
Game Boy Emulation
Emulating a Complex System

Bachelor’s thesis in Computer Science and Engineering

Algot Axelzon
Isak Lindgren
Carl Lindh
David Möller
Andreas Palmqvist
Arvid Rydberg

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Bachelor’s thesis 2021

Game Boy Emulation

Emulating a Complex System

Algot Axelzon
Isak Lindgren
Carl Lindh
David Möller

Andreas Palmqvist
Arvid Rydberg

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Game Boy Emulation
Emulating a Complex System
Algot Axelzon Isak Lindgren Carl Lindh David Möller Andreas Palmqvist Arvid
Rydberg

© Algot Axelzon, Isak Lindgren, Carl Lindh, David Möller, Andreas Palmqvist,
Arvid Rydberg 2021.

Supervisor: Roc R. Currius, Department of Computer Science and Engineering
Examiner: Sven Knutsson, Department of Computer Science and Engineering

Bachelor’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Image of the original Game Boy from 1989. From [1]. Public Domain.

Gothenburg, Sweden 2021

iii

Abstract
This thesis studies the subject of system emulation through the development of a set
of software microcontrollers and the assembling of them into a complex system. The
specific system aimed to be emulated is the original Game Boy released in 1989. This
requires the developers to reproduce specific hardware behaviour through software
and therefore requires certain knowledge of the system which is to be emulated.
While the Game Boy is a proprietary product owned by Nintendo, the produced
system uses no copyrighted material.

Through the use of documentation provided by the reverse engineering of the origi-
nal hardware done by members of the community, this thesis shows that an emulator
can be created by combining a set of software microcontrollers. Moreover, it is con-
cluded that while the academic interest in the emulation of simple systems might be
limited, it could also could be used to generate interest in low-level programming.

Keywords: Emulation, Gameboy, Game Boy, C++, OpenGL, OpenAL, ImGui

iv

v

Sammandrag
Denna kandidatuppsats studerar systememulation genom att utveckla ett flertal
mjukvarumikrokontroller som därefter kombineras för att tillsammans bilda ett
komplext system. Det specifika systemet som emuleras är den första Game Boy-
konsollen, släppt 1989. För att genomföra detta krävs det att utvecklarna repro-
ducerar den specifika hårdvaran i mjukvara, vilket kräver viss kunskap om det ur-
sprungliga systemet. Då Game Boy är en licensierad produkt, ägd av Nintendo, är
det värt att notera att det framtagna systemet ej använder något upphovsrättssky-
ddat material.

Dokumentationen som använts för att skapa denna emulator har tagits fram genom
att demontera och undersöka originalhårdvaran. Detta har gjorts av ett flertal delt-
agare i en emulatorintresserad internetgemenskap. Avslutningsvis konstateras att
det, trots det begränsade akademiska intresset för systememulering av enkla system,
finns potential för att använda sig av det för att skapa intresse för lågnivåprogram-
mering.

Nyckelord: Emulering, Gameboy, Game Boy, C++, OpenGL, OpenAL, ImGui

vi

vii

Acknowledgements
We would like to thank our supervisor Roc R. Currius for providing an initial project
and for rigorous feedback regarding the writing of this report. During the project
he also provided weekly guidance in our efforts to develop the emulator. Secondly
we would like to thank Albin Johansson for providing thorough feedback on the
code written for this project, which gave many valuable insights regarding style and
general use of C++.

Algot Axelzon, Isak Lindgren, Carl Lindh, David Möller, Andreas Palmqvist,
Arvid Rydberg, Gothenburg, June 2021

viii

ix

Terminology

• ROM - Read only memory. A memory which in the context of emulator
development contains the game data.

• RAM - Random access memory. As opposed to ROM, RAM can both be read
from and written to. The data stored in RAM is however volatile - the memory
stores data only as long as it has power.

• 0x - Using the 0x prefix indicates that the following value is to be interpreted
as a hexadecimal value. For example the value 0xA0 is to be interpreted as
160.

• KiB/MiB - KiB and MiB are used for Kibibyte and Mebibyte, they are of base
two and are representing 1024 (210) byte and 1 048 576 (220) byte respectively.

• I/O - Input/Output, used for describing units handling either input or output,
such as a display or keyboard.

• Scanline - The process of rendering a row of pixels to the display.
• CPU - Central Processing Unit
• PPU - Pixel Processing Unit, responsible for producing pixel data for the

Game Boy’s LCD.
• APU - Audio Processing Unit, responsible for generating audio data.
• MMU - Memory Management Unit, responsible for handling memory mapping

within the emulator.
• Microcontroller - A small computer on a single chip.
• Software microcontroller - Software imitating the function of a microcontroller.
• Sprite - A 2D bitmap representing an image.
• Joypad - A device that connects the user’s input with the system. In the

context of the Game Boy this refers to four directional buttons and four action
buttons.

x

Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1
1.1 Emulators in general . 1
1.2 An Introduction to the Game Boy . 1
1.3 Purpose . 4
1.4 Delimitations . 4
1.5 Ethics . 5

2 Theory 6
2.1 The Central Processing Unit . 6

2.1.1 Registers . 6
2.1.2 Instruction set . 6
2.1.3 Interrupts . 7

2.2 Memory and I/O devices . 9
2.2.1 Boot ROM . 9
2.2.2 ROM . 10
2.2.3 Video RAM . 10
2.2.4 External RAM . 10
2.2.5 WRAM . 10
2.2.6 OAM RAM . 10
2.2.7 Joypad . 11
2.2.8 Timer . 11
2.2.9 HRAM . 12
2.2.10 Memory Bank Controllers . 13

2.3 The Pixel Processing Unit . 15
2.3.1 Composing the frame . 15
2.3.2 The modes . 18
2.3.3 The registers . 19
2.3.4 Drawing the image . 21
2.3.5 Direct Memory Access transfer 21

2.4 The Audio Processing Unit . 22
2.4.1 The registers . 22
2.4.2 Events . 24

xi

Contents

2.4.3 The audio data . 24

3 Tools and methodology 26
3.1 Programming language . 26
3.2 Graphics and GUI . 26
3.3 Audio . 26
3.4 Scrum . 27
3.5 Plan . 27
3.6 Architecture . 28
3.7 Testing . 29

4 Results 30
4.1 Architecture and Design . 30
4.2 The Central Processing Unit . 32

4.2.1 Interrupts . 32
4.2.2 Testing of the Central Processing Unit 33

4.3 The Memory Managing Unit . 34
4.3.1 Timer . 34
4.3.2 Cartridges and Memory Bank Controllers 34
4.3.3 Testing of the Memory Management Unit 35

4.4 The Pixel Processing Unit . 36
4.4.1 Timing . 36
4.4.2 Basic operation . 36
4.4.3 Drawing . 37
4.4.4 DMA transfer . 38
4.4.5 Testing of the Pixel Processing Unit 38

4.5 The Audio Processing Unit . 39
4.5.1 The Audio Controller . 39
4.5.2 Testing of the Audio Processing Unit 40

4.6 The Game Boy . 41

5 Discussion 42
5.1 Hardware . 42

5.1.1 The Central Processing Unit 42
5.1.2 The Memory Management Unit 43
5.1.3 The Pixel Processing Unit . 43
5.1.4 The Audio Processing Unit . 44

5.2 Accuracy . 45
5.2.1 Compromises . 45
5.2.2 Vital and auxiliary components 46

5.3 Ethics . 46
5.3.1 Legality of emulators vs. ROMs 46
5.3.2 The emulator . 46
5.3.3 The Boot ROM . 46
5.3.4 The ROMs . 47
5.3.5 Test-ROMs . 47
5.3.6 Sharing knowledge . 48

xii

Contents

5.3.7 Gaming history preservation 48
5.3.8 Console Classix . 48

5.4 Future Work . 49

6 Conclusions 50

Bibliography 51

xiii

List of Figures

1.1 The first Game Boy model, DMG-01. From [9]. Public Domain. . . . 2
1.2 Diagram of the architecture of the Game Boy and the general archi-

tecture of a game cartridge (Game Pak). From [19]. CC BY 4.0. . . . 3

2.1 Displaying the 8-bit operation codes for the LR35902, highlighting six
of the operation codes, showing their assembly instruction, number of
bytes used, number of cycles to execute and what flags are affected.
From [33]. Modified with permission. 7

2.2 Visual representation of how the address space is divided in the Game
Boy. From [30]. Adapted with permission. 9

2.3 Memory map of MBC3. While all MBCs do not necessarily contain
the same features, most follow a similar structure [42]. 13

2.4 The two tile sets. Sprites may only use tiles from the tile set ranging
from 0x8000 to 0x9000 while the background and window can use
any of the two sets. From [30]. Used with permission. 16

2.5 What is shown on the LCD in relation to the background map. From
[30]. Used with permission. 17

2.6 The various PPU modes and their durations. From [45]. Public
Domain. 18

2.7 The registers NR10-NR44, addresses 0xFF10-0xFF23, for controlling
audio channels. Bits coloured in yellow are write only and will always
return 1 if read from [51]. From [30]. Adapted with permission. . . . 22

2.8 The registers NR52-NR50, addresses 0xFF26-0xFF24, are used for
controlling the power and returns the state of all channels. Bits
coloured in yellow are write only and will always return 1 if read
from. Bits coloured in blue are read only, any data written to this
location will be ignored [51]. 23

2.9 The four pulse waveforms with their corresponding duties [51]. The
percentages indicate what amount of the wave is high. Duty “10” is
most commonly used. 24

2.10 A rough representation of how a custom waveform is created through
addresses 0xFF30 to 0xFF3F. 25

3.1 Initial sketch of how different features were to be separated into dif-
ferent modules. 28

4.1 Dependency diagram over the Game Boy module. 30

xiv

List of Figures

4.2 Displaying the emulator results from Blargg’s test ROMs checking
the correctness of the CPU instructions and CPU timing respectively. 33

4.3 Results of running the dmg_sound test ROM from Blargg’s test ROMs
[64]. 40

4.4 A screenshot of the emulator when loading ROMs. 41

5.1 The starting screen of the game Flappyboy. From left to right, its
original form and its distorted form achieved by writing to the SCX
and SCY registers between scanlines. From [74]. Screenshot by au-
thors, used with permission. 44

xv

List of Tables

2.1 Layout of the button states located in memory address 0xFF00. From
[40]. Adapted with permission. 11

2.2 Layout of the each bit in the timer control register located at address
0xFF07. From [41]. Modified with permission. 12

2.3 List of the different RTC registers and its contents. From [43]. Adapted
with permission. 14

2.4 Description of the labels in Figure 2.7. From [51]. Adapted with
permission. 23

2.5 Description of the labels in Figure 2.8. From [51]. Adapted with
permission. 23

2.6 F, D, S, V, P, L - The value of the bits labelled with “F”, “D”, “S”,
“V”, “P”, “L” respectively, for each channel. 24

4.1 The durations of the PPU’s modes 36

xvi

1
Introduction

In this chapter, both the concept of an emulator and the Game Boy are introduced.
Furthermore, the purpose of this report, which is to develop an emulator of said
console is specified.

1.1 Emulators in general
An emulator generally refers to some kind of hardware or a piece of software which
emulates the functionality of some other computer system [2] [3]. While the main
goal of an emulator is to imitate another computer system, an emulator may also
improve upon the original system by providing additional features or by exceeding
the performance of the original system [3].

Emulators are used to bridge the gap between different kinds of hardware. For
example, it is possible to, within one’s operating system, run other operating sys-
tems; emulate sound hardware, such as a guitar amplifier or play video games on
hardware not specifically made for said games [4]. Within the scope of this report,
the term emulator refers to software used specifically to make it possible to play
games on systems that are not originally intended to run these games.

1.2 An Introduction to the Game Boy
In 1989, Nintendo released the handheld video game console Game Boy, designed
by the inventor Gunpei Yokoi [5] [6]. It was the first entry in a family of video game
systems, both 8-bit and 16-bit, the last of which being the Game Boy Advance Micro
which was discontinued as late as 2010 [6]. The 8-bit Game Boy is the predecessor
to Nintendo’s more modern handheld consoles: the Nintendo Switch [7] and The
Nintendo DS (Dual Screen) [8] console family.

The 1989 Game Boy, also known as DMG-01 (Dot Matrix Game), is an 8-bit hand-
held console characterised by its green monochromatic LCD display and bulky grey
design (see Figure 1.1) [5]. The other 8-bit Game Boy models are Game Boy Pocket,
Game Boy Light and Game Boy Color. The Game Boy Pocket and Game Boy Light
are slimmer versions of the DMG-01 with upgraded LCDs while Game Boy Color
has a colour LCD and can play games not supported by the older Game Boys [6]. In
this report Game Boy refers to either of the DMG-01, Game Boy Pocket, Game Boy
Light or all of them grouped together since there are no major differences between

1

1. Introduction

them. The Game Boy Color and Game Boy Advance models are not covered by this
report.

Figure 1.1: The first Game Boy model, DMG-01. From [9]. Public Domain.

The Game Boy and Game Boy Color have together sold approximately 118 million
units [10], making them one of Nintendo’s most successful product lines ever, while
also being the birthplace of popular franchises such as Kirby and Pokémon [11] [12]
[13]. According to Katie Smith-Wong at the entertainment news site Den of Geek
[5], there are a number of factors that led to the success of the Game Boy, the first
being the design of the consoles; Compared to its competitors, the Game Boy and
its variations were simplistic in their design. Because of this simplicity, the Game
Boy consoles were more affordable than the competing hand held consoles while also
having a longer battery life. Furthermore, multiplayer mode was possible thanks to
the built in game link port. This in combination with the affordability and the
superior battery life made the different Game Boys excellent multiplayer consoles.
The many iconic game titles also contributed to the Game Boy’s success, most no-
tably Tetris [14] and the Pokémon [12] games, which reached out to the mainstream
audience .

