
Ocean Exploration
with Artificial Intelligence

A Detection System for Deepwater Corals Using Generative
Adversarial Networks

Master’s thesis in Computer science and engineering

Sarah Al-Khateeb, Lisa Bodlak

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Ocean Exploration
with Artificial Intelligence

A Detection System for Deepwater Corals Using Generative
Adversarial Networks

Sarah Al-Khateeb
Lisa Bodlak

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Ocean Exploration with Artificial Intelligence
A Detection System for Deepwater Corals Using Generative Adversarial Networks
Sarah Al-Khateeb, Lisa Bodlak

© Sarah Al-Khateeb, Lisa Bodlak, 2021.

Supervisor: Matthias Obst, Marine Sciences
Examiner: Peter Damaschke, Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A Deepwater Coral detected by our proposed system.

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Ocean Exploration with Artificial Intelligence
A Detection System for Deepwater Corals Using Generative Adversarial Networks
Sarah Al-Khateeb, Lisa Bodlak
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Large and diverse data is crucial to train object detection systems properly and
achieve satisfactory prediction performance. However, in some areas, such as ma-
rine science, gathering sufficient data is challenging and sometimes even infeasible.
Working with limited data can result in overfitting and poor performance. Further-
more, underwater images suffer from various problems, like varying quality, which
have to be considered. Therefore, alternative means need to be used to increase and
enhance the data to facilitate marine scientists’ work.
In this thesis, we explore building a more robust system to improve the detec-
tion accuracy for deepwater corals and analyze underwater movies under different
conditions. We experiment with several Generative Adversarial Networks (GANs)
to enhance and increase the training data. Our final system comprises two steps:
Image Augmentation using StyleGAN2 combined with the augmentation strategy
DiffAugment, and Object Detection using YOLOv4.
The results indicate that generating realistic synthetic data combined with an ad-
vanced detector could provide marine scientists with the tool they need to extract
species occurrence information from underwater movies. Our proposed system shows
increased performance in different domains compared to prior work and the potential
to overcome the limited data issue.

Keywords: computer science, deep learning, generative adversarial networks, data
augmentation, object detection, underwater image, computer vision.

v

Acknowledgements
We want to express our gratitude to our Supervisor Matthias Obst and the whole
KSO team, especially Victor Anton and Jannes Germishuys, for their guidance and
helpful feedback throughout this thesis. We also want to thank our examiner Peter
Damaschke for the valuable feedback for the midterm report. Last but not least, we
would like to acknowledge MMT Sweden AB for sharing data with us to use in this
research.

Sarah Al-Khateeb, Lisa Bodlak, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem . 1
1.2 Goals . 2
1.3 Related Work . 3
1.4 Ethical Considerations . 4

1.4.1 Ethical aspects of the development phase 4
1.4.2 Ethical aspects of the research outcome 4

1.5 Roadmap . 5

2 Theory 7
2.1 Generative Adversarial Networks . 7

2.1.1 Deep Convolutional GAN . 9
2.1.2 Wasserstein GAN . 10
2.1.3 StyleGAN . 12
2.1.4 CycleGAN . 14
2.1.5 Differentiable Augmentation (DiffAugment) 15

2.2 Object Detection . 16
2.2.1 YOLO . 16
2.2.2 YOLOv2 . 19
2.2.3 YOLOv3 . 21
2.2.4 YOLOv4 . 21

2.2.4.1 Bag of freebies and Bag of specials 22
2.3 Evaluation Metrics . 24

2.3.1 Mean Average Precision (mAP) 24
2.3.2 Loss Function . 24
2.3.3 Confidence Score . 24
2.3.4 Precision and Recall . 25

3 Methods 27
3.1 Data . 27
3.2 Image Enhancement . 27

3.2.1 Training . 28
3.2.2 Evaluation . 29

ix

Contents

3.3 Image Augmentation . 29
3.3.1 Training . 29

3.3.1.1 DCGAN and WGAN-GP 29
3.3.1.2 StyleGAN2 . 30
3.3.1.3 DiffAugment . 31

3.3.2 Evaluation . 31
3.4 Object Detection . 31

3.4.1 Data Preparation . 31
3.4.2 Training . 32
3.4.3 Evaluation . 33
3.4.4 Testing . 33

4 Results and Discussion 35
4.1 Image Enhancement . 35

4.1.1 Training . 35
4.1.2 Evaluation . 36

4.2 Image Augmentation . 38
4.2.1 Training . 38

4.2.1.1 DCGAN and WGAN-GP 38
4.2.1.2 StyleGAN2 . 39

4.2.2 Evaluation . 40
4.3 Object Detection . 42

4.3.1 Training . 42
4.3.2 Evaluation . 43
4.3.3 Testing . 44

5 Conclusion 51

6 Future Work 53

Bibliography 55

A Appendix 1 I
A.1 Data . I

x

List of Figures

2.1 Architecture of GANs. 8
2.2 Architecture of the DCGAN Generator. 10
2.3 Comparison of the generator used in (a) Progressive GAN and (b)

StyleGAN. 13
2.4 (a) Architecture of CycleGAN. (b) Cycle consistency loss controlling

F (G(X)) ≈ X. (c) Cycle consistency loss controlling G(F (Y)) ≈ Y . . 15
2.5 DiffAugment strategy applies Augmentation T to fake images G(z)

and real images x. To the left, the weights of the discriminator D are
updated. To the right, the weights of the generator G are updated. . 15

2.6 A One-Stage Object Detector usually consists of: Backbone: A
pre-trained neural network that implements the feature extraction
task. Neck: Included in more recent object detectors; responsible
for aggregating features extracted by the backbone. Head: The final
part of a detector responsible for predicting classes and bounding boxes. 16

2.7 The workflow of YOLO illustrated on an example image. 17
2.8 Bounding boxes location prediction (green box) with anchor box’s

dimension (dashed box). cx, cy is the distance from the top left corner
to the cell, pw, ph are the height and width of the anchor box, σ is a
sigmoid activation function used for normalization. 20

3.1 Deepwater coral examples from our training data. Good quality to
the left, bad quality to the right. 27

3.2 Domain X images (first row). Domain Y images (second row), Source:
[1]. 28

4.1 Example 1: Real image and corresponding results for epoch 100, 200,
250, 280 and 300. 35

4.2 Example 2: Real image and corresponding results for epoch 100, 200,
250, 280 and 300. 36

4.3 Examples where the enhancement succeeded. 37
4.4 Examples where the enhancement failed. 37
4.5 Example output for different epochs: WGAN-GP + DiffAugment

(first row), DCGAN + DiffAugment (second row). Both models were
trained on unprocessed data. 38

4.6 Examples of generated images of DCGAN (left) and WGAN-GP
(right) both without DiffAugment. Different noise gets mapped to
the same image (mode collapse). 38

xi

List of Figures

4.7 Examples of generated images of StyleGAN2 + DiffAugment after
80k, 160k, 240k, 280k, 320k and 500k image iterations. 39

4.8 Example image with artifacts for StyleGAN2 + DiffAugment after
400k (left) and 500k (right) image iterations. 40

4.9 Samples of training images (left) and generated images (right) for
DCGAN (first row), WGAN-GP (second row) and StyleGAN2 (last
row). 41

4.10 Average loss (blue) and mAP (red) curve for YOLOv4-baseline. . . . 42
4.11 Average loss (blue) and mAP (red) curve for YOLOv4-SAM-Mish. . . 43
4.12 Example images with predicted boxes. The KSO model predictions

to the left. Our model predictions to the right. 45
4.13 Example images with predicted boxes for the data with different en-

vironmental settings. 47
4.14 Example images with predicted boxes for the MMT data with differ-

ent environmental settings outside the Kosterhavet National Park. . . 48

xii

List of Tables

2.1 List of symbols with corresponding description in the GAN setting. . 7
2.2 List of symbols with corresponding description in the YOLO loss

function. 19

4.1 mAP@0.5 for YOLOv4-baseline and YOLOv4-SAM-Mish. 43
4.2 True Positives (TP), False Positives (FP) and False Negatives (FN)

at different confidence thresholds for both models. 44
4.3 mAP@0.5 for the KSO model and YOLOv4-baseline (ours) on the

data from the Kosterhavet National Park with the same environmen-
tal settings. 45

4.4 TP, FP, FN, Precision and Recall at different confidence thresholds
for the KSO model and YOLOv4-baseline (ours) on data from the
Kosterhavet National Park with the same environmental settings. . . 45

4.5 TP, FP, FN, Precision, and Recall at different confidence thresholds
for the KSO model and YOLOv4-baseline (ours) on the data from
the Kosterhavet National Park with different environmental settings. 46

4.6 mAP@0.5 for the KSO model and YOLOv4-baseline (ours) on the
data from the Kosterhavet National Park with different environmental
settings. 46

4.7 mAP@0.5 for the KSO model and YOLOv4-baseline (ours) on the
MMT-test data. 47

4.8 TP, FP, FN, Precision, and Recall at different confidence thresholds
for the KSO model and YOLOv4-baseline (ours) on the MMT-test
data. 48

A.1 Information about the used data in this study. I

xiii

List of Tables

xiv

1
Introduction

The distribution of species in the ocean is to a large extent unknown [2]. The Ocean
Biodiversity Information System (OBIS) has only collected data about 5% of all
species in the ocean. In order to explore the ocean, automated systems for research
are needed. Remotely Operated Vehicles (ROVs) made it possible to collect a large
amount of marine footage, but the current manual analysis methods are too time-
consuming to exploit the full potential of the available data [3]. Therefore, ideas
have been generated towards finding a fast and efficient solution by using machine
learning algorithms.

Humans are able to easily recognize and locate objects of interest in an image at once.
However, performing and passing this intelligence to computers is more complicated.
A field that deals with this matter is called computer vision, which teaches computers
how to process images. Several machine learning techniques are available to be used
on images in the computer vision field. One of these techniques is image classification
[4], which is used to classify a whole image into one category. Object detection [5]
is another technique that deals with locating and classifying multiple objects in a
single image.

When analyzing marine footage, there is often more than one object of interest in
a frame; this is where object detection comes into hand. However, the challenge
with subsea data is the unexpected environment under the sea and the quality of
the captured images at a given moment. Some other challenges include noise due
to small sea particles and color distortion. Moreover, variations in the undersea
environment, limited light conditions, and different locations can affect the data
analysis [6].

1.1 Problem

Koster Seafloor Observatory (KSO) [7] is a system that combines citizen science1

and machine learning for automated analysis of subsea movies. The system uses
citizen science to annotate samples from target data that needs to be analyzed.
The annotations with the highest agreement are then used to train an object detec-
tion system, which can be used to recognize objects in the target data and extract
abundance information.

The study area of KSO is the Kosterhavet National Park, which is under active
1Citizen Science describes the contribution of the public to a research project.

1

1. Introduction

protection since 2009. ROVs have been used in the last 30 years to monitor this
area. The collected movies can be used to study how various pressures (e.g. trawl-
ing, eutrophication) influence the species in this area and which positive effects the
establishment of the national park had.

Up to now, the system has been tested on detecting one category, namely the deep-
water coral species Desmophyllum pertusum (Linnaeus, 1758). To do so, a sample of
60 one-hour movies has been selected from the collected movies of the Kosterhavet
National Park and annotated with the help of the citizen science module.

In the citizen science module, the one-hour movies were first split into 10-second
clips, of which 5702 clips were randomly selected. Then citizen scientists were pre-
sented with a clip where they identified the species and recorded the time the species
first fully appeared. Each clip got annotated by eight different persons, and only
clips with an agreement of more than 80% were retained. The frames where the
species first fully appeared got extracted and presented to another five citizen sci-
entists, who had the task to locate the species by drawing a rectangle around them.
After filtering the frames for matching criteria, the overlap area was used as the
final annotation, which resulted in a labeled dataset of 409 frames.

To increase the labeled data for training, the KSO team used a frame tracker [8]
to fill in the intermediate frames by tracking the identified objects. Tracking the
objects was done for additional ten frames (0.5 seconds of footage). The resulting
dataset included 4499 frames. Furthermore, simple pre-processing was done to re-
move background distortion. Finally, an object detector (YOLOv3 [9]) was trained
and used to compute the spatial distribution of cold water coral in the Kosterhavet
National Park.

The pre-processing pipeline used by the KSO team was a starting point to speed up
the annotation process. However, increasing the data by using a tracker might not
add much diversity to the dataset. This is because, if the camera did not move and
capture the species from another angle, it would result in adding almost the same
image multiple times to the dataset. This brings the risk of introducing bias into
the training dataset, and therefore, the model would not generalize well to unseen
data. Therefore, we will work together with the KSO team to propose a more robust
model that allows the KSO team to analyze movie data in new environments and
conditions.

1.2 Goals
KSO has been tested to extract ecological data with a YOLOv3 model for one
species, the deepwater corals. The results seemed promising but with a limitation
that it could not operate well in unseen data. This research aims to propose a robust
system that overcomes the overfitting problem and can generalize to different subsea
environments.

An essential part of computer vision is to have a large and diverse dataset to train
models properly and achieve desired outcomes [10]. However, obtaining large labeled

2

1. Introduction

data can be a complex and expensive task. Preparing and annotating the data
manually to be used in a specific algorithm is time-consuming. In addition, some
species are rare in the ocean, such as deepwater corals, so sufficient data is hard
to obtain. Therefore, the annotated training data from the citizen science module
in KSO is relatively small; 409 annotated frames were used in the pilot run for the
deepwater corals. To overcome the problem of overfitting, we need to fall back on
other methods to increase the training data. The second challenge is that underwater
images suffer from bad quality due to color distortion, low contrast, and blur, which
results in weak performance [6]. To address this problem, appropriate pre-processing
steps have to be taken.

Different approaches can be used to improve and increase the training data. Gen-
erative Adversarial Networks (GANs) showed an increase in performance compared
to classical augmentation, for example in the field of medical image classification
[11]. Classical Augmentation applies transformations and so adds variety to a cer-
tain extent. However, it can not introduce enough diversity to properly train deep
learning models. Therefore, we decided to work with GANs. Different GANs have
been proposed in the last years, and we aim to test several appropriate versions to
create a suitable pipeline that can enhance and increase the data. After obtaining
a representative dataset, we need to train an algorithm and test it on unseen data
to evaluate this dataset’s reliability and make further improvements. Different ob-
ject detection systems exist; we decided to use YOLOv4. This choice is based on a
compromise between choosing a strong detector with good performance, but which
also requires little computing power, so that marine scientists can easily integrate
this system into their work. Finally, during testing we want to compare our model
to the KSO model (YOLOv3) and answer the following three research questions:

1. Can our proposed system overcome the overfitting issue on data from the
Kosterhavet National Park with the same environmental settings?

