
Fault detection power of unit and
system testing in Java open source projects

Master’s thesis in Computer science and engineering

ANDREEA SULUGIU

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Fault detection power of unit and
system testing in Java open source projects

ANDREEA SULUGIU

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Fault detection power of unit and system testing in Java open source projects

ANDREEA SULUGIU

© ANDREEA SULUGIU, 2021.

Supervisor: Robert Feldt, Department of Computer Science and Engineering
Examiner: Gregory Gay, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2021

iv

Fault detection power of unit and system testing in Java open source projects

ANDREEA SULUGIU
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Testing is one of the most crucial steps in providing quality for software products.
Two key and heavily used testing levels are unit and system testing, each level hav-
ing different benefits and drawbacks. For their testing process a software team needs
to decide where the focus and effort should be put, often by creating a strategy for
testing. Because the resources are limited, a critical question is “what is a good
trade-off between different levels of testing in order to maximize the effect, i.e. qual-
ity improvement and assurance while using as few resources as possible”. There are
a lot of factors to consider for this trade-off, from costs to time and knowledge of
testers, but in this study we focus on a critical one: the fault-finding ability and
behaviour of tests on different levels.

To evaluate the fault finding behaviour of unit and system tests, a reliable method
for test level categorization is needed. Based on the attributes found in the common
definitions for the testing levels, a framework for categorization was developed and
applied to analyse the usage of unit and system level testing on selected Java open
source projects from the Defects4j framework. Furthermore, using information pro-
vided by the Defects4j tool the fault detection level of different tests and, ultimately,
of the different levels can be determined. The 16 analysed projects contained 25477
tests, where 78.4% of tests were categorized as low level and 21.56% as high level.
The results indicate that lower, unit level tests are used more in the investigated
Java open source projects. Looking at fault finding ability, from the 25477 tests,
only 998 tests were able to uncover bugs. From these 998 tests, 65.73% of tests
were categorized as low level and 34.27% were categorized as high level. It should
be mentioned that this result can be attributed to the fact that there was a higher
number of low level tests in the sample. Considering the rate of bug discoverability
from the total number of tests on the respective levels, the high level performed
better, with a discoverability rate of 6.23% while the low level had a rate of 3.28%.

The major contribution of this paper is a framework for test categorization on a low-
to a high-level scale, based on concrete and objective metrics that can be practically
applied on projects that subscribe to the object-oriented paradigm. Additionally,
backed on empirical data, we found out that high level tests have a higher rate of
discovering bugs.

Keywords: Software testing, unit test, system test, test categorization, bugs, project,
thesis, fault detection.

v

Acknowledgements
I would like to thank my supervisor Robert Feldt for his support, guidance and
feedback throughout the project. I wish to acknowledge the support of my husband,
who provided me with professional input and continuous encouragement through
the process of researching and writing this thesis.

Andreea Sulugiu, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Introduction . 1
1.2 Statement of the problem . 3
1.3 Statement of the purpose . 4
1.4 Research questions . 4

2 Background and Related Work 7
2.1 Definitions for testing levels . 7
2.2 Test type classification . 8
2.3 Testing in open source projects . 9
2.4 Comparison between levels of testing 9

3 Study Design 11
3.1 Data collection . 11

3.1.1 Defects4J data collection . 11
3.1.2 Test data collection . 12
3.1.3 Data exclusion constraints . 13
3.1.4 Sample . 14

3.2 Analysis Process . 15

4 Framework 17
4.1 Definitions and Characteristics . 17
4.2 Metrics . 20

4.2.1 Approach for size . 21
4.2.2 Approach for isolation . 24

4.3 Test score and Scale . 25

5 Results 31
5.1 RQ1 . 31
5.2 RQ2 . 34
5.3 RQ3 . 39
5.4 Projects Information . 55

ix

Contents

6 Discussion 58
6.1 Limitations . 60
6.2 Implications . 61
6.3 Validity Consideration . 62

7 Conclusion 64
7.1 Conclusion . 64
7.2 Future work . 64

Bibliography 66

A Appendix 1 I
A.1 RQ tables . I

x

List of Figures

5.1 Proportion of low and high level tests per project 35
5.2 Number of low and high level tests per project 36
5.3 a) Low and high level test percentage vs b) Pure unit test percentage 37
5.4 Density of test scores . 38
5.5 Histogram of test scores . 38
5.6 Score distribution per project . 39
5.7 Proportion of low and high level trigger tests 42
5.8 Number of low and high level trigger tests 43
5.9 Density of test scores . 43
5.10 Histogram of test scores . 44
5.11 Score density per project . 44
5.12 Low-High tests difference for bugs 46
5.13 Low-High tests difference for bugs 46
5.14 Relationship between no. of methods in test and bugs uncovered . . 47
5.15 Relationship between no. of methods in test, bugs uncovered and

testing level . 48
5.16 Relationship between no. of methods in code tested and bugs uncov-

ered . 48
5.17 Relationship between no. of methods in code tested, bugs uncovered

and testing level . 49
5.18 Relationship between no. of classes in test and bugs uncovered 49
5.19 Relationship between no. of classes in test, bugs uncovered and test

level . 50
5.20 Relationship between no. of classes in code tested and bugs uncovered 50
5.21 Relationship between no. of classes in code tested, bugs uncovered

and test level . 51
5.22 Relationship between no. of packages in test and bugs uncovered . . 52
5.23 Relationship between no. of packages in test, bugs uncovered and

test level . 52
5.24 Relationship between no. of packages in code tested and bugs uncovered 53
5.25 Relationship between no. of packages in code tested, bugs uncovered

and test level . 53
5.26 Relationship between big setup and bugs uncovered 54
5.27 Relationship between big setup, bugs uncovered and level of test . . . 54
5.28 Setup state per project . 57

xi

List of Figures

xii

List of Tables

3.1 Defects4J projects [50] . 14

4.1 ISTQB definitions [9] . 18
4.2 IEEE 24765:2017 standard definitions [8] 18
4.3 Attributes based on definition . 20
4.4 Discussed metrics for size . 24
4.5 Characteristics and metrics . 25
4.6 Test scores for size of test . 27
4.7 Test scores for size of code tested . 27
4.8 Test scores for size of setup . 28
4.9 Test scores for isolation . 28

5.1 Characteristics and metrics . 31
5.2 Projects bug information . 40
5.3 Projects size regarding tests . 56
5.4 Mock usage . 56

A.1 Projects version . I
A.2 Framework verification . II
A.3 Second framework verification . III
A.4 Second framework verification . IV
A.5 Second framework verification . V
A.6 Second framework verification . VI
A.7 Test categorization per project . VI
A.8 Triggered tests categorization per project VII
A.9 Setup usage per project . VII
A.10 Big setup usage per project . VIII

xiii

List of Tables

xiv

1
Introduction

1.1 Introduction

Software testing is an activity performed in order to assess the quality of a piece
of software. This is important both in finding and fixing any remaining bugs but
also in judging when a system is stable enough and thus can be deployed to end
users. There are different methods and testing techniques as well as different levels of
testing (unit, integration and system) each with their advantages and disadvantages.

Unit tests are fast, as they only verify the functionality of a small unit of code, thus
the feedback from the test is fast and can be easily traced to the problem. They can
be used early in the development cycle, which is an advantage because discovering
bugs later is more costly. A problem with unit tests comes from the sheer number
of tests that should be done to cover all the units in a system. A comprehensive set
of unit tests will verify the units in separation of the other parts of the program.
Based on the 14th Annual State of Agile Report [1], 95% of the organizations in-
cluded in the survey practice some form of Agile methods. From the Agile practices,
the most popular one is Scrum, with 58%, while the next 27% practice a hybrid form
between Agile methods. From the engineering practices employed by the organiza-
tion in the spirit of being Agile, unit testing is the first one with a percentage of
67% while Test Driven Development is at 30%. With the rise of Agile practices,
unit testing became a staple of software development processes. Although in the
Agile manifesto unit testing or any other testing level or method is not mentioned,
technical excellence, which is closer to lower-level, unit tests, is in focus. From the
different Agile practices, unit testing is integral to at least two of them: Extreme
Programming through Test-Driven Development and Scrum.
One of the four main activities in the Extreme Programming agile method is testing,
with unit testing being the main effort in determining if a feature works correctly.
This is then complemented by higher-level, acceptance tests to determine if the
requirement was correctly understood and if it satisfies the client’s need. More
internally focused system tests are used less often. The practice of Test-Driven
Development relies on creating tests before developing specific software methods
or functions, and is thus typically focused on the unit testing level. Test-Driven
Development is the embodiment of test-first programming concept found in Extreme
programming, but can be practiced on its own [2]. And in Scrum, its Definition
of Done criterion (a criterion for a user story / feature to be considered completed)
usually includes unit testing.

1

1. Introduction

Unit testing and acceptance testing are integral elements of agile methodologies, as
well as automated tests. In literature, there is no need to mention automated tests
when discussing testing in agile as it is implied, in the same way that unit tests
don’t need to be mentioned as they are assumed as such, if not stated otherwise [3].
Unit testing as a concept applies perfectly for the need of testing in each iteration,
which can be used from the start of projects. Unit testing is a daily occurrence in
agile software development, while system testing and acceptance testing are done at
the end of an iteration, before deploying the product in production. This suggests a
bottom-up approach in agile testing strategies. Brian Marick introduced the concept
of the Agile Testing Quadrant in 2003, which has been updated in consequent years.
In all versions of the matrix unit testing is present in the first quadrant, which is
focused on technology, guiding development and preventive testing. System testing
can be found between the second and third quadrant, while acceptance testing is
present in the third quadrant, which is more focused on the business part and de-
tection testing. Because of the prevalence of the unit testing technique, it would be
considered as the primary testing technique, comparing its fault finding behaviour
with that of system testing.

System tests are conducted on the entire system, thus they more often represent
realistic uses of the system and they check the requirements. Because system test-
ing is conducted on the entire system, this approach cannot be done early in the
development cycle, as the full system would evolve and the previous system tests
would become obsolete. Thus, system testing is mainly done late in the development
cycle, so the cost of fixing bugs found at that time is higher. A drawback of system
testing is the fact that there is a big distance between the failure and the fault, so
it is harder to find the location of the faulty code from the system test.
Since development and testing resources are not infinite, it’s important for practi-
tioners to know the trade-off between the different levels of testing, to be able to
determine which approach is better for their situation and needs. There are a lot
of things to consider when talking about the trade-off, from the detection power of
the method, to cost and time of execution, types of bugs detected, expertise needed,
return on investment (ROI) etc.

The cost of testing is different based on the level of testing. Unit testing can be done
in the first stages of development, preventing bugs to advance through the life cycle
of the project, where it would be expensive to fix them [4]. The system testing
is done late in the development stages, being the last barrier before acceptance
testing. The bugs found at this level are costly. However, unit testing is typically a
white-box testing technique, so the people that write the test must have the detailed
knowledge of the system they are testing, regardless if they are dedicated testers or
the developer that wrote the code [5]. On the contrary, system testing is a black-
box technique, where the testers which are independent from the development team
need not have the same, detailed knowledge of the inner working of the system [5].
For unit testing, the feedback is fast and the fault can often be more quickly identi-
fied, as the test checks smaller units of code. On the other side, the feedback time
for a system test is longer and it takes considerable effort to find the fault, as the

2

1. Introduction

test includes the whole system.
While information about the different testing levels is documented thoroughly, there
is no clear analysis of the trade-off of software quality and fault detection between
unit testing and system testing. There is a need for empirical data to decide which
testing level can produce a more comprehensive fault detection coverage, in order
to increase the quality of the software.

1.2 Statement of the problem
Fault finding behaviour of testing levels
In an ideal scenario a software development project would have limitless resources
at its disposal, which would lead to a fully comprehensive testing suite on all the
different levels of testing. In a real world scenario, though, a project is bound by
a varying set of factors such as cost, time and human resources. This leads to a
higher effort in managing testing throughout a project’s life-cycle, as testing efforts
are costly in time and money. Because of the limited nature of the aforementioned
resources, the software team has to decide where the testing should be concentrated,
which testing methods they will apply and prioritize how much of each method they
will use, in order to maximize the outcome. Research has shown that typically
between 40% to 70% of the time and cost of a software project can be attributed to
software testing [6]. However, very little is known about how to assign this effort
between different testing activities.
In industry, the "testing pyramid" is sometimes used to help guide in making the
decision of how much of each level of testing should be applied for a project [7], but
this is not supported by empirical data that links the levels to actual project costs
and benefits. Unit tests are fast and easy to write but they lack software context,
while system tests are slow and harder to write but are both more realistic as well
as closer to users’ needs. So, given bounded resources for testing, a basic question
is how to find a good trade-off between unit tests and system tests? An element to
consider in this trade-off is the fault finding behaviour of the testing levels, which is
our main concern in this study. We focus on maybe the two most common testing
levels, unit and system testing, as unit testing is a staple of software testing and
system testing is the last barrier before the product is released.

Testing level definition
Unit tests and system tests are some of the testing techniques used in industry.
There are multiple definitions for the terms, two of the most popular ones come
from the IEEE standard [8] and ISTQB Glossary [9]. As software development
evolved, the previously mentioned definitions did not change to reflect the new
status quo [10]. There are problems with what is understood as a unit in testing.
A function or a procedure could be considered a unit in procedural programming,
while in object-oriented programming a unit can be a class or a method [11]. The
difference in the interpretation of units can vary based on paradigm, language or
interpretation of developers. Because of this fact and the misuse of the terms by
software developers [12], a new categorization method had to be created in order
to standardize the grouping of tests.

3

1. Introduction

1.3 Statement of the purpose
The purpose of the study is to evaluate what testing levels are the most used in Java
open source projects, how they differ in their fault detection ability and if system
testing can uncover the same bugs as unit testing through their detection power.
The test cases from the testing suite would be categorized on different levels based on
a developed standardized method, followed with an analysis on the fault detection
behavior of the test suites. At the end of the study, we would have a fully developed
framework for classification of tests on a scale from low-level to high-level that can
act as a surrogate or substitute for the levels we currently have, and empirical data
about the fault detection power of the substitute levels.

1.4 Research questions
The following research questions guide the research into the fault detection power
of unit and system testing.

RQ1: What metrics can act as proxy for the testing levels? Because of inconsis-
tencies and misuse of the terms unit and system testing, there is a need to create a
framework to categorize tests between low-level and high-level. To do that we need
to determine a set of metrics that can clearly differentiate the tests on the specific
scale.
RQ2: What level of testing is used more in open source projects between unit test-
ing and system testing? This is an investigation into the testing activities for open
source projects.
RQ3: Does unit or system testing discover more bugs, and what overlap in bug de-
tection exists between the two techniques? The goal is to determine which technique
can discover more bugs and if the respective bugs can be found by both techniques.
This research question is broken down in two parts, each part linked to a hypothesis.
Hypothesis 1: Using system tests leads to a greater fault detection than using unit
testing. This hypothesis covers the first part of the third research question. We
are interested to see what level of testing can discover more bugs and how do the
detection rate compare between the two levels. We believe that system level would
have a higher fault detection rate.
Hypothesis 2: System testing can discover the same bugs as unit testing. This
hypothesis covers the second part of the third research question and it is concerned
with how and from what level the bugs are uncovered. To make an assessment
about it, we look at the bugs that were uncovered by multiple triggering tests and
determine the number of bugs that were uncovered by both level of tests compared
to the number of bugs uncovered by each level. We believe that the system level
can uncover the same bugs as unit testing.

While RQ3 is the main focus of our work we need to first answer questions RQ1
and RQ2 to be able to then investigate RQ3 on a set of actual software projects.
RQ2 focuses on open-source projects since it is not feasible in a thesis project to get

4

1. Introduction

access to and then investigate in depth multiple industrial projects.

5

1. Introduction

6

2
Background and Related Work

In this chapter we present several research papers linked to our research domain.
First, we make a case about the relevance of the unit and system testing terms
in the current context of software development and the fact that developers might
misuse or wrongly identify tests. A classification based on different definitions for
the terms would yield different results hence there is a need to develop a uniform
method to classify the tests. We present a number of categorization methods that
other researcher developed. Moreover, we discuss the state of testing in open source
projects in regards to adoption and adequacy of testing methods. Finally, we present
research into the comparison of the testing levels.

