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Abstract
Studies have shown that driving style affects the energy consumption of electric vehi-
cles, with aggressive driving consuming up to 30% more energy than moderate driv-
ing. Therefore, modeling of aggressive driving can provide a more precise estimation
of the energy consumption and the remaining range of a vehicle. This study proposes
driver behavior classification on vehicle-based measurements through several deep
learning models: convolutional neural networks, long short-term memory recurrent
neural networks, and self-attention models. The networks have been trained on two
naturalistic driving datasets: a labeled dataset generated from a test vehicle on-site
at Volvo Cars and unlabeled data collected from co-development Volvo Cars vehi-
cles. The latter dataset has been annotated following rules and driving parameters
quantifying the aggressiveness of driving style. The implemented models achieve
promising results on both datasets, with the one-dimensional convolutional neural
network yielding the highest test accuracy throughout experiments. One of our con-
tributions is to use self-attention and deep convolutional neural networks with joint
recurrence plots, which are appropriate for longer sequences because they bypass
sequential training. The study also explores several active learning techniques such
as uncertainty sampling, query by committee, active deep dropout, gradual pseudo
labeling, and active learning for time-series data. These techniques showed vari-
able results, with uncertainty sampling performing consistently better than random
sampling. This study confirms the effectiveness of machine learning models in clas-
sifying driver behavior. It also shows that active learning can considerably decrease
the need for training data.

Keywords: Aggressive driver behavior, Driver behavior classification, Self-attention,
Recurrence plots, active learning, Active deep dropout, Gradual pseudo labeling.
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1
Introduction

Battery electric vehicles (BEVs) present many advantages over internal combustion
engine vehicles (ICEVs), including a lighter environmental impact in the majority of
vehicle usage scenarios [1]. These advantages have likely contributed to the recent
rise of popularity of electric vehicles (EVs), particularly at European level, with
the European market share growing by 44% between 2018 and 2019 and with nine
European markets ranking in the top ten for penetration rate in 2020 [2]. Despite
this success, it is estimated that range anxiety, i.e., the fear that the vehicle will come
to a stop due to a depleted battery before reaching the destination or a recharging
station, is a strong hindering factor in the transition to EVs in private transportation
[3]. This fear is not completely unfounded: while high-end BEV models have an
estimated range of over 500 km with a single charge, the real-world autonomy of
medium-end models tends to lie within the 200-300 km range (2020) [4].

Range anxiety can be eased by providing the driver with a reliable and accurate
estimation of the remaining range: studies have shown that energy consumption is
significantly affected by the driver’s behavior [5, 6], with moderate driving styles
saving up to 30% energy compared to aggressive driving [5]. Driver behavior can be
assessed from driving events such as turning and tailgating, and from vehicle-based
measures collected by the On Board Diagnostics (OBD) system interfacing with the
vehicle’s sensors and with the engine control unit (ECU) [7, 8]. Previous research
suggests that driving signals, such as vehicle’s speed, acceleration and change in
acceleration (jerk), can correlate with driving style [6, 8]. Studies also suggest that
machine learning models can effectively infer driver behavior from these signals [8, 9].

This study therefore proposes driver behavior classification with four deep learning
algorithms: a long short-term memory recurrent neural network (LSTM), a one-
dimensional (1D) and a two-dimensional (2D) convolutional neural network (CNN),
and a self-attention model. This study also explores active learning and gradual
pseudo labeling to optimize the training process and obtain higher accuracy with
fewer labeled samples. This optimization is particularly important in the scenario at
hand because the manual annotation of time-series data is costly and time consum-
ing. This study is therefore part of Volvo Cars’ long-term goal of performing a more
accurate estimation of the remaining range in EVs by modeling driver behavior.
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1. Introduction

1.1 Background
There is a common intuition that there exist different types of driving styles. A
driving style that is interesting to analyze is aggressive driving. This style consists
of a set of hazardous or hasty measures that a driver is willing to take in order to
spare time. These measures include tailgating, severe acceleration and deceleration,
and risky or sudden lane changes. Other types of driving styles include distracted,
drowsy, and drunk driving [10]. Detection of different driver behavior has benefits
in several applications (e.g., system notification when the driver appears sleepy).
Therefore, modern research is trying to investigate whether driver behavior can be
modeled using various tools and techniques.

Driving behavior has been studied over the last decade with various models and fea-
tures. Some modeling methods include Gaussian Mixture Models (GMM) [11, 12,
13], Hidden Markov Models (HMM) [13, 14, 15], and neural networks [10, 16, 17].
These studies on driver behavior can also differ in the type of data gathered used
for modeling. Examples of such measurements are Controller Area Network (CAN)
bus signals [13, 17, 18, 19], smartphone sensors [19, 20, 21], questionnaires [22, 23],
and video feed [24, 25]. This difference in measurements during data gathering adds
ambiguity on what exactly is being modeled. Elamrani Abou Elassad et al. (2020)
have introduced a conceptual framework to reduce ambiguity when modeling driver
behavior [7] .

Elamrani Abou Elassad et al. (2020) state that there are three modules that affect
driver behavior: the driver, the vehicle, and the environment. The driver module can
affect the behavior due to their driving profile such as age, driving experience, etc.
The vehicle module can affect the behavior due to addition of equipment within
a car model (i.e., parking displays, cruise control, etc.). Lastly, the environment
module encompasses road condition, weather condition, traffic condition, etc.

Elamrani Abou Elassad et al.’s conceptual framework further breaks down the term
driving behavior into three types of phenomena: driving events (i.e., driving oper-
ations performed by the driver such as tailgating, turning, etc.), the physiological
state of the driver, and the psychological state of the driver. These phenomena can
be modeled using various metrics mentioned below [7]:

1. Vehicle-based measures: these measurements capture the operations of the
driver and the vehicle state, e.g. vehicle speed, acceleration, steering wheel,
and others. These measurements can be collected via an On-Board Diagnostics
module or through a CAN-bus.

2. Physiological-based measures: these measurements include putting sen-
sors on the driver to measure heart rate, electrical activity in the brain, and
muscle response. 1

1These measurements can be collected with various equipment such as electrocardiogram (used
to measure heart rate), electroencephalogram (used to measure brain activity), and electromyogram
(used to measure muscle activity).

2



1. Introduction

3. Behavioral-based measures: these types of measurements are used to ana-
lyze driver’s facial expression. This is carried out using a video stream on the
driver’s face to capture micro expressions while driving.

4. Subjective measures: measurements in this category include subjective eval-
uations. Questionnaires are a common method used to gather subjective in-
sight.

This thesis will mainly focus on modeling driving events using vehicle-based mea-
surements.

1.2 Related work
Numerous research studies have explored how driver behavior can be identified and
how it affects energy or fuel consumption. Several articles have adopted a statistics-
based approach to perform modeling of driving features, while others have integrated
such statistical analysis with classical or deep machine learning to perform driver
behavior classification. These two approaches are covered in the next two subsec-
tions. The third subsection covers previous work related to active learning, and the
last subsection covers self-attention models.

1.2.1 Statistics-based approaches
Younes et al. (2013) [6] proposed an analysis of factors affecting energy consump-
tion in EVs, including driver behavior. The authors defined a calm driving style
as characterized by gradual and gentle accelerations and decelerations. They also
defined an aggressive style by stark and heavy accelerations and decelerations, and
a normal style by a middle ground between the two, while also cross comparing
three route types (city, highway and mountain). The authors stated the importance
of controlling for route type when performing driver behavior classification: irregu-
lar mountain terrains and winding roads, in fact, might require us to increase the
threshold for what is considered aggressive driving. The researchers also computed
some parameters that were found to have a strong correlation with driving behav-
ior: positive kinetic energy (PKE), standard deviation of jerk, mean of jerk, relative
positive acceleration (RPA), and root mean square of the power factor (RMSPF).
These parameters have been found relevant for our study when annotating our data.

The effect of jerk on driving style has also been explored by Feng et al. (2017) [26].
The authors defined aggressive driving as displaying either speeding or tailgating
behavior or as being involved in crash or near-crash situations. They found that ag-
gressive drivers tend to display larger jerk standard deviation and that negative jerk
in particular is the best predictor of aggressive driving. Constantinescu, Marinoiu
and Vladoiu (2010) [27] have also performed analysis on similar driving features,
such as mean and standard deviation of both speed and acceleration. The authors
also included in their analysis the percentage of time the driver’s speed was over 60
km/h, which has been found relevant for our methodology.

3



1. Introduction

There are also several studies that look for correlation between driver behavior and
energy or fuel consumption. One such study is the one by Bingham et al. [5], which
proposed a quantitative estimation of the effect of driving style on energy consump-
tion, and found that aggressive driving can consume up to 30% more energy than
moderate driving. Similarly to [6] and [26], they also found that aggressive drivers
show larger standard deviation of the acceleration.

1.2.2 Machine learning-based approaches
One of the earliest applications of neural networks to the identification of driving
styles is the one proposed by MacAdam et al. (1998) [16], where aggressiveness
was measured through the headway space between and the acceleration towards the
vehicle in the front. The researchers categorized driving segments into five levels
of aggressiveness. More recently, Júnior et al. (2017) [20] proposed a smartphone
sensors-based detection of aggressive driving events, e.g., acceleration, turning, and
lane changes. The authors compared several machine learning classifiers and win-
dow sliding sizes for data processing. Lin et al. (2019) [28] proposed a comparison
of feature statistical distribution maps to identify and evaluate drivers from driving
events. Like Júnior et al. [20], they made use of gyroscope and accelerometer data
describing acceleration, braking, lane changes and turning.

Shahverdy et al. (2020) [10] classified driving style into five categories: distracted,
drowsy, drunk, aggressive, and safe. They employed a novel approach by using
2D convolutional neural networks and by converting driving signals into recurrence
plots. The authors argued that the spatial information in the recurrence plots has
more benefits than temporal information in driving signals. One of the benefits is
efficient training, as these types of networks can bypass sequential training. Sequen-
tial training for very long time windows is not feasible. Converting driving signals
into recurrence plots is one of the methods investigated in our thesis.

Halim et al. (2016) [29] profiled driver behavior through clustering of driving features
and performed classification with a neural network and a support vector machine
(SVM). The authors found that average and maximum speed, as well as number
of times braking and honking the horn occur, were significant features for profiling
drivers.

Several studies applied LSTMs: Ping et al. (2019) [8] combined environmental in-
formation from video footage with driving features from the ECU, and classified
windows of data into three classes, corresponding to three fuel consumption levels.
Xing et al. (2020) [9] performed statistical analysis of driving features and confirmed
the previous finding [5] that aggressive driving, characterized by larger mean and
standard deviation of the acceleration, yields higher energy consumption. The au-
thors used the same features to perform prediction of vehicle’s velocity and energy
consumption index, reaching the lowest root mean square error with LSTM-based
models.
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1.2.3 Active learning
Active learning, i.e., the optimization of a classifier’s training procedure by selecting
the most informative samples for the training set, has been subject of extensive stud-
ies since the 1980s. Examples of its applications include tasks in which annotation
might be expensive or scarce, such as text classification [30], speech recognition [31],
and cancer diagnosis [32]. In 2001, Tong [33] explored the application of several ac-
tive learning methodologies to classification with SVMs and parameter estimation
and causal discovery with Bayesian networks, demonstrating that active learning
can successfully decrease the need for training data in those scenarios.

Conventional active learning methods include uncertainty sampling and query by
committee [34]. The former queries the most uncertain samples (according to an
informativeness measure) to a human oracle for annotation. The latter queries the
most informative samples by using a committee of models. The queried samples are
the ones the committee disagrees the most upon.

Extensive research on the topics of uncertainty sampling and query by commit-
tee has been conducted in recent years. In 2015, Gammelsæter [35] proposed a
technique called active deep dropout (ADD). The idea behind this technique is to
implement a committee of models through dropout regularization. More recently,
Bossér et al. (2020) [36] performed a comprehensive analysis of active learning
methodologies by comparing several techniques and informativeness measures on
the CIFAR-10, MNIST and Fashion-MNIST datasets. The authors also developed
an algorithm incorporating active and semi-supervised learning, which they named
gradual pseudo labeling algorithm (GPLA). Further details about GPLA are covered
in subsection 2.3.5.

