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Abstract
Topological insulators, superconductors and semi-metals are states of ma�er with unique features such

as quantized macroscopic observables and robust, gapless edge states. �ese states can not be explained
by standard quantum mechanics, but require also the framework of topology to be properly characterized.
Topology is a branch of mathematics having to do with properties that are conserved under continuous
deformations of spaces. �is review presents some of the ways in which topology and condensed ma�er
physics come together, with a focus on non-interacting models which can be described with a band theory
approach. Furthermore, the focus is on insulating systems but the discussions may sometimes be applied
to superconductors and semi-metals. �e �eld of topological phases of ma�er is not all together new, yet it
lacks elementary introductions to newcomers. �is review is meant for those with basic condensed ma�er
physics background and aims at providing a self-consistent overview of the central concepts in the �eld of
topological ma�er.

�e structure of the review is as follows: In Chapter 1, a brief historical background is given. Also, a basic
introduction to topology is presented, with focus on how it is used in condensed ma�er physics. Following
this, Chapter 2 introduces three important discrete symmetries which are key in characterizing topological
phases of ma�er. In particular, the e�ect that these symmetries have on a general Bloch Hamiltonian is
shown. In Chapter 3, the e�ect of discrete symmetries on certain models is investigated. �e well-known
Su-Schrie�er-Heeger model is discussed because it is the simplest models known to exhibit a topological
phase and a topological invariant. Chapter 4 broadens the discussion of this topological invariant which is a
winding number. Chapter 5 introduces the geometric phase (Berry phase) which is used to describe another
topological invariant, the Chern number, the subject of Chapter 6. �ere the alternative interpretations of
the Chern number are discussed. A�erwards, in Chapter 7, the quantum Hall e�ect is presented. Following
this, a general classi�cation scheme for topological phases of fermionic, non-interacting systems will be
presented in Chapter 8. It will be shown how it can be determined whether a system could possibly host a
topological phase or not based on the symmetries of the Hamiltonian. Chapter 9 focuses on the concepts
pertaining to the physics of the gapless edge states which appear between the interface of a (non-interacting)
topological insulator and a topologically trivially insulator. Among the concepts discussed here is the bulk-
boundary correspondence and topological protection. Lastly, Chapter 10 contains a brief recap of what has
been established in the review and some conclusionary remarks.
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1 What is a Topological Phase?
One of the most fundamental goals in condensed ma�er physics is the characterization of states of mat-

ter. Topological insulators, superconductors and semi-metals are phases of ma�er with unique properties.
Contrary to phases of ma�er which may be described within the framework of Landau’s theory, topological
materials can not be characterized only with symmetries and an order parameter; they require concepts of
topology. Before going into the proper description of such phases in later chapters, a brief historical intro-
duction is given and the basic notions of topology and its role in condensed ma�er physics is presented.

1.1 Historical Introduction
In 1980, von Klitzing et al. [1] discovered the quantumHall e�ect (see Chapter 7). �ey measured a quan-

tized conductivity (Hall conductivity) in units of fundamental constants e2/h, with e being the elementary
charge and h being Planck’s constant. �e e�ect was measured in a two-dimensional electron system at
very low temperatures with a strong external magnetic �eld and a transverse electric �eld. �e remarkable
thing about the measurements is that they are independent of the geometry and imperfections of the sample,
a general property of topological insulators. �e quantization has been con�rmed [2] with an uncertainty
of 3.3 parts in 109. �e robustness of measurements to such a degree was unprecedented. Amongst other
things, this allowed for an experimental determination of constants of nature to a remarkable accuracy.

�e quantized Hall conductivity had been theorized [3] a few years earlier, in 1974, by Ando and Uemura.
In 1982, �ouless, Kohomoto, Nightingale and den Nijs (TKNN) recognized (with the help of Barry Simon)
the phenomenon as topological in addition to quantum mechanical. �e integer appearing in the Hall
conductivity was shown to be a topological invariant, namely a Chern number (see Chapter 6). �e Chern
number that appears in the quantum Hall e�ect is o�en referred to as the TKNN-invariant. Following these
events, it was shown by Halperin in 1982 [4] that the quantum Hall sheet hosts chiral (moving in one
direction), gapless edge states at the interface between the sample and a vacuum, while the bulk remains
insulating. It holds for all topological insulators that they have insulating bulks and conducting edges.
Remarkably, the existence of the gapless edge modes can be characterized by topological invariants de�ned
in the bulk. �is is an example of the bulk-boundary correspondence, to be discussed in Chapter 9.

In 2016, half of the Nobel Prize in physics was awarded [5] to David �ouless, with the other half shared
between Duncan Haldane and Michael Kosterlitz, for their contributions to the theoretical understanding
of the interplay between topology and condensed ma�er physics.

�e implications of these �ndings were manifold. �e quantum Hall state corresponds to a new state of
ma�er which is not characterized by the classical Landau paradigm of symmetry breaking. Classically, the
properties of a system are governed by conservation laws and symmetries. For example, under the freezing
of a liquid, the continuous translation invariance is broken, forming a solid with only discrete translation
invariance. A more sophisticated example is given by a ferromagnet. Suppose that a two-dimensional model
is described by spins arranged on a square la�ice. In a paramagnetic phase, the spins are oriented randomly
and this is characterized by a vanishing net magnetization and rotational symmetry. Upon lowering the
temperature to a critical value, the paramagnet undergoes a phase transition into a ferromagnetic state
where all spins are aligned parallel to each other. �e net magnetization, which is an example of an order
parameter, is non-zero and the rotational symmetry is broken. �e change in symmetry and the order
parameter signals a phase transition. �e experimental veri�cation of the quantum Hall e�ect exposed the
incompleteness of the Landau paradigm because the associated phase transitions were not characterized by
a change in symmetries or order parameters. Phase transitions like those occurring in the quantum Hall
e�ect are instead topological in nature, hence the name topological phase transition.

A non-interacting topological phase always hosts gapless boundary modes which are robust against
perturbations that preserve the minimal de�ning properties of the phase. �is will be discussed more in-
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depth in Chapter 9. �e robustness of these states are experimentally interesting in many areas of research,
like quantum computation. Essentially, what a quantum computer does is perform unitary transformations
on a quantum state and measure the output. During this process, the noise level must be kept under a
certain threshold. �is task would be greatly facilitated if one could exploit the robustness of topologically
protected states. Topological states of ma�er also has implications for spintronics. In the absence of a
magnetic �eld, the spin quantum Hall e�ect hosts two di�erent conducting channels at a given edge. �e
channels are spin separated such that spin up particles move in one direction and spin down particles move
in the opposite direction. �e spin quantum Hall e�ect was proposed [6, 7] by Kane and Mele in 2005.
�e proposal included a suggested model to realize the e�ect which was a graphene model with spin-orbit
coupling. �e spins are essentially locked to the momentum by the spin-orbit coupling. It turned out to be
di�cult to realize the spin quantum Hall e�ect in graphene due to the weak spin-orbit coupling. Shortly
a�er, Bernevig, Hughes and Zhang predicted that the spin quantum Hall e�ect could be realized in HgTe
quantum wells [8]. �is was con�rmed experimentally [9] by König et al. in 2007. It was theoretically
understood at the time that the spin quantum Hall e�ect was a di�erent type of topological phase from the
quantum Hall e�ect because it was known to be characterized by a Z2-topological invariant. Meaning it
could only take on two values, contrary to the Chern number which can theoretically take on any integer
value.

Around the same time, people were extending the ideas to three-dimensional systems. Fu and Kane [10]
predicted in 2006 that the Bi1−xSbx alloy was a three dimensional topological insulator. �is was con�rmed
using angle-resolved photoemission spectroscopy of the surface states by Hsieh et al. [11] in 2008.

On a separate timeline the theory of topological superconductors had an interesting development in
1999 when Read and Green [12] considered such phases in two dimensions. At the same time Kitaev [13]
considered a one-dimensional model of topological superconductors. Both models were spinless, break
time reversal and host Majorana zero modes (see Section 9.3.1). One way to experimentally con�rm topo-
logical superconductivity is to con�rm the existence of Majorana zero modes, which, due to a number of
experimental di�culties, has not yet been done without the shadow of a doubt.

�e original discoveries of the quantum Hall e�ect and the spin quantum Hall e�ect triggered a surge
of research in this new �eld of topological phases of ma�er. Following all these discoveries are more,
topologically non-trivial �ndings, such as the fractional quantum Hall e�ect. For free systems, there is a
classi�cation scheme that allows one to predetermine whether a system could exhibit topologically non-
trivial phases, see Chapter 8. Interacting systems are generally not as well understood due to the lack of
classi�cation and the di�culties of describing many-body interactions and greater experimental di�culties.

�is review aims at providing a self-consistent and coherent overview of the basic theory of the �eld of
topological ma�er, with a strict focus on non-interacting systems. Anyone who wishes to complement this
review with a more widespread coverage of topics, including interacting systems1, is referred to the book
on quantum ma�er and quantum computations by T. D. Stanescu [14].

1.2 What is Topology?
It is o�en the case that there is a rich mathematical structure underlying the physical concepts that

arise in the description of topological phases. Yet, some concepts can be explained by simpler physical
reasoning. For example, the Chern invariant is described mathematically in the language of �ber bundles
[15]. However, it can be understood physically in terms of the Berry phase. Likewise, the Berry phase is
known mathematically as a holonomy [15]. But it is physically more favourable to interpret it as the overlap
of neighbouring states (see Section 5.2.1). In this review, the physical interpretations are favoured and the
mathematical underlying concepts are hinted towards.

1Interacting systems are not part of this review. To not leave the reader out in the cold a brief overview of topological phases of
interacting systems is given in Appendix C. Pedagogically, this appendix is best read at the end of the review.

2



Figure 1.1: �e genus of a surface is the number of holes it has and it can not be changed by a continuous
deformation. �erefore the three surfaces in this �gure are topologically inequivalent.

1.2.1 Topology in Mathematics

When delving deeper into the subject of topological phases, the mathematics become evermore impor-
tant. With this in mind, a basic overview of the concepts of topology is given in this section. For a complete
review of the mathematical concepts of topology which are relevant for physicists see [15].

Topology is the study of properties of objects which remain invariant under continuous deformations,
that is, deformations where no cu�ing or tearing is allowed. For example, the number of holes, referred to
as the genus, of a surface is a topological invariant, see Figure 1.1. A topological invariant is something that
does not change under continuous deformations. To be more precise, the objects that are being deformed
are topological spaces, which are de�ned out of open sets of some space. An open set in Euclidian 1-space,
R, is (a, b) as opposed to the closed set [a, b].

De�nition 1.1 (Topological space) Let T be a collection of subsets of a set X . �e pair (X,T ) is a topo-
logical space if (1) �e empty set, ∅ and X are in T ; (2) Any union of elements from T is in T ; (3) Any �nite
intersection of elements from T is in T 2.

�e collection T is referred to as a topology on the set X . An example of a topological space is given by
Xe = {a, b, c, d} and Te = {a, b, {a, b}, ∅, X}. It is straightforward to con�rm that (Xe, Te) ful�lls the
conditions (1)-(3) in de�nition 1.1.

Next one would like to establish a way of determining whether there is an equivalence between dif-
ferent topological spaces. Consider two topological spaces (X1, T1) and (X2, T2), a function f between
these topological spaces f : X1 → X2, is continuous if for any open subset O2 ⊂ X2 the inverse image,
f−1(O2) ⊂ X1 is an open subset of X1. A continuous function f with a continuous inverse is said to
be a homeomorphism if it is a continuous bijection (one to one and onto) between X1 and X2. Any two
topological spaces with a homemorphism are said to be homeomorphic and topologically equivalent. �e
homeomorphism preserves the topological structure (for example, topological invariants remain the same)
[14] and de�nes an equivalence relation3. �e resulting equivalence classes are comprised of all homeo-
morphic topological spaces.

From this one can go on to de�ne objects such as �ber bundles in order to describe Chern numbers.
However, because the focus of this review is on physical interpretations there is no need to go much deeper
into the mathematical details of topology.

2�ere are di�erent de�nitions of a topological space, for example, it can be constructed out of neighbourhoods [16].
3An equivalence relation between elements of a set is at the same time re�exive (a = a), symmetric (a = b ⇔ b = a) and

transitive (a = b, b = c ⇒ a = c). All equivalent elements of a set, denoted by ≡, belong to the same equivalence class. Hence if
the elements of the set X = {a, b, c, d, e} ful�ll, a ≡ b ≡ c 6≡ d, d ≡ e, then the set X has two equivalence classes {a, b, c} and
{d, e}.
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Figure 1.2: Phase diagram of a �ctitious model. �e parameter a of a HamiltonianH(a) can be adiabatically
deformed from a1 to a2 thus connecting the Hamiltonians H(a1) with H(a2) which are then topologically
equivalent. At a = a′ the band gap closes and thus no adiabatic deformation can go past a′. �e system
described by H(a3) is recognized as in a distinct topological phase from H(a1) or H(a2) and is therefore
characterized by a di�erent value of the topological invariant (C ′ and C respectively) of the model.

1.2.2 Topology in Physics

To characterize di�erent phases of physical systems one must establish how to determine whether two
systems are equivalent or not. �e Hamiltonian of a system fully characterizes energy eigenstates and en-
ergy eigenvalues and hence it is said that, if a Hamiltonian can be continuously deformed into another Hamil-
tonian by a deformation of its parameters, then the Hamiltonians are equivalent. Importantly, it is assumed
that the spectrum is gapped and the continuous deformation must never close this gap. �e parameters of
a Hamiltonian are for example hopping amplitudes and chemical potential and sometimes degrees of free-
dom like momentum can be considered parameters as well. Furthermore, the deformation may not change
the symmetries of the Hamiltonian. With these constraints the continuous deformation is known as an
adiabatic deformation. �e details of adiabatic deformations will be discussed in Section 5.1.

�e adiabatic deformations de�ne an equivalence relation and the resulting equivalence classes are
identi�ed as topological phases. Loosely speaking, a phase of ma�er refers to a system with a distinct set of
physical properties. Indeed, the topological phases as de�ned by these equivalence classes exhibit unusual
physical properties like robust, gapless edge modes (see Chapter 9).

To distinguish between the di�erent topological phases one de�nes topological invariants which are by
construction known not to change under adiabatic deformations, see Figure 1.2. �ese topological invariants
must be de�ned over the whole system and what is typically done is that all momentum degrees of freedom
are integrated or summed over. Examples of such topological invariants are winding numbers (Chapter 4) or
Chern numbers (Chapter 6). If, for a given Hamiltonian, it is possible to �nd di�erent values of a topological
invariant, in di�erent regions of parameter space, then the model has di�erent topological phases and the
Hamiltonians describing the di�erent phases can not be adiabatically deformed into one another.

Before constructing topological invariants in the later chapters, an introduction to the symmetries which
must be preserved under adiabatic deformations is given.
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2 �e Symmetries S, T and C
Whether or not a system exhibits topological properties is largely dependent on the discrete symmetries

of the system. �ere are three discrete symmetries of fundamental importance, chiral symmetry or sublat-
tice symmetry, time reversal symmetry and particle-hole symmetry. �is chapter introduces these discrete
symmetries and the outcome of the �rst three sections is the e�ect that the symmetries have on the Bloch
Hamiltonian, which is used to �nd the single-particle energies of a given system.

In the many-body language of second quantization, where the Hamiltonian, H , is wri�en in terms of
creation and annihilation operators that act on a many-body Fock space, the three discrete operations are
symmetries if they commute with the Hamiltonian [17, 18]

[S ,H ] = [T ,H ] = [C ,H ] = 0.

Here the symmetry operators that act on the second quantized Hamiltonian are given by S for chiral
symmetry, T for time reversal symmetry and C for particle-hole symmetry. �e Hamiltonian matrixH(k)
with matrix elementsHij(k) is de�ned for a non-interacting many-body theory by

H =
∑
k,i,j

c†k,iHij(k)ck,j , (2.1)

in terms of creation operators c†k,i and annihilation operators ck,i which create and remove particles with
momentum k and internal degrees of freedom i respectively. H(k) is known as the Bloch Hamiltonian and it
fully characterizes the single-particle energies of a non-interacting system which are obtained upon diago-
nalization. It is assumed that the system has translation invariant position degrees of freedom which have
been Fourier transformed into momentum k. �e creation and annihilation operators obey the fundamen-
tal commutation relations of whatever particle they describe. In this review, electrons are described on a
translation invariant la�ice. Electrons are fermions and thus the fundamental (anti)commutation relations
are

{c†n, c†m} = 0, (2.2a)
{cn, cm} = 0, (2.2b)

{cn, c†m} = δnm, (2.2c)

for any type of indices n,m.
A non-interacting many-body Hamiltonian is the sum of single-particle Hamiltonians

H =

N∑
n=1

Hn, (2.3)

where N is the number of particles in the system. From the theory of second quantization it is known that
the matrix elements in Eq. (2.1) are those of a single particle

Hij(k) = 〈k, i|H|k, j〉 ,

where |k, i〉 is a single-particle state. �e following notation is kept throughout the review
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H =
∑
k,i,j

c†k,iHij(k)ck,j ⇒ Second quantized, many-body Hamiltonian operator,

H =
∑
k,i,j

|k, i〉Hij(k) 〈k, j| ⇒ Single-particle Hamiltonian operator,

H(k) = matrix with elementsHij(k)⇒ Single-particle Hamiltonian matrix (Bloch Hamiltonian).

(2.4)

�e matrix elements of the second quantized Hamiltonian H and the single-particle Hamiltonian operator
H of Eq. (2.4) are the same even though the operators are fundamentally di�erent. �e second quantized
operator acts on a multi-particle Fock state while the single-particle operator acts on a single-particle state.