Recreating the behaviour of a computer system within another computer system
through software is a computationally heavy task since software is much slower
than electronics; therefore, simpler computer systems were the first to be emulated
on personal computers through software. During the middle of the 1990s the per-
sonal computers were powerful enough to make emulation of earlier video game
consoles feasible [15]. During this period Nintendo was one of the most popular

2

1. Introduction

media brands [16] and thus emulators for Nintendo’s consoles started to appear on
the internet. The first known emulator of the Game Boy released, that could run
commercial games, was an emulator by the name Virtual Game Boy. It was created
by Marat Fayzullin in 1995 for some unknown system and was ported to PC some-
where between 1995 and 1996 [17]. Since then many more Game Boy emulators
have been released; written in many different languages and ranging in functionality
[18].

The central component of the Game Boy is the DMG-CPU [19] which is a chip
containing a pixel processing unit (PPU), a central processing unit (CPU) and an
audio processing unit (APU). Connected to the DMG-CPU are 8 KiB of RAM and
video RAM (VRAM). The PPU outputs pixels, that can be one of four shades, to an
LCD that is 160 × 144 pixels in dimensions and the audio is output either through
a headphone jack or a built in speaker. Games are stored on ROM chips that come
inside cartridges see Figure 1.2.

Figure 1.2: Diagram of the architecture of the Game Boy and the general archi-
tecture of a game cartridge (Game Pak). From [19]. CC BY 4.0.

3

1. Introduction

1.3 Purpose
The purpose of this thesis is to explore the possibility of developing a set of mi-
crocontrollers which can be assembled to a complete complex system. This is done
through emulating the original Game Boy from 1989. As per the initial project
description, focus will be on having a graphical interface working, not taking sound
or other systems into account.

Developing an emulator presents additional purposes as a problem with older gam-
ing consoles is that many of them are no longer produced and are therefore becoming
harder and harder to come by. An emulator solves this problem by letting people
play old console games on newer hardware. This thesis therefore aims to create a
Game Boy emulator for the PC to allow future generations to have the same expe-
rience as the people playing the games on the original console whilst also preserving
a piece of history. Additionally, the authors would like to share the accumulated
knowledge of emulator development with others by providing documentation for the
design as well as the code, so that others may learn from it and possibly use it as a
base for their own emulators.

1.4 Delimitations
To reduce the complexity and scope of this thesis certain delimitations have been
made. The thesis has been limited to only emulate the original Game Boy from 1989
and subsequent with equivalent hardware. This reduces the complexity of the thesis
significantly as it reduces the amount of different systems and chips needed to be
researched. Furthermore, it also means that the hardware which is to be researched
is older and therefore of lower complexity than more modern hardware.

Regarding some features and systems in the Game Boy, further limitations are made.
First of all; “Serial Data Transfer” is not supported. This is a feature which is used
to connect a Game Boy to another Game Boy to, amongst other things, allow for
multiplayer gameplay [20]. Although this could be implemented in software either by
connecting two instances of the emulator on the same machine, or separate machines
through internet play, this is simply not within the primary scope of emulating the
Game Boy hardware.

The games for the Game Boy comes in cartridges called Game Paks [21]. The
specifications of these can differ between different games with a total of 28 different
configurations supported by the console, including six different memory bank con-
trollers (MBCs) [22]. The aim is not to support all of the configurations, but rather
the most significant types.

4

1. Introduction

The Game Boy also has a feature called “Vin”, allowing the use of external audio
hardware located in the cartridge. However, none of the games made for Game
Boy uses this feature [23] and is therefore excluded from being implemented in the
emulator.

1.5 Ethics
Creating an emulator for a previously commercially sold product comes with compli-
cations. Because of Nintendo having created the Game Boy, it is natural that they
are committed to making sure no one infringes the copyrights related to their prod-
uct. When discussing emulators, there is also often a discussion of what is right and
wrong, what counts as piracy and what is legal to do around the subject of copyright.

Nintendo Australia states the following regarding emulators [24]:

"A Nintendo emulator is a software program that is designed to allow
gameplay on a platform that it was not created for. A Nintendo emula-
tor allows for Nintendo console based or arcade games to be played on
unauthorised hardware. The video games are obtained by downloading
illegally copied software, i.e. Nintendo ROMs, from Internet distribu-
tors. Nintendo ROMs then work with the Nintendo emulator to enable
game play on unauthorised hardware such as a personal computer, a
modified console, or another video game device."

Thus, Nintendo claim that the games which are used together with emulators are
obtained illegally. However, they do not explicitly state that they consider the use
nor development of emulators illegal, as long as no copyrighted material is used. All
of this leads to a lot of confusion around the legality and ethics of emulation, further
discussion regarding this topic can be found in Section 5.3.

5

2
Theory

This section aims to describe the various components used in the Game Boy. This
is needed to then be able to understand how to properly emulate the function of
those components.

2.1 The Central Processing Unit
The Central Processing Unit (CPU) used in the Game Boy is a Sharp LR35902 [25]
[26] which is designed specifically for the Game Boy. The chip is heavily inspired
by the Zilog Z80 [27] and the Intel 8080 [28]. While the CPU itself has a clock
frequency of 4 MHz [25], one can consider it having an actual clock speed of 1 MHz.
This is due to the fact that the CPU is bound by the speed of the memory [29] (the
rate the RAM can provide data to the CPU) which has a clock speed of 1 MHz, see
slide 149 of [30]. Furthermore, the CPU has a 16-bit address bus [31] and an 8-bit
arithmetic logic unit (ALU).

2.1.1 Registers
The CPU has six general purpose registers, B, C, D, E, H and L [32]. These are
all 8 bits each, but can be used pairwise as three 16-bit registers, BC, DE and HL.
There are also two additional 8-bit registers, A and F, which both have specific
purposes. A is the accumulator register where all the arithmetic is done. The F
register, despite being 8 bits, only uses 4 bits to store the value of the four flags of
the ALU. These are the zero, negative, half-carry and carry flags [32], abbreviated
as Z, N, H and C respectively. Additionally, the CPU has a 16-bit program counter
(PC) and stack pointer (SP).

2.1.2 Instruction set
In total the CPU supports 500 assembly instructions, of which 244 are 8-bit and 256
are 16-bit, see Figure 2.1 for the 8-bit instructions. For the CPU to interpret the
16-bit operations, a certain prefix is used (0xCB) found in the 8-bit table allowing
the CPU to interpret the following 8 bits as an instruction from the 16-bit table.
The tables specify for each instruction which flags it affects, how many bytes it is
encoded with and how many machine cycles it requires to execute.

6

2. Theory

Figure 2.1: Displaying the 8-bit operation codes for the LR35902, highlighting six
of the operation codes, showing their assembly instruction, number of bytes used,
number of cycles to execute and what flags are affected. From [33]. Modified with
permission.

2.1.3 Interrupts
Like many other CPUs, the Sharp LR35902 supports interrupts. Interrupts are used
in order to break the regular flow of the CPU, forcing it to handle the interrupt be-
fore returning to what it was doing previously. Different interrupts have different
pre-defined addresses where the respective interrupt routines are stored [34]. When
an interrupt occurs, the CPU executes the interrupt routine, and then continues
execution from the address that was current when the interrupt occurred. The ex-
isting interrupts and their functionalities are the following [34]:

• V-blank - An interrupt sent from the PPU when it has created a whole frame
and wants to draw it, for more information see Section 2.3.

• LCD STAT - A customisable interrupt regarding various conditions of the
PPU. An interrupt is generated any time the PPU goes from not meeting
any condition to meeting at least one condition. Which conditions are used
is determined by the STAT register of the PPU, for more information, see
Section 2.3.3

• Timer - Sends an interrupt request when a set timer has run out, for more
information see Section 2.2.8.

• Serial - The serial transfer interrupt which handles the communication between
two Game Boys when they are connected through the serial port. This is not
implemented, as is explained in Section 1.4.

• Joypad - An interrupt which handles the input from the joypad, for more in-
formation see Section 2.2.7.

7

2. Theory

The interrupts are implemented by having three different types of flag registers [34]:
• IME - Interrupt Master Enable. This flag enables and disables all other inter-

rupt flags. Can only be manipulated through specific instructions.
• IE - Interrupt Enable. Enables or disables a specific flag. Consists of five

bits, one for each type of interrupt. Manipulated through memory, located at
0xFFFF.

• IF - Interrupt Flag. Shows that an interrupt has been requested. This is
the flag which is set when an interrupt is raised. The register consists of five
bits, one for each type of interrupt. Manipulated through memory, located at
0xFF0F.

If IME is disabled, IE and IF can still be altered, but they are not acted upon until
IME is enabled once again. For an interrupt to occur and be handled by the CPU
three things therefore need to happen: both the IME flag and a specific IE flag must
be enabled, and the corresponding IF flag must be triggered [34].

8

2. Theory

2.2 Memory and I/O devices
The CPU needs to access memory and communicate with peripheral devices. To
achieve this the Game Boy uses a 16-bit address bus and an 8-bit data bus [35]. The
memory and different peripheral devices are mapped to specific memory addresses
visualised in Figure 2.2.

Figure 2.2: Visual representation of how the address space is divided in the Game
Boy. From [30]. Adapted with permission.

In the Game Boy’s 64 KiB address space, different address ranges are used for
different purposes. Below is a description of how this is handled. Note that the
I/O devices are controlled through manipulating address space and that the more
complex I/O devices, the PPU and APU, are described in Section 2.3 and Section
2.4 respectively.

2.2.1 Boot ROM
Address: 0x00 - 0xFF
The boot ROM is a 256 byte ROM located on the DMG-CPU and contains the
code that is executed when the Game Boy is powered on [36]. The purpose of the
boot ROM is to initialise the different hardware units and prepare the Game Boy
to execute game code [37]. The official boot ROM used on the Game Boy does
this while scrolling down the Nintendo logotype. The use of copyrighted material
on the boot ROM has legal implications which is further discussed in Section 5.3.
In practice the boot ROM is only accessible a short time when the Game Boy is
powered on due to the fact that it disables itself after it has been run. Disabling
the boot ROM is done by storing a non-zero value at memory address 0xFF50 and
will map the addresses to the ROM instead, see the overlap in Figure 2.2.

9

2. Theory

2.2.2 ROM
Address: 0x0000 - 0x7FFF
The ROM located in the Game Boy’s memory map is the area where the interactions
with data from the inserted game ROMs happen [31]. Although the allocated size
for the ROM on the Game Boy is only 32 KiB, the ROMs it supports can be much
larger. This is possible through the use of bank switching using a Memory Bank
Controller (MBC) [38], located in the Game Pak ROM, see Section 2.2.10 for more
information.

2.2.3 Video RAM
Address: 0x8000 - 0x9FFF
The Video RAM (VRAM) is an 8 KiB RAM [31] that is accessible by both the CPU
and PPU. It it used by the CPU to store data which the PPU uses for drawing.
While the PPU is drawing, it is reading from the VRAM and the CPU is therefore
not allowed access. For more information regarding how the VRAM is used, see
Section 2.3.

2.2.4 External RAM
Address: 0xA000 - 0xBFFF
The external RAM (XRAM) is an optional memory that is located on some of the
game cartridges. Its size varies from game to game and can, if desired, also make
use of bank switching (see Section 2.2.10). The XRAM is often used for saving
progress and high score tables [31]. This is done by powering the XRAM with a
small battery inside the game cartridge to make sure the data is conserved between
different gaming sessions.

2.2.5 WRAM
Address: 0xC000 - 0xDFFF
The Work RAM (WRAM) is the main memory of the system which is used by the
CPU to store any data the game uses while running. The WRAM is located on the
DMG-CPU and has a size of 8 KiB [31].

2.2.6 OAM RAM
Address: 0xFE00 - 0xFE9F
The Object Attribute Map (OAM) is the area where sprite data is stored. The
OAM is divided into 40 blocks of four bytes each with each block corresponding to
a sprite. Both the PPU and CPU have direct access to this memory area. While
the PPU is rendering scanlines, the CPU has limited access to this area [39]. The
CPU can also transfer data into the OAM through the use of Direct Memory Access
(DMA) transfers, this process is described in detail in Section 2.3.5.

10

2. Theory

2.2.7 Joypad
Address: 0xFF00
The Joypad is the device that connects the user’s input with the system. There
are eight buttons on the Game Boy, four directional buttons: up, down, left and
right, and four action buttons: A, B, Start and Select. The buttons have two states,
pressed or not pressed. These states of the buttons are stored at address 0xFF00 as
a 2x4 matrix [40].

By writing specific values to bit 4 and 5 either the action buttons or directional
buttons will be selected. When selecting either the action or direction buttons bit
0-3 will correspond to the selected buttons [40]. See Table 2.1.

Bit 7 - Not used
Bit 6 - Not used
Bit 5 - Select Action buttons (0=Select)
Bit 4 - Select Direction buttons (0=Select)
Bit 3 - Input: Down or Start (0=Pressed) (Read Only)
Bit 2 - Input: Up or Select (0=Pressed) (Read Only)
Bit 1 - Input: Left or B (0=Pressed) (Read Only)
Bit 0 - Input: Right or A (0=Pressed) (Read Only)

Table 2.1: Layout of the button states located in memory address 0xFF00. From
[40]. Adapted with permission.

When a button is pressed, an interrupt is raised, but only if the pressed button is
a button that is selected by bit 4 and 5 (either an action or a directional button)
[40]. Regarding how to actually handle the joypad input, it is up to the developer
to either poll the 2 × 4 -matrix or by using the interrupts.

2.2.8 Timer
Address: 0xFF04 - 0xFF07
The Game Boy has a built-in timer which can be used to perform time sensitive
tasks. It is used and controlled by reading and writing to the following registers
[41]:

Divider Register - DIV
Address: 0xFF04
The DIV register is a counter that always increments at a rate of 16384Hz. When
writing any value to the address the counter resets to 0 [41].

11

2. Theory

Timer counter - TIMA
Address: 0xFF05
This is another counting register, it increments at the rate that is specified in the
TAC register. When the counter value is 0xFF and overflows it is reset to the value in
TMA as the new counter value. When the counter overflows the “Timer”-interrupt
is raised [41]. Writing to this register simply changes the counter to the written value.

Timer Modulo - TMA
Address: 0xFF06
This register holds the timer modulo value. This value is loaded into the TIMA
register when the TIMA counter overflows [41]. It can be used to further modify
the chosen clock speed chosen in the TAC register.