In 2017, Peng, Luo and Ni [37] proposed a novel approach (named ACTS) of active
learning to time-series data by defining a new informativeness measure based on the
concepts of uncertainty and utility. Further details about this approach are covered
in section 2.4.

1.2.4 Self-attention networks
Vaswani et al. (2017) proposed the transformer model for natural language pro-
cessing (NLP) tasks [38]. The main contribution in their study is the self-attention
module used in sequence modeling. The benefit of this model is its ability to per-
form parallel computations in sequence modeling tasks. Earlier architectures for
sequence modeling are recurrent neural networks, gated recurrent unit recurrent
neural networks (GRU), and long short-term memory neural networks (LSTM).
These architectures require sequential training of the inputs, which is not feasible
for very long sequences. The authors argue that there is a paradigm shift towards
attention-based models (hence the title of the study "Attention is all you need") and
a paradigm shift away from sequential training.
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Mahmud et al. (2020) built upon the ideas from Vaswani et al. by including self-
attention blocks in their architectures. Although the original self-attention module
was used for NLP tasks, Mahmud et al. [39] argue that words are equivalent to sensor
values and that sentences are equivalent to time windows. Hence, they employed
self-attention to model Human Activity Recognition (HAR) [39].

1.3 Aim
The project aims to perform driver behavior classification while optimizing the train-
ing process with active and semi-supervised learning. It therefore answers the fol-
lowing research questions:

Can deep learning architectures achieve good accuracy on the driver be-
havior classification problem?

Can the investigated active learning approaches achieve good accuracy
with less labeled data?

This study proposes several contributions. First, it investigates self-attention net-
works and 2D CNNs with joint recurrence plots on driver behavior classification.
Secondly, it applies novel active learning approaches, such as ADD and GPLA, to
this task.

1.4 Limitations
Energy consumption and driver behavior in EVs are often dependent on external
factors, such as weather and road condition. A 2016 literature survey of factors
affecting fuel consumption and CO2 emissions found that, while aggressive driving
increased fuel use by a median 26%, the presence of rain and heavy traffic increased
it by 30% [40]. This project, however, only focuses on information collected by the
vehicle’s sensors and ECU and does not include any data from the environment
around the vehicle. The reason for this limitation is that assessing the impact of
each factor on energy consumption requires controlling for all other variables, and
therefore excessively broadens the scope of the study for the time at disposal.

Furthermore, studies have shown that video footage of the driver’s face can be
useful in identifying behavior through eye movements [41]. The project does not
make use of it because this type of data is not consistently present across datasets.

Regarding driving behavior, different studies present slightly different definitions
of aggressiveness; the general consensus, however, is that aggressive driving is de-
fined by strong accelerations and decelerations, speeding, and a tendency to tailgate.
This study takes into consideration all three of these aspects but does not consider
occurrence of accidents, as done by Feng et al. [26].
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1.5 Ethical considerations
The project entails three main stakeholders: the drivers, Volvo Cars, and the general
public. The following section will outline some of the ethical implications for the
three parties.

1.5.1 Drivers
A study from 2012 by Cahour et al. analyzed the reactions of drivers borrowing an
EV for two weeks from an emotional and cognitive stand point [42]. From the study
it emerged that drivers can display a wide variety of behaviors and driving styles
as a consequence of the EV’s reduced autonomy compared to traditional vehicles:
drivers tended to be less adventurous with an EV and to use it only for well-known
or planned-ahead journeys. Drivers reported being afraid or anxious of not being
able to reach the preset destination, and being more stressed when the controls
signaled low battery level. In some cases, drivers adopted drastic behaviors to
preserve battery life, such as turning off all unnecessary appliances within the vehicle.
A more accurate prediction of the remaining range can therefore have a positive
psychological and emotional impact on the most easily stressed drivers. Also, if the
project can directly or indirectly help drivers become aware that aggressive driving
implies a higher battery consumption, it might nudge them to adopt a calmer (and
safer) driving style.

1.5.2 General public
A study by Kester from 2019 reports that range anxiety is an important hindrance
to the general public’s adoption of EVs, and argues that a more accurate estimation
of the remaining range can indirectly favor the popularity of EVs and the purchase
of smaller models, thus contributing to environmental sustainability [3]. This is
especially relevant, the study reports, because drivers tend to overestimate the length
of their journeys.

1.5.3 Volvo Cars
Finally, ethical concerns can arise regarding driver identification and the handling
of users’ data. One of the datasets used in this study is collected from Volvo Cars
employees’ leased vehicles and from test vehicles available on-site at Volvo Cars. The
employees, upon signing of the lease contract, are informed about the type of data
collected and its use. The procedure performs pseudonymization and is compliant
with GDPR. Each employee is also required to inform other drivers about the data
collection.

1.6 Structure of the thesis
The report is structured as follows: chapter 2 explores the theoretical principles
of the algorithms and technologies employed in this study; chapter 3 illustrates
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the data collection, generation and processing procedures adopted, as well as the
architectures of the neural models; chapter 4 showcases the results of the study and
finally, chapter 5 discusses the results and possible future work.
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2
Theory

This section provides a theoretical overview of the algorithms employed for this
study, as well as of the mathematical foundations behind them. Section 2.1 describes
the neural networks adopted in the classification task, section 2.2 outlines the kernel
density estimation method employed in the data annotation process, and section 2.3
explains the principles of active learning and related methodologies.

2.1 Supervised learning
In supervised machine learning, the objective is to approximate an unknown function
y = f(x) mapping each input sample xi to the corresponding output yi, for a set of
n input-output pairs (x1, y1), ..., (xn, yn) [43]. The approximation function f̂ is in
this case computed by a mathematical model called artificial neural network, whose
fundamental component, the neuron, is inspired by the biological neuron underlying
the nervous system of most animals. Artificial neural networks approximate f(x) by
defining y = f̂(x;θ), where θ represents the learnable parameters of the function.
The artificial neuron was first introduced in 1958 by American psychologist Frank
Rosenblatt, who named this type of model perceptron [44]. Perceptrons allow the
representation of linearly separable functions by defining function f(x) as described
in equation 2.1:

f(x) =

1 if w · x+ b ≥ 0,
0 otherwise

(2.1)

where x is the input vector, w is the vector of weights, w · x is the dot product
such that w · x = ∑n

i=1 wixi, where n is the number of input elements, and b is
the bias, a scalar value used for the shifting of the decision boundary. Weights and
biases are the adjustable parameters that we previously defined with θ. The sum of
the dot product and the bias is passed through the Heaviside step function, which
mathematically represents the neuron "firing" once a set threshold, in this case 0, is
reached. The Heaviside function is one of the many activation functions adopted in
neural networks to set the range of the neurons’ output in each layer. This simple
model is limited by its inability to represent non linearly separable functions: the
function approximated by a perceptron will always be linear [44]. To obviate this
problem, artificial neural networks concatenate perceptrons in layers where the input
to each neuron at any layer is composed of the output of all neurons at the previous
layer. This basic form of artificial neural network is typically called feed-forward,
because it does not involve any feedback mechanism where outputs are re-immitted
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as input [43]. This concatenation of layers is therefore a composition of functions,
where the final output is dependent on the output from all layers, as represented in
equation 2.2 for a network with two layers [43]:

y = f̂2(f̂1(x;θ);θ) (2.2)

The presence of hidden, i.e. intermediate, layers, as well as the use of non-linear ac-
tivation functions, allows artificial neural networks to approximate non-linear func-
tions. Figure 2.1 shows the graph of a feed-forward neural network with one hidden
layer: biases and weights are shown on the corresponding nodes and edges, respec-
tively.
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Figure 2.1: A feed-forward neural network with one hidden layer. Ii, Hi and Oi denote the
numbered neurons in the input, hidden and output layer respectively, wh

i,j and wo
i,j denote the

weights applied to the input from neuron j to neuron i in the hidden and output layer respectively,
and bh

i and bo
i denote the bias applied in neuron i on the hidden and output layer respectively.

The adjustment of the learnable parameters is performed according to two fun-
damental components: a cost function and an optimization algorithm. The cost
function quantifies the difference between the actual and the predicted values (i.e.,
the error - see equation 2.3 for the sum of squared errors), while the optimization
algorithm tunes θ to minimize the cost function.

E =
n∑
i=1

(f̂(xi;θ)− yi)2 (2.3)

If the cost function is differentiable, as is usually the case in machine learning, the
optimization is gradient based and finds a local or the global minimum of the cost
function by computing its partial derivative with respect to each parameter. The
iterative update of the parameters is computed in backward direction, from the
output to the input layer; for this reason, it is typically called back-propagation.
Equation 2.4 shows a single gradient descent update of parameters θij applied to
the input from node j to node i:

θij ← θij − η
∂E

∂θij
(2.4)
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Where η is a scale factor called learning rate determining the rate at which the
parameters are updated.

2.1.1 Dropout

A neural networks with a lot of parameters can easily overfit. The term overfitting
describes when the neural network performs well on the training data, but is unable
to perform well on new, unseen data. There are several regularization techniques
that are used to control overfitting.

Dropout is a regularization technique that drops certain neurons during training
with probability p. This can be implemented with a binary vector at each layer
(except for input and output layer). Backpropagation during dropout works in
similar fashion, as mentioned in section 2.1. The difference is that the neurons that
have been dropped will be zeroed out during back propagation. However, during the
prediction phase, the weights of a layer will be scaled according the the probability
of the neuron being dropped.

2.1.2 Convolutional neural networks

Convolutional neural networks are a special type of neural network optimized to
process data in a “grid-like topology” [43] by employing convolutions instead of the
dot product found in regular neural networks. In mathematics, convolution is defined
as the integral of a function sliding over another function, i.e., the amount of overlap
between the two functions. It is described by equation 2.5 [45]:

(f ∗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ)dτ (2.5)

Where f and g are two functions involved in the convolution. In machine learning,
convolution is implemented by "scanning" windows of the input space with units,
i.e. vectors or matrices of weights, and by forcing these units to keep the same
weight configuration across the whole space [46]. This brings two main advantages:
a significant reduction in number of parameters, which would grow prohibitively
large if, for example, weights were applied to each single pixel in an image, and the
invariance of the network to geometric transformations in the input. The convolution
of units, typically called filters or kernels, on the input produces a feature map.
Figure 2.2 shows an abstract representation of a convolutional neural network with
2 layers. In the figure, filters can be seen applying convolutions to a subset of the
input, called local receptive field.
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Figure 2.2: The basic structure of a CNN with filters applying convolutions onto a 3D input
as it could be, for example, for colored images.

The replication of weights across input space and the focus on local receptive fields
allows filters in the early layers of the network to detect low-level patterns, such
as corners or edges for images, and filters in late layers of the network to combine
these low-level features into higher-order features, such as faces or shapes. Often,
convolutional layers are placed before pooling layers, which further downsample the
feature maps and extract salient features by selecting the highest (max pooling) or
the average (average pooling) of the values in the pooling window. Due to their
great effectiveness in processing images, convolutional neural networks have become
the state-of-the-art for computer vision tasks such as object detection and image
segmentation.

2.1.3 Recurrent neural networks
The processing of sequential types of input, as is the case for natural language and
time-series data, can benefit from parameter sharing across different time steps.
This is because a model with parameters bound to each single time step might be
unable to generalize well on sequences of different lengths or with tokens in different
positions [43]. Neural networks can share weights by keeping a hidden state h for
each time step t and using it as input to subsequent steps together with new input
x, as expressed in equation 2.6 [43]:

h(t) = f(h(t−1),x(t);θ) (2.6)

At the first time step there is no hidden state from previous steps, hence at any time
step t > 1 function h(t) can be unfolded as a function g(t) dependent on the input
from all previous time steps [43]:

h(t) = g(t)(x(t),x(t−1), . . . ,x(1)) (2.7)

This feedback input of states across time steps defines a recurrence, hence the name
recurrent neural networks (RNN) for this type of network [43]. Weights are then
applied to hidden states and input values for adjustment through back-propagation,
as shown in equation 2.8 [43]:

h(t) = tanh(b+Wh(t−1) +Ux(t)) (2.8)
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whereW and U are weights applied to the hidden state from the previous time step
and to the current input, respectively, and tanh is the hyperbolic tangent function,
a common activation function in RNNs. Several architectures have been proposed
for RNNs; a popular version produces an output at each time step and propa-
gates the hidden states through steps. However, due to the frequent multiplication
with shared parameters typical of recurrence, basic forms of RNNs are vulnerable to
weights exponentially decreasing as the length of the dependencies, i.e., the distance
in time between input values, increases. The decrease in magnitude of the weights
significantly reduces the gradient of the cost function w.r.t. the same weights, thus
bringing smaller and smaller updates to the parameters at each step and prolonging
the training process. To obviate this problem, Hochreiter and Schmidhuber intro-
duced the long short-term memory model (LSTM) in 1997 [47], later improved by
Gers et al. [48]. LSTMs replace the regular hidden units of RNNs with cells, i.e.,
operational blocks including internal recurrence of the state and a set of neurons de-
fined as gating units. The internal recurrence, also called self-loop, passes through a
forget gate determining whether the information should be kept or discarded. Other
gates include the external input gate and the output gate, applied to the cell’s in-
put and output, respectively, as shown in Figure 3.7. In the figure, H denotes the
Hadamard matrix product, + denotes element-wise addition, and sig denotes the
sigmoid activation function.