It is noted that single-particle operators do not necessarily obey the same invariance relations as the
second quantized operators, see [17, 18] or Appendix A. In fact the single-particle chiral operator and
the single-particle particle-hole operator anticommute with the single-particle Hamiltonian. �e reason
for this di�erence arises from the fact that the symmetry operations act non-trivially on the creation and
annihilation operators which are present only in the second quantized Hamiltonian. In this chapter the focus
is on single-particle operators because it provides an elementary way of �nding the restriction imposed on
the Bloch Hamiltonian and in turn, the spectrum of the system.

2.1 Chiral Symmetry S

If a system can be divided into two subsystems with no interactions or hoppings (bonds) within each
subsystem, then the system has a chiral symmetry. As an example, consider a one dimensional la�ice with
two la�ice sites per unit cell, call them A and B. �e full chain is made up of a number of unit cells lying
next to each other so that any A site, is surrounded by two B sites and vice versa. Including only hopping
between adjacent la�ice sites A and B (a nearest neighbour approximation) would make the system chiral
symmetric where the subsystems in this case are the two subla�ices made of A- and B-sites. Hence the
alternative name subla�ice symmetry.

2.1.1 Projection Operator

�e chiral operator is best understood in terms of the projection operator

PX =
∑
k

∑
i∈X
|k, i〉 〈k, i| . (2.5)

�is is not the identity operator because the sum on i is over one subspace X , of the full Hilbert space.
If the system is divided into two subsystems A and B, then PA + PB becomes the resolution of identity.
It is assumed that both subsystems are equally large, with r internal degrees of freedom making up each
subsystems. �en all base kets can be assembled into a 2r−dimensional bipartite spinor

|k〉 =

(
|k, 1〉 . . . |k, r〉︸ ︷︷ ︸

∈A

, |k, r + 1〉 . . . |k, 2r〉︸ ︷︷ ︸
∈B

)
, (2.6)

with the �rst r entries in Eq. (2.6) belonging to subsystemA and the remaining r entries belong to subsystem
B. �is spinor basis will be referred to as the chiral basis. �ese subsystems could be subla�ices, or a spin up
and spin down partition or some other partition that divides the Hilbert space in two equally big subspaces.
�e treatment here is general and the details of what makes up the subsystems are not speci�ed.
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�roughout this text, single-particle operators are denoted by M and their corresponding matrix rep-
resentations areM. An arbitrary operator can be wri�en in terms of its matrix elements according to

M =
∑

k,k′,i,j

|k, i〉Mij(k, k
′) 〈k′, j| , withMij(k, k

′) = 〈k, i|M |k′, j〉

as was seen for the single-particle Hamiltonian operator in Eq. (2.4), with the la�er being diagonal in k due
to translation invariance. �is is nothing other than inserting two resolutions of identity. �e projection
operator can thus be wri�en

PA/B =
∑

k,k′,i,j

|k, i〉 〈k, i|PA/B |k′, j〉 〈k′, j| =
∑

k,k′,i,j

|k, i〉 (PA/B)ij(k, k
′) 〈k′, j| , (2.7)

where A/B means A or B. �e matrix elements are found by using Eq. (2.5),

(PA/B)ij(k, k
′) = 〈k, i|PA/B |k′, j〉 =

∑
q,l∈A/B

〈k, i|q, l〉 〈q, l|k′, j〉 =
∑

q,l∈A/B

δkqδk′qδilδjl.

�e elements are independent of momentum and thus become

(PA/B)ij =

{
δij , i ∈ A/B
0, otherwise

. (2.8)

�e matrixPA/B with matrix elements (PA/B)ij is the matrix representation of the projection operator
in the chiral basis. In this way, the ijth entry of the matrixPA/B corresponds to the coe�cient of |k, i〉 〈k, j|
in PA/B . From Eqs. (2.6) and (2.8) the matrices are found to be

PA =

(
1 0
0 0

)
2r×2r

, PB =

(
0 0
0 1

)
2r×2r

. (2.9)

By using the matrix representation and the bipartite spinors Eq. (2.6) the projection operator can be ex-
pressed as

PA/B =
∑
k

|k〉 PA/B 〈k| . (2.10)

In the chiral basis, Eq. (2.6), the single-particle Hamiltonian operator becomes

H =
∑
k

|k〉H(k) 〈k| , (2.11)

whereH(k) is the Bloch Hamiltonian (matrix) with elementsHij(k) = 〈k, i|H|k, j〉.
For a generic Bloch Hamiltonian it holds that

H(k) = PAH(k)PA + PAH(k)PB + PBH(k)PA + PBH(k)PB . (2.12)

�is can be seen by computing the following matrix element

[PA/BH(k)PA′/B′ ]ij = [PA/BH(k)]il[PA′/B′ ]lj =

{
[PA/BH(k)]ij , j ∈ A′/B′

0, otherwise
,

7



where Eq. (2.8) was used and repeated indices are summed. Note that the second projection operator is
labeled by A′/B′ such that it can be either PA or PB independently of what the �rst projector is chosen to
be. Using Eq. (2.8) once more, it is found that

[PA/BH(k)PA′/B′ ]ij =

{
Hij(k), i ∈ A/B and j ∈ A′/B′

0, otherwise
. (2.13)

�is statement validates Eq. (2.12).
Consider now instead a chiral symmetric Hamiltonian. As de�ned before, chiral symmetry implies that

there exists two subsystems, A and B, without any bonds inside themselves, i.e.,

Hij(k) = 0 if i, j ∈ A or i, j ∈ B.

A chiral symmetric Bloch Hamiltonian is o�-diagonal in the chiral basis. Using Eq. (2.13), it follows that
PAH(k)PA = PBH(k)PB = 0 and thus, Eq. (2.12) becomes

H(k) = PAH(k)PB + PBH(k)PA. (2.14)

With this understanding of the projection operator, the chiral operator can now be de�ned.

2.1.2 Chiral Operator

�e chiral operator is de�ned as the di�erence between the projections on the two subsystems [19],

S = PA − PB . (2.15)

Writing that
S =

∑
k

|k〉 S 〈k| (2.16)

and applying Eqs. (2.10) and (2.15) it follows that

S = PA − PB = σz ⊗ 1r×r, (2.17)

where the last equality comes from Eq. (2.9). �e matrix σz is the third Pauli matrix4. �e chiral symmetry
operator is trivially Hermitian because projectors are Hermitian. It is also equal to its inverse. To see this,
�rst note that

P 2
A/B =

∑
k

∑
i∈A/B

∑
k′

∑
i′∈A/B

|k, i〉 〈k, i|k′, i′〉 〈k′, i′| =
∑
k

∑
i∈A/B

|k, i〉 〈k, i| = PA/B .

Secondly,
PAPB =

∑
k

∑
i∈A

∑
k′

∑
i′∈B
|k, i〉 〈k, i|k′, i′〉 〈k′, i′| = 0

since the overlap 〈k, i|k′, i′〉, with i ∈ A and i′ ∈ B, is zero because the two subsystems are disjoint.
Generally then

PAPB = PBPA = 0.

4�e Pauli matrices are given by σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. �ey are o�en accompanied by a

fourth matrix, σ0 =

(
1 0
0 1

)
, the 2× 2 identity.
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�erefore
S2 = P 2

A + P 2
B − PAPB − PBPA = PA + PB = 12r×2r = SS−1,

which implies that S = S−1. Summarizing,

S = S† = S−1. (2.18)

�ese properties are alike for the matrix S .
A general Bloch Hamiltonian is transformed by the chiral operator according to

SH(k)S−1 = PAH(k)PA + PBH(k)PB − PAH(k)PB − PBH(k)PA, (2.19)

where Eqs. (2.17) and (2.18) for the matrices were used. Consider instead a chiral symmetric Bloch Hamil-
tonian, for which PAH(k)PA = PBH(k)PB = 0. �en

SH(k)S−1 = −PAH(k)PB − PBH(k)PA.

Rewriting this with Eq. (2.14) it is found that

SH(k)S−1 = −H(k). (2.20)

A system is chiral symmetric if it obeys Eq. (2.20) with a chiral matrix S de�ned by Eq. (2.17) in the chiral
basis.

Chiral symmetry is not a conventional symmetry because its existence is dependent on how the sub-
systems are de�ned. It is possible to de�ne two subsystems within which there exists bonds. �en that
particular chiral symmetry is not present. Conventional symmetries do not possess such an ambiguity.
Nevertheless, chiral symmetry is still referred to as a symmetry in most, if not all literature and will be done
so throughout this text as well. To �nd the invariance relation of the single-particle operators compute
SHS−1 with Eqs. (2.11) and (2.16)

SHS−1 =
∑
kk′k′′

|k〉 S 〈k|k′〉H(k′) 〈k′|k′′〉 S−1 〈k′′| =
∑
kk′k′′

|k〉 SH(k′)S−1 〈k′′| δkk′δk′k′′ =

=
∑
k

|k〉 SH(k)S−1 〈k| ,

applying Eq. (2.20),
SHS−1 = −

∑
k

|k〉H(k) 〈k| = −H.

�erefore
{S,H} = 0. (2.21)

�e single-particle chiral operator anticommutes with the single-particle Hamiltonian.
Chiral symmetry may have a great e�ect on the topological properties of a system. �is will be discussed

in Section 3.3 on the Su-Schrie�er-Heeger model.

2.2 Time Reversal Symmetry T

Time reversal is the operation which causes a system to evolve backwards in time. Whether or not
time reversal is an appropriate name is a debated topic [20]. What is universally agreed upon is how it is
implemented and what it does. �e time reversal operator T reverses the sign for momentum-like quantities
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and does nothing to position i.e. T p̂T−1 = −p̂ and T x̂T−1 = x̂. Furthermore, it reverses the sign of
spin, due to its angular momentum-like behaviour, T ŜT−1 = −Ŝ. Time reversal symmetry remains a
conventional symmetry for single-particle Hamiltonians in the sense that a system is said to be time reversal
invariant if its single-particle Hamiltonian commutes with T ,

[T,H] = 0. (2.22)

Eq. (2.22) is consistent with the results found in appendix A. Properties of the time reversal operator depends
on the number of particles in the system and their statistics.

2.2.1 Time Reversal Operator

Wigner’s theorem states that any symmetry of a physically relevant Hamiltonian must be either unitary
or antiunitary [21]. �e theorem is based on the conservation of expectation values of observables. A
transformation is said to be antiunitary if it obeys Eqs. (2.23a) and (2.23b),

〈ψα|ψβ〉 → (〈ψα|ψβ〉)∗, (complex conjugation of inner product) (2.23a)
a |ψα〉+ b |ψβ〉 → a∗ |ψ′α〉+ b∗ |ψ′β〉 . (antilinearity) (2.23b)

A simple argument shows the antilinearity of T . �e fundamental commutation relations are

x̂p̂− p̂x̂ = i~.

Transforming this with the time reversal operator

Ti~T−1 = T x̂T−1T p̂T−1 − T p̂T−1T x̂T−1 = −(x̂p̂− p̂x̂) = −i~.

�is is precisely the antilinearity property Eq. (2.23b). Because an operator can not be antilinear and unitary
at the same time, T must be antiunitary. For a more rigorous proof of the antiunitarity property of T , see
[20].

Being antiunitary, the time reversal operator can be implemented [22] in the form

T = UK, (2.24)

where U is a unitary operator and K is the complex conjugation operation. Note that K2 = 1, K† = K.
Furthermore, K reverses the sign of momentum and does nothing to position, as is required by T . �is can
be understood because p̂ = −i~∂x and x̂ = x. �e complex conjugation operator does not have a matrix
representation5. T acts on a state according to T |ψα〉 = U |ψ∗α〉. �us Eq. (2.23a) is ful�lled,

〈ψα|ψβ〉 → 〈ψα|T †T |ψβ〉 = 〈ψ∗α|U†U |ψ∗β〉 = (〈ψα|ψβ〉)∗.

It is also antilinear, as in Eq. (2.23b),

a |ψα〉+ b |ψβ〉 → UK(a |ψα〉+ b |ψβ〉) = a∗UK |ψα〉+ b∗UK |ψβ〉 = a∗ |ψ′α〉+ b∗ |ψ′β〉 .

Applying the time reversal symmetry operation twice must give back the same physical state, up to a non-
measurable constant,

T 2 = α · 1, (2.25)

5�is is not completely true. �e complex conjugation operator can be given a matrix representation [14], however, it is o�en
treated as a non-trivial operator for practical purposes.
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where the constant alpha obeys |α|2 = 1. In this way α can be wri�en as a phase factor α = eiθ . Taking
the square of Eq. (2.24) and equating it with Eq. (2.25),

T 2 = UKUK = UU∗K2 = UU∗ = α · 1.

It can be deduced that
U∗ = αU† = α(U∗)T = α(αU†)T = α2U∗,

which requires α = ±1 and when substituting back into Eq. (2.25),

T 2 = ±1. (2.26)

�e value of T 2 is related to the physical properties of the system, as is discussed below. Using Eq. (2.24)
the single-particle operator is found by inserting identities

T =
∑

k,k′,i,j

|k, i〉 〈k, i|T |k′, j〉 〈k′, j| =
∑

k,k′,i,j

|k, i〉 〈k, i|U |−k′, j〉 〈−k′, j|K.

�e sum over k′ can be rede�ned to remove the minus sign

T =
∑

k,k′,i,j

|k, i〉 〈k, i|U |k′, j〉 〈k′, j|K.

It is noted that the only way time reversal impacts momentum is by a �ip of sign which is carried out by
the complex conjugator and therefore U does nothing to momentum,

T =
∑

k,k′,i,j

|k, i〉 〈k|k′〉 〈i|U |j〉 〈k′, j|K =
∑
k,i,j

|k, i〉 〈i|U |j〉 〈k, j|K ≡
∑
k,i,j

|k, i〉 Tij 〈k, j|K.

From the matrix elements
Tij = 〈i|U |j〉 (2.27)

the matrix T is constructed and in a given spinor representation |k〉, the time reversal operator is given by

T =
∑
k

|k〉 T 〈k|K. (2.28)

One now computes

THT−1 =
∑

k,k′,k′′

|k〉 T 〈k|K |k′〉H(k′) 〈k′|K|k′′〉 T −1 〈k′′| =

=
∑

k,k′,k′′

|k〉 T 〈k| − k′〉H∗(k′) 〈−k′|k′′〉 T −1 〈k′′| =
∑
k

|k〉 T H∗(−k)T −1 〈k| .

Because H is invariant Eq. (2.22), THT−1 = H holds and therefore∑
k

|k〉 T H∗(−k)T −1 〈k| =
∑
k

|k〉H(k) 〈k| ,

which gives the important result
T H∗(−k)T −1 = H(k). (2.29)
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�is is the invariance relation for any time reversal symmetric system’s Bloch Hamiltonian.
�e form of T is presented here for spin-1/2 and spinless particles. It was stated that spin changes sign

under time reversal. �is can be represented by a rotation with π about some axis which is chosen to be the
y-axis by convention. �e single-particle time reversal operator Eq. (2.24) takes the form

T = e−iπŜy/~K,

where Ŝy is the y-direction spin operator, which for spin-1/2 takes the form Ŝy = ~σ̂y/2. �e full power
series expansion can be evaluated because (−iσ̂y)2 = −1,

e−iπσ̂y/2 =

∞∑
n=0

(
− iπσ̂y/2

)n
n!

= cos
(π

2

)(1 0
0 1

)
+ sin

(π
2

)(0 −1
1 0

)
= −iσ̂y.

�us, for a spin-1/2 particle, Eq. (2.24) takes the form

T = −iσ̂yK. (2.30)

�e squared time reversal operator becomes

T 2 = −iσ̂yiσ̂∗yKK = −1. (2.31)

�erefore the single-particle time reversal operator is minus its own inverse

T = −T−1. (2.32)

Consider a time reversal symmetric, spinful Hamiltonian, describing a system with 2r internal degrees of
freedom. �e time reversal operator can also be wri�en in terms of bipartite spinors

T =
∑
k

|k〉 T 〈k|K, (2.33)

where
T = −iσy ⊗ 1r×r. (2.34)

Here the bipartite spinors are chosen to be sorted in terms of spin, which is di�erent from the chiral basis
Eq. (2.6), this is referred to as the spin basis of the spinors

|k〉 =
(
|k, 1,+〉 . . . |k, r,+〉 , |k, 1,−〉 . . . |k, r,−〉

)
. (2.35)

In this way, the operator Eq. (2.33), with matrix representation Eq. (2.34), acts on a 2r-dimensional state vec-
tor, (−iσy) acts on spin degrees of freedom performing a spin �ip and 1r×r acts trivially on the remaining
internal degrees of freedom.

Consider now spinless systems. E�ective spinless systems, where the spin of all particles are aligned can
be realized experimentally by spin polarization techniques, or alternatively by strong spin-orbit coupling
[14]. For spinless systems the time reversal operator, T = UK is given by U = 1 , the complex conjugation
changes the sign of momentum and there is no other degree of freedom to be in�uenced by the time reversal.
It follows that T squares to unity and by the discussion of the complex conjugation operator in the previous
section it follows that T = T † = T−1.
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2.2.2 Kramers’ �eorem

Recall that T is a single-particle operator. For a system of n, non-interacting spin-1/2 particles the
many-body time reversal operator T acts upon a state according to

T
(
|k, i, σ〉1 ⊗ |k, i, σ〉2 . . .⊗ |k, i, σ〉n

)
= T |k, i, σ〉1 ⊗ T |k, i, σ〉2 . . .⊗ T |k, i, σ〉n .

As a result, T 2 = −1 only if the system has an odd number of fermions, otherwise T 2 = 1. If T 2 = −1,
then the spectrum of a time reversal symmetric model a�ains a property that is summarized in Kramers’
theorem,

�eorem 2.1 (Kramers’ theorem) In a time reversal symmetric, spinful systemwhereT 2 = −1, all energy
levels are (at least) doubly degenerate.

To prove this theorem it must �rst be established that |Ψ〉 and T |Ψ〉 are di�erent eigenstates of H . Assume
the opposite, namely that the states are equivalent, then

T |Ψ〉 = eiφ |Ψ〉 .