2. Can our proposed system generalize to different environments inside the Koster-
havet National Park?

3. Can our proposed system generalize to different environments outside the
Kosterhavet National Park?

1.3 Related Work
KSO combines data management, citizen science, and machine learning in one sys-
tem to make it easy for researchers to store, process, and analyze their data. Al-
though other systems that use machine learning to analyze the ocean have been
presented, KSO is the first one combining these three modules.

One recent work is done by Boulais et al. [12]. They are building FathomNet, an
underwater image training set for the development of machine learning algorithms.
The dataset consists of more than 80, 000 images including 233 different classes.
Even though their experiments have shown promising results, they argue that they
need an even bigger dataset to overcome the data shift problem and successfully
train a global system that can be used for research in the ocean. In contrast to

3

1. Introduction

FathomNet, the idea of KSO is to develop custom training data for a research
problem at hand, and hence the algorithm is more likely to not suffer as much from
out-of-distribution testing data.

Another recently presented system is done by Ditria et al. [13]. They used a
Mask Region-Based Convolutional Neural Network (Mask R-CNN) [14] to analyze
fish abundance. While they concluded that training on data with different envi-
ronmental conditions improves the analysis, our approach uses data denoising and
augmentation techniques to improve the robustness of the model.

Lopez-Vazquez et al. [15] introduced a system for underwater animal detection us-
ing segmentation and classification methods. They applied classical pre-processing,
such as the Contrast Limited Adaptative Histogram Equalization (CLAHE) [16] to
enhance the contrast. To increase their data, they make use of traditional aug-
mentation techniques, such as flipping and rotation. Furthermore, Song et al. [17]
proposed a Mask R-CNN recognition system for underwater species using small
training data. Besides traditional augmentation techniques like flipping and adding
noise, they also used SinGAN [18], a Generative Adversarial Network that can gen-
erate new images from a single image to increase the training data. Furthermore,
they used a Multi-Scale Retinex with Color Restoration (MSRCR) algorithm as a
pre-processing step in their pipeline to enhance the images. However, SinGAN did
not perform well, and most of the generated images were not realistic, which re-
sulted in only adding a few manually picked images to the original ones. In contrast
to the two systems mentioned above, our approach is to build an object detection
pipeline that uses Generative Adversarial Networks (GANs) for image enhancement
and augmentation.

1.4 Ethical Considerations
In this research, we will be working with underwater images that do not contain
any personal data. However, some aspects need to be considered regarding the
development phase and the investigated outcome.

1.4.1 Ethical aspects of the development phase
The underwater images we are using during the development of our model include
geographic information of depth. This information is not allowed to be published
according to the Swedish law [19]. This means that we will check all the time that
we exclude depth information from the data. We will ensure this by cross-reviewing
all data, documentation, and reports at regular intervals.

1.4.2 Ethical aspects of the research outcome
The goal of our research is to integrate a better machine learning module into the
KSO system, which can help in accurately detecting species in different environ-
ments and provide marine scientists with more data for further analysis. This will
allow researchers to extract information for many species and help monitor and take

4

1. Introduction

appropriate actions in the future. However, when such information falls into the
wrong hands, it can be used for evil acts such as poaching. To mitigate this, marine
researchers need to be careful about publishing geographical information on species
abundance.

1.5 Roadmap
The rest of this thesis is organized as follows: Chapter 2 introduces the theoretical
knowledge for the algorithms, techniques, and metrics used in this thesis. Chapter
3 contains information about the data, a detailed description of the methods used,
and an outline of how the training, evaluation, and testing is applied in every step
of our pipeline: image enhancement, image augmentation, and object detection.
Chapter 4 includes the results and discussion for every step and Chapter 5 presents
our conclusion. Finally, Chapter 6 discusses different ideas for future work.

5

1. Introduction

6

2
Theory

2.1 Generative Adversarial Networks
Generative Adversial Networks (GANs) were firstly introduced in 2014 by Goodfel-
low et al. [20]. The idea of GANs is to learn the distribution of some data in a
two-player game without explicitly modeling the density. The network consists of
two fully connected feed-forward networks, the generator G and the discriminator
D. The generator G produces fake data from input noise z and tries to trick the
discriminator D. The discriminator D is a binary classifier with the task to distin-
guish real data x from fake data G(z). The architecture of a GAN is demonstrated
in [21, Figure 2.1]. Table 2.1 gives an overview of the symbols used to introduce the
theory of GANs.

Symbol Description
Pr Distribution of the real data x.
Pθ Distribution of the fake data G(z) generated by the Generator G.
Pz Prior Distribution of the noise z.
x Real data sample from Pr.
z Noise sample from Pz.
D The Discriminator Network: formally defined as the function D(x;w)
G The Generator Network: formally defined as the function G(z; θ).
w The parameters of D(x;w), i.e. the weights of the network that are

adjusted during the training.
θ The parameters of G(z; θ), i.e. the weights of the network that are

adjusted during the training.
D(x) Scalar value between 0 and 1 that represents the probability of the real

data sample x belonging to the real data.
G(z) The Generator’s output: fake data sample.
D(G(z)) Scalar value between 0 and 1 that represents the probability of the fake

data sample G(z) belonging to the real data.

Table 2.1: List of symbols with corresponding description in the GAN setting.

Formally, Goodfellow et al. [20] define the two functions D(x;w) and G(z; θ), rep-
resented by two fully connected feed-forward networks with learnable parameters w
and θ respectively. G(z; θ) maps noise z, sampled from a noise prior Pz, to the data
space and tries to approximate the real data distribution Pr with the generator’s
distribution Pθ. The input space of D(x;w) is the union of real data x ∼ Pr and fake

7

2. Theory

data G(z) ∼ Pθ. D(x;w) outputs for each data point individually the probability of
belonging to the real data, denoted by D(x) and D(G(z)) ∈ [0, 1] respectively.

Figure 2.1: Architecture of GANs.

In order to train a network, or in this case two networks, the problem has to be
translated into a loss function. The loss function summarizes the difference between
predictions and ground truth, which we try to minimize. The discriminator is a
binary classifier, so it’s loss function can be modeled with cross-entropy [22]. Since
the generator’s goal is the opposite of the discriminator, it’s loss function is the neg-
ative of the discriminator’s loss. Consequently the two models formulate a minimax
game with the objective function [20, Equation 2.1]

min
G

max
D

Ex∼Pr [logD(x)] + Ez∼Pz [log(1−D(G(z)))]. (2.1)

The discriminator tries to catch the generator by maximising the probability of
assigning the correct class such that D(x) ≈ 1 and D(G(z)) ≈ 0. However, the
generator wants to minimize the discriminator being correct such that D(G(z)) ≈ 1.
The network is jointly trained until D cannot differentiate anymore between real and
fake data, and hence G has successfully learned the representation of real data. The
training procedure to optimize Equation 2.1 is shown in [20, Algorithm 1]. In each
training iteration, the discriminator’s weights w gets first updated for k steps before
the generator’s weights θ are updated for one step.

Optimizing the generator objective does not work well in practice since the gradient
is likely to vanish in the training procedure’s early stages. A solution to this is to
maximize the likelihood log(D(G(z))) of the discriminator being wrong instead of
minimising the likelihood of the discriminator being right i.e. log(1 − D(G(z))).
This gives a higher gradient in the early learning stages and does not change the
dynamics of G and D.

8

2. Theory

Algorithm 1: Minibatch stochastic gradient descent training of GANs. Source:
[20]
for number of training iterations do

for k steps do
1. Sample minibatch of m noise samples z(1), ..., z(m)

2. Sample minibatch of m examples x(1), ..., x(m)

3. Stochastic Gradient Ascent on discriminator D:
∇w

1
m

∑m
i=1[logD(x(i))] + log(1−D(G(z(i))))]

end
1. Sample minibatch of m noise samples z(1), ..., z(m)

2. Stochastic Gradient Ascent on generator G (improved objective):
∇θ

1
m

∑m
i=1 log(D(G(z(i))))

end

Once the model is trained, the generator G allows the generation of synthetic data
from the data distribution. However, a problem with GANs is that they can get
into mode collapse, meaning that G maps many noise vectors z to the same im-
age x, resulting in a lack of diversity in the generated samples. Different ideas
have been generated to address this problem, including changes in the architecture
and the objective function. Three of the derived GANs, Deep Convolution GANs,
Wasserstein GANs, and StyleGANs, are described in section 2.1.1, section 2.1.2,
and section 2.1.3, respectively. Section 2.1.4 shows an application of GANs besides
generating synthetic data. Finally, section 2.1.5 describes how data augmentation
can be applied to GANs.

2.1.1 Deep Convolutional GAN

In 2016 Radford et al. proposed a new framework called Deep Convolutional Gen-
erative Networks (DCGN) [23]. They changed the generator and discriminator from
fully connected layers to convolutional layers, which resulted in more stable training
and the possibility to train deeper networks at a higher resolution. Furthermore,
they used strided convolutional and strided convolutional transpose layers instead
of deterministic pooling functions in the discriminator and generator to force the
model to learn its own down- and upsampling, respectively. Finally, they used Batch
Normalization to address the problem of mode collapse and unstable training and
changed the activation functions resulting in quicker learning of the model.

The generator network is shown in [23, Figure 2.2]: an upsampling network with
strided convolutional transpose layers and batch norm layers. Rectified Linear Unit
(ReLU) activation is used on each layer except on the output layer, which uses the
Hyperbolic Tangent (Tanh) function. The discriminator network compromises batch
norm layers, strided convolutional layers, LeakyReLU layers, and the output layer
uses a sigmoid activation.

9

2. Theory

Figure 2.2: Architecture of the DCGAN Generator.

2.1.2 Wasserstein GAN
In order to improve the training stability and overcome the mode collapse issue
in GANs, Arjovsky et al. introduced an extension to GANs named Wasserstein
GAN (WGAN) [24]. The main idea in WGAN is to effectively measure the distance
between the predicted distribution Pθ and the real distribution Pr since choosing
how to measure the distance might affect the convergence of the model.

With the Jensen–Shannon divergence used in the original GAN, when the generated
distribution is very different from the real data distribution, the generator will learn
nothing since the discriminator can easily distinguish between real and fake data
and fail to provide useful information to the generator, in other words, the generator
gradient vanishes. Arjovsky et al. introduced a new objective function [24, Equation
2.2] using the Wasserstein distance,

W (Pr,Pθ) = inf
γ∈Π(Pr,Pθ)

E(x,y)∼γ[‖x− y‖], (2.2)

where γ is from the set of all joint distributions Π(Pr,Pθ) with marginals Pr and
Pθ. Intuitively, the distance measures the cost of the optimal transport plan used
to transform the distribution Pθ into Pr.

Computing the infimum in Equation 2.2 is hard, therefore, the authors used the
Kantorovich-Rubinstein duality [25] to write the distance as shown in [24, Equation
2.3].

W (Pr,Pθ) = 1
K

sup
‖F‖L≤K

Ex∼Pr [F (x)]− Ex∼Pθ [F (x)]. (2.3)

Here, the supremum is taken over all K-Lipschitz1 functions F : X → R with X
denoted as the data space.

1For a function F to be K-Lipschitz the gradient of F has to be less than or equal K.

10

2. Theory

This problem can be written as shown in [24, Equation 2.4].

max
w∈W

Ex∼Pr [F (x;w)]− Ex∼Pθ [F (G(z; θ);w)]. (2.4)

Here, F (x;w)w∈W is a parameterized family of K-Lipschitz functions for a given K.
Solving this problem will yield W (Pr,Pθ) up to a multiplicative constant.

The WGAN training process is described in [24, Algorithm 2]. In this process,
the discriminator D from the original GAN has been replaced with the network F ,
called "critic", which is used to learn the optimal K-Lipschitz function to solve the
problem in Equation 2.4 instead of classifying an image as real or fake. To guarantee
that the critic is a K-Lipschitz function, Arjovsky et al. use weight clipping, a
method to restrict the critic’s weights to be within a specific range to enforce the
K-Lipschitz constraint. Moreover, they used RMSProp with a small learning rate
and no momentum for stable training.

The new objective function optimizes the GAN training gradually. The Wasserstein
distance has a smoother gradient that allows continuous learning until the critic
achieves optimality, then the generator model is trained using the gradients from
the optimal critic. In this case, the balancing between generator and discriminator is
no longer needed since the generator will be trained once the critic has high-quality
gradients.

Algorithm 2: WGAN Algorithm. Source: [24]
Variables: G, the generator. F , the critic.
Require: : α, the learning rate. c, the clipping parameter. m, the batch size.
ncritic, the number of iterations of the critic per generator iteration.
Require: : w0, initial critic parameters. θ0, initial generator’s parameters.
while θ has not converged do

for t = 0,...,ncritic do
1. Sample {x(i)}mi=1 a batch from the real data.
2. Sample {z(i)}mi=1 a batch of noise samples.
3. ∇w ← ∇w[1

m

∑m
i=1 F (x(i))− 1

m

∑m
i=1 F (G(z(i)))]

4. w ← w + α ·RMSProp(w,∇w)
5. w ← clip(w,−c, c)

end
1. Sample {z(i)}mi=1 a batch of noise samples.
2. ∇θ ← −∇θ

1
m

∑m
i=1 F (G(z(i)))

3. θ ← θ − α ·RMSProp(θ,∇θ)
end

However, according to the authors, the weight clipping method is not the best way to
enforce the Lipschitz constraint, and tuning the clipping parameter c can be tricky.
With a large c, we can face the issue of exploding gradients, while a smaller c might
result in vanishing gradients and hence, affect the model’s capacity to create complex
functions. As a solution for this, an improved version of WGAN was introduced by
Gulrajani et al. called Wasserstein GAN with Gradient Penalty (WGAN-GP) [26].

11

2. Theory

Instead of using weight clipping, WGAN-GP uses gradient penalty to penalize the
network when the gradient of F shifts from K = 1 for points x̂ interpolated between
the real and generated data. The new objective is shown in [26, Equation 2.5].

L = Ex∼Pr [F (x)]− Ex∼Pθ [F (x)]︸ ︷︷ ︸
WGAN critic loss

+λEx̂∼Px̂ [(‖∇x̂F (x̂)‖2 − 1)2]︸ ︷︷ ︸
Gradient penalty

. (2.5)

Moreover, batch normalization was dropped from the critic since it affected the
effectiveness of this approach. Batch normalization considers a batch of images,
which conflicts with the gradient penalty, penalizing each gradient independently.
The new training process is demonstrated in [26, Algorithm 3].

