the implementation for both the NSGA-II and MOACO
algorithms. General descriptions for both algorithms were described in Section 2.4.2
and Section 2.4.3 respectively.

4.3.1 NSGA-II
The NSGA-II implementation presented by Deb et al. [23] was used. The custom
crossover function described by Tigerström [17] was used given the similarity of
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the research problems. Crossover between two parents was thus implemented by
combining all parent sensor locations in a pool and randomly selecting (without
repetition) locations to generate child solutions [17]. NSGA-II has three parameters
that can be set by the user: population size, number of generations, and mutation
rate. Sensitivity analysis was performed to ascertain the best values for these pa-
rameters for the specific context.

A population-halving augmentation to the NSGA-II has been successfully used in a
previous study [38]. As such, it was decided to implement and test this technique to
see if improvements in computation time (without sacrificing solution quality) could
be made. Population halving involves measuring the convergence of populations be-
tween generations. Once a specific convergence threshold is met, the population size
is halved for the remaining generations. To measure convergence, the generational
distance metric was used given that it is faster to calculate compared to hypervol-
ume. This lightweight nature means that its use in the heuristic algorithms will not
result in drastic increases in computation time. While generational distance can be
less accurate than hypervolume in terms of assessing the diversity of solutions, it
is still currently the most well-used measure for convergence [14]. The appropriate
convergence threshold for this technique was found through testing a range of low
and high thresholds and comparing the final solution set quality.

4.3.2 MOACO
The ACO paradigm is a generic algorithm structure that can be tailored to solve a
wide range of problems [46]. As no previous examples of using ACO in the observer
placement context were found, it was decided to first assess what characteristics the
stated research problem has. Recommendations from literature were then located
regarding what components and ACO configuration is best suited to this type of
problem. An existing algorithm that best matched this configuration was then used
as a base for implementation. The main recommendations found from literature
included using:

1. Multiple colonies
2. Additional colony for compromise solutions
3. Local search
4. Information sharing between colonies

The use of multiple colonies with independent pheromone and heuristic matrices was
recommended for problems where the true Pareto front or solution types needed by
a decision-maker are unknown [16]. The use of multiple colonies has shown to be
competitive with the other MOACO techniques and in some cases performs bet-
ter [47, 48, 49]. Furthermore, multiple colonies can reduce the bias that weighted
objective schemes have and promote solution diversity [16]. As shown through ex-
perimental analysis by López-Ibáñez et al. [50], more colonies results in greater ex-
ploitation. This is important as the traditional single-colony Pareto-ACO can have
bias towards compromise solutions (and disregard edges of the Pareto front) [40].
One downside of heterogeneous multi-colony algorithms is the tendency to focus on
the extremes of the Pareto front, while missing more balanced solutions [16]. The
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mACO-1 algorithm which uses ant groups addresses this problem by adding an ad-
ditional group that seeks to find compromise solutions according to a weighted sum
of the objective-specific groups [39]. An additional colony was thus incorporated
into the MOACO algorithm in this thesis which seeks to find compromise solutions.
This is achieved by using a non-dominated sorting scheme and crowding comparator
to find well-spaced solutions. Thus, colonies exist that seek to find solutions in all
areas of the Pareto front.

The local search technique is listed as optional in the original metaheuristic. This
was added on the recommendation from numerous research articles, which state that
ACO algorithms are often strongly enhanced when local search is included [51, 50].
The MOACO algorithm used in this thesis employs a simple k-exchange neighbor-
hood, which is explained in Section 4.3.2.4.

Cooperation has been shown to improve the efficiency of ACO algorithms [39]. So-
lutions can be shared between colonies through a combined pool. After each colony
sorts and selects solutions that maximize their respective objective, the remaining
solutions are added to the shared pool. Each colony can then search the shared
pool for any solutions found by other colonies that may be an improvement on their
solutions.

The general algorithm described by McDonald [52] to solve a multi-objective in-
frastructure routing problem was found to be most similar to the recommended
configuration. MOACO algorithms can be applied to a wide range of problems, and
tailoring the algorithm for the observer placement context was feasible. The unique
features listed by McDonald that can be added to the algorithm for addressing the
routing problem (e.g. adding divisions for multiple end points) are not used in this
thesis, as they are not applicable to the observer placement problem. The optional
local search technique and a simple colony sharing pool were added to the algorithm
to address all recommendations from literature.

The algorithm used by McDonald [52] has for every objective On, where n is the
number of objectives, Cn+1 colonies. Each colony focuses on solutions for one objec-
tive except for colony Cn+1, which finds optimal solutions across all objectives [52].
Each colony has a set of ants ACx, where x is the number of ants in the colony [52].
Each ant uses its colony’s pheromone and heuristic information to search for an op-
timal, non-dominated solution. As the research problem stated in this thesis is not
a routing problem with a set end point, each ant explores one new solution for each
iteration. Whether the move is permitted depends on both heuristic and pheromone
information. The probability of starting a new search from an existing solution is
directly related to the amount of pheromone the solution has. If the move does not
result in a better solution, the ant enters a state of diversification and moves to a
new, random solution in the solution space. Once all ants in a colony have moved
to a solution, only the ant at the best solution is permitted to add pheromone.