�is would imply that

T 2 |Ψ〉 = T eiφ |Ψ〉 = e−iφT |Ψ〉 = e−iφ+iφ |Ψ〉 = |Ψ〉 .

From which it follows that T 2 = 1, contrary to the requirement. �us |Ψ〉 and T |Ψ〉 are di�erent states.
With H |Ψ〉 = E |Ψ〉 and [T ,H ] = 0 it can be concluded that

H T |Ψ〉 = T H |Ψ〉 = ET |Ψ〉 ,

such that both |Ψ〉 and T |Ψ〉 are di�erent eigenstates of H with the same energy. �erefore the system
is (at least) doubly degenerate. Furthermore it is noted that T |Ψ(k)〉 is an eigenstate with momentum−k.
�erefore the states |Ψ(k)〉 and T |Ψ(k)〉 have the same energy but opposite momenta and the spectrum is
symmetric under inversion of the energy axis (�ipping the sign of momentum). It follows that every energy
level has a symmetric partner in the other half of the Brillouin zone. At the so called time reversal invariant
momenta k = ±π, 0 the energy levels must meet with its symmetric partner and they are glued together at
these points. �is is because k = 0 is mapped to k = −0 = 0 by time reversal and likewise k = π is mapped
to k = −π which is identi�ed as the same point in the Brillouin zone. In this way a given energy level and
its symmetric partner has the same energy and momentum at these points and therefore they meet.

2.3 Particle-Hole Symmetry C

A third symmetry known to in�uence topological properties is particle-hole symmetry or charge conju-
gation symmetry. A particle occupying a state of energy E is equivalent to a hole occupying a state with
energy −E. �is property will be re�ected in the spectrum of particle-hole invariant models. �e single-
particle Hamiltonian is therefore symmetric under the particle-hole transformation, C , if it ful�lls

{C,H} = 0. (2.36)

Eq. (2.36) is consistent with the results found in appendix A.
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2.3.1 Particle-Hole Operator

�e particle-hole operator is, just like the time reversal operator, antiunitary. �is can be understood
because it can be interpreted as a charge conjugator. Because of this the operation should change the sign
of terms like ieA, which appears in a minimal coupling Hamiltonian [23]. �e particle-hole operator thus
ful�lls antilinearity Eq. (2.23b), and by Wigner’s theorem the particle-hole operator is antiunitary and can
be wri�en in the form Eq. (2.24), namely C = UK . By the same arguments as for time reversal symmetry,
this implies

C2 = ±1.

As discussed in [14], whenever a system exhibits time reversal and particle-hole symmetry, chiral symmetry
is automatically present. Even more generally, whenever two out of the three symmetries are present, all
three symmetries are present. �is will be discussed later on in Chapter 8. �e three symmetries are related
[14] by

S = TC. (2.37)

Having already discussed chiral symmetry and time reversal symmetry, it becomes e�ective to study particle
hole symmetry in the form

C = T−1S. (2.38)

Caution must be taken because T−1 is di�erent for spinful and spinless systems. To �nd the matrix repre-
sentation of C , apply Eqs. (2.16) and (2.33),

C = T−1S =
∑
k,k′

K |k〉 T −1 〈k|k′〉 S 〈k′| =
∑
k

K |k〉 T −1S 〈k| =
∑
k

|−k〉 T −1S 〈−k|K.

Rede�ne the sum over k and �nd
C =

∑
k

|k〉 C 〈k|K (2.39)

with
C = T −1S. (2.40)

One now computes

CHC−1 =
∑

k,k′,k′′

|k〉 C 〈k|K |k′〉H(k′) 〈k′|K|k′′〉 C−1 〈k′′| =

=
∑

k,k′,k′′

|k〉 C 〈k| − k′〉H∗(k′) 〈−k′|k′′〉 C−1 〈k′′| =
∑
k

|k〉 CH∗(−k)C−1 〈k| .
(2.41)

�en by Eq. (2.36) this implies

CHC−1 =
∑
k

|k〉 CH∗(−k)C−1 〈k| = −H = −
∑
k

|k〉H(k) 〈k| .

�e invariance relation for the Bloch Hamiltonian under particle-hole symmetry becomes

CH∗(−k)C−1 = −H(k). (2.42)

It can be shown explicitly that particle-hole is a symmetry when chiral and time reversal are symmetries of
the Hamiltonian. �e starting point is Eq. (2.41) with C given by Eq. (2.40),

CHC−1 =
∑
k

|k〉 T −1SH∗(−k)S−1T 〈k| .
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Using Eq. (2.20),
CHC−1 = −

∑
k

|k〉 T −1H∗(−k)T 〈k| .

Further by applying Eq. (2.29) it is found that

CHC−1 = −
∑
k

|k〉H(k) 〈k| = −H, (2.43)

in agreement with Eq. (2.36).
What is the C matrix for spin-1/2 and spinless particles? To construct the matrix C in a spinful system

with arbitrary many internal degrees of freedom, S and T must be wri�en in the same basis. Remember
that chiral symmetry was discussed using the chiral basis Eq. (2.6), where the spin index is was taken to
be alternating at every entry, and time reversal symmetry was discussed in the spin basis Eq. (2.35). To
summarize,

|k〉 =
(
|k, i1,+〉 , |k, i1,−〉 . . . |k, ir,+〉 , |k, r1,−〉

)
, (Chiral basis) (2.44a)

|k〉 =
(
|k, i1,+〉 . . . |k, ir,+〉 , |k, i1,−〉 . . . |k, r1,−〉

)
. (Spin basis) (2.44b)

Choosing to work in the chiral basis means that S becomes Eq. (2.17), namely S = σz⊗1r×r. Time reversal
symmetry T becomes

T = 1r×r ⊗ (−iσy).

�e matrix C is di�erent depending on how many internal degrees of freedom the system has. �is is
because when multiplying

T −1 = −T = 1r×r ⊗ (iσy) =

{
iσy, r = 1

12×2 ⊗ 1 r2× r2 ⊗ (iσy), r ≥ 2
(2.45)

and

S = σz ⊗ 1r×r =

{
σz, r = 1

σz ⊗ 1 r2× r2 ⊗ 12×2, r ≥ 2
(2.46)

the C matrix given by Eq. (2.40) becomes

C = T −1S =

{
−σx, r = 1

σz ⊗ 1 r2× r2 ⊗ (iσy), r ≥ 2
(2.47)

in the chiral basis.
For a spinless system the time reversal matrix is T = 1 as discussed in the previous section. �e

particle-hole matrix reduces to Eq. (2.46),

C = σz ⊗ 1r×r,

in the chiral basis.
Now that the three symmetries important for topological properties have been introduced, it is time

to look closer at speci�c models. Later, in Chapter 8, Hamiltonians will be systematically characterized
depending on the presence or absence of these symmetries.
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3 Models of Interest
�is section serves as an introduction to the type of models that could be of interest in condensed ma�er

research or models which are simply instructive. �e models considered are non-interacting and include
only hopping and on-site potentials. Before considering a model with topologically non-trivial properties,
namely the Su-Schrie�er-Heeger (SSH)model, a brief overview of more general tight binding models is given.
Many naturally non-occurring models can be realized in the lab using ultracold quantum gases con�ned
on an optical la�ice [24]. In that sense, no toy model is irrelevant. �e e�ect of the discrete symmetries,
introduced in Section 2.1, on the band structure (spectrum) of these models is discussed.

3.1 Spinful Non-Interacting Tight Binding Two-Band Model
Tight-binding models [25] describe electrons on a discrete la�ice that models the array of atoms in a

crystal. �e electrons are allowed to hop between di�erent sites; this corresponds to kinetic energy of a
continuum model modulated by the crystalline potential generated by the atomic nuclei. �ere is also an
energy associated to each position on the la�ice, an on-site potential. �e tight-binding approximation
corresponds to the limit of small overlap between atomic orbitals of neighbouring atoms on a la�ice [14].
Here no superconducting pairing or electron-electron interaction is considered.

�e most general, one-dimensional, spinful, tight binding two-band model with these restrictions is

H =

N∑
m=1

∑
σ=+,−

(
αc†m,σcm+1,σ + βσc†m,σcm+1,σ

+α̃c†m,σcm+1,−σ + β̃σc†m,σcm+1,−σ

+µ′c†m,σcm,σ + ν′σc†m,σcm,σ

+µ̃′c†m,σcm,−σ + ν̃′σc†m,σcm,−σ
)

+ h.c. , (N + 1 = 1),

(3.1)

where c†m,σ (cm,σ) creates (annihilates) fermions on la�ice sitemwith spinσ andh.c. denotes the Hermitian
conjugate and periodic boundary conditions are employed by N + 1 = 1. �e model (Figure 3.1) and
Eq. (3.1) describes spinful particles on a translation invariant chain of N la�ice sites, being allowed to
hop to neighbouring la�ice sites (c†mcm+1) as well as to have an on-site potential (c†mcm). �e complex
coe�cients may be either spin dependent or spin independent. �e hopping and on-site potentials are either
spin conserving or spin �ipping, the la�er is indicated by a tilde on the coe�cients.

To �nd the Bloch Hamiltonian, one must Fourier transform to momentum space. Due to the periodicity
of the real space atomic la�ice, momentum k is discretized. �e discrete Fourier transformation of the

...
1 2 N-1 N

Figure 3.1: Illustration of the spinful, translation invariant, one-dimensional chain with N la�ice sites.
Straight lines represent hopping, circles represent the di�erent sites and the arrows illustrate the internal
spin degree of freedom.
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creation and annihilation operators become6

c†m =
1√
N

∑
k∈BZ

e−imkc†k, (3.2a)

cm =
1√
N

∑
k∈BZ

eimkck. (3.2b)

In the �rst Brillouin zone (BZ), the dimensionless momentum takes on the values

k = ±2πn

N
, n = 1, 2 . . . N/2. (3.3)

Transforming Eq. (3.1) with Eqs. (3.2a) and (3.2b) gives,

H =
1

N

∑
k∈BZ

∑
k′∈BZ

N∑
m=1

∑
σ=+,−(

αeik
′
eim(k′−k)c†k,σck′,σ + βσeik

′
eim(k′−k)c†k,σck′,σ

+α̃eik
′
eim(k′−k)c†k,σck′,−σ + β̃σeik

′
eim(k′−k)c†k,σck′,−σ

+µ′eim(k′−k)c†k,σck′,σ + ν′σeim(k′−k)c†k,σck′,σ

+µ̃′eim(k′−k)c†k,σck′,−σ + ν̃′σeim(k′−k)c†k,σck′,−σ

)
+ h.c. .

(3.4)

�is is vastly simpli�ed by noting that

{c†k, ck′} =
1

N

∑
mm′

{c†m, cm′}eimke−im
′k′ .

Applying Eq. (2.2c) on the right-hand side,

{c†k, ck′} =
1

N

∑
mm′

δmm′e
imke−im

′k′ =
1

N

∑
m

eim(k−k′).

Applying Eq. (2.2c) on the le�-hand side,

1

N

∑
m

eim(k−k′) = δkk′ . (3.5)

Using Eq. (3.5) to rewrite Eq. (3.4) and le�ing the delta function remove the sum over k′,

H =
∑
k,σ

(
αeikc†k,σck,σ + βσeikc†k,σck,σ

+α̃eikc†k,σck,−σ + β̃σeikc†k,σck,−σ

+µ′c†k,σck,σ + ν′σc†k,σck,σ

+µ̃′c†k,σck,−σ + ν̃′σc†k,σck,−σ
)

+ h.c. ,

(3.6)

6It follows that ck = 1√
N

∑N
m=1 e

−imkcm. c†k is simply given by the Hermitian conjugate.
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where
∑
k∈1BZ

∑
σ=+,− was wri�en as

∑
k,σ . Working out the h.c. terms,

H =
∑
k,σ

[(
αeik + α∗e−ik + βσeik + β∗σe−ik + µ′ + (µ′)∗ + ν′σ + (ν′)∗σ

)
c†k,σck,σ

+
(
α̃eik + α̃∗e−ik − β̃σeik + β̃∗σe−ik + µ̃′ + (µ̃′)∗ − ν̃′σ + (ν̃′)∗σ

)
c†k,−σck,σ

]
.

(3.7)

�e Hamiltonian can be wri�en in the form

H =
∑
k,σ,σ′

c†k,σHσσ′(k)ck,σ′ , (3.8)

when comparing with Eq. (3.7),Hσσ′(k) is found to be

Hσσ′(k) =
(
αeik + α∗e−ik + βσeik + β∗σe−ik + µ′ + (µ′)∗ + ν′σ + (ν′)∗σ

)
δσ,σ′

+
(
α̃eik + α̃∗e−ik − β̃σeik + β̃∗σe−ik + µ̃′ + (µ̃′)∗ − ν̃′σ + (ν̃′)∗σ

)
δσ,−σ′ .

De�ning the spinor
c†k ≡

(
c†k,+, c

†
k,−
)
,

the Hamiltonian becomes
H =

∑
k

c†kH(k)ck. (3.9)

�e Bloch Hamiltonian thus takes the form

H(k) =

(
H++(k) H+−(k)
H−+(k) H−−(k)

)
. (3.10)

To further simplify this it is preferable to write the Hamiltonian with purely real constants. To this end,
de�ne the following parameters

a = 2Reα, b = −2Imα,

c = 2Reβ, d = −2Imβ,

e = 2Reα̃, f = −2Imα̃,

g = 2Reβ̃, h = 2Imβ̃,

(3.11)

and
µ = 2Reµ′, ν = 2Reν′,

µ̃ = 2Reµ̃′, ν̃ = 2Imν̃′.

�ese de�nitions are motivated by how the constants couple in the Hamiltonian. For example,

αeik + α∗e−ik = (Reα+ iImα)(cos k + i sin k) + (Reα− iImα)(cos k − i sin k) =

= 2Reα cos k − 2Imα sin k = a cos k + b sin k.

Note that Hermicity already puts constraints on the on-site parameters µ, µ̃, ν and ν̃ for the most general
model. �ey do not enter in to the Hamiltonian with both a real and imaginary parts. By de�ning the
functions

fσ(k) = a cos k + b sin k + µ+ σ(c cos k + d sin k + ν), (3.12a)
gσ(k) = e cos k + f sin k + µ̃+ iσ(g sin k + h cos k + ν̃), (3.12b)
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the Bloch Hamiltonian Eq. (3.10) is given by

H(k) =

(
f+(k) g+(k)
g−(k) f−(k)

)
. (3.13)

�e Bloch Hamiltonian fully characterizes the single-particle spectrum of the system. It is straightforward
to diagonalize Eq. (3.13) and �nd that the eigenenergies are given by

E± =
1

2

(
f+ + f− ±

√
(f+ − f−)2 + 4g+g−

)
. (3.14)

�is is the energy spectrum of the model Eq. (3.1) when it is not subjected to any symmetry restrictions.

3.1.1 Symmetry Restrictions

In this section, it is shown how the terms of the Hamiltonian Eq. (3.1) are a�ected by the three symme-
tries S, T and C and what these restrictions imply for the energy spectrum.

Starting out with demanding the Hamiltonian to be chiral symmetric. �is implies that the Hamiltonian
obeys Eq. (2.20), namely, SH(k)S−1 = −H(k). Let the chiral partition be made in terms of spin up and
spin down subsystems. Writing S according to S = PA − PB in the chiral basis Eq. (2.6), implies that
S = σz . To �nd the restrictions onH(k) compute

SH(k)S−1 =

(
1 0
0 −1

)(
f+(k) g+(k)
g−(k) f−(k)

)(
1 0
0 −1

)
=

(
f+(k) −g+(k)
−g−(k) f−(k)

)
.

By Eq. (2.20) this is −H(k), (
f+(k) −g+(k)
−g−(k) f−(k)

)
=

(
−f+(k) −g+(k)
−g−(k) −f−(k)

)
,

it follows that f+(k) = f−(k) = 0 and that the Hamiltonian is o�-diagonal

H(k) =

(
0 g+(k)

g−(k) 0

)
. (3.15)

�is was expected because fσ(k) contains all spin conserving terms and the non-internally bonded subsys-
tem was de�ned by spin. �us, there must not exist spin conserving hopping or on-site potential.

What happens to the spectrum under chiral symmetry? For a given single-particle eigenstate |ψ〉 of the
single-particle Hamiltonian,

H |ψ〉 = E |ψ〉 ,

there exists a chiral symmetric eigenstate S |ψ〉 with opposite eigenenergy.

H(S |ψ〉) = −SH |ψ〉 = −E(S |ψ〉),

where Eq. (2.21) was used in the �rst step. �is fact is also seen in by inserting fσ(k) = 0 into Eq. (3.14),

E±(k) = ±
√
g+(k)g−(k). (3.16)

�e eigenenergies of the system are symmetric around E = 0.
By se�ing all real parameters in Eq. (3.12b) to zero and one by one se�ing them to one, it is veri�ed

that the spectrum is symmetric around zero energy, see Figure 3.2. �at is, in a chiral symmetric model there
exists a chiral symmetric partner state with energy −E(k) to every state with energy E(k).
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Figure 3.2: Spectra of the chiral invariant model described by Eqs. (3.16) and (3.12b). Regular lines are
E+(k) and dashed lines are E−(k). Red: e = 1, Green: e = f = 1, Blue: e = f = g = 1, Magenta:
e = f = g = h = 1, Black: e = f = g = h = ν̃ = 1, others zero and µ̃ is always zero.

Secondly, consider now instead that the general Hamiltonian Eq. (3.1) is time reversal invariant. In this
case, the Bloch Hamiltonian obeys Eq. (2.29), namely, T H∗(−k)T −1 = H(k). Applying Eq. (2.29) with
H(k) given by Eq. (3.13) and T = −iσy as seen in Eq. (2.34), the following constraints for the matrix
elements of the Bloch Hamiltonian are found

f∗−(−k) = f+(k), −g∗+(−k) = g−(k).