2.1 Definitions for testing levels
As found by Trautsch et al [12] developers are using the term "unit testing" for their
tests even when the definition for the term does not apply to the situation. The
definitions used in Trautsch’s study came from the IEEE [8] and ISTQB [9] and
both definitions for unit and unit testing were used in the analysis. They examined
10 python projects with a total number of 4637232 tests, calculated by summing up
the number of tests in each revision. The results showed that the developers’ cate-
gorization of unit tests is different from the categorization based on both definitions,
as consistently throughout the 10 projects analysed the number of developer unit
tests was larger than the unit tests categorized based on the definitions. Moreover,
there is a difference in categorization of tests based on which definition is used, as
it was identified that the unit tests based on the ISTQB standard are a subset of
the unit tests that are based on the IEEE definition.
Furthermore, the definition for unit testing seems to not be in line with the modern
software development context [10]. The authors acknowledged that the definitions
did not keep up with the advances made in the software development context and
they propose based on their research a more coarse-granular definition for unit, as
they identified a problem with the too fine-grained definition of unit in the current
context. The proposed definition is "a test that only assesses parts that are within
one component [of a complex software system]" [10].
In fact, there are multiple definitions and interpretation of the concept of unit test-
ing, such as Whittaker’s definition: "unit testing tests individual software compo-
nents or a collection of components" [13] which mentions a collection of components
as a unit. In Runeson’s survey about unit testing practices, there were different opin-
ions about what unit means, but in response of what unit test means the majority

7

2. Background and Related Work

strongly agreed on " a test of the smallest separate unit" and "a technical test with
in/out parameters" as two criteria of unit testing [14].
We agree that the definitions for the testing terms are not representative to the
current context of software testing and the fact that different definitions and devel-
oper characterizations can vary from each-other means that there is a need of an
objective, measurable way to categorize test levels.

2.2 Test type classification
The difference in fault detection power between testing levels and categorizing tests
was tackled by different researchers. Orellana et. al. [41] researched the difference
between unit and integration tests in the TravidTorrent Dataset, where it was dis-
covered that unit tests exposed more defects than integration tests. This result can
be attributed to the fact that there were significantly more unit tests than integra-
tion tests. The strategy of classification for the tests into unit and integration was
based on two heuristics, one based on the usage of Maven [43] plugins and the other
based on naming conventions. The Maven build system contains two plugins for
executing tests: SureFire which is used for unit tests and FailSafe which is used for
integration tests. These plugins can be configured to only run tests from a source
location and include files with a certain pattern. The second heuristic employs a
naming convention which dictates that tests would be placed in integration level
if the test name contains "IntegrationTest" or the abbreviated term "IT". The ap-
proach is based on the classification made by the developers or testers, and that can
be problematic, as it was shown previously that the developers’ characterization
is not in line with characterization based on definitions. Moreover, this approach
brings the limitation of analysing projects that use Maven as a build system and
both of the plugins for test management. We deemed this approach as to subjective
as it is relaying on developers for categorization. In addition, in the open source
context, we fear that the naming conventions would not be upheld.
Rothermel et al. [40] based the categorization on the test case input, where a higher
amount of input would translate to a higher level. The researchers defined a test
case as "consisting of a pretest state of the system under test, a sequence of test
inputs, and a statement of expected results" [40]. The drawback of this approach is
the fact that we have no information about the size of code executed, and this can
be a good source of information in the categorization process.
Another approach at categorization was taken by Kanstrén [39]. He proposed a
quantitative method for measuring test coverage that takes into consideration the
different testing levels, by taking into account how the different level of testing are
covering the system under test. To do that, he had to rely on a quantitative method
for differentiating the level of tests. He measures test granularity by counting the
number of unique methods that were covered by a test, regardless of the place
of invocation, then maps the granularity to the level of testing. The decision of
counting all the methods reached to an end of call depth makes sense in the context
of his research, as a test that executes code that ultimately executes a method would
count as coverage for that specific method, but for our context the level of depth
for counting the methods is too extreme.

8

2. Background and Related Work

2.3 Testing in open source projects
Studies about adoption and adequacy of testing in open source projects were done
by P. S. Kochhar et al [15] [16], where they found that from 20,817 projects of
different sizes, 61.65% contained test cases, Java language being the most popular
language that had projects with test cases. In addition, they determined a weak pos-
itive correlation between the number of test cases from a project with the number of
bugs, as well as bug reporters. Code coverage was analysed for 327 Java open source
projects, where the average coverage was 41.96%, and almost a third of the projects
had coverage less than 25% and over half the project had under 50% coverage. Fa-
rooq and Quadri studied the quality practices employed in open source software
development, where they discovered that only high-profile open source projects em-
ploy formal and automation testing due to the need of sponsorship and expertise
required [17] [18]. In open source projects undocumented and unsystematic testing
process is more common.

2.4 Comparison between levels of testing
A comparison between unit testing and integration testing regarding the defect de-
tection capabilities was done by Trautsch et. al. [10] which concluded that there
were no significant differences between the two approaches. Functional testing and
structural testing were compared on fault detection effectiveness and cost, where
functional testing detected more faults than structural testing when professional
programmers applied the testing techniques [19]. Other studies compare the effec-
tiveness of different testing methods [20] [21].
Multiple studies were made to study the defects finding rate between methods, such
as inspection vs. testing, functional testing vs. structural testing and inspections,
and they were summarised in a survey of defect detection studies [24]. One such
study was done by Berling et.al. [25] and it researched the difference between in-
spection, unit, subsystem and system tests on the following artifacts: requirements,
design and code. The case study suggests that the most appropriate test effort would
be unit tests and low level design. The authors proposed a measure to determine
if a fault could have been found earlier in the process, and based on the measure
the outcome indicates that the majority of the faults were not found at the earliest
possible phase.
Each level having its own strengths and weaknesses makes the process of selecting
the appropriate level harder. To take advantage of the effectiveness of both levels,
a new type of test was introduced. As suggested by the study made by Elbaum et.
al. [23], differential unit tests are hybrids that retain the ability to find faults on the
system level, and the advantages of automation and faster execution gained from
unit testing.
One study discusses issues in empirical studies that deal with software testing tech-
niques, where the main challenges were identified as fault seeding, the setting of the
study (academic vs. industrial), replication and the involvement of human subjects
[22].

9

2. Background and Related Work

10

3
Study Design

The study goal is to develop a framework for characterization of test cases which
employs concrete and objective metrics to determine the level of a test. Using
the developed framework, we can determine which testing level has the most fault
detection power. The study is guided by the three Research Questions presented in
chapter 1.4.
In this chapter, the data collection process will be described as well as the analysis
process. The development of the framework is an extensive process so we dedicated
a full separate chapter for it 4.

3.1 Data collection
In the following section the data collection process is presented in detail.There are
two main sources for data collection, GitHub and Defects4J. GitHub is a hosting
service for software based on Git, from where the code of the sample projects can
be cloned and used to retrieve the test data dictated by the framework. "Defects4J
is a database and extensible framework to enable controlled testing studies for Java
programs" [26], and it can provide data about bugs and the tests that are linked
to the bugs, which would be called triggering tests. For both sources, we provide
information about what data is collected, from what source, in what mode and the
importance of the data. Furthermore, we present the exclusion constraints for data
as well as the project selection process.

3.1.1 Defects4J data collection
What? To be able to analyse the fault detection behaviours of the specific level
of tests we need data about the bugs found in the open source projects and more
importantly which specific tests detected the bugs. For the specific tests returned
by the Defects4J tool, it would be recorded the name of the test, the name of the
class that the test belongs to, the name of the package of the class, the bug id and
the issue number for the specific bug.
Why? This information will be used to answer the RQ3, as the tests relevant
to the existing bugs would be classified using the developed framework and then
quantified to reveal which level of testing detected a higher number of bugs, hence
which level has a higher fault detection power. Some of the information would be
needed in identifying the tests returned from Defects4J with the tests in the current
version of the projects. It should be noted that a bug can be linked to multiple

11

3. Study Design

tests. For this reason we can analyse the tests that discovered the same bug and
make a judgment on whether the bugs were discovered by only one level, or there
were tests on different levels that uncovered the errors.
How? Defects4J was used to collect this information. Using the command-line
interface that the tool, we gather the information about the bugs. Each bug reg-
istered in the tool was fixed by modifying the source code and in one commit, has
an issue in the corresponding tracker and has at least a triggering test that failed in
the buggy version and passed in the fixed version.

3.1.2 Test data collection
What? Because our aim is to analyse the test data from the open-source projects,
we need the test suite for the projects. To be able to apply the framework we need
specific information about each test in the testing suite. The basic information
collected would be the name of the test, the testing class that the test belongs
to, the package that contains the class of the test. For each test in the testing
suite we will collect the metrics described by the framework. For the size of test
characteristic, we will collect the number of methods called in the body of the
test, the number of classes and packages, that are reached from the body of the
test. For the size of code tested, we will collect the number of methods, classes
and packages reached from the test at a depth level of two, meaning we count the
metrics for the body of the test then we enter in each method that is called from
the test and is part of the project and we count the number of methods, classes
and packages, then sum it up to determine the final value for each metric. In this
context, depth level one means the body of the test, while depth level two means
the body of the methods reached fro level one. For the size of the setup, we will
collect the number of methods, classes and packages reached in the setup of a test
if the test class contains such a phase. This setup phase is identified by the use
of the following annotation: @Before, @BeforeAll, @BeforeClass, @BeforeEach or
by other configurations detected by naming conventions such as "setup", "Setup",
"setUp" for the setup method. We further collect for each test if there is mock usage
in the test. Based on the formulas described in the framework, we will compute a
testing score which would be then mapped on the level scale. More details about
the testing score and how it is calculated are provided in section 4.3.
Why? This information will be used to answer RQ2 and RQ3. This information
will be fed into the framework to determine the level of the tests contained in the
analysed projects. With this information we can infer which level is more prominent
in open source projects. This information, coupled with the data gathered from the
Defects4J tool would be sufficient for making a conclusion about the fault detection
power of the concerned testing levels. Moreover, we can comment on the usage
of mocks and set-up phases, as an accompaniment to the RQ2 on testing customs
in open source projects. The basic information about the test would allow for an
overview of how many tests a project contains and the number of test classes in a
project.
How? The projects would be collected directly from their GitHub repositories. To
gather the rest of the information, we will have to go through each test individually.

12

3. Study Design

Information regarding the number of methods, classes and packages will be gathered
using an IntelliJ plugin called SequenceDiagram [36], for all three size characteristics.
The setup methods are annotated, tagged or configured, so the identification would
be an easy process. For the mock usage, first the imports for the classes would be
checked for mocking libraries and if present, for each test in the respective class it
would be checked if mocks are used in the body of the test.

3.1.3 Data exclusion constraints
Any tests that were able to be run from the IDE were taken into consideration, re-
gardless if they had been annotated with the @Test annotation. The tests that were
commented in the code and the ones that were annotated with the @Disabled or
@Ignore annotations were not collected, as well as tests that were disabled through
other settings. If a test class was annotated with the @Disabled or @Ignore anno-
tations or disabled through other settings, all tests of the class and the class itself
were not counted. Test classes that contain no active tests were not counted to
the total number of test classes. Similarly, packages that contain no classes that
have active tests were not counted towards the total number of packages. The main
methods created to run standalone tests were not counted. Another type of tests
that were excluded from the analysis was benchmark and performance tests as there
are considered a different category of tests.

Due to lack of time, only the current revisions of the projects were analysed. If
all the revisions would have been analysed, then there would not be any reason to
exclude this test, as they would be relevant for the bugs and still active. Because
the analysis is only on the current revision, there is the risk that either the code
or the test would evolve beyond the initial level of tests. In that case, there would
be tests that do not accurately represent the level of testing intended. The projects
and the tests evolve during the development period, so it is understandable that the
contents of a test can change, the location of a test can change or because of other
development directions a test is not needed anymore so it is removed from the suite.
Taking this fact into consideration, the risk is minimized by the exclusion of tests
that are not found in the current version under the same name and location or an
easily identifiable location aided or not by an issue tag. If the code and consecutively
the tests for said code would evolve to that of a high degree that the level of testing
would be change, then it is safe to assume that the scope of the test would change
along with its name and possibly its location in the testing suite. By having only
tests that are present in the current version of the code, we can correlate the result
of the research question 3 with the results for the research question two, to be put
in perspective, considering that the tests used for RQ2 are the ones existing in the
current version of the projects.
Moreover, exclusion conditions of the projects’ tests are applied also to the tests
collected from Defects4J, so if a test that uncovered a bug is disabled through any
setting, it would not be counted. The bugs that were flagged as deprecated in the
Defects4J tool were not considered, because of the fact that the deprecated bugs
are bugs that can no longer be reproduced due to behavioural changes introduced

13

3. Study Design

under Java 8, as stated in the README file of the Defects4J tool [50].

3.1.4 Sample
The population for the study is represented by the Java open-source projects con-
taining tests, as this is the main focus of the study. In regards to the research
questions, for RQ1 the framework for categorization of tests is developed indepen-
dently of the projects chosen for the analysis. Research question number two is
concerned with the level of tests and their usage in the aforementioned Java open-
source projects. The data needed to respond to this question is the actual code of
the projects, however the constraint of having the code available is already included
in the population, covered by the open-source aspect of the projects, hence there
is no need for adding any restriction to the sample for research question two. For
research question number three, which aims to discover which level of tests has the
stronger fault detection power, the data needed for a response is more specialized.
To collect the necessary data, Defects4J tool was employed. This fact brought the
implied limitation that the sample had to be chosen from the projects available in
the Defects4J tool, which can be seen in table 3.1.

Table 3.1: Defects4J projects [50]

Id Project name No. of bugs Active bug ids Deprecated
Chart jfreechart 26 1-26 None
Cli commons-cli 39 1-5,7-40 6
Closure closure-compiler 174 1-62,64-92,94-176 63,93
Codec commons-codec 18 1-18 None
Collections commons-collections 4 25-28 1-24
Compress commons-compress 47 1-47 None
Csv commons-csv 16 1-16 None
Gson gson 18 1-18 None
JacksonCore jackson-core 26 1-26 None
JacksonDatabind jackson-databind 112 1-112 None
JacksonXml jackson-dataformat-xml 6 1-6 None
Jsoup jsoup 93 1-93 None
JxPath commons-jxpath 22 1-22 None
Lang commons-lang 64 1,3-65 2
Math commons-math 106 1-106 None
Mockito mockito 38 1-38 None
Time joda-time 26 1-20,22-27 21

The Defects4J tool includes information about 17 Java open-source projects. The
data needed from the tool are the number of bugs for the projects, and the additional
information about which tests discovered the specified bugs. There are two projects
that contained less than 10 bugs. This could have been an exclusion criterion, as
less than 10 bugs would not bring enough information in proportion to the size

14

3. Study Design

of the testing suite, but the fact that a bug can be discovered by multiple tests
opens the possibility that the two projects could bring more information than is
suggested. The Closure project contains the most number of bugs, 174, which can
provide extensive information for the RQ3. Despite this aspect, the project was
rejected due to incompatibilities with the gathering data solution. The Closure
project requires Bazelisk and integration with Bazel [51] in the IDE. Considering
the fact that having more data, hence more projects to be analyzed would increase
the chances of generalizability, the rest of the 16 projects were all chosen as the
sample for the project.

3.2 Analysis Process
For the purpose of the study we build two automated tools to extract the needed
data. The analysis process for the projects follows a 4 step plan: build, detection,
acquire, analysis.
The first step is build, which require to successfully build the projects. The repos-
itories of the projects would be cloned and build using the required build system.
This step is necessary as the following steps would not work on a broken build.

The detection step goes into each successfully build project and retrieves a list with
all the tests that can be run, along with information about location and provenience
(name of test, name of test class, name of package, name of project). At this step
we would apply the exclusion criteria for the tests that should not be included in the
analysis. Additionally, at this step a list with all setup phases would be retrieved.
Furthermore, a list of classes that import mocking libraries would be compiled.