Algorithm 3: WGAN Algorithm with gradient penalty (WGAN-GP). Source:
[26]
Variables: G, the generator. F , the critic.
Require: : λ, the gradient penalty coefficient. m, the batch size. ncritic, the
number of iterations of the critic per generator iteration. α, β1, β2, the Adam
hyperparametersa.
Require: : w0, initial critic parameters. θ0, initial generator’s parameters.
while θ has not converged do

for t = 0,...,ncritic do
for i = 1, ...,m do

1. Sample x from real data, z from noise prior, ε ∼ U [0, 1].
2. x̃← G(z)
3. x̂← εx+ (1− ε)x̃
4. L(i) ← F (x̃)− F (x) + λ(‖∇x̂F (x̂)‖2 − 1)2

end
w ← Adam(∇w

1
m

∑m
i=1 L(i), w, α, β1, β2)

end
1. Sample {z(i)}mi=1 a batch of noise samples.
2. θ ← Adam(∇θ

1
m

∑m
i=1−F (G(z)), θ, α, β1, β2)

end

aAdam [27] is an algorithm for stochastic optimization of a function with the core idea of com-
puting adaptive learning rates based on the estimates of the first two moments of the gradient. The
hyperparameter α is the learning rate and the hyperparameters β1 and β2 regulate the exponential
decay rates of the moving averages, which estimate the first two moments of the gradient.

2.1.3 StyleGAN
The aforementioned extensions of GANs, like WGAN and DCGAN, can produce
synthetic images but of small size. Karras et al. [28] introduced a state-of-the-
art GAN, called StyleGAN, which can generate high-resolution images and uses a
redesigned generator network to control the properties of generated images better.

StyleGAN builds up on Progressive GAN [29], which showed impressive results in
generating high-resolution output. The idea of Progressive GAN is to start training
with low-resolution images and add more layers progressively during the training

12

2. Theory

process to both the generator and discriminator like demonstrated in (a) in [28,
Figure 2.3]. At the beginning of the training, the generator only consists of the first
block, producing images of size 4 × 4. After some time, more layers are smoothly
faded in, which are presented with the second block. The benefit of progressively
growing networks is the stabilized training process in early stages, since the generator
does not have to learn the mapping from noise to high resolution straight away, but
rather in small steps. Furthermore, it reduces the training time, making it feasible
to produce high-resolution synthetic images.

Figure 2.3: Comparison of the generator used in (a) Progressive GAN and (b)
StyleGAN.

As demonstrated in Figure 2.3, the main contribution of StyleGAN was to redesign
the generator architecture in Progressive GAN, which we will now explain further. In
a vanilla GAN, like ProgressiveGAN, noise z is fed to the generator through an input
layer. However, in StyleGAN, this input layer is omitted, and a mapping network
with input z is employed, which outputs a latent vector w ∈ W , see Figure 2.3 (b)
on the left. The mapping network f includes 8 fully-connected layers, which takes
a 512 dimension noise vector z and transforms it into a 512 dimension intermediate
latent vector w ∈ W . A learned affine transformation A is then applied to vector
w to obtain a style vector. The style vector is transformed using adaptive instance
normalization (AdaIN) [30] and integrated into each block after each convolutional
layer of the generator network g, see Figure 2.3 (b) on the right.
Since the generator network g no longer takes a noise vector as input, the synthesis
network g takes a learned constant tensor with dimension 4 × 4 × 512 as input.
Furthermore, the authors introduced an additional noise input B, which is added
to the feature maps before the AdaIN operation to add a stochastic variation in an

13

2. Theory

image.

The proposed StyleGAN achieved state-of-the-art results. However, some gener-
ated images contained artifacts (water drops). Therefore the authors revised and
redesigned StyleGAN and presented a new model, called StyleGAN2 [31]. The
two main changes included redesigning the normalization used in the generator to
overcome the artifacts issue and changing from using progressively growing during
training to skip connections and residual networks instead.

2.1.4 CycleGAN

While the previous GANs focused on solving the original GAN limitations, Zhu
et al. [32] proposed CycleGAN, an unsupervised approach to the paired image-
to-image translation problem. Image-to-image translation requires training data
of paired images to perform the translation from an input domain to an output
domain. However, CycleGAN can learn the style of a group of images and transfer
it to another group of images without pairing.

CycleGAN comprises two generator models G,F , and two discriminator models
DX , DY that are trained jointly. The generator G takes images from domain X and
converts them to images in the domain Y , the second generator F takes images from
domain Y and converts them back to domain X. Each generator has a discriminator
that is used to distinguish real images from fake images, see (a) in [32, Figure 2.4].

The CycleGAN objective function has two components: adversarial losses and a
cycle consistency loss. The adversarial losses, which match the distribution of gen-
erated and real images, were not sufficient to guarantee the consistency between G
and F since they are mainly used for image generation and not translation tasks.
However, the cycle consistency loss addresses this issue. The idea of introducing
this loss is that when we transfer an image to another domain and back again, we
should land on the same image. It enforces that F (G(X)) ≈ X and G(F (Y)) ≈ Y ,
see (b) and (c) in [32, Figure 2.4]. The full objective including both loss terms is
defined in [32, Equation 2.6].

L = LGAN(G,DY , X, Y) + LGAN(F,DX , Y,X)︸ ︷︷ ︸
adversarial losses

+ λLcyc(G,F),︸ ︷︷ ︸
cycle consistency loss

. (2.6)

Here, λ controls the influence of the cycle consistency loss.

Regarding the architecture of CycleGAN, the generators are inspired by Johnson
et al. [33] and include 3 convolutional layers, several residual blocks, fractionally-
strided-convolutions with stride 0.5, and lastly, a convolutional layer that generates
the image. Furthermore, they use instance normalization [34]. The discriminators
are PatchGANs [35], which classify 70 × 70 patches of the image into real or fake
rather than the whole image and hence, use fewer parameters.

14

2. Theory

Figure 2.4: (a) Architecture of CycleGAN. (b) Cycle consistency loss controlling
F (G(X)) ≈ X. (c) Cycle consistency loss controlling G(F (Y)) ≈ Y .

2.1.5 Differentiable Augmentation (DiffAugment)

In order to generate realistic and diverse synthetic data, GANs need a large amount
of training data. Collecting such data is expensive, time consuming, and sometimes
hard when the objects are rare. However, working with limited data can result in
over-fitting and bad performance. To overcome these issues, Zhao et al. [36] intro-
duced DiffAugment, a solution that includes using a data augmentation strategy.

Applying data augmentation to GANs can be tricky. Using data augmentation tech-
niques only on real images will result in learning the augmented data distribution
instead of the real distribution. Also, the strategy of augmenting images only during
the discriminator updates fails since the generator will not receive any useful up-
dates from the discriminator because it obtains gradients of the fake images without
augmentation. To preserve the balance between the generator and discriminator,
DiffAugment applies data augmentation to real and fake images in both discrimi-
nator and generator updates; see [36, Figure 2.5]. However, the data augmentation
has to be differentiable to allow gradient propagation through the augmentation to
the generator.

Figure 2.5: DiffAugment strategy applies Augmentation T to fake images G(z)
and real images x. To the left, the weights of the discriminator D are updated. To
the right, the weights of the generator G are updated.

15

2. Theory

2.2 Object Detection
Object detection is about answering two questions: What objects are in the image?
Where are those objects located? Different systems have been proposed to answer
these questions, which can be grouped into One-Stage and Two-Stage Detectors.
Two-Stage Detectors, such as the R-CNN family [37], consist of complex pipelines,
which use classifiers at various locations in the input image. These systems need
many GPUs for training and are hard to optimize since every component of the
pipeline must be trained separately. Moreover, to get the final output, the image
has to run through several evaluations, making these systems slow.

To make object detection systems faster and achieve real-time performance, Redmon
et al. [38] proposed the first One-Stage Detector [39, Figure 2.6] where they reframe
object detection as a regression problem. The resulting model, called You Only
Look Once (YOLO), is simple, end-to-end trainable, and only needs one evaluation
to get the final prediction. Ever since, several improved versions of YOLO have
been published, which we will introduce in this section.

Figure 2.6: A One-Stage Object Detector usually consists of: Backbone: A pre-
trained neural network that implements the feature extraction task. Neck: Included
in more recent object detectors; responsible for aggregating features extracted by
the backbone. Head: The final part of a detector responsible for predicting classes
and bounding boxes.

2.2.1 YOLO
YOLO [38] uses one convolutional network, which only needs to look once at the
input image to make a prediction.
To make a prediction, the system (illustrated in [38, Figure 2.7]) receives an image
as input and splits it into a grid of size S × S. The grid cell, in which the center of
an object lies, is responsible for the prediction.

Each grid cell predicts a fixed amount B of bounding boxes. The bounding boxes
are defined by four normalized coordinates x, y, w, h, where x and y describe the
box’s center, while w and h describe the width and height of the box.

16

2. Theory

Figure 2.7: The workflow of YOLO illustrated on an example image.

Additionally, each grid cell predicts a confidence score C for each bounding box,
which measures the accuracy of the predicted box and the confidence of the model
that the box encloses an object. To measure the predicted bounding box’s accuracy,
the Intersection over Union IoU(g,p) between the ground truth box g and the pre-
dicted box p is used, i.e. the area of intersection over the area of union between the
two boxes. The resulting confidence score is shown in [38, Equation 2.7].

C = P (object) ∗ IoU(g, p). (2.7)

Here, P (object) is the probability of an object included in the box, which takes value
0 if no object is present in the box, and value 1 if an object is present. Lastly, each
grid cell predicts one set of class probabilities conditioned on the grid cell containing
an object, defined in [38, Equation 2.8].

p(ci) = P (classi | object). (2.8)

To get class-specific confidence scores for every box at test time, the confidence
scores and class probabilities get multiplied, see [38, Equation 2.9].

P (classi) ∗ IoU(g, p) = P (classi | object) ∗ P (object) ∗ IoU(g, p). (2.9)

The resulting scores measure the probability of the class being present in that box
and the accuracy of the box compared to the ground truth box.

The final output may contain duplicate boxes for a single object. To remove dupli-
cate boxes with lower scores, a method called Non-Maximum-Suppression (NMS)
is used. NMS iteratively selects the box with the highest score and calculates the
IoU(g,p) with all other remaining boxes. The remaining boxes with IoU(g,p) greater
than a given threshold indicate that they might contain the same object and are
therefore removed.

17

2. Theory

The authors implemented the above-described model as a convolutional network
with the grid cell and bounding boxes parameters chosen to be S = 7 andB = 2. The
network consists of a backbone with 24 convolutional layers that extract features,
followed by a head with two fully connected layers that make the final prediction.

For training, the authors pre-trained the 20 first convolutional layers on the Ima-
geNet competition dataset [1]. After pre-training, the head was added to perform
detection and the resolution of the input size was increased from 224 × 224 to
448 × 448. The final layer uses a linear activation function and the remaining the
leaky rectified linear activation function. To work against overfitting, various data
augmentation techniques, including random scaling and randomly adjusting expo-
sure, are used. Additionally, the authors include a dropout layer, which stops layers
to co-adapt.

The authors decide to optimize for sum squared error, a loss function used for re-
gression problems that is easy to optimize. The loss compromises three parts: the
localization loss term, the confidence score loss term, and the conditional class prob-
ability loss term. Since the goal is to maximize average precision, some adjustments
have to be made:

1. Sum squared error treats errors in small boxes and large boxes equally, but
a small error in a small box should be more punished than a small error in
a large box. Therefore, the width and height coordinates in the loss function
got replaced with their respective square root to mitigate this problem.

2. Furthermore, sum squared error gives localization error and classification error
equal weight, which does not follow the goal of maximizing average precision.
To solve this problem, they increase the localization loss term with a factor
λcoord.

3. Many grid cells in an image do not contain any object. Hence we train the
system more often on detecting background than on actually detecting an
object. This can overpower the gradient and can lead to model instability.
Therefore, the authors split the confidence loss term into two parts; the sum
squared error of boxes with objects present and no objects present. To make
the training more stable, the loss from confidence predictions for boxes with
no object gets down-weighted with a factor of λnoobj.

4. Finally, the bounding box predictor with the highest current IoU(g,p) with
the ground truth box gets assigned for predicting an object. This causes the
predictors to specialize and improves the performance of the model.

The resulting loss function is shown in [38, Equation 2.10] and the used symbols are
described in Table 2.2.

λcoord
∑
i∈S2

∑
j∈B

1objij [(xi − x̂i)2 + (yi − ŷi)2 + (√wi −
√
ŵi)2 + (

√
hi −

√
ĥi)2]

+
∑
i∈S2

∑
j∈B

1objij (Cij − Ĉij)2 + λnoobj
∑
i∈S2

∑
j∈B

1noobjij (Cij − Ĉij)2

+
∑
i∈S2

1obji
∑

c∈Classes
(pi(c)− p̂i(c))2

(2.10)

18

2. Theory

Symbol Description
i ∈ S2 Index i refers to cell i in the set of all grid cells S2.
j ∈ B Index j refers to bounding box j in the set of all bounding boxes B.
xi, yi The center point of the true box in grid cell i.
wi, hi The width and height of the true box in grid cell i.
x̂i, ŷi The center point of the predicted box in cell i.
ŵi, ĥi The width and height of the predicted box in cell i.
1objij 1objij is 1 if there is an object in cell i and the bounding box j is assigned

for making the prediction, and 0 otherwise.
1noobjij 1noobjij is 1 if there is no object in cell i and the bounding box j is assigned

for making the prediction, and 0 otherwise.
1obji 1obji is 1 if an object is present in cell i and 0 otherwise.
pi(c) The true conditional class probability for class c in cell i.
p̂i(c) The predicted conditional class probability for class c in cell i.
Cij The true confidence score for box j in cell i.
Ĉij The predicted box’s confidence score for box j in cell i.
c ∈ Classes Class c in the set Classes.
λcoord A factor that increases the localization loss.
λnoobj A factor to down-weight the confidence score loss when detecting the

background.

Table 2.2: List of symbols with corresponding description in the YOLO loss func-
tion.

2.2.2 YOLOv2

YOLO suffered from limitations such as localization errors and low recall. To over-
come these limitations, Redmon et al. introduced YOLOv2 [40], the second version
of YOLO. The goal of YOLOv2 was to enhance the accuracy and make it faster.