�e Eqs. (3.12a) and (3.12b) take the form

fσ(k) =a cos k + µ+ σd sin k, (3.17a)
gσ(k) =f sin k + iσg sin k. (3.17b)

�e time reversal symmetric model is given by

H(k) =

(
f+(k) g+(k)
g−(k) f−(k)

)
,
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Figure 3.3: Spectra of the time reversal symmetric model given by Eq. (3.14) with fσ(k) and gσ(k) described
by Eqs. (3.17a) and (3.17b) respectively. Regular lines are E+(k) and dashed lines are E−(k). In sub�gure
(a) the spectrum is doubly degenerate. Red: a = 1, Green: a = d = 1, Blue: a = d = f = 1, Magenta:
a = d = f = g = 1, others zero and µ is always zero.

using Eqs. (3.17a) and (3.17b). �e spectrum of this model given by Eq. (3.14), when sequentially se�ing
parameters to one can be plo�ed in the same manner as for the chiral symmetric model. �e result is
summarized in Figure 3.3. In Figure 3.3 (a) the spin dependence is not resolved because the only non-zero
parameter a corresponds to spin-independent hopping. Only a�er turning on a spin-dependent term can
the spin degeneracy be li�ed except for at so called time reversal invariant momenta introduced in Section
2.2.2, namely at k = ±π, 0.

�e spectrum is symmetric under inversion of momentum. �at is, in a time reversal invariant model
there exists a partner state to a state of momentum k, spin σ and energy E with momentum −k, spin −σ and
the same energy E.

Lastly, consider imposing particle-hole invariance for the general Hamiltonian Eq. (3.1), such that the
Bloch Hamiltonian obeys Eq. (2.42) CH∗(−k)C−1 = −H(k), with C = −σx as seen in Eq. (2.47). �e
constraints for the matrix elements of the Bloch Hamiltonian become

f∗−(−k) = −f+(k), g∗+(−k) = −g−(k).

�e Eqs. (3.12a) and (3.12b) are reduced to

fσ(k) = b sin k + σ(c cos k + ν) (3.18a)
gσ(k) = f sin k + iσg sin k. (3.18b)
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Figure 3.4: Spectra of the particle-hole symmetric model given by Eq. (3.14) with fσ(k) and gσ(k) described
by Eqs. (3.18a) and (3.18b) respectively. Regular lines are E+(k) and dashed lines are E−(k). In sub�gure
(a) the spectrum is doubly degenerate. Red: b = 1, Green: b = c = 1, Blue: b = c = ν = 1, Magenta:
b = c = ν = f = 1, Black: b = c = ν = f = g = 1, others zero.

�e eigenvalues Eq. (3.14) with fσ(k) and gσ(k) given by Eqs. (3.18a) and (3.18b) gives the eigenspectrum
illustrated in Figure 3.4.

�e spectrum is symmetric under inversion of energy through the origin. �at is, in a particle-hole
invariant model there exists a partner state to a state of momentum k, spin σ and energy E with momentum
−k, spin −σ and energy −E.

Figure 3.5 summarizes the properties of the energy eigenvalues for spectra that are invariant under one
of the symmetries.

Taking the overlap of what is allowed by a chiral symmetric, time reversal symmetric and particle-hole
symmetric system, the only terms that remain are

H(k) =

(
0 f sin k + ig sin k

f sin k − ig sin k 0

)
.
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Figure 3.5: Given an eigenenergy, E(k), a chiral symmetric model has a partner state (blue) with energy
−E(k), a time reversal invariant model has a partner state (red) of energy E(−k) and a particle-hole in-
variant model has a partner state (green) of energy −E(−k).

Consulting Eq. (3.11) it is found that the only remaining terms in a general, S, T and C symmetric, non-
interacting, two-band Hamiltonian, are imaginary, spin independent, spin �ipping hopping and real, spin
dependent, spin �ipping hopping. �e eigenenergies of this model are given by

E±(k) = ±
√
f2 + g2| sin(k)| (3.19)

with the spectrum shown in Figure 3.6 with f = g = 1.

3.2 Spinful Non-Interacting Tight Binding Multi-Band Model
Most of the mathematics and conclusions are equivalent when the two-band model is generalized to a

multi-band model. �is section will however, derive a powerful result. �e Hamiltonian will include the
same general terms as in the previous section, but it will also be allowed to be of arbitrary size. Solving this
model for the general Bloch Hamiltonian is the main result of this section. With this result at hand, if some
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Figure 3.6: Spectrum of the chiral-, time reversal- and particle-hole symmetric model given by Eq. (3.19)
with f = g = 1. �e regular line is E+(k) and the dashed line is E−(k).
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model under consideration is a special case of this general model, it su�ces to insert appropriate values for
the parameters in the general Hamiltonian to solve that model.

To construct a model with an arbitrary number of bands, each unit cell must have an arbitrary number
of internal degrees of freedom. In the model described by Figure 3.7, each unit cell has r sites, each with spin
up and down. �e total number of internal degrees of freedom is 2r. Such a situation occurs, for example,
when the hopping amplitudes and on-site potentials appearing in Eq. (3.1) are position dependent functions
and periodic with wave length λ = ra (a being the la�ice spacing). In this case, the la�ice is translation
invariant by a unit cell (as it is de�ned in Figure 3.7) displacement. Each unit cell with 2r internal sites is
repeated N times on a one dimensional chain.

To make the notation more compact, spin dependent and spin independent constants enter into the
same quantity,

γiσ = αi + σβi, ρiσ = µ′i + σν′i,

γ̃iσ = α̃i + σβ̃i, ρ̃iσ = µ̃′i + σν̃′i,
(3.20)

where i labels the internal sites of the unit cell and σ = {+,−}. As before, all constants are complex and
the Hamiltonian becomes

H =

N∑
m=1

[ r−1∑
i=1

∑
σ

(
γi,σc

†
m,i,σcm,i+1,σ + γ̃i,σc

†
m,i,σcm,i+1,−σ

)
+
∑
σ

(
γr,σc

†
m,r,σcm+1,1,σ + γ̃r,σc

†
m,r,σcm+1,1,−σ

)
+

r∑
i=1

∑
σ

(
ρi,σc

†
m,i,σcm,i,σ + ρ̃i,σc

†
m,i,σcm,i,−σ

)]
+ h.c. ,

(3.21)

with N + 1 = 1. In the special case r = 1, this Hamiltonian reduces to the two band model Eq. (3.1) by
insertion of Eq. (3.20). With the same reasoning used to �nd Eq. (3.6), Eq. (3.21) is Fourier transformed into
k-space. �e Hamiltonian takes the form

H =
∑
k

[ r−1∑
i=1

∑
σ

(
γi,σc

†
k,i,σck,i+1,σ + γ̃i,σc

†
k,i,σck,i+1,−σ + ρi,σc

†
k,i,σck,i,σ + ρ̃i,σc

†
k,i,σck,i,−σ

)
+
∑
σ

(
γr,σe

ikc†k,r,σck,1,σ + γ̃r,σe
ikc†k,r,σck,1,−σ + ρr,σc

†
k,r,σck,r,σ + ρ̃r,σc

†
k,r,−σck,r,−σ

)]
+ h.c. .

(3.22)
From this, it is straightforward to produce the Bloch Hamiltonian de�ned by

H =
∑
k

c†kH(k)ck.

...

i 1 i r
m 1

...

i 1
m N

......

i 1
m 2

i r i r

Figure 3.7: Illustration of the multi-band model. �e N unit cells are labeled by m, each hosts r sites each
with two possible spin orientations.
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Figure 3.8: �e form of the Bloch Hamiltonian for the general n-band model. �e upper le� part repeats
r − 1 times along the diagonal while changing the internal site index.

With the bipartite spinor c†k given by

c†k =
(
c†k,1,+, c

†
k,1,−, c

†
k,2,+, c

†
k,2,− . . . c

†
k,r,+, c

†
k,r,−

)
the structure of the Bloch Hamiltonian is given by Figure 3.8.

�is Bloch Hamiltonian is directly applicable to any model with form of the original Hamiltonian Eq.
(3.21). One must only make sure to use the same Fourier transformation convention and that the bipartite
spinors are de�ned in the same way, when comparing the result to some speci�c model.

3.3 �e Su-Schrie�er-Heeger (SSH) Model
�e simplest model known to exhibit topological properties is the so called Su-Schrie�er-Heeger (SSH)

model. �e model describes spinless electrons, hopping on a one-dimensional, open chain. �e chain con-
sists of N unit cells, each of which hosts two sites, one on subla�ice A and the other on subla�ice B. �e
structure of the la�ice is given by Figure 3.9. �e second quantized Hamiltonian of the SSH model is

H = v

N∑
m=1

c†m,Bcm,A + w

N−1∑
m=1

c†m+1,Acm,B + h.c. . (3.23)

�e hopping amplitudes are alternating and in fact, this situation occurs naturally due to what is known
as Pierls instability, which says that the system will arrange itself such that the amplitudes are staggered
because it is energetically favourable [19]. Furthermore, the amplitudes are taken to be real and positive for
simplicity.

As per usual, the goal is to �nd the Bloch Hamiltonian and thereby the energy spectrum. Notice that
the SSH model can be divided into two subsystems, A and B (according to Figure 3.9), within which there
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...

m=1 m=N

v w

Figure 3.9: Schematic drawing of the SSH chain. It consists of N unit cells, each with two sites. �e dark
(light) sites make up the subla�ice A (B). �e intercell (intracell) hopping amplitude is w (v).

exists no bonds. �is is exactly the condition for chiral symmetry, which was discussed in Section 2.1. �us,
the Bloch Hamiltonian is expected to be o�-diagonal.

Fourier transformation is only possible when real space is periodic and near the edges of an open chain
the periodicity vanishes. To that end, de�ne the translation invariant Hamiltonian

Hbulk = v

N∑
m=1

c†m,Bcm,A + w

N−1∑
m=1

c†m+1,Acm,B + h.c. , (N + 1 = 1). (3.24)

�e conditionN + 1 = 1, closes the chain. �e SSH chain can be separated into a bulk part and a boundary
part. �e boundary consists of the regions in close proximity to two edges of the chain, the bulk makes up
the inner section of the chain and without any edges to terminate the chain the bulk is translation invariant.
Hence Hbulk is called the bulk Hamiltonian. In the thermodynamic limit the properties of the model are
given mostly by the bulk, thus for now, only the bulk Eq. (3.24) is investigated.

To �nd the Bloch Hamiltonian one applies the Fourier transforms Eqs. (3.2a) and (3.2b) and de�nes a
basis

c†k = (c†k,A, c
†
k,B).

�e bulk SSH Hamiltonian Eq. (3.24) can be wri�en

Hbulk =
∑
k

c†kH(k)ck.

In this basis,H(k) becomes

H(k) =

(
0 v + we−ik

v + weik 0

)
(3.25)

Because the matrix is o�-diagonal it can be squared to �nd the energies, H(k)2 = E(k)21 and it is found
that the energies are given by

E±(k) = ±|v + we−ik| = ±
√
v2 + w2 + 2vw cos k. (3.26)

�e SSH model has two internal degrees of freedom and therefore it has two bands. �ere exists a gap ∆
between these bands and it is de�ned as the di�erence between the energies of these two bands when they
are the closest to each other,

∆ = min(E+(k))−max(E−(k)) = E+(π)− E−(π) = 2|v − w|. (3.27)

Due to the existence of a gap, the system describes an insulator. If v = w, then the gap closes at k = ±π
and the system is said to be a conductor. �ese are two distinct states of ma�er. What is interesting is that
there are even more distinct states of ma�er hidden in the SSH model.
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3.3.1 Topological Features of the SSH Model

�e goal is to �nd a topological phase of ma�er which is distinct from a trivial insulator or conductor.
Recall that a unique phase of ma�er corresponds to a system with a unique set of physical properties. In the
following the physical properties that will be clearly distinct between the topological and trivial phase
is the band structure. �e goal is thus to �nd a region in the parameter space where the SSH model’s
eigenspectrum behaves di�erently.

Consider the SSH Hamiltonian Eq. (3.23) in the real space basis,

c† =
(
c†1,A, c

†
1,B , c

†
2,A c

†
2,B . . . c

†
N,A, c

†
N,B

)
.

Note that now, the full SSH model, with edges, is being considered. �e Hamiltonian becomes

H = c†Hc.

As an example, let N = 3. �e real space Hamiltonian matrixH, is given by

H =


0 v 0 0 0 0
v 0 w 0 0 0
0 w 0 v 0 0
0 0 v 0 w 0
0 0 0 w 0 v
0 0 0 0 v 0

 . (3.28)

Two insulators are said to be topologically equivalent if their Hamiltonians can be adiabatically deformed
into one another. More details on adiabatic deformations will be given in Section 5.1. For now, an adiabatic
deformation is a continuous change of the parameters in the Hamiltonian, such that, the symmetries of the
Hamiltonian are unchanged and the band gap never closes. In mathematics one wants to �nd the di�erent
equivalence classes of topological spaces where the equivalence relation is a continuous deformations of
the space. Here the continuous deformation is an adiabatic deformation, and it too de�nes an equivalence
relation. If a Hamiltonian can be adiabatically deformed into another Hamiltonian, then these Hamiltonians
belong to the same equivalence class and in fact, they belong to the same phase. �e di�erent phases that
arise have fundamentally di�erent properties. For the SSH model there exists two regions in parameter
space which can not be connected by adiabatic deformations, because the energy gap will close. One of
these two states will be fundamentally di�erent and host gapless boundary modes, a de�ning property of
topological insulators. �e goal is to investigate this phase transition.

By looking at the band gap Eq. (3.27), it is clear that an adiabatic deformation can not let v become
equal to w. If that were to happen, the band gap closes and that would correspond to a phase transition.
�us, the regions v < w and v > w must describe two topologically, non-equivalent insulating states. In
fact, because these di�erent states have such di�erent eigenspectra (to be shown in short), they describe
di�erent phases of ma�er. Figure 3.10 (a) is the solution for the energy spectrum of Eq. (3.28) with w = 1
and where v ∈ [0, 3]. �e radical change in the spectrum occurs around v = 0.5, this is a �nite system size
e�ect. In the thermodynamic limit where N → ∞ the change occurs at v = w. �e appearance of zero
energy states in Figure 3.10 (a) indicates a topologically non-trivial state. �e fact that they do no change
under deformation is due to what is known as topological protection. Topological protection happens only
in a topological phase, as opposed to a trivial phase, to be discussed in Chapter 9.

Clearly, the regions v < w and v > w describe topologically distinct phases (see Figure 3.10 (b)), and
the v < w has topologically protected zero energy states. �e two equivalence classes which correspond to
the two phases are given by all Hamiltonians in the gray and white area respectively. What characterizes
these two di�erent phases? �e concept of topological invariants provides the answer.
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(a) �e spectrum of the SSH model in real space for N =
3, w = 1 and where v ∈ [0, 3]. �e appearance of topo-
logically protected, zero energy stated indicates a phase
transition.
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(b) �e two distinct phases, topological phase (white) and
topologically trivial phase (gray), of the SSH model. �ey
are separated by the line v = w which no adiabatic defor-
mation can cross because the gap closes.

Figure 3.10

De�nition 3.1 (Topological invariant) An integer that characterizes an insulating Hamiltonian and does
not change under adiabatic deformation of the parameters in the Hamiltonian.

Topological invariants are only well de�ned in the thermodynamic limit [19]. �ere exists such an invariant
for the SSH model and it does indeed take on di�erent integer values for the regions v < w and v > w.

3.3.2 Topological Invariant of the SSH Model

�e goal is to �nd the topological invariant of the SSH model. To this end, the Bloch Hamiltonian Eq.
(3.25) is rewri�en in terms of Pauli matrices,

H(k) = d0(k)σ0 + d(k) · σ, (3.29)

where σ0 = 1 and σ = (σx, σy, σz). �e coe�cients are found to be

dx = v + w cos k, dy = w sin k and dz = d0 = 0. (3.30)

In fact, any two-band, chiral symmetric Hamiltonian wri�en in the chiral basis must have dz = d0 = 0,
because of its o�-diagonal form.

�e vector d(k) traces out a path with its endpoint as k is taken through the �rst Brillouin zone, i.e.
k = [−π, π]. Due to the periodicity in k-space, this is necessarily a closed loop. Changing the parameters v
and w displaces and deforms the loop, see Figure 3.11. In particular v displaces the loop in dx-direction and
w determines the radius of the loop. If the loop were to at some point cross the origin, all the parameters
in the Hamiltonian vanish

(
dx = dy = 0 ⇒ E± = 0

)
and therefore gap closes and the system is in a

conducting state. �us, under any adiabatic deformation, a loop that winds around the origin can not cross
the origin because the gap is not allowed to close. Likewise, any loop that does not enclose the origin can
not be made to do so.

It is seen in Figure 3.11 that while v < w, the loop encloses the origin (topological) and while v > w,
the loop does not enclose the origin (trivial). �e topological invariant of the SSH model is the number of
windings of d(k) about the origin. Clearly, this must be an integer and it has already been established that it
can not change under an adiabatic deformation. �e requirements for a topological invariants are ful�lled.
3.11.
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Figure 3.11: Winding of d(k) as k sweeps through the �rst Brillouin zone. (a) v = 1 and w = 0.5 the
winding number is zero indicating a trivial phase. (b) v = w = 1 the loop intersects the origin indicating
a gap closing and phase transition point. (c) v = 0.5 and w = 1 the winding number is one indicating a
topological phase.

It should be noted that for a more general model, the number of windings can be greater than one. �is
topological invariant is the so called winding number n, to be discussed in greater detail in Chapter 4. �e
phase diagram Figure 3.10 (b) has been completely characterized, see Figure 3.12.