Timer Control - TAC
Address: 0xFF07
This register is used to control the timer. By writing to this register the timer can
be enabled or disabled. The rate at which the TIMA register will increment can
also be controlled by writing to this register [41].

As shown in Table 2.2, bit 2 enables or disables the timer. Notice that disabling the
timer does not stop the DIV counter. Bits 0 and 1 are used to select one out of four
possible clock speeds; 4069 Hz, 262144 Hz, 65536 Hz or 16384 Hz [41].

Bit 2 - Timer Enable
Bits 1-0 - Input Clock Select

00: CPU Clock / 1024 (4096 Hz)
01: CPU Clock / 16 (262144 Hz)
10: CPU Clock / 64 (65536 Hz)
11: CPU Clock / 256 (16384 Hz)

Table 2.2: Layout of the each bit in the timer control register located at address
0xFF07. From [41]. Modified with permission.

2.2.9 HRAM
Address: 0xFF80 - 0xFFFE
The high RAM or HRAM is very much like the WRAM although it is much smaller
and faster to access. It is faster because of a special instruction that assumes that the
highest byte in the address is 0xFF and therefore saves time decoding the instruction
[33]. During a DMA-transfer (see Section 2.3.5) the CPU is limited to use only this
memory. The size of the HRAM is 126 bytes [31].

12

2. Theory

2.2.10 Memory Bank Controllers
As previously mentioned, the Game Boy uses a 16-bit address bus, which in turn
limits the memory addresses available for the game ROM and external RAM. To
bypass this limitation many game cartridges make use of a memory bank controller
(MBC). The MBC is used to map different sections of a memory, called memory
banks, to one specific address range, this method is called bank switching. It works
as follows: reading from addresses 0x0000 to 0x7FFF returns a byte stored on the
ROM as expected, but writing to those same addresses will instead change the
MBC’s control registers, this is further described below and in Figure 2.3. These
control registers control what memory bank is to be used for both the game ROM
and the external RAM (if any).

There are different versions of MBCs which all support various arrangements of
additional hardware. Examples of such hardware are external RAM with or with-
out a battery powering said RAM and in some cases also a timer [42]. For example,
MBC3 supports up to 2 MiB of ROM and/or 64 KiB of RAM, and Real Time Clock
(RTC) with battery [42].

Figure 2.3: Memory map of MBC3. While all MBCs do not necessarily contain
the same features, most follow a similar structure [42].

The following is a description of the structure and functionality of MBC3, shown in
Figure 2.3 [42]:

ROM Bank 0
Contains the first 16 KiB of the ROM.

ROM Bank 0x01-0x7F
This part of the memory is used for bank switching. There are at most 127 available
memory banks each with a size of 16 KiB, resulting in a total ROM size of 128 × 16
KiB = 2 MiB, including ROM bank 0.

RAM and Timer Enable
Writing specific values to this address will enable reading and writing to XRAM or
RTC registers depending on which is currently active.

ROM Bank Number
Writing to this address controls which ROM bank is in use.

13

2. Theory

RAM Bank Number/RTC Register Select
Writing to this area maps the corresponding XRAM bank or RTC register into the
memory of 0xA000-0xBFFF.

RAM Bank 0x00-0x03 or RTC Register 0x08-0x0C
Depending on the current Bank Number/RTC Register selection, this mem-
ory space is used to either access an 8 KiB external RAM Bank, or a single RTC
Register, see Table 2.3.

Latch Clock Data
If writing first 0x00, and then 0x01 to this register, the current time becomes latched
into the RTC register. This means that the current time can be read from the regis-
ter while the RTC continues to tick. Additionally the RTC needs a quartz oscillator
as well as an external battery to work while the Game Boy is turned off.

0x8 RTC S Seconds 0-59 (0x00-0x3B)
0x9 RTC M Minutes 0-59 (0x00-0x3B)
0xA RTC H Hours 0-23 (0x00-0x17)
0xB RTC DL Lower 8 bits of Day Counter (0x00-0xFF)
0xC RTC DH Upper 1 bit of Day Counter, Carry Bit, Halt Flag

Bit 0 Most significant bit of Day Counter (Bit 8)
Bit 6 Halt (0=Active, 1=Stop Timer)
Bit 7 Day Counter Carry Bit (1=Counter Overflow)

Table 2.3: List of the different RTC registers and its contents. From [43]. Adapted
with permission.

14

2. Theory

2.3 The Pixel Processing Unit
The purpose of the Pixel Processing Unit (PPU) is to interpret the data residing
in VRAM and compose it into a picture which can then be printed on the LCD.
The CPU can communicate with the PPU either by loading data into the VRAM
or by reading from or writing to a number of hardware registers, most notably the
LCD control and status registers. The PPU, on the other hand, uses interrupts to
communicate with the CPU [44].

2.3.1 Composing the frame
The frame is composed of three layers: Background, Window and Sprites, rendered
in that order. These layers are in turn composed of tiles, 8x8 bitmaps of colour
indices, which are stored in VRAM. When rendering the picture, these indices map
to one of the four colours using palette tables, which in the original Game Boy was
four shades of grey over a green background [19]. The following is a description of
the components used to form the frame.

Tiles - As previously mentioned, the tiles are 8x8 bitmaps stored in RAM, 16
bytes per tile. This is because each row of a tile is formed by combining the bits
of two bytes. The bytes are organised in two memory regions called Tile sets; one
ranging from 0x8000 to 0x9000 and one ranging from 0x8800 to 0x9800, see Figure
2.4. These two tile sets overlap and which one to use is determined by a bit in the
LCD Control register (LCDC). The first of the two uses unsigned addressing for tile
IDs, while the second one uses signed addressing. [19].

15

2. Theory

Figure 2.4: The two tile sets. Sprites may only use tiles from the tile set ranging
from 0x8000 to 0x9000 while the background and window can use any of the two
sets. From [30]. Used with permission.

Background - The background is defined by a map of 32x32 tile IDs. Since a tile is
8x8 pixels, this results in a map of 256x256 pixels; however, the Game Boy’s display
is only 160x144 pixels. The result of this is that only part of the background is
being displayed at any given time, as shown in Figure 2.5. Which part of the map
to display is determined by the two hardware registers, SCX and SCY, which specify
which pixel should appear in the top left corner of the display. If the edge of the
map is reached, the map loops around and continues at the opposite side. There are
also two maps available at any given time, which one is being used is determined by
a bit in the LCDC [44].

16

2. Theory

Figure 2.5: What is shown on the LCD in relation to the background map. From
[30]. Used with permission.

Window - The window is drawn on top of the background. Just like the back-
ground, it consists of a map of tiles; however, this map is only 20x18 tiles, just
covering the entire screen and, unlike the background, does not loop around. This
layer can be used to display information that should not scroll with the rest of the
background, such as a GUI [44].

Sprites - Sprites are objects that can move around on the screen freely. They
consist of one or two tiles, depending on a bit in the LCDC register. As opposed
to the tiles in the background and window layers, sprites can have transparent pix-
els, meaning that the background and window are still visible through said pixels.
Sprites only consist of tiles from the tile set ranging from 0x8000 to 0x9000, as
shown in Figure 2.4 [44].

Sprite data is stored in a memory region called the Object Access Map(OAM).
Each sprite takes up four bytes of memory. These bytes store the sprites’ x and
y coordinates, the sprites’ tile IDs and a set of flags. The flags describe which of
two object palettes the sprite uses, whether the sprite is flipped horizontally or ver-
tically, and lastly whether the sprite should be drawn in front of or “behind” the
background. Drawing a sprite “behind” the background results in background and
window pixels with colour indices 1-3 being drawn in front of the sprite, though the
sprite is still drawn in front of pixels with colour index 0 [44].

17

2. Theory

2.3.2 The modes
At any given time, the PPU is in one of four modes: horizontal blanking, vertical
blanking, OAM search or drawing [44].

Figure 2.6: The various PPU modes and their durations. From [45]. Public
Domain.

Depending on which mode the PPU is in, there are limits on whether the CPU
has direct access to VRAM and OAM. When the CPU does not have access to one
of these regions, any write to that region will be ignored and any read will return
0xFF. The PPU changes modes according to Figure 2.6 [44]. The four modes will
now be described in further detail.

Horizontal blanking
The PPU enters a horizontal blank (H-blank) whenever it has finished drawing a
line. During this period, the CPU can access VRAM and OAM freely. Depending
on how long the PPU was in mode 3 before entering this mode, the length of the
H-blank is adjusted so that the total time spent on OAM search, drawing and H-
blanking for each line is exactly 114 cycles [44].

18

2. Theory

Vertical blanking
The PPU enters a vertical blank (V-blank) whenever all 144 scanlines have been
drawn to the screen. The V-blank is treated as ten blank lines and therefore lasts
for 1140 cycles. During this time the CPU has free access to VRAM and OAM [44].

OAM search
The PPU enters this mode before drawing each line. When in this mode, the PPU
finds the first ten sprites in OAM that intersect the current scanline to prepare for
the draw phase. During this time the CPU can access VRAM freely [44].

Drawing
The PPU enters this mode after having finished OAM search. During this mode the
PPU combines the background, window and sprites of the current row and draws the
pixels to the LCD. The process is described in more detail in Section 2.3.4. During
this time the CPU can access neither VRAM nor OAM [44].

2.3.3 The registers
The PPU contains a variety of hardware registers. These are described in this sec-
tion, also noting whether they are used for reading or writing to.

LCD Control Register (R/W)
The LCDC register is the main way for the CPU to control the operation of the
PPU. It can be modified at any time and contains the following bits [46]:

• Bit 7 - LCD enable. If this bit is 0, the display is off.
• Bit 6 - Window tile map select. This bit determines which map should be

used for the window layer.
• Bit 5 - Window enable. This bit determines whether the window layer should

be drawn or not.
• Bit 4 - Tile set select. This bit determines which tile set should be used by

the tile maps.
• Bit 3 - Background tile map select. This bit determines which map should be

used for the background layer.
• Bit 2 - Object size. This bit determines whether sprites consist of one or two

tiles.
• Bit 1 - Object enable. This bit determines whether sprites should be drawn

or not.
• Bit 0 - Background and window enable. This bit determines whether the

background and window layers should be drawn or not.

19

2. Theory

LCD Status and Configuration Register (R/W)
The STAT register represents the status of the PPU. It can also be used to create
custom interrupts, depending on the status of the PPU. The STAT register contains
the following bits [47]:

• Bit 6 - LYC interrupt enable. Enables interrupts when the current scanline
equals the value of the LYC register.

• Bit 5 - OAM search interrupt enable. Enables interrupts when the PPU enters
OAM search.

• Bit 4 - V-blank interrupt enable. Enables interrupts when the PPU enters a
V-blank.

• Bit 3 - H-blank interrupt enable. Enables interrupts when the PPU enters an
H-blank.

• Bit 2 - LYC=LY flag. Is set to 1 if the current scanline equals the value of the
LYC register.

• Bit 1-0 - Mode flag. Represents the current mode of the PPU.

The PPU also has a variety of utility registers, described here [44]:

• SCY and SCX (Scroll X & Y) - Control background scrolling. Represents the
coordinate on the background map that should be displayed in the top left
corner of the display. (R/W)

• LY (Line Y) - Keeps track of the current scanline. (R)
• LYC (Line Y Compare) - Used in the STAT register to generate interrupts.

(R/W)
• WY and WX (Window X & Y) - Represents the coordinate on the display

where the top left pixel of the window should be displayed. (R/W)
• BGP (Background Palette) - The palette for the background. Maps the indices

0-3 to white (0), light grey (1), dark grey (2) or black (3). (R/W)
• OBP0 (Object Palette 0) - The first of two sprite palettes. Functions similarly

to BGP except colour index 0 represents transparent pixels. (R/W)
• OBP1 (Object Palette 0) - The second of two sprite palettes. Functions exactly

like OBP0. (R/W)
• DMA (Direct Memory Access) - Used for triggering a DMA transfer. More

information can be found in Section 2.3.5. (R/W)

20

2. Theory

2.3.4 Drawing the image
During mode 3 the PPU continuously transfers pixels to the LCD. This is done by
loading tile data into two FIFO queues, one row of pixels at a time. One queue
stores background and window pixels and the other queue stores sprite pixels. The
pixels are then popped from the queues and mixed depending on whether the sprite
or the background should have priority [48]. This is also where the colour indices are
mapped to colours using the palette tables. Depending on how many sprites are on
the current scanline and whether the background is scrolled or not, the duration of
mode 3 may be lengthened or shortened [48]. This results in mode 3 lasting between
43-72 cycles, as shown in Figure 2.6.

2.3.5 Direct Memory Access transfer
As mentioned previously, the CPU can access OAM freely during H-blanks and V-
blanks. There is however another way to update the OAM: through Direct Memory
Access transfers (DMA transfers). A DMA transfer is triggered by writing a value
between 0x00 and 0xDF to the DMA register [49]. This value is bit-shifted to the
left eight times and is then used as the start address for the transfer, where the PPU
copies the 40 × 4 = 160 following bytes into the OAM. During the transfer, which
takes 160 cycles, the CPU can only access HRAM and no sprites are displayed.
This process can be used no matter which mode the PPU is in, though there may
be visual bugs if a transfer is started when the PPU is in mode 3 [49].

21

2. Theory

2.4 The Audio Processing Unit
The role of the Audio Processing Unit (APU) is to play audio. The Game Boy
can play sound through four separate channels, each of which is an independently
controllable source of sound [50]. Each individual channel has a designated waveform
assigned to it with each waveform defining what type of sound the respective channel
plays. A waveform can be visually represented through a graph that shows change
of amplitude over time. These waveforms sound drastically different to each other,
which makes for a highly customisable sound experience even with only four channels
available. The first two channels are only able to play pulse waves (see Figure 2.9),
the third channel has a programmable waveform, which enables some customisability
for the game developer, and the fourth channel plays a pseudo-random waveform,
producing noise [51]. For further information about how waveforms and sound in
general works, see [52] and [53].

2.4.1 The registers
The APU has a large number of registers for controlling the audio output for each
channel. Settings such as volume and frequency can be changed by writing to the
registers of each channel. The layout of these registers can be seen in Figure 2.7.
The labels for each bit in Figure 2.7 corresponds to a specific functionality described
in Table 2.4.