A parent group Q is used to save all non-dominated solutions found during the al-
gorithm run [52]. The best solution found for each colony is compared after every
iteration. If the solution is non-dominated by the parent group, it is added. This
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parent group of solutions is then returned at the end of the final iteration. The final
algorithm implemented employing the stated components is shown in Algorithm 3.

Algorithm 3: Multi-colony MOACO
Data: maxIterations, colonySize, evaporationRate
Result: Set of non-dominated solutions.

T ← Initialize pheromone matrix
n ← Initialize heuristic matrix
Cn ← Vector of n colonies
SP ← Shared pool of solutions
Q ← Parent group
while i < maxIterations do

for n in Cn do
Cn = get-pareto(Cn);
sort-by-objective(Cn, n);
V = top Cn;
update-Q(top Cn;);
SP = remaining Cn; // Add remaining to shared pool
Cn = V

end
for n in Cn do

Cn = combine(Cn, SP); // Combine colony and shared pool
Cn = get-pareto(Cn);
sort-by-objective(Cn, n);
update-pheromone-matrix(T );
apply-local-search(Cn);; // Ants in colony exploit or explore

end
i=i+1

end

4.3.2.1 Decision Policy

The decision policy refers to how ants consider both heuristic and pheromone in-
formation as they move through solution space. When choosing to move in a new
direction, an ant will combine available data to try and make the best choice. The
data available to an ant in this thesis includes colony-specific heuristic information,
a pheromone matrix, as well as a local search strategy.

4.3.2.2 Pheromone Update

The pheromone matrix is involved in every iteration when each ant selects a start-
ing point for their search. When an ant explores a new solution, it will do so
from the starting point of one of the previously explored solutions with pheromone.
The choice of starting solution is probability-based, where solutions with greater
pheromone have a greater probability.
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The pheromone update strategy used by McDonald [52] was employed in this the-
sis. Namely, only the top solution in an iteration for each colony has pheromone
increased. All other solutions with pheromone then suffer pheromone evaporation.
While McDonald [52] uses an evaporation rate of 0.7, a range of values was tested
for this thesis to ascertain whether another value was better suited to this research
context.

4.3.2.3 Heuristic Information

In this thesis, the heuristic information used in each colony is related to the specific
objective that colony seeks to minimize, as well as non-dominance. If a solution
an ant is considering moving to is both non-dominated with respect to the other
solutions in the colony, and better than at least one solution with respect to the
objective of interest, the move is permitted. If the solution does not meet these
requirements, the ant enters a "diversification" phase whereby they explore in a
new, random direction.

4.3.2.4 Local Search

The local search technique implemented is a simple k-exchange neighborhood. As
such, the neighborhood of a solution is considered to be all solutions that differ by
only one sensor location. In other words, the neighborhood of a solution with sensor
locations A, B and C is all other solutions with at least two locations that are either
A, B or C. In the interest of computation time, each ant does not perform a full
local search themselves. Each ant explores one solution in the neighborhood of the
starting point, and if no better solution is found, they explore in a random direction
(to promote diversification). The colony thus explores as many neighborhood solu-
tions as there are ants in the colony in a single iteration. While not an exhaustive
list of neighborhood solutions, local searches can be designed to terminate if there
is no improvement in a set number of iterations [53]. Thus, the termination in this
algorithm is after all ants in the colony have explored at least one neighbor solution.

4.4 Multi-resolution technique
The multi-resolution technique requires two main inputs: resolution levels for candi-
date points and neighborhood size. Both inputs can have a significant impact on the
final solution quality, and as such must be chosen with care. As it was unclear which
resolutions and neighborhood size were best, analysis for a range of possibilities was
conducted. Candidate point lists were generated for the following resolutions: 50m,
20m, 10m, 5m, & 1m. These resolutions were chosen given the specific scenario of
a 5km2 input area. As used in the original study, an n x n site span around each
solution point is used to carry over new candidates [1]. Neighborhood site spans
tested included 1, 2, 5 and 10 units as these were seen to represent both small and
large neighborhoods for the specific scenario. As the goal of the multi-resolution
technique is to reduce total computation time for the heuristic algorithms compared
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to the single-resolution run, only 2 to 5 resolution levels were applied in a single
multi-resolution run for this study. Including a greater number resolutions could
result in better solution quality but at the expense of additional computation time.
The multi-resolution test results were compared with the results from using only a
single, fine resolution list of candidates (1m resolution). The multi-resolution tech-
nique uses a convergence measurement to signal when the next run of the algorithm
should begin with a finer resolution of points. A convergence value of 20% was used
(i.e. the group of individuals had 80% similarity to the previous group), as this was
used in the original study by Heyns [1]. When the threshold is reached in the MRA
technique, the algorithm is restarted with a finer resolution of candidate points in
the neighborhood of the solutions found from the previous run.

4.5 Evaluation
Evaluation of the described algorithms and techniques required both metrics and
data. The method used for data collection is described in Section 4.5.1, and the
evaluation metrics used are described in Section 4.5.2.

4.5.1 Data collection
Data collection was conducted by running the algorithms with varying parameter
values. As parameters can be an infinite number of values, a discrete set of values
was required for testing. Each parameter for the algorithms was thus assigned a min-
imum, maximum, and increment (step) value. The parameters were then changed
one at a time to complete a full factorial experiment. Every possible combination
of parameter values within the specified ranges was thus tested. A fully crossed fac-
torial experiment was used given that this allows for quantification of interactions
between predictor variables with high precision [54]. The precision and detailed
analysis that comes from a factorial design was seen as more favourable than alter-
natives that provide faster data collection. Specifically, the graeco-latin square and
fractional factorial designs were also considered [55, 56]. However, no interaction
effects between predictor variables can be discovered with these approaches. Fur-
thermore, it is recommended that the graeco-latin square be used for an initial test
to find suitable ranges of parameter values, and then to use a full factorial design
on a more precise range [54].