3.3.3 �e Bulk-Boundary Correspondence in the SSH Model

�e zero energy levels in Figure 3.10 (a) are in Section 9.1 identi�ed as gapless edge states and the corre-
sponding wave functions are shown to be highly located near the edges. �e edge states occur at the phase
transition point v = w in the thermodynamic limit and therefore there is always an equivalence between
the number of gapless edge states (at one side of the chain) and the winding number, hence the former is
also a topological invariant. In fact, it is possible to derive a mathematical equivalence between the number
of edge states at one side of the chain and the topological invariant of the SSH model [26]. �is is a clear
example of what is known as the bulk-boundary correspondence, to be discussed in Chapter 9. �e bulk-
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Figure 3.12: Phase diagram of the SSH model characterized by winding number n.
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boundary correspondence states that the number of edge modes is characterized by a topological invariant
of the bulk. What is interesting is that a property de�ned only in the bulk of the model (winding number)
makes predictions for the boundary (number of edge states). �e bulk-boundary correspondence is realized
experimentally in for example the quantum Hall e�ect [27], to be discussed in Chapter 7.

�e bulk-boundary correspondence is a recurring phenomenon in topological ma�er that has received
increased a�ention as of late. For a more in-depth discussion and further examples refer to [28, 29].
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4 Winding Number
�e winding number is a purely mathematical property de�ned for any smooth and closed curve. It was

discussed brie�y in Section 3.3.2. �e winding number plays its part in physics as a topological invariant.
In this section, the winding number is generalized and alternative de�nitions are presented.

�e winding number of a smooth closed curve is the number of turns (or windings) about some point,
that the tangent vector to the curve makes as one passes around the curve [30]. For the SSH model, the curve
was de�ned by the tangent of d(k) (de�ned in Eq. (3.30)) in the xy-plane. �e winding number about the
origin was calculated as all momenta in the �rst Brillouin zone were swept over. �is method of computing
the winding number is limited to two-band models. Of course, the winding number is much more general
and can in fact be de�ned for any o�-diagonal multi-band Hamiltonian.

Firstly, winding number is de�ned in a more general se�ing and it will be shown that the new de�nition
is equivalent to how it was de�ned for the SSH model. A�erwards an alternative expression in terms of
poles and zeros will be given.

4.1 Winding Number in One Dimension
A general o�-diagonal Hamiltonian of size 2r × 2r can be put in the form

H =

(
0 HAB(k)

H†AB(k) 0

)
. (4.1)

�e winding number n is de�ned as the number of revolutions of det
[
HAB

]
about the origin of the complex

plane as k varies in [−π, π] [31]. �e determinant is generally a complex number which can be wri�en

det
[
HAB(k)

]
= m1(k) + im2(k) = R(k)eiφ(k). (4.2)

�e number of revolutions of det
[
HAB

]
about the origin of the complex plane is

n = − 1

2π

∫ π

−π

dφ(k)

dk
dk, (4.3)

which is obviously nothing other than

n = − 1

2π

[
φ(π)− φ(−π)

]
= − 1

2π
∆φ. (4.4)

If det
[
HAB(k)

]
takes l turns, then ∆φ = l2π and Eq. (4.4) gives n = l.

Is this de�nition of winding number equivalent to how the winding number was calculated for the SSH
model in Section 3.3.2? Comparing Eqs. (3.25) and (4.1) one concludes that, for the SSH model7

det
[
HAB

]
= v + we−ik = v + w cos k + iw sin k.

It is seen that
Re(det

[
HAB

]
) = dx, Im(det

[
HAB

]
) = dy.

�erefore, the winding number of the complex number det
[
HAB

]
about the origin of the complex plane is

equal to the winding of the vector d(k) de�ned in Eq. (3.30) about the origin of the dxdy-plane.
7It is noted that under a change of sign in the Fourier transform convention the function det

[
HAB ] = v+we−ik → det

[
HAB

]
=

v + weik and in e�ect n→ −n.
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4.1.1 Winding Number in Terms of Poles and Zeros

In certain cases, more is known about the region enclosed by the curve than about the curve itself. �e
winding number can be expressed in terms of poles and zeros inside the curve. Call det

[
HAB

]
≡ f(k) and

note from Eq. (4.2) that
ln f(k) = lnR(k) + iφ(k),

such that
φ(k) =

1

i

[
ln f(k)− lnR(k)

]
.

Rewriting Eq. (4.3) with this expression yields

n =
1

2πi

(
−
∫ π

−π

d

dk
ln f(k)dk +

∫ π

−π

d

dk
lnR(k)dk

)
.

�e second integral becomes lnR(π) − lnR(−π), which vanishes because R(k), unlike f(k), is a single
valued function and π and −π are equivalent points. Using the logarithmic derivative puts the winding
number into the form

n = − 1

2πi

∫ π

−π

[ d
dk
f(k)

] 1

f(k)
dk. (4.5)

�e derivative of f(k) can be rewri�en by de�ning z(k) = e−ik ,

d

dk
f(k) =

(
dz(k)

dk

)(
d

dz(k)
f
(
z(k)

))
= −ie−ik d

dz(k)
f
(
z(k)

)
.

Now Eq. (4.5) takes the form

n = − 1

2πi

∫ π

−π

[
d

dz(k)
f
(
z(k)

)] 1

f
(
z(k)

)(− ie−ik)dk.
De�ne

g
(
z(k)

)
≡
[

d

dz(k)
f
(
z(k)

)] 1

f
(
z(k)

) .
Such that

n = − 1

2πi

∫ π

−π
g
(
z(k)

)
z′(k)dk. (4.6)

A standard result from contour integration theory [32] is∫
C

g(τ)dτ =

∫ b

a

g
(
τ(t)

)
τ ′(t)dt, (4.7)

where τ(t) parameterizes the curve C when a < t < b. �e function τ(t) is complex valued and the
parameter t is real. Applying theorem Eq. (4.7) to Eq. (4.6) where τ(t) corresponds to z(k) = e−ik ,

n = − 1

2πi

∮
g(z)dz = − 1

2πi

∮
f ′(z)

f(z)
dz.

�e curve is oriented clockwise because it is parameterized by e−ik and k ∈ [−π, π]. �e direction of the
curve can be reversed by changing the sign

n =
1

2πi

∮
f ′(z)

f(z)
dz. (4.8)
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�e closed curve is the counter-clockwise path around the unit circle in the complex plane. By the argument
principle of complex analysis [33], Eq. (4.8) becomes

n = Nf − Pf , (4.9)

where Nf and Pf denote the number of zeros and poles of f(z) enclosed by the curve, respectively. Each
zero and pole is weighted by their multiplicity8 and order, respectively. It is assumed that there are no zeros
and poles on the curve.

Can Eq. (4.9) be applied to the SSH model? �e function f(k) of the SSH model is f(k) = v + we−ik ,
such that f(z) = v + wz. �e function f(z) has no poles, but it has a zero of multiplicity one:

f(−v/w) = f(z0) = 0.

�e zero z0 = −v/w is always negative (because the parameters were taken to be positive) and only inside
the unit circle if v < w. �us, using Eq. (4.9),

n = Nf − Pf =

{
1− 0 = 1, v < w

0− 0 = 0, v > w
.

�e topological invariant has a non-trivial value in the region v < w and a trivial value if v > w in
accordance with what was found in Section 3.3.2. If v = w then the spectrum is known to be conducting
and the description of topological invariants is not well-de�ned. For this case the zero of f(z) occurs at
z0 = −1 which is on the unit circle, contrary to the above assumption.

4.2 Winding Number in �ree Dimensions
Previously, the winding number was de�ned for one-dimensional momentum. Next, one would like to

calculate winding numbers for higher dimensions. However, no topological phases in two dimensions are
characterized by winding numbers, because they are described by Chern numbers or Z2-invariants, this
will be shown in Chapter 8. �us, the only remaining dimension that remains to be discussed is d = 3. �e
discussion given here is very limited. For a more in-depth coverage see [34].

To construct a three-dimensional winding number, de�ne the Q-matrix

Q(k) ≡ 1− 2P (k),

where P (k) ≡
∑filled
α |ψα(k)〉 〈ψα(k)| is the projection operator over �lled Bloch states.

As for in one dimension, the winding number in three dimensions is de�ned for Hamiltonians which
can be brought into an o�-diagonal form. In such a case, the Q-matrix is also o�-diagonal [34],

Q =

(
0 q(k)

q†(k) 0

)
.

�e three-dimensional winding number [34] is given by

n =

∫
d3k

24π2
εµνρTr[(q−1∂kµq)(q

−1∂kν q)(q
−1∂kρq)] (4.10)

and it counts the number of non-trivial windings of the map k→ space of q(k) [14]. �e integral is taken
over all momenta in the �rst Brillouin zone, εµνρ is the antisymmetric tensor and µ, ν and ρ = x, y, z.

8A zero of the form ak(z − z0)k is of multiplicity k. A pole of the form ap
1

(z−z0)p
is of order p.
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�e winding number Eq. (4.10) is o�en tricky to compute numerically and even more so analytically.
In principle, one can construct simple models and calculate Eq. (4.10) analytically, see [17], but more o�en
numerical solutions are required. In [17] the three dimensional winding number is calculated for continuum
Dirac Hamiltonian. �e result is curiously enough a half integer. �is can occur for continuum model and
in particular, for the Dirac Hamiltonian it re�ects the fact that the continuum model does not correctly
capture the high energy limit of the wave functions [14].
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5 Berryology
�e concept of geometric phases, or Berry Phases, is important in the study of topological properties of

materials because it enters into the description of a very important topological invariant known as Chern
number. To understand how Berry phases arise physically, some knowledge of the adiabatic theorem of
quantum mechanics, or simply the adiabatic theorem, is essential. �is will be discussed in Section 5.1.
When it has been established what an adiabatic deformation implies, the Berry phase is introduced in both
the discrete and continuous case in Section 5.2. �e following chapter will make use of the Berry phase to
understand Chern numbers.

5.1 Adiabatic �eorem
A general Hamiltonian depends on two types of variables, degrees of freedom and parameters. �e de-

grees of freedom evolve dynamically with time and are for example position and spin. �e parameters are
usually set by experimental conditions and are for example the various hopping amplitudes and interaction
strengths of the Hamiltonian. It should be noted that for a given model one is free to consider any degree of
freedom, say momentum as a parameter. It is just a ma�er of choice to say that in this particular problem,
momentum can be controlled externally.

Under a change of the parameters of a Hamiltonian describing some quantum system, the eigenstates
may change. However, consider a very slow deformation of the parameters in the Hamiltonian. A slow
deformation in this context, is known as an adiabatic deformation. What characterizes such a deformation
is that it happens on a time scale that is much larger than the typical time scale of the system that it deforms.
�e external time Te is the time during which the deformation is carried out. Let the system’s internal time
dependence be of order Ti. �en an adiabatic deformation is one for which Te � Ti. Furthermore, an
adiabatic deformation must never close the energy gap of an insulator and may not a�ect the symmetries
of the system.

One all important theorem can now be introduced,

�eorem 5.1 (Adiabatic theorem) A particle initially in the nth eigenstate of H , will remain in the nth
eigenstate of a new Hamiltonian H ′ if the deformation from H to H ′ is adiabatic.

A practical example helps to make this understandable. �e Hamiltonian describing a particle in a box
depends on the box size, a. Suppose the box is slowly enlarged, that is, a parameter in H is deformed. A
particle originally in the ground state of the �rst Hamiltonian will still be in the ground state of H ′.

5.1.1 Proof of the Adiabatic theorem

�e proof given here follows the proof given in [35] which is restricted to non-degenerate systems.
As time moves for an eigenstate ψn that is time independent, the eigenstate pick up a phase due to the

time evolution operator
Ψn(t) = ψne

−iEnt/~. (5.1)

If the Hamiltonian changes with time the eigenstate ψn(t) ful�lls

H(t)ψn(t) = En(t)ψn(t) (5.2)

and they constitute a complete and orthogonal set of functions at any instant in time. As time moves for a
system that is time dependent, the eigenstates pick up a phase due to the time evolution operator according
to

Ψn(t) = e−
i
~
∫ t
0
En(t

′)dt′ψn(t) ≡ eiθn(t)ψn(t), (5.3)
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where θn(t) = − 1
~
∫ t
0
En(t′)dt′ is known as the dynamical phase. �e time dependent Schrödinger equation

for the full wave function Ψ(t) is
i~∂tΨ(t) = H(t)Ψ(t) (5.4)

and at any time Ψ(t) can be wri�en as a linear combination of the complete set of states Eq. (5.2),

Ψ(t) =
∑
n

cn(t)eiθn(t)ψn(t). (5.5)

To prove the adiabatic theorem Eq. (5.8), it must be shown that everything other than ψn(t) in Eq. (5.5)
is just a phase. Inserting Eq. (5.5) into Eq. (5.4),

i~
∑
n

(
ċnψn + cnψ̇n + icnψnθ̇n

)
eiθn =

∑
n

cnHψne
iθn =

∑
n

cnEnψne
iθn .

�e third term on the le� hand side cancels with the right hand side because, θ̇n = − 1
~En(t). Moving

forward, now in Dirac notation, multiply what remains by 〈ψm|,∑
n

ċnδmne
iθn = −

∑
n

cn 〈ψm|ψ̇n〉 eiθn .

Moving terms
ċm = −

∑
n

cn 〈ψm|ψ̇n〉 ei(θn−θm). (5.6)

To �nd 〈ψm|ψ̇n〉, take the time derivative of Eq. (5.2) and multiply by 〈ψm|,

〈ψm|Ḣ|ψn〉+ 〈ψm|H|ψ̇n〉 = Ėnδmn + En 〈ψm|ψ̇n〉 .

Le�ing H act on the bra it is found that

〈ψm|Ḣ|ψn〉 = (En − Em) 〈ψm|ψ̇n〉+ Ėnδmn.

When n 6= m and assuming |ψn〉 and |ψm〉 are non-degenerate,

〈ψm|ψ̇n〉 =
〈ψm|Ḣ|ψn〉
(En − Em)

.

Plugging this back into Eq. (5.6),

ċm(t) = −cm(t) 〈ψm(t)|ψ̇m(t)〉 −
∑
n 6=m

cn(t)
〈ψm(t)|Ḣ|ψn(t)〉
(En(t)− Em(t))

ei(θn−θm).

�e adiabatic theorem relies on the adiabatic approximation which assumes that Ḣ is negligible when the
Hamiltonian is deformed very slowly (adiabatically), such that the second term vanishes. For a discussion
on when this approximation is justi�ed see [36]. What remains is a di�erential equation for cm(t),

ċm(t) = −cm(t) 〈ψm(t)|∂tψm(t)〉 .

It is solved by
cm(t) = e−

∫ t
0
〈ψm(t′)|∂t′ψm(t′)〉dt′ . (5.7)
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Inserting Eq. (5.7) into Eq. (5.5) the adiabatic theorem is complete,

Ψn(t) = ψn(t)eiθn(t)e−
∫ t
0
〈ψn(t′)|∂t′ψn(t

′)〉dt′ . (5.8)

If the eigenstates are non-degenerate the wave function remains in the same eigenstate under an adiabatic
deformation, up to a phase. �e theorem holds as long as the deformation happens much slower than the
time scale de�ned by the energy gap. �e new phase that emerges in addition to the dynamical phase is the
subject of the next section.

5.2 Berry Phase
Consider a system which is deformed adiabatically, that is, one or more of the parameters in the Hamil-

tonian are changed slowly. Suppose the system was initially in the nth eigenstate of H , |ψn(0)〉, and a�er
some time t, the system is in the nth eigenstate of H ′, |ψ′n(t)〉. If the path taken by the Hamiltonian, in
parameter space, is not closed. �en

|ψn(0)〉 6∼ |ψ′n(t)〉 ,

because the states are eigenstates of di�erent Hamiltonians. If however, H is changed in a way such that it
comes back to itself at the time t, that is, the Hamiltonian is changed according to a closed path in parameter
space, then |ψn(0)〉 ∼ |ψ′n(t)〉 and in fact

|ψn(0)〉 → eiθn(t)eiγ(t) |ψn(t)〉 ,

by virtue of the adiabatic theorem Eq. (5.8). �e adiabatic theorem ensures that, if the deformation was
adiabatic and the states are non-degenerate, then the �nal state is the same as the initial state, up to a phase.
Naturally, a dynamical phase is picked up which depends on the time it took to carry out the deformation.
�e adiabatic theorem does not forbid the eigenstate to pick up yet another phase, γ known as a geometrical
phase, or the Berry phase. From Eq. (5.8) the Berry phase factor is

eiγ(t) = e−
∫ t
0
〈ψn(t′)|∂t′ψn(t

′)〉dt′ . (5.9)

�e Berry phase is

γ(t) = −
∫ t

0

〈ψn(t′)|∂t′ψn(t′)〉 dt′. (5.10)

Typically, |ψn(t)〉 depends on time through some parametersR1, R2 . . . RN . One of these parameters could
be for example, a hopping amplitude or a magnetic �eld strength. �is allows one to rewrite

∂

∂t
|ψn(t)〉 =

∂

∂R1
|ψn(t)〉 ∂R1

∂t
+

∂

∂R2
|ψn(t)〉 ∂R2

∂t
+ . . . = ∇R |ψn(t)〉 · ∂R

∂t
. (5.11)

Where |ψn(R1(t), R2(t) . . . RN (t))〉 is wri�en |ψn(R)〉. Plugging Eq. (5.11) into Eq. (5.10),

γ(t) = i

∫ Rf

Ri
〈ψn(R)|∇R|ψn(R)〉 · ∂R

∂t′
dt′ = i

∫ Rf

Ri
〈ψn(R)|∇R|ψn(R)〉 · dR.

When considering a closed loop in parameter space one �nds

γ(t) =

∮
i 〈ψn(R)| ∇R |ψn(R)〉 · dR. (5.12)
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�us, the path in parameter space forms a closed loop and the integral is also closed. �is equation was
derived by Michael Berry in 1984 [37].

Note that throughout this section it was assumed that the states were non-degenerate. �ere is a gen-
eralization of the Berry phase to the degenerate case in which the geometric phase is realized as a matrix
that rotates within the degenerate eigenstates. �is is o�en referred to as the non-Abelian Berry phase. For
more details see [14].