Figure 2.7: The registers NR10-NR44, addresses 0xFF10-0xFF23, for controlling
audio channels. Bits coloured in yellow are write only and will always return 1 if
read from [51]. From [30]. Adapted with permission.

There is also a set of APU master control registers which affects the four audio
channels. These can turn the whole APU on or off, indicate what channel is currently
playing, and control what side the sound should come from which results in stereo
sound. The layout of these registers can be seen in Figure 2.8. The labels for each
bit in Figure 2.8 corresponds to a specific functionality described in Table 2.5.

22

2. Theory

Label Name Functionality
T Toggle Turns the channel on or off

L (NRx4) Length enable If the channel should be
turned off after a short

period of time
F Frequency

How long to play
each audio sample

S, W, D (NR43) Clock Shift
LFSR mode
Divisor code

V, A, P (Not NR32) Volume Initial channel volume and how
it should sweep up or downAdd mode

Period
V (NR32) Volume code Channel volume

D (NR11,NR21) Duty Sets pulse length, see Section 2.4.3
L (NRx1) Length Time until channel is turned off

P, N, S (NR10) Sweep period Sweeps channel frequency
up or down to

create sound effects
Negate
Shift

E DAC power Turns channel DAC on or off

Table 2.4: Description of the labels in Figure 2.7. From [51]. Adapted with
permission.

Figure 2.8: The registers NR52-NR50, addresses 0xFF26-0xFF24, are used for
controlling the power and returns the state of all channels. Bits coloured in yellow
are write only and will always return 1 if read from. Bits coloured in blue are read
only, any data written to this location will be ignored [51].

Label Name Functionality
P Power Enables or disables the entire APU
S State State of each channel, if 1, the channel is playing
L Left enable Enables or disables left and

right side for each channelR Right enable

Table 2.5: Description of the labels in Figure 2.8. From [51]. Adapted with
permission.

23

2. Theory

2.4.2 Events
The registers described above trigger events at different frequencies. At what fre-
quency these events should be triggered and exactly what happens at these events is
controlled by the registers. Note that all values which are changed with these events
are reset when the bit labelled with “T” is set [51]. The table below summarises the
events which occur and at what frequency.

Event Frequency [Hz] Action
Play sample 0x20000/(0x800 − F) Play next audio sample

Play sample (Noise) 0x80000/(D ∗ 2(S+1)) Play next audio sample

Volume envelope 0x40/P V =

V − 1 if A = 0
V + 1 if A = 1

Length sweep 0x100 Decrease L if length is enabled

Frequency sweep (Pulse 1) 0x80/P F =

F + F/2S if N = 0
F − F/2S if N = 1

Table 2.6: F, D, S, V, P, L - The value of the bits labelled with “F”, “D”, “S”,
“V”, “P”, “L” respectively, for each channel.

2.4.3 The audio data
The pulse wave channels can play a pulse wave with four different waveforms. What
waveform to play is specified by the “duty”-bits, i.e. the bits labelled with “D” in
Figure 2.7. The resulting waveforms can be seen below in Figure 2.9.

Figure 2.9: The four pulse waveforms with their corresponding duties [51]. The
percentages indicate what amount of the wave is high. Duty “10” is most commonly
used.

The waveform of the wave channel can be set to any shape you want by writing to
the addresses 0xFF30 to 0xFF3F. Each set of four bits represent one sample which
means one waveform consists of 32 samples [51]. This approach enables the game
developers to create something completely custom made to make their own unique
sounds.

24

2. Theory

Figure 2.10: A rough representation of how a custom waveform is created through
addresses 0xFF30 to 0xFF3F.

The noise channel generates a pseudo-random waveform using a Linear-Feedback
Shift Register (LFSR) [54]. The LFSR is 15 bits long and all bits are set to 1 in the
beginning of the process. Bit 0 in the LFSR determines the output of each sample,
if bit 0 is set to one, the output is low, otherwise it is high. To generate a new value
of LFSR, the following is calculated where LFSR(x) is the new value, LFSR(x−1)
is the old value, LFSR(x − 1)n is the value of bit n in the old value, and W is the
value of the bit labelled with “W” in Figure 2.7 [51].

LFSR(x) =

(LFSR(x − 1)0 ⊕ LFSR(x − 1)1) ∗ 0x4000 + LFSR(x − 1)/2 if W = 0
(LFSR(x − 1)0 ⊕ LFSR(x − 1)1) ∗ 0x40 + LFSR(x − 1)/2 if W = 1

25

3
Tools and methodology

This section describes the process of planning and implementing an emulator for the
Game Boy, the tools used and why they were chosen.

3.1 Programming language
The language used in the project is C++ [55]. The language was chosen because
it is fast, and supports the bit-level manipulation that is required when emulating
hardware.

3.2 Graphics and GUI
For displaying graphics SDL2 [56] and OpenGL [57] were chosen, mainly due to
them being appropriate when developing in C++, as well as the supervisor for this
thesis being able to provide a base project already using these libraries which the
emulator could be based on. In addition to this the team had some previous expe-
rience working with OpenGL.

When it came to providing a GUI enabling the user to interact with systems outside
of the emulation itself, such as changing/displaying keybinds or loading a game, the
library ImGui [58] was used.

3.3 Audio
For generating audio and playing sounds, OpenAL [59] was used. The choice to
implement sound was made partway through the project and the choice then fell on
OpenAL as it has a similar design as OpenGL, which the team had already acquired
some experience with.

26

3. Tools and methodology

3.4 Scrum
When developing software, it is beneficial to use a flexible work process. When
encountering problems or if the scope of the project changes, it should be possible
to change direction without requiring the team to rewrite large parts of the project.
In order to achieve this flexibility, the working process was formed around the agile
development framework Scrum [60].

Whereas traditional Scrum perhaps has not been implemented in this project, the
work process has been heavily influenced by Scrum. This is mainly due to the flex-
ibility it allows while developing as well as tracking the work which has been done,
and is to be done. This has specifically been done by implementing sprints and
using a scrumboard for tracking tasks and progress.

3.5 Plan
The development of this emulator can roughly be split into three phases. The re-
search, implementation and refinement phases, each being different from each other.

The main focus of the first phase was researching the Game Boy and finding relevant
documentation as this is something which is not provided by Nintendo. By doing
this, a basic plan and architecture could be produced. This also included a number
of documents summarising information about the Game Boy.

Although a rough plan was sketched during this phase, providing both a plan for
what to implement and in what order, this was always subject to change as the
team had been implementing an agile workflow allowing for flexibility. Therefore
the planning was allowed to be less strict than in other kinds of projects. The plan-
ning and documentation produced in this phase still yielded results which could be
used as a basis for the second phase.

The second phase, implementation, heavily relying on the planning made in the
previous phase, followed an agile workflow with sprints being one or sometimes two
weeks long. This resulted in a flexible work flow allowing the team to continuously
re-assess what to focus on each week while also allowing to document the progress
on a weekly basis.

The final phase, refinement, allowed for extensive testing, re-factoring and also fur-
ther development and bug fixing.

27

3. Tools and methodology

3.6 Architecture
During the first weeks, before the development of the actual emulator began, the
initial plan was that the emulator would be divided into two larger modules. One
module would contain all code related to the actual Game Boy emulation (Game
Boy module) while the other would contain code related to the application part of
the project such as keyboard input handling, graphics rendering, etc (Application
module). For the Game Boy module, a basic design was developed where each
of the well defined hardware units such as the CPU and PPU were decided to be
further separated into modules. Additionally memory handling was decided to be
represented by an aggregate unit resulting in a Memory Management Unit (MMU).
For the Application module it was decided that a sort of Model-View-Controller
architecture would be used. The final part of this design was an interface where
the separate units of the Game Boy could work together and could bridge the gap
between the Game Boy module and the Application module.

Figure 3.1: Initial sketch of how different features were to be separated into dif-
ferent modules.

28

3. Tools and methodology

3.7 Testing
Unit tests were one of the methods chosen to ensure that the emulator behaves as
intended. For this, Google’s testing framework Google Test was used [61]. Google
Test was chosen as it supports unit tests for C++ and works well with the Contin-
uous Integration (CI) tool Travis [62].

Nintendo have not released any official documentation of the hardware and the
exact behaviour of the Game Boy is therefore partly unknown. Due to this, one can
not be sure of the accuracy of an emulator, and if certain behaviour is correct or not
without comparing the emulator to actual hardware. This of course makes develop-
ment for the Game Boy more difficult. Fortunately, the Game Boy Wiki provides a
table for a set of test ROMs [63] made by the emulator community member Blargg
[64], containing the results of running the ROMs on a number of emulators as well as
actual hardware. By comparing these results and the results produced when run on
a specific emulator, one can in some ways confirm whether or not the emulator is be-
having correctly. As the community provides a table with the results from Blargg’s
test ROMs on actual hardware, these were chosen as the first and main test ROMs
to be used. In addition to this, some of the tests were deemed more central than oth-
ers. Specifically the ROMs testing the instruction timing and instruction behaviour.

To streamline the testing process, most of the time spent in unit testing was done
testing the basic operations executed by the CPU, MMU, PPU and in time, the
APU. This was done to make sure that the most central parts of the emulator work
correctly individually. Once this was done, the test ROMs came into use as these
require a working CPU, MMU and PPU as they write the results of the tests directly
onto the screen. These produce more extensive results and one might argue that
they act as integration tests, testing multiple parts of the code and their interac-
tions. In addition to this, testing was also done by playing a multitude of games,
visually looking for bugs and otherwise strange behaviour.

29

4
Results

In this section the technical design and implementation of the theory is described.

4.1 Architecture and Design
The final design of the architecture follows the basics of what was laid out in the
initial design with some changes. These changes mostly concern the Application
module which was initially planned to follow the Model-View-Controller architec-
ture. The main reason for this is that the chosen GUI library acts as both view and
controller. The Application module of the emulator will not be further explored in
this section, instead the Game Boy module will be looked at in more detail.

The Game Boy module is interacted with through the “GameBoy”-class which also
has the task of synchronising every part of the Game Boy emulation (see below).
As mentioned in Chapter 2, the different units communicate by reading from and
writing to shared address space. This is reflected in the implementation as well as
the diagram in Figure 4.1, which is a dependency diagram of the Game Boy module.

Figure 4.1: Dependency diagram over the Game Boy module.

30

4. Results

Something which the original design knowingly did not take into consideration was
the fact that the different hardware units run in parallel with different clock speeds.
This choice was delayed as the research made showed that there were multiple pos-
sible solutions to synchronise the different units. Deciding which solution to im-
plement therefore had to be done during development. The chosen solution was to
make the CPU return the number of machine cycles after executing an instruction
and to then allow the other units to catch up before executing another instruction,
see Listing 4.1. The shown code snippet displays part of what could be considered
the main loop of the emulation.

1 void GameBoy :: step(IVolumeController *vc){
2 ...
3 int cycles = cpu -> update ();
4 ppu -> update (cycles);
5 apu -> update (cycles , vc);
6 timer -> update (cycles);
7 cartridge -> update (cycles);
8
9 }

Listing 4.1: Code displaying how the CPU executes an instruction and returns
the number of machine cycles, whereafter the other units catch up by executing the
same number of cycles.

31

4. Results

4.2 The Central Processing Unit
The implementation of the CPU mainly consists of translating the CPU instruc-
tions from assembly to a modern programming language, in this case, C++. The
total number of instructions the CPU supports is 500 as mentioned previously, of
which many are very similar to each other and all of which are implemented. Due
to this, most of the instructions could be generalised into base functions, such as
add_8bit seen in code in Listing 4.2. These base operations could in turn handle
the variation of the instructions and instead of implementing one function for each
operation code, the correct input simply needed to be provided to the correct base
instruction given an operation code. There are some exceptions, amongst them the
HALT-instruction [65] which has a very particular behaviour and therefore needed
to have a separate implementation.

1 void CPU :: addA(uint8_t value , bool withCarry) {
2 add_8bit (A, value , withCarry);
3 }
4

5 void CPU :: add_8bit (uint8_t &a, uint8_t b, bool withCarry) {
6 auto CFlag = withCarry ? F.c : 0;
7 setCFlag (a, b + CFlag , false);
8 setHFlag (a, b, false , CFlag);
9 a += b + CFlag;

10 // Note that all ’false ’ parameters specify that subtraction is
not used , which in turn affects how and which flags are set.

11 setZNFlags (a, false);
12 }

Listing 4.2: Code displaying a generalised method used, in this case an addition
function which allows for addition between register A and all other registers, both
with and without the use of the carry bit.

4.2.1 Interrupts
As previously stated, the CPU has five types of interrupts. Of these five only
the “Serial interrupt” is not implemented, which there never was any intention of
implementing as mentioned in Section 1.4. All the implemented interrupts are in
some ways central in having a working CPU as these allow for other units to request
the CPU to perform specific tasks when needed.

32

4. Results

4.2.2 Testing of the Central Processing Unit
Mainly, three tests were used for checking the accuracy of the CPU. These check the
correctness of the instructions [64], their timings and the interrupt timing respec-
tively. The tests regarding the CPU-instructions, cpu_instrs and instr_timing,
pass on both the real hardware [63] and the emulator see Figure 4.2. The
interrupt_time test, however, does not pass despite being implemented and per-
forming as expected. It most likely fails due to the implementation of the synchro-
nisation of the different units. This is further discussed in Section 5.1.1.

Figure 4.2: Displaying the emulator results from Blargg’s test ROMs checking the
correctness of the CPU instructions and CPU timing respectively.

33

4. Results

4.3 The Memory Managing Unit
The Game Boy uses memory mapped I/O which means that almost all communica-
tion can be done through reading and writing to the different addresses. Therefore
the main purpose of the MMU is to provide functionality which supports reading
memory and writing to memory.

To separate code and improve the possibility for parallel development all the differ-
ent devices are separated into their own classes: PPU, APU, Cartridge, Joypad and
Timer, each having their own read and write functions. The memory addresses used
by the device (mostly control registers) are also maintained in the devices’ class.
The other memory areas which are not part of a device are located directly in the
MMU class. Examples of such memory are: boot ROM, VRAM, WRAM, OAM,
and HRAM.