To improve the accuracy, several techniques were used:
1. Batch normalization was added to speed up the learning process, and it also

removes the need for dropouts.

2. They changed the size of input images from 448× 448 to 416× 416 to create
a feature map of size 13× 13, which has a single center cell.

3. The head in YOLO, consisting of fully connected layers, is responsible for the
prediction of the bounding boxes, but does not use any prior measurements
of shapes. To produce better predictions, the authors decided to use anchor
boxes instead of fully connected layers. Anchor boxes allow multiple object
predictions per cell by using predefined prior boxes. When moving to anchor
boxes, they changed to predict class probabilities for every anchor box in-
stead of only once per grid cell. The best anchor boxes’ shapes in YOLOv2
are picked using 5-means clustering to make the learning easier. Hence, the
model predicts 5 boxes for each cell. Each prediction consists of 5 coordinates
tx, ty, tw, th, to, which can be used to compute the bounding box coordinates

19

2. Theory

as shown in [40, Equation 2.11].

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

P (object) ∗ IoU(g, p) = σ(to).

(2.11)

Here, bx, by, bw, bh is the bounding box coordinates, cx, cy is the distance from
the top left corner to the cell, pw, ph represents the anchor box’s width and
height, and σ is a sigmoid activation function (see [40, Figure 2.8]).

4. In order to better detect small objects, a passthrough layer was added to re-
shape the output from previous layer and then concatenate it with the original
output to produce the final output for predictions.

To improve the speed and mitigate the complexity problem, the authors proposed
a new classification model called Darknet-19 as the backbone for YOLOv2. The
reason for choosing Darknet-19 is having low processing requirement compared to
other methods. The number 19 in Darknet-19 refers to the 19 convolutional layers
in the network. It mostly uses 3 × 3 filter for feature extraction followed by 1 × 1
filters to reduce the feature representation.

YOLOv2 can run on various image sizes, which provides a trade-off between accuracy
and speed. However, this version also suffered from a limitation that it did not
perform well on small objects.

Figure 2.8: Bounding boxes location prediction (green box) with anchor box’s
dimension (dashed box). cx, cy is the distance from the top left corner to the cell,
pw, ph are the height and width of the anchor box, σ is a sigmoid activation function
used for normalization.

20

2. Theory

2.2.3 YOLOv3
In 2018 Redmon et al. [9] introduced a new version, YOLOv3, that comes with
further improvements:

1. The author made changes in the loss function: They changed to predict the
object confidence and class predictions with logistic regression instead of the
sum squared error used in YOLO; hence the squared error terms got replaced
with cross-entropy loss terms. Furthermore, they changed to a multi-label
approach for class predictions. Instead of using a softmax function, limiting
each box only to have one label, the authors change to use independent logistic
classifiers.

2. To help detect smaller objects, YOLOv3 includes a neck that makes predictions
at three different scales inspired by Feature Pyramid Networks (FPN) [41].
The idea is to make predictions from the last feature map and also from
earlier feature maps in the network. To do so, they upsample an earlier feature
map and concatenate it with a feature map from even earlier in the network
to combine information from different stages in the network. The combined
feature map is then used to make additional predictions. Furthermore, they
change to use 9-means clustering to choose the bounding box priors, to have
3 bounding box priors per scale.

3. Lastly, YOLOv3 gets equipped with a new backbone, called Darknet-53. This
new backbone is way deeper (53 layers) than the previous Darknet-19 and
includes residual blocks, making it a powerful but still efficient network.

2.2.4 YOLOv4
The latest version of YOLO; YOLOv4 [39] is an object detector addressing the issues
of previous object detectors by enhancing the accuracy of a Convolutional Neural
Network (CNN) that can operate using a conventional GPU. YOLOv4 achieved an
Average Precision (AP50) value of 65.7 percent on the MS COCO dataset [42], and
a speed of about 65 frames per second (FPS) on the Tesla V100 GPU. It exceeds
the existing models significantly in both performance and speed and can be trained
smoothly and operate fast in production systems.

The main goal of designing a new version of YOLO is to allow anyone who uses a
conventional GPU to train and test on custom data. This detector needs to combine
speed and accuracy to perform real-time object detection with high quality. Many
features can be used to enhance a CNN, and since the detector has to contain features
that contribute to both speed and accuracy, several combinations of features were
tested by the authors to obtain the best set.

To achieve the optimal balance, the authors focused on choosing the architecture of
YOLOv4 carefully. Having a good accuracy means we need to process images with
good resolution, maintain the spatial information along with training, learn useful
features while having a suitable number of layers in the CNN. Fast means we need
ways to speed up the training process without losing essential features from the
input image. The authors did many experiments to choose a suitable architecture

21

2. Theory

that can achieve the main goal. The final selection included an interesting addition
of features that overcame previous limitations and produced a state-of-art detector:

Backbone: YOLOv4 uses CSPDarknet53: The Cross-Stage-Partial (CSP) [43] con-
nections are combined with the Darknet53 as the backbone for feature extraction.
The reason behind using CSP connections is to reduce the computations and im-
prove the learning ability of Darknet53. CSP achieves that by splitting the input
feature map into two parts and then combine it later using a cross-stage strategy.

Neck: YOLOv4 uses Path Aggregation Network (PANet) [44] for feature aggrega-
tion. PANet helps maintain spatial information exactly, allowing additional connec-
tion between the lower and upper layers and the ability to access features from all
layers. As the image goes through various layers in the neural network, the complex-
ity increases, and the pixel location is lost, and thus it becomes difficult to identify
these features at higher levels accurately. The authors modified PANet by concate-
nating the neighboring layers instead of adding them, which improves the accuracy
of predictions. The addition of PANet helps in accessing the features from lower
layers faster. The previous YOLO version used an FPN aggregator that performs
a top-down approach, but this process becomes very slow, especially when we have
hundreds of layers. To improve the speed, PANet performs a bottom-up approach
so that we can access features from lower layers quickly.

Head: The head is the final part that makes the prediction. YOLOv4 uses YOLOv3’s
(anchor-based) head.

YOLOv4 is a detector that proved to be faster and more accurate than previous
versions due to a careful selection of techniques, which significantly improved the
detector’s performance and the classifier. These techniques can be grouped into two
groups: Bag of freebies and Bag of specials.

2.2.4.1 Bag of freebies and Bag of specials

Methods that can improve the detector accuracy without causing any latency at
inference time are called bag of freebies (BoF), while methods that can drastically
improve the accuracy but increase the inference time are bag of specials (BoS). The
authors of YOLOv4 tested various combinations of these methods. Below we list
the features that the authors included in their model.

Bag of Freebies (BoF)2:

1. CutMix: This technique combines parts from images together into an aug-
mented image. The model will learn how to make predictions based on a larger
amount of features [45].

2. Mosaic data augmentation: This data augmentation technique combines
4 training images into one image. It helps to identify objects at a smaller scale
rather than a normal scale.

2BoF 1, 2, 3 are used during the pre-training of the backbone, while 2, 5, 6, 7, 8 are used during
the detector training.

22

2. Theory

3. Class label smoothing: This technique reduces overfitting by encoding val-
ues with some uncertainty. For example, instead of using 1.0 for the most
likely class, one can use 0.9 [46].

4. Complete IoU(g,p) loss (CIoU): This loss treats the bounding-box coor-
dinates: center point, height, and width as one unit, and thus the prediction
is more accurate [47].

5. Eliminate grid sensitivity: In YOLOv3 [9] the equations bx = σ(tx) + cx
and by = σ(ty) + cy are used to predict the center coordinates, where cx, cy are
whole numbers giving the distance to the left corner. For bx to be predicted as
cx or cx + 1, tx has to be a very large negative or positive number respectively.
To address the problem of having spots in the grid that are hard to predict, the
authors of YOLOv4 multiply the sigmoid output with a factor greater than 1.

6. Using multiple anchors for single ground truth: YOLOv3 only assigned
one anchor box for each given object. In YOLOv4, the authors changed to use
multiple anchors for each ground truth object. An anchor box is responsible
for the detection of a given object if the IoU(g,p) between the two boxes is
greater than a given threshold.

7. Random training shapes: Removing fully connected layers from YOLO
made it possible to train with various image sizes. Multi-scale training makes
the model more robust and enhances generalization.

8. Batch Normalization (BN): Batch Normalization (BN) [48] is the common
technique of normalizing the mean and variance of the input to each layer to
work against the internal covariate shift.

Bag of Specials (BoS)3:
1. Mish activation: YOLOv4 uses the Mish activation function introduced

by D. Misra [49]. Mish outperformed other activation functions like ReLU
in different computer vision tasks. It has a low cost and includes various
properties such as smooth and non-monotonic nature, unbounded above, which
avoids saturation and increases accuracy, and bounded below, which helps
achieve strong regularization effects and reduces overfitting.

2. Spatial Attention Module block (SAM-block): Spatial Attention Mod-
ule (SAM) [50] is an attention module that encodes the important features
in an image. The feature map goes through two transformations using max
and average pooling layers. Then, the concatenated features are fed into a
convolutional layer. Finally, a sigmoid function is applied. In YOLOv4, a
modified version of SAM is used called SAM-block, which does not include
pooling layers.

3. Modified Spatial Pyramid Pooling Layer (SPP-block): To enhance the
receptive field of the backbone, YOLOv4 uses an adjusted version of the SPP
module introduced by He et al. [51]. The adjusted SPP-block [52] performs
max-pooling layers to generate different representations of feature maps and
then concatenates them again.

3BoS 1 is used during the backbone’s pre-training, while 1, 2, 3 are used during the detector
training.

23

2. Theory

2.3 Evaluation Metrics
We evaluate in two stages of our project: firstly, we evaluate the generated outputs
of the GANs, and secondly, we evaluate the performance of the Object Detection
system.

For the evaluation of the GANs, we will do human evaluation, while the evaluation
of the Object Detection system will include metrics such as mean Average Precision
(mAP), Loss Function, Confidence Score, Precision, and Recall. We will use the
metrics during training to monitor the system’s performance, which allows us to
review and adjust accordingly. Furthermore, we will use the already implemented
model in KSO as a baseline model and compare the performance to our model.

2.3.1 Mean Average Precision (mAP)
The mAP is the standard metric used to evaluate object detection systems. It
is a metric that combines Precision and Recall, which are calculated at a specific
IoU(g,p) threshold, which is the area of overlap of the true and predicted boxes
divided by the union of the two boxes. The mAP at this certain threshold is defined
as the mean of the Average Precision (AP) over all classes, where the AP is the mean
Precision at eleven recall levels [53]. Depending on different detection challenges,
the mAP is defined differently. A commonly used threshold is 0.5, which is the
threshold we will consider, denoted by mAP@0.5.

2.3.2 Loss Function
The Loss Function helps us to adjust weights to decrease the cost. When there is a
wrong prediction, the Loss Function gives us direction on where to move. The loss
in YOLOv4 consists of three parts, the loss for the bounding box predictions, the
loss for the class predictions, and the loss for the objectness score, where the last
two parts are the same as in YOLOv3. Traditionally the L2 standard loss function
is used to make bounding box predictions, but recently researchers introduced the
IoU loss [54], which treats the bounding box’s coordinates as a unit. Thus IoU loss
provides a more accurate prediction. YOLOv4 uses the Complete IoU Loss (CIoU)
[47], which reduces the distance between the central points of the true and predicted
box and increases their overlap.

2.3.3 Confidence Score
YOLO predicts an confidence score reflecting the accuracy of the predicted box and
the confidence of the model that the box encloses an object. For each box, it also
predicts a set of class scores. At test time, YOLO outputs a class specific confidence
score calculated by multiplying the confidence score and class probabilities. The
confidence score measures the accuracy of the predicted box and the probability of
a certain class being present in the box.

24

2. Theory

2.3.4 Precision and Recall
A True Positive (TP) denotes that the algorithm correctly detected an object. A
False Positive (FP) indicates that the detected object was classified into the wrong
category, for example, classifying a deepwater coral as a sponge. A False Negative
(FN) indicates that the algorithm failed to detect a present object in an image, for
example, when the algorithm fails to detect a deepwater coral [55].

Precision and Recall are two ratios that are defined in [56, Equation 2.13] and [56,
Equation 2.13].

Precision = TP

TP + FP
(2.12)

Recall = TP

TP + FN
(2.13)

Here, Precision can be seen as a measure of quality and Recall as a measure of
quantity. Precision is the fraction of correctly detected objects among all detected
objects, while Recall presents the fraction of detected objects among all ground-truth
boxes [56].

25

2. Theory

26

3
Methods

This study aims to build a robust system that can achieve more accurate detec-
tion for deepwater corals and generalize to unseen data in different environmental
conditions. To obtain a representative training dataset, we tested several GANs
to enhance (Section 3.2) and increase (Section 3.3) our limited data (Section 3.1).
After pre-processing our data, we trained a YOLOv4 object detector and tested it
on unseen data (Section 3.4).

3.1 Data
Our labeled training data consists of 409 deepwater corals (Desmophyllum per-
tusum) images of size 720 × 576. The images were taken by ROVs in the Koster-
havet National Park and annotated using the citizen science module from KSO. As
shown in Figure 3.1, most of the images contain white deepwater corals on dark
background. The image quality varies due to lack of light, marine snow, etc.

Figure 3.1: Deepwater coral examples from our training data. Good quality to the
left, bad quality to the right.

3.2 Image Enhancement
The first step in our pipeline was to enhance the data so that the detector could
recognize the deepwater corals more easily. To improve the quality of the data,
we trained a CycleGAN, which is used to translate between two domains. We
set domain X to represent our poor quality images and domain Y to represent a
set of good quality images. Then, we trained the network to learn the mapping
G : X → Y , which aims to enhance our images.

To prevent the CycleGAN from over-fitting to our training data and performing
poorly on testing data, we used different data than our 409 deepwater coral frames

27

3. Methods

for training. Since we did not have additional deepwater coral frames, we used
frames of deeplet sea anemones, Bolocera tuediae (Johnston, 1832), taken by ROVs
in the Kosterhavet National Park as domain X. For domain Y , the images should be
similar to domainX in terms of the objects present in the images to successfully learn
a mapping that only enhances the images. However, we lacked good quality images
of deeplet sea anemones taken in the Kosterhavet, and therefore decided to use hand-
picked images from ImageNet [1] including the classes sea anemone and coral. We
added corals to domain Y since the deeplet sea anemone dataset for domain X also
included corals in some frames. Besides, we received some high-quality underwater
images from MMT Sweden AB for our research, which we included in domain Y .
The datasets’ resulting sizes for domain X and Y were 409 and 304, respectively.
Examples for both domains are illustrated in Figure 3.2.