5.2.1 Berry Phase in Terms of Relative Phases

To gain a be�er understanding of the Berry phase it is useful to take a step back and consider a more
pictorial description in a discrete Hilbert space. It is possible to de�ne the Berry phase as a sum of relative
phases. It will be shown that in the continuous limit, it is possible to regain the form Eq. (5.12).

�e relative phase of two quantum states |ψ1〉 , |ψ2〉 can be wri�en

γ12 = −arg 〈ψ1|ψ2〉 = −arg
[
| 〈ψ1|ψ2〉 |e−iγ12

]
. (5.13)

�e overlap is a complex number and the argument of that number is the angle of that number’s polar
form. �e relative phases of interest are those between neighbouring states in di�erent, adiabatically con-
nected Hamiltonians. Let |ψn(R1)〉 be an eigenstate of H(R1), and |ψn(R2)〉 be an eigenstate of H(R2)
that has been adiabatically evolved fromH(R1) under the time t2−t1. �e time dependence of the states is
characterized by the time dependence of the parametersR1(t), R2(t) . . . RN (t).�e relative phase between
these states is

γR1,R2 = −arg 〈ψn(R1)|ψn(R2)〉 .

Consider a gauge transformation
|ψn(R)〉 → eiαn(R) |ψn(R)〉 .

�e relative phase is obviously not invariant under this transformation,

γR1,R2 → ei[αn(R2)−αn(R1)]γR1,R2 .

Generally, a sum of relative phases,

−arg
[
〈ψn(R1)|ψn(R2)〉 〈ψn(R2)|ψn(R3)〉 . . . 〈ψn(RN−1)|ψn(RN )〉

]
, (5.14)

also changes under this transformation because there is no corresponding ket for the �rst bra and likewise
for the last ket. �e argument of overlaps Eq. (5.14) is indeed a sum of relative phases because it can be
wri�en

−arg
[N−1∏
i=1

〈ψn(Ri)|ψn(Ri+1)〉
]

=

N−1∑
i=1

γi,i+1 + 2πn, n ∈ Z.

�e factor 2πn comes about because the argument of a phase outside the range [0, 2π] is shi�ed by this
factor to remain inside the range. However, if the Hamiltonian is deformed in such a way as to come back
to the original form at the end, that is, form a closed loop in parameter space, then the sum of relative
phases,

−arg
[
〈ψn(R1)|ψn(R2)〉 〈ψn(R2)|ψn(R3)〉 . . . 〈ψn(RN−1)|ψn(RN )〉 〈ψn(RN )|ψn(R1)〉

]
,

is gauge invariant. In fact, this is an alternative de�nition of the Berry phase.

γ = −arg
[
〈ψn(R1)|ψn(R2)〉 〈ψn(R2)|ψn(R3)〉 . . . 〈ψn(RN )|ψn(R1)〉

]
. (5.15)
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�us, the Berry phase is simply the sum of all the relative phases between neighbouring states as the Hamilto-
nian is adiabatically deformed in parameter space, see Figure 5.1.

To see that this is equivalent to Eq. (5.12), let the eigenstates ofH be separated by continuous parameters.
�e relative phase between two neighbouring states becomes

δγ = −arg 〈ψn(R)|ψn(R + dR)〉 .

�erefore:
e−iδγ =

〈ψn(R)|ψn(R + dR)〉
| 〈ψn(R)|ψn(R + dR)〉 |

. (5.16)

�e ket can be expanded to �rst order in dR,

|ψn(R + dR)〉 = |ψn(R)〉+∇R |ψn(R)〉 · dR,

and the relative phase can be assumed to be small for neighbouring states. Expanding the le� hand side of
Eq. (5.16) in δγ and the right hand side in dR gives

1− iδγ =
〈ψn(R)|ψn(R)〉+ 〈ψn(R)| ∇R |ψn(R)〉 · dR
| 〈ψn(R)|ψn(R)〉+ 〈ψn(R)| ∇R |ψn(R)〉 · dR|

.

To simplify the denominator, note that 〈ψn(R)|∇Rψn(R)〉with |∇Rψn(R)〉 ≡ ∇R |ψ(R)〉must be imag-
inary,

0 = ∇R 〈ψn(R)|ψn(R)〉 = 〈∇Rψn(R)|ψn(R)〉+ 〈ψn(R)|∇Rψn(R)〉 =

= 〈ψn(R)|∇Rψn(R)〉+ 〈ψn(R)|∇Rψn(R)〉∗ .

�e absolute value in the denominator becomes one, to �rst order in dR because, |a+ ib| =
√
a2 − b2 and

therefore

| 〈ψn(R)|ψn(R)〉+ 〈ψn(R)| ∇R |ψn(R)〉 · dR| = | 〈ψn(R)|ψn(R)〉 − iIm 〈ψn(R)| ∇R |ψn(R)〉 · dR| =

=

√
〈ψn(R)|ψn(R)〉2 − Im 〈ψn(R)|∇Rψn(R)〉2 · dR2 = 〈ψn(R)|ψn(R)〉2 +O(dR2) = 1.

�e relative phase becomes

δγ = i 〈ψn(R)| ∇R |ψn(R)〉 · dR.

ΨnΨn γR ,R 
H(R2)H(R1)

1   2

γR ,R 
2   3

γR ,R 
4   1

γR ,R 
3   4 ΨnΨn H(R3)H(R4)

Figure 5.1: �e relative phases that contribute to the Berry phase under the deformation ofH along a closed
path in a discrete parameter space.
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By de�nition, the Berry phase is the sum of relative phases, see Eq. (5.15). In the continuum limit this
becomes an integral,

γ(t) =

∮
i 〈ψn(R)| ∇R |ψn(R)〉 · dR (5.17)

which is carried out along a closed loop since the initial and �nal points in parameter space are the same.
�is is exactly equation Eq. (5.12).

5.2.2 Berry Connection and Berry Curvature

It is customary to write the Berry phase in terms of the Berry connection

A(R) ≡ i 〈ψn(R)| ∇R |ψn(R)〉 . (5.18)

With this de�nition Eq. (5.17) becomes

γ(t) =

∮
A(R) · dR. (5.19)

It was argued that the Berry phase in the discrete limit was gauge invariant, as long as the path in parameter
space was closed, Eq. (5.15). �is property must of course be ful�lled in the continuum limit and the proof
is simple when the Berry connection has been introduced. Under the gauge transformation,

|ψn(R)〉 → eiαn(R) |ψn(R)〉 ,

the Berry connection Eq. (5.18) is transformed according to

A(R)→ i

(
〈ψn(R)| e−iαn(R)×

×
[
i(∇Rαn(R))eiαn(R) |ψn(R)〉+ eiαn(R) |∇Rψn(R)〉

])
.

�e exponentials cancel, what is le� is

A(R)→ A(R)−∇Rαn(R). (5.20)

�is implies that the Berry phase Eq. (5.19) is transformed as

γ(t)→
∮

(A(R)−∇Rαn(R)) · dR.

�e contribution from local phase αn(R) vanished because the curve is closed (Ri = Rf ), i.e.,

αn(Ri)− αn(Rf ) = 0.

As such, the Berry phase is gauge invariant9 (for closed loops in parameter space)

γ(t)→ γ(t). (5.21)

It is possible to de�ne the Berry phase in terms of an integral of a gauge invariant quantity. For simplicity,
consider a Hamiltonian depending on three continuous parameters. It is the simpler case because then the

9�is is however not the full story of the gauge invariance of the Berry phase, see Section 5.2.3.
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familiar Stoke’s theorem from vector calculus can be applied instead of the d-dimensional generalization
from di�erential geometry. �e closed path in parameter space is ∂S and it encloses a surface S and the
manifold of states is assumed to be smooth. In this case, Stoke’s theorem can be applied to Eq. (5.19), turning
the line integral into a surface integral,

γ(t) =

∮
∂S

A(R) · dR =

∫
S

(∇R ×A(R)) · dS ≡
∫
S

Ω(R) · dS, (5.22)

where Ω(R) is called the Berry curvature. It can be wri�en as,

Ω(R) = ∇R ×A(R) = i∇R × 〈ψn(R)|∇Rψn(R)〉 . (5.23)

Using the identity ∇× fF = f(∇× F) + (∇f)× F, and the fact that the curl of a gradient is zero,

Ω(R) = i 〈∇Rψn(R)| × |∇Rψn(R)〉 . (5.24)

�e Berry curvature is gauge invariant because from Eq. (5.20) it holds that

Ω(R) = ∇R ×A(R)→ ∇R × (A(R)−∇Rαn(R)).

By the vanishing of the curl of a gradient it follows that

Ω(R)→ Ω(R) (5.25)

under a gauge transformation. Eqs. (5.22) and (5.24) are valid only for three dimensional parameter space. In
the case of a more general Hamiltonian, that depends on d parameters a Berry curvature tensor10 is de�ned
as

Ωµν(R) =
∂

∂Rµ
Aν(R)− ∂

∂Rν
Aµ(R) = −2Im 〈∂µψn(R)|∂νψn(R)〉 . (5.26)

Using the d dimensional Stoke’s theorem

γ(t) =
1

2

∫
S

dRµ ∧ dRνΩµν(R) ≡
∫
S

F . (5.27)

Here F is referred to as the Berry curvature two-form. For a detailed treatment on this see [14]. For an
introduction to di�erential forms and an explanation of the wedge product that appears in Eq. (5.27) see
appendix B. �e Berry curvature vector Eq. (5.24) and the Berry curvature tensor Eq. (5.26) are related by

Ωµν(R) = εµνρΩ
ρ(R). (5.28)

Berry referred to his �ndings about the geometrical phase as ”mysterious”. It was Simon [38] who
demysti�ed the notion of geometrical phases by interpreting them as a holonomy. If a connection is de�ned
for the manifold, then the holonomy of that connection measures how much the geometrical data changes
under parallel transport of a closed loop. A parallel transportation is a way to move geometrical information
(a vector for example) along a manifold. �e Berry phase is the quantum mechanical analog of these kinds
of classical holonomies [14]. A connection is needed to de�ne parallel transport and are usually de�ned
in the context of principal �ber bundles. A simpler way of discussing connections is in terms of covariant
derivatives [39]. For a proper review on Berry phase and parallel transport see [38].

10�e Berry curvature is a tensor under coordinate transformations which means that it transforms like, Ωµν = ∂xλ

∂xµ
∂xρ

∂xν
Ωλρ.
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5.2.3 Gauge Invariance Modulo 2π

So far, the adiabatic deformation has been closed in the sense that R comes back to the initial point with
the same numerical value. In this way

Ri = Rf ⇒ αn(Ri)− αn(Rf ) = 0.

But, if a parameter is periodic in the same sense as the xy-plane angle φ in spherical coordinates, where
φ = 0 and φ = 2π are identi�ed physically as the same point, then the gauge invariance of the Berry phase
is not ensured. In these considerations position is taken as a parameter that can be varied. �e angle φ is
limited to the interval [0, 2π] and physically φ = 0 and φ = 2π represent the same point in real space, but
the local parameter αn(R) need not be aware of this fact. Such that, if the path in parameter space starts at
the state corresponding to φ = 0 and ends at the state corresponding to φ = 2π, then the local parameter
αn(R) can di�er between these states, but because they are physically the same, it can only di�er by 2π
times an integer. �at is

Ri is physically equal to Rf ⇒ αn(Ri)− αn(Rf ) = 2πm, m ∈ Z.

�e same is true for the discrete case where the �rst bra and the last ket correspond to the physically
equivalent but di�erent states.

�eorem 5.2 (Gauge invariance of the Berry phase) In general, the Berry phase is gauge invariant up to
2πn. It is invariant as a phase.

�e formula Eq. (5.21) is generalized to

γ(t)→ γ(t) + 2πn (5.29)

for parameters that are periodic in the sense mentioned above. �e same considerations apply when mo-
mentum which is periodic in the Brillouin zone is considered as a parameter. It will be shown that this fact
is strongly related to quantization of Chern number.

5.3 Calculation of the Berry phase of a Two-Band Model
Consider the following Hamiltonian matrix which describes a spinful particle in a magnetic �eld

H(B) = −B · σ +B. (5.30)

�e magnetic �eld B with B = |B| is considered a parameter that can be varied. �e shi� B was put in for
convenience such that the two eigenstates become

H(B) |+〉 = 2B |+〉 , H(B) |−〉 = 0.

In spherical coordinates the magnetic �eld becomes

B =
(
B sin θ cosφ,B sin θ sinφ,B cos θ

)
.

It should be noted that nothing is assumed about the vector B, hence, this is a general two-band model.
�e name was simply chosen to make the analogy with magnetic monopoles clearer, but from here on B
will be considered a generic vector parameter of H(B). �e Hamiltonian Eq. (5.30) rewri�en in spherical
coordinates takes the form

H(B) = −B
(

cos θ − 1 e−iφ sin θ
eiφ sin θ − cos θ − 1

)
.
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�e eigenstates are given by,

|−〉 =

(
e−iφ cos( θ2 )

sin( θ2 )

)
, |+〉 =

(
e−iφ sin( θ2 )
− cos( θ2 )

)
.

Note that when the polar angle θ = 0 or π, the azimutal angle φ = arctan( yx ) is unde�ned because
x = y = 0 at those two points on the sphere. If at any time, θ = 0 or π and φ is present, then the states
are not well de�ned. As a result, one has to remove φ by some gauge transformation. In fact, there is no
way of �nding a gauge in which the eigenstates are well de�ned all over the sphere [19]. �e state |+〉 is
unde�ned when θ = π. When θ = 0 there is no problem because φ is not present.

�e evolution of the state |+〉 is now calculated as the parameter B (or e�ectively B, θ, φ) is varied.
For now, the parameters will be varied in such a way as to avoid the south pole (θ = π). For the Berry
connection Eq. (5.18) the quantity to compute is,

〈+|∇+〉 .

�e gradient in spherical coordinates is

∇ |+〉 = r̂
∂

∂r
|+〉+ θ̂

1

r

∂

∂θ
|+〉+ φ̂

1

r sin θ

∂

∂φ
|+〉 =

= θ̂
1

2r

(
e−iφ cos( θ2 )

sin( θ2 )

)
+ φ̂

1

r sin θ

(
(−i)e−iφ sin( θ2 )

0

)
.

Here r = B is really the radius of B in spherical coordinates. From this it is found that

〈+|∇+〉 = φ̂
i

r sin θ
sin2(

θ

2
).

One now evaluates the Berry curvature Eq. (5.23),

∇× 〈+|∇+〉 .

�e curl in spherical coordinates is

∇× f =
r̂

r sin θ

(
∂(fφ sin θ)

∂θ
− ∂fθ
∂φ

)
+
θ̂

r

(
1

sin θ

∂fr
∂φ
− ∂(fφr)

∂r

)
+
φ̂

r

(
∂(fθr)

∂r
− ∂fr

∂θ

)
.

From this is it found that
∇× 〈+|∇+〉 =

i

2

r̂

r2
.

Such that,

Ω = − r̂

2r2
= − B̂

2B2
.

Using equation Eq. (5.28), namely Ωµν(R) = εµνρΩρ(R), this can be wri�en in index notation

Ωij = −εijk
Bk

2|B|3
.

�e Berry phase is given by Eq. (5.22),

γ(t) =

∫
S

Ω(R) · dS,
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with the surface element
dS = B2dΩr̂.

�e non-bold, non-indexed omega denotes the solid angle. �e Berry phase becomes

γ = −1

2

∫
S

dΩ = −Ω

2
.

�us, the Berry phase for a two-band model is just minus half of the solid angle swept out by the magnetic
�eld as it is varied in such a way as to come back to itself.

If one evaluates the integral over a closed surface, interesting results emerge. �is will be done in
Chapter 6 on Chern numbers.

5.4 �e Aharonov–Bohm E�ect
Classically, the (magnetic) vector potential11 A is unphysical. �e physics is contained within the elec-

tric and magnetic �elds. �is is not entirely true quantum mechanically and this is the subject of the
Aharonov-Bohm e�ect. It is a phenomenon in which a charged particle is a�ected by the vector poten-
tial in a region where the electric and magnetic �elds vanish. It will be shown that it is essentially the Berry
phase which allows the vector potential to induce observable e�ects. Even though the Aharonov-Bohm
e�ect is not directly relevant to topological band theory it provides a pedagogical explanation for how the
Berry phase can have observable e�ects.

Consider the following experiment, a particle is free to move outside of a solenoid with a magnetic
�eld pointing upwards in the ẑ-direction. �e magnetic �eld vanish everywhere outside the solenoid. �e
particle is con�ned inside a box, the condition is enforced by adding a potential which is in�nite outside the
box. �e box is taken to be small enough such that the vector potential is approximately constant inside.
Let one of the box’s edge coordinate be R. �e eigenstate is given by [37]

〈r|ψn(R)〉 = e
ie
~

∫ r
R

A(r′)·dr′φn(r−R). (5.31)

where φn(r−R) is the nth wave function for a particle in a box problem [40] and e < 0 is the charge of
an electron. It is this eigenstate which will be deformed as the parameter R is varied. �is is the eigenstate
for any value of R, the snapshot eigenstate. �e goal is to calculate the Berry phase from when the box is
swept around the solenoid while being maintained in the plane. �e Berry connection Eq. (5.18) becomes

Ac(R) = i 〈ψn(R)|∇Rψn(R)〉 .

To avoid confusion, the index c has been given to the Berry connection. Insert a position identity

Ac(R) = i

∫
dre−

ie
~

∫ r
R

A(r′)·dr′φ∗n(r−R)∇R

(
e
ie
~

∫ r
R

A(r′)·dr′φn(r−R)

)
.

Note that ∇R

∫ r

R
A(r′)dr′ = −∇R

∫R

r
A(r′)dr′ = −A(R) by the fundamental theorem of calculus. �e

result becomes

Ac(R) = i

∫
drφ∗n(r−R)

(
− ie

~
A(R)φn(r−R) +∇Rφn(r−R)

)
. (5.32)

�e second term of Eq. (5.32) vanishes for a particle in a box problem [40]. �is gives

Ac(R) =
e

~
A(R)

11Not to be confused with the Berry connection, even though there are similarities.