Figure 2.3: An LSTM cell depicting the flow of information and gates.

C(t) denotes the cell’s state, given as:

C(t) = f (t) ◦ C(t−1) + i(t) ◦ tanh(WC · [h(t−1),x(t)] + bC) (2.9)

f (t) denotes the output of the forget gate:

f (t) = σ(Wf · [h(t−1),x(t)] + bf ) (2.10)

and i(t) denotes the output of the input gate:

i(t) = σ(Wi · [h(t−1),x(t)] + bi) (2.11)

The flow control in LSTM cells helps counteract the vanishing gradient problem
encountered in RNNs; LSTMs are in fact more capable of learning long-term depen-
dencies and have become the most popular version of recurrent network.
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2.1.4 Self-attention networks
Attention is a mathematical model employed in neural networks to reproduce the
ability of primates to efficiently process sensory input by focusing on certain subsets
of it at a time [49]. In self-attention networks proposed by Vaswani et al., each input
can interact with itself to compute where attention should be focused. We will first
cover simple self-attention before covering the self-attention proposed in [38].

A simple self-attention model can be thought of as the weighted average of the inputs
using a weight matrix W . Let X be the matrix containing the inputs. The weight
matrix W can computed in the following manner:

W = softmax(XT ·X)
This weight matrix can thereafter be used to compute the weighted average of the
inputs (noted as Y T ) by simply multiplying the weight matrix with the input X:

Y T = W ·XT

The simple self-attention can be further extended by introducing learnable weights
WQ,WK ,WV ∈ Rd×d where d is the dimension of the input. These learnable
weights can be multiplied with the inputs to create the following matrices:

Q = WQ ·X
K = WK ·X
V = WV ·X

(2.12)

Matrices Q,K, and V are known as query, keys, and value matrices1. The word
"self" in self-attention comes from the fact that these matrices are generated from
the input itself.

The study by Vaswani et al. introduced the concept of scaled dot-product attention,
a particular attention obtained by performing the dot product of each input with
three weight matrices. The result is query matrixQ, key matrixK and value matrix
V as mentioned in Equation 2.12. The product of Q and K is scaled by the square
root of the dimension of the key matrix dk to prevent it from becoming too large
and incurring in the vanishing gradient problem, as shown in equation 2.13 [38]:

Attention(Q,K,V) = softmax
(Q ·KT

√
dk

)
︸ ︷︷ ︸

weighted average

·V (2.13)

The authors also improved the model’s capability to attend to words at different po-
sitions simultaneously by applying multi-head attention, which entails linearly pro-
jecting the query, key and value matrices h times and applying scaled dot-product
attention to each projection in parallel.

1These naming conventions are supposed to represent a soft dictionary where there should be
a large similarity between the key and the query.
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Positional encoding is introduced to account for positional information when feed-
ing each input through the model. Positional encoding is defined as a function
f : N → Rd that converts position of the input into output vector ~pt. This posi-
tional vector is later added to the input via simple vector addition.

Let t be the position of the input in a given sequence (the sequence refers to either
a time window of sensor values or a sequence of words). Let d be the dimension
size of the input and i be the current position of the dimension. Let j = d i2e. Then
positional encoding pti proposed by [38] can be noted as follows:

pti = f(t, i) =

sin( t
100002j/d ), if i is even

cos( t
100002j/d ), if i is odd

(2.14)

The denominator 100002j/d inside each trig function can be noted as wj = 1
100002j/d .

The positional embedding pt can also be shown in expanded form as follows

pt =



f(t, 1)
f(t, 2)

f(t, 3)
f(t, 4)

...

f(t, d− 1)
f(t, d)



=



sin( t
ω1

)
cos( t

ω1
)

sin( t
ω2

)
cos( t

ω2
)

...

sin( t
ωd/2

)
cos( t

ωd/2
)



(2.15)

Due to the absence of recurrent layers, transformers can fully benefit from paralleliza-
tion. They have also been able to capture long-term dependencies more effectively
than RNNs [39]. For this reason, they have recently gained enormous success in
natural language processing and time-series applications [39].

2.1.5 HAR model
Mahmud et al. (2020) proposed that the self-attention model can also be applied
to sensor values [39]. The original transformer article (mentioned in the previous
section) was originally applied to natural language processing tasks. However, Mah-
mud et al. argue that words are equivalent to sensor values and that sentences are
equivalent to time windows. Therefore, they argue that the self-attention module
can also be applied to sensor values as done in applications such as Human Activity
Recognition (HAR).

The full model can be viewed in Figure 2.4. It can be seen from the figure that Mah-
mud et al. incorporate ideas from [38], but also extend their model with additional
layers such as sensor attention and global attention. The role of the sensor attention
layer is to extract which of the sensors are relevant for the activity. For example, a
sensor located around the upper body is more relevant than a sensor located on the
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lower body for standing activities such as talking and eating. The sensor attention
layer consists of first transforming the time signals in a window into a single channel
image, thereafter applying k amount of 2D convolutional filters. The resulting im-
age is re-converted to a single-channel image by applying 1× 1 convolutional filters.
This outputs an attention score for each sensor that indicates the relevance for a
given activity.

The function of the global attention layer is to compute weighted averages for all
time steps in a time window. This computation is performed by using simple self-
attention covered in subsection 2.1.4.

Figure 2.4: HAR model from [39].

2.2 Kernel density estimation
Kernel density estimation is a non-parametric technique employed to estimate the
probability density function of a variable from a set of samples. Given a set
{m1,m2, ...,mn} of n observations sampled from a univariate distribution with un-
known density p, the kernel density estimation technique applies a smooth, symmet-
ric function K to each sample, and computes the average of the results for all sam-
ples. For bivariate data (a simplification of the multivariate data employed in this
study), each sample can be described by its coordinates {xi, yi} where i = {1, ..., n}.
Radial kernel estimation, a common version of kernel density estimation for mul-
tivariate data, computes the probability density function p̂n(x, y) through the Eu-
clidean distance between any point {x, y} and sample point {xi, yi} as described in
equation 2.16 [50]:

p̂n(x, y) = 1
nhxhy

n∑
i=1

K


√√√√(xi − x

hx

)2
+
(
yi − y
hy

)2
 (2.16)

where hx and hy are two smoothing coefficients, called smoothing bandwidth, de-
termining the smoothness of the probability density function, and K might be, for
example, the Gaussian function, K(x) = 1√

2πe
−x2/2.

2.3 Active learning
Active learning is a specific approach in machine learning where a model can achieve
better performance with a lower amount of training instances (see Figure 2.5). The
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instances are queried in a clever way out of a large pool of unlabeled instances (also
known as the pool-based framework for active learning). The queried instances are
then annotated by an oracle (for example, a human annotator). Once these queried
instances have been annotated, they can be used to improve the initial model. There
are different approaches for querying instances to the oracle; they will be covered in
the following subsections.

Figure 2.5: Example of a learning curve comparing test accuracy of the same classifier trained
with two sampling methods.

2.3.1 Uncertainty sampling
Uncertainty sampling is an active learning approach in which the most "uncertain"
instances are queried to the oracle [34]. The "uncertainty" of each sample is com-
puted from an initial machine learning model using some informativeness measure
(see subsection 2.3.3). Figure 2.6 compares a classifier trained on actively queried
and randomly queried instances on a toy example.

2.3.2 Query by committee
The query by committee method queries instances with the help of several models (a
committee of models). The different models are all trained on the available labeled
dataset to make an initial model. However, each model has a different hypothe-
sis/decision boundary which is consistent with the labeled data. The instances on
which the committee disagrees the most will be queried to the oracle.

2.3.3 Informativeness measures
An informativeness measure is a heuristic measure used to determine which instances
should be annotated from a large pool of unlabeled data. The three most popular
informativeness measures are least confidence, margin, and entropy [34].
Least confidence is the simplest informativeness measure and involves choosing in-
stance x in which the model is least confident. The queried instance can be formu-
lated as follows:

argmax
x

1− Pθ(ŷ|x) (2.17)

Where ŷ = argmaxy Pθ(y|x) represents the predicted class label for input x accord-
ing to the highest posterior probability for the model θ [34]. This informativeness
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(a) Scatter plot of two Gaussians

(b) Decision boundary with random sampling (c) Decision boundary with uncertainty
sampling

Figure 2.6: Figure (a) shows a scatter plot of data evenly sampled from two Gaussian distri-
butions. Figure (b) shows a logistic regression classifier trained on 30 randomly drawn samples
from (a) (the training instances are noted as upward triangles). Figure (c) shows the same model,
trained on 30 samples drawn using uncertainty sampling.

measure only takes into account the class in which the model is least confident, and
therefore does not distinguish well between classes in multi-class classification. The
following measure takes into account the top two classes:

argmin
x
Pθ(ŷ1|x)− Pθ(ŷ2|x) (2.18)

Where ŷ1 is the most probable class and ŷ2 is the second most probable class under
a model. This informativeness measure is known as margin and is better suited
than least confident for distinguishing classes for multi-class problems. However, for
problems where there is a large amount of class labels, then the margin measure es-
sentially throws away information about the rest of the classes labels. The following
informativeness measure takes into account all class labels:

argmax
x
−
∑
i

Pθ(yi|x)logPθ(yi|x) (2.19)
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The above expression is commonly referred to as entropy and it is the most popular
informativeness measure used within active learning [34]. Informally it can be de-
scribed as choosing the instance x which has the lowest predictability amongst all
classes (and equivalently the highest entropy).

In query by committee, the level of disagreement between committee members is in-
stead typically assessed through the vote entropy or the Kullback-Leibler divergence
informativeness measure [34]. The former is a variation of the entropy informa-
tiveness measure previously seen, taking into account the number V of committee
members voting for each labeling yi (i.e., predicting yi as the most probable label)
over the size of the committee N , as shown in equation 2.20 [34]:

argmax
x
−
∑
i

V (yi)
N

logV (yi)
N

(2.20)

The latter employs the Kullback-Leibler divergence and therefore considers most
informative the queries for which the members’ label distribution differs the most
from the consensus, as described in equation 2.21, where θ(n) represents a single
member of the committee, and C represents the whole committee [34]:

argmax
x

1
N

N∑
n=1

D(Pθ(n) ||PC) (2.21)

where the Kullback-Leibler divergence is defined as:

D(Pθ(n)||PC) =
∑
i

Pθ(n)(yi|x)logPθ(n)(yi|x)
PC(yi|x) (2.22)

and the consensus probability of yi being the correct label is defined as:

PC(yi|x) = 1
N

N∑
n=1

Pθ(n)(yi|x) (2.23)

2.3.4 Active deep dropout
Active deep dropout is a type of query by committee. Gammelsæter proposed a
way to create several models in a committee by using the dropout regularization
technique [35]. The idea is to Monte Carlo sample different smaller networks by
applying dropout to the same fully trained network. The amount of times one
applies dropout equals the amount of models in the committee. Figure 2.7 shows a
visual example of query by committee through active deep dropout.

2.3.5 Gradual pseudo labeling
Amodel trained on more labeled instances becomes more confident in its predictions.
Bossér et al. therefore proposed that the model’s predictions be used in training the
model once enough data has been annotated [36]. This method suggests generating
so-called pseudo labels for each training instance in which the model is highly con-
fident. These instances with pseudo labels can then be used to train the model in
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Figure 2.7: Active deep dropout example. The neurons dropped through dropout regularization
are noted as ⊗.

a semi-supervised manner. In particular, the pre-trained classifier ranks the pool of
unlabeled samples U by the informativeness measure Ii, and then selects the confi-
dent subset Sξ = {i ∈ U |Ii < ξ} of unlabeled samples with informativeness measure
Ii below threshold ξ. The confident samples are then assigned a pseudo label equal
to the class for which the classifier has predicted the highest probability.