Figure 3.2: Domain X images (first row). Domain Y images (second row), Source:
[1].

3.2.1 Training
We used the PyTorch implementation from the CycleGAN authors [32]. To stabilize
the training, we followed the authors and used the least-square GANs [57] objective
and updated the discriminator based on the last 50 enhanced images instead of only
using the latest ones.
We resized our images to 320 × 320. We chose this size to fulfill the requirements
of both CycleGAN, which requires image sizes divisible by 4, and YOLOv4, which
requires sizes divisible by 32. Moreover, we chose 320 × 320 as this is the largest
possible size for the images in domain Y . In the generator’s architecture, we used
9 residual blocks following the author’s implementation for image sizes larger than
256. We trained the networks and evaluated the results for different epochs to decide
when to stop the training. We stopped training when the enhanced images did not
change significantly in further epochs. For all other hyper-parameters, we chose the
default values used by CycleGAN: We set the regularization term λ in the loss to
10. We used an Adam optimizer with β1 = 0.5 and β2 = 0.999. We used an initial
learning rate of 0.0002 and linearly decay it to 0 after 100 epochs.

28

3. Methods

3.2.2 Evaluation
Performance evaluation of GANs is still an open research question, and there is no
single standard metric, which applies to all tasks and datasets [58]. One common
method is to use human annotators to judge the realness and quality of generated
images. Therefore, we decided to evaluate the enhanced images depending on our
predetermined criteria. We checked if the enhanced images have:

1. less noise/marine snow,
2. less blur and more sharp edges,
3. reduced color distortion (i.e. the deepwater corals appear white, the image

has natural colors, etc.).

3.3 Image Augmentation
The second step in our pipeline was to create a large and diverse training dataset
that could be used to train the object detection system. We did this by using GANs
to generate synthetic data.

First, we decided to experiment with two models, DCGAN [23] and WGAN-GP
[26]. This selection is based on a tradeoff between choosing GANs with simple
architectures and low computational cost but that are also stable at training and
align with our goals for this task. The generator and discriminator architectures
used in both GAN models are designed to output images of size 64× 64. Images of
this size might be too small to train the object detector successfully. However, we
first focused on a smaller size because training GANs is very difficult and gets even
harder with increased size due to increased training instability. [29].

After experimenting with the above mentioned models, we decided to use a more
advanced model in order to output images of higher resolution; we chose to use
StyleGAN2 [31].

Finally, since GANs require a large amount of training data, and we were constrained
with limited data, we used the data augmentation strategy DiffAugment [36] for all
models.

3.3.1 Training

3.3.1.1 DCGAN and WGAN-GP

For DCGAN, we used the PyTorch implementation by Nathan Inkawhich [59], which
follows the DCGAN authors’ implementation. The model was trained using mostly
the same parameters as suggested by the authors: We used an Adam optimizer
with momentum parameters β1 = 0.5 and β2 = 0.999 and learning rate 0.0002.
The weights were initialized using a normal distribution with mean 0 and standard
deviation 0.02. For the Leaky-ReLU Layers in the discriminator, the slope was set
to 0.2.

29

3. Methods

For WGAN-GP, we took the PyTorch implementation from [60] and made adjust-
ments to meet the paper’s suggestions. We used the same architecture for the gen-
erator as in the DCGAN implementation. However, the DCGAN discriminator was
adjusted by dropping the last layer to form the critic network. Moreover, we used
instance normalization in the critic instead of batch normalization to prevent the
conflict with the gradient penalty, as suggested by the authors. After experimenting
with some hyper-parameters, we again followed the default hyper-parameters for
training, since it worked best: We used an Adam optimizer with momentum param-
eters β1 = 0 and β2 = 0.9 and learning rate 0.0001. We did 5 iterations for the critic
before updating the generator and used a penalty coefficient set to 10. The weights
were initialized the same way as in the DCGAN training.

After experimenting with different batch sizes for both models, we found that a
batch size of 32 worked best in our case. To decide when to stop training, we
generated images from a fixed noise every 20 epochs. We stopped training when the
images did not improve.

3.3.1.2 StyleGAN2

For StyleGAN2, we used the PyTorch implementation by Zhao et al. [36]. Style-
GAN2 can be trained to generate images of size 4× 4 up to 1024× 1024, where the
sizes double each time. However, since our training images are of size 720× 576, we
trained the network to generate images of size 512×512, the highest possible resolu-
tion for us. The model was trained with the implemented default hyper-parameters:
We used an Adam optimizer with momentum parameters β1 = 0, β2 = 0.99 and
learning rate 0.002 for all weights, except for the mapping network, which used 100
times lower learning rate. Furthermore, the implementation includes an equalized
learning rate approach1 [29]. For the objective function, StyleGAN2 uses the im-
proved loss from the original GAN paper [20] together with R1 regularization2 [61]
with regularization parameter γ = 10. As activation function, leaky ReLU was used
in both the discriminator and generator with a slope set to α = 0.2.

We trained the network with a batch size of 8 for a total of 500k image iterations
(about 1222 epochs). We chose this training length following the Low-Shot Gen-
eration Experiment [36] on the AnimalFace dataset [62] with similar size. During
training, we generated images every 40k iteration. For the final model, we picked
the weights for which the quality of generated images stopped improving. When
generating images, the exponential moving average of the generator weights [29]
with decay 0.999 was used to reduce substantial weight variations between training
iterations.

1In the equalized learning rate approach, all weights are initialized from N ∼ (0, 1) and scaled
per-layer using a normalization constant during training. This approach is useful since the weights
then have a similar scale during training, and hence, the learning speed is the same for all weights.

2R1 regularization stabilizes the training process by penalizing the discriminator for deviating
from the optimum: R1 = γ

2Ex∼Pr
[‖∇D(x)‖2]

30

3. Methods

3.3.1.3 DiffAugment

For DiffAugment, we used the PyTorch implementation provided by the paper [36].
Their implementation includes three simple augmentation techniques: Color, Trans-
lation and Cutout. Color includes adjusting brightness, saturation, and contrast.
Translation involves resizing the image and padding the remaining pixels with zeros
to display the objects in different positions. Cutout cuts out a random square of the
image and pads it with zeros. We used all three transformations as recommended
by the authors when training with limited data.

When experimenting with DCGAN and WGAN-GP, we decided to run both models
with and without DiffAugment to test the advantage of using such an augmentation
technique. For StyleGAN2, we only trained the model with DiffAugment based on
the results from the above experiment. Hence, we trained the following five models:

1. DCGAN
2. DCGAN + DiffAugment
3. WGAN-GP
4. WGAN-GP + DiffAugment
5. StyleGAN2 + DiffAugment

3.3.2 Evaluation
Different approaches can be utilized to evaluate the quality of the GANs’ gener-
ated images. Besides human evaluation, metrics like the Frechet Inception Distance
(FID) [63] have been introduced. FID is an evaluation metric comparing the dis-
tribution of the generated images with the real images by computing the Frechet
distance between the two distributions. However, datasets of at least 10000 images
are recommended to get an insightful FID score; otherwise, the score is underesti-
mated. Since our training datasets only consist of 409 images, we decided to use
human evaluation to judge the generated images’ visual quality. We used our own
common sense to determine if generated images are realistic, diverse, and represent
the training data.

3.4 Object Detection

3.4.1 Data Preparation
To prepare the data for training, we generated 3000 synthetic images with Style-
GAN2, the resulting best model from the data augmentation evaluation, see Section
4.2.2. Using labelImg [64], we annotated the images and filtered out unrealistic im-
ages and images not including any coral, so we ended up with 2266 synthetic images.
We combined the 2266 synthetic images with the 409 real images, which resulted in
a final dataset of 2675 images. We split the data into two parts: 90% for training
(2407) and 10% for validation (268). We performed a stratified split to preserve the
proportion of real and synthetic data in both the training and validation dataset.

31

3. Methods

3.4.2 Training
To train the YOLOv4 model on our dataset, we used the darknet [65] framework
provided by the authors [39] [9]. We applied transfer learning by using the pre-
trained weights for the convolutional layers of the model trained on MS COCO
[42].

We trained two networks; the first network, named YOLOv4-baseline, consists of
a CSPDarknet53 backbone with Mish activation, PANet neck with leaky ReLU
activation, and the YOLOv3 head. It uses all Bag of freebies and Bag of specials for
the detector training, as mentioned in Section 2.2.4.1, except the attention module
SAM. The second model, named YOLOv4-SAM-Mish, additionally integrates SAM
and uses the Mish activation on the PANet neck.

We followed the instructions of the authors and used the default configurations for
both networks training: We set the network width and height to 512×512, so every
image was resized to that size during training and detection. The optimizer used in
YOLOv4 is Stochastic Gradient Descent (SGD) with momentum hyperparameter
0.949 and weight decay 0.0005. The initial learning rate in YOLOv4-baseline and
YOLOv4-SAM-Mish was set to lr = 0.001 and lr = 0.0013, respectively. In the first
1000 iterations, called the burn-in, the learning rate was changed to lr ∗ (iteration1000)4.
After the burn-in, the initial learning rate was used. At iteration 4800 and 5400,
the learning rate was multiplied by a factor of 0.1. To eliminate grid sensitivity,
the scaling factor of the sigmoid outputs in each of the three prediction heads was
set to 1.2, 1.1, and 1.05, respectively. The IoU(p,g) threshold, which determines if
an anchor box is used for a ground truth object, was set to 0.213. During training,
the images were randomly cropped and resized with changing aspect ratio from
1− 2 ∗ jitter to 1 + 2 ∗ jitter, where jitter was set to 0.3. To train YOLOv4 with
different resolutions, the network was resized randomly after each 10 batches by a
factor ranging from 1/1.4 to 1.4.

Several data augmentation techniques were used during training, including randomly
adjusting Saturation, which indicates the intensity of a color, Hue, which determines
the actual color (red, blue, yellow, etc.), and Exposure, which refers to the amount
of brightness in an image. We trained using the default values: The Saturation
parameter was set to 1.5, meaning that the Saturation gets multiplied by a factor
ranging from 1/1.5 to 1× 1.5, the Hue parameter was set to 0.1 meaning that color
gets multiplied by a factor ranging from −0.1 to 0.1, and the Exposure parameter
was set to 1.5 meaning that brightness gets multiplied by a factor ranging from 1/1.5
to 1× 1.5. Furthermore, Mosaic, which combines 4 training images into one image,
Mixup, which generates a new image by combining two random images, and Blur,
which randomly blurs the background 50% of the time, were used during training.

We trained the networks with a batch size of 64 for a total of 6000 batch iterations.
We chose a mini-batch size3 of 2, since larger mini-batch sizes were not possible
with the RAM available on the school server. After the burn-in, the mean Average

3The mini-batch size determines how many images are processed at once. The weights will be
updated after one whole batch sample.

32

3. Methods

Precision at threshold 0.5 (mAP@0.5) was calculated for each 4th epoch on the
validation set, which we used together with the loss to decide when to stop training.

3.4.3 Evaluation
To evaluate the two models - YOLOv4-baseline and YOLOv4-SAM-Mish - we com-
pared the mAP@0.5 calculated on the validation dataset for the final chosen weights.
Furthermore, we compared True Positives (TP), False Positives (FP), and False
Negatives (FN) at different confidence thresholds. Taking the mentioned validation
metrics into account, we decided on a final model.

3.4.4 Testing
To answer our research questions, we conducted three experiments and compared
the results of our model with the model implemented in the KSO system [7]:

Testing on data with the same environmental settings
We conducted the first experiment to test if our model can overcome the overfitting
issue on data from the Kosterhavet National Park with the same environmental
settings. To do so, we got a 30-minutes movie, which holds similar characteristics
and environmental settings as the training data. The movie mainly contains white
deepwater corals on black background with varying image quality due to marine
snow and lack of light.

To conduct the experiment, we split the movie into frames and labeled the frames
using labelImg [64]. The labeled frames contained 542 true boxes. To compare
our model with the KSO baseline model, we computed the mAP@0.5, TP, FP, FN,
Precision, and Recall for both models. To further evaluate the models’ performance
and understand when the models had problems, we printed out the images with
predicted boxes and compared them.

Testing on data with different environmental settings
The second experiment was to test if our model can generalize to data inside the
Kosterhavet National Park but with different environmental settings. For this pur-
pose, we obtained three 10-minutes movies, which hold different characteristics and
technical environmental settings. The movies were recorded using a more advanced
camera where the footage seems brighter, has better quality, and the background
and seafloor are more visible than in the training data.

We split the movies into frames and labeled them using labelImg [64]. The labeled
frames contained 56 true boxes. To compare the results of our model with the results
from the KSO baseline model, we computed the mAP@0.5, TP, FP, FN, Precision,
and Recall for both models. Moreover, we printed out images with predicted boxes
to compare them and highlight the detection problems.

33

3. Methods

Testing on data from outside the Kosterhavet National Park
The last experiment was to investigate if our model can generalize to different en-
vironments outside the Kosterhavet National Park. Unfortunately, we did not get
access to underwater footage from other areas, so we decided to use the coral im-
ages from MMT Sweden AB for this purpose. These 17 high-resolution images were
taken outside the Kosterhavet National Park with a drop camera, which makes the
environment differ not only in terms of location but also in terms of the camera
settings (e.g., different angle and lighting, better quality).

To run our experiment, we first labeled the images with labelImg [64], which resulted
in 100 boxes containing corals. After labeling, we computed the mAP@0.5, TP, FP,
FN, Precision, and Recall for our model and the KSO-model and compared the
results. Finally, we also printed out the images containing the predicted boxes to
further understand the models’ behavior.

34

4
Results and Discussion

4.1 Image Enhancement

4.1.1 Training

We trained CycleGAN for a total of 300 epochs. Figure 4.1 and Figure 4.2 show
results of two deepwater coral images for different epochs. We can see that the
model was still learning up to epoch 250 and, for example, the colors changed.
Some images, like Figure 4.1, did not change much after epoch 250, while other
images, like Figure 4.2, still changed from epoch 250 to 280. Therefore, we decided
to take the weights of epoch 280 for our final model.

Real Epoch 100 Epoch 200

Epoch 250 Epoch 280 Epoch 300

Figure 4.1: Example 1: Real image and corresponding results for epoch 100, 200,
250, 280 and 300.