44



by orthonormality of φn(r−R). It is curious how the Berry connection, which is similar to the gauge
potential of electromagnetism in this case equals the gauge potential. �e Berry phase Eq. (5.19) becomes

γ(t) =

∮
Ac(R) · dR =

e

~

∮
A(R) · dR. (5.33)

�e box takes one full turn in the plane such that the integral is a closed loop. By Stoke’s theorem the vector
potential in a circle around the solenoid equals the integral over magnetic �eld of the enclosed surface, this
is

γ(t) =

∫
S

B(R) · dS.

�e magnetic �eld is of constant strength B inside the solenoid and the area with non-vanishing magnetic
�eld is the area of the solenoid itself. �us, the integral becomes

γ(t) =
e

~
BA ≡ − e

~
Φ,

whereA is the area of the solenoid and Φ is known as the magnetic �ux. �e eigenstate picks up a geometri-
cal phase which depends on the strength of the magnetic �ux due to the presence of a vector potential. �us
the Aharonov-Bohm e�ect can be interpreted in terms of geometrical phase factors, experiments con�rming
the e�ect have been carried out [41].
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6 Chern Number
�e Chern number is a topological invariant and it is de�ned as the surface integral of the Berry curva-

ture over a closed surface. �is surface may be the entire manifold of parameter space or a subset of that, as
long as it is closed, see Figure 6.1.

In a three-dimensional parameter space the Chern number is integrated over a two dimensional surface
and is similar to the Berry phase of three dimensional parameter space Eq. (5.22). �e de�nition12 of a
Chern number in three-dimensional parameter space 13 is

C =
1

2π

∮
S

Ω(R) · dS. (6.1)

In index notation for an arbitrary dimensional parameter space this becomes

C =
1

4π

∮
S

dRµ ∧ dRνΩµν(R) =
1

2π

∮
S

F , (6.2)

where Eq. (5.27) was integrated over a closed surface. From here on out, momentum is considered a parameter
of the Hamiltonian. �is allows for the Chern number to be integrated over the closed surface that is the
Brillouin zone. �e Chern number becomes

C =
1

2π

∮
1BZ

Ωxyd
2k, (6.3)

with a Berry curvature de�ned by

Ωxy =
∂Ax
∂ky

− ∂Ax
∂kx

, (6.4)

and the Berry connection in the �rst Brillouin zone as

Ai(k) = i 〈ψk|∂ki |ψk〉 . (6.5)

Any further parameters are not integrated over and may be deformed in the usual sense. �e Chern number
integrated over a Brillouin zone is o�en called a Zak phase [42], a�er the person who �rst considered it.

Consider again the general two-band model

H(R) = h(R) · σ, h(R) = (hx, hy, hz), (6.6)

that depends on three parameters R. �e vector h(R) is a new parameterization of R in terms of three
independent parameters hx, hy and hz . �e Berry curvature is

Ω =
h

2h3
(6.7)

in accordance with Section 5.3. With Ωµν given by Ωµν = εµνρΩ
ρ, the Chern number Eq. (6.2) becomes

C =
1

4π

∮
S

εµνρΩ
ρdhµ ∧ dhν =

1

8π

∮
S

εµνρ
hρ

h3
dhµ ∧ dhν .

12�ere are more general Chern numbers in mathematics. But in physics, the study of adiabatic phases leads to this particular
quantity which is identi�ed as a Chern number.

13�is is known as the �rst Chern number. �e second Chern number is de�ned analogously but in four dimensions.
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(a) �e open surface being inte-
grated over in the calculation of a
Berry phase.

(b) A closed surface being inte-
grated over in the calculation of a
Chern number could be the entire
parameter space.

(c) A closed surface being in-
tegrated over in the calculation
of a Chern number can be any
closed surface.

Figure 6.1: �e di�erence in region of integration between the Berry phase (a) and Chern number (b)-(c),
for a parameter space characterized by a sphere.

It is assumed that two of the parameters are the x and y momenta and therefore the closed surface in param-
eter space that is to be integrated over is taken to be the Brillouin zone torus. In this way, the closed surface
S is the image of the Brillouin zone in h-space. �is can be rewri�en to be integrated over momentum

C =
1

8π

∮
S

εµνρ
hρ

h3
∂hµ

∂kα
∂hν

∂kβ
dkα ∧ dkβ .

Using that

εµνρ
hρ

h3
∂hµ

∂kα
∂hν

∂kβ
=

1

h3

[
hx

(
∂hy

∂kα
∂hz

∂kβ
− ∂hz

∂kα
∂hy

∂kβ

)
− hy

(
∂hx

∂kα
∂hz

∂kβ
− ∂hz

∂kα
∂hx

∂kβ

)

+hz

(
∂hx

∂kα
∂hy

∂kβ
− ∂hy

∂kα
∂hx

∂kβ

)]
=

h
h3
·
( ∂h
∂kα

× ∂h
∂kβ

)
the Chern number in vector form is

C =
1

8π

∫
BZ

h ·
(
∂h

∂kα
× ∂h

∂kβ

)
dkα ∧ dkβ .

For momentum in the xy-plane then

C =
1

8π

∫
BZ

h ·
(
∂h

∂kx
× ∂h

∂ky

)
dkx ∧ dky. (6.8)

�is is a general result for any two-band model.

6.1 �antization of the Chern Number
At �rst, it might seem that C should be zero. A closed surface does not have a boundary and therefore,

by Stoke’s theorem, the integral over a closed surface vanishes. �ere exists a similar statement, the Gauss-
Bonnet theorem [15], which says that the closed integral of the Gaussian curvature is an integer. Here, two
arguments will be made that show that Chern number can be non-zero.

47



6.1.1 No Continuous Global Gauge

�e Berry curvature Ω has singularities on the unit sphere at points which depend on the chosen gauge.
Because no gauge can get rid of all singularities everywhere on the sphere [19], one is forced to use di�erent
gauges for di�erent parts of the surface. Because the Berry phase is gauge invariant modulo 2π, this can
lead to to a non-zero Chern number.

Following the reasoning of [22] consider the Berry phase from Figure 6.1 (a). �e surface enclosed by the
loop is ambiguous. �e usual choice is the smaller, shaded region, S+, but the complement of that region,
S−, is of course also enclosed. Chern number is the integral over the entire region, which can be separated
into an integral over the shaded and the unshaded part.

C =
1

2π

∮
S

Ω(R) · dS =
1

2π

(∫
S+

Ω(R) · dS +

∫
S−

Ω(R) · dS
)
. (6.9)

Now suppose that the Berry curvature is singular once only on the sphere and that the singularity lies in
the region S−. �e Berry curvature is gauge invariant (Eq. (5.25)) and so one is free to calculate the integral
over S− in a gauge which makes the Berry curvature well-de�ned everywhere, so that Eq. (6.9) becomes

C =
1

2π

(∫
S+

Ω(R) · dS +

∫
S−

Ω′(R) · dS
)
. (6.10)

�e boundary ∂S of the two surfaces is the same, but it has opposite orientation. Applying Stoke’s theorem
as in Eq. (5.22) ∮

S±

Ω(R) · dS = ±
∮
∂S

A(R) · dS.

�e Chern number Eq. (6.10) becomes

C =
1

2π

∮
∂S

A(R) · dS− 1

2π

∮
∂S

A′(R) · dS.

�is is by Eq. (5.19) the di�erence of two Berry phases C = 1
2π (γ − γ′) over the same path but the Berry

connections A(R) di�er by a gauge transformation. �erefore, by gauge invariance modulo 2π of Berry
phases it is found that

C =
1

2π
(γ − γ′) =

1

2π
(γ − γ + 2πn) = n. (6.11)

�erefore the Chern number is an integer.
C = n ∈ Z.

Being an integer, the Chern number can not be changed by any continuous deformation and therefore C is
a topological invariant. If the Berry connection was well-de�ned everywhere on the sphere then the Chern
number would indeed vanish by Stoke’s theorem. Due to the singularities that arise, this is not the case.

6.1.2 Chern Number and Monopoles

Another way to understand that the Chern number is non-zero comes from intuition about charges and
the accompanying �ux. In Section 5.3 the eigenstate |+〉 of the Hamiltonian H(B) = −B · σ + B was
deformed as B was changed. �e Berry curvature was found to be

Ω(R) = − B̂

2B2
= − B

2B3
, (6.12)

48



(a) Energy spectrum of the QWZ model with u = 0. (b) Energy spectrum of the QWZ model with u = 1.4.

Figure 6.2: �e energy spectrum of the QWZ model has gap closing for certain values of the parameter u.
One such example is shown in (a). Panel (b) shows that the model is gapped for a generic value of µ.

where the Berry phase was to be computed with

γ(t) =

∫
S

Ω(R) · dR.

Consider closing the surface of integration, that is, let S be a closed surface. In doing so, the calculation
takes the form of a Chern number Eq. (6.1) times 2π.

�e curious thing about Eq. (6.12) is that it has the form of an e�ective magnetic monopole. It is the
�eld given by Coulomb’s law for a hypothetical point charge with magnetic charge−1/2. Gauss’s law from
electromagnetism relates the �ux ΦE of the electric �eld E out of a closed surface to the enclosed charge

ΦE =

∮
S

ε0E · dS = mq,

where m is the number of identical particles of charge q enclosed. Any charge located outside the surface
must have its �eld lines enter and leave the surface and therefore does not contribute to the �ux. Only
enclosed charges contribute to the net �ux. In an analogous way, the closed surface integral enclosing
e�ective magnetic monopoles, Ω(R) in this case, of charge qmag = −1/2 gives14

ΦM =

∮
S

Ω(R) · dS = 4πmqmag. (6.13)

�is measures the �ux out of the surface S generated by the �eld Ω. Finally, using Eqs. (6.1) and (6.13) with
qmag = −1/2 it is found that

C = m = �e number of enclosed monopoles. (6.14)
14�e factor 4π appears because of the di�erence in prefactors of E and B. �e electric �eld from a point charge is given by

E =
( mq

4πε0

) r

r3
.

Comparing this to the �eld containing the monopole Eq. (6.12) it is seen that there is no factor 4π.
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Combining what was learned about monopoles and about the singularities in the previous section it can
be concluded that, whenever there is a monopole enclosed by the surface, then there exists singularities in the
Berry curvature (implying that there is no global gauge) and hence a non-zero Chern number arises.

6.2 �e Qi-Wu-Zhang (QWZ) Model
A model with a non-zero value of the Chern number over the Brillouin zone is commonly referred to as

a Chern insulator. To do an example, let the Hamiltonian of Eq. (6.6) be described by

h(k) = (sin kx, sin ky, u+ cos kx + cos ky). (6.15)

�is is the Qi-Wu-Zhang (QWZ) model which corresponds to a tight-binding model with a nearest
neighbor approximation on a square la�ice [14]. �e spectrum of this two-band model is computed by
diagonalization and is given by

E± = ±|h(kx, ky)| = ±
√

sin2 kx + sin2 ky + (u+ cos kx + cos ky)2. (6.16)

�e energy spectrum for two values of the parameter u is given in Figure 6.2. It is straightforward to �nd
that the energy gap closes at

u = −2 : kx = ky = 0,

u = 0 : kx = 0, ky = π and kx = π, ky = 0,

u = +2 : kx = ky = π,

.

At the various gap closings the system shows what is known as Dirac points. �ere the dispersion relation
is characterized by linear dependence on momentum.

ky

kx

-π

ππ

ky

hz

hy

hx

z

y

1

(a) For �xed y-momentum k̄y the surface Σ
is a unit circle in the xz-plane with the cen-
tre (ȳ, z̄) given by Eq. (6.17).

ky

kx

-π

ππ

hz

hy

z

y

π 2

µ

1

1

hx
(b) When ky ∈ [−π, π] the centre coordinate
of the circle of panel (a) follows another unit
circle with a centre given by Eq. (6.18).

Figure 6.3: Illustration of the surface of the image of the Brillouin zone in parameter space.
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Figure 6.4: Gradual sweep of the surface of the image of the Brillouin zone in parameter space. In panel (a)
ky = 0 and kx ∈ [ − π, π], the subsequent panels shows the evolution of the surface when ky is allowed
to take on further values in the Brillouin zone. �e inside of the surface (red) contributes to a positive �ux
out of the torus, while the upper half of the torus has switched insides and outsides thus the outside (blue)
contributes negatively to the �ux. Figure credit: J. Asbóth et al. A Short Course on Topological Insulators:
Band-structure topology and edge states in one and two dimensions.

In most scenarios there are multiple equivalent ways of determining the topological invariant of a model.
Di�erent situations call for di�erent approaches. In the present case, a Chern number is to be calculated.
�ere are several ways to do this. 1.) A brute force calculation of Eq. (6.8) with the h-space parameters given
by Eq. (6.15). �is turns out to be, even for this rather simple model, analytically very challenging. 2.) �e
Chern number can be interpreted as number of times the surface h(k) (when the momenta sweep through
the Brillouin zone) wraps around the unit sphere [14]. Note the similarities to a winding number. 3.) �e
monopole interpretation given in section 6.1.2 can applied, thus requiring the identi�cation of degeneracies
in the image of the Brillouin zone in parameter space.

�e third option turns out to be simple enough in this case. When kx, ky sweep through the Brillouin
zone, h(k) traces out a closed torus in the parameter space. Let this surface be denoted by Σ. If, at any
Brillouin zone point, the surface intersects the origin of parameter space, then the gap closes (see Eq. (6.16))
and there is a possibility of a topological phase transition. It is known that the origin can be interpreted as
the source of a monopole from Eq. (6.7).

What does the surface Σ look like? For the moment let ky be �xed ky = k̄y and let kx ∈ [−π, π]. �e
parameters Eq. (6.15) become

hx = sin kx, hy = sin k̄y ≡ ȳ, hz = (u+ cos k̄y) + cos kx ≡ z̄ + cos kx. (6.17)

From this it is found that
h2x + (hz − z̄)2 = sin2 kx + cos2 kx = 1,

which is the equation for a circle of radius one centered at (0, z̄) in the hxhz-plane. �e circle intersects
the hy-axis at hy = ȳ as illustrated in Figure 6.3 (a). Now let ky ∈ [−π, π] such that the circle traces out a
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torus. �e centre of the circle in the yz-planes is given by

(y, z) = (u+ cos ky, sin ky). (6.18)

From
y2 + (z − u)2 = sin2 ky + cos2 ky = 1

it is seen that the center of the original circle which lied in the hxhz-plane follows a circle of radius one in
the hyhz-plane, see Figure 6.3 (b).

�e full torus Σ looks rather complicated. �is is because it intersects itself as it changes directions in
the y-direction and at the same time the surface also wraps inside out. It is best shown as a gradual sweep
of the surface, see Figure 6.4. �e inside (red) surface is seen to become the outside between (b) and (c).
Likewise, the outside (blue) becomes the inside. Due to the inside-out wrapping of the surface, any �ux
through the surface becomes negative in those regions.

Having integrated out the momenta the only parameter le� to deform is u, which causes the entire
torus to be shi�ed along the z-axis when varied. As a result, whenever u ∈ (−2, 0) the origin is enclosed
in the upper half of the torus, where Σ is wrapped inside out. When u ∈ (0, 2) the origin is enclosed in the
lower half of the torus, where the surface is normally wrapped. Otherwise the origin is not enclosed by the
surface.

By equation Eq. (6.14), C = m = �e number of enclosed magnetic monopoles, it is found that the
Chern number of the QWZ model is

C =


0, u < −2,

−1, −2 < u < 0,

+1, 0 < u < 2,

0, 2 < u,

.

For more illustrations of the torus see [19].
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7 �antum Hall E�ect
�e Hall e�ect experiment consists of electrons which are restricted to move in a two dimensional

plane. �e setup is given by Figure 7.1. Current is allowed to �ow out of the sample only in x-direction and
a magnetic �eld is turned on in the z-direction. �is will induce a voltage (Hall voltage) between the edges
of the sample in the y-direction. �e transverse (ρxy) and longitudinal (ρxx) resistivities will be shown to
be linear and constant in the magnetic �eld strength, respectively, see Figure 7.2 (a). Much more interesting
is the resistivities that emerge when the sample is cooled down to very low temperatures and the magnetic
�eld is very strong. �e quantum Hall e�ect is the phenomenon which make the resistivities look like Figure
7.2 (b). �e line with plateaux is the transverse resistivity and it takes on stable integer values (in units of
e2/h) on those plateaux in certain regions of the magnetic �eld strength. In those regions the longitudinal
resistivity is zero, it peaks only when the transverse resistivity changes.

�e reason for this phenomenon is topological and will be shown in this Chapter to be related to Chern
numbers. Firstly, the classical Hall e�ect is introduced for background knowledge.

7.1 Classical Hall E�ect
�e aim is to �nd the transverse and longitudinal resistivity of the setup given by Figure 7.1. �e trans-

verse resistivity is referred to as the Hall resistivity. �e conductivity tensor σ is given by Ohm’s law,

Jα = σαβEβ . (7.1)

�e sample itself is taken to be rotationally invariant so the conductivity tensor obeys SσS−1 = σ with

S =

(
cosφ sinφ
− sinφ cosφ

)
for some angle φ. As a consequence σ is given by

σ =

(
σxx σxy
−σxy σxx

)
.

�e resistivity is simply

ρ = σ−1 =
1

σ2
xx + σ2

xy

(
σxx −σxy
σxy σxx

)
=

(
ρxx ρxy
ρyx ρyy

)
. (7.2)

Note that ραβ is not always just 1/σαβ . Ultimately, ρ and σ are the quantities of interest.