4.3.1 Timer
The timer is implemented as a device with read and write functions. Reading and
writing to the timer’s four registers is implemented to behave as described in the
Section 2.2. To make the timer update at the same pace as the CPU (and the system
as a whole) it has an update function. The update function allows the timer to catch
up to the system based on the number of cycles required for the last CPU instruction
executed, see Section 4.1. Because of the timer not being updated continuously it
is not always accurate. On original hardware the counter would increase during the
execution of a CPU instruction and could therefore change between the start of the
execution and the actual read from the counter register.

4.3.2 Cartridges and Memory Bank Controllers
Due to the fact that there are a number of different game cartridges, all supporting
different hardware, such as different MBCs, RTC, ROM and XRAM sizes, a modular
approach was taken. This was possible as although the cartridges may have different
hardware they operate in a similar manner, therefore an MBC interface class was
made. This enables different behaviour when reading or writing to the cartridge’s
addresses depending on the used MBC. The MBC interface also uses an update
function to allow the possibility of an RTC to update at the same pace as the rest
of the system. This function updates the RTC according to the specified number
of clock cycles, see Section 4.1. For MBCs without an RTC this function does not
do anything. This way multiple MBC classes can be implemented to easily expand
the support for different MBCs. The most common MBCs are MBC1 and MBC3,
which are also the ones which have been implemented.

34

4. Results

The information about hardware used in each game is stored in the game ROM file.
When loading the ROM file into memory the MBC type, ROM size and XRAM size
can be obtained and initialised accordingly. Another feature for games with XRAM
supported with a battery is the ability to save data between different sessions. A
common way to support this in emulators, this one included, is to create a separate
file to save the current contents of the XRAM to. Meaning that when loading a
ROM file, the emulator also looks for an XRAM-file, which if found is also loaded
and initialised, providing a way to use a games’ built in save functionality.

4.3.3 Testing of the Memory Management Unit
Testing of the implemented MBCs has been done using test ROMs that test different
features of the MBC such as ROM and XRAM bank switching as well as the RTC.
The MBC tests used are Gekkio’s mooneye-gb tests [66] and aaaaaa123456789’s
rtc3test [67], which the emulator pass.

Testing the timer was done with some test ROMs from Gekkio’s mooneye-gb tests
[66]. Most of them did not pass, most likely due to the inaccuracies caused by the
update function. Although, its basic counting capability has been tested through
games that for example use the counter to produce randomness. Without the counter
the supposed randomness did not produce different outcomes, but with the timer
implemented the outcome seemed more random.

35

4. Results

4.4 The Pixel Processing Unit
The PPU class aims to replicate the functionality of the PPU in the Game Boy.
In this section, the term “PPU” will refer to the PPU class and the term “original
PPU” will refer to the Game Boy’s PPU.

The PPU contains the same registers as the original PPU and implements read
and write methods that the CPU uses to communicate with the PPU.

4.4.1 Timing
As mentioned in Section 4.1, the PPU is controlled by a different clock than the
CPU and need to be kept in sync. To solve this problem, the PPU is updated every
time a CPU instruction is executed. By providing the number of cycles the CPU
instruction used to the update-method of the PPU, it is possible to determine how
much time has passed since it last switched mode and thereby decide whether the
PPU should switch mode or not. For simplicity, the PPU also does all the real
“work” of a mode whenever it switches from that mode.

4.4.2 Basic operation
The basic operation of the PPU is described by the update-method. Firstly, the
PPU adds the number of cycles elapsed since the last CPU instruction was executed
to the number of accumulated cycles since the PPU last switched modes, as seen in
Section 4.1. It then checks whether or not it should switch mode. This calculation
is based on the durations in Table 4.1; That is, the draw mode has been set to take
the fewest amount of cycles that it can possibly take in the real Game Boy and the
H-blank has been set to take as much time as is possible. When this is done, the
PPU checks whether a STAT-interrupt should be requested and if so requests one.

Mode Cycles
H-blank 51
V-blank 144
OAM-search 20
Drawing 43

Table 4.1: The durations of the PPU’s modes

What happens when the PPU changes mode depends on which mode it was just in.
This is very similar to the basic operation described in Section 2.3.2 but there are
a few differences, the main ones being that the image is rendered one line at a time
and that the CPU has free access to VRAM and OAM at all times. The operation
during the various modes is described below.

36

4. Results

H-blank
When leaving an H-blank, the PPU moves on to the next scanline. The LY reg-
ister is therefore increased by one. If all lines have been drawn, the PPU moves
to V-blank mode and a V-blank-interrupt is requested. If not, the PPU goes into
OAM-search mode.

V-blank
The V-blank in the emulator is treated as ten blank scanlines, since the V-blank
in the Game Boy lasts for ten lines. Therefore, the LY register is increased by one
every time the PPU is done with a blank scanline. If all ten blank scanlines have
passed, LY is reset to 0 and the PPU goes into OAM-search.

OAM-search
When leaving OAM-search the PPU prepares the sprites to be drawn on the current
line by adding the ones that intersect with the line to a priority queue. This ensures
that when retrieving the sprites from the queue, the ones with highest priority will
be drawn above those with lower priority. The PPU then goes into drawing mode.

Drawing
When leaving the drawing mode, the PPU processes the next line by calling the
processNextLine method and then goes into H-blank mode. The drawing process
is described in detail in Section 4.4.3.

4.4.3 Drawing
Unlike the original PPU, which draws pixels directly to the LCD, the PPU instead
inserts pixels into a frame buffer. Scanlines are drawn one at a time, but the layers
background, window and sprites are drawn in that order on top of each other, de-
pending on which of these layers are enabled in the LCDC register.

Background
For a given scanline, for each x-coordinate, the PPU determines the tile correspond-
ing to the coordinate, then which pixel of the tile should be drawn and lastly which
colour it should have. The colour is written to the frame buffer and the colour
index is saved in an array containing the background and window colour indexes
for the current line. This array is later used for determining sprite priority over the
background.

Window
For a given scanline, the PPU first determines whether the window covers this scan-
line. If it does, the window pixels are written to the frame buffer in a similar manner
to how the background is written. Any background pixels covered by the window
are overwritten.

37

4. Results

Sprites
For each sprite found during OAM search, in order of ascending priority, the PPU
draws the correct tile. If a pixel is transparent, the PPU simply moves on to the
next pixel. If a sprite is to be drawn below the background, the array containing
background and window indexes is used to determine the correct pixel.

4.4.4 DMA transfer
The DMA transfer in the emulator functions exactly the same as the one in the
original Game Boy described in Section 2.3.5, with the exception that the process
does not consume any cycles. That is to say, the entire DMA transfer takes place
before the CPU is allowed to execute its next instruction.

4.4.5 Testing of the Pixel Processing Unit
The correctness of this module was mainly tested through visual observations. Unit
tests were written to ensure correct behaviour of the PPU with various settings
turned on or off in the LCDC register. Examples are correct scrolling, using differ-
ent tile maps and tile sets and ensuring that the window covers the background.

Testing was also done by running game ROMs and comparing them to gameplay on
the original Game Boy as well as other emulators.

38

4. Results

4.5 The Audio Processing Unit
Since the APU is composed of multiple audio channels, features and controls, it was
decided that the first square wave channel, without the frequency sweep function-
ality, should be implemented first. After getting this first audio channel working,
the other audio channels were implemented iteratively along with more complicated
features such as volume and frequency sweep.

4.5.1 The Audio Controller
An audio controller class was created whose responsibility is to play sound using the
OpenAL library. Due to how the OpenAL interface works, this class cannot play one
sample at a time, but instead relies on being fed an array of samples which should be
played at a specific frequency for a specific amount of time. In order to play a sound
for any length of time, only the samples of one waveform is provided which is then
looped until stopped. Since the pulse wave and programmable wave channels al-
ready have a predefined waveform, these waveforms were simply fed to the OpenAL
library. The waveform of the noise channel on the other hand is pseudo-random,
and therefore has to provide more than one waveform to OpenAL. Thankfully, it
was discovered from testing that the LFSR(x) function, which is used to generate
pseudo-random noise specified in Section 2.4.3, loops at x = 0x7F when W = 1 and
at x = 0x7FFF when W = 0. This means only two arrays need to be generated, one
of size 0x7F and one of size 0x7FFF containing the pseudo-random noise, which can
be provided to OpenAL while also instructing OpenAL to loop the sound, resulting
in an infinite noise sound.

Due to the interface of OpenAL, the frequency of a sound cannot be changed while
playing. Changing the frequency therefore requires the sound to be stopped before
being played again at the new frequency. The effects of this are noticeable when
a game uses the frequency sweep register since there are fast consecutive switches
between frequencies. Instead of sounding like dragging your finger across a piano,
it sounds like dragging your thumb across the teeth of a comb.

39

4. Results

4.5.2 Testing of the Audio Processing Unit
When testing the APU, games were played on the emulator and the sound gener-
ated was compared with sound from videos on YouTube where the same game was
played. Aspects such as what tone was played, at what moment, for how long and
at what volume was observed when testing each register of each audio channel. This
resulted in the APU to be an approximation of the real APU where small technical
details was ignored.

The more advanced features such as the frequency and volume sweep were diffi-
cult to replicate accurately. To test these features, the “Sound Test (PD) [a1]” [68]
ROM was run which allows the user to set specific parameters in the APU registers
and play the specific sound channels. This ROM was also run on existing emulators,
like the Visual Boy Advanced [69], in order to compare the results.

Similarly to when testing the CPU, Blargg’s test ROMs [64] were also used to test
the APU. In particular, the dmg_sound test ROM was run in order to test the sound
of the emulator. However, since many of the small technical details of the APU were
ignored, not many of the tests passed, as seen in Figure 4.3.

Figure 4.3: Results of running the dmg_sound test ROM from Blargg’s test ROMs
[64].

40

4. Results

4.6 The Game Boy
After having developed multiple microcontrollers, they were combined into a com-
plete system as described in Section 4.1. This system is the public interface of the
hardware units and could be considered the actual emulation of the Game Boy.
In combining these microcontrollers an emulator is created which in its current
state can run multiple games without issue and in many ways provide an authentic
experience. The emulator does however display some irregularities and unwanted
behaviour in certain games, both mechanical and visual.

In code, this is represented by a separate “GameBoy”-class which combines all of
the developed microcontrollers. It is through this the emulation is run and through
this, all information is funnelled to external libraries such as OpenGL, ImGui and
OpenAL.

Figure 4.4: A screenshot of the emulator when loading ROMs.

41

5
Discussion

This chapter discusses the results of the project. If there were any specific problems
or choices in implementation which was made, and why.

5.1 Hardware
There is very little, if any, official documentation available regarding the specifics of
the hardware used in the Game Boy. While this complicates emulator development,
there are members of the community who have dedicated a lot of resources into
providing accurate documentation on the hardware. Among these are two of the
co-authors of PanDocs [45], Gekkio [70] and Antonio Niño Díaz [71]. Both of which
are also authors of their own very detailed documentations of the Game Boy, the
“Game Boy: Complete Technical Reference” [72] and “The Cycle-Accurate Game
Boy Docs” [35] respectively. These two documents are based on tests written and
ran on multiple units of the real hardware to ensure that they are testing correct
behaviour, and thereby providing a way to reverse engineer the hardware. These
sources, or sources similar to these, have therefore been central in the development
of this emulator.

5.1.1 The Central Processing Unit
While implementing the CPU, a problem regarding the number of machine cycles
an operation required was encountered. The problem was that the source used for
the operation codes [33], which displays flags affected, number of bytes used and
number of machine cycles, was not the same as used in Blargg’s test ROMs [64]. As
the test ROMs have been run on the real hardware and passed the tests, the team
considered the test ROMs to be using the correct amount of cycles [63]. A process
similar to what Gekkio and Díaz applies in their testing.

Looking at Blargg’s test suite regarding the CPU tests, one might note that the
emulator does in fact not pass all tests. Among the tests which it does not pass are
the interrupt_time, mem_timing and mem_timing-2 [64]. As mentioned in Sec-
tion 4.1, the different units need to be synchronised and act in accordance with each
other. There are indications that the reason for the tests failing is that it is possible
for the CPU to execute too many machine cycles before allowing the other units to
catch up or interrupts to intercept. Meaning that the current implementation of the
CPU does not allow for timer updates mid-instruction. In hindsight, it is possible

42

5. Discussion

that the problems encountered as a result of this choice could have been avoided.
One possible solution could be to allow the other units to catch up to the CPU
mid-instruction every time it reads from or writes to memory.

5.1.2 The Memory Management Unit
Early in the development all memory and registers were located directly in the MMU
class. When first implementing the PPU it always needed to “fetch” the registers it
needed from the MMU to continue to do its job. This made it clear that it would
be better to make the different device classes keep their own registers. With this
change it was necessary but also natural to make use of individual read and write
functions for each device, which in turn would be called from the main read/write
function located in the MMU class.

In the memory map, seen in Figure 2.2, there are some areas which are empty.
Although Nintendo says use of these areas are prohibited they still have a spe-
cific behaviour confirmed on all official hardware [73]. The seemingly empty range
0xE000-0xFDFF is by the community called “Echo RAM” and is on the original hard-
ware mapped to the actual RAM addresses. For example, writing a value to address
0xE001 would have the same effect as writing to the address 0xA001. The same goes
for reading values. We have chosen to not implement this behaviour mainly because
it is prohibited by Nintendo and is expected to be unused in licensed games. Addi-
tionally, this behaviour does not add any functionality that cannot be achieved by
other means. Furthermore, if it is used in unlicensed games it is easily implemented
down the line.

The choice to only implement two different MBCs was made because the most
popular games make use of these MBCs. Implementing more MBCs would yield less
return for the time spent and time was therefore put into other areas that felt more
important. Also, as previously mentioned, a modular approach was taken when
implementing MBCs, making it easy to implement in the future if wanted.

Limiting access to different memory areas under certain circumstances has not been
implemented, as this is expected to be respected by game developers. For example,
during a DMA-transfer the CPU, on the original hardware, is limited to only access
HRAM during that period.