With the list of tests for each project, the acquiring step uses the SequenceDiagram
tool on each test method. We need collected the number of classes and packages ref-
erence in the tests that are native to the project, while we need the total number of
methods called regardless from their provenience. This can be achieved by applying
the SequenceDiagram tool with different settings, once with displaying only project
classes and one with displaying all classes. We need this information for the body
of the test and the code that is tested in the test, which can be achieved by the
call depth settings of the SequenceDiagram tool. To acquire all the information we
have to combine all the mentioned settings, so the SeqenceDiagram will be applied
4 times on the same test, resulting in 4 files containing the needed information. The
process is automated. A similar but simplified process would be applied based on
the setup list retrieved at the previous step.

Having the 4 files per test method, we can move to the last step, analysis. One of
the automated tools extracts the information from all 4 files linked to a test, for all
the identified tests from a project and aggregates it into a database. Separately, the
tool extracts information from the files generated about the setup phase. Because
the setup is for a class, the tool would register all the necessary information about
the setup (methods, classes, packages) and would update all tests that are contained
in that specific class with the information. For each project we would manually ver-

15

3. Study Design

ify the classes that contained mocking library imports and would update the entries
for the tests that were identified as using the mocking library. With all the values for
the metrics available, we can apply the rules of the framework to determine the level
of each test. With this current information, we can count the number of identified
low level and high level test and answer to the RQ2. The data would be imported
into R to perform graphs and further analysis.

To respond to RQ3 we need additional information provided by the Defects4J tool.
The tool provides information about each bug and the triggered tests linked to
it. We will compile a list with that information which would be subjected to the
exclusion criteria. The remaining triggered tests would be linked with their entry
into the database and flagged as triggered tests, adding to the entry the ID of the
bug or bugs it uncovered. With this information we can quantify the number of
triggered tests that are low level and high level respectively and put it in proportion
with the total number of tests per each level to draw a conclusion about the fault
detection power of each level.

16

4
Framework

In order to classify tests from low-level to high-level, a framework is needed that uses
concrete and relevant metrics to place the tests on a scale so that we can categorize
them. These metrics have to be measurable and have to accurately reflect the
appropriate test levels.
Multiple methods for classification of tests have been explored in previous work.
Orellana et. al. [41] based the classification on naming conventions and usage of
different Maven plugins for running different level of tests. This approach is a sub-
jective one, as the developers who wrote the tests decide the level of testing and
then apply the naming convention and what type of plugin would run the test. Ulti-
mately, the developer establishes the level of the test, and the further analysis of the
projects is based on the bias brought by the developer. On top of this introduced
bias, as one developer can classify a test on a different level than the classification
made by another developer, it was found by Trautsch et. al. [12] that the term of
"unit test" is used by developers for tests that do not subscribe to the definition for
the term. In consequence, for the classification of tests, the framework should be
based on objective metrics.

To be able to determine what metrics can be used, we have to analyze definitions for
the respective test levels. Additionally to the definition for unit testing and system
testing, we will include the definition for unit as it will provide a better understand-
ing of what is tested. For this purpose, the definitions chosen for analysis are from
the ISTQB glossary and IEEE 24765:2017 standard. The definitions for unit testing
as presented in the two mentioned standards seem to not be in line with the modern
software development context [10], so this term will be discussed in the context of
object-oriented programming. From the definitions, defining characteristics would
be extracted and evaluated based on importance and in relation to the test levels.
Measurable metrics that describe the selected characteristics will be discussed and
picked to be used in the framework.

4.1 Definitions and Characteristics
ISTQB(International Software Testing Qualifications Board)
The ISTQB uses "component" as a synonym for unit, thus in the definitions contain-
ing the respective word it refers to unit. For the purpose of the study, the definition
for unit test framework is included as it would provide a better understanding of

17

4. Framework

Table 4.1: ISTQB definitions [9]

Term Definition
component A part of a system that can be tested in isolation.

component testing A test level that focuses on individual hardware or software com-
ponents.

unit test framework A tool that provides an environment for unit or component testing
in which a component can be tested in isolation or with suitable
stubs and drivers. It also provides other support for the developer,
such as debugging capabilities.

system testing A test level that focuses on verifying that a system as a whole meets
specified requirements.

what unit testing is in context.

ISO/IEC/IEEE 24765 Systems and software engineering — Vocabulary

Table 4.2: IEEE 24765:2017 standard definitions [8]

Term Definition
unit 1. separately testable element specified in the design of a computer soft-

ware component.
2. logically separable part of a computer program.
3. software component that is not subdivided into other components.
4. distinguishable architectural unit with individual identity, boundary,
and behavior that is observable through interactions with other such
units.
5. piece or complex of apparatus serving to perform one particular func-
tion.
6. software element that is not subdivided into other elements.

unit test 1. testing of individual routines and modules by the developer or an
independent tester.
2. test of individual programs or modules in order to ensure that there
are no analysis or programming errors.
3. test of individual hardware or software units or groups of related units.

system testing testing conducted on a complete, integrated system to evaluate the sys-
tem’s compliance with its specified requirements.

The IEEE definition for unit test framework ("unit test framework 1. environment
that facilitates unit testing" [8]) was not used as it did not provide any new or rele-
vant information about the context of unit testing.

When discussing the meaning of a unit, the programming paradigm has to be
taken into account. A unit can have different definitions based on the program-
ming paradigms employed. The projects to be analysed are Java projects, which is

18

4. Framework

an object-oriented programming language, thus going forward the term "unit" would
be discussed in an object-oriented paradigm relation. In this context, the candidates
for a unit can be: packages, types (classes, structures), members of types (meth-
ods, functions, procedures), commands, expressions or blocks [14, 39]. A command,
expression or block would not be considered as a unit because it is not a distinguish-
able architectural element with individual identity, boundary, and behavior, as per
the fourth definition of unit from IEEE standard as seen in Table 4.2. A package
would not be considered as a unit because it is too broad and it can be subdivided
into other elements such as classes, which goes against the third IEEE definition for
unit. Methods can be considered as units because they are the smallest logically dis-
tinguishable element, that cannot be subdivided into other elements. The problem
with this comes from inheritance and polymorphism in object-oriented paradigm.
A method in the parent class that is used in child classes should be tested in the
context of each child class, as it can vary based on the attributes and operations of
the child class. Thus, we chose the encapsulated class as a unit in the context of
object oriented programming.

From the definitions of "unit" and "unit test" from Table 4.1 and 4.2, the elements
that are defining this level of testing are: isolation, individual units, not subdivided
into other elements. Because in unit testing we verify only the behaviour of the unit
that is tested, any external dependencies such as inter-system communication or
out-of-process dependency should be isolated and the environment should be faked,
while depending on case, intra-system communication can or cannot be isolated.
Regarding the criteria of the unit being tested not to be subdivided into other el-
ements, it was established earlier that in the object oriented context the class is
considered as a unit, but indeed a class is divisible into its methods and properties.
Because what is tested in a unit test is an individual unit, the elements inside the
test script should be part of only one class. When a class is tested, what is actually
verified is its functionality. So considering this, a test that contains only calls to
methods of only one class would be considered a pure unit test. Considering this,
the size and reach of a test can be an indication for the level of the test, as well as
the size of the piece of code that is tested.

We changed the meaning of unit to fit the object oriented paradigm and so the mean-
ing of unit testing changed, because the definition for it relies on the term unit. The
concept of system testing has the same meaning in the object-oriented context as
it has in the definitions for the term, as a whole, complete, integrated system does
not change its meaning regardless of the paradigm of the programming language it
is written in. From the ISTQB definition of system testing, two important parts are
identified: system as a whole and meeting specified requirements. These elements
are consistent with the IEEE definition. First, for a test to be a system test, the
system under test must be a complete and integrated system, as opposed to an iso-
lated component in unit testing. This opposition can help in identifying the type of
level a test is if we can find an appropriate metric to measure the level of isolation.
In regards to the fact that a system test is verifying a specified requirement, this
aspect cannot easily be checked without having access to the requirement, which

19

4. Framework

can be documented through a requirement document or user stories in an Agile
context. Moreover, the process for gathering requirements in open source projects
is different from closed-source projects. Open-source projects benefit from a large
user feedback that provides request features and report bugs or fixes needed to the
code base. Based on the number of users active to a project, the main developer can
choose himself what are the requirements for a project with a small number of users,
without a clear direction or documentation. Another possibility for the provenance
of the requirements for open-source projects might be a corporation that pays for
a certain feature to be implemented. On account of this, we cannot identity any
characteristic that would discern different levels of testing from the requirements.
One thing that we can infer from the fact that the system testing verifies a specified
requirement is the size of a test, as verifying a real user scenario with real data and
resources translates to a large test. This is in opposition of unit test, where the test
size should be small.

The attributes extracted from the definition and discussed above are presented in
the table 4.3.

Table 4.3: Attributes based on definition

Term Attributes
unit small, not subdivided into other units

unit test isolation, individual unit tested
system test integrated system, complete system, test requirements, large

4.2 Metrics
From the attributes we can determine two characteristics that are defining for the
two levels of testing: size and isolation. Isolation refers to isolation of the code to
be tested from other dependencies. Isolation was chosen as a characteristic because
it is a requirement for unit testing while system testing is done on a complete and
integrated system, so isolation is not needed. This characteristic is in opposition
for the two levels of test, so it can provide an initial assessment for a test position
on the scale. This characteristic on its own was deemed not enough for a concrete
characterization, as the presence of isolation dependencies can indicate a unit test,
the absence of isolation does not provide a definite answer regarding the level, as
both unit and system tests can have no isolated dependencies. For a unit test, this
scenario would happen if the unit under test does not have outside dependencies,
due to high cohesion and low coupling. Another defining characteristic is size. When
talking about the size, we make reference to two elements: the size of the test and
the size of the piece of code that is tested. Size of the piece of code tested was
chosen because unit tests should test a small piece of code while system tests verify
a requirement that usually is more complex and big. Size of the test was chosen as
a characteristic for the same reason, a unit test should not have a big body or a
complex setup, while system tests are complex and require more complicated setup.

20

4. Framework

4.2.1 Approach for size
There are different possible candidate metrics for the size characteristic. We consider
this characteristic for the test and for the code that is tested.
When talking about the size of an element in software terms, the first instinctual
metric is the source lines of code (SLOC). This metric is a quantifiable one and it is
easy to measure. This metric has two types: the logical lines of code (LLOC) and
physical lines of code (LOC). The LLOC are specific to the language of the project
and it represents the number of executable statements in the code, while physical
lines of code are exactly the number of text lines of the source code. The problem
with the physical lines of code as a metric is the amount of noise that is introduced
in the code that would be counted. Through the word noise we are referring to
language keywords (such as { and } , else), commented lines, blank lines. These
lines are dead lines, which do not bring relevant information for the assessment.
Another problem with physical lines of code is that a piece of code can be written
in a different number of lines by different developers, and with the help of lambda
expressions, operation on data sources or collection can be physically reduced and
compressed. Moreover, the same piece of code can have a different number of physi-
cal lines of code depending on the language it is written. Considering the limitations
of the physical lines of code and the fact that the framework should work the same
regardless of the programming language of the analysed project, this metric would
not be part of the categorization framework. The logical lines of code suffer from the
same dependence on language, but it does not count the noise that is encountered
in physical lines of code. The logical lines of code are counting the declarative lines
as well, which are of no concern for us and are regarded as noise. This metric is
interesting but in the current form is not sufficient.

An interesting metric that is closely related to logical lines of code metric is the
number of methods that are called. For the size of the test, we refer to the number
of methods that are called from the body of the test. This would ignore simple
declarations of variables which would be included in the LLOC metric. Because the
tests are verifying the methods of classes, the number of methods called inside a
test would accurately represent the size and reach of a test. We are interested in the
total number of calls to the covered methods, so we include in the count all the calls
to any method, regardless if it was previously executed or not. By methods called
we refer to all the methods inside the test regardless if they are executed at runtime
or not (ex. they are in a conditional statement). All the methods would be counted,
regardless if they are part of the project or are from libraries or third party systems.
This approach is closer to the one employed by Kanstrén in his paper [39] where
the testing level was defined by the number of units of code exercised in the test
case, with the exception that he was counting all the methods reached from the test
to an end of call depth. The number of methods called represents most accurately
the size of the test, but we feel it is not enough for a concrete categorization, as we
lack the information about the size of the code that is tested, information that is
needed to make the assessment if a test is or is not a unit test.

Because the class is considered the unit in object oriented paradigm and in a test

21

4. Framework

there can be multiple methods called from different classes, we supplement the
number of methods metric with another: the number of classes reached from the
test. The methods counted are part of different classes, which should be counted as
a separate metric. This will allow the framework to decide if a test is a pure unit
test, as discussed previously, by calling only methods from the same class. Because
the methods called in the tests can be from outside projects or libraries, there are
actually two numbers to consider: the number of classes from the current project
that contain the methods called from the test body and the number of total classes
(inside or outside of the project) that contain the methods called from the test body.
The condition for the pure unit test is to have methods only from one and the same
class. This can be verified by checking the number of classes that the methods from
the code to be tested came from. Because this is the only concern regarding the
classes reached when testing, the total number of classes reached was dropped in
favor of only the number of classes reached, classes that are part of the project.
Hence, another metric for the framework would be the number of classes belonging
to the project that are reached by the called methods from the body of the test.
The number of classes reached would provide an overview into the size of the test
in regards to dependencies of elements on other classes. A higher number of classes
would indicate a higher-level test while a lower number of classes would indicate a
low-level test. These indications are not definitive as the metrics will be combined
to provide a more accurate identification.
Another metric that can complement the number of classes in regards of the reach of
the test can be the number of packages that the reached classes are part of. Packages
are folders or name-spaces where resources, classes and interfaces are organized as
a collection that is related by functionality or scope. As with the number of classes,
the interest is in the packages that belong to the project at hand, not packages from
outside libraries and third party projects. This will provide an overview over the
different elements of a system that are reached by the test. A higher number of
packages would indicate that the test goes through multiple different modules or
functionality, so for a categorization point of view, a higher number would trans-
late to a higher-level test, while a low number of packages would indicate a low-level.

The number of methods, classes and packages were discussed in the context of the
test itself. These metrics are not fully representative for the tests, as the test envi-
ronment has to be prepared and configured, fields must be initialized in the test class
or intensive activities are executed before running a test. Usually, these actions are
performed in a set-up method that is run before the actual tests. These set-up steps
should be counted as well, because they are part of the process of testing a piece of
code that requires more configuration. To count these additional steps for the test,
the number of methods called, classes and packages reached from the set-up method
will be recorded. This set-up method can be run before each test in a test class or
only once before all the tests from the test class. Regardless of the type of setup, it
will be counted and recorded for each test of a respective class that contains a set-up
method. In opposition to the set-up phase, a tear-down method can be run after the
execution of tests to execute a clean-up of the test environment, delete temporary
data, restore default values, release resources. In the case of the tear-down, the

22

4. Framework

actual test was executed and all the element in the tear-down are either cleanup, or
setting up defaults and temporary data for the next tests, but have no relevancy to
the actual test or what it was tested. The methods called in the tear-down phase,
as well as classes and packages reached could have been counted as a metric, but
were not chosen for the framework because they are not related to the test or what
is tested, contrary to the set-up phase, which sets up the environment of the test
and without which the test would not be executed properly.

The previous discussion was held in regards to the body of the test. The same met-
rics can be identified for the piece of code that is tested and are based on the same
reasoning. The complication with this approach is the fact that a test can verify
more than just the result of a method, such as a result of a flow of methods. This
makes it hard to identify exactly what is the piece of code tested from the other
elements of the test. For this reason, the number of methods, classes and packages
will be counted based on the body of the test on a depth call of two in order to
reach the elements that are tested. This means that for the three metrics, we count
the methods, classes and packages covered in the body of the test, then we enter
each method called in the test, and count the methods, classes and packages reached
from that method, which is consequently added to the total number for that specific
metric. This would encapsulate the values chosen for the size of the test itself. For
this reason, these three metrics can actually stand on their own in the framework,
replacing the ones for size of test. If only these metrics would be chosen, along with
the metrics for set-up size, the framework would lose the distinction between what
is tested and how the test looks like. We can make a distinction between tests that
are small and are testing a small piece of code, tests that are small but verify a large
piece of code, tests that are big in body but check a small piece of code and tests
that are big and verify a big piece of code, in regards to the characterization of a
test on the high-low level scale. In the interest of not losing a piece of information
that can help more accurately describe the place of a test on the scale, both the
metrics chosen for the size of the test and the ones chosen for the size of the piece
of code tested would be taken into consideration in the framework. For the case of
the piece of code tested, as no element that is tested is outside the test there is no
need to take into consideration the set-up or tear-down phases.