One downside to using a fully crossed factorial design was that the long computation
time required for data collection allowed for only a single run for each combination
of parameter values. As such, robustness through using replicates was not present.
However, general trends found in the data are still considered to be reliable given
the number of runs tested and step sizes used.

The ranges for each parameter were decided upon through ad-hoc exploratory test-
ing after initial algorithm implementation. Early testing used median parameter
values employed by Tigerström [17] in a similar study. A measure of convergence
was implemented into the algorithms to see whether these parameters were suffi-
ciently large to result in near optimal solutions. Convergence in this context refers
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Table 4.2: Start, stop and step value for parameters in Experiment I.

Parameter Start Stop Step
NSGA-II

genMax 1 20 +2
popSize 10 100 +10
pMut 0.0 1.0 +0.1

MOACO
maxIterations 1 20 +2
colonySize 5 50 +5
evapRate 0.1 1.0 +0.1

to when two generations have populations that have a generational distance within
20% of each other. This convergence threshold was selected given its success in a
related research study [1]. It was found that with a population of 50, 10 genera-
tions, and a 0.1 mutation rate, convergence generally occurred around generation
7. As such, parameter ranges were chosen to include values both smaller and larger
than this median. The maximum values chosen also involved consideration of com-
putation time, as a very high computation time was undesirable, and the presence
of convergence suggested that significantly higher parameter values would not be
necessary.

Given this initial exploratory work, the final parameter values tested for the ini-
tial full factorial experiment (called Experiment I) are listed in Table 4.2. Further
analysis was then required for the population-halving technique (Experiment II)
and Multi-resolution technique (Experiment III). The population-halving experi-
ment was conducted by using fixed median values for the algorithm parameters,
and testing a range of convergence thresholds. As a convergence measure is required
for the multi-resolution technique, a colony-halving method was also tested for the
MOACO algorithm in Experiment II. This was completed by measuring conver-
gence of the parent group Q between iterations. The specific values used are shown
in Table 4.3. The multi-resolution experiment functioned similarly to the other ex-
periments, with the parameters and convergence being given a fixed value and the
neighborhood span and resolution levels being varied over a number of runs. The
values and steps used for this experiment are shown in Table 4.4.

4.5.2 Metrics
A number of metrics were used for comparing the algorithms and techniques. The
first metric used was computation time. Lower computation time is favourable for
analysts when making time-sensitive decisions, and as such knowing how each algo-
rithm parameter affects computation time was important. The hyperarea, spread,
and generational distance metrics described in Section 2.4.1 were used for assessing
the quality of the algorithms. The open-source mco R package version 1.15.6 was
used for hyperarea, spread, and generational distance calculations. A theoretical
Pareto front was generated for the scenario by running the NSGA-II algorithm for
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Table 4.3: Parameter values for Experiment II.

Parameter Start Stop Step
NSGA-II

genMax 10 - -
popSize 50 - -
pMut 0.1 - -

convergence 5% 30% +1%
MOACO

maxIterations 7 - -
colonySize 40 - -
evapRate 0.5 - -

convergence 5% 30% +1%

Table 4.4: Parameter values for Experiment III.

Parameter Values
NSGA-II

genMax 10
popSize 50
pMut 0.1

Convergence threshold 80% similarity
Resolution levels (m) Listed in Table 4.5.
Neighborhood size 1, 2, 5, or 10 unit site span.

MOACO
maxIterations 7
colonySize 40
evapRate 0.7

Convergence threshold 80% similarity
Resolution levels (m) Listed in Table 4.5.
Neighborhood size 1, 2, 5, or 10 unit site span.
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Table 4.5: Multi-resolution level groups for Experiment III.

1, 5
1, 10
1, 20
1, 50
1, 5, 10
1, 5, 20
1, 5, 50

Resolution level groups (m) 1, 10, 20
1, 10, 50
1, 20, 50
1, 5, 10, 20
1, 5, 10, 50
1, 5, 20, 50
1, 10, 20, 50
1, 5, 10, 20, 50

a very large number of generations. Every solution assessed in the algorithm was
then collected into a list. Once the algorithm was terminated, the Pareto front of
this large set of solutions was found and used as a theoretical "true" Pareto front. It
is important to note that this Pareto front of solutions is not the actual collection of
optimal solutions, and as such the quality metrics that use this front for calculation
have accuracy concerns.

29



4. Methods

30



5
Results

This chapter describes the results from the data collection procedure described in
Section 4.5.1. Section 5.2 contains the results for Experiment I, Section 5.3 contains
results for Experiment II, and Section 5.4 contains results for Experiment III. Lastly,
Section 5.5 provides an overall comparison of the two algorithms.

All experiments were conducted on a Dell Precision 5540 with 32 GB of RAM and
an Intel i7-9850H processor with six cores of 2.60 GHz.