2.4 Active learning for time-series data
Peng et al. [37] propose a new informativeness measure which appears to be more
suited to active learning on time-series data than traditional measures. The proposed
measure consists of uncertainty and utility. Uncertainty combines Shannon entropy
with the distance di between the sample and its ith closest neighbor, as shown in
equation 2.24 [37]:

Uncr(x) = −
∑
i

Pθ(yi|x) · log(Pθ(yi|x)) · d1

dk
(2.24)

Utility takes into account the average similarity Sim(x,y) between instance x, sam-
pled from subset S of the unlabeled data U , and each instance y from the set of
x’s reverse neighbors RNn (i.e., the samples that have x as one of their n-nearest
neighbors), as shown in equation 2.25. This measure has the purpose of querying
only instances with a high degree of similarity with their neighbors and to avoid
querying outliers.

Uti(x|S,U) = 1 +
∑

y∈RNn(x)−S
Sim(x,y)/n (2.25)
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The similarity can be computed through a statistical distance function, such as
Jensen-Shannon divergence. The two measures can then be combined to form the
novel informativeness measure Ix [37]:

Ix = Uncr(x) + Uti(x|S,U) (2.26)

2.5 Signal processing

2.5.1 Sliding time-windows

This technique refers to splitting a larger signal into smaller time windows. The
idea for this is to extract information from each time window rather than the whole
signal itself. The time windows can be used as data for time-series modeling.

There are different types of windowing operations. This section will only focus on
sliding windows technique. There are two parameters for this technique: window
size and step size. These parameters are explained and visualized in Figure 2.8.
A byproduct of these parameters is window overlap which is also explained in the
figure.

Figure 2.8: Let s be a signal with up to n sensor readings at different time steps. Let si be
a signal reading at time i. The figure above shows signal s can be divided into k time windows.
Window 1 contain s1, s2, s3, and s4. Window 2 contains s3, s4, s5, and s6.
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2.5.2 Recurrence plots
Signals can be processed into a recurrence plot. These plots can visually show if a
signal at time i is similar to the signal at time j. A recurrence plot is noted as a
matrix where each element can be computed as follows:

R(i, j) =

1, if ||xi − xj|| ≤ ε

0, otherwise
(2.27)

Where x is a signal and ε is a threshold that controls the amount of difference be-
tween xi and xj.

Joint recurrence plots are a method of combining several recurrence plots into a
single one using the matrix operation known as Hadamard product. The operation
can be noted as A�B = C. The result is an element-wise multiplication resulting
in Cij = (A)ij(B)ij. An expanded version is also shown in Equation 2.28:

a11 a12 a13
a21 a22 a23
a31 a32 a33


︸ ︷︷ ︸

A

�

b11 b12 b13
b21 b22 b23
b31 b32 b33


︸ ︷︷ ︸

B

=

a11 b11 a12 b12 a13 b13
a21 b21 a22 b22 a23 b23
a31 b31 a32 b32 a33 b33


︸ ︷︷ ︸

C

(2.28)

2.6 Evaluation metrics
This study presents a multi-class classification task, therefore the performance of the
algorithms is assessed through typical classification evaluation metrics described
in the sections below. The learning curve method is employed to compare the
performance of the classifiers trained through random sampling and active learning.

2.6.1 Accuracy
The accuracy is the percentage of samples classified correctly, i.e., in a binary clas-
sification task, the number of true positives and true negatives over the number of
true positives, false negatives, true negatives and false positives, as shown in 2.29
[51]:

Accb = TP + TN

TP + FN + TN + FP
(2.29)

For a multi-class classification task, the total accuracy can be computed as the
average of the accuracy for each class Ci, as shown in 2.30 [51]:

Accm = 1
C

C∑
i=1

TPi + TNi

TPi + FNi + TNi + FPi
(2.30)

In our case, however, it is computed as the frequency with which a model’s highest
predicted class matches the true class [52].
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2.6.2 Confusion matrix
Confusion matrices allow the visualization of the accuracy for each class as a table
of the number of predicted labels for each label in the test set [51]. Table 2.1 shows
an example of a confusion matrix for 3-class classification.

Actual
Predicted Class A Class B Class C

Class A 90 4 2
Class B 2 92 5
Class C 6 3 88

Table 2.1: Example of a confusion matrix for the results of a 3-class classification.

2.6.3 Area under the receiver operating characteristic curve
The receiver operating characteristic (ROC) is a graphical plot displaying the ability
of a binary classifier to classify correctly for different discrimination thresholds. In
particular, the ROC compares the true positive rate and the false positive rate for
each given threshold. The true positive rate, also called recall or sensitivity, is a
measure of the classifier’s effectiveness at classifying the relevant (or positive) data
samples, and is computed as the number of true positives over the number of true
positives and false negatives [53]:

TPR = TP

TP + FN
(2.31)

The false positive rate, instead, measures the classifier’s tendency to misclassify
negative samples, and it is computed as the number of false positives over the
number of false positives and true negatives:

FPR = FP

FP + TN
(2.32)

Once the ROC has been estimated, the area under its curve (AUC) can be computed
as [54]:

AUC =
∫ 1

0
TPRd(FPR) (2.33)

and it is an indicator of how likely the classifier is to output a higher value for a
randomly picked positive instance than for a randomly picked negative instance, if
the output is interpreted as the probability of the sample belonging to the positive
class. This estimate can help compare the performance of different classifiers, as
shown in Figure 2.9: the classifier with an AUC of 0.847 can be considered less
effective than the model with an AUC of 0.934, since, barring the highest false
positive rate values, it yields a lower true positive rate at any given threshold.
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Figure 2.9: ROC and AUC for two classifiers.

2.6.4 Precision
Precision is indicative of how many of the samples that were predicted positive have
been correctly classified, and it is computed as the number of true positives over the
number of true and false positives [51]:

Precision = TP

TP + FP
(2.34)

For multi-class scenarios, precision is typically computed through micro-averaging,
i.e. [51]:

Precisionmicro =
∑C
i=1 TPi∑C

i=1(TPi + FPi)
(2.35)

or macro-averaging:

Precisionmacro =
∑C
i=1

TPi

TPi+FPi

C
(2.36)

The same distinction between micro- and macro-averaging applies to the previously
introduced recall, or true positive rate. In case of imbalanced datasets these metrics
might instead be averaged by weight, i.e., taking into account the number of true
class instances, also called support.

2.6.5 F1 score
The F1 score is the harmonic average of precision and recall and it is indicative of
the model performance when taking into consideration both precision and recall in
the same proportion [51]:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(2.37)

A micro-averaged F1 score is the mean of the micro-averaged precision and recall,
while the macro-averaged F1 score is the mean of the macro-averaged precision and
recall.
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2.6.6 Learning curves
As mentioned in section 2.3, the effectiveness of an active learning strategy, com-
pared to randomly sampling the training set, can be assessed through learning
curves. Learning curves, in this case, report the accuracy of the model on the
test set for different percentages of training data. A query selection method con-
sistently showing a higher test accuracy for the same percentage of training data is
considered more effective than other selection methods.
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3
Methods

This section will explain the methodology carried out in the thesis. It can be divided
into two main parts: data gathering and processing, covered in section 3.1, and
model building, covered in section 3.2.

3.1 Data gathering and processing
This study focuses on the analysis of two naturalistic driving datasets: a labeled
dataset generated from a test vehicle on-site at Volvo Cars (see subsection 3.1.1),
and unlabeled data collected from co-development Volvo Cars vehicles (see subsec-
tion 3.1.2).

3.1.1 Data generation on the test track
Two drivers were asked to drive around the Volvo Cars test track in Torslanda
(Gothenburg), on the same BEV model. Each driver could perform a few warm-up
laps around the track in order to get familiar with it before any data were collected.
An aerial view of the test track can be seen in Figure 3.1: the track is approximately
4.7 km long, with double lanes in each direction. After the warm-up laps, one driver
emulated an aggressive and normal driving style, while the other emulated an ag-
gressive, normal and cautious driving style, for an approximately equal number of
laps per style. The same style was maintained throughout the whole lap. Each
driver was explained how to emulate the driving styles qualitatively, while referenc-
ing previous literature and after consulting experts at Volvo Cars. The aggressive
driving style was emulated by performing heavy and fast accelerations and deceler-
ations, by changing lane often and quite abruptly, and by driving close to the speed
limit. The normal, or less aggressive, style was emulated by performing smoother
accelerations and decelerations, by changing lanes only if necessary and gradually,
and by keeping a speed slightly below the speed limit. The cautious driving style
was emulated similarly to the normal style, but with particularly smooth acceler-
ations and decelerations, and a driving speed significantly lower than the speed limit.

The Vector CANalyzer software was used to collect the driving signals from the
CAN-bus. The frequency of the sampling was set to 10 Hz. This frequency is well
above the average driver response time (which is 2.3 seconds) [56, 57], and as such
is able to represent the driver’s behavior in detail.
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Figure 3.1: Aerial view of Volvo Cars’ test track, from Google Earth [55].
Maps Data: Google, ©2021 Aerodata International Surveys, CNES / Airbus, Landsat / Copernicus,
Lantmäteriet / Metria, Maxar Technologies.

3.1.2 Data gathering - WICE
WICE (Wireless Information Collection Environment) is Volvo Cars’ system for col-
lecting data in test vehicles. The collected data consist of a combination of the car
sensors’ and navigation map data, and includes information such as the vehicle’s
longitudinal and lateral speed and acceleration, the current and next speed limit,
the road gradient, etc.

Since it is important to control for route type when modeling driver behavior [6],
a few pre-processing steps were carried out to isolate a frequent commuting route
in the proximity of Volvo Cars (i.e., Hisingsleden). The commuting route can be
distinguished almost uniquely in Torslanda by a sequence of speed limit signs on
its path. To know the exact distance between speed limit signs, a control drive was
performed on the route, and the data from the drive were collected. The distance
between signs was found as a product of the average vehicle speed and time elapsed
between signs. The distance was then computed for data samples in the WICE
dataset and, together with the average road gradient, compared to control data to
isolate the desired path.

The data samples used in this study cover a time period of 11 weeks, spanning from
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January to April 2021, and are all collected from BEVs. Due to pseudonymization,
it is unknown how many drivers have generated the data. Since the samples are not
automatically annotated with driving style, an annotation procedure was performed,
as described in the following section.

3.1.3 Data annotation
Upon inspection of the collected data, it appeared that several drivers tended to
display different behaviors and adopt different driving styles throughout their trips.
For this reason, we decided to segment the driving data into sliding windows of 10 or
5 seconds and to perform the driver classification task separately for each window.
Figure 3.2 shows one example of inconsistent driver behavior for a single driver on
Hisingsleden: from approximately 3 to 5.5 km into the trip, the driver performs
relatively smooth accelerations and keeps almost a constant speed, and thus their
style might be classified as normal. From there until the eighth kilometer, however,
the driver displays more abrupt acceleration and higher speed, thus behaving more
aggressively.

Figure 3.2: Example of driving data from a single driver displaying possible different driving
styles.

Several previous studies have performed sliding window segmentation with a certain
percentage of overlap between windows [10, 17]. However, overlapping requires a
non-random split of the windows into training and test set to prevent data leakage
across the sets. Since our dataset presented a non-uniform distribution of classes
across drivers and across weeks of data, we opted to use random splitting of non-
overlapping windows for the majority of the experiments. The windows were there-
fore randomly selected across weeks of data while keeping a similar proportion of the
three classes, and subsequently randomly split into the training, validation, and test
set. Later, in order to assess the performance of the models on overlapping windows,
we extracted 5-second windows with 50% overlap for all trips, and selected 20% of
the trips presenting a class distribution similar to that of the whole dataset. We
designated those trips as test set, while keeping the rest of the dataset as training
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set. The windows were annotated using a majority-class system of driving parame-
ters and rules found in accordance with experts at Volvo Cars and in previous work.
Table 3.1 shows the set of rules and corresponding class adopted in the annotation
process.