Another metric that was considered was the complexity of the test code and the code
that is tested, as it would count the interactions between entities. The complexity
metric is related to the size, as a size increase or decrease requires respectively an
increase or decrease in complexity. Ultimately, this metric was not chosen as the
relationship between size and complexity is not a strong one, and the complexity
would not bring information strongly related to the level of a test.
In this section we discussed some metric candidates for the size characteristic, which
are summarized in Table 4.4. In the end, for the size characteristic we chose the
total number of methods, number of intra-project classes and number of intra-project
packages reached from two sources: the body of the test and the code that is tested.
Our approach for the number of methods metric differs from Kanstrén by the level of
call depth that we measure, as we only go to a call depth of two while his approach

23

4. Framework

counts the methods until they reach the end of the call depth.

Table 4.4: Discussed metrics for size

Metric Status Reason
SLOC Dropped Noise
LLOC Dropped Noise
No. of Methods Selected Represent size of test and code tested
Total no. of Classes Dropped Unnecessary count of outside project classes
No. of Classes from Project Selected Represent reach of test/code tested/setup
No. of Packages from Project Selected Represent reach of test/code tested/setup
Cyclomatic complexity Dropped Not strongly related to size

4.2.2 Approach for isolation

To measure the isolation level of a test, one metric can be usage of test doubles
in the analysed test. Five types of test doubles were introduced by Meszaros in
his book [42] and adopted by the testing community. These categories are stubs,
mocks, spies, fakes and dummy. Although in an ideal context, the number of de-
pendencies for the piece of code tested would be counted and then compared with
the number of dependencies that were isolated by test doubles, this would be a
complex process that would take more time than we can assign for. Moreover, the
identification of fakes and dummy test doubles is complex. One can use the naming
conventions that adds to the element that is wanted to be doubled the prefix Fake or
Dummy to identify these test doubles. The problem with this approach is that there
is no knowledge on whether the developers are applying correctly and consistently
on all accounts the respective naming conventions. Because the framework should
be based on objective metrics, the usage of fake and dummy type of test doubles
would not be taken into account. For the other three types of test doubles, they
can be identified by the usage of mocking frameworks. Although there are named
mocking frameworks, those frameworks have implementations not only for mocking,
but for spying and stubbing as well. As mentioned before, we are unable to count
the dependencies that remained un-isolated and the dependencies that were isolated
through mocking, stubbing and spying. For this reason, the metric of mock usage
cannot be a quantifiable one, instead it will be a logical one. A test either contains
mock usage or not. For the purpose of classification, we acknowledge that a quan-
tifiable metric would have brought more information that the classification could
use to make a decision, nonetheless the logical metric is not the only metric that
the classification is based on so we absorb the risk of using it by using the metrics
for the size characteristic as being more important of a deciding factor.

In the table 4.5, we aggregated the metrics discussed in this chapter for their re-
spective characteristics.

24

4. Framework

Table 4.5: Characteristics and metrics

Characteristic Metric
Size Size of test Number of methods

Number of classes
Number of packages

Size of code tested Number of methods
Number of classes
Number of packages

Size of setup Number of methods
Number of classes
Number of packages

Isolation Mock usage

4.3 Test score and Scale
The respective metrics would be measured for each test and the same formula of
categorization would be applied in order to map the scores to the respective test
levels. A pure unit test would be a test of one method, from one class, where the
method uses only methods in that respective class, regardless of mock usage. In this
context, an integration test would be a test that contains multiple methods from two
or more different classes, though we are not focusing on this level. This definition
of a unit test is too rigid for the current context of the industry, so we broaden the
scale for the unit test. The percent of pure unit tests can be presented in the results
chapter for RQ2 as an addendum. This will mean that the level of integration would
be enveloped in part by the unit level and partly by the system level. In this way,
the scale would accommodate only the two levels of testing relevant to this research.
Although the seven metrics identified for the framework are needed for the final cat-
egorization, they do not provide the same value or power in the process of classifying
the tests. Between the size of test, the size of code tested and the size of the setup,
the most valuable metric is the number of methods, followed by number of classes
then number of packages, and it should be reflected in how the score is calculated
for each test.

To be able to make conditions on the score of a test we must analyse the power
of each metric and the different combinations that can occur. Regarding the size
of the test, a higher number of methods from the same class indicates more to a
low-level test than a smaller number of methods from different classes. Likewise, a
higher number of classes from the same package indicate more to a lower-level than
a lower number of classes from different packages. For the size of the code tested
we must keep in mind that the metrics enclose the size of the test as well. Due to
this fact, the value limits for the score grid of these metrics should be doubled or
adjusted properly from the ones used in the size of the test. To assign points for the
values of the metrics we looked at the possible range for the values and how would
that reflect to the level of test. For any of the size characteristic, the fact that the
number of packages cannot be higher than the number of classes and the number

25

4. Framework

of classes cannot be higher than the number of methods was taken in account when
assigning the score to the respective values.
We explain only the reason behind the assignment of scores for the respective values
of size of test, as the values for the size of the code tested are double the values
for the size of test, but have the same score because this metric encapsulates the
size of the test.We looked into multiple best practices for size of a method and with
the assumption that on each line we would have a method call, we settled on 10
methods as a base to increment our score grid. For the baseline on number of classes
and number of packages we used the definition for pure unit test, which dictates
that the methods belong to only one class, that subsequently is part of only one
package. We attributed a score of 1 for each baseline, so a test with 0 to 10 methods
from one class belonging to one package would have a score of 1 from number of
methods, a score of 1 for number of classes and a score of 1 for number of packages.
For the number of methods, we incremented the values by the base value following
an incrementation of 1 in the score. We could have continued the incrementation
until the value 100 would be reached, but we consider that a test that has more
than 50 call methods is big enough, hence we attributed a score of 10 for any value
higher than 50. The score of 10 is our maximum value in the framework, and it is
attributed to values that we consider big enough.
The grid for number of classes and packages follows a different approach. For this
two metrics, we consider a value higher than 10 to be big enough, so we attributed
the maximum score of 10 for it. We could have incremented the value by the baseline
value for a score increment of 1, but then the score would have been too granular.
As we do not use the score to compare tests to each other, but to place then on low
or high level, we do not need that level of granularity. So between the base value
of 1 and the maximum value of over 10, the inside segments of values were decided
at 2, 3-5 and 5-10. This is not too granular but allows for variation. It is more
grave from the test level perspective to have more packages reached than classes,
so that is why for the value of 3-5 packages the score is higher than the same value
for classes. The other segments of values are either considered small enough, so the
reach of 2 classes can be equivalent with the reach of 2 packages in regards to the
score for the specific metric, or considered big and are assigned a value of 5. The
chosen scores can be seen in Tables 4.6 and 4.7.

Between the three categories for the size characteristic, the one with the lower power
for test placement decision is the size of the setup. For the size of setup, we decided
to not attribute a score for all metrics (number of methods, classes and packages),
but we formed a condition based on their values. A setup is considered small if
it contains less than 5 methods from a maximum of 2 classes, classes contained in
the same package. The values used to determine the size of the setup were chosen
from different considerations. The steps taken in the setup phase are initialization
of data, configuring the environment or time intensive activities. Considering the
best practices regarding method size and the usual actions taken in the setup phase,
the limit of 5 methods for a setup to be considered small is reasonable. Regarding
the class limit, keeping in mind that the pure unit tests verify the functionality of
one class and the fact that usually a class is not fully isolated (has connections to

26

4. Framework

Table 4.6: Test scores for size of test

Characteristic Metric Value Score
Size of test No. of methods 0-10 1

11-20 2
21-30 3
31-40 4
41-50 5
>50 10

No. of classes 0-1 1
2 2
3-5 3
5-10 5
>10 10

No. of packages 0-1 1
2 2
3-5 4
5-10 5
>10 10

Table 4.7: Test scores for size of code tested

Characteristic Metric Value Score
Size of code tested No. of methods 0-20 1

21-40 2
41-60 3
61-80 4
81-100 5
>100 10

No. of classes 0-2 1
3-4 2
5-10 3
10-20 5
>20 10

No. of packages 0-2 1
3-4 2
5-10 4
10-20 5
>20 10

27

4. Framework

other classes), we consider the limit of 2 classes for a small setup is fair. As for
the package limit, because the low level tests should be limited in scope, the setup
phase for them should not be broad. No setup or a small setup as described above
is correlated with a low level test. A setup that is larger than what was previously
described would be considered for a high level test. This in itself is not a fully
deciding factor, as the size of the setup on its own cannot accurately reflect the
level of the test, but adding it to the score reflected by the other characteristics will
improve the accuracy of the categorization. In a more concrete way, no setup or a
small setup would not increase the test score, while a large setup would be worth 1
point for the total score of the test. Based on the size of the setup, the scores can
be seen in Table 4.8. Similarly, the presence of mock usage would decrease a score
of a test towards the lower level, while the absence of mocking would not change
the value of a test score. Concretely, the presence of mock usage would decrease
the score of a test by one point. The scores reflected by mock usage can be seen in
Table 4.9.

Table 4.8: Test scores for size of setup

Characteristic Condition Value
Size of setup No. of methods <= 5 & 0

No. of classes < 3 &
No. of packages < 2
else 1

Table 4.9: Test scores for isolation

Characteristic Metric Value Meaning Score
Isolation Mock usage 0 No mock usage 0

1 Mock libraries used in test -1

Based on the values recorded from the metrics, a score will be computed for each
one, as shown in the tables above. To determine the total score of a test, the scores
from the individual metrics would be summed.

The scoring grid allows for a limited range of values. For high enough values of the
framework metric, the score was limited at 10 points, a high value in the scale. This
limit was placed because the concern is with the difference between low level and
high level, not how different two high level tests can be. With the current scoring,
the highest value possible for a test is 61 points and can be achieved by a test that
contains more than 50 methods, from more than 10 classes that are in more than 10
packages, where the code tested contains more than 100 methods from more than
20 classes contained in more than 20 packages, test that does not use mocking from
mocking libraries and has a big setup phase. The lowest value possible for a test is
5, where the test is empty without a big setup phase or contains only 1 to 10 method
from one class, and those methods does not contain in total more than 20 minus
the total methods contained in the test, with the use of mocking inside. There are

28

4. Framework

tests that contain only methods outside of the project that verify settings or other
input data. For this kind of tests, because the methods are outside of the project,
the number of classes and packages would be 0. Also, empty tests exist, where the
number of methods, classes and packages reached is 0. The score gird could allow
for the value 0 for any of the size characteristics to be linked to a score of 0, but
ultimately it was chosen to link the 0 value into the first level of the grid for each size
characteristic and assign it a score of 1. This decision was taken to have a consistent
test scale, as if the 0 value would be associated with a 0 score, there would have
been strange values between 0 and 5 and it would have been hard to associate the
respective tests on low level when a true unit test would have the score of 6 or 5 is
mocking is involved.

Having the scale to place the test scores in helps with determining the distribution
of the tests, but additionally to the scale, there is the need of a value that can be
considered the limit between the low level tests and high level tests. It is important
to note that the value in the middle of the scale (30-31) does not represent the limit
between lower level and higher level. The scale was limited to the highest value of 61
for convenience. Moreover, the lower limit is determined by an empty test, but due
to the definitions of unit tests regarded in section 4.1, an empty test would not be
considered a unit test as in fact it does not test anything. The same argument can be
made for tests that contain methods from other libraries beside the project, meaning
that there are no classes or packages reached from that test. This will render the
score for number of packages and number of classes for both size of test and size
of code tested as 4, so the total score for the test would vary with the number of
methods in the test and in the code tested, as setup and mocking together can bring
between -1 and 1 point to the score. These tests can populate a range of scores
between 6 and 21. The empty tests are regarded as low level tests because of the
6 score, but the tests that contain only methods from outside the project will not
be placed automatically on the low level, but judge by their score. Although not
having methods from the project to test makes the test lighter, a test with a very
high number of methods cannot be considered as a low level test. Returning to the
definition of a pure unit test, a test that contains only on method from one class,
and that method does not reference other methods outside of that class would score
between 6 and 15 points without considering the setup and the use of mock libraries.
The lower value is achieved when the method does not call to any other methods,
while the higher value is achieved when the method calls 100 or more other methods
from the class. The value that determines the limit between low level and high level
is 15. This value was chosen as it encapsulates the definition used for pure unit tests
but allows a range of combinations of value metrics that does not limit the low level
to only pure unit tests.

29

4. Framework

30

5
Results

In this chapter the analysis results are presented and the research questions are
answered. Additionally, a sub-chapter was added to present information about the
testing state of the analysed projects. The tables relaying the information can be
seen in the Appendix.

5.1 RQ1
In this section, the categorization framework developed in section 4 is presented as
a response to the first research question RQ1: What metrics can act as proxy for the
testing levels?. Seven metrics were identified and combined as a substitute for the
testing levels. The possible values of the respective metrics were mapped to score
points that were summed to provide a test with a total score that would be mapped
on a low-high scale to determine the level of a test. The seven metrics are presented
in Table 5.1. Details about the computation of the score based on the respective
metrics can be found in Tables 4.6, 4.7, 4.8 and 4.9.

Table 5.1: Characteristics and metrics

Characteristic Metric
Size Size of test Number of methods

Number of classes
Number of packages

Size of code tested Number of methods
Number of classes
Number of packages

Size of setup Number of methods
Number of classes
Number of packages

Isolation Mock usage

The framework was applied on the collected tests from the selected projects. The
framework has to be verified in order to justify the results for the remaining 2
research questions. The verification has two objectives: first objective is to validate
the fact that the metrics chosen can act as proxy for the level of testing and the
second objective is to detect types of test development (outside of the general way of
testing) that are not compatible with the framework. A big problem in performing
the verification of the framework is the source of truth. In this case, the source

31

5. Results

of truth would be the level associated with a test. To determine the level of a
test, the researcher needs to apply definitions or characteristics on the test, which
leads back to the problems described in the thesis: multiple different definitions for
testing levels, developers using the terms inappropriately. To be able to perform
the verification and handle the pitfalls mentioned, the process of categorization
would be described in detail so that there would be no doubt if the categorization
is valid or not. For the source of truth, multiple conditions would be taken into
consideration. The definitions described in the framework chapter 4 for unit and
system testing in the context of object-oriented programming would be the ones
used for characterization. Another additional problem that comes from using the
definition for unit and system tests is the fact that the integration level is not
considered at all, so if a test is on the integration level, the characterization would
not work. The framework measures the size of the test and the size of the code tested
through the number of methods, classes and packages, while a developer does not
need to quantify these metrics to gauge the size of the test and code tested, moreover
a developer can understand what is the test and what is the code tested due to the
language, commands and other additional information (like test name, comments)
that cannot be introduced in the framework. Due to additional information that a
developer could use to determine the level of a test, we will take into consideration
the subjective characterization of the tests by the researchers. We will also consider
the intended level of test gathered by checking test or test class comments or tags.
From the three characterization conditions: researchers’ classification, developers’
classifications and the framework classification, the source of truth would be the
two out of three agreed upon level. We use the two out of three methods to remove
bias. There are exceptions to this rule. If the developer characterization is missing
then the characterization of the researcher would be the source of truth. Beside
the concrete categorization of the framework (low or high level), we will take into
consideration the score of the test as well.