5.1 Estimated True Pareto Front
As some metrics require a "true" Pareto front for measuring the quality of a solution,
an estimated Pareto front was constructed by compiling every solution assessed
during a long (> 1 hour) NSGA-II run using a large population and high number of
generations, and then retrieving the Pareto front of that set. It should be reiterated
that this front is only an estimation, and does not represent the true collection
of optimal solutions for the problem. As such, metrics using this estimated front
do suffer from accuracy concerns. Figure 5.1 shows the final Pareto front in a 3-
dimensional plot. The value of the 4th objective (price) was shown using colour
coding to allow for the data to be visualized in a single 3D plot, rather than a set of
2D or 3D plots. A single plot allowed for clearer visual interpretation of the data.

5.2 Experiment I: Metrics
The aim of Experiment I was to investigate any association between the NSGA-II
and MOACO algorithm parameters and the time, spread, hypervolume, and gen-
erational distance metrics. Furthermore, identification of any interaction effects
between the parameters was also of interest. For this purpose, multiple linear re-
gression was used which employed QR decomposition.

A multiple linear regression allows for predicting a response variable y from multi-
ple predictor variables x. In this experiment, the response variable y is one of the
quality metrics (time, hyperarea, spread or generational distance), and the predictor
variables are the algorithm parameters. The null hypothesis used was that a pa-
rameter has no effect on the quality metric. As a full factorial design was employed,
multiple regression allowed for investigation of potential interaction effects between
the algorithm parameters. Parameters with significant results (i.e. p-value less than
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Figure 5.1: Estimated true Pareto front.

or near 0.05) are highlighted in the result tables using an asterisk (*) for clarity.
A multiple linear regression for two independent predictor variables results in the
following equation:

y = b0 + b1x1 + b2x2

whereby b represents the regression coefficient (association). The regression coef-
ficient is, in other words, the average effect of a one unit increase in x on y [57].
Values further away from 0 thus have a stronger impact on the outcome variable.

For multiple regression considering interaction effects between two predictors, the
following equation is then used:

y = b0 + b1x1 + b2x2 + b3(x1x2)

where b3 would represent the increase in effectiveness of x1 for a one unit increase
in x2 (and vice-versa) [57]. Three-way interactions (e.g. x1x2x3) are typically not
used as they can be difficult to interpret [57].

5.2.1 Time

Table 5.1 shows the multiple regression results between the independent parameters
and computation time. The Estimate field represents the regression coefficient (b).
The R2 value (between 0 to 1) was included to indicate how well the line was fitted
to the data. Values closer to 1 indicate a better fit. Table 5.2 shows the two-way
interaction effects of the parameters associated with computation time.
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Table 5.1: Independent time metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize 15.67 0.41 38.14 <2e-16 *
maxGen 63.62 2.05 31.10 <2e-16 *
pMut 2.33 37.79 0.06 0.951

R2 : 0.76
MOACO

colonySize 25.17 1.13 22.30 <2e-16 *
maxIter 64.79 2.80 23.13 <2e-16 *
evapRate 16.19 50.98 0.32 0.75

R2 : 0.50

Table 5.2: Two-way interaction time metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize -1.50 1.05 -1.42 0.16
maxGen -24.9 5.22 -4.64 4.06e-06 *
pMut 43.95 109.34 0.40 0.69
popSize : maxGen 1.57 0.08 18.83 <2e-16 *
popSize : pMut -0.99 1.77 -0.56 0.688
maxGen : pMut -4.02 8.81 -0.46 0.648

R2 : 0.92
MOACO

colonySize 6.04 4.20 1.44 0.15
maxIter 13.83 10.50 1.32 0.19
evapRate 5.91 221.82 0.03 0.98
colonySize : maxIter 1.83 0.35 5.28 2.07e-07 *
colonySize : evapRate -1.13 7.06 -0.16 0.87
maxIter : evapRate 1.79 17.82 0.10 0.92

R2 : 0.55
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Table 5.3: Independent spread metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize -1.09e-03 7.22e-05 -15.13 <2e-16 *
maxGen -4.37e-03 3.60e-04 -12.16 <2e-16 *
pMut -4.96e-02 6.62e-03 -7.49 1.71e-13 *

R2 : 0.34
MOACO

colonySize -0.003 0.0004 -8.97 <2e-16 *
maxIter 0.006 0.0009 6.99 5.4e-12 *
evapRate 0.008 0.02 0.47 0.64

R2 : 0.15

5.2.2 Spacing

Table 5.3 shows the association results between the independent parameters and
spread. Table 5.4 shows the parameter interaction association with spread.

5.2.3 Hypervolume

Table 5.5 shows the association results between the independent parameters and
hypervolume. Table 5.6 shows the parameter interaction association with hypervol-
ume.

5.2.4 Generational Distance

Table 5.7 shows the association results between the independent parameters and
generational distance. Table 5.8 shows the parameter interaction association with
generational distance.