35

4. Results and Discussion

Real Epoch 100 Epoch 200

Epoch 250 Epoch 280 Epoch 300

Figure 4.2: Example 2: Real image and corresponding results for epoch 100, 200,
250, 280 and 300.

4.1.2 Evaluation
We enhanced our 409 deepwater coral images using the weights from epoch 280.
Then, we went manually through the real and enhanced images and checked if the
aforementioned criteria matched. The following observations were made:

For some images, the color distortion got reduced; for example, the deepwater corals
appeared more in their actual color like in Figure 4.3. Moreover, in some images,
the background contained less marine snow compared to the real images, as the
second-row example in Figure 4.3. Some deepwater corals also had sharper edges,
and the overall image was less blurry, see Figure 4.1. Even though some images’
quality improved through the enhancement process, the results were not perfect,
and there is still much room for improvement.

Unfortunately, for many images, the transformation did quite the opposite of en-
hancing. Figure 4.4 shows two examples where the images got very colorful, unreal-
istic and the deepwater coral disappeared. We think a reason for this might be that
domain X and domain Y differ more than just in terms of quality since the images
do not come from the same area and have different characteristics. However, we
lack good quality images from the Kosterhavet National Park, so choosing images
from ImageNet was the best option available to us.

To successfully build an enhancement system using CycleGAN, we think that a set
of good quality images from the Kosterhavet region is needed. Unfortunately, we do

36

4. Results and Discussion

not have that kind of images available to us and acquiring such data would take time.
Therefore, we will focus on increasing the unprocessed images in the augmentation
step and leave the research about building an enhancement network for the KSO
pipeline for future work.

Real Enhanced

Figure 4.3: Examples where the enhancement succeeded.

Real Enhanced

Figure 4.4: Examples where the enhancement failed.

37

4. Results and Discussion

4.2 Image Augmentation

4.2.1 Training

4.2.1.1 DCGAN and WGAN-GP

Epoch 1000 Epoch 6000 Epoch 8000 Epoch 9000 Epoch 10000

Figure 4.5: Example output for different epochs: WGAN-GP + DiffAugment
(first row), DCGAN + DiffAugment (second row). Both models were trained on
unprocessed data.

Figure 4.5 shows example output for different epochs for the models trained with
DiffAugment on unprocessed data. For WGAN-GP we believe that epoch 9000
gives the best result. For DCGAN we chose the weights from epoch 6000 for our
final model. We think that these epochs reflect the most realistic images, and the
generator does not improve significantly afterward.

Figure 4.6: Examples of generated images of DCGAN (left) andWGAN-GP (right)
both without DiffAugment. Different noise gets mapped to the same image (mode
collapse).

38

4. Results and Discussion

The models trained without DiffAugment suffered from mode collapse, meaning
that the generated images are not very diverse. Figure 4.6 shows example output
for DCGAN and WGAN-GP models trained for 500 and 2000 epochs, respectively.
We observed that DCGAN got into mode collapse way earlier than WGAN-GP,
which is expected since the WGAN-GP objective is more robust against this issue.
However, these results show that we rely on a technique like DiffAugment to train
GANs on limited data. We, therefore, focused only on evaluating the results from
models trained with DiffAugment.

4.2.1.2 StyleGAN2

Iteration 80k Iteration 160k Iteration 240k

Iteration 280k Iteration 320k Iteration 500k

Figure 4.7: Examples of generated images of StyleGAN2 + DiffAugment after 80k,
160k, 240k, 280k, 320k and 500k image iterations.

We generated a grid containing 120 images during the training process after every
40k image iterations, Figure 4.7 shows example output after 80k, 160k, 240k, 280k,
320k and 500k image iterations. In iteration 80k, we can see mostly white dots on
the black and blurry background, while in iteration 160k, the white dots evolved to
form some of the corals’ characteristics. After that, in iteration 240k, we believe
that the corals’ characteristics became clearer, and the images started to contain
stones as well. However, the corals contained some odd dots, see top right corner
image of iteration 240k in Figure 4.7. In iteration 280k, we think that the images
further improved: the corals, stones, and the background appeared more realistic.

39

4. Results and Discussion

For later iterations like 320k and 500k, we noticed that the images did not improve
much compared to iteration 280k. In contrast, in later iterations, we believe that
the quality decreased, and the model created images containing blue artifacts, like
demonstrated in Figure 4.8. Due to all mentioned observations, we decided to use
the weights of iteration 280k for our final model.

Figure 4.8: Example image with artifacts for StyleGAN2 + DiffAugment after
400k (left) and 500k (right) image iterations.

4.2.2 Evaluation

We compared generated images with training data for DCGAN, WGAN-GP, and
StyleGAN2 trained with DiffAugment and found that all generators learned features
of the training data:

Looking at generated images from DCGAN, WGAN-GP, and StyleGAN2 (Figure
4.9), we can see that all models learned the characteristics of deepwater corals, the
black background, the brown sea ground, and other objects such as stones, grass,
etc. Furthermore, the images vary, which means that different noise vectors are
not mapped to the same image. Some generated images are very blurry and do
not contain any objects, but these kinds of images are also included in the training
data, so it makes sense that the model generates that kind of data. When comparing
the results from DCGAN and WGAN-GP, we do not see a significant difference in
quality nor variety. However, the results from StyleGAN2 show better quality and
appear more realistic than the results from both DCGAN and WGAN-GP.

To conclude, all models trained with DiffAugment learned features of the underlying
training data distribution. These results so far suggest that GANs can be used to
increase the training data synthetically. However, DCGAN andWGAN-GP can only
generate images of size 64 × 64. In order to train the object detector successfully,
we need images with a higher resolution. Since StyleGAN2 produced better quality
images and can generate images of size 512×512, we decided to increase our training
data using StyleGAN2.

40

4. Results and Discussion

Figure 4.9: Samples of training images (left) and generated images (right) for
DCGAN (first row), WGAN-GP (second row) and StyleGAN2 (last row).

41

4. Results and Discussion

4.3 Object Detection

4.3.1 Training

We trained YOLOV4-baseline and YOLOv4-SAM-Mish for 6000 batch iterations
and visualized their respective average loss and mAP@0.5 curves, shown in Figure
4.10 and 4.11 respectively. The average loss was computed on the training set,
while the mAP@0.5 was computed on the validation set. The average loss decreased
considerably until iteration 1300 for both models and then dropped gradually to
reach a final average loss of 0.3776 for YOLOV4-baseline and 0.3712 for YOLOv4-
SAM-Mish. The mAP@0.5 clearly increased until iteration 2000 with a mAP@0.5
of ≈ 95% for YOLOV4-baseline and mAP ≈ 96% for YOLOv4-SAM-Mish. For
YOLOV4-baseline, the mAP@0.5 remained rather stable and reached ≈ 95% at
iteration 6000. For YOLOv4-SAM-Mish, the mAP@0.5 slightly dropped to ≈ 93%
at iteration 4400 and increased again to reach ≈ 95% at iteration 6000.

The decreasing average losses indicate that both models learned features of the
training data, and the mAP@0.5 curves denote that the models did not overfit to
the training data. Although the YOLOv4-SAM-Mish model has a slightly better
mAP@0.5 at batch iteration 2000, following the YOLO authors’ recommendations
for training, we think that 2000 batch iterations are not enough; hence, we decided
to take the last weights at batch iteration 6000 for both models.

Figure 4.10: Average loss (blue) and mAP (red) curve for YOLOv4-baseline.

42

4. Results and Discussion

Figure 4.11: Average loss (blue) and mAP (red) curve for YOLOv4-SAM-Mish.

4.3.2 Evaluation
Table 4.1 shows the mAP@0.5 on the validation set for both models. Both models
show high mAP@0.5. However, surprisingly the YOLOv4-baseline model achieved a
slightly better result than the YOLOv4-SAM-Mish model. Even though Bochkovskiy
et al. [39] reported better performance on MS COCO with the additional SAM block
and Mish activation on the neck, we think that our simple one-class dataset might
not need those additional techniques to achieve good performance.

Model mAP@0.5
YOLOv4-baseline 94.93%
YOLOv4-SAM-Mish 94.56%

Table 4.1: mAP@0.5 for YOLOv4-baseline and YOLOv4-SAM-Mish.

We also compared True Positives (TP), False Positives (FP), and False Negatives
(FN) at different confidence thresholds for both models, demonstrated in Table
4.2. We can also see that YOLOv4-baseline gives overall slightly more accurate
predictions: The TP predictions (count of predicted boxes correctly including corals)
are slightly higher for YOLOv4-baseline at all confidence thresholds. Furthermore,
the FN predictions (count of undetected corals) are a little bit lower for YOLOv4-
baseline at all confidence thresholds. Finally, the FP predictions (count of objects
wrongly predicted as corals) are slightly lower for YOLOv4-baseline at the confidence

43

4. Results and Discussion

threshold of 0.75. However, the FP predictions at the confidence thresholds 0.25 and
0.5 are rather higher for YOLOv4-baseline.

Confidence Threshold 0.25
Model TP FP FN
YOLOv4-baseline 313 31 28
YOLOv4-SAM-Mish 307 28 34

Confidence Threshold 0.5
Model TP FP FN
YOLOv4-baseline 294 19 47
YOLOv4-SAM-Mish 292 18 49

Confidence Threshold 0.75
Model TP FP FN
YOLOv4-baseline 280 5 61
YOLOv4-SAM-Mish 277 7 64

Table 4.2: True Positives (TP), False Positives (FP) and False Negatives (FN) at
different confidence thresholds for both models.

To conclude, the YOLOv4-baseline model got a marginally higher mAP@0.5, higher
TP predictions, and lower FN predictions, except for the FP predictions, which are
lower for the YOLOv4-SAM-Mish model at two of the three confidence thresholds.
Taking all these observations into account, we think that YOLOv4-baseline showed
to some degree better validation performance, and we, therefore, chose it as our final
model.

4.3.3 Testing
Testing on data with the same environmental settings

The results from testing on data from the Kosterhavet National Park with the same
environmental settings are shown in Table 4.3 and Table 4.4. Table 4.3 shows that
our model achieved a higher mAP@0.5 (63.61% compared to 48.49%).
In Table 4.4, we computed TP, FP, FN, Precision and Recall for both models at
three different confidence thresholds: 0.25, 0.5 and 0.75. Our model reached a higher
Recall than the KSO model at all confidence thresholds, which indicates that our
model succeeded in detecting more true corals. The second row in Figure 4.12 shows
an example where our model (right) successfully detected the coral, while the KSO
model (left) failed. However, the KSO model achieved higher Precision at all con-
fidence thresholds demonstrating that their model made fewer miss-classifications.
The first row in Figure 4.12 shows an example where our model (right) miss-classified
the rosy feather star as a coral while the KSO model (left) succeeded in detecting
only the coral.
Even though our model scored higher Recall than the KSO model, our model still
resulted in a high number of FN predictions, which displays that many corals did
not get detected at all.

44

4. Results and Discussion

Model mAP@0.5
YOLOv4-baseline (ours) 63.61%
KSO model 48.49%

Table 4.3: mAP@0.5 for the KSO model and YOLOv4-baseline (ours) on the data
from the Kosterhavet National Park with the same environmental settings.

Confidence Threshold 0.25
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 280 92 262 0.75 0.52
KSO model 214 51 328 0.81 0.39

Confidence Threshold 0.5
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 226 45 316 0.83 0.42
KSO model 154 13 388 0.92 0.28

Confidence Threshold 0.75
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 164 16 378 0.91 0.30
KSO model 90 5 452 0.95 0.17

Table 4.4: TP, FP, FN, Precision and Recall at different confidence thresholds for
the KSO model and YOLOv4-baseline (ours) on data from the Kosterhavet National
Park with the same environmental settings.

KSO Ours

Figure 4.12: Example images with predicted boxes. The KSO model predictions
to the left. Our model predictions to the right.

45

4. Results and Discussion

Testing on data with different environmental settings

When testing on the Kosterhavet footages, which were recorded by a newer camera
and hence held different environmental settings, both models achieved rather low
mAP@0.5. However, our model still scored a higher mAP@0.5 (27.93% compared
to 13.74%), see Table 4.6. In Table 4.5, we compared TP, FP, FN, Precision and
Recall for both models at different confidence thresholds. Throughout all thresholds,
we observed that our model got higher Precision compared to the KSO model,
meaning that the number of true detected corals over the detected corals is higher
for our model. Also, our model got higher Recall compared to the KSO model,
demonstrating that the fraction of true detected corals among all true corals is
higher for our model. However, our model has a high number of FP predictions for
all confidence thresholds, meaning that our model makes many miss-classifications.
For example, the first row in Figure 4.13 shows a frame where our model predicted a
Bolocera wrongly as a coral, while the KSO model behaved in this situation correctly.
Another interesting observation is that when increasing the confidence threshold, the
number of detections of the KSO model dropped notably in contrast to our model,
which means that most of the confidence scores for the KSO model are not too high.
The second row in Figure 4.13 shows an example where our model detected the coral
with a confidence score of 0.91, whereas the KSO model’s detection had a confidence
score of 0.47. Lastly, we noticed that many corals got detected by neither the KSO
model nor our model. This is indicated by the high number of FN predictions, which
is more than half of the ground truth boxes.

Confidence Threshold 0.25
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 27 59 29 0.31 0.48
KSO model 18 45 38 0.29 0.32

Confidence Threshold 0.5
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 21 35 35 0.38 0.38
KSO model 8 16 48 0.33 0.14

Confidence Threshold 0.75
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 16 22 40 0.42 0.29
KSO model 1 3 55 0.25 0.02

Table 4.5: TP, FP, FN, Precision, and Recall at different confidence thresholds
for the KSO model and YOLOv4-baseline (ours) on the data from the Kosterhavet
National Park with different environmental settings.

Model mAP@0.5
YOLOv4-baseline (ours) 27.93%
KSO model 13.74%

Table 4.6: mAP@0.5 for the KSO model and YOLOv4-baseline (ours) on the data
from the Kosterhavet National Park with different environmental settings.

46

4. Results and Discussion

KSO Ours

Figure 4.13: Example images with predicted boxes for the data with different
environmental settings.

Testing on data from outside the Kosterhavet National Park

Both models resulted in low mAP@0.5 on the MMT-test data. However, our model
still achieved a higher mAP@0.5 than the KSO model, i.e., 32.01% compared to
10.13%, see Table 4.7. Table 4.8 shows the results of TP, FP, FN, Precision and
Recall for both models at three different confidence thresholds. Both models have
a very high number of FN predictions and a low number of TP and FP predictions,
meaning that many corals did not get detected by the models. For example, the first
row in Figure 4.7 shows an example where both models missed to detect the coral.
However, the results indicate that our model performed better than the KSO model.
For example, at confidence threshold 0.25, our model correctly detected 18 corals
compared to the KSO model that only detected 5 corals out of 100. An example of
this can also be seen in the second row in Figure 4.7, where our model detected the
coral, while the KSO model failed.