To verify the framework we need to take a sample of the tests. For this purpose we
employ a stratified sampling method. The population is represented by all the tests
collected from the 16 projects and the first stratum is the level of tests based on the
categorization framework. For this purpose, we chose a sample of 10 tests with a
disproportionate sample, 5 tests from low level and 5 tests from high level. It was
decided against the proportionate sampling because the number of high level tests
analysed in a proportionate sample of 10 would be a very low number and would
not provide us with the information needed for verification. The tests are selected
at random from the sample. This would represent an initial verification. Due to the
fact that different projects can have different methods of testing, another verification
would be performed. For this, we will stratify two characteristics: level and project.
Combining these characteristics we will have 32 groups, so we will randomly select
low and high level tests from each of the 16 projects to be verified. The projects
have different number of tests, so the sample should somehow be proportionate. If
we would use a fully proportionate sample and take a sample of two for the project
with the least amount of tests, the total number of tests in the sample would be
206, which is a big number for a manual verification. Instead, we used a somehow

32

5. Results

proportionate sample based on the number of test per project as follow: for projects
with number of tests under 1000, we sample 2 test, for project between 1000-1999
we sample 4 tests, for projects between 2000-2999 we sample 6 tests, from projects
between 3000-3999 we sample 8 tests and for projects over 4000 we sample 10 tests.
With this configuration, the total sample would amount to 70 tests. The number
of tests sampled from each project is an even number, because the sample would be
taken half from low level tests and half for high level tests from the selected project.
The framework evaluation results can be seen in Tab. A.2, A.3, A.4, A.5, A.6 in the
Appendix A.

The first evaluation had a rate of 90%, from the 10 randomly selected tests, 9 were
characterized on the correct level. The second evaluation had a rate of 71.4%, from
the 70 randomly selected tests, 50 were placed on the correct level. In both checks,
the rate of correct categorization for low level tests was 100 %. The inconsistencies
between the framework categorization and the source of truth were attributed to
the high level tests. The 20 high level tests that were categorized by the developers
and/or by the researcher as low level have uncovered situations where the framework
falls to properly asses the tests. Analyzing the 20 tests that were categorized incor-
rectly, three cases were discovered to be the reason for misclassification. First case
of misclassification came from the fact that in the test, for the same case multiple
values were verified. This would inflate the score based on the size of methods, so
although the case tested belongs to a low level, the repetition of said case elevates
the level. In this case, if the test would be broken down in multiple smaller tests
for each value, they would be categorized on a lower level. This is more of a testing
anti-pattern for testing then a problem with the framework. In the same category
exists tests that actually contain multiple test cases inside; this is an anti-pattern
and is attributed to mistakes of developers or testers. Another case or wrong clas-
sification was the private testing methods and assertions developed in the projects.
In this case, the framework cannot distinguish between the code tested and the pri-
vate testing methods and assertions, as they indeed are code in the project, so the
framework considers them code that should be tested because they are placed in the
testing methods, so they raise size characteristic by the number of methods, classes
and possibly packages. As developers, it is understood that a privately developed
assertion method is used in the same manner as an assertion method from the test-
ing framework, so conceptually we understand it as a verification, without the need
to look inside it. Under the same case falls the usage of private testing methods. For
reasons related to reusability of code, some tests have in the body only one method,
a private testing method from the same testing class. We understand that what is
tested is the code in the private method, but the framework cannot distinguish that.
For the framework, the private method is the code that is tested while in reality, the
code that is tested is the code inside the private method. From the perspective of
the framework, the usage of private testing methods decreases the size of the tests
and possibly the size of the code tested. Another case for misclassification came
from the fact that multiple projects from the sample are self-identified libraries and
without a clear requirement document, some tests can be classified as both low or
high level, because a test can verify a requirement by only using one method equiv-
alent with a unit, but there is no integrated system to check because the project is

33

5. Results

a library. Two out of the three cases of misclassification are due to unusual styles
of testing. This analysys provided us with exceptions on the type of tests that the
framework would not function accordingly.

We found seven metrics -mock usage and number of methods, classes and pack-
ages for size of test, code tested and setup, that can successfully act as proxy for
testing levels, as confirmed by the success rate of the two verifications performed.

5.2 RQ2
In this section, by applying the categorization framework on the collected tests from
the sample projects, we can provide a response to the second research question RQ2:
What level of testing is used more in open source projects between unit testing and
system testing?. From the total of 25477 tests, 19984 were categorized as low level
tests, representing 78.4% of the total, while 5493 tests were categorized as high level,
representing 21.6% of the total of tests.

To conclude, based on our analysis of the 16 projects, the level of testing that is
more used in Java open source projects is low level (equivalent to unit testing).

In addition to the response, we provide information about the percentage of low-
high level tests per project and a comparison between the number of low level tests
categorized by the framework and the number of unit tests as dictated by the pure
unit test definition. Furthermore, the total distribution of scores on the score scale
and the score distribution per project are presented.

The percentage of low and high level tests per projects can be seen in Fig. 5.1. None
of the projects had a percent of 100% of low or high level tests. In all the projects the
percentage of low level tests was higher than the percentage of high level tests. The
project with the least amount of difference between percentages was Jsoup, where
from a total of 862 tests, 442 were categorized as low level and 420 were categorized
as high level, representing 51.28% and 48.72% respectively. The highest percent of
low level tests was achieved by the JacksonXml project, where from a total of 305
tests, 292 were categorized as low level and 13 as high level, representing 95.74% and
4.53% respectively. From the 16 projects, seven had a percentage of low level tests
that was higher than 90%, 2 had the percentage of low level tests between 80% and
90%, 4 had the percentage between 70% and 80%, 2 had the percentage between
60% and 70% and only one project had a percentage of low level tests between 50%
and 60%.

Although some projects have a similar percent of low level tests, they vary in the
number of total tests per project. The Fig. 5.2 shows the number of low and high
level tests per project. It can be seen that the projects with a smaller number of
tests (<2000), which represent 10 out of 16, tend to have a higher percentage of low
level tests (>85%), with the exception of two projects. From the six projects that
contain more than 2000 tests, only one has a percentage of low level tests higher
than 90, while the other 5 projects having less than 78%.

34

5. Results

Figure 5.1: Proportion of low and high level tests per project

35

5. Results

Figure 5.2: Number of low and high level tests per project

36

5. Results

In the previous chapter, the definition of unit test in the context of object oriented
paradigm was discussed. Reiterating, a test that contains methods from one class
that only uses methods from that specific class is regarded as a unit test. Under this
definition, from the total of 25477 tests, only 3772 tests would be regarded as unit
tests, representing 14.8%. In this context, the integration level is fully enclosed in
the high level, unlike in the framework, where the integration level is shared between
low and high level. It can be seen in Fig. 5.3 that this definition is very restricted,
as compared with the developed framework which found 19984 low level tests, in
comparison to only 3772. In addition to the pure unit tests, 108 empty tests were
counted, representing 0.42% of the total 25477 tests.

Figure 5.3: a) Low and high level test percentage vs b) Pure unit test percentage

The level of the tests are decided by the score calculated using the categorization
framework. It is important to show the diversification in the score for the total
amount of tests. The Fig. 5.5 shows that the score that occur most often throughout
the tests is 6, with a number of 3997 tests having that score, followed by a score
of 8 for 3147 tests. The Fig. 5.4 shows the distribution of scores on the test scale.
Although the scale for the test score has the higher limit set at 61, the maximum
score of the tests was 44, with 2 tests having this value. Only 4 tests have a score that
is higher than 40, while 314 tests have score between 30 and 39. The distribution
graph and the histogram show how the test scores are spread on the scale. The
categorization of the tests is based on the set limit of 15 points, and with the help
of the two graphs the difference in categorization can be grasped if the boundary
between low and high level would have been another value.
The distribution of scores per project can be seen in Fig. 5.6. None of the distri-
butions are symmetrical. Almost all the projects score distributions are unimodal,
with the exception of Mockito, which is a bimodal distribution, with peaks at the
value 6 and 16. With the exception of JxPath, Mockito and Jsoup projects, all
other projects have a positively skewed or J shaped unimodal distribution of scores.
Some projects like Codec, Csv, JacksonXml and Lang have strong positively skewed
unimodal distributions, this mean that even if we would restrict the definition of
low level test lowering the threshold of 15 points, they would still have a higher
proportion of low level tests. The JxPath project has the flatter distribution, with
a peak at the value 6 and the maximum achieved score of 28. The Chart, Codec,
Compress, Gson, JacksonXml, Lang and Math projects have the peak at the value 6.

37

5. Results

Figure 5.4: Density of test scores

Figure 5.5: Histogram of test scores

38

5. Results

The Cli and Csv have peaks at value 7, while Collections and JacksonCore projects
have the peak at value 8. JacksonDatabind project has the peak at value 10, Jsoup
project has the peak at value 14 and the Time project has its peak at value 11. For
every project except Lang, the minimum score is 6. The Lang project has 3 tests
that have a value of 5, meaning that to the base value for size of code and size of
test, they did not have big setups and employed mocking in their implementation.
The maximum score value in total was 44, less than the maximum value of the scale,
which is 61. The score of 44 was achieved by tests in Chart and Mockito projects,
followed by a maximum score of 43 in the Math project. The smallest maximum
score was achieved by the Codec and Gson projects, with the value of 26.

Figure 5.6: Score distribution per project

5.3 RQ3
In this section, a response would be provided for the third research question RQ3:
To what extent system testing can cover the fault detection power of unit testing ?.
First, we will provide quantitative information about the bugs and the tests that
uncovered them, then based on the percentage of low and high level tests that un-
covered bugs we can make a conclusion on the first hypothesis. Furthermore, we
present the distribution of scores for the test that uncovered bugs from all projects
and for individual ones. In addition, an analysis on the level of tests associated with
bugs that have multiple tests that uncover them was performed in order to provide
a verdict for the second hypothesis. We further analyse the relationship between
the metrics and uncovering bugs, as well as the relationship between the metrics,

39

5. Results

uncovering bugs and test level.

The Defects4J tool contained information for a total of 661 active bugs gathered
from all the analysed projects. This number of bugs was uncovered by a total of 998
tests, which represent approx. 3.92% of the total number of tests in the projects.
The tests that uncovered bugs would be referred as triggered tests. The information
per project about the number of tests, bugs and the number of triggered tests can be
seen in Table A.1. The table contains two columns related to the number of bugs:
Defects4J Bugs and Bugs. Defects4J Bugs represents the number of active bugs
that the Defects4J tool have analysed, while Bugs contain the number of bugs that
have at least one triggering test in the current revision of the projects, hence the
number of bugs reported by Defects4J will be higher or equal than the other Bugs
number. To respond to the first part of the third research question we only focus on
the triggered tests and their level, but for the second part we take into account the
number of bugs that have at least a triggering test in the current revision. Three
out of the 16 analysed projects had a smaller number of triggered tests than the
number of bugs. This phenomenon can be attributed to either the exclusion criteria
for the tests (a test that uncovered a bug was later flagged as deprecated, ignored
or was disabled through other methods) or due to the fact that a test can uncover
multiple bugs. It should be noted that for the same project, if a test did uncover
multiple bugs, that test was counted only once. The rest of the projects contained
more triggered tests than the number of bugs in the project, due to the fact that a
bug can be linked to multiple tests.

Table 5.2: Projects bug information

Project Tests Triggered tests % triggered tests Defects4J Bugs Bugs
Chart 2244 85 3.78% 26 23
Cli 235 37 15.74% 39 28
Codec 842 37 4.4% 18 17
Collections 1680 3 0.18% 4 3
Compress 1250 69 5.52% 47 47
Csv 343 22 6.41% 16 15
Gson 1053 33 3.13% 18 17
JacksonCore 729 48 6.58% 26 23
JacksonDatabind 2652 116 4.37% 112 99
JacksonXml 305 12 3.93% 6 6
Jsoup 862 131 15.2% 93 89
JxPath 331 29 8.76% 22 22
Lang 3320 92 2.77% 64 44
Math 3168 101 3.19% 106 65
Mockito 2215 109 4.9% 38 37
Time 4248 73 1.71% 26 26

By applying the categorization framework on the respective tests collected from the
Defects4J tool, we can answer the question of which level of testing uncovered more

40

5. Results

bugs. From the total of 998 tests, 656 were categorized as low level tests, repre-
senting 65.73% of total tests, while 342 tests were categorized as high level tests,
representing 34.27% of the total tests. The proportion between low and high level
tests per project can be seen in Fig. 5.7. Three projects contain a higher percent
of high level tests discovering bugs than the low level, while the rest of the projects
contain a higher percent of low level bugs than high level bugs. In three projects,
the percent of low level tests that discovered bugs is 100%, followed by three other
projects with percentages over 90 for low level tests. The lowest percentage of low
level bugs was 39.58% recorded in the JacksonCore project, followed by two projects
with percentages between 45 and 50 for low level bugs. The other 7 projects have
percentages between 50 and 90. The Fig. 5.8 shows the concrete number of low and
high level tests from the tests that uncovered bugs per project.

The result regarding the percent of low level versus high level tests that uncovered
bugs can be attributed to the fact that there is a higher number of low level tests
in the total sample of test. An analysis on the rate of uncovering bugs from the
total number of bugs must be performed. The total number of tests was 25477, with
19984 low level tests and 5493 high level tests. From the 19984 low level tests, 656
uncovered bugs, which represent a percent of 3.28%. From the 5493 high level tests,
342 uncovered bugs, which amount to 6.23%. The uncovering bug rate for high level
tests is higher than the rate for low level tests, to be exact it is with 89.67% higher.
It can be said with a confidence level of 95% that the high level tests perform better
than low level tests in regards to uncovering bugs.

The results suggest that high level testing leads to a greater fault detection than
using low level testing, even though the percentage of low level triggering tests
was higher than the percentage of high level triggering tests.

In the Fig. 5.9 the density of test scores for tests that uncovered bugs is shown.
The histogram shows that the most frequent score for the tests that uncovered bugs
is 6, with 118 tests having that score, followed by the value 8, which 110 tests had.
The minimum score value was 6, while the maximum score value was 38, with only
one test having that value.
The distribution of tests scores per project for tests that uncovered bugs can be seen
in Fig. 5.11. The distribution of scores for Chart, JacksonCore, Lang, Math are flat-
ter. The minimum score for all the projects except Collections and JacksonDatabind
was 6. The Collection project is an exception, as it contains only 3 tests that uncov-
ered bugs, so the distribution was not accurate due to small number of values. The
three tests had a score of 9, 13 and 14, all scores being under the low level category.
The JacksonDatabind project has a minimum score of 7 and a maximum score of 33.

The Defects4J tool registered a total of 661 bugs from all fifteen projects. From the
total bugs, only 561 bugs had triggered tests. The difference comes from the fact
that the triggered tests linked to the bugs were not present in the current revision
(they were either moved or transformed to a degree that would not reflect to the
initial bug) or they have been disabled or ignored through various settings. From
the 561 bugs, 153 bugs had multiple triggered tests. The rest of 408 bugs had only

41

5. Results

Figure 5.7: Proportion of low and high level trigger tests

42

5. Results

Figure 5.8: Number of low and high level trigger tests

Figure 5.9: Density of test scores

43

5. Results

Figure 5.10: Histogram of test scores

Figure 5.11: Score density per project

44

5. Results

one trigger test, which was either low or high level. The information about the
percentage of low level and high level tests from the total of triggered tests was
discussed in the previous paragraphs. The focus now is on the second hypothesis:
System testing can discover the same bugs as unit testing. To be able to give a
response, an analysis has to be performed on the 153 bugs and their triggered tests,
to see what percentage of bugs can be discovered by both levels. It was found
that from the total of 153 bugs, 88 bugs were discovered only by low level tests,
25 bugs were discovered by high level tests and 40 bugs were discovered by both
levels of tests. The percentage amounts to 57.52% for low level, 16.34% for high
level and 26.14% for both levels of tests. In this case, only having the percentage is
not enough to make a clear judgment, because different bugs have different number
of triggered tests associated with it. The minimum number of triggered tests for a
bug is 2 and the maximum number of triggering tests is 27. Because the number
of triggered tests for the bugs vary, there is a difference in the degree of uncovering
the bugs, as one bug that is discovered by 1 low level test and 1 high level tests
would weight differently than a bug that is discovered by 1 low level tests and 26
high level tests. The difference between low level and high level regarding the degree
of uncovering bugs was plotted in Fig. 5.12. The figure was made by plotting the
difference between the number of low level trigger tests and the high level trigger
tests, so the right side of the value 0 on the x axis represents the bugs that had
more low level trigger tests than high level and the left side of the value 0 represents
the bugs that were uncovered by more high level tests than low level. From the 40
bugs that had multiple triggered tests, 20 had a proportion of 50-50% of low and
high level triggered tests, 10 had more low level trigger tests than high level and 10
had more high level trigger tests than low level. The difference stays close to the 0
value, with the exception of two bugs, where the number of high level trigger tests
exceeds the number of low level trigger tests by 23 and 11 respectively. Fig. 5.13
shows the percentage of low level triggered tests and high level triggered tests for
the bugs discovered by both levels. As can be seen from the figure, the percentages
do not favor either direction. It should be noted that the amount of data points for
this analysis is not extensive, so we cannot draw a strong conclusion.