5.3 Experiment II: Metrics

The aim of Experiment II was to augment the NSGA-II and MOACO algorithms
with a population and colony halving technique respectively, and investigate the
impact on computation time and solution quality. A linear regression was used to
investigate whether halving at certain convergence thresholds resulted in significant
changes to the run time or final solution quality. No significant effects were found,
however some general trends which could be of interest did appear and are shown
in Figures 5.2 and 5.3. The important finding is a general reduction in run time
without significant impact on the hypervolume, generational distance, and spread
metrics. A table showing the regression summary is located in Appendix A.
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Table 5.4: Two-way interaction spread metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize -1.12e-03 2.87e-04 -3.89 0.0001 *
maxGen -5.34e-05 1.45e-03 -0.04 0.97
pMut -9.02e-02 3.09e-02 -2.92 0.004 *
popSize : maxGen -6.50e-05 2.33e-05 -2.79 0.0053 *
popSize : pMut 1.07e-03 4.87e-04 2.19 0.027 *
maxGen : pMut -3.81e-03 2.44e-03 -1.56 0.12

R2 : 0.37
MOACO

colonySize -0.002 0.001 -1.49 0.14
maxIter 0.007 0.004 1.99 0.05 *
evapRate 0.05 0.08 0.65 0.52
colonySize : maxIter -0.75e-04 0.0001 -0.64 0.53
colonySize : evapRate -0.25e-02 0.006 -0.40 0.69
maxIter : evapRate 0.19e-03 0.0002 0.92 0.36

R2 : 0.14

Table 5.5: Independent hypervolume metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize 0.03 0.004 7.31 6.13e-13 *
maxGen 0.17 0.02 8.51 < 2e-16 *
pMut 1.33 0.37 3.56 4e-4 *

R2 : 0.13
MOACO

colonySize 0.007 0.004 1.37 0.17
maxIter 0.03 0.01 2.34 0.02 *
evapRate 0.11 0.23 0.48 0.63

R2 : 0.03
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Table 5.6: Two-way interaction hypervolume metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize 0.02 0.02 1.12 0.23
maxGen -0.001 0.08 -0.02 0.99
pMut 0.52 1.71 0.30 0.76
popSize : maxGen 0.002 0.001 1.50 0.16
popSize : pMut -0.01 0.03 -0.41 0.68
maxGen : pMut 0.19 0.14 1.34 0.18

R2 : 0.13
MOACO

colonySize 0.02 0.02 0.83 0.41
maxIter 0.04 0.05 0.73 0.46
evapRate -0.16 1.05 -0.15 0.88
colonySize : maxIter -0.7e-03 0.002 -0.43 0.67
colonySize : evapRate 0.28e-03 0.03 0.01 0.99
maxIter : evapRate -0.45e-03 0.27e-02 -0.16 0.87

R2 : 0.03

Table 5.7: Independent generational distance metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize -3.39e-04 2.19e-05 -15.51 <2e-16 *
maxGen -2.41e-03 1.10e-04 -22.00 <2e-16 *
pMut 2.72e-03 1.98e-03 1.38 0.17

R2 : 0.47
MOACO

colonySize -3.39e-04 5.45e-05 -6.21 8.29e-10 *
maxIter -4.18e-03 1.36e-04 -30.76 <2e-16 *
evapRate 1.58e-03 2.45e-03 0.64 0.52

R2 : 0.60
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Table 5.8: Two-way interaction generational distance metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

popSize -1.78e-04 9.14e-05 -1.73 0.08
maxGen -1.94e-03 4.52e-04 -4.23 2.03e-05 *
pMut -2.87e-03 9.62e-03 -0.30 0.77
popSize : maxGen -1.55e-05 7.18e-06 -2.16 0.03 *
popSize : pMut -5.35e-05 1.54e-04 -0.35 0.73
maxGen : pMut 3.51e-06 1.22e-05 0.29 0.77

R2 : 0.47
MOACO

colonySize -6.54e-04 2.14e-04 -3.06 0.002 *
maxIter -5.00e-03 5.38e-04 -9.28 <2e-16 *
evapRate 1.14e-03 1.10e-02 0.10 0.92
colonySize : maxIter 2.60e-05 1.79e-05 1.45 0.15
colonySize : evapRate -7.39e-05 3.56e-04 -0.21 0.84
maxIter : evapRate -1.51e-04 2.97e-05 0.48 0.63

R2 : 0.60

5.4 Experiment III: Metrics
The aim of Experiment III was to apply the multiresolution approach (MRA) as
described by Heyns [1] to both the NSGA-II and MOACO algorithms and assess
the impact on computation time and final solution quality. It was unclear what
configuration of resolution levels and neighborhood span would best suit the data,
and as such a large range was initially tested. The best performing configuration was
then used for the final comparison against the single-resolution runs. It was evident
after collection that the NSGA-II runs with 4 or more resolution levels performed
poorly compared to the baseline (single resolution runs) and those with only 2 or
3 resolution levels (plots included in Appendix C). As such, only runs with 2 or 3
resolution levels were thus considered for comparison against the baseline.

For the MOACO algorithm, there were no obvious performance differences between
the resolution levels (plots included in Appendix C). As such, runs from all levels (2
- 5) were included for comparison against the baseline. A multiple linear regression
was then conducted to investigate any effects of using MRA on the quality metrics.
Table 5.9 shows the regression summary. The only significant effect found was that
generational distance worsened when MRA was applied to the MOACO algorithm.

5.5 Algorithm Comparison
To obtain a broader picture of the algorithms’ effectiveness, scatterplots were created
for each algorithm which show all Pareto solutions found during Experiment I. This
provides a graphical view of how well the algorithms perform and their coverage of
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Figure 5.2: Effect of NSGA-II population halving at different convergence
thresholds on run time, hypervolume, spread, and generational distance.

the Pareto front. The plots are shown in Figure 5.4. A series of four histograms
for each quality metric was then created using the same data from Experiment I to
further compare the algorithms. The histograms are included in Figure 5.5.
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Figure 5.3: Effect of MOACO colony halving at different convergence thresholds
on run time, hypervolume, spread, and generational distance.