Rule Class

Speeding: driving at least 5 km/h
above the speed limit,
for at least 20% of the time

If true and slow driving is false:
aggressive
If true and slow driving is true:
normal

Slow driving: driving at least 5 km/h
below the speed limit, for at
least 10% of the time, when the vehicle
in front is at least 20 meters away

If true and speeding is false:
cautious
If true and speeding is true:
normal

Low gap time: when the gap time
from the vehicle in the front is 1
second or less, for at least 20%
of the time

If true and high gap time is false:
aggressive
If true and high gap time is true:
normal

High gap time: when the gap time
from the vehicle in the front is 2.5
seconds or more, for at least 10%
of the time, whenever there is a vehicle
50 meters or less in front of the car

If true and low gap time is false:
cautious
If true and low gap time is true:
normal

Table 3.1: Set of rules for annotating the driver behavior based on speed and gap time.

Other parameters considered for the annotation have been previously proposed by
Younes et al. [6], and have been found by the authors to correlate with driver
behavior: positive kinetic energy (PKE), relative positive acceleration (RPA), root
mean square of the power factor (RMSPF), and mean and standard deviation of the
jerk. The PKE is a measure of the intensity of positive acceleration manoeuvres, as
described by equation 3.1 [6]:

PKE =
∑
i(v2

i+1 − v2
i )

D
, vi+1 > vi (3.1)

where vi is the vehicle’s speed at timestep i and D is the total trip distance (in our
case, the total window distance). The RPA is also described by speed and positive
acceleration, as shown in equation 3.2:

RPA =
∑
i(vi ∗ a+

i )
D

(3.2)

where a+
i is the vehicle’s positive acceleration at timestep i. The RMSPF is described

as:

RMSPF =
√√√√ 1
n

n∑
i=1

(2 ∗ vi ∗ ai)2 (3.3)
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where 2 ∗ v ∗ a is the power factor. These five parameters (PKE, RPA, RMSPF,
jerk mean and jerk standard deviation) were computed for windows of 10 seconds
of the data generated on the test track, and their Pearson coefficient was calculated
to verify if they presented any correlation with driving style. They all presented
strong correlation, especially RMSPF and jerk mean. Their Pearson coefficient and
two-tailed p-value for testing non-correlation are listed in Table 3.2. The correlation

Parameter Pearson coefficient p-value
PKE 0.246 5.99e-08
RPA 0.21 3.97e-06
RMSPF 0.47 2.53e-27
Jerk µ 0.342 2.03e-14
Jerk σ 0.328 2.69e-13

Table 3.2: Pearson coefficients and p-values for the correlation between driving style and the
listed parameters.

is significant because, for the tested sample size of 472 and 470 degrees of freedom,
a coefficient of ≈ 0.151 or higher indicates that there is less than 0.1% probability
of encountering this level of correlation due to random chance.
In a second phase, the probability density function for Younes et al.’s paramters was
estimated through Gaussian kernel density estimation, from the samples computed
on the windows of test track data. Subsequently, the same parameters were com-
puted for each window extracted from the unlabeled WICE data, and the probability
of the feature value belonging to each class was inferred from the density function.
The class with the highest probability for that value was treated as a label. Finally,
each window was annotated as belonging to the class that was most represented
among the rules shown in Table 3.1 and the probability of the five driving parame-
ters proposed by Younes et al.

3.1.4 Splitting of the data

Table 3.3 summarizes the number of windows per class for each dataset obtained
from the window segmentation process. It can be noted that the number of 5-
second, non-overlapping windows is less than double the number of 10-second, non-
overlapping windows. This is because the annotation system labeled fewer 5-second
windows as aggressive, and this was taken into consideration when randomly select-
ing the windows for the dataset. Stratified random splitting of the non-overlapping
datasets into 60 : 20 : 20 and 80 : 10 : 10 ratios between the training, validation and
test set showed some variance in the models’ performance throughout experiments.
Therefore, we performed stratified 5-fold cross validation in order to account for this
variance, and set the same random seed across experiments. Correspondingly, we
defined the same set of seeds for experiments with active learning.
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Dataset
Nr. of

aggressive
windows

Nr. of
normal
windows

Nr. of
cautious
windows

TOTAL

WICE
10-second
windows

918 1247 1247 3412

WICE
5-second
non-overlapping
windows

1540 1775 1775 5090

WICE
5-second windows
with 50% overlap

3057 3311 3567 9935

Test track 155 123 133 411

Table 3.3: Class distribution in the datasets.

3.1.5 Driving features for the neural models
When training the neural models, we selected the driving features that depend the
most on the driver’s actions (with the exception of speed limit), for a total of 8
features: longitudinal acceleration, speed, speed limit, percentage of pressure on the
acceleration pedal, lateral acceleration, steering wheel angle, speed of the steering
wheel, and distance from the vehicle in the front. The features were scaled through
standardization, i.e., the feature-wise mean µ was subtracted from each single data
sample xi, and the result was divided by the feature-wise standard deviation σ:

xi ←
xi − µ
σ

(3.4)

3.2 Model architectures
This section covers the different model architectures that we have implemented.
These are five types of deep learning models: 1-dimensional CNN, 2-dimensional
CNN, LSTM, regular self-attention and HAR self-attention. The final subsection
will cover our active learning approach.

3.2.1 1D CNN
The first model implemented in this study is a 1-dimensional convolutional neural
network. The architecture of the model is depicted in Figure 3.3 and consists of
two convolutional layers with filter width equal to the number of columns in the
windows of data (i.e., the number of features). This configuration allows the filter
of the convolutional layer to "scan" the windows a few time steps at a time, thus
convolving over the data in a sequential manner.
Batch normalization and dropout were added to stabilize the training process and
prevent overfitting, respectively. The model was trained with the adaptive moment
estimation (Adam) optimizer and with early stopping. The architecture shown in
Figure 3.3 is the result of several experiments to find the best compromise between
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Figure 3.3: Architecture of the 1D CNN used in this study.

simplicity (and therefore, training speed) and performance: the model performed
as well as more complex models, with faster training. The hyper-parameters of the
1D CNN have been tuned based on the model’s performance on the validation set;
the best configuration of hyper-parameters is reported in Table 4.12 of the Results
chapter.

3.2.2 2D CNN
A time window can be converted into several recurrence plots. Each driving sig-
nal in the time window will be converted into a single recurrence plot according to
Equation 2.27. Examples of this processing can be seen in Figure 3.6.

There are two approaches after the creation of recurrence plots. One of the ap-
proaches is to concatenate the recurrence plots into a single image. The other
approach is to combine the recurrence plots into a joint recurrence plot using Equa-
tion 2.28. Both of these approaches have been adopted when training the 2D-CNNs
on the test track data, whereas only the joint recurrence plot method has been
adopted on the WICE data.

Tuneable hyper-parameters for the 2D-CNN are filter size, amount of filters, amount
of CNN layers. Other parameters can also affect the results that are outside of model
building. These parameters are related to generating the recurrence plots, e.g., the
threshold in Equation 2.27. The best performing models are presented in the Results
chapter with corresponding hyper-parameters.
The recurrence plots can thereafter be used as training data for the 2D-CNN.

Figure 3.4: Architecture of the 2D CNN used in this study.

3.2.3 LSTM
Just like the 1D CNN, the architecture employed for the LSTM was the best com-
promise between simplicity and performance. The model layers are depicted in
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Figure 3.5: Architecture of the 2D CNN used in this study for joint recurrence.

(a) Vehicle speed signal (b) Steering angle signal

(c) Recurrence plot of the signal in (a) (d) Recurrence plot of the signal in (b)

Figure 3.6: Examples of processing driving signals into recurrence plots. Figure (a) and (b)
shows examples of driving signals. Figure (c) and (d) show the corresponding recurrence plots
computed from the each of the signals.

Figure 3.7: a one-directional LSTM layers is followed by a fully connected layer,
followed by batch normalization and dropout to improve the training stability and
prevent overfitting. The model was trained with the Adam optimizer and with early
stopping. The hyper-parameters of the LSTM have been tuned based on the model’s
performance on the validation set; the best configuration of hyper-parameters is re-
ported in Table 4.12 in the Results chapter.
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Figure 3.7: Architecture of the LSTM used in this study.

3.2.4 Self-attention networks
A network with multi-headed self-attention blocks (with positional encoding added
to the inputs) was implemented as covered in subsection 2.1.4, together with a self-
attention model as proposed by Mahmud et al. [39], from now on referred to as
HARSA ("Human Activity Recognition self-attention"). The regular self-attention
and HARSA models were trained and evaluated on the test track and WICE data,
respectively, as each was found to perform slightly better than the other on the
respective dataset.
The two types of self-attention models were trained on various hyper-parameter val-
ues. Hyper-parameters that are specific to self-attention are the number of heads,
used in multi-head self-attention, and the number of self-attentive blocks (also known
as the depth of a self-attention layer). Results of the best performing models with
corresponding hyper-parameter values are shown in the Results chapter.

Figure 3.8: Architecture of the self-attention model used in this study.

3.2.5 Active learning
Three different active learning approaches have been explored: uncertainty sam-
pling, query by committee, and gradual pseudo labeling (these are covered in sec-
tion 2.3). A cumulative training approach has been employed to generate learning
curves, which provide information about the performance of the active learner (see
section 2.3 for details about learning curves). The cumulative training was imple-
mented according to the procedure described by Bossér et al. [36]: first, the classifier
was trained on the labeled set L; second, the unlabeled samples U were picked ran-
domly or ranked according to the chosen informativeness measure, and batch B ⊆ U
of the n top samples was selected; finally, the classifier was re-trained on L∪B after
parameter re-initialization [36]. This process was repeated until |L ∪ B| was suffi-
ciently close to the size of the whole dataset.
All experiments were carried out on non-overlapping windows of 10 seconds on the
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WICE data. The test set size was set to 20%; the test set was fixed throughout
iterations of the same experiment. All experiments, except for uncertainty sampling
on the HARSA model, were carried out 10 times with different random seeds. The
experiments on the HARSA model were carried out with 3 random seeds.

3.2.5.1 Experiment I - uncertainty sampling

This experiment compared the performance of the models when trained with differ-
ent informativeness measures of uncertainty sampling. We first trained the models
on 10% of randomly picked data and then on 5% increments of samples selected
through the chosen informativeness measure. We then assessed the test accuracy
for 14 iterations, i.e., starting from 15% up to 80% of training data.

3.2.5.2 Experiment II - uncertainty sampling for time-series data

This experiment is based on the probability density function estimated for each of
the five driving parameters described by Younes et al. [6] (see subsection 3.1.3).
After computing the driving parameters for each window and determining their
probability density function for each class from the test track data, we estimated the
probability vectors of each window’s driving parameter by class. We then computed
the Jensen-Shannon distance between each pair of windows’ probability vectors,
and found 500 nearest neighbors and 200 reverse neighbors for each window. We
incorporated this distance in both the uncertainty and the utility informativeness
measure (to compute the similarity, in the latter case) proposed by Peng et al. [37],
as described in section 2.4. We then trained the models on 5% increments of data,
in the same way as with regular uncertainty sampling.

3.2.5.3 Experiment III - query by committee

For this experiment, we formed a committee of three members: the 1D CNN de-
scribed in subsection 3.2.1, the LSTM described in subsection 3.2.3, and a CNN-
LSTM whose architecture is depicted in Figure 3.9. Each committee member was
trained on the labeled set and performed inference on the unlabeled set at each it-
eration. Both the vote entropy and the Kullback-Leibler divergence informativeness
measures were tested, with 14 5% increments of training data.

Figure 3.9: Architecture of the CNN-LSTM used as committee member.

3.2.5.4 Experiment IV - query by committee with active deep dropout

We implemented active deep dropout by training a parent model and then generat-
ing a committee of 5 members, where each member had the same architecture as the
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parent but with a different dropout configuration. The dropout rate differed both
between committee members and across iterations. The committee members per-
formed inference on the unlabeled set through a single forward pass per iteration,
and their predictions were used to estimate the vote entropy and the Kullback-
Leibler divergence measures. The parent network was the re-trained on the dataset
augmented with the batch of most informative samples. This procedure followed
the optimization suggested by Gammelsæter [35], which avoids fully training all
committee members at each iteration. The tested models were the 1D CNN, the
LSTM, and the self-attention model, again with 5% increments of training data for
14 iterations.