Model mAP@0.5
YOLOv4-baseline (ours) 32.01%
KSO model 10.13%

Table 4.7: mAP@0.5 for the KSO model and YOLOv4-baseline (ours) on the
MMT-test data.

47

4. Results and Discussion

Confidence Threshold 0.25
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 18 6 82 0.75 0.18
KSO model 5 10 95 0.33 0.05

Confidence Threshold 0.5
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 9 4 91 0.69 0.09
KSO model 1 4 99 0.20 0.01

Confidence Threshold 0.75
Model TP FP FN Precision Recall
YOLOv4-baseline (ours) 6 3 94 0.67 0.06
KSO model 0 1 100 0.00 0.00

Table 4.8: TP, FP, FN, Precision, and Recall at different confidence thresholds for
the KSO model and YOLOv4-baseline (ours) on the MMT-test data.

KSO Ours

Figure 4.14: Example images with predicted boxes for the MMT data with differ-
ent environmental settings outside the Kosterhavet National Park.

According to the test results in the three different experiments, we believe that
our model achieved promising initial results that can be built upon in the future.
The results from testing on data from the Kosterhavet National Park similar to the
training data show that our model outperforms the KSO model with a 15% higher
mAP@0.5, which indicates that our proposed system has the potential to overcome
the overfitting issue suffered by the KSO baseline model. Moreover, the tests on

48

4. Results and Discussion

data from different environments, inside and outside the Kosterhavet National Park,
demonstrated that our proposed system generalizes better to new domains than
the KSO model. However, the resulted scores from testing on data from different
environments are not very high. The reason is that our system resulted in high
numbers of False Positive and False Negative predictions, which means that the
system makes many miss-classifications and misses to detect some of the corals. A
reason for this could be that our training data includes only 2675 images (409 real
images and 2266 synthetic images), which might not be diverse enough to cover all
cases and generalize well on different environments. Also, we did not train the system
to learn what is not a coral or to distinguish between different species. This can
be done, for example, by including negative examples, images that contain different
objects other than corals [65]. Training with negative examples might improve the
learning process, make the system more robust and reduce the number of False
Positive predictions. Moreover, we think that one cause for the high number of
undetected corals is that many corals are hard to detect due to the poor quality of the
underwater footage. Unfortunately, we could not finish building the enhancement
pipeline to improve the images by making the coral’s features more visible, which
might result in making the detection easier and hence, reduce the False Negative
predictions.

We computed TP, FP, FN, Precision, and Recall at different confidence thresholds
to analyze the influence of the threshold on the resulting detections. In all three
tests we observed a rather linear relationship between the confidence thresholds and
the computed metrics (see Table 4.8, 4.5 and 4.4). This implicates that there is no
clear threshold giving better results than the others.

The results showcase that our proposed model is superior to the KSO model in all
three analyzed scenarios in terms of mAP@0.5. However, one emerging question is
what role StyleGAN2 in the data augmentation process plays, besides the change of
using YOLOv4 instead of YOLOv3. The authors of YOLOv4 reported an increase
of about 10% in mAP@0.5 compared to YOLOv3, both trained on MS COCO
[39]. Our model was trained on fewer data compared to the KSO-model (YOLOv3)
yet achieved an increase between 13-21% mAP@0.5 through the conducted tests.
Therefore, we believe that not only the replacement of YOLOv3 with YOLOv4 was
crucial to the improvement in performance, but also the introduction of synthetic
data. However, to precisely quantify how much the synthetic data contributed to
the success, further testing is needed.

In the case of rare species, like the deepwater corals, where gathering enough diverse
data to train an object detector and achieve desired evaluation metrics is hard, we
believe that using synthetic data is useful. Furthermore, in the case of multi-class
detection, GANs could also be useful when the training data is unbalanced. However,
in the case of species where a lot of diverse data is available, it has to be tested how
the combination of synthetic and real data would perform against only real data.
Moreover, the time needed to prepare thousands of real images (i.e., cutting footage,
finding frames with the desired species) versus the time needed to prepare only a
few hundred real images and then increase it synthetically using a GAN, has to be
considered during the comparison.

49

4. Results and Discussion

To sum up, we believe that our results are a promising start, and more future
research can be done to further develop the system to become more robust and
generalize well on new and different environments.

50

5
Conclusion

In this thesis, we explored building a more robust system to improve the detection
accuracy for deepwater corals. Our research included three phases: image enhance-
ment, image augmentation, and object detection. The results of each phase are
summarized below.

Given the enhancement phase results, we have found that creating an effective and
usable enhancement network using CycleGAN is a difficult task in our case. We be-
lieve that one reason for this is that we lack good quality images with the same char-
acteristics as the Kosterhavet images to train CycleGAN successfully. The results
stated in the report are the best result we got. Besides that, we also experimented
with splitting the deeplet sea anemones dataset (domainX data from the CycleGAN
training in Section 3.2) into bad and good quality images to get two datasets, which
only differ in quality. However, the good images were not good enough to achieve an
adequate enhancement system. To build an enhancement system using CycleGAN,
we believe that good and bad quality images from the same region are needed. We
also want to mention that several authors focused on building advanced and com-
plex algorithms, like UGAN [66], which might give better enhancement results for
underwater images than CycleGAN. However, UGAN also requires two sets of good
and bad quality images, making it impractical to use at this stage. Therefore, we
leave the research about building an enhancement network for the KSO pipeline for
future work.

The results from the augmentation phase showed that GANs could be used to in-
crease the training data. All three tested models produced diverse synthetic data,
which showed the characteristics of the training data. However, the first trained
networks, DCGAN and WGAN-GP, have the limitation that they can only generate
images of size 64× 64. Therefore, we used the more advanced model StyleGAN2 to
output 2266 images of resolution 512× 512 to train the object detector.

In the last step, we trained two YOLOv4 based object detection systems, YOLOv4-
baseline and YOLOv4-SAM-Mish. Both models showed satisfactory results on the
evaluation dataset. However, the YOLOv4-baseline model gave slightly better pre-
diction performance and was therefore chosen as our final model to test against
the KSO-model and answer our research questions. Our system achieved fairly
good results on the testing data from the Kosterhavet National Park with the same
environmental settings and outperformed the KSO model in terms of mAP@0.5.
Therefore, we believe that our proposed system came a step closer to overcome the
overfitting issue. In terms of generalization towards different environments inside as

51

5. Conclusion

well as outside the Kosterhavet National Park, our proposed system also achieved
better results than the baseline model implemented in the KSO system. However,
the results still show that more research has to be done towards building a system
that can successfully generalize to new domains. This because in all three tests, we
observed high numbers of False Negative and False Positive predictions. Therefore,
further research into building a more robust system to make it easier for the de-
tector to recognize the deepwater corals, distinguish between different species, and
generalize better to new and different environments is needed.

52

6
Future Work

Data Enhancement
To further investigate how to build an effective enhancement system using Cycle-
GAN or UGAN, we believe that a set of good quality images from the Kosterhavet
National Park has to be collected. Training the image translation network with
two sets of images that only differ in terms of quality might result in an adequate
enhancement system.

Data Augmentation
Interesting future research about using GANs for data augmentation could include
further investigation of increasing the data diversity. We think that this could be
done by exploring more image-to-image translation methods to change an image
background without affecting objects of interest. Also, training StyleGAN2 with
images that include more species might result in creating synthetic images, which
are more diverse.
Furthermore, due to time constraints and long training hours, we only trained Style-
GAN2 with the default hyperparameters suggested by the authors. Tuning some
hyperparameters in StyleGAN2 might enhance the quality of images, generate more
realistic data, and improve the overall performance of the system.
Finally, training with a large dataset needs a long time to train and a lot of RAM.
This was one of the reasons why we only generated 3000 synthetic images. Hence,
we leave the generation of more synthetic data and the investigation of how this
affects the model performance for future work.

Object detection
Further research concerning the improvement of the coral detection system could
include adding negative samples to the training data [65]. Negative samples are
unlabeled images, which include other objects besides corals (i.e., fishes, sponges,
etc.). This might further improve the detection performance since the detector not
only learns the features of corals but also learns to distinguish between corals and
other objects. Furthermore, due to time constraints, we only trained the YOLOv4-
baseline and YOLOv4-SAM-Mish models with the default hyperparameters. Further
experiments to adjust the hyperparameters might boost the detection performance.
Finally, we also think that adding more traditional data augmentation techniques,
like randomly flipping and rotating the images, could be investigated to see if it
increases the performance of the model.

Finally, the appropriate metric for the model’s evaluation should be carefully cho-
sen depending on the employment of the system. In case the system is used as a

53

6. Future Work

recommendation system, Recall should be prioritized. However, for a stand-alone
system, both Precision and Recall should be considered.

Explore more species
An exciting part of future research would be trying to make our system recognize
more species. Important species that could be explored in the Kosterhavet are
habitat builders, including Sponges (Axinella spp., Phakelia ventilabrum, Geodia
baretti), Sea pens/anemones (Kophobelemnon stelliferum, Pennatula phosphorea,
Bolocera tuediae) and Crustaceans (Nephrops norvegicus).

54

Bibliography

[1] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009,
Miami, Florida, USA. IEEE Computer Society, 2009, pp. 248–255. [Online].
Available: https://doi.org/10.1109/CVPR.2009.5206848

[2] O. Matthias. (2020, Apr. 29) How machines change marine biology. Accessed
Jan. 18, 2021. [Online]. Available: https://www.youtube.com/watch?v=
wxg3w3VLIbM&t=2s

[3] L. Guidi, A. Fernàndez-Guerra, D. Bakker, C. Canchaya, E. Curry, F. Foglini,
J.-O. Irission, K. Malde, C. T. Marshall, M. Obst, R. P. Ribeiro, and
J. Tjiputra, “Big data in marine science.” Zenodo, 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3755793

[4] F. Sultana, A. Sufian, and P. Dutta, “Advancements in image classification
using convolutional neural network,” CoRR, vol. abs/1905.03288, 2019.
[Online]. Available: http://arxiv.org/abs/1905.03288

[5] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep learning: A
review,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 11, pp. 3212–
3232, 2019. [Online]. Available: https://doi.org/10.1109/TNNLS.2018.2876865

[6] C. Fabbri, M. J. Islam, and J. Sattar, “Enhancing underwater imagery using
generative adversarial networks,” in 2018 IEEE International Conference
on Robotics and Automation, ICRA 2018, Brisbane, Australia, May
21-25, 2018. IEEE, 2018, pp. 7159–7165. [Online]. Available: https:
//doi.org/10.1109/ICRA.2018.8460552

[7] V. Anton, J. Germishuys, P. Bergström, M. Lindegarth, and M. Obst, “An
open-source, citizen science and machine learning approach to analyse subsea
movies,” Biodiversity Data Journal, vol. 9, p. e60548, 2021. [Online]. Available:
https://doi.org/10.3897/BDJ.9.e60548

[8] S. Mallick. (2017, Feb. 13) Object tracking using opencv (c++/python).
Accessed Jan. 20, 2021. [Online]. Available: https://learnopencv.com/
object-tracking-using-opencv-cpp-python/

[9] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR, vol.
abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/abs/1804.02767

55

https://doi.org/10.1109/CVPR.2009.5206848
https://www.youtube.com/watch?v=wxg3w3VLIbM&t=2s
https://www.youtube.com/watch?v=wxg3w3VLIbM&t=2s
https://doi.org/10.5281/zenodo.3755793
http://arxiv.org/abs/1905.03288
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/ICRA.2018.8460552
https://doi.org/10.1109/ICRA.2018.8460552
https://doi.org/10.3897/BDJ.9.e60548
https://learnopencv.com/object-tracking-using-opencv-cpp-python/
https://learnopencv.com/object-tracking-using-opencv-cpp-python/
http://arxiv.org/abs/1804.02767

Bibliography

[10] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, “A state-of-
the-art survey on deep learning theory and architectures,” Electronics, vol. 8,
no. 3, 2019. [Online]. Available: https://www.mdpi.com/2079-9292/8/3/292

[11] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and
H. Greenspan, “Gan-based synthetic medical image augmentation for increased
CNN performance in liver lesion classification,” CoRR, vol. abs/1803.01229,
2018. [Online]. Available: http://arxiv.org/abs/1803.01229

[12] O. Boulais, B. Woodward, B. Schlining, L. Lundsten, K. Barnard, K. C.
Bell, and K. Katija, “Fathomnet: An underwater image training database for
ocean exploration and discovery,” arXiv e-prints, 2020. [Online]. Available:
https://arxiv.org/abs/2007.00114

[13] E. Ditria, M. Sievers, S. Lopez-Marcano, E. L. Jinks, and R. M. Connolly,
“Deep learning for automated analysis of fish abundance: the benefits
of training across multiple habitats,” bioRxiv, 2020. [Online]. Available:
https://www.biorxiv.org/content/early/2020/05/22/2020.05.19.105056

[14] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” in IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017. IEEE Computer Society, 2017, pp. 2980–2988. [Online].
Available: https://doi.org/10.1109/ICCV.2017.322

[15] V. López-Vázquez, J. M. López-Guede, S. Marini, E. Fanelli, E. Johnsen,
and J. Aguzzi, “Video image enhancement and machine learning pipeline
for underwater animal detection and classification at cabled observatories,”
Sensors, vol. 20, no. 3, p. 726, 2020. [Online]. Available: https:
//doi.org/10.3390/s20030726

[16] A. M. Reza, “Realization of the contrast limited adaptive histogram
equalization (CLAHE) for real-time image enhancement,” J. VLSI Signal
Process., vol. 38, no. 1, pp. 35–44, 2004. [Online]. Available: https:
//doi.org/10.1023/B:VLSI.0000028532.53893.82

[17] S. Song, J. Zhu, X. Li, and Q. Huang, “Integrate MSRCR and mask
R-CNN to recognize underwater creatures on small sample datasets,”
IEEE Access, vol. 8, pp. 172 848–172 858, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.3025617

[18] T. R. Shaham, T. Dekel, and T. Michaeli, “Singan: Learning a generative
model from a single natural image,” in 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019. IEEE, 2019, pp. 4569–4579. [Online]. Available:
https://doi.org/10.1109/ICCV.2019.00467

[19] Sjöfartsverket. (2019, Jul. 19) Spridningstillstånd. Accessed Jan. 22,
2021. [Online]. Available: https://www.sjofartsverket.se/sv/Batliv/Sjokort/
Copyright--nyttjanderatt/Spridningstillstand/

56

https://www.mdpi.com/2079-9292/8/3/292
http://arxiv.org/abs/1803.01229
https://arxiv.org/abs/2007.00114
https://www.biorxiv.org/content/early/2020/05/22/2020.05.19.105056
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.3390/s20030726
https://doi.org/10.3390/s20030726
https://doi.org/10.1023/B:VLSI.0000028532.53893.82
https://doi.org/10.1023/B:VLSI.0000028532.53893.82
https://doi.org/10.1109/ACCESS.2020.3025617
https://doi.org/10.1109/ICCV.2019.00467
https://www.sjofartsverket.se/sv/Batliv/Sjokort/Copyright--nyttjanderatt/Spridningstillstand/
https://www.sjofartsverket.se/sv/Batliv/Sjokort/Copyright--nyttjanderatt/Spridningstillstand/

Bibliography

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances
in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., vol. 27. Curran
Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[21] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng, “Recent
progress on generative adversarial networks (gans): A survey,” IEEE
Access, vol. 7, pp. 36 322–36 333, 2019. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2019.2905015

[22] ——, “Recent progress on generative adversarial networks (gans): A
survey,” IEEE Access, vol. 7, pp. 36 322–36 333, 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2905015

[23] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2016. [Online]. Available: http://arxiv.org/abs/1511.06434

[24] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” CoRR, vol.
abs/1701.07875, 2017. [Online]. Available: http://arxiv.org/abs/1701.07875

[25] C. Villani, Optimal Transport: Old and New, ser. Grundlehren der mathema-
tischen Wissenschaften. Springer, Berlin, Heidelberg, 2009.