Table 5.9: Linear regression results between MRA and quality metrics.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

Runtime 4.40e-4 3.54e-4 1.24 0.22
HV 0.02 0.02 1.44 0.16
SP -0.44 0.74 -0.59 0.56
GD 4.08 3.12 1.31 0.20

R2 : 0.16
MOACO

Runtime -1.64e-4 1.97e-4 -0.83 0.41
HV 0.01 0.01 0.71 0.48
SP -0.27 0.28 -0.95 0.35
GD 3.29 1.39 2.38 0.02 *

R2 : 0.14

39



5. Results

Figure 5.4: Scatterplots showing all Pareto solutions found during Experiment I
for NSGA-II and MOACO.

Figure 5.5: NSGA-II and MOACO histogram comparison of quality metrics for
all solutions found during Experiment I.
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6
Discussion

This chapter contains discussion about the results and research methodology. Sec-
tion 6.1 describes challenges during implementation. Section 6.2 discusses the ex-
perimental results and key findings. Section 6.3 highlights concerns with internal
and external validity of the study. Section 6.4 outlines opportunities for future work,
and Section 6.5 provides details regarding the ethical concerns of the thesis.

6.1 Implementation
There were a number of challenges during the implementation stage of this thesis.

For the NSGA-II implementation, the concern stated by Tigerström [17] is also
relevant in this study. As the same crossover function was used (given the similarity
of the studies and desire to compare findings), the fitness of an individual was not
the sole factor in how often an individual will mate. During reproduction, four
potential parents were chosen from the population at random. The two with the
highest fitness were then permitted to reproduce. As such, it is possible that a more
sophisticated mating scheme may have resulted in higher quality solutions.

For the MOACO algorithm, it was unclear from the initial planning stages exactly
how this should be implemented for the specific research problem. As no previous
examples using ACO for this problem were found, implementation decisions were
made from more general recommendations found in literature. Furthermore, it was
unclear how to handle convergence, as multiple colonies were used. It was decided
to measure convergence between the parent group Q in each iteration, however
this group often has only small changes between iterations. As such, convergence
to the specified thresholds typically occurs quickly (often at only 2 iterations). A
more robust convergence mechanism or using a minimum iteration threshold that
must be reached before halving can occur could potentially improve the results for
Experiment II and III.

6.2 Experimental Results
The following section will outline the main findings, recommendations, and any
concerns for each conducted experiment. A concern for all experiments is the lack
of replication. Given the large number of runs that had to be completed, replication
was not possible for the majority of the tests within the given testing time frame. For
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instance, a single run of Experiment I for NSGA-II required around 9000 minutes
of constant computation time (6.25 days). Given the stochastic and variable nature
of the algorithms, replication would have added robustness to the findings and as
such this is a concern when making generalizations from the data.

6.2.1 Experiment I
The purpose of Experiment I was to ascertain which algorithm parameters had the
greatest effect on run time and the quality metrics and if any interaction effects
were present. This knowledge can help fine-tune an algorithm to perform better in
a particular way depending on what an analyst desires.

6.2.1.1 NSGA-II

For the NSGA-II, generations had the greatest influence on run time, with popula-
tion size having the next largest (around half that of generations). There was also
a significant interaction effect between these two parameters. As such, ideally they
should not both be increased simultaneously. Furthermore, it is recommended to
try increasing population size first if trying to improve performance so run times are
not increased as drastically.

To improve spread (or diversity) of solutions, increasing the mutation probability
provides the greatest impact, followed by an increase in generations. There is an
interaction effect between population size and mutation probability, so increasing ei-
ther of these would also be recommended to improve diversity. Hypervolume (which
also measures diversity) is also improved strongly by the mutation rate. Given these
results, using a fairly high mutation rate is recommended.

To improve generational distance, increasing generations provides the best improve-
ment. However, there is also an interaction effect between population size and gen-
erations, and as such increasing population could also improve generational distance
(without the additional run time that another generation adds).

6.2.1.2 MOACO

For the MOACO algorithm, the number of iterations had the greatest impact on
run time, with colony size also contributing. These two parameters also have an
interaction effect, so ideally both should not be increased simultaneously.

To improve spread or diversity, there is a slight improvement by increasing colony
size. However, this is a very small improvement. Adding additional iterations could
also worsen the spread. To improve hypervolume, the data suggests that additional
iterations could help. However the model had a very poor fit and the p-value (0.02)
is fairly high, so this finding is not as reliable. It is evident from these findings that
the MOACO configuration used in this thesis suffers from problems with solution
diversity.

To improve generational distance, additional iterations have the strongest impact.
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6.2.2 Experiment II
The main findings from Experiment II are that the population and colony halving
approaches that were applied have no significant impacts on run time, hypervolume,
generational distance, or spread. However, reductions in run time between 20s-60s
were achieved, and run time was never increased as a result of population halving.
If this reduction scales with larger parameter values (e.g. additional generations),
then at other scales this could result in substantial computation time savings without
sacrificing solution quality. However, additional testing would need to be completed
to confirm this. Despite the lack of statistical significance, it is still recommended to
use this technique at any of the tested convergence thresholds as run time savings
were possible with no negative impacts on solution quality.