5.1.3 The Pixel Processing Unit
As mentioned both in Sections 5.1.1 and 2.3, the different units are synchronised
with the CPU by supplying the other units with the number of cycles the CPU
has consumed after having completed each instruction. This made simulating the
PPU accurately impossible and the approach of drawing one scanline at a time was
instead chosen. The biggest limitation resulting from this choice is that the emulator
does not support writing to PPU hardware registers mid-scanline. This results in

43

5. Discussion

graphical glitches in a few games, but is not a problem for a vast majority of games.
However, the emulator supports writing to hardware registers between scanlines,
enabling visual effects such as the one shown in Figure 5.1:

Figure 5.1: The starting screen of the game Flappyboy. From left to right, its orig-
inal form and its distorted form achieved by writing to the SCX and SCY registers
between scanlines. From [74]. Screenshot by authors, used with permission.

The decision to render the image scanline by scanline was made as it supported the
aforementioned wobble effect and other visual effects, while still being achievable
within the given time frame. To support writing to hardware registers mid-scanline
would require a much more accurate simulation of the original PPU and was not
feasible in the allotted time.

Another difference between the emulator and the original PPU is that the emu-
lator does not limit the CPU’s access to VRAM and OAM. This could lead to bugs
in games where the developers have not ensured that the CPU has access to VRAM
or OAM before reading or writing to these memory areas.

All in all, graphical glitches are few and far in between and the PPU must therefore
be considered correctly implemented within the scope of the project.

5.1.4 The Audio Processing Unit
Implementing sound was initially considered out of scope, as it was deemed too com-
plex and would take too much time to implement. Therefore any progress made in
this regard is seen as exceeding the initial expectations. As the development of the
other parts progressed faster than expected, there was time to spare which allowed
for the implementation of the APU.

Only implementing one channel at a time was a good strategy as once the first
channel had been implemented, it was easy to implement more. The biggest differ-
ence between the sound channels was how the audio was generated. Thankfully they

44

5. Discussion

could be implemented similarly without changing much but the audio data provided
to the OpenAL API.

However, the devil is in the details, and for the APU there are a lot of them.
There have been several issues where sound continues to play when it should have
been muted, sound beginning to play from nowhere when it is not supposed to etc.
Most of these issues have been resolved, but there are still existing issues with some
games where the audio does not play at all.

The room for improvement is also apparent in the results of running Blargg’s
dmg_sound [64] test ROM which, as seen in Figure 4.3. Almost all tests fail due
to these small details not being implemented. On the other hand, having sound
implemented in any form and in some ways working as expected, is exceeding the
initial expectations.

5.2 Accuracy
One thing to always consider when discussing the development of emulators is the
accuracy of the emulation, and specifically how accurate the emulator aims to be.
Some developers choose to try to emulate the exact behaviour of the hardware,
including what today could be considered bugs, flaws, or mistakes. Others seize the
opportunity and correct some behaviour of the emulator which they deem incorrect
or faulty.

5.2.1 Compromises
Given the scope and the time spent on this project, this emulator had to be made
with some compromises between accuracy and progress. Assuming the aim would
have been to be as accurate as possible, a lot more research would have had to been
done, and implementation could and would have had to be planned more carefully.
On the other hand, many of the systems are implemented with the intention of
making the emulator extensible and easy to further develop.

One of the compromises made was considering the choice of further developing the
CPU, making it more accurate and passing more test ROMs, like Blargg’s interrupt
timing test [64], or attempting to implement sound. Adding sound to the emulator
would increase the overall impression and feeling of the emulator, while there is no
guarantee that making the CPU more accurate would increase the user experience in
any way. One might even argue that implementing additional features such as saves,
a functional GUI and other quality of life features yields a better overall impression
than improving the accuracy of the emulation. Therefore the choice fell on trying
to implement sound and other, smaller, features.

45

5. Discussion

5.2.2 Vital and auxiliary components
Some components of the Game Boy are more important than others, which means
these have to be more accurately emulated than auxiliary components. The most
vital component to be emulated accurately is the CPU since it is the central com-
ponent of both the Game Boy and the emulator. Any bugs caused by the CPU
may result in obscure behaviours which can be close to impossible to debug. Get-
ting Blargg’s cpu_instrs and instr_timing [64] test ROMs working was therefore
highly prioritised in order to validate the accuracy of the CPU and avoid any of
these potential bugs.

The APU, which on the other hand could be considered an auxiliary component,
was not given the same attention in regards to accuracy as the consequences of
having a defective APU is not as severe. The worst thing that could happen with
the APU is the absence, or constant presence, of sound, but all other parts of the
emulator would still work as intended. This is because, in contrast to the CPU, no
other component strictly relies on the APU to perform its function accurately. The
results of this approach to accuracy is visible in Figure 4.3 which shows only test 06
passing when running Blargg’s dmg_sound [64] APU test ROM.

5.3 Ethics
As mentioned in Section 1.5, the emulation of a proprietary product comes with
both ethical and legal complications, some of which are discussed in this section.

5.3.1 Legality of emulators vs. ROMs
Most digital copyrighted material have some sort of controversy around them. Gam-
ing consoles and their respective emulators are no different. Like with most subjects
touching on potential piracy and copyright infringement, there is a huge grey zone
whether or not something is legal or illegal, and subsequently if something is right
or wrong.

5.3.2 The emulator
The creation of an emulator is generally not illegal as long as no proprietary code
is used [75]. This is mainly because the emulator itself does not necessarily have
to contain any proprietary code to replicate the original console. Some consoles do
have proprietary code in their BIOS, however this can usually be avoided either by
flashing a BIOS legally, or creating a custom BIOS.

5.3.3 The Boot ROM
As previously mentioned, the boot ROM initialises the Game Boy while scrolling
down the Nintendo logotype, something which might seem like a banality at first.
However, this means that the official boot ROM cannot be used in emulators as

46

5. Discussion

it uses both copyrighted code, and displays a copyrighted logo. Additionally, on
the original hardware the Game Boy enforces that any game run on the Game Boy
has to contain the Nintendo logotype [76]. This is done by comparing the logotype
data stored on the boot ROM with data stored on the inserted game. If this data
does not match, the Game Boy locks itself up. This allows Nintendo to control
what is released to the platform, as any game released for the Game Boy has to
contain copyrighted material to run on the official hardware, and therefore needs
the approval of Nintendo [76].

5.3.4 The ROMs
Copyright laws differ from country to country, which complicates the matter further.
In the United States (US), there are multiple cases in court regarding the creation
of emulators and distribution of ROMs [77]. In the European Union (EU), however,
it is more difficult to find actual court cases around emulation, which creates con-
fusion for people without a legal education. The European Parliamentary Research
Service has documentation which describes the copyright laws in the EU [78]. This
documentation is on the other hand not as easily interpreted as pre-existing cases,
of which there seem to be very few using EU law.

Due to the difficulty of interpreting the EU law as a layperson when discussing
the legality of ROMs, the US law is usually referred to. Furthermore, according to
US law the ROMs themselves are in a bit of a grey zone [79]. Making back ups
of game cartridges one already owns is completely legal under the right circum-
stances and for the right purposes according to US copyright laws [80]. Selling or
distributing said copies is illegal and counts as copyright infringement, and so does
downloading other people’s copies. The main legal way to get a playable version of
an existing game’s ROM seems to be through making your own copy of that specific
game, which you must already own. Piracy and copyright laws do vary from country
to country, and there is continuous debate online whether or not these laws are for
the greater good or not [81]. Furthermore, it is not always clear which country’s
laws are to be followed, since the company who owns the copyright might not be
based in the same country as the person using their content.

5.3.5 Test-ROMs
If game ROMs are not acquirable for some reason, there are a multitude of test-
ROMs online that are available to make sure the emulator and its parts work as
intended [82]. These are free to use and has benefited the troubleshooting of this
project immensely without any risk for potential copyright infringement. There are
also games developed by the community, i.e. non-proprietary ROMs, specifically for
emulators which have been used for testing.

47

5. Discussion

5.3.6 Sharing knowledge
By creating an emulator for an old console one gets to thoroughly understand how
the very basic components of a gaming system work together to create a complete
console. By making the emulator’s source code available publicly, it might help
increase the knowledge of these types of systems among students, enthusiasts and
developers alike. As long as no proprietary code is shared, there is no obvious way
this could harm anyone. If the Game Boy was not discontinued one could argue that
an emulator would deter people from buying an expensive console. However, since
the Game Boy is no longer being sold, that risk is effectively eliminated. On the
contrary, finding an emulator might even contribute to further interest in Nintendo
products which would most likely benefit them.

5.3.7 Gaming history preservation
One of the main pro-emulation arguments is that of historic preservation. The
Game Boy was made with hardware that degrades over time, which limits each
units lifetime. Ever since the product was discontinued in 2003 [83] people have
been urging to save what many believes to be one of the greatest gaming products
ever released. Much like museums would save objects from historical events, Game
Boy emulators and ROM archiving could be seen as a kind of digital museum where
the soon to be lost hardware is forever stored. Several games for the Game Boy are
no longer being sold, and acquiring a used copy becomes increasingly more difficult
with time. This makes retro game emulation for historic preservation quite an
attractive option for a lot of people. However the legal situation around emulators
is very much a grey zone, which makes justifying an emulator for this purpose much
more difficult. Creating an emulator would definitely contribute to increased historic
preservation, however through incorrect use it could also be a tool for playing illegal
copies of games.

5.3.8 Console Classix
An example of a company which has tried to make old ROMs playable to the public
is Console Classix [79]. The idea is to rent their games through a client-server
solution to make the games playable on a home PC. Although they have received
a letter from Nintendo regarding their business [84], no legal action has been taken
since. Console Classix’s defence is that they, unlike illegal ROM sharing websites,
do not publish the ROMs publicly but rather provide limited access to them with a
subscription method. By sending the ROM images directly from the server to the
client’s RAM, the game effectively disappears from the client when they stop playing,
which would prevent any permanent distributing from happening. Additionally,
they do not rent more copies out than they own, therefore it is difficult to build
a case around copyright infringement as well. This is a great example of using an
emulator seemingly legally to still fill the purpose of historic preservation, while
simultaneously providing a way to play retro games for those subscribed to their
service.

48

5. Discussion

5.4 Future Work
Going forward, there are numerous ways to improve the emulator. Initially, one
could work on improving its accuracy, ensuring that more games are playable with-
out any unintended behaviour, for example by continuing to work towards passing
more test ROMs. Furthermore, there are many additional features regarding quality
of life which could be implemented, such as quick saves, shortcuts for commands etc.
One could even develop a debugger/disassembler for the emulator or modularise the
code further in an effort to emulate multiple systems within one emulator.

Furthermore most emulators are created for one of three purposes: they either aim
to provide ways to play old games, a historical documentation of a product which is
at risk to be lost to time or as a form of learning experience. Most of which results
in a code base which is more or less cluttered, either due to inexperience in the
field, that the code bases are very big, or due to the fact that they aim to reproduce
exact behaviour of hardware. Additionally, due to the fact that there is no official
documentation from Nintendo regarding the Game Boy, most emulators will be de-
pendent on people such as Gekkio [70] or Díaz [35] as most people do not have the
technical competence or resources available to reverse engineer the hardware. This
results in the available emulators being quite homogeneous, where most emulators
are built using the same source material. Most will probably even use the same tests
to check the emulator’s accuracy compared to the real hardware. As a developer of
an emulator it is therefore highly unlikely that you bring something new to the table.

One might therefore ask oneself if there is any academic interest in such a product.
One could then consider the fact that video games are extremely popular among
the general population. This is something which could be leveraged into piquing
an interest for low-level programming and hardware through the use of emulator
development. This could, for instance, be done by providing an emulator which has
a clear structure, is effectively modularised and commented. The purpose would not
be to make the most accurate or the fastest emulator, but rather to provide a clear
point of reference for the interaction between hardware and software. This emulator
could then work as an inspiration for other potential developers, creating a base for
further learning.

49

6
Conclusions

Emulating an older system, such as the Game Boy, can be done to some accuracy
with limited resources, both in time and available knowledge, as shown by this thesis.
Despite not perfectly replicating the system to be emulated, a Game Boy emulator
can be created which runs many games and provides the functionality expected from
an actual Game Boy, thereby both providing a more or less authentic experience as
well as a way to preserve games. It does however mean that the emulator can exhibit
strange behaviour, freeze, or even crash when unexpected problems regarding the
emulation are encountered and can therefore not be considered stable. If better,
more detailed, and comprehensible documentation could be provided, better emu-
lators could also be produced. One could even consider that there is something of
a finish line for emulator development, where if you reproduce the exact behaviour
of the hardware, the topic is exhausted. If this would be achieved, one could look
at other purposes of emulator development such as using it as a tool for education.
This could for example be done by creating a simple, well-documented emulator
with a clear structure showing how the translation from hardware to software is
done, leveraging the interest for gaming in the general population to work as an
inspiration to learn more about low-level programming.

50

Bibliography

Note that between the first and second edition of this thesis, the website of Pan
Docs hosted by the Game Boy Development community at gbdev.io was updated
and all links used as references therefore stopped working. These are now referred
to using The Wayback Machine [85] and therefore contain a prefix of web.archive
specifying a date preceding the changes which broke the initial references.

[1] C. Woodcock, Original nintendo game boy, Public Domain Pictures. [Online].
Available: https : / / www . publicdomainpictures . net / en / view - image .
php?image=191203&picture=original-nintendo-game-boy, Accessed on:
2021-05-28.

[2] Techopedia, Emulator, Techopedia. [Online]. Available: https://www.techopedia.
com/definition/4788/emulator, Accessed on: 2021-02-12.

[3] R. E. W. III, What is an emulator? Jan. 2021. [Online]. Available: https:
//www.lifewire.com/what-is-an-emulator-4687005, Accessed on: 2021-
02-12.

[4] D. Johnson and W. Antonelli, “Emulators can turn your pc into a mac, let you
play games from any era, and more — here’s what you should know about
the potential benefits and risks of using one,” Business Insider, Oct. 2020.
[Online]. Available: https: //www. businessinsider .com/what - is- an-
emulator?r=US&IR=T, Accessed on: 2021-03-30.

[5] K. Smith-Wong, Why the nintendo game boy was so successful, Jul. 2015. [On-
line]. Available: https://www.denofgeek.com/games/why-the-nintendo-
game-boy-was-so-successful/, Accessed on: 2021-02-12.