3.2.5.5 Experiment V - gradual pseudo labeling

For this experiment, we first found the best confidence threshold ξ∗ for each model
by following the methodology proposed by Bossér et al. [36]: we first trained each
model on 10% of randomly sampled data and then on further 10% of data queried
randomly or through the margin informativeness measure.
Secondarily, we ranked the unlabeled samples according to the informativeness mea-
sure Ii = −maxyPθ(y|xi) and we added all samples with Ii < ξ to the confidence
subset. Thirdly, if the size of the confidence subset was above threshold N , we gener-
ated pseudo labels for each sample as the class with the highest predicted probability,
added the confidence subset to the labeled samples, and removed it from the un-
labeled samples. Subsequently, we re-trained the model on the augmented labeled
set, and repeated the process until the size of the confidence subset was equal to
or smaller than N . Finally, we assessed the test accuracy and repeated the same
process for 100 thresholds ξ between −1 and 0. We then fit a kNN regressor on the
thresholds and corresponding test accuracies with k = 10; we picked the threshold
yielding the highest test accuracy according to the regression fit as the best thresh-
old ξ∗. We performed the experiment on the 1D CNN and the LSTM models and
picked N = 50 for the former and N = 20 for the latter.
After finding ξ∗, we generated a learning curve by iteratively selecting and gen-
erating pseudo labels for the confidence subset of the samples with Ii < ξ∗; the
confidence subset size was limited to 5% of the whole dataset per iteration as in the
previous experiments.
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Results

This chapter reports the performance of the models in the classification task (sec-
tion 4.1), as well as the result of applying the active learning methods (section 4.2).

4.1 Classification
This section reports the models’ performance on the test track and WICE data,
across several experiments.

4.1.1 Test track
Table 4.1 and Table 4.2 report the results gained from data gathered on the test
track. More specifically, these tables show the performance amongst the models and
their performance on each of the driver behavior classes. Table 4.3 shows the overall
performance of the models using metrics such as accuracy and macro-averaged pre-
cision, recall, F1 score, and AUC. Table 4.4 shows the parameter size of each model.

Insight from these results will be covered in the later section 5.1.3.1.

LSTM 1D CNN

Class Precision Recall F1
score Precision Recall F1

score
Aggressive 0.983 0.933 0.957 0.987 0.895 0.943
Normal 0.861 0.538 0.665 0.892 0.413 0.565
Cautious 0.673 0.935 0.777 0.611 0.952 0.745

Table 4.1: Classification results for the LSTM and 1D CNN models.

Self-attention 2D CNN

Class Precision Recall F1
score Precision Recall F1

score
Aggressive 0.981 0.941 0.963 0.382 0.484 0.423
Normal 0.451 0.152 0.227 0.502 0.275 0.355
Cautious 0.612 0.902 0.733 0.463 0.723 0.575

Table 4.2: Classification results for the self-attention and the 2D CNN models.

39



4. Results

Model Accuracy Macro-avg
Precision

Macro-avg
Recall AUC

LSTM 0.825 0.847 0.803 0.952
1D CNN 0.783 0.835 0.753 0.916
Self-attention 0.733 0.685 0.664 0.884
2D CNN 0.445 0.454 0.496 0.697

Table 4.3: Results for all of the models on the test-track data.

Model Total
parameters

Non-trainable
parameters

LSTM 77 251 128
1D CNN 65 155 128
Self-attention 3 993 0
2D CNN 117 303 0

Table 4.4: Number of parameters per model.

4.1.2 WICE
Table 4.5 reports the average evaluation metrics of the four implemented models
on 10-second windows extracted from WICE. As mentioned in subsection 3.1.4, the
stability in performance of the models has been assessed through stratified 5-fold
validation. For this dataset, the accuracy of a majority-class classifier is ≈ 36.5%.

Model Accuracy Accuracy
σ

Weighted-avg
AUC

LSTM 0.846 0.026 0.951
1D CNN 0.881 0.03 0.972
HARSA 0.694 0.025 0.822
2D CNN 0.602 0.083 0.774

Model Weighted-avg
Precision

Weighted-avg
Recall

Weighted-avg
F1 score

LSTM 0.847 0.846 0.844
1D CNN 0.882 0.88 0.88
HARSA 0.734 0.732 0.729
2D CNN 0.609 0.602 0.597

Table 4.5: Models’ performance on the WICE data, with 10-second non-overlapping windows.

All models report a relatively low standard deviation (σ) of the accuracy, which in-
dicates good robustness across different training-test splits. They also report similar
precision and recall.

Table 4.6 reports the confusion matrix of an LSTM run that yielded an average
accuracy. Perhaps unsurprisingly, most of the classification error occurred for the
normal class, accounting for more than 88% of misclassifications when considering
both false negatives and false positives. Table 4.7, the confusion matrix for a 1D
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CNN run with average accuracy, reports similar findings, with 84% of misclassifi-
cations involving the normal class. This was expected, as the mean of the driving
parameters proposed by Younes et al. for the normal class lies between the other
two classes’ parameter distribution mean.

Actual
Predicted Cautious Normal Aggressive

Cautious 229 17 3
Normal 30 188 31

Aggressive 8 9 167

Table 4.6: Confusion matrix for LSTM.

Table 4.8 reports weighted-averaged precision, recall, and F1 score per class for the
LSTM and 1D CNN models on the 10-second windows dataset. The LSTM shows
a considerably higher precision than recall for the normal class, and the opposite
situation for the cautious class. This likely means that the classifier had a slight
tendency to mislabel normal samples as cautious, even though the available results
are not enough to determine if this difference is statistically significant.

Actual
Predicted Cautious Normal Aggressive

Cautious 237 8 4
Normal 16 201 32

Aggressive 8 8 168

Table 4.7: Confusion matrix for the 1D CNN.

LSTM 1D CNN

Class Precision Recall F1
score Precision Recall F1

score
Aggressive 0.839 0.846 0.841 0.848 0.89 0.868
Normal 0.856 0.763 0.806 0.889 0.828 0.856
Cautious 0.845 0.928 0.884 0.901 0.927 0.913

Table 4.8: Precision, recall and F1 score by class for the LSTM and 1D CNN models.

Table 4.9 reports the performance metrics for the three models on 5-second, non-
overlapping windows. As for the 10-second windows, 5-fold cross validation was
applied to verify the robustness of the models. For this dataset, the accuracy of a
majority-class classifier is ≈ 34.9%.
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Model Accuracy Accuracy
σ

Weighted-avg
AUC

LSTM 0.863 0.012 0.962
1D CNN 0.889 0.015 0.976
HARSA 0.652 0.04 0.777
2D CNN 0.543 0.045 0.721

Model Weighted-avg
Precision

Weighted-avg
Recall

Weighted-avg
F1 score

LSTM 0.864 0.863 0.862
1D CNN 0.889 0.889 0.888
HARSA 0.774 0.772 0.766
2D CNN 0.545 0.543 0.541

Table 4.9: Models’ performance on the WICE data, with 5-second non-overlapping windows.

Table 4.10 reports the models’ performance on the WICE data, with 5-second win-
dows with 50% overlapping. We evaluated the models on a hold-out test set, instead
of performing cross-validation, to prevent data leakage across sets. We tested the
models on 5 random seeds. The accuracy of a majority-class classifier is ≈ 35.9% in
this case.

Model Accuracy Accuracy
σ

Weighted-avg
AUC

LSTM 0.832 0.009 0.947
1D CNN 0.863 0.006 0.964
HARSA 0.745 0.012 0.887
2D CNN 0.46 0.004 0.653

Model Weighted-avg
Precision

Weighted-avg
Recall

Weighted-avg
F1 score

LSTM 0.833 0.832 0.831
1D CNN 0.865 0.863 0.863
HARSA 0.797 0.795 0.793
2D CNN 0.47 0.46 0.457

Table 4.10: Models’ performance on the WICE data, with 5-second overlapping windows.

The three experiments consistently show the 1D CNN as the best performing model
for all reported metrics, and 2D CNN as the worst performing model. They also
do not show a stark difference between precision and recall, meaning that the mod-
els present a generally good balance between the number of samples classified as
positive for each class and the correctness of this classification. The robustness of
the models, quantified through the standard deviation of the accuracy, generally
increases across the three experiments, with the highest standard deviation found
with 10-second windows and the lowest found with overlapping 5-second windows.
The fact that 10-second windows yield more variable results is consistent with the
lower annotation granularity of larger windows: the larger a window is, in fact, the
higher the chance that it presents different driving styles. Table 4.11 compares the
number of trainable and non-trainable parameters across the models: unsurprisingly,
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performance correlates with number of parameters (with the exception of the 2D
CNN networks - we see a Pearson correlation of 0.931 for the test accuracy of the
LSTM, 1D CNN, and HARSA model in the experiment with overlapping windows).

Model Total
parameters

Non-trainable
parameters

LSTM 78 787 128
1D CNN
5-second windows 176 771 128

1D CNN
10-second windows 279 171 128

HARSA model 11 131 0
2D CNN
5-second windows 35 603 0

2D CNN
10-second windows 131 803 0

Table 4.11: Number of parameters per model.

Table 4.12 and Table 4.13 list the hyper-parameters tested on the LSTM and the
1D CNN and on the the HARSA model and the 2D CNN, respectively. The values
included in the final version of the models are shown in bold. The hyper-parameters
have been tuned based on performance on the validation set of the 10-second win-
dows WICE dataset.

4.2 Active learning
Figure 4.1 compares the learning curves produced by several uncertainty sampling
techniques and random sampling on the LSTM model; Figure 4.2 shows the same
comparison for the 1D CNN model, and Figure 4.3 shows the comparison without
ACTS for the HARSA model.

We can notice a considerable performance variability across uncertainty sampling
methods and models. Margin, entropy, and least confidence perform quite reli-
ably better than random sampling for the LSTM and the CNN, although random
sampling yields a higher test accuracy in the early iterations for the LSTM than
margin and entropy. ACTS appears to have improved the training process only
with the CNN, both with 10 and 30 neighbors, and not with the LSTM. The HAR
self-attention model does not seem to have benefited from active learning.

43



4. Results

LSTM 1D CNN
Hyper-
parameter

Tested
values

Hyper-
parameter

Tested
values

Nr. of neurons in
hidden
LSTM layer

32, 64
128, 256

Nr. of filters
in 1st CNN
layer

64, 128

Dropout rate None, 0.2,
0.3, 0.5

Nr. of filters
in 2nd CNN
layer

64, 128

LSTM dropout
rate None, 0.2, 0.3 First dropout

rate
None, 0.2,
0.3, 0.4

Number of
LSTM layers 1, 2, 3 Second dropout

rate
None, 0.2,
0.3, 0.4

Activation
function in hidden
dense layer

relu, tanh
Nr. of neurons
in hidden
dense layer

32, 64

Batch size 64, 128 Batch size 64, 128

Learning rate 0.001, 0.005,
0.01 Learning rate 0.001, 0.005,

0.01
Early-stopping
patience 10, 20, 30 Early-stopping

patience 10, 20, 30

Table 4.12: Hyper-parameters tested on the LSTM and the 1D CNN. The values in the final
models are in bold.

Figure 4.4 and 4.5 compare the performance of the LSTM and 1D CNN models,
when trained with random sampling and with query by committee techniques. The
two classifiers present diverging results: regular query by committee methods were
successful for the CNN but not for the LSTM, while active deep dropout meth-
ods worked successfully on the LSTM but not on the CNN, except for the earliest
iterations.
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2D CNN HARSA
Hyper-
parameter

Tested
values

Hyper-
parameter

Tested
values

Nr. of filters
in CNN layers 20, 50

Nr. of heads
in multi-head
attention

4, 8

% of points
< threshold
for min. distance
in joint recurrence
plots

25, 50 Depth 10, 15, 30

Dropout rate 0.3, 0.5
Nr. of filters
in 2D CNN
layers

10, 50,
100

Batch size 64, 128 Batch size 64, 128

Learning rate 0.001, 0.01 Learning rate 0.001, 0.005,
0.01

Early-stopping
patience 5, 10, 30 Early-stopping

patience 20, 30

Table 4.13: Hyper-parameters tested on the 2D CNN and HAR self-attention models. The
values in the final models are in bold.