6.2.3 Experiment III
The results from Experiment III show that the MRA approach has no significant
effects for the NSGA-II or MOACO. While a slight (p = 0.02) effect of the MRA
exists on generational distance in the MOACO algorithm, the regression poorly fits
the data and as such the accuracy of this is questionable. Furthermore, the different
neighborhood spans (1, 2, 5, or 10 units) had no significant effect on solution quality.

While there were no significant results, there are some trends that are still inter-
esting. Namely, many NSGA-II and MOACO runs using 2 or 3 resolution levels
resulted in better hypervolume than the single resolution baseline. The largest im-
provement was a difference in 10 units, which is fairly substantial. However, it is
not guaranteed that every run will have that large of an improvement, and it is also
possible that only slight or no improvements will occur.

For the MOACO, it is most notable that when only two resolution steps are used
there can be a drastic decrease in run time. For instance, the single resolution run
typically requires 600s - 800s, while runs in the 2 resolution level require only 200s
- 575s. In the best case, this can mean a much faster computation. However, there
is no guarantee that a run will result in a much faster computation.

Given the results for this experiment, the recommendation for the MRA would be
that if it is used, 2 or 3 resolution levels would be most appropriate for this data.
Furthermore, the quality of the results are unpredictable and could either improve
or worsen the solution with respect to run time and solution quality.

6.2.4 Overall Comparison
The scatterplots provided in Section 5.5 visually corroborate the results found in
Experiment I. Namely, that the MOACO algorithm suffers from solutions that lack
diversity across the full Pareto front. The extremes are found well in both algo-
rithms, however the NSGA-II is better able to find compromise solutions. Further-
more, the comparison histograms show clearly that the NSGA-II performs better
in terms of hypervolume and spread (the diversity metrics). An interesting finding
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from this data is that the MOACO algorithm struggles with objectives that have
only a small set of discrete values (e.g. the price objective). We can see in the scat-
ter plot that the NSGA-II finds a greater range of low-cost ($300k) solutions. The
MOACO algorithm has far fewer low-cost points, and they are further away from
point (0,0,0) (the minimization goal). What seems to occur is that the colony that
seeks to find solutions which minimize the price objective find low-cost solutions
quickly, and these initial solutions (which are usually not optimal with respect to
the other objectives) are still considered "ideal" with respect to price, and kept in
the colony. As such, they are carried over to the final solution set (as the colony will
only ever consider its specific objective). It is thus evident that this configuration
of the MOACO algorithm is best suited for objectives that are more continuous in
nature, with solutions almost always having a different value.

Despite clear drawbacks of the MOACO algorithm, it is still competitive in terms of
run time and generational distance. Furthermore, it is able to find the extremes of
the front well. As such, changes to the algorithm to improve diversity and find com-
promise solutions could result in an algorithm that competes well with the NSGA-II.
However, this requires additional research to confirm.

6.3 Validity

There are some important considerations concerning the validity of the study. Sec-
tion 6.3.1 discusses internal validity (i.e. issues relating to the experiment itself).
Section 6.3.2 discusses external validity (i.e. how the findings relate to the broader
research context).

6.3.1 Internal validity

Both the data and experimental method impact internal validity. Only one scenario
was used during testing, and as such it is unclear how well the algorithms would
perform on terrain with different geographical characteristics or size. The results
may also be dependent on the specific sensor specifications used. If the sensor
ranges are too large for the area of interest, it’s possible that the initial random
generation of solutions is enough to find optimal sensor locations (and thus the
algorithm itself has less influence). It is assumed that the specifications used in this
study are an adequate size for the 5km2 terrain, however further testing using a
range of sensor types would be needed to confirm this. The final area of concern is
replication. As stated previously, due to the long computation times and number of
tests, only a single run was completed for each test. As such, there is no robustness
via replication. Given that the algorithms are stochastic in nature, it is possible
that certain runs had a better or worse initial random generation of solutions, thus
resulting in unusually good (or bad) results.
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6.3.2 External validity
The specific configuration used for the MOACO algorithm has not been implemented
in other studies, and as such may be difficult to meaningfully compare with other
MOACO algorithms or study results. Furthermore, as the airspace observer place-
ment problem has not previously been solved using MOACO, it is possible that
another configuration would be better suited. As such, generalizations that NSGA-
II is better than MOACO for this problem should not be made without further
testing of additional MOACO algorithms.

All data used in this study were retrieved from Open-source repositories in the
interest of reproducibility. However, use of the proprietary geospatial SDK (Car-
menta Engine) provided by the principal is required to guarantee the same viewshed
calculation results. As such, this introduces some barriers to reproducibility.

6.4 Future work
There are a number of recommendations for future research. This study used only
a set number of observers to be placed. However, having a variable number of ob-
servers that can be placed is perhaps more realistic, and can be incorporated as
an additional objective (e.g. minimizing the number of observers). This may have
important impacts on the algorithm implementation and complexity. Furthermore,
testing using additional scenarios and various terrain sizes or sensor specifications
would be valuable for making more concrete assertions about the performance of the
algorithms. Additionally, replication should be used to provide additional robust-
ness. The MOACO algorithm used in this study is an augmentation of one specific
algorithm. However there are many other configurations that are vastly different in
design. As such, a thorough evaluation of relevant configurations for this research
problem should be completed before a generalized statement that NSGA-II performs
better than MOACO can be made.