[6] G. Sheppard, “The chronology of game boy models,” GameGrin, Apr. 2019.
[Online]. Available: https://www.gamegrin.com/articles/the-chronology-
of-game-boy-models/, Accessed on: 2021-03-30.

[7] Nintendo switch, Nintendo. [Online]. Available: https://www.nintendo.com/
switch/system/, Accessed on: 2021-05-28.

[8] Nintendo 3ds-familjen, Nintendo. [Online]. Available: https://www.nintendo.
se/nintendo-3ds-familjen, Accessed on: 2021-05-28.

[9] Game boy family, Wikipedia, Mar. 2021. [Online]. Available: https://en.
wikipedia.org/wiki/Game_Boy_family, Accessed on: 2021-04-01.

[10] Nintendo, Consolidated sales transition by region, 2016. [Online]. Available:
https : / / www . nintendo . co . jp / ir / library / historical _ data / pdf /
consolidated_sales_e1603.pdf, Accessed on: 2021-03-25.

51

https://www.publicdomainpictures.net/en/view-image.php?image=191203&picture=original-nintendo-game-boy
https://www.publicdomainpictures.net/en/view-image.php?image=191203&picture=original-nintendo-game-boy
https://www.techopedia.com/definition/4788/emulator
https://www.techopedia.com/definition/4788/emulator
https://www.lifewire.com/what-is-an-emulator-4687005
https://www.lifewire.com/what-is-an-emulator-4687005
https://www.businessinsider.com/what-is-an-emulator?r=US&IR=T
https://www.businessinsider.com/what-is-an-emulator?r=US&IR=T
https://www.denofgeek.com/games/why-the-nintendo-game-boy-was-so-successful/
https://www.denofgeek.com/games/why-the-nintendo-game-boy-was-so-successful/
https://www.gamegrin.com/articles/the-chronology-of-game-boy-models/
https://www.gamegrin.com/articles/the-chronology-of-game-boy-models/
https://www.nintendo.com/switch/system/
https://www.nintendo.com/switch/system/
https://www.nintendo.se/nintendo-3ds-familjen
https://www.nintendo.se/nintendo-3ds-familjen
https://en.wikipedia.org/wiki/Game_Boy_family
https://en.wikipedia.org/wiki/Game_Boy_family
https://www.nintendo.co.jp/ir/library/historical_data/pdf/consolidated_sales_e1603.pdf
https://www.nintendo.co.jp/ir/library/historical_data/pdf/consolidated_sales_e1603.pdf

Bibliography

[11] Official home of kirby, Nintendo. [Online]. Available: https://kirby.nintendo.
com/, Accessed on: 2021-05-28.

[12] Pokemon.com, Nintendo. [Online]. Available: https://www.pokemon.com/
us/, Accessed on: 2021-05-28.

[13] M. Minotti, 25 years of the game boy: A timeline of the systems, accessories,
and games, Apr. 2014. [Online]. Available: https://venturebeat.com/2014/
04/21/25- years- of- the- game- boy- a- timeline- of- the- systems-
accessories-and-games/, Accessed on: 2021-03-31.

[14] Tetris, Nintendo Wiki. [Online]. Available: https://nintendo.fandom.com/
wiki/Tetris, Accessed on: 2021-05-31.

[15] History of console emulators, Emulation Nation. [Online]. Available: http:
//www.emulationnation.com/console-emulation/history-of-console-
emulators/, Accessed on: 2021-04-25.

[16] What are the top youth media brands in 1980s, 1990s, 2000s and current?
Wonder, May 2017. [Online]. Available: https://askwonder.com/research/
top - youth - media - brands - 1980s - 1990s - 2000s - current - keja4oioq,
Accessed on: 2021-04-25.

[17] History of emulation, Game Tech Wiki, Jul. 2020. [Online]. Available: https:
/ / emulation . gametechwiki . com / index . php / History _ of _ emulation,
Accessed on: 2021-02-12.

[18] Z. Domain, Nintendo - gameboy emulators. [Online]. Available: https://www.
zophar.net/gb.html, Accessed on: 2021-02-12.

[19] R. Copetti, Game boy architecture - a practical analysis, 2021. [Online]. Avail-
able: https://www.copetti.org/writings/consoles/game-boy/, Accessed
on: 2021-03-30.

[20] Serial communication (link cable) tutorial, Game Boy Development Wiki, Nov.
2014. [Online]. Available: https://gbdev.gg8.se/wiki/articles/Serial_
Communication_(Link_Cable)_Tutorial, Accessed on: 2021-04-19.

[21] Game pak, Nintendo Fandom Wiki, Mar. 2021. [Online]. Available: https:
//nintendo.fandom.com/wiki/Game_Pak, Accessed on: 2021-04-08.

[22] A. Niño Díaz, A. Vivace, Beannaich, C. Sandlin, E. Habert, Elizafox, Furrtek,
Gekkio, J. Frohwein, J. Harrison, L. Halphon, Mantidactyle, M. Fayzullin, M.
Korth, P. of ATX, P. Felber, P. Robson, T4g1, TechFalcon, endrift, exezin, jrra,
kOOPa, mattcurrie, nitro2k01, pinobatch, and P. Fagan, Pan docs, cartridge
type, GBDev, Apr. 2021. [Online]. Available: http://web.archive.org/web/
20210426154117if_/https://gbdev.io/pandocs/#_0147- cartridge-
type, Accessed on: 2021-04-26.

[23] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#sound-control-registers, Accessed on: 2021-04-
26.

[24] N. Australia, Legal, 2021. [Online]. Available: https://www.nintendo.com.
au/legal, Accessed on: 2021-03-31.

[25] A. Niño Díaz, A. Vivace, Beannaich, C. Sandlin, E. Habert, Elizafox, Furrtek,
Gekkio, J. Frohwein, J. Harrison, L. Halphon, Mantidactyle, M. Fayzullin, M.
Korth, P. of ATX, P. Felber, P. Robson, T4g1, TechFalcon, endrift, exezin,

52

https://kirby.nintendo.com/
https://kirby.nintendo.com/
https://www.pokemon.com/us/
https://www.pokemon.com/us/
https://venturebeat.com/2014/04/21/25-years-of-the-game-boy-a-timeline-of-the-systems-accessories-and-games/
https://venturebeat.com/2014/04/21/25-years-of-the-game-boy-a-timeline-of-the-systems-accessories-and-games/
https://venturebeat.com/2014/04/21/25-years-of-the-game-boy-a-timeline-of-the-systems-accessories-and-games/
https://nintendo.fandom.com/wiki/Tetris
https://nintendo.fandom.com/wiki/Tetris
http://www.emulationnation.com/console-emulation/history-of-console-emulators/
http://www.emulationnation.com/console-emulation/history-of-console-emulators/
http://www.emulationnation.com/console-emulation/history-of-console-emulators/
https://askwonder.com/research/top-youth-media-brands-1980s-1990s-2000s-current-keja4oioq
https://askwonder.com/research/top-youth-media-brands-1980s-1990s-2000s-current-keja4oioq
https://emulation.gametechwiki.com/index.php/History_of_emulation
https://emulation.gametechwiki.com/index.php/History_of_emulation
https://www.zophar.net/gb.html
https://www.zophar.net/gb.html
https://www.copetti.org/writings/consoles/game-boy/
https://gbdev.gg8.se/wiki/articles/Serial_Communication_(Link_Cable)_Tutorial
https://gbdev.gg8.se/wiki/articles/Serial_Communication_(Link_Cable)_Tutorial
https://nintendo.fandom.com/wiki/Game_Pak
https://nintendo.fandom.com/wiki/Game_Pak
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#_0147-cartridge-type
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#_0147-cartridge-type
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#_0147-cartridge-type
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#sound-control-registers
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#sound-control-registers
https://www.nintendo.com.au/legal
https://www.nintendo.com.au/legal

Bibliography

jrra, kOOPa, mattcurrie, nitro2k01, pinobatch, and P. Fagan, Pan docs, game
boy technical reference, GBDev, Apr. 2021. [Online]. Available: http://web.
archive . org / web / 20210426154117if _ /https : / / gbdev . io / pandocs /
#specifications, Accessed on: 2021-04-26.

[26] T. C. for Computing History, Nintendo game boy, The Centre for Computing
History, 2021. [Online]. Available: http://www.computinghistory.org.uk/
det/4033/Nintendo-Game-Boy/, Accessed on: 2021-02-12.

[27] Zilog, Z80 cpu user manual, Aug. 2016. [Online]. Available: http://www.
zilog.com/docs/z80/um0080.pdf, Accessed on: 2021-03-31.

[28] Intel, Intel 8080 microcomputer systems user’s manual, NJ7P Amateur Radio
Web Server, Sep. 1975. [Online]. Available: http://www.nj7p.info/Manuals/
PDFs/Intel/9800153B.pdf, Accessed on: 2021-03-31.

[29] M. Steil, The ultimate game boy talk, [Video] Youtube, Oct. 2016. [Online].
Available: https://youtu.be/HyzD8pNlpwI?t=948, Accessed on: 2021-04-22.

[30] M. Steil, The ultimate game boy talk [slides], Apr. 2019. [Online]. Available:
https://www.pagetable.com/?p=1099, Accessed on: 2021-04-22.

[31] A. Niño Díaz, A. Vivace, Beannaich, C. Sandlin, E. Habert, Elizafox, Furrtek,
Gekkio, J. Frohwein, J. Harrison, L. Halphon, Mantidactyle, M. Fayzullin, M.
Korth, P. of ATX, P. Felber, P. Robson, T4g1, TechFalcon, endrift, exezin,
jrra, kOOPa, mattcurrie, nitro2k01, pinobatch, and P. Fagan, Pan docs, game
boy technical reference, GBDev, Apr. 2021. [Online]. Available: http://web.
archive . org / web / 20210426154117if _ /https : / / gbdev . io / pandocs /
#memory-map, Accessed on: 2021-04-26.

[32] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#registers-and-flags, Accessed on: 2021-04-26.

[33] M. Sullivan, Game boy cpu instructions, Megane Sullivan personal website,
Nov. 2020. [Online]. Available: https://meganesulli.com/generate-gb-
opcodes/, Accessed on: 2021-03-30.

[34] A. Niño Díaz, A. Vivace, Beannaich, C. Sandlin, E. Habert, Elizafox, Furrtek,
Gekkio, J. Frohwein, J. Harrison, L. Halphon, Mantidactyle, M. Fayzullin, M.
Korth, P. of ATX, P. Felber, P. Robson, T4g1, TechFalcon, endrift, exezin,
jrra, kOOPa, mattcurrie, nitro2k01, pinobatch, and P. Fagan, Pan docs, game
boy technical reference, GBDev, Apr. 2021. [Online]. Available: http://web.
archive . org / web / 20210426154117if _ /https : / / gbdev . io / pandocs /
#interrupts, Accessed on: 2021-04-26.

[35] The cycle-accurate game boy docs, GitHub, May 2020. [Online]. Available:
https : / / github . com / AntonioND / giibiiadvance / tree / master / docs,
Accessed on: 2021-04-12.

[36] Gameboy bootstrap rom, Gameboy DevelopmentWiki. [Online]. Available: https:
//gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM, Accessed on:
2021-04-06.

[37] Techopedia, Bootstrap, Techopedia. [Online]. Available: https://www.techopedia.
com/definition/3328/bootstrap, Accessed on: 2021-04-08.

[38] A. Niño Díaz, A. Vivace, Beannaich, C. Sandlin, E. Habert, Elizafox, Furrtek,
Gekkio, J. Frohwein, J. Harrison, L. Halphon, Mantidactyle, M. Fayzullin, M.

53

http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#specifications
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#specifications
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#specifications
http://www.computinghistory.org.uk/det/4033/Nintendo-Game-Boy/
http://www.computinghistory.org.uk/det/4033/Nintendo-Game-Boy/
http://www.zilog.com/docs/z80/um0080.pdf
http://www.zilog.com/docs/z80/um0080.pdf
http://www.nj7p.info/Manuals/PDFs/Intel/9800153B.pdf
http://www.nj7p.info/Manuals/PDFs/Intel/9800153B.pdf
https://youtu.be/HyzD8pNlpwI?t=948
https://www.pagetable.com/?p=1099
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#memory-map
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#memory-map
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#memory-map
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#registers-and-flags
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#registers-and-flags
https://meganesulli.com/generate-gb-opcodes/
https://meganesulli.com/generate-gb-opcodes/
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#interrupts
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#interrupts
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#interrupts
https://github.com/AntonioND/giibiiadvance/tree/master/docs
https://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM
https://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM
https://www.techopedia.com/definition/3328/bootstrap
https://www.techopedia.com/definition/3328/bootstrap

Bibliography

Korth, P. of ATX, P. Felber, P. Robson, T4g1, TechFalcon, endrift, exezin,
jrra, kOOPa, mattcurrie, nitro2k01, pinobatch, and P. Fagan, Pan docs, game
boy technical reference, GBDev, Apr. 2021. [Online]. Available: http://web.
archive . org / web / 20210426154117if _ /https : / / gbdev . io / pandocs /
#external-memory-and-hardware, Accessed on: 2021-04-26.

[39] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#vram-sprite-attribute-table-oam, Accessed on:
2021-04-26.

[40] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#joypad-input, Accessed on: 2021-04-26.

[41] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#timer-and-divider-registers, Accessed on: 2021-
04-26.

[42] Memory bank controllers, Game Boy Development Wiki, Apr. 2021. [On-
line]. Available: https://gbdev.gg8.se/wiki/articles/Memory_Bank_
Controllers#MBC3_.28max_2MByte_ROM_and.2For_64KByte_RAM_and_
Timer.29, Accessed on: 2021-04-16.

[43] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#memory-bank-controllers, Accessed on: 2021-04-
26.

[44] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#video-display, Accessed on: 2021-04-26.

[45] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/, Accessed on: 2021-04-26.

[46] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#lcd-control, Accessed on: 2021-04-26.

[47] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#lcd-status-register, Accessed on: 2021-04-26.

[48] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#mode-3-operation, Accessed on: 2021-04-26.