Considering this and the previous findings, the results suggest that system tests
do not discover the same bugs as unit tests. This fact can also be attributed to
the fact that there are more low level tests than high level tests in the sample.

Until this point we discussed the fault detection power based on the level of tests
and we analysed the bugs that were uncovered by multiple tests to see if one level
is more favorable in detecting them. But due to the construction of the framework,
we have information about the specific metrics that form the framework for each
test, which is linked with the number of bugs that the specific test uncovered. An
interesting aspect to investigate is how each metric correlates with bug detection
and possibly with the level of test. Graphs were made to determine if there is any
interesting trend in data regarding these relationships. For each of these metrics:
number of methods, classes and packages in test body, number of methods, classes
and packages in code tested and the condition of a big setup, two graphs were build,
one for the relationship between the metric and the condition of uncovering bugs

45

5. Results

Figure 5.12: Low-High tests difference for bugs

Figure 5.13: Low-High tests difference for bugs

46

5. Results

and the second one conveys the relationship between the metric, the condition of
uncovering bugs and the level of test. The use of mocking as a metric was excluded
from the analysis as the number of test that employ mocking in their implementa-
tion is insignificant compared to the total number of analysed tests. Because of this
aspect, we could drop the metric from the framework, as it would not make any
difference in the testing levels for the tests in our sample. Regardless of this fact,
the metric will remain part of the framework, but should be further analysed in the
context of Java open source projects that contain mocking, to see if the relationship
between the metric and the level is a strong one. For the size of setup characteristic,
the analysis was performed only on the condition of having a big setup, not inde-
pendently on the three metrics (number of methods, classes and packages), because
that is the condition for awarding the points for the total score of the test.

In Fig. 5.14 we can see the tests being plotted with their respective number of
methods over the condition of uncovering bugs. The Fig. 5.15 shows the same
information with the addition of color coding based on test levels. An outlier test
was excluded from the graphs, as its number of methods had a value way larger
than 1000. From the second figure it can be seen that the low level tests had a low
number of methods, as expected based on the construction of the framework and
the importance given to that metric.

Figure 5.14: Relationship between no. of methods in test and bugs uncovered

The Fig. 5.16 and 5.17 shows the relationship between the number of methods
counted from the code tested and the uncovering bugs condition for tests, and for
the latter figure the relationship between the two previously mentioned aspects and
the level of tests. The same outlier was excluded from these graphs as well. It can be
seen that the number of methods here are larger than in the previous 2 graphs 5.14,
5.15 but that is expected given the fact that this metric envelops the previous one.
As expected, low level tests tend to have lower number of methods in the code tested.

47

5. Results

Figure 5.15: Relationship between no. of methods in test, bugs uncovered and
testing level

Figure 5.16: Relationship between no. of methods in code tested and bugs uncov-
ered

Fig. 5.18 illustrates the relationship between number of classes reached from the
test and bugs uncovered, while 5.19 add on top on that information the relationship
with the test levels. The maximum number of tests for a specific number of classes
reached was 8455, for a number of one class reached. The maximum number of
classes reached was 14 for tests that did not uncover bugs and 10 for the ones that
did uncover bugs. With the exception of tests that did not reference any class, with
the increase of classes reached the number of tests decrease. From the tests that did

48

5. Results

Figure 5.17: Relationship between no. of methods in code tested, bugs uncovered
and testing level

not uncover bugs, the ones that had over 6 classes were all identified as high level,
with the amount of 433. From the tests that uncovered bugs, the ones that had
equal or more than 6 classes referenced were all high level, which amounted to 103.

Figure 5.18: Relationship between no. of classes in test and bugs uncovered

Fig. 5.20 illustrates the relationship between no. of classes reached from the code
tested and bugs uncovered, while 5.21 add on top on that information the relation-
ship with the test levels. The maximum number of classes reached from the code
tested is 29, achieved by 1 test. For this metric, the maximum number of tests for
a specific class value was 4807, for tests that reached 2 classes. For the tests that
uncovered bugs, the ones with over 11 classes reached were all categorized as high

49

5. Results

Figure 5.19: Relationship between no. of classes in test, bugs uncovered and test
level

level, measuring 102 tests. From the tests that did not uncover bugs, the 103 tests
that had over 13 classes were identified as high level, with the exception of 6 classes
that had 17 classes reached but were identified as low level tests.

Figure 5.20: Relationship between no. of classes in code tested and bugs uncovered

Fig. 5.22 illustrates the relationship between the number of packages reached from
the body of the test with the bugs uncovered and for 5.23 the relationship between
the metric mentioned and the level of the tests. The maximum number of packages
reached in the body of the test was 7, with 13 tests having this value. 13,905 tests
reference exactly 1 package in their body, where 492 of them uncovered bugs. 1 was
the most number of packages reached in a test, both for test that uncovered bugs
and test that did not uncover any bugs. All the tests that had reference more than

50

5. Results

Figure 5.21: Relationship between no. of classes in code tested, bugs uncovered
and test level

4 packages, which amounted to 442, were identified as high level tests. All 114 tests
that uncovered bugs and had more than 3 packages reached were all high level.
A number of 5 packages reference in the test would amount to a minimum of 11
point for the size of test characteristic (5 point from number. of packages, 5 points
from number of classes as the number of classes can not be less than the number
pf packages, and 1 point from number of methods, as number of methods can not
be less than the number of classes). Because the size of code characteristic include
the size of test, the values for number of methods, classes and packages for the
size of test characteristic will always be less or equal with the values for number of
methods, classes and packages for the size of code tested characteristic. Hence, the
minimum points for the size of code characteristic would be 8 points (4 from no. of
packages, 3 from no. of classes and 1 from no. of methods), so the total score for
the test would always be over 15, hence the test would be identified as high level.

Fig. 5.24 show the relationship between the packages reached from the code tested
and the bugs uncovered, while Fig. 5.25 makes a distinction in that relationship
based on the level of test. The maximum number of packages reached for the size of
the code tested was 17, with 1 test having this value. 7766 tests reference exactly 1
package in the context of the code tested. This value is the highest number of tests
for any value the number of packages takes. From the tests that did not uncover
bugs, those that had over 10 package references were identified as high level, and
represent 71 tests. From the tests that did uncovered bugs, those that had over 7
packages references were identified as high level, representing a total number of 43
tests.
For a sufficiently higher number of packages, the level of test would always be high.
A test that will reference over 20 packages would be high level. For a test that
reference between 10 and 20 packages, there is a way higher chance that it would be
identified as a high level. This relationship is modeled in the framework, as if you

51

5. Results

Figure 5.22: Relationship between no. of packages in test and bugs uncovered

Figure 5.23: Relationship between no. of packages in test, bugs uncovered and
test level

52

5. Results

have a high number of packages, you must have an equal or higher number of classes
reached, as the class can belong to only one package. Having a higher number of
classes implies an equal or higher number of methods. So working on the example
of a test having between 10 and 20 reference packages, it would mean that for the
size of code tested, the score would be 11 points. The border between low and high
level is set at 15 points, which limits the amount of points gained from size of test,
setup and mock usage to 4. The smallest score for the size of test characteristic is
3, so if the number of packages reference in the test would be over 2, the test will
be identified as high level.

Figure 5.24: Relationship between no. of packages in code tested and bugs un-
covered

Figure 5.25: Relationship between no. of packages in code tested, bugs uncovered
and test level

As seen in the Fig. 5.26 and 5.27, from the total of 25477 tests, 3835 had a big
setup phase. From those 3835 tests with big setup phase, only 65 uncovered bugs,

53

5. Results

from which 42 tests were identified as low level and only 23 as high level. The rest
of 933 tests that uncovered bugs either had a small setup or no setup at all. From
the total of 998 tests that uncovered bugs, the rate of tests with big setup is approx.
6.51%.

Figure 5.26: Relationship between big setup and bugs uncovered

Figure 5.27: Relationship between big setup, bugs uncovered and level of test

For the number of classes and packages metrics associated with the size of test
and size of code tested, is seems that an increase in the value of the metric means
a decrease in the number of tests that have that value for the metric. Another
observation that can be made from the graphs is that tests on the low level have
a lower value for the metrics, but that is due to the construction of the framework
and it was expected.

54

5. Results

Looking at the data conveyed in the relationship graphs, there seems to be no
discerning trend between any particular metric and bug finding.

5.4 Projects Information
In this section, some aspects of testing process and efforts of the selected projects
will be discussed. Some of the information presented in this chapter comes from
the data gathered for the categorization framework and some information comes
from independently analysing the projects. Although this information is not linked
directly to the research questions, it can provide insight to other aspects of testing.
16 individual projects were analysed, but between those projects there are two clus-
ters of projects that are developed under the same umbrella: Apache [44] and
FasterXML [45]. Three projects are under FasterXMl: jackson-core and jackson-
databind which are core modules of the Jackson project and jackson-dataformat-
xml which is an extention component. The projects under Apache are commons-cli,
commons-codec, commons-collections, commons-compress, commons-csv, commons-
jxpath, commons-lang, commons-math, in total 8 projects. The remaining 5 projects
are independent: jsoup, jfreechart, gson, mockito and joda-time. This is specified
because the testing process can be similar for projects that belong to the same clus-
ter, regardless of the open source nature of the projects.

There were in total 25477 tests, from 2940 classes contained in 352 packages. It
should be mentioned that only the active tests were counted, as well as the classes
that had at least one active test and did not fulfill the excluding criteria mentioned
in Chapter 3.1.3. Likewise, only packages that contained at least one active class
were counted. The number of tests per projects varies from 235 to 4248, while the
number of test classes varies from 20 to 557. The number of packages varies between
2 and 88. The project that has the most number of tests is Time, containing 4248
from 127 test classes contained in 7 packages, while the project with the smallest
amount of tests is Cli, with 235 tests from 25 classes contained in 2 packages. The
concrete information for each specific project can be seen in table 5.3.
Through the data collection process, information was obtained about the usage of
mock libraries in the projects tests. From the total of 25477 analysed tests, only 63
tests employed the help of a mock library in their implementation, which represents
0.25% of total tests. From the 16 projects, only 5 contained tests with mock usage.
The mocking libraries used are easymock [46], mockito [47], powermock [48]
and mockrunner [49]. Mockito and easymock were the two libraries most used
throughout the projects. It is necessary to mention that one of the analysed projects
is in fact a mocking library - Mockito, so for this project the use of the project itself
was not registered as mock usage as in fact the mocking implementation was the
one that is tested. This information per project is summarised in the table 5.4.
Data about the usage of a setup phase was collected as part of the categorization
framework. From the 16 analysed projects, only one does not employ any form of
setup for any of the test classes contained in the project, while the other 15 employ
it for a number of the test classes. From the total of 2940 test classes, only 384

55

5. Results

Table 5.3: Projects size regarding tests

Project No. of Tests No. of Classes No. of Packages
Chart 2244 341 26
Cli 235 25 2
Codec 842 66 7
Collections 1680 204 21
Compress 1250 147 27
Csv 343 20 3
Gson 1053 95 10
JacksonCore 729 141 14
JacksonDatabind 2652 557 44
JacksonXml 305 113 14
Jsoup 862 43 7
JxPath 331 41 14
Lang 3320 198 14
Math 3168 358 54
Mockito 2215 464 88
Time 4248 127 7

Table 5.4: Mock usage

Project Total tests Mock tests % of mock tests Mock libraries used
Collections 1680 3 0.18% easymock
Compress 1250 3 0.24% mockito
JacksonDatabind 2652 16 0.6% mockito, powermock
JxPath 331 4 1.2% mockrunner
Lang 3320 37 1.1% easymock

56

5. Results

of them contain a setup phase, which represents approx. 13% of the total test
classes. The number of classes with no setup, number of small and big setup phases
were recorded per project and are shown in the Fig. 5.28.The JacksonCore project
had no test classes that contained setup phases. The next project with the least
amount of setup phases was JacksonDatabind, where from 557 test classes only 2
had setup phases, which represents 0.36% from total test classes. The project with
the highest percent of setup phases is Time, where from the total of 127 classes, 95
had setup phases, amounting to 74.8%. Returning to the size condition for the setup
phase established for the setup score of a test, from the 384 test classes with setup
phases, 146 of them are considered big regarding size, which represents approx. 38%.
Because JacksonCore project did not have any classes containing setup, the percent
of big setup phases is also 0. The next project with the lowest percent of big setup
phases is Gson, where from a total of 41 classes containing setup phases only 1 was
considered a big, representing a 2.43%. The highest percentage of big setup phases
was 75%, registered by the JxPath project, where from the 16 test classes with setup
phases 12 of the setup phases were regarded as big.

Figure 5.28: Setup state per project

57

6
Discussion

In this chapter we discuss our study in terms of implication to both practitioners
and research, limitation of the study and validity concerns.
The concrete contributions of the study are a framework to classify on which level
a test resides followed by an assessment of which testing level is used more in Java
open source projects, as well as which testing level can uncover more bugs. The two
assessments are based on the test categorization made by the developed framework.
The framework shows that there are metrics that can act as proxy for the level of
test. Our findings suggest that low level /unit testing is the level of testing used
more in Java open source projects. Additionally, although the low level uncovered
more bugs than high level, considering the percentage of low and high level tests
in the sample, the high level had a higher detection power. Regarding bugs, the
findings suggest that high level tests do not detect the same bugs as low level tests.

The results for the research questions two and three, which ask about which level of
testing is more used in Java open source projects and what level has a higher rate of
uncovering bugs, are based on the categorization made by the framework developed
as a response for research question 1, which inquires about metrics that can act as an
identifier for the level of tests. The validity of the framework is important because
all the results are based on it, so if the framework is not constructed in an adequate
manner, then our findings are not valid. Moreover, if the framework contains bias
to one of the levels, the results would be skewed. A verification of the framework
was performed, and through it some limitations were outlined. These limitations
are discussed in the section 6.1.

To determine which level of testing is most used, the framework was applied on the
tests and then we counted the tests that were identified on each level, to find that low
level tests are more in number. Moreover, this result was valid on the total number
of tests as well as per each project. A possible explanation for the findings can be
the fact that from the sample projects, multiple ones are self-identified as libraries,
so it can be expected that they would contain more low level testing than high level
ones. Other type of projects can favor other test level, possibly yielding different
results. Another aspect that can influence the result is in fact the categorization
framework. If the threshold between the low level and high level is too high, then it
is possible that more tests would be identified as low level. Although a verification
was made on the framework, there is still the possibility that the framework is biased
towards the low level.

58

6. Discussion

The results regarding the fault detection power of the two testing levels can be in-
terpreted in two ways. First, if we only focus on the absolute numbers, the low
level had significantly more tests that uncovered bugs than the high level, but this
outcome can be attributed to the fact that there was a higher number of low level
tests in the sample. In fact, the number of high level tests was less than a third of
the number of low level tests, while the number of high level tests that uncovered
bugs was more than half of the number of low level tests that uncovered bugs. The
difference between the total number of tests per level is considerable, but we can
not say the same about the number of tests uncovering bugs per level, as the total
number is 998 tests, which amounts to 3.92% of the total number of tests in our
sample. Another interpretation can be made if we look at the rate of uncovering
bugs. For the low level, this rate was at 3.28% while the rate of uncovering bugs for
high level was at 6.23%. Looking only at this rate, the high level performed better
than low level. This outcome can be influenced by the fact that the total number
of tests uncovering bugs is low compared with the total number of tests. For our
context, the rate of uncovering bugs is a more interesting outcome.