Lastly, the local search has shown to be an important factor in the performance of
a MOACO algorithm. As such, trying other types of local search methods rather
than a simple k-swap method should be tested to see if improvements can be made.

6.5 Ethics
This thesis project derives primarily from the field of military planning. Military
ethics is a complicated topic, however it is undeniable that military efforts have
resulted in significant casualties and environmental destruction [58]. Advances in
military technology have, in some ways, attributed to this destruction [58]. How-
ever, war has also been used in the name of justice (e.g. when human rights are
being infringed upon). Furthermore, war might be a result of protecting one’s na-
tion, rather than attacking another. As such, the ethics of military efforts should
be judged on a case-by-case basis.

An important distinction of this project is that it is not a tool or weapon being
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developed, but algorithms for defense planning. The product will not directly harm
human beings or the environment. The aim instead is to better survey and protect
an area from hostile aircraft. As such, the goal is to help reduce the chance of armed
combat and casualties. Furthermore, the algorithms developed in this thesis can be
applied to other location-allocation problems such as the optimal placement for fire
watch towers. The products of this thesis therefore also aid planning that strives to
reduce casualties and environmental destruction.

The main areas of risk of this project are uncertainty with the analysis and use by
unintended persons. The quality of the solution (observer locations) that the algo-
rithms find relate directly to the quality of the input parameters. It is important
to note that if out-of-date or less accurate terrain models are used, the solution
will not be as well-suited for the real conditions of the area. As such, users may
have a false understanding of how much of the airspace is being covered and make
planning and defense decisions based on these assumptions. In the worst case these
assumptions can result in hostile aircraft entering undetected and causing casualties.
"Unintended" users may refer to hostile groups/enemies or non-qualified personnel.
Hostile groups could apply optimization algorithms to improve their own security,
leading to areas that are more difficult to breach. This could result in enemies being
given a greater amount of time to cause damages before they are apprehended. If
unqualified personnel use these algorithms for planning, they could use or interpret
them incorrectly and make false assumptions regarding security. As previously men-
tioned, these assumptions could lead to destruction or death in the worst case.

The ethical concerns and risks outlined above were taken into consideration during
this project.
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Conclusions

This thesis project had two main goals. The first was to implement two multi-
objective methods to find optimal placement for airspace observers. The second
was to apply techniques to reduce the computation time without sacrificing solution
quality. The problem was first formalized into a multi-objective optimization prob-
lem. Two optimization algorithms, the NSGA-II and a MOACO algorithm, were
then implemented. A population halving technique and a multi-resolution approach
(MRA) were then applied to try and improve computation time. Evaluation was
conducted through parameter tuning, statistical analysis and visual plotting to find
trends in the data.

The results suggest that the NSGA-II performs better in terms of solution qual-
ity and diversity compared to the MOACO algorithm for the scenario presented in
this thesis. However, the algorithms performed similarly with respect to run time
and generational distance. The population halving technique provided no signifi-
cant improvements. However, there was a general trend suggesting a reduction in
computation time. Similarly, applying the MRA resulted in no significant improve-
ments, but using 2 or 3 resolution levels could provide a reduction in computation
time with no impact on solution quality in best-case scenarios. Given the stochastic
nature of these algorithms, it is challenging to generalize or predict the effects of
these techniques with certainty. However, the potential for run time improvements
for both techniques is present, and as such are seen as viable methods for decreasing
computation time without sacrificing solution quality. The two optimization algo-
rithms implemented in this thesis are considered satisfactory methods for finding
optimal placements for airspace observers in a multi-objective context.
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A
Appendix 1. Regression Data for

Experiment II

Table A.1: Linear regression results between convergence and
quality metrics for Experiment II.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

Runtime -0.08 0.15 -0.54 0.60
HV -0.45 0.69 -0.66 0.52
SP -176.96 209.04 -0.85 0.41
GD -62.89 39.51 -1.59 0.13

R2 : 0.50
MOACO

Runtime -0.05 0.05 -1.03 0.31
HV -0.73 0.73 -0.99 0.35
SP -103.53 135.11 -0.77 0.45
GD 0.33 13.10 0.03 0.98

R2 : 0.63
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B
Appendix 2. Regression Data for

Experiment III

Table B.1: Linear regression results between number of resolution levels and
quality metrics for Experiment III.

Algorithm Parameter Estimate Std. Error t. value Pr(>|t|)
NSGA-II

Runtime 4.40e-4 3.54e-4 1.24 0.22
HV 0.02 0.02 1.44 0.16
SP -0.44 0.74 -0.59 0.56
GD 4.08 3.12 1.31 0.20

R2 : 0.16
MOACO

Runtime -1.64e-4 1.97e-4 -0.83 0.41
HV 0.01 0.01 0.71 0.48
SP -0.27 0.28 -0.95 0.35
GD 3.29 1.39 2.38 0.02 *

R2 : 0.14

III



B. Appendix 2. Regression Data for Experiment III

IV



C
Appendix 3. Resolution Level vs

Metric Plots

Figure C.1: Effect of NSGA-II and MRA using various resolution levels on run
time, hypervolume, spread, and generational distance.
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C. Appendix 3. Resolution Level vs Metric Plots

Figure C.2: Effect of MOACO and MRA using various resolution levels on run
time, hypervolume, spread, and generational distance.
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