[49] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#lcd-oam-dma-transfers, Accessed on: 2021-04-26.

[50] ——, Pan docs, game boy technical reference, GBDev, Apr. 2021. [Online].
Available: http : / / web . archive . org / web / 20210426154117if _ /https :
//gbdev.io/pandocs/#sound-controller, Accessed on: 2021-04-26.

54

http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#external-memory-and-hardware
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#external-memory-and-hardware
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#external-memory-and-hardware
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#vram-sprite-attribute-table-oam
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#vram-sprite-attribute-table-oam
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#joypad-input
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#joypad-input
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#timer-and-divider-registers
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#timer-and-divider-registers
https://gbdev.gg8.se/wiki/articles/Memory_Bank_Controllers#MBC3_.28max_2MByte_ROM_and.2For_64KByte_RAM_and_Timer.29
https://gbdev.gg8.se/wiki/articles/Memory_Bank_Controllers#MBC3_.28max_2MByte_ROM_and.2For_64KByte_RAM_and_Timer.29
https://gbdev.gg8.se/wiki/articles/Memory_Bank_Controllers#MBC3_.28max_2MByte_ROM_and.2For_64KByte_RAM_and_Timer.29
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#memory-bank-controllers
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#memory-bank-controllers
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#video-display
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#video-display
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#lcd-control
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#lcd-control
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#lcd-status-register
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#lcd-status-register
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#mode-3-operation
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#mode-3-operation
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#lcd-oam-dma-transfers
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#lcd-oam-dma-transfers
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#sound-controller
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#sound-controller

Bibliography

[51] Gameboy sound hardware, Gameboy Development Wiki, Nov. 2020. [Online].
Available: https : / / gbdev . gg8 . se / wiki / articles / Gameboy _ sound _
hardware, Accessed on: 2021-03-30.

[52] What are waveforms and how do they work? SoundBridge, Apr. 2019. [Online].
Available: https://soundbridge.io/what- are- waveforms- how- they-
work/, Accessed on: 2021-04-22.

[53] S. Deuty, Llc power conversion explained, part 2: Sine wave from a square
wave, Planet Analog, Aug. 2017. [Online]. Available: https://www.planetanalog.
com/llc- power- conversion- explained- part- 2- sine- wave- from- a-
square-wave/, Accessed on: 2021-04-22.

[54] Gameboy sound hardware: Noise channel, Gameboy Development Wiki. [On-
line]. Available: https://gbdev.gg8.se/wiki/articles/Gameboy_sound_
hardware#Noise_Channel, Accessed on: 2021-05-24.

[55] C++, 2021. [Online]. Available: https://www.cplusplus.com/, Accessed on:
2021-04-13.

[56] SDL2, Simple directmedia layer. [Online]. Available: https://www.libsdl.
org/index.php, Accessed on: 2021-03-25.

[57] K. Group, Opengl, 2021. [Online]. Available: https://www.opengl.org/,
Accessed on: 2021-02-11.

[58] O. Cornut, Dear imgui: Bloat-free graphical user interface for c++ with min-
imal dependencies, Github, Apr. 2021. [Online]. Available: https://github.
com/ocornut/imgui, Accessed on: 2021-04-07.

[59] OpenAL, Openal, Nov. 2018. [Online]. Available: https : / / openal . org/,
Accessed on: 2021-04-06.

[60] K. Schwaber,What is scrum? Scrum.org, Nov. 2020. [Online]. Available: https:
//www.scrum.org/resources/what-is-scrum/, Accessed on: 2021-02-10.

[61] Google, Google test, GitHub, Apr. 2021. [Online]. Available: https://github.
com/google/googletest, Accessed on: 2021-04-07.

[62] Travis, Travis, Apr. 2021. [Online]. Available: https://www.travis-ci.com/,
Accessed on: 2021-04-07.

[63] Test roms, Game Boy Development Wiki, Mar. 2020. [Online]. Available:
https://gbdev.gg8.se/wiki/articles/Test_ROMs, Accessed on: 2021-
03-25.

[64] Blargg, Blargg’s gameboy hardware test roms, Game Boy Development Wiki,
Jun. 2019. [Online]. Available: https://gbdev.gg8.se/files/roms/blargg-
gb-tests/, Accessed on: 2021-03-25.

[65] A. N. Díaz, The cycle-accurate game boy docs, Github, May 2020. [Online].
Available: https://github.com/AntonioND/giibiiadvance/blob/master/
docs/TCAGBD.pdf, Accessed on: 29 Mar 2021.

[66] Gekkio,Mooneye-gb, Github, Mar. 2021. [Online]. Available: https://github.
com/Gekkio/mooneye-gb, Accessed on: 2021-03-30.

[67] aaaaaa123456789, Rtc3test, Github, Apr. 2021. [Online]. Available: https:
//github.com/aaaaaa123456789/rtc3test, Accessed on: 2021-04-21.

[68] Sound test (pd) [a1], ROMNation.NET. [Online]. Available: https://www.
romnation.net/srv/roms/14091/gb/Sound-Test-PD-a1.html, Accessed
on: 2021-04-21.

55

https://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware
https://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware
https://soundbridge.io/what-are-waveforms-how-they-work/
https://soundbridge.io/what-are-waveforms-how-they-work/
https://www.planetanalog.com/llc-power-conversion-explained-part-2-sine-wave-from-a-square-wave/
https://www.planetanalog.com/llc-power-conversion-explained-part-2-sine-wave-from-a-square-wave/
https://www.planetanalog.com/llc-power-conversion-explained-part-2-sine-wave-from-a-square-wave/
https://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware#Noise_Channel
https://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware#Noise_Channel
https://www.cplusplus.com/
https://www.libsdl.org/index.php
https://www.libsdl.org/index.php
https://www.opengl.org/
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://openal.org/
https://www.scrum.org/resources/what-is-scrum/
https://www.scrum.org/resources/what-is-scrum/
https://github.com/google/googletest
https://github.com/google/googletest
https://www.travis-ci.com/
https://gbdev.gg8.se/wiki/articles/Test_ROMs
https://gbdev.gg8.se/files/roms/blargg-gb-tests/
https://gbdev.gg8.se/files/roms/blargg-gb-tests/
https://github.com/AntonioND/giibiiadvance/blob/master/docs/TCAGBD.pdf
https://github.com/AntonioND/giibiiadvance/blob/master/docs/TCAGBD.pdf
https://github.com/Gekkio/mooneye-gb
https://github.com/Gekkio/mooneye-gb
https://github.com/aaaaaa123456789/rtc3test
https://github.com/aaaaaa123456789/rtc3test
https://www.romnation.net/srv/roms/14091/gb/Sound-Test-PD-a1.html
https://www.romnation.net/srv/roms/14091/gb/Sound-Test-PD-a1.html

Bibliography

[69] R. K. et al, Visual boy advance - m. [Online]. Available: https://github.
com/visualboyadvance-m/visualboyadvance-m, Accessed on: 2021-04-23.

[70] Gekkio, Gekkio.fi, 2021. [Online]. Available: https://gekkio.fi/, Accessed
on: 2021-03-31.

[71] Antonio niño díaz, GitHub, Apr. 2021. [Online]. Available: https://github.
com/AntonioND/, Accessed on: 2021-04-12.

[72] ——, Game boy: Complete technical reference, Nov. 2020. [Online]. Available:
https://gekkio.fi/files/gb-docs/gbctr.pdf, Accessed on: 2021-02-9.

[73] A. Niño Díaz, A. Vivace, Beannaich, C. Sandlin, E. Habert, Elizafox, Furrtek,
Gekkio, J. Frohwein, J. Harrison, L. Halphon, Mantidactyle, M. Fayzullin, M.
Korth, P. of ATX, P. Felber, P. Robson, T4g1, TechFalcon, endrift, exezin,
jrra, kOOPa, mattcurrie, nitro2k01, pinobatch, and P. Fagan, Pan docs, game
boy technical reference, GBDev, Apr. 2021. [Online]. Available: http://web.
archive . org / web / 20210426154117if _ /https : / / gbdev . io / pandocs /
#echo-ram, Accessed on: 2021-04-26.

[74] bitnenfer and M. Fisher, Flappy-boy-asm, GitHub, May 2018. [Online]. Avail-
able: https : / / github . com / bitnenfer / flappy - boy - asm, Accessed on:
2021-04-22.

[75] J. Pot, Is downloading retro video game roms ever legal? How-To Geek. [On-
line]. Available: https://www.howtogeek.com/262758/is-downloading-
retro-video-game-roms-ever-legal/, Accessed on: 2021-02-12.

[76] M. Steil, The ultimate game boy talk, [Video] Youtube, Oct. 2016. [Online].
Available: https://youtu.be/HyzD8pNlpwI?t=1157, Accessed on: 2021-04-
19.

[77] B. Farrand, Emulation is the most sincere form of flattery: - retro videogames,
rom distribution and copyright, IDP. Revista d’Internet, Dret i Política. [On-
line]. Available: https://www.raco.cat/index.php/IDP/article/view/
260390/347561, Accessed on: 2021-05-10.

[78] C. L. L. Unit, Copyright law in the eu. [Online]. Available: https://www.
europarl.europa.eu/RegData/etudes/STUD/2018/625126/EPRS_STU(2018)
625126_EN.pdf, Accessed on: 2021-05-10.

[79] S. Harding, Yes, downloading nintendo roms is illegal (even if you own the
game), Tom’s Hardware. [Online]. Available: https://www.tomshardware.
com/news/why-most-roms-are-illegal,37512.html, Accessed on: 2021-
02-12.

[80] L. I. Institute, 17 u.s. code § 117 - limitations on exclusive rights: Com-
puter programs, Cornell Law School. [Online]. Available: https://www.law.
cornell.edu/uscode/text/17/117, Accessed on: 2021-02-12.

[81] G. Dave, Are roms and emulation bad? | digitally distracted ep 18, Youtube.
[Online]. Available: https://www.youtube.com/watch?v=i- 3tppY6DwQ,
Accessed on: 2021-02-12.

[82] J. Javanainen, Game boy test rom do’s and don’ts. [Online]. Available: https:
//gekkio.fi/blog/2016/game-boy-test-rom-dos-and-donts/, Accessed
on: 2021-02-12.

[83] N. Wiki, 2003. [Online]. Available: https://nintendo.fandom.com/wiki/
2003, Accessed on: 2021-02-12.

56

https://github.com/visualboyadvance-m/visualboyadvance-m
https://github.com/visualboyadvance-m/visualboyadvance-m
https://gekkio.fi/
https://github.com/AntonioND/
https://github.com/AntonioND/
https://gekkio.fi/files/gb-docs/gbctr.pdf
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#echo-ram
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#echo-ram
http://web.archive.org/web/20210426154117if_/https://gbdev.io/pandocs/#echo-ram
https://github.com/bitnenfer/flappy-boy-asm
https://www.howtogeek.com/262758/is-downloading-retro-video-game-roms-ever-legal/
https://www.howtogeek.com/262758/is-downloading-retro-video-game-roms-ever-legal/
https://youtu.be/HyzD8pNlpwI?t=1157
https://www.raco.cat/index.php/IDP/article/view/260390/347561
https://www.raco.cat/index.php/IDP/article/view/260390/347561
https://www.europarl.europa.eu/RegData/etudes/STUD/2018/625126/EPRS_STU(2018)625126_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2018/625126/EPRS_STU(2018)625126_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2018/625126/EPRS_STU(2018)625126_EN.pdf
https://www.tomshardware.com/news/why-most-roms-are-illegal,37512.html
https://www.tomshardware.com/news/why-most-roms-are-illegal,37512.html
https://www.law.cornell.edu/uscode/text/17/117
https://www.law.cornell.edu/uscode/text/17/117
https://www.youtube.com/watch?v=i-3tppY6DwQ
https://gekkio.fi/blog/2016/game-boy-test-rom-dos-and-donts/
https://gekkio.fi/blog/2016/game-boy-test-rom-dos-and-donts/
https://nintendo.fandom.com/wiki/2003
https://nintendo.fandom.com/wiki/2003

Bibliography

[84] C. Classix, Letter from noa. [Online]. Available: http://www.consoleclassix.
com/letter_from_noa.php, Accessed on: 2021-02-12.

[85] Wayback machine, Internet Archive. [Online]. Available: http://web.archive.
org/, Accessed on: 2021-05-31.

57

http://www.consoleclassix.com/letter_from_noa.php
http://www.consoleclassix.com/letter_from_noa.php
http://web.archive.org/
http://web.archive.org/

	List of Figures
	List of Tables
	Introduction
	Emulators in general
	An Introduction to the Game Boy
	Purpose
	Delimitations
	Ethics

	Theory
	The Central Processing Unit
	Registers
	Instruction set
	Interrupts

	Memory and I/O devices
	Boot ROM
	ROM
	Video RAM
	External RAM
	WRAM
	OAM RAM
	Joypad
	Timer
	HRAM
	Memory Bank Controllers

	The Pixel Processing Unit
	Composing the frame
	The modes
	The registers
	Drawing the image
	Direct Memory Access transfer

	The Audio Processing Unit
	The registers
	Events
	The audio data

	Tools and methodology
	Programming language
	Graphics and GUI
	Audio
	Scrum
	Plan
	Architecture
	Testing

	Results
	Architecture and Design
	The Central Processing Unit
	Interrupts
	Testing of the Central Processing Unit

	The Memory Managing Unit
	Timer
	Cartridges and Memory Bank Controllers
	Testing of the Memory Management Unit

	The Pixel Processing Unit
	Timing
	Basic operation
	Drawing
	DMA transfer
	Testing of the Pixel Processing Unit

	The Audio Processing Unit
	The Audio Controller
	Testing of the Audio Processing Unit

	The Game Boy

	Discussion
	Hardware
	The Central Processing Unit
	The Memory Management Unit
	The Pixel Processing Unit
	The Audio Processing Unit

	Accuracy
	Compromises
	Vital and auxiliary components

	Ethics
	Legality of emulators vs. ROMs
	The emulator
	The Boot ROM
	The ROMs
	Test-ROMs
	Sharing knowledge
	Gaming history preservation
	Console Classix

	Future Work

	Conclusions
	Bibliography