Besides the fault detection for the levels of testing, we looked to see if both levels
can find the same bugs and for bugs that were uncovered by multiple tests, which
level had more triggered tests. There were 561 bugs with a total of 998 triggered
tests, but only 153 had multiple triggered tests, so the number of data points for
this analysis was low. The results suggest that low level uncovered more bugs that
were uncovered by multiple tests. For the bugs that were uncovered by both levels,
there seems to be no preferred level on which the bug would be uncovered by more
tests on a level than the other. Owning to the fact that the number of data points is
low, we cannot draw a strong conclusion. Once more, this result can be attributed
to the fact that there are more low level tests in the sample, so there is a possibility
that the low level covers more of the software than the high level. The focus was
on how the numbers compare, so we cannot say the reason why the results are how
they are. There are multiple possibilities regarding the reason for high level not
uncovering the same bugs as low level. First, the tests may not cover the same part
of the system. If the high level tests focus on a part of the system and low level tests
focus on another, there would not be many interlapping. Even if the two levels of
testing focus on the same portion of the software, they may test different scenarios
that would bring different inputs for the code that contains the bug, where for some
inputs the code functions correctly and for other inputs the code can trigger the
fault. Similarly, high level tests might not be able to reach that faulty code with the
full range of inputs due to limitations in the scenario tested, while low level tests
that focus on that piece of faulty code can. Another possibility would be that a
fault detected at a low level be masked by some higher level implementation hit by
the high level test, hence it would be hidden and not registered by the high level
test. From these discussed scenarios, we can discern two plausible prospects, first
is that high level testing has an inherently inability in detecting bugs on low level
and second is that high level testing is not done extensively to cover all the low
level parts. Taking one step further, we started an analysis to determine if there is
a trend in the data between the metrics in the framework and bug uncovering, but

59

6. Discussion

we could not find any meaningful relationship.

6.1 Limitations
The tool used for analysis limits the scope of open source candidates to projects with
public repositories and issue trackers that are supported by the tool (google-code
[32], jira [33], github [34] and sourceforge [35]). Another limitation brought by
the tool is that the code language used in the projects should be Java.
The study focuses only on the fault detection power of unit and system tests, not
examining the effect of integration tests. While we ideally would study multiple
different testing techniques and not only their fault detection capabilities but also
their cost etc., this is not feasible in this project. We thus focus on maybe the two
most common testing levels, unit and system testing, and on the primary difference
between them, i.e. their fault detection capabilities and how they compare. We
argue this is a first natural step towards guiding practitioners in trading off between
them. Later research will have to focus on the associated costs to complement our
results.

The verifications performed on the developed framework uncovered some limitations
in its capability to categorize tests. The categorization framework was developed for
a general development of tests and may not be fully accurate for different approaches
to testing. There are different types of testing with different good practices asso-
ciated with it. The general way of testing is preparing the environment and other
needed settings in the setup phase if needed, in the body of the test the input for
the piece of code tested would be prepared, then it would be fed into the code and
the results would be assessed against the true correct value, followed if needed by
a tear-down phase where the environment and settings can be returned to the de-
fault values. There are other ways of doing testing that is different than the general
layout. For example, in one of the projects there were tests that contained only one
method, which was a private method in the same testing class that contained the
actual test code. In this case, the framework would consider the private method in
the body of the test as the code that is tested and the body of the private method
the implementation of the code tested, while in reality, the actual code tested is in
the private method of the test class. Another case where the framework would give
skewed results is when the project developed its own assertion methods. Because
the assertion methods would be considered code of the project, the framework would
count the body of the assertion method for the size of code tested for a test that
uses that specific assertion.
The framework would not work accordingly for tests that contain multiple test cases,
but as it is a testing anti-pattern, this mistake is attributed to the developers or
testers that wrote the code, not to the framework. Another restriction put on the
framework because of the open-source nature of the analyzed projects is the lack
of access to the requirements of the projects. If the requirements would have been
accessible, the framework could have been taking advantage of it when categorizing
tests on the high level. In the current formula, the framework has issues with cate-

60

6. Discussion

gorizing tests that in size are small and constraint to a small number of classes, but
regardless it represents a requirement for the full system. These represent limitations
of the categorization framework.

6.2 Implications
Implications to practitioners
The study can help practitioners of open source development in deciding where the
testing efforts should be concentrated based on the fault detection power of different
levels of testing. Knowing that unit testing is the level of testing preferred can influ-
ence practitioners in their choice for adopting testing practices. Moreover, knowing
that high level tests have a higher rate of fault detection means it might push prac-
titioner into using this level more prominently throughout the testing phase. The
study is focused on the fault detection power of the unit and system levels, but
in taking a decision to which level of testing to implement, multiple consideration
should be taken into account. The differences in cost, time and developers experi-
ence were not researched in this study, but they are factors that should weight in
when taking a decision about the usage of the respective testing levels.

Implication to research
For researchers, the study supports and opens new research possibilities in the sub-
ject. Further studies can be done in determining testing efforts and return of invest-
ment of different levels of testing. Along with our study, that could be a compre-
hensive guide of what testing level should be chosen by practitioners based on their
needs and possibilities. The current study found that unit testing is the preferred
level in open source projects, but it could not make any assumptions on the reason
why, so this can be a further research opportunity. Moreover, it could be interesting
to compare the reason why the open source community uses more unit tests with
the reason given by the close source/ proprietary software development community.
The data points used to make an assessment about the fault detection power of the
levels are not as extensive to allow us to assume generalizability without a doubt, as
there were 998 triggered tests to be categorized and 153 bugs that were uncovered by
multiple tests. Compares to the total number of tests, these amounts are very low.
This research has to be repeated on a larger set of projects to be able to replicate
the results. Moreover, having the results about the fault detection power of high
level tests allows for research to be done on the cost, time, return of investment
of high level testing and the disadvantages of high level testing, in order to have a
well-rounded empirical data to help with the testing decisions. Additionally, this
paper started an inquiry on mock usage in Java open source projects and what mock
libraries are the most used. The data was not enough to gather a conclusion, but it
can be used as initial data in a more elaborate research.
Another topic of research can be in the line of the characterization framework de-
veloped in the paper. Researcher can use the framework to determine the level of
tests in their research, or build over the framework to perfect it. Our framework
caters to only two out of three levels: unit and integration. Further studies can be
done to determine where would the integration level be situated in the framework

61

6. Discussion

and the threshold between the integration level and the other two would reside.
Moreover, a more comprehensive analysis can be made of the framework, making a
linear model with the metrics as predictors and determining which metric has the
more significance in determining the level of tests.

6.3 Validity Consideration
Threats to internal validity
The study was done on mature projects to counteract the effects of different stages
of development on testing efforts. The process of selecting the open source projects
to be part of the study can introduce selection bias. To counteract this, the projects
chosen would be from different domains. For the data collection we rely on the
Defects4J tool. If the tool is defective it can introduce bias. Another element that
can introduce bias is the framework created for classification of the levels of testing.
It should be noted that the way the development process is dealing with bug reports
and replication can skew the results towards a level or another. This process follows
the following steps: a bug is reported, tests are designed to reproduce the respec-
tive bug, fixes are made for the issue and the test check the fixed issue. Another
possibility would be that the code associated with a bug did not have tests, and the
tests had been added later then running the tests the bug is discovered.

Threats to external validity
External validity is concerned with how the findings of a study can be generalized
in a broader context. For the study, 16 Java open source projects were selected.
It should be possible to generalize the findings based on the number of projects
selected. The results can vary if other projects are chosen, thus replication with
other projects is needed for the conclusion to be generalized.
In the study, only open source Java projects were selected. We acknowledge that
the results cannot be generalized for other programming languages. Although the
framework for categorizing tests is targeted at the Java language, it can be adapted
to fit different programming languages that contain OOP principles. As a result
of using a definition for "unit" that is targeted to OOP paradigms, the framework
cannot be applied on different paradigms while expecting accurate results.
Due to the fact that the study analysed open source projects, the results cannot be
generalized to traditional closed source projects. There are multiple differences be-
tween the development activities of the open-source software and closed-source soft-
ware, such as requirements elicitation, documentation, release strategy, as depicted
by Llanos et. al. [37]. Another major difference is in the testing approach, where
in open-source software development users take the role of bug reporters, bringing
notice of the bug to the community or try to solve it as anyone can contribute to the
OS code, while traditional closed-source software development uses service packs to
repair bugs [38]. The vast community of users of an open-source software acts as
testers, where closed-source software have dedicated teams for testing. There are
as well differences in the testing approach between them. Considering the fact that
either one of the differences between the two approaches can influence the level of
testing used, we cannot generalize the findings to traditional closed-source software.

62

6. Discussion

The target population was defined as Java open source projects containing test suits.
One problem with the selection of the sample could be that the selected projects do
not have both levels of testing that are important for the study. This would still help
the study respond to the RQ2, but would not be as helpful for RQ3. By selecting
only projects that contain both levels of testing, selection bias can be introduced,
as there could be a preference of using one level of testing over another in the open
source development. Another problem with this approach would be the fact that the
selection would be based on a specific definition of unit and system testing, which
would be later in the study challenged, as one of the research question of the study
is finding metrics to act as a proxy for testing levels.
Due to the nature of the study there should be no experiment or testing effects to
threaten the external validity of the study.

Reliability
Reliability is concerned with the degree to which the findings can be reproduced
when the research is repeated under the same conditions. The study can be repli-
cated, as the investigated projects are available on online open code hosting plat-
forms, with public issue trackers and Defects4J is available on GitHub. The Se-
quenceDiagram plugin is also available in the Intellij Plugin Marketplace. For re-
liability we included information about the selection of projects, the method of
collecting data and data exclusion constraints. The data collection process is thor-
oughly described and the developed framework for characterization of tests presents
clear metrics to measure.

63

7
Conclusion

7.1 Conclusion
In this paper we analysed Java open source projects to investigate the state of testing
in real world projects. In particular, we examine the projects to determine which
level of testing is more prevalent and how the fault detection power of the respective
levels compares to each other. Only unit tests and system tests were considered.
Next, we proposed a framework to categorize tests that is based on concrete and
measurable metrics. The data was collected from the projects’ repositories and
aided by the Defects4J tool. The framework was applied to the testing suites of the
selected projects, followed with an analysis on the fault detection behavior of the
test suites. A further analysis was conducted in respect to the research questions of
the study.
The categorization framework proposed is based on a score system applied to the
size and isolation characteristics. Mock usage was considered for the isolation char-
acteristic. For the size characteristic, the number of methods, classes and packages
were the chosen metrics and they were applied for the size of test, the size of code
tested and the size of the setup. Based on the values of the metrics, a score was
assigned for each metric, and the sum of all the score metrics become the total test
score which would be compared to a threshold value to determine the level for the
respective test.
The most prevalent level of testing was found to be low level testing, with a pro-
portion of 78.4% of the total tests. Considering the detection power of the levels of
testing, 65.63% of the tests that uncovered bugs were low level tests. If we consider
the tests that uncovered bugs from the total of tests on the same level, the low level
achieved a rate of discovery of 3.28% while the high level achieved a rate of 6.23%.
We can conclude that high level tests have a greater fault detection power than low
level tests.

7.2 Future work
For future work, the study should be replicated using different projects. More-
over, the study can be replicated using a different bug database, such as Bugs.jar,
BugSwarm and Bears, which are bugs data-sets for Java. Another interesting di-
rection for future work would be investigating all the revisions of the projects that
relate to bug fixes (so the revision with the bug and the revision that fixed the
bug), as this could provide an insight into the evolution of testing. Another step

64

7. Conclusion

would be to adapt the categorization framework to be fully language independent for
programming languages with object-oriented principles. Moreover, the framework
should be extended for other programming paradigms. Additionally, we should in-
vestigate the level of integration testing in open source Java projects, how the usage
of integration tests compares with the usage of unit and system tests in open source
projects and how the fault detection power of integration tests compares to the fault
finding behaviour of unit and system tests. Furthermore, a study on the fault detec-
tion power of different levels of testing should be done in a traditional closed-source
context. This would provide information on the current state of testing practices in
the industry.

65

Bibliography

[1] 14th Annual State of Agile Survey Report VersionOne, 2020, [online] Available:
http://stateofagile.versionone.com.

[2] Madeyski, L. and Szała, Ł., 2007, September. The impact of test-driven devel-
opment on software development productivity—an empirical study. In European
Conference on Software Process Improvement (pp. 200-211). Springer, Berlin,
Heidelberg.

[3] Hellmann, T.D., Chokshi, A., Abad, Z.S.H., Pratte, S. and Maurer, F., 2013,
August. Agile testing: a systematic mapping across three conferences: under-
standing agile testing in the xp/agile universe, agile, and xp conferences. In
2013 Agile Conference (pp. 32-41). IEEE.

[4] Jones, C., 1998. Applied software measurement assuring productivity and qual-
ity.

[5] Ali, I., 2009. A comparison between Black Box and White Box Testing. Inter-
esting Results in Computer Science and Engineering.

[6] Offutt, J., Pan, J. and Voas, J.M., 1995, June. Procedures for reducing the size
of coverage-based test sets. In Proceedings of the 12th International Conference
on Testing Computer Software (pp. 111-123). New York: ACM Press.

[7] Vocke, Ham. The Practical Test Pyramid (2018),
https://martinfowler.com/articles/practical-test-pyramid.html

[8] ISO/IEC/IEEE 24765, 2010. 3.2758: Systems and Software Engineer-
ing–Vocabulary.

[9] https://glossary.istqb.org/en/search/
[10] Trautsch, F., Herbold, S. and Grabowski, J., 2020. Are unit and integration

test definitions still valid for modern Java projects? An empirical study on
open-source projects. Journal of Systems and Software, 159, p.110421.

[11] Xie, T., Taneja, K., Kale, S. and Marinov, D., 2007, May. Towards a framework
for differential unit testing of object-oriented programs. In Second International
Workshop on Automation of Software Test (AST’07) (pp. 5-5). IEEE.

[12] Trautsch, F. and Grabowski, J., 2017, March. Are there any unit tests? an
empirical study on unit testing in open source python projects. In 2017 IEEE In-
ternational Conference on Software Testing, Verification and Validation (ICST)
(pp. 207-218). IEEE.

[13] Whittaker, J.A., 2000. What is software testing? And why is it so hard?. IEEE
software, 17(1), pp.70-79.

[14] Runeson, P., 2006. A survey of unit testing practices. IEEE software, 23(4),
pp.22-29.

66

Bibliography

[15] Kochhar, P.S., Bissyandé, T.F., Lo, D. and Jiang, L., 2013, July. An empiri-
cal study of adoption of software testing in open source projects. In 2013 13th
International Conference on Quality Software (pp. 103-112). IEEE.

[16] Kochhar, P.S., Thung, F., Lo, D. and Lawall, J., 2014, December. An empirical
study on the adequacy of testing in open source projects. In 2014 21st Asia-
Pacific Software Engineering Conference (Vol. 1, pp. 215-222). IEEE.

[17] Farooq, S.U. and Quadri, S.M.K., 2012. Quality practices in open source soft-
ware development affecting quality dimensions. Trends in Information Manage-
ment (TRIM), 7(2).

[18] Aberdour, M., 2007. Achieving quality in open-source software. IEEE software,
24(1), pp.58-64.

[19] Basili, V.R. and Selby, R.W., 1987. Comparing the effectiveness of software
testing strategies. IEEE transactions on software engineering, (12), pp.1278-
1296.

[20] Frankl, P.G. and Iakounenko, O., 1998, November. Further empirical studies
of test effectiveness. In Proceedings of the 6th ACM SIGSOFT international
symposium on Foundations of software engineering (pp. 153-162).

[21] Frankl, P.G. and Weiss, S.N., 1993. An experimental comparison of the effec-
tiveness of branch testing and data flow testing. IEEE Transactions on Software
Engineering, 19(8), pp.774-787.