[26] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” in Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp.
5767–5777. [Online]. Available: https://proceedings.neurips.cc/paper/2017/
hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[28] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp. 4401–4410.
[Online]. Available: http://openaccess.thecvf.com/content_CVPR_2019/
html/Karras_A_Style-Based_Generator_Architecture_for_Generative_
Adversarial_Networks_CVPR_2019_paper.html

[29] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans

57

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/ACCESS.2019.2905015
https://doi.org/10.1109/ACCESS.2019.2905015
https://doi.org/10.1109/ACCESS.2019.2905015
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1701.07875
https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
http://arxiv.org/abs/1412.6980
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html

Bibliography

for improved quality, stability, and variation,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. [Online].
Available: https://openreview.net/forum?id=Hk99zCeAb

[30] X. Huang and S. J. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.
IEEE Computer Society, 2017, pp. 1510–1519. [Online]. Available: https:
//doi.org/10.1109/ICCV.2017.167

[31] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020. IEEE, 2020, pp. 8107–8116. [Online]. Available:
https://doi.org/10.1109/CVPR42600.2020.00813

[32] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017. IEEE Computer Society, 2017, pp. 2242–2251. [Online]. Available:
https://doi.org/10.1109/ICCV.2017.244

[33] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II, ser. Lecture Notes in Computer Science, B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds., vol. 9906. Springer, 2016, pp.
694–711. [Online]. Available: https://doi.org/10.1007/978-3-319-46475-6_43

[34] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” CoRR, vol. abs/1607.08022, 2016.
[Online]. Available: http://arxiv.org/abs/1607.08022

[35] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017. IEEE Computer Society, 2017, pp. 5967–5976. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.632

[36] S. Zhao, Z. Liu, J. Lin, J. Zhu, and S. Han, “Differentiable augmenta-
tion for data-efficient GAN training,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/
55479c55ebd1efd3ff125f1337100388-Abstract.html

[37] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in 2014

58

https://openreview.net/forum?id=Hk99zCeAb
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1607.08022
https://doi.org/10.1109/CVPR.2017.632
https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388-Abstract.html

Bibliography

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014,
Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 2014, pp.
580–587. [Online]. Available: https://doi.org/10.1109/CVPR.2014.81

[38] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016. IEEE Computer Society, 2016, pp. 779–788. [Online].
Available: https://doi.org/10.1109/CVPR.2016.91

[39] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020. [Online].
Available: https://arxiv.org/abs/2004.10934

[40] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 2017, pp.
6517–6525. [Online]. Available: https://doi.org/10.1109/CVPR.2017.690

[41] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 2017, pp. 936–944. [Online].
Available: https://doi.org/10.1109/CVPR.2017.106

[42] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser. Lecture
Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds., vol. 8693. Springer, 2014, pp. 740–755. [Online].
Available: https://doi.org/10.1007/978-3-319-10602-1_48

[43] C. Wang, H. M. Liao, Y. Wu, P. Chen, J. Hsieh, and I. Yeh, “Cspnet: A new
backbone that can enhance learning capability of CNN,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR Workshops
2020, Seattle, WA, USA, June 14-19, 2020. IEEE, 2020, pp. 1571–1580.
[Online]. Available: https://doi.org/10.1109/CVPRW50498.2020.00203

[44] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for
instance segmentation,” CoRR, vol. abs/1803.01534, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01534

[45] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “Cutmix:
Regularization strategy to train strong classifiers with localizable features,” in
2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019, pp.
6022–6031. [Online]. Available: https://doi.org/10.1109/ICCV.2019.00612

[46] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Conference on

59

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/CVPRW50498.2020.00203
http://arxiv.org/abs/1803.01534
https://doi.org/10.1109/ICCV.2019.00612

Bibliography

Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016. IEEE Computer Society, 2016, pp. 2818–2826. [Online].
Available: https://doi.org/10.1109/CVPR.2016.308

[47] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss: Faster
and better learning for bounding box regression,” in The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 12 993–13 000.
[Online]. Available: https://aaai.org/ojs/index.php/AAAI/article/view/6999

[48] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, ser. JMLR Workshop and Conference Proceedings, F. R.
Bach and D. M. Blei, Eds., vol. 37. JMLR.org, 2015, pp. 448–456. [Online].
Available: http://proceedings.mlr.press/v37/ioffe15.html

[49] D. Misra, “Mish: A self regularized non-monotonic activation function,”
in 31st British Machine Vision Conference 2020, BMVC 2020, Virtual
Event, UK, September 7-10, 2020. BMVA Press, 2020. [Online]. Available:
https://www.bmvc2020-conference.com/assets/papers/0928.pdf

[50] S. Woo, J. Park, J. Lee, and I. S. Kweon, “CBAM: convolutional block
attention module,” in Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
VII, ser. Lecture Notes in Computer Science, V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, Eds., vol. 11211. Springer, 2018, pp. 3–19.
[Online]. Available: https://doi.org/10.1007/978-3-030-01234-2_1

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, 2015. [Online]. Available:
https://doi.org/10.1109/TPAMI.2015.2389824

[52] Z. Huang, J. Wang, X. Fu, T. Yu, Y. Guo, and R. Wang, “DC-SPP-YOLO:
dense connection and spatial pyramid pooling based YOLO for object
detection,” Inf. Sci., vol. 522, pp. 241–258, 2020. [Online]. Available:
https://doi.org/10.1016/j.ins.2020.02.067

[53] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010. [Online]. Available:
https://doi.org/10.1007/s11263-009-0275-4

[54] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. S. Huang, “Unitbox: An advanced
object detection network,” in Proceedings of the 2016 ACM Conference on
Multimedia Conference, MM 2016, Amsterdam, The Netherlands, October
15-19, 2016, A. Hanjalic, C. Snoek, M. Worring, D. C. A. Bulterman, B. Huet,

60

https://doi.org/10.1109/CVPR.2016.308
https://aaai.org/ojs/index.php/AAAI/article/view/6999
http://proceedings.mlr.press/v37/ioffe15.html
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1016/j.ins.2020.02.067
https://doi.org/10.1007/s11263-009-0275-4

Bibliography

A. Kelliher, Y. Kompatsiaris, and J. Li, Eds. ACM, 2016, pp. 516–520.
[Online]. Available: https://doi.org/10.1145/2964284.2967274

[55] F. Bashir and F. Porikli, “Performance evaluation of object detection and
tracking systems,” Mitsubishi Electric Research Laboratories, Tech. Rep., Jun.
2006. [Online]. Available: http://www.merl.com/reports/docs/TR2006-041.
pdf

[56] Wikipedia contributors, “Precision and recall — Wikipedia, the free
encyclopedia,” 2021, accessed May. 03, 2021. [Online]. Available: https:
//en.wikipedia.org/wiki/Precision_and_recall

[57] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017. IEEE Computer Society, 2017, pp. 2813–2821. [Online]. Available:
https://doi.org/10.1109/ICCV.2017.304

[58] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” CoRR, vol. abs/1606.03498,
2016. [Online]. Available: http://arxiv.org/abs/1606.03498

[59] N. Inkawhich. (2017) Dcgan tutorial. Accessed Mar. 10, 2021. [Online].
Available: https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

[60] A. Persson. (2021) Machine learning collection. Accessed
Mar. 10, 2021. [Online]. Available: https://github.com/
aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/
GANs/4.%20WGAN-GP

[61] L. M. Mescheder, A. Geiger, and S. Nowozin, “Which training methods
for gans do actually converge?” in Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research,
J. G. Dy and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 3478–3487. [Online].
Available: http://proceedings.mlr.press/v80/mescheder18a.html

[62] Z. Si and S. Zhu, “Learning hybrid image templates (HIT) by information
projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1354–
1367, 2012. [Online]. Available: https://doi.org/10.1109/TPAMI.2011.227

[63] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M.
Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp.
6626–6637. [Online]. Available: https://proceedings.neurips.cc/paper/2017/
hash/8a1d694707eb0fefe65871369074926d-Abstract.html

61

https://doi.org/10.1145/2964284.2967274
http://www.merl.com/reports/docs/TR2006-041.pdf
http://www.merl.com/reports/docs/TR2006-041.pdf
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://doi.org/10.1109/ICCV.2017.304
http://arxiv.org/abs/1606.03498
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/4.%20WGAN-GP
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/4.%20WGAN-GP
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/4.%20WGAN-GP
http://proceedings.mlr.press/v80/mescheder18a.html
https://doi.org/10.1109/TPAMI.2011.227
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html

Bibliography

[64] D. Tzutalin. (2015) LabelImg: A graphical image annotation tool. Accessed
Mar. 19, 2021. [Online]. Available: https://github.com/tzutalin/labelImg

[65] J. Redmon, “Darknet: Open source neural networks in c,” http://pjreddie.
com/darknet/, 2013–2016.

[66] C. Fabbri, M. J. Islam, and J. Sattar, “Enhancing underwater imagery using
generative adversarial networks,” in 2018 IEEE International Conference
on Robotics and Automation, ICRA 2018, Brisbane, Australia, May
21-25, 2018. IEEE, 2018, pp. 7159–7165. [Online]. Available: https:
//doi.org/10.1109/ICRA.2018.8460552

62

https://github.com/tzutalin/labelImg
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1109/ICRA.2018.8460552
https://doi.org/10.1109/ICRA.2018.8460552

A
Appendix 1

A.1 Data

Name Description Quantity Source Licence
Coral
Frames

Our initial training frames contain-
ing deepwater corals taken by ROVs
in the Kosterhavet National Park.

409 KSO CC BY 4.0.

Bolocera
Frames

Bolocera images used as Domain X
in the enhancement process. Taken
by ROVs in the Kosterhavet.

409 KSO CC BY 4.0.

Old
Movie

Footage used to test the ability of
our model to overcome the over-
fitting issue on data similar to the
training data. Taken by ROVs in
the Kosterhavet.

1 KSO CC BY 4.0.

New
Movies

Testing movies taken by a newer
camera model to investigate the
generalization of our model to dif-
ferent environmental settings inside
the Kosterhavet.

3 KSO CC BY 4.0.

MMT
Images

High resolution images taken out-
side the Kosterhavet National Park.
The data was used together with the
ImageNet images as domain Y dur-
ing the training of Cyclegan. This
dataset was also used to test the
model’s ability to generalize to new
domains outside the Kosterhavet.

31 MMT
Sweden
AB

Restricted
access

ImageNet
Images

Hand picked images from ImageNet
including the classes sea anemone
and coral. These images formed to-
gether with the MMT Images the
domain Y for Cyclegan training.

273 ImageNet We refer to
ImageNet’s
data licence
page here.

Table A.1: Information about the used data in this study.

Table A.1 gives an overview of the data used in this study and provides information
including data license and access. The main material was provided by the Koster

I

https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/team
https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/team
https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/team
https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/team
https://www.image-net.org/
https://www.image-net.org/download.php

A. Appendix 1

Seafloor Observatory (KSO) and can be accessed by contacting the responsible per-
son displayed on their website. The images from MMT Sweden AB, that were used
during the training of CycleGAN and the testing phase, have restricted access. We
also used images from ImageNet during the training of CycleGAN, which can be
downloaded under their given licence on their website. Finally, we also produced
2266 synthetic coral images, which will be catalogued in the Swedish National Data
Service (SND) under the licence CC BY 4.0..

II

https://snd.gu.se/en/catalogue/study/snd1069
https://snd.gu.se/en/catalogue/study/snd1069

	List of Figures
	List of Tables
	Introduction
	Problem
	Goals
	Related Work
	Ethical Considerations
	Ethical aspects of the development phase
	Ethical aspects of the research outcome

	Roadmap

	Theory
	Generative Adversarial Networks
	Deep Convolutional GAN
	Wasserstein GAN
	StyleGAN
	CycleGAN
	Differentiable Augmentation (DiffAugment)

	Object Detection
	YOLO
	YOLOv2
	YOLOv3
	YOLOv4
	Bag of freebies and Bag of specials

	Evaluation Metrics
	Mean Average Precision (mAP)
	Loss Function
	Confidence Score
	Precision and Recall

	Methods
	Data
	Image Enhancement
	Training
	Evaluation

	Image Augmentation
	Training
	DCGAN and WGAN-GP
	StyleGAN2
	DiffAugment

	Evaluation

	Object Detection
	Data Preparation
	Training
	Evaluation
	Testing

	Results and Discussion
	Image Enhancement
	Training
	Evaluation

	Image Augmentation
	Training
	DCGAN and WGAN-GP
	StyleGAN2

	Evaluation

	Object Detection
	Training
	Evaluation
	Testing

	Conclusion
	Future Work
	Bibliography
	Appendix 1
	Data