Figure 4.6 shows the kNN regression fit with k = 10 for 100 thresholds ξ ∈ [−1, 0]
for the LSTM and 1D CNN models. Similarly to the findings of Bossér et al. [36],
we can observe an almost negative correlation between threshold and test accuracy
for the LSTM, and a negative correlation when ξ ≥ −0.52 for the CNN. As shown in
Figure 4.7, the GPLA random and margin techniques have not been able to perform
better than random sampling for the same percentage of training data, except for
the early iterations on the CNN. The test accuracy overall remains quite stable or
even slightly decreases as the training data increases, suggesting that the samples
labeled through semi-supervised learning do not carry relevant information from
which the classifiers can learn.
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(a) Least confidence

(b) Margin (c) Entropy

(d) ACTS 10 neighbors (e) ACTS 30 neighbors

Figure 4.1: Comparison of uncertainty sampling methods with random sampling on the LSTM
model. The solid line indicates the mean test accuracy for each iteration across 10 experiments
with different random seeds, while the transparent area around the line represents the margin
covered by the mean ± the standard deviation.
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(a) Least confidence

(b) Margin (c) Entropy

(d) ACTS 10 neighbors (e) ACTS 30 neighbors

Figure 4.2: Comparison of uncertainty sampling methods with random sampling on the 1D
CNNmodel. The solid line indicates the mean test accuracy for each iteration across 10 experiments
with different random seeds, while the transparent area around the line represents the margin
covered by the mean ± the standard deviation.
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(a) Least confidence

(b) Margin (c) Entropy

Figure 4.3: Comparison of uncertainty sampling methods with random sampling on the HAR
self-attention model. The solid line indicates the mean test accuracy for each iteration across 3
experiments with different random seeds, while the transparent area around the line represents the
margin covered by the mean ± the standard deviation.
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(a) Vote entropy (b) KL divergence

(c) ADD vote entropy (d) ADD KL divergence

Figure 4.4: Comparison of query by committee methods with random sampling on the LSTM
model. The solid line indicates the mean test accuracy for each iteration across 10 experiments
with different random seeds, while the transparent area around the line represents the margin
covered by the mean ± the standard deviation.
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(a) Vote entropy (b) KL divergence

(c) ADD vote entropy (d) ADD KL divergence

Figure 4.5: Comparison of query by committee methods with random sampling on the 1D CNN
model. The solid line indicates the mean test accuracy for each iteration across 10 experiments
with different random seeds, while the transparent area around the line represents the margin
covered by the mean ± the standard deviation.

(a) LSTM best threshold (b) CNN best threshold

Figure 4.6: Best confidence thresholds for (a) the LSTM and (b) the 1D CNN.
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(a) LSTM GPLA random (b) LSTM GPLA margin

(c) CNN GPLA random (d) CNN GPLA margin

Figure 4.7: Comparison of GPLA methods with random sampling on (a) and (b) the LSTM
model and (c) and (d) the 1D CNN model. The solid line indicates the mean test accuracy for each
iteration across 10 experiments with different random seeds, while the transparent area around the
line represents the margin covered by the mean ± the standard deviation.
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5
Discussion and Conclusion

This final section of the thesis is broken down into three parts: discussion (sec-
tion 5.1), conclusion (section 5.2), and future work (section 5.3). These sections will
cover the quality of our research, conclusions from the results, and suggestions for
future work.

5.1 Discussion
Our research objectives were stated in section 1.3. The quality of our research can be
analyzed in terms of validity and reliability, which will be discussed in the following
two subsections. The last subsection covers the major findings from our results.

5.1.1 Validity
Our overall research objective is to model driving behavior. One validity issue is
the ambiguity of this term. This ambiguity specifically affects our recreation of
driving styles on the test track (as described in subsection 3.1.1). Previous research
presents informal descriptions of driving styles, such as "abnormal and immediate
changes in vehicle speed, inappropriate keeping of vehicle lateral position, hazardous
lane change, and fast acceleration and deceleration takeoff and braking" [10]. How-
ever, these descriptions are non-numerical and are hard to re-create without relying
on intuition. This creates a validity issue for our generated data on the test track.
We have tried to mitigate this issue by re-creating the driving styles according to
previous work [6, 10, 26] with several driving trials before gathering data. Overall,
however, the definition of aggressive driving is quite subjective and dependent on
culture. This ambiguity and subjectivity makes it hard to establish a universally
valid ground truth with which the obtained results can be compared.

5.1.2 Reliability
We will cover two reliability issues: external factors affecting driving behavior, and
stochastic elements in model building.

Our first reliability issue is trying to control external factors that can affect driver
behavior. These factors are framed in the conceptual framework (see section 1.1).
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There are three main modules affecting driver behavior: driver, vehicle, and envi-
ronment. The following list breaks down these modules in more detail:

• Driver module: includes driver profile such as driving experience, age, etc.
• Vehicle module: includes gadgets and applications in/outside the vehicle

such as parking monitors, cruise control, etc. The vehicle model itself can
affect the driving experience of each driver

• Environment: these include road condition, weather condition, and traffic
condition.

Most of these factors were easily controlled when generating data on the test track:
we generated our data on the same road (the test track shown in Figure 3.1) with
similar weather and traffic conditions. However, it can be argued that the test track
data does not capture driving styles from a wide variety of drivers. This is mainly
because we have only collaborated with two drivers who simulated different driving
styles. Due to this reason, we have also experimented our analysis on the WICE
data that contains several drivers. We have also controlled for factors as road con-
dition and vehicle model when analyzing the WICE dataset. However, we could not
fully control for weather condition.

Our second reliability issue comes from the stochastic elements when building the
models. There are two stochastic elements to consider: training and test split
and the initialization of the models. The first issue affects the performance of the
model based on how similar the test set is to the training set; it can be addressed
by using k-fold cross validation. The second issue affects the training progress
as different initialization values find different local minima of the loss function.
This can easily be bypassed by re-training the models with different random seeds.
This stochasticity is relevant for our project because we have employed relatively
small datasets. Larger datasets, however, would allow a more stable performance
regardless of initialization and dataset split.

5.1.3 Discussion of findings
This section will cover major findings found from the result section (chapter 4) and
try to put them into previous research context. It is divided into two subsections:
results of the driver behavior classification and results of the active learning exper-
iments.

5.1.3.1 Driver behavior classification results

Table 4.1 and Table 4.2 show that the majority of the models manage to recognize
the aggressive class on the test track data. The 2D CNN did not perform nearly
as well, and is only slightly better than a dummy classifier (i.e., majority class or
random classifier). There are several reasons that can be speculated as to why this
is the case.

The 2D CNN pre-processes the driving signals into recurrence plots according to
Equation 2.27. Given one signal of n values, the corresponding recurrence plots
would have size n × n. This processing of the driving signals creates larger input
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space to be modeled requiring more data. We speculate that the 2D CNN requires
more data to increase its performance. The benefits of using spatial information in
the recurrence plots is its ability to bypass sequential training [10].

Some final remarks from subsection 4.1.1 and subsection 4.1.2 can be noted about
the model complexity shown in Table 4.4 and Table 4.11. The self-attention model
did perform slightly worse than the 1D CNN and LSTM as seen in Table 4.2. How-
ever, it can also be noticed from Table 4.4 that the self-attention model has a lower
model complexity than the rest. Both LSTM and 1D CNN have more than 16
times the amount of parameters of the self-attention model. This is beneficial in
terms of memory and computational efficiency when using machine learning mod-
els on smaller computer architectures, such as micro-controllers or micro-computers.
Self-attention has also the benefit of training on windows with parallel computation.

We also believe that the geometry of the test track shown in Figure 3.1 forces some
restrictions on the driving performance. The smooth corner seen on the upper side
of the figure, which is a considerable portion of the test track, prevents the drivers
from performing abrupt manoeuvres, thus forcing them to adopt a cautious or nor-
mal driving style. We speculate that this limits the maximum accuracy achievable
for classification on the test track data.

The results of the models on the WICE data show that all models have learned
to classify driver behavior, albeit with considerable difference across models and
across window size. The 1D CNN model consistently yielded the highest accuracy
and AUC, while also presenting the highest number of parameters. The 1D CNN
and the LSTM showed a higher accuracy on non-overlapping windows (of either 10
or 5 seconds), while the HARSA model performed better on overlapping windows.
The difference in performance for HARSA might suggest a greater sensitivity of
the model to the size of the training data: the 5-second, non-overlapping windows
dataset (on which HARSA performs the worst) includes in fact 254 500 time steps
in total, while the 10-second windows dataset includes 341 200, and the 5-second
overlapping windows dataset includes 496 750. Furthermore, the lower number of
parameters of the HARSA model might be the reason of its lower accuracy through-
out experiments: HARSA yields the highest accuracy per number of parameters.
The 2D CNN overall failed to classify with appreciable results, yielding an accuracy
slightly higher than that of the majority-class classification for 5-second overlap-
ping windows. One reason for this might be that the generated joint recurrence
plots did not include enough meaningful information for the classifier to distinguish
correctly between the three classes. Further experimentation with joint recurrence
plots hyper-parameters might have generated more meaningful plots. Another rea-
son might be the loss of information due to the Hadamard product performed by
joint recurrence: stacking separate plots for each signal, instead of joining them
through the Hadamard product, might have produced better results.

When compared to previous work, even the best performing models (i.e., the 1D
CNN and the LSTM) fail to fall above the lower quartile for accuracy or the median
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for recall when compared to the 47 studies reviewed by Elamrani Abou Elassad et
al. [7]. However, this comparison may need to be taken with reservation: many of
those studies, in fact, perform tasks on data presenting a higher granularity than
time windows. One such example is the detection of abnormal driving events, e.g.
swerving and fast U-turn manoeuvres [58]. Also, driving simulators (as shown in [59]
and [60]) may allow for riskier behavior than naturalistic driving, thus producing
starker differences in the driving feature distribution among classes.

5.1.3.2 Active learning

Our active learning simulations show wide variety of results. LSTM and CNN per-
formed best with more conventional active learning methods, such as uncertainty
sampling and query by committee (seen in Figure 4.1 and Figure 4.2). Out of our
novel active learning approaches, only ADD with LSTM and ACTS with CNN out-
performed random sampling. Unfortunately, GPLA did not show an improvement
(seen in Figure 4.7) and neither did the active learning approaches with the self-
attention architecture (seen in Figure 4.3).

It can be speculated that the GPLA did not perform as well as other methods be-
cause the generated pseudo labels did not provide the model with enough helpful
information to learn effectively. The difference with the results reported by Bossér
et al. might be due to the use of different datasets for the experiments and, con-
sequently, the effect of the size of the initial training data on the capability of the
models to perform accurate predictions. The authors performed the experiments
on the MNIST handwritten digits dataset, which shows a considerably higher inter-
class separability than the WICE data, as seen after dimensionality reduction with
2-component tSNE in Figure 5.1. The higher inter-class separability of the MNIST

(a) (b)

Figure 5.1: Results of 2-component tSNE on (a) 10 000 samples from MNIST and (b) 5-second,
non-overlapping windows from WICE.

dataset, together with its considerably larger size (60 000 samples), likely meant
that the 1.6% of the samples employed as initial training set by Bossér et al. pro-
vided more useful information to the classifiers than our initial 20% training data.
Furthermore, unlike MNIST, the WICE dataset does not appear to support the
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semi-supervised smoothness assumption and the cluster assumption that Chapelle,
Schölkopf and Zien [61] report as necessary for semi-supervised learning to produce
more accurate predictions than a classifier trained exclusively on labeled data with
supervised learning. The authors define the smoothness assumption as:

If two points x1, x2 in a high-density region are close, then so should be
the corresponding outputs y1, y2.

We can see from Figure 5.1b that this not often the case for the WICE data, as
high-density regions of the bidimensional space often include points from two or
more classes. The authors define the cluster assumption as:

If points are in the same cluster, they are likely to be of the same class.

Again, we can observe that this is not often true for the clusters seen in Figure 5.1b:
the samples do not appear to present a well-defined cluster structure which might
justify semi-supervised learning. Overall, the WICE dataset does not appear to lend
itself well to this kind of technique. However, the GPLA strategies may have shown
an appreciable level of test accuracy (over 65% and 70% for the LSTM and CNN,
respectively) when considering that they required only 10% of training data, i.e.,
2740 seconds of driving data.