[22] Briand, L. and Labiche, Y., 2004. Empirical studies of software testing tech-
niques: Challenges, practical strategies, and future research. ACM SIGSOFT
Software Engineering Notes, 29(5), pp.1-3.

[23] Elbaum, S., Chin, H.N., Dwyer, M.B. and Jorde, M., 2008. Carving and re-
playing differential unit test cases from system test cases. IEEE Transactions
on Software Engineering, 35(1), pp.29-45.

[24] Runeson, P., Andersson, C., Thelin, T., Andrews, A. and Berling, T., 2006.
What do we know about defect detection methods?[software testing]. IEEE soft-
ware, 23(3), pp.82-90.

[25] Berling, T. and Thelin, T., 2004, September. An industrial case study of the
verification and validation activities. In Proceedings. 5th International Work-
shop on Enterprise Networking and Computing in Healthcare Industry (IEEE
Cat. No. 03EX717) (pp. 226-238). IEEE.

[26] Just, R., Jalali, D. and Ernst, M.D., 2014, July. Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis (pp.
437-440).

[27] DeMillo, R.A., Lipton, R.J. and Sayward, F.G., 1978. Hints on test data selec-
tion: Help for the practicing programmer. Computer, 11(4), pp.34-41.

[28] https://pitest.org/
[29] Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E., Malevris, N. and Le

Traon, Y., 2018. How effective are mutation testing tools? An empirical analysis
of Java mutation testing tools with manual analysis and real faults. Empirical
Software Engineering, 23(4), pp.2426-2463.

[30] Rani, S., Suri, B. and Khatri, S.K., 2015, September. Experimental comparison
of automated mutation testing tools for java. In 2015 4th International Confer-

67

Bibliography

ence on Reliability, Infocom Technologies and Optimization (ICRITO)(Trends
and Future Directions) (pp. 1-6). IEEE.

[31] Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E. and Malevris, N., 2016,
October. Analysing and comparing the effectiveness of mutation testing tools: A
manual study. In 2016 IEEE 16th International Working Conference on Source
Code Analysis and Manipulation (SCAM) (pp. 147-156). IEEE.

[32] https://code.google.com/
[33] https://www.atlassian.com/software/jira
[34] https://github.com/
[35] https://sourceforge.net/
[36] http://vanco.github.io/SequencePlugin/
[37] Llanos, J.W.C. and Castillo, S.T.A., 2012, June. Differences between traditional

and open source development activities. In International Conference on Product
Focused Software Process Improvement (pp. 131-144). Springer, Berlin, Heidel-
berg.

[38] Potdar, V. and Chang, E., 2004, May. Open source and closed source software
development methodologies. In 26th International Conference on Software En-
gineering (pp. 105-109).

[39] Kanstrén, T., 2008. Towards a deeper understanding of test coverage. Journal of
Software Maintenance and Evolution: Research and Practice, 20(1), pp.59-76.

[40] Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, P. and Qiu, X., 2004.
On test suite composition and cost-effective regression testing. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 13(3), pp.277-331.

[41] Orellana, G., Laghari, G., Murgia, A. and Demeyer, S., 2017, May. On the
differences between unit and integration testing in the travistorrent dataset. In
2017 IEEE/ACM 14th International Conference on Mining Software Reposito-
ries (MSR) (pp. 451-454). IEEE.

[42] Meszaros, G., 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[43] https://maven.apache.org/
[44] https://www.apache.org/
[45] http://fasterxml.com/
[46] https://easymock.org/
[47] https://site.mockito.org/
[48] https://powermock.github.io/
[49] https://mockrunner.github.io/
[50] https://github.com/rjust/defects4j
[51] https://bazel.build/

68

A
Appendix 1

The raw data was published on Zendo, with the DOI 10.5281/zenodo.4959837 and
can be found at this link: https://doi.org/10.5281/zenodo.4959837 .

Table A.1: Projects version

Project Commit number Commit date
Chart ae40fd74fc4e24ca26fa337089500dd9b7be6879 21 Jan. 2021
Cli e093df2c10db91ab24694596b95dcc05d379ba08 17 Jan. 2021
Codec 8bfca5c4228bb05e94d8027aadefaba92ff124c7 17 Jan. 2021
Collections dc01c2583a6d77242862f92b38908d1fc28e90de 17 Jan. 2021
Compress 6fed9fb4745bd6b4506d8ddc7db23884e8bf0bdb 17 Jan. 2021
Csv bf2f8093a49a3432be62e9fdae073e82ac78bd04 17 Feb. 2021
Gson ada6985285ee2d1d864c77d17d9b162d78371a26 12 Oct. 2020
JacksonCore 205255fc820e45fbf2bd80cf8182707935964e04 28. Jan 2021
JacksonDatabind 5d946f2788d2be81ea9a3ec69c12db1cb9ce1dcc 28 Jan. 2021
JacksonXml c873c76ac7ef43965ce2c284c9a95c675587ee87 27 Jan. 2021
Jsoup 73e23c1aafe283c227b22993a9c9510d1113ac86 27 Jan. 2021
JxPath 192f4c92727cf5387a8043525a1e1e1533c9ac69 26 May 2020
Lang 3e27e51770124866c530ed321f21368ea07e7740 27 Jan. 2021
Math d71b8c93d20187da61113990f44cb16345cf72cb 17 Jan. 2021
Mockito fbe50583ad5e66087be58d0a8ad28a079ffc72d6 27 Jan. 2021
Time 890fb7b8801f7a8132464a8d558f410373918f96 25 Jan. 2021

A.1 RQ tables

I

A. Appendix 1

Table A.2: Framework verification

Project Test & Class FW Dev Researcher
Collections testOnePredicateEx2 8 - low

PredicateUtilsTest
Cli testPrintOptionWithEmptyArgNameUsage 11 - low

HelpFormatterTest
Jsoup nonnullAssertions 6 - low

HtmlTreeBuilderTest
Time testPlusMonthsint 8 low low

TestDateTime_Basics
Chart testPublicCloneable 6 - low

DefaultWindDatasetTest
Chart testPreviousStandardDateDayA 36 - high

DateAxisTest
Codec testBase64OutputStreamByteByByte 20 - high

Base64OutputStreamTest
Mockito should_allow_possible_argument_types 18 - low

ReturnsArgumentAtTest
Jsoup handlesLargerContentLengthParseRead 19 - high

ConnectTest
Math testStepSize 19 - high

ThreeEighthesIntegratorTest

II

A. Appendix 1

Table A.3: Second framework verification

Project Test & Class FW Dev Res.
Chart testHashcode 12 - low

YIntervalRendererTest
Chart testGeneral 7 - low

HMSNumberFormatTest
Chart testCloning 15 - low

DefaultTableXYDatasetTest
Chart testDrawWithNullInfo 23 - high

BoxAndWhiskerRendererTest
Chart testEquals 28 - low

MultiplePiePlotTest
Chart testAdd 17 - low

TimePeriodValuesTest
Cli testMissingRequiredGroup 14 - low

ParserTestCase
Cli testToString 19 high high

OptionGroupTest
Codec testUnixCryptWithHalfSalt 6 - low

UnixCryptTest
Codec testToAsciiChars 24 - low

BinaryCodecTest
Collections testMultiplePeek 11 - low

PeekingIteratorTest
Collections predicatedCollection 10 - low

CollectionUtilsTest
Collections testSwitchClosure 32 - low

ClosureUtilsTest
Collections testPopulateMultiMap 22 - low

MapUtilsTest
Compress multiByteReadFromMemoryConsistentlyReturns- 8 - low

-MinusOneAtEof Pack200TestCase
Compress testDefaultExtractionViaFactory 10 - low

FramedSnappyTestCase
Compress checkUserInformationInTarEntry 16 - high

TarMemoryFileSystemTest
Compress testDeleteFromAndAddToZip 17 - high

ChangeSetTestCase
Csv testProvidedHeader 14 - low

CSVParserTest
Csv testToStringAndWithCommentMarkerTakingCharacter 26 - low

CSVFormatTest

III

A. Appendix 1

Table A.4: Second framework verification

Project Test & Class FW Dev Res.
Gson testGsonInstanceReusableForSerializationAnd- 10 high low

-Deserialization UncategorizedTest
Gson testEscapedCtrlRInStringSerialization 6 high low

StringTest
Gson testCustomNestedDeserializers 21 high high

CustomTypeAdaptersTest
Gson testStreamingHierarchicalFollowedByNonstreaming- 21 - high

-Hierarchical TypeAdapterPrecedenceTest
JacksonCore testSimplestWithPath 13 - low

JsonPointerParserFilteringTest
JacksonCore testNoAutoCloseReader 23 low low

ParserClosingTest
JacksonDatabind testSuperClass 14 low low

TestRootType
JacksonDatabind testPathRoundTrip 14 - low

TestJava7Types
JacksonDatabind testRequiredNonNullParam 12 - low

FailOnNullCreatorTest
JacksonDatabind testXMLGregorianCalendarSerAndDeser 17 - high

MiscJavaXMLTypesReadWriteTest
JacksonDatabind testKeyDeserializers 18 low low

TestKeyDeserializers
JacksonDatabind testReaderFailOnTrailing 24 - high

FullStreamReadTest
JacksonXml testSimpleKeyMapSimpleAnnotation 7 low low

Issue37AdapterTest
JacksonXml testPolyIdList178 16 low low

JAXBObjectId170Test
Jsoup handlesUnknownInlineTags 15 - low

HtmlParserTest
Jsoup descendant 24 - high

SelectorTest
JxPath testCreatePathAndSetValueDeclVar- 8 - low

-SetCollectionElementProperty VariableTest
JxPath testDoStepNoPredicatesPropertyOwner 24 - low

SimplePathInterpreterTest

IV

A. Appendix 1

Table A.5: Second framework verification

Project Test & Class FW Dev Res.
Lang testNullToEmptyIntObjectEmptyArray 6 low low

ArrayUtilsTest
Lang testNonEquivalentAnnotationsOfSameType 8 - low

AnnotationUtilsTest
Lang testCompare 8 low low

ObjectUtilsTest
Lang betweenExclusive_returnsfalse 8 - low

A_is_1.B_is_1.C_is_0
Lang testOrdinalIndexOf 24 - low

StringUtilsEqualsIndexOfTest
Lang testGeneratedAnnotationEquivalentToRealAnnotation 16 - high

AnnotationUtilsTest
Lang testLocaleLookupList_LocaleLocale 25 - low

LocaleUtilsTest
Lang testWriteNamedFieldForceAccess 19 - low

FieldUtilsTest
Math testGetLInfDistanceSameType 7 - low

RealVectorAbstractTest
Math dimensionCheck 13 - low

AdamsMoultonIntegratorTest
Math testAdd1 9 - low

WeightedObservedPointsTest
Math testIsNaN 8 - low

Decimal64Test
Math testGLSEfficiency 37 - high

GLSMultipleLinearRegressionTest
Math testStandardTransformFunction 21 - high

FastFourierTransformerTest
Math testStartSimplexInsideRange 23 - high

MultivariateFunctionMappingAdapterTest
Math testThreeRedundantColumn 32 - high

MillerUpdatingRegressionTest
Mockito no_op_when_no_mismatches 11 - low

StubbingArgMismatchesTest
Mockito shouldArraysBeEqual 6 - low

EqualsTest
Mockito testinvoke 8 - low

MemberAccessorTest
Mockito testReflectionHierarchyEquals 31 - low

EqualsBuilderTest
Mockito should_delete_listener 30 - low

StubbingLookupListenerCallbackTest
Mockito shouldAllowToExcludeStubsForVerification 18 - high

VerificationExcludingStubsTest

V

A. Appendix 1

Table A.6: Second framework verification

Project Test & Class FW Dev Res.
Time testMergePeriod_RP2 13 low low

TestMutablePeriod_Updates
Time test_getValue_long 6 low low

TestMillisDurationField
Time test_wordBased_de_parseTwoFields 12 low low

TestPeriodFormat
Time testAddYears 10 low low

TestMutablePeriod_Updates
Time testPlus_RP 10 low low

TestLocalDate_Basics
Time testForFields_weekBasedD 23 low low

TestISODateTimeFormat_Fields
Time test_set_RP_int_intarray_int 20 low low

TestPreciseDateTimeField
Time testGetDurationMillis_Object1 17 low low

TestStringConverter
Time test16BasedLeapYear 19 low low

TestIslamicChronology
Time testFactory_standardMinutesIn_RPeriod 16 low low

TestMinutes

Table A.7: Test categorization per project

Project Tests Low level % low level High level % high level
Chart 2244 1708 76.11% 536 23.89%
Cli 235 221 94.04% 14 5.96%
Codec 842 800 95% 42 5%
Collections 1680 1463 87.08% 217 12.92%
Compress 1250 1085 86.8% 165 13.2%
Csv 343 319 93% 24 7%
Gson 1053 974 92.5% 79 7.5%
JacksonCore 729 464 63.65% 265 36.35%
JacksonDatabind 2652 1933 72.89% 719 27.11%
JacksonXml 305 292 95.74% 13 4.26%
Jsoup 862 442 51.28% 420 48.72%
JxPath 331 316 95.47% 15 4.53%
Lang 3320 3072 92.53% 248 7.47%
Math 3168 2451 77.37% 717 22.63%
Mockito 2215 1365 61.63% 850 38.37%
Time 4248 3079 72.48% 1169 27.52%

VI

A. Appendix 1

Table A.8: Triggered tests categorization per project

Project Tests Low level % low level High level % high level
Chart 85 42 49.41% 43 50.59%
Cli 37 33 89.19% 4 10.81%
Codec 37 37 100% 0 0%
Collections 3 3 100% 0 0%
Compress 69 56 81.16% 13 18.84%
Csv 22 22 95.65% 1 4.35%
Gson 33 32 96.97% 1 3.03%
JacksonCore 48 19 39.58% 29 60.41%
JacksonDatabind 116 76 65.52% 40 34.48%
JacksonXml 12 12 100% 0 0%
Jsoup 131 71 54.2% 60 45.8%
JxPath 29 27 93.1% 2 6.9%
Lang 92 72 78.26% 20 21.74%
Math 101 47 46.53% 54 53.47%
Mockito 109 56 51.38% 53 48.62%
Time 73 51 69.9% 22 30.1%

Table A.9: Setup usage per project

Project Total test classes Classes with setup % of classes with setup
Chart 341 24 7%
Cli 25 10 40%
Codec 66 5 7.57%
Collections 204 32 15.7%
Compress 147 14 9.52%
Csv 20 4 20%
Gson 95 41 43.15%
JacksonCore 141 0 0%
JacksonDatabind 557 2 0.36%
JacksonXml 113 6 5.31%
Jsoup 43 5 11.628%
JxPath 41 16 39.02%
Lang 198 30 15.15%
Math 358 27 7.54%
Mockito 464 73 15.73%
Time 127 95 74.8%

VII

A. Appendix 1

Table A.10: Big setup usage per project

Project Classes with setup Big setup % of classes with big setup
Chart 24 4 16.66%
Cli 10 7 70%
Codec 5 2 40%
Collections 32 17 53.12%
Compress 14 9 64.28%
Csv 4 2 50%
Gson 41 1 2.43%
JacksonCore 0 0 0%
JacksonDatabind 2 1 50%
JacksonXml 6 2 33.33%
Jsoup 5 1 20%
JxPath 16 12 75%
Lang 30 8 26.66%
Math 27 10 37.03%
Mockito 73 20 27.4%
Time 95 50 52.63%

VIII

	List of Figures
	List of Tables
	Introduction
	Introduction
	Statement of the problem
	Statement of the purpose
	Research questions

	Background and Related Work
	Definitions for testing levels
	Test type classification
	Testing in open source projects
	Comparison between levels of testing

	Study Design
	Data collection
	Defects4J data collection
	Test data collection
	Data exclusion constraints
	Sample

	Analysis Process

	Framework
	Definitions and Characteristics
	Metrics
	Approach for size
	Approach for isolation

	Test score and Scale

	Results
	RQ1
	RQ2
	RQ3
	Projects Information

	Discussion
	Limitations
	Implications
	Validity Consideration

	Conclusion
	Conclusion
	Future work

	Bibliography
	Appendix 1
	RQ tables