ACTS has yielded successful results on the 1D CNN, and unsuccessful results on
the LSTM. In the former, it outperforms uncertainty sampling with entropy, which
it is based upon, for approximately 78% of the iterations with 10 neighbors and
57% with 30 neighbors. Figure 5.2a and Figure 5.2b show the heatmaps of the
5 top (left) and 5 bottom (right) predictions of the LSTM and 1D CNN models,
according to the uncertainty and utility informativeness measure. Figure 5.2c shows
a heatmap of the predictions when using the entropy informativeness measure on
the 1D CNN. Each row represents one sample and each column represents a label.
A uniform color across the labels suggests that model has output similar predictions

(a) (b) (c)

Figure 5.2: Heatmaps of the 5 top and 5 bottom samples according to uncertainty and utility,
for (a) the LSTM and (b) the 1D CNN, and according to (c) entropy on the 1D CNN.

for each class, and therefore it is uncertain on the true label of each sample. This is
particularly visible for the top samples with the entropy informativeness measure,
in Figure 5.2c (left). A less uniform color suggests, instead, that the model is fairly
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confident in its predictions. This is particularly visible for the bottom samples in
Figure 5.2b and Figure 5.2c. Overall, we have observed that the top samples ranked
by the uncertainty and utility informativeness measure do not always coincide with
the samples about which the model is most uncertain. We can speculate that this
has a beneficial effect on the 1D CNN but not on the LSTM, which has seen a
considerable improvement in performance through the regular uncertainty sampling
techniques. We can also observe from Figure 4.1d and Figure 4.1e that the accuracy
of active learning with ACTS on the LSTM increases as the number of neighbors
increases (this can be compared to the performance of ACTS with 5 neighbors shown
in Figure 5.3). Further increasing the number of neighbors might make the ACTS
queries more informative for the LSTM.

Figure 5.3: Results of ACTS with 5 neighbors on the LSTM model.

Active deep dropout showed very promising results for the LSTM (see Figure 4.4c
and Figure 4.4d), especially when compared to regular query by committee (see
Figure 4.4a and Figure 4.4b). The opposite situation can be encountered for the
1D CNN model. We speculate that the predictions of the LSTM might have been
meaningful for the CNN (and therefore, active learning on the CNN yielded better
results when the LSTM was included as a committee member), whereas the pre-
dictions of the CNN might have been unhelpful for the LSTM. This is consistent
with the findings of Lowell et al. (2019) [62], who found a strong coupling between
acquired training sets and the model with which they were acquired.

The variability of the results is also consistent with the results reported by Lowell et
al.: they state that the performance of active learning strategies seems to be quite
unstable and to vary strongly depending on the dataset and design choices. They
also mention that experimentation might be necessary to find a query strategy that
will perform considerably better than random sampling.

5.1.4 Correlation with energy consumption
We investigated the correlation between the annotation resulting from the methods
discussed in subsection 3.1.3 and the energy consumption of the trips. Since instan-
taneous energy consumption can vary greatly depending on traffic conditions, and
the regenerative braking system in BEVs has a recharging effect on the battery, we
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opted to compute the energy consumption for whole trips on Hisingsleden, instead of
single windows. We calculated the average energy consumption for a trip as a func-
tion of the instantaneous battery voltage, the instantaneous battery current, and
the distance covered during the trip. The consumption was measured in Wh/km.
We then computed the number of aggressive, normal, and cautious windows and
obtained the corresponding class percentage for each trip. Finally, we computed the
Pearson correlation between the percentage of aggressive and cautious windows per
trip and the trip total energy consumption: the resulting Pearson coefficients and
two-tailed p-values for testing non-correlation are listed in Table 5.1.

Class Pearson coefficient p-value
Aggressive 0.368 0.00002
Cautious -0.197 0.026

Table 5.1: Pearson coefficients and p-values for the correlation between annotation and energy
consumption.

We can see that the percentage of cautious windows correlates negatively with en-
ergy consumption, while the percentage of aggressive windows correlates positively.
This is not surprising and it is in the line with the findings of Bingham et al. [5]
and Xing et al. [9]. The proposed annotation method can therefore be meaningful
in the estimation of energy consumption in BEVs.
Figure 5.4 shows the scatter plot of the energy consumption by percentage of ag-
gressive and cautious windows, as well as the linear regression fit for the data. A
clear positive and negative trend can be observed depending on the prevalence of
aggressive and cautious windows, respectively.

(a) (b)

Figure 5.4: Scatter plots and regression fit for energy consumption by percentage of (a) ag-
gressive and (b) cautious windows.

From the scatter plots, however, we can notice a large number of trips with a low
percentage of aggressive or cautious windows and also a large variance in energy
consumption. There is in fact a considerable overlap between the three classes: if
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we select the 50 trips with the highest percentage of aggressive, normal, and cautious
windows, and plot a histogram of the energy consumption for the three groups, we
can notice just that (see Figure 5.5). The distribution of the energy consumption
by class can be compared to that of the RMSPF and jerk mean, shown in Figure 5.6.

Figure 5.5: Histogram of the energy consumption by class.

(a) RMSPF (b) Jerk mean

Figure 5.6: Histograms of (a) RMSPF and (b) jerk mean by class.

The overlap observed for energy consumption might be partly due to the short length
of the trips considered, as most of the trips collected are below 10 km. A larger
inter-class separability in energy consumption might be expected for longer trips.
Also, regenerative braking might have a smoothing effect on the energy consumption
of aggressive drivers, since, according to our annotation method and findings in
previous work [26, 29], they tend to brake more abruptly. Finally, the overlapping
between classes might be a consequence of defining a frequent low gap time with
the vehicle in the front as aggressive behavior: driving close behind a large vehicle
for prolonged time periods, in fact, might lower the air drag and therefore yield a
lower energy consumption for the tailgating vehicle.
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5.2 Conclusion
Our study has employed various deep learning architectures to model aggressive
driver behavior using passive and active learning. We relate our results to the first
research question:

Can deep learning architectures achieve good accuracy on the driver be-
havior classification problem?

We have determined that some of the proposed deep learning architectures have
successfully learned to detect three different driving styles, both on data generated
on a test track and on real-life data. Throughout experiments, the best performing
models were the LSTM and 1D CNN. Our self-attention based models (Figure 3.8
and Figure 2.4) only performed slightly worse than LSTM and 1D CNN on test track
data, and significantly worse on a few experiments on the WICE data. However,
the parameter size of the self-attention model is considerably smaller than that of
the LSTM and 1D CNN. The worst performing model is the 2D CNN. Shahverdy
et al. [10] implemented similar 2D CNN models using recurrence plots with more
promising results [10]. We speculate that our results do not match due to a differ-
ence in data processing.

The results of our experiments with active learning techniques can be used to answer
our second research question:

Can the investigated active learning approaches achieve good accuracy
with less labeled data?

Several of the active learning approaches proposed in this study have successfully
outperformed random sampling, while others have failed to do so. The successful
results can be seen in Figure 4.1 and Figure 4.2. The unsuccessful techniques include
active learning on the self-attention model, ACTS on the LSTM model, and GPLA.
In the latter case, we speculate that this is due to the violation of the smoothness
and cluster assumptions in the data.

One of our contributions in this study is the implementation of more novel methods
for driver behavior classification. The novel methods are self-attention models and
convolutional neural networks with joint recurrence plots. The benefits of using
these models lie in their ability for parallel computation. Although simpler methods
such as LSTM and 1D CNN performed better, they have some disadvantages to
consider. LSTM models rely on sequential training, which is not feasible for very
long time windows. The disadvantage of the 1D CNN is its restricted ability to cap-
ture very long-term temporal information, which is limited by the 1D CNN filter size.

Another contribution in this study is the implementation of novel active learning
methods, which include ADD, GPLA, and ACTS. These techniques have shown
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variable results across the experiments we have performed; the most successful tech-
niques may provide a valid solution for improving the training process of classifiers.
The benefit of using ADD is its efficiency in generating committee members for ac-
tive learning approaches.

There are two limitations to this study that relate to data generation on the test
track and the WICE dataset. The first limitation is that the test track data does
not necessarily contain a real driving scenario, as considerably fewer drivers were
used than most roads in the Gothenburg area during the day. This might imply that
machine learning models trained on the test track data would not infer accurately
on real-life driving data. The other limitation relates to the annotation techniques
employed: since we have implemented an automatic annotation system based on
the driving parameters proposed by Younes et al. [6], it may be more convenient
to perform driving behavior classification through this system instead of machine
learning classifiers. However, it may also be the case that performing inference on
a trained model is more efficient than computing the driving parameters and the
rules described in subsection 3.1.3 for each window of data. For a single window
of 10 seconds, the annotation through the implemented system and the inference
with the trained 1D CNN took approximately the same CPU time (0.05 seconds)
on the same machine. Performing inference on a model with a lighter architecture
is therefore likely to be more convenient than annotating with the rule-based sys-
tem. Furthermore, the experiments on the test track data have shown that the
implemented models can achieve good accuracy on data generated according to pre-
defined driving styles.

A third limitation is the model’s potential inability to generalize to a wider dataset.
This limitation relates to both the WICE data and test track data. Both of these
were gathered under similar road, weather, and traffic conditions. The conceptual
framework from [7] mentions that all three of these factors affect driver behavior.
Since our models are specifically trained on datasets where these factors are con-
trolled, the models might not be able to generalize to a more general dataset.

5.3 Future work
Most works on driver behavior have performed analysis on data recreated using sim-
ulated driving behavior. This results in a dataset that is annotated as the data is
gathered. However, many companies set up data pipelines that result in large pools
of unlabeled datasets (e.g. WICE in our thesis). This results in a large dataset
without any annotation on specific driving style. Clustering techniques have been
performed in previous studies [8, 27, 29] that uncover structures in the data cor-
responding to different driving behaviors. There are also studies that implement
different fuzzy controls [63] for computing driving behavior from driving signals.

However, our literature review revealed that there is a lack of research in trying
to model driving behavior from manually labeled data. The manual labels would
be produced by expertise in the domain of driving (i.e., export based examination
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[64], eco-driving coaches [65], or using verification scores - see section A.1). There
has also been research that focuses on labeling data using questionnaires and sur-
veys [21, 23]. However, these questionnaires could be unreliable since they rely on
the drivers’ subjective experience [21]. Another interesting approach would be to
manually label data from high-level features extracted from deep auto-encoders im-
plemented by Liu et al. (2017) [18].

Future work may also focus on detecting aggressive driving in scenarios other than
the ones covered during this project, e.g., within a city and over more trafficked
roads. It may also be interesting to compare the correlation between aggressive
driving and energy consumption in those scenarios, and incorporate the analysis in
the forecasting of energy consumption based on driver behavior. Another interest-
ing approach would be to adopt online learning to train the model continuously as
driving data is generated.

Regarding active learning, we have seen a few examples of techniques that were
generally less effective than random sampling for higher percentages of training
data, but more effective in the early iterations of the active learning procedure,
where the training data is scarce (e.g., active deep dropout on the 1D CNN). In the
future it may be interesting to explore how these techniques fare with even smaller
percentages for our training data, e.g. 1% or less.
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A
Appendix 1

A.1 Annotation techniques for driver behavior

A.1.1 Aggressivity index
One approach for annotation proposed by MacAdams et al. [16] is to compare drivers
by aggressivity index. Let AI be the aggressivity index ranging from 0 to 1. This
index can be described as the willingness of a driver to overtake other vehicles. It can
be computed using the following percentages: closing-in-rapidly (CIR), closing-in
(CI), and following (F). The AI can be computed in the following manner:

AI = (CIR + CI) + F

2 (A.1)

A high AI score would describe a driver who passes all other vehicles and never
follows nor is passed by other vehicles. An AI score of 0.5 would describe a driver
who only spends time following other vehicles. A low AI score would describe a
driver who lets all other drivers overtake them.

A.1.2 Fuzzy rules
Another approach for annotating driver behavior is using Table A.1. This table was
designed by Lin et al. (2014). The "fuzziness" refers to the fact that these rules are
not set numerically. [63].

Gap time Accelerator pedal rate STD Brake pedal rate STD Driving style
Low Low Low Less Aggressive
High Low Low Cautious
Low High Low Aggressive
Low Low High Aggressive
Low High High Aggressive
High High High Less Aggressive
High Low High Cautious
High High Low Less Aggressive

Table A.1: Fuzzy rules explained in [63].
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