B

I

z
y

x^

^

^

Figure 7.1: Schematic setup of the Hall experiment.
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To make current �ow, an electric �eld is turned on such that the electrons �ow in the positivex-direction.
Due to the presence of a magnetic �eld, the electrons bend o� towards the edge in−y-direction. Eventually,
a potential di�erence builds up between that edge and the opposite edge. �is induces another electric �eld
which cancels the pull of the magnetic �eld on the electrons such that they �ow in a straight line in x-
direction. �e voltage induced between the two edges is called the Hall voltage.

�e electrons are now moving in both an electric and a magnetic �eld. Classically, this can be described
by the Drude model. In the Drude model [43], electrons are essentially considered balls which may ”bounce”
into each other. A friction term is added to the equation of motion which is given by

m
dv

dt
= −eE− ev × B− m

τ
v. (7.3)

�e coe�cient τ scales as the inverse strength of friction. Of interest are solutions which ful�ll dv/dt = 0
(equilibrium). �e equation becomes

0 = eE + ev × B +
m

τ
v.

�e current density is J = −nev, using this and moving terms around

J +
τe

m
J×B =

τe

m
E.

�e electrons may only move in the plane and the magnetic �eld is in z-direction. Because of this, the cross
product has no z−component. Demoting the three component vectors to two component vectors gives

J +
τeB

m

(
Jy
−Jx

)
=
τne2

m
E.

B

ρ
xy

xxρ

(a) �e resistivities of the Hall experiment predicted
from the classical Hall e�ect.

(b) �e resistivities measured in a Hall
experiment at low temperatures with
strong magnetic �elds. Figure credit:
Antikon at Russian Wikipedia [GFDL
(h�p://www.gnu.org/copyle�/fdl.html)

Figure 7.2: Comparison of the Hall experiment outcomes in two di�erent regimes of the parameters. Le�
(a), describes the classical Hall e�ect. Right (b) describes the quantum Hall e�ect.
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In matrix form
m

τne2

(
1 τeB

m

− τeBm 1

)
J = E.

Comparing to Eq. (7.1) this is already the inverse of the conductivity tensor. One can simply read of the
Hall and longitudinal resistivity

ρxy =
B

ne
, ρxx =

m

τne2
.

�ese are the linear and constant resistivities that are measured in the classical Hall e�ect (Figure 7.2 (a)).
However, as the temperature lowers the classical description will be inadequate, which is when quantum
mechanics must be applied.

7.2 Kubo Formula Approach to the Hall Conductivity
�e goal is to explain the resistivities of the Hall experiment that emerge when temperatures are low and

magnetic �elds are strong (Figure 7.2 (b)). �e focus will be on explaining the plateaux of the Hall resistivity.
�e derivation will be very general and the starting point is the Kubo formula for the Hall conductivity, a
result from linear response theory [44]. Roughly, linear response theory is concerned with how observables
change in the presence of perturbations. �e Hamiltonian is given by [43],

H = H0 + ∆H.

�e perturbation ∆H describes the applied electric �eld. �e solution of the unperturbed system is known,

H0 |n〉 = En |n〉 .

�e current due to ∆H depends on the electric �eld and Ohm’s law thus provides the conductivity. �e
Kubo formula for the Hall conductivity [43] is

σxy = i~
∑
n 6=0

〈0|Iy|n〉 〈n|Ix|0〉 − 〈0|Ix|n〉 〈n|Iy|0〉
(En − E0)2

, (7.4)

where Ii is the current in i-direction. Electrons are restricted to move on a two dimensional la�ice. Fur-
thermore they are e�ectively spinless due to the Zeeman spli�ing of spin up and spin down energy levels
brought on by the magnetic �eld. For strong magnetic �elds there is a large spli�ing and in the low energy
limit the upper level can be neglected [43]. Consider non-interacting particles with Bloch wave functions

ψk(x) = eik·xuk(x).

�e wave functions are plane waves modulated by a Bloch factor uk(x) which has the periodicity of the
la�ice. �e distance between la�ice points is a and b in x and y respectively. Within the �rst Brillouin zone

−π
a
< kx ≤

π

a
, −π

b
< ky ≤

π

b
.

Momentum in the �rst Brillouin zone lies on a torus, k ∈ T2. Furthermore, each state in the �rst Brillouin
zone is labeled by a band index

ψαk (x) = 〈x|uαk〉 .
�e ground state |0〉 in Eq. (7.4) is made up of all the �lled bands (α) and the sum over

∑
n 6=0 is made

up of the un�lled bands (β). It is assumed that all bands are either completely �lled or empty. �e Hall
conductivity becomes

σxy = i~
�lled∑
α

un�lled∑
β

∫
T2

dk

(2π)2
〈uαk |Iy|u

β
k〉 〈u

β
k|Ix|uαk〉 − 〈uαk |Ix|u

β
k〉 〈u

β
k|Iy|uαk〉

(Eβk − Eαk )2
. (7.5)
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What is the current Ii? Classically I = eẋ, but consider the Schrödinger equation of Bloch states

H0 |ψk〉 = Ek |ψk〉 ⇒ e−ik·xH0e
ik·x |uk〉 = Ek |uk〉 .

De�ne H̃0 ≡ e−ik·xHeik·x and let the current be de�ned by

I =
e

~
∂H̃0

∂k
. (7.6)

�is de�nition is consistent because the unperturbed Hamiltonian is H = 1
2m (p + eA)2 with A as the

vector potential, hence

H̃ =
1

2m
e−ik·x(p2 + e2A2 + 2ep ·A)eik·x =

1

2m
(~2k2 + e2A2 + 2e~k ·A).

�e current Eq. (7.6) becomes

I =
e

~
∂H̃0

∂k
=

e

2m~
(2~2k + 2e~A) =

e

m
(~k + eA) = eẋ.

�e last equality follows from the fact that the Lagrangian for an electron in an electromagnetic �eld in the
Landau gauge (A = xBŷ, φ = −Ex) can be wri�en L = 1

2m+ ẋ2− eẋȦ + eEx,with the speed of light
c = 1. From the de�nition of canonical momentum p = ∂L

∂ẋ ⇒ mẋ = p + eA.
Inserting Eq. (7.6) into Eq. (7.5),

σxy =
ie2

~
∑
α,β

∫
T2

dk

(2π)2
〈uαk |∂kyH̃|u

β
k〉 〈u

β
k|∂kxH̃|uαk〉 − 〈uαk |∂kxH̃|u

β
k〉 〈u

β
k|∂kyH̃|uαk〉

(Eβk − Eαk )2
. (7.7)

To reduce the size of this equation, start by looking at one braket

〈uαk |∂kiH̃|u
β
k〉 = 〈uαk |∂ki

(
H̃|uβk〉

)
− 〈uαk |H̃|∂kiu

β
k〉 =

= 〈uαk |u
β
k〉 ∂kiE

β
k + 〈uαk |∂kiu

β
k〉E

β
k − 〈u

α
k |∂kiu

β
k〉E

α
k .

�e last term’s H̃ was made to act upon the bra. �e overlap 〈uαk |u
β
k〉 is zero because α and β are disjoint.

〈uαk |∂kiH̃|u
β
k〉 = 〈uαk |∂kiu

β
k〉 (E

β
k − E

α
k ) = −〈∂kiuαk |u

β
k〉 (E

β
k − E

α
k ). (7.8)

�e last equality follows from a product rule. Strategically using either of the two results in Eq. (7.8) and
pu�ing it into Eq. (7.7) the Hall conductivity becomes

σxy =
ie2

~
∑
α,β

∫
T2

dk

(2π)2

(
〈∂xuαk |u

β
k〉 〈u

β
k|∂yu

α
k〉 − 〈∂yuαk |u

β
k〉 〈u

β
k|∂xu

α
k〉
)
.

Strategically meant using the expression in such a way as to produce resolutions of identity in β. �e
expression can be rewri�en using

∑
β |u

β
k〉 〈u

β
k| = 1−

∑
α |uαk〉 〈uαk |. Using this

σxy ∼
∑
α

(
〈∂xuαk |∂yuαk〉 − 〈∂yuαk |∂xuαk〉

)
+

+
∑
α,α′

(
〈∂xuαk |uα

′

k 〉 〈uα
′

k |∂yuαk〉 − 〈∂yuαk |uα
′

k 〉 〈uα
′

k |∂xuαk〉
)
.

(7.9)
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However, the second term vanishes because the �rst part of it can be rewri�en like

〈∂xuαk |uα
′

k 〉 〈uα
′

k |∂yuαk〉 =
(
∂x 〈uαk |uα

′

k 〉 − 〈uαk |∂xuα
′

k 〉
)(
∂y 〈uα

′

k |uαk〉 − 〈uα
′

k |∂yuαk〉
)

=

= 〈∂yuα
′

k |uαk〉 〈uαk |∂xuα
′

k 〉 .
Plugging this back into Eq. (7.9) and renaming the sum it is seen to vanish∑

α,α′

(
〈∂yuαk |uα

′

k 〉 〈uα
′

k |∂xuαk〉 − 〈∂yuαk |uα
′

k 〉 〈uα
′

k |∂xuαk〉
)

= 0.

Finally, the Kubo formula has been reduced to

σxy =
ie2

~
∑
α

∫
T2

dk

(2π)2
(
〈∂xuαk |∂yuαk〉 − 〈∂yuαk |∂xuαk〉

)
. (7.10)

Recall the de�nition of Berry curvature Eq. (6.4),

Ωxy =
∂Ax
∂ky

− ∂Ay
∂kx

.

�e Berry connection is given by Ai(k) = i 〈ψk|∂ki |ψk〉 . It is possible to rewrite Ωxy slightly

Ωxy = i∂ky (i 〈ψk|∂kx |ψk〉)− i∂kx(i 〈ψk|∂ky |ψk〉) = i(〈∂yψk|∂xψk〉 − 〈∂xψk|∂yψk〉). (7.11)

Comparing Eqs. (7.10) and (7.11) something remarkable is found. �e Hall conductivity is related to the
Berry curvature,

σxy = −e
2

~
∑
α

∫
T2

dk

(2π)2
Ωxy. (7.12)

�e integral is taken over momentum on a closed surface so this is indeed a Chern number Eq. (6.9),

σxy = − e2

2π~
∑
α

Cα. (7.13)

�is is the famous TKNN formula (�ouless, Kohomoto, Nightingale and den Nijs), which is identi�ed as
a sum of Chern numbers for di�erent bands. �e invariant Cα is o�en called the TKNN invariant in the
context of the quantum Hall e�ect.

By the same consideration it is possible to calculate the longitudinal conductivity in analogy with Eq.
(7.12),

σxx = −e
2

~
∑
α

∫
T2

dk

(2π)2
Ωxx.

�is vanishes because Ωxx = ∂Ax
∂kx
− ∂Ax

∂kx
= 0, such that σxx = 0. From Eq. (7.2) it follows that

σxx =
ρxx

ρ2xx + ρ2xy
, σxy =

−ρxy
ρ2xx + ρ2xy

.

In particular, because σxx = 0 it follows that ρxx = 0 and

ρxy = − 1

σxy
.

�is resistivity is the one that is observed on the plateaux in the quantum Hall e�ect resistivity (Figure 7.2
(b)). Two plateaux can not be adiabatically connected without changing a topological invariantC =

∑
α Cα.

It is known that topological invariants can not change unless the band gap closes. �e band gap closes for
the Hall experiment when the Chern number changes [17], thus connecting the plateaux.
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7.2.1 Stability of the Plateaux

�e above calculations for the Hall resistivity do not show why the quantized value remains over a
region of the magnetic �eld strength, as indicated by Figure 7.2 (b). Ironically, this robustness is explained
by the presence of disorder in a sample. �e disorder breaks translation invariance and even though the
la�er was assumed in the above derivation it can be argued that this is the correct value of the resistivity
on the plateaux [45].

Consider electrons moving freely in two dimensions in the presence of a magnetic �eld, the Lagrangian
is

L =
1

2
mẋ2 − eẋ · A, (7.14)

where A is the vector potential and with the speed of light c = 1. �e periodic potential of the la�ice may
be ignored in the quantum Hall experiment because the wave packets of electrons in a magnetic �eld are
much larger than the period of the la�ice [45]. According to the setup (Figure 7.1) the magnetic �eld is
constant in the z-direction, so the vector potential obeys

∇× A = Bẑ. (7.15)

�e canonical momentum p is de�ned by

p =
∂L

∂ẋ
= mẋ− eA

and the mechanical momentum is
π = mẋ = p + eA. (7.16)

�e Hamiltonian is constructed out of Eq. (7.14) according to H = ẋ · p− L and becomes

H =
1

2m
(p + eA)2 =

π2

2m
. (7.17)

�e Hamiltonian is rewri�en in a new basis by introducing raising and lowering operators in analogy with
the harmonic oscillator,

a =
1√

2e~B
(πx − iπy), a† =

1√
2e~B

(πx + iπy). (7.18)

In the basis Eq. (7.18) the Hamiltonian Eq. (7.17) simpli�es to

H = ~ωB(aa† +
1

2
), (7.19)

where ωB = eB/m is the cyclotron frequency. Here the position x and momentum p are quantum mechan-
ical operators obeying

[xi, pj ] = i~δij , [xi, xj ] = [pi, pj ] = 0. (7.20)

To �nd the commutation relations of the operators Eq. (7.18) it is convenient to �rst �nd the commutation
relation of the mechanical momentum Eq. (7.16). To this end, compute [πi, πj ] by le�ing it act on a test
function f(x, y),

[πi, πj ]f(x, y) = [pi + eAi, pj + eAj ]f(x, y) =

(
[pi, pj ] + e[pi, Aj ] + e[Ai, pj ] + e2[Ai, Aj ]

)
f(x, y).
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�e �rst commutator vanishes by Eq. (7.20) and the last commutator trivially vanishes. Next the p operator
is wri�en in position space as p = −i~∂x

[πi, πj ]f(x, y) = −ie~
[
∂xi
(
Ajf(x, y)

)
−Aj∂xi(f(x, y)) +Ai∂xj (f(x, y))− ∂xj

(
Aif(x, y)

)]
=

= −ie~
[(
∂xAy − ∂yAx

)
f(x, y) +

(
Ay −Ay +Ax −Ax

)
∂yf(x, y)

]
.

�e second term vanishes and the test function may be removed such that

[πi, πj ] = −ie~(∂xiAj − ∂xjAi)

and using Bi = εijk∂xjAk with εijk being the antisymmetric Levi-Civita symbol it is found that

[πi, πj ] = −ie~εijkBk. (7.21)

In particular, using Eqs. (7.15) and (7.21),

[πx, πy] = −ie~B.

Using this result it is straightforward to con�rm that

[a, a†] = 1. (7.22)

Eq. (7.22) indicates that the Hilbert space is similar to that of the harmonic oscillator. Any state is con-
structed out of the groundstate |0〉 according to

|n〉 =
(a†)n√
n!
|0〉

and
a† |n〉 =

√
n+ 1 |n+ 1〉 , a |n〉 =

√
n |n− 1〉 .

�e Hamiltonian Eq. (7.19) has the eigenspectrum

En = ~ωB(n+
1

2
), n = 1, 2, 3 . . . , (7.23)

see Figure 7.3 (a). For electrons in a magnetic �eld each eigenstate is evenly spaced and the di�erent levels
characterized by n are referred to as Landau levels. To see the degeneracy of each Landau level a speci�c
gauge is picked and the wave function is to be found.

�e condition for the vector potential Eq. (7.15) is ful�lled by working in the Landau gauge

A = xBŷ.

With this choice the Hamiltonian Eq. (7.17) becomes

H =
1

2m
(p + eA)2 =

1

2m
(p2x + (py + exB)2).

�e magnetic �eld is translation invariant in the xy-plane but the vector potential is only translation in-
variant in the y-direction. Due to the manifest translation invariance in y-direction the eigenstates of the
Hamiltonian should be simultaneous eigenstates of py and the following ansatz is made

Ψk(x, y) = eikyfk(x).
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(c) Landau levels split into regions of
localized (white) and extended (gray)
states in the presence of disorder.

Figure 7.3: Di�erent behaviour of Landau levels for di�erent conditions.

Now

HΨk(x, y) =
1

2m
(p2x + (py + exB)2)Ψk(x, y) =

1

2m
(p2x + (~k + exB)2)Ψk(x, y) ≡ H(k)Ψk(x, y).

�e Hamiltonian H(k) wri�en in terms of the cyclotron frequency and magnetic length lB =
√

~
eB is

H(k) =
1

2m
p2x +

mω2
B

2
(x+ kl2B)2. (7.24)

�is is the form of a harmonic oscillator Hamiltonian Hho = p2

2m + mω2

2 x2, for which the corresponding
wave function is wri�en in terms of Hermite polynomials Hn [40]. �e wave function corresponding to Eq.
(7.24) is given by [43]

Ψn,k(x, y) ∼ eikyHn(x+ kl2B)e−(x+kl
2
B)2/2l2B . (7.25)

�e degeneracy of Landau levels n becomes apparent because the energies Eq. (7.23) depend only on the
index n while the wave function Eq. (7.25) depends on momentum k as well. How large is the degeneracy
per unit area? Consider sides of length Lx and Ly . In y-direction there is a manifest translation invariance
and so momentum is quantized in units of 2π/Ly . For x-direction it is noted that the wave function Eq.
(7.25) is located around x = −kl2B . �erefore 0 ≤ x ≤ Lx implies −Lx/l2B ≤ k ≤ 0. �e total number of
states in one Landau level is15

G = allowed momenta per unit k =
Ly
2π

∫ 0

−Lx/l2B
dk =

LxLy
2πl2B

=
eBLxLy

2π~
. (7.26)

�e important thing to notice is that the degeneracy is dependent on the magnetic �eld strength.
In the quantum Hall experiment there is an electric �eld present which was neglected in the above

calculations. It has the e�ect of making the energies momentum dependent [43] and thus li�ing the degen-
eracy by tilting the energies as seen in Figure 7.3 (b). But more important is the e�ect that an imperfect
sample has on the Landau levels. �e imperfection is due to various impurities which can be modelled by
a random potential V . If the strength of the disorder is smaller than the energy spli�ing of the Landau

15To understand the factor Ly/2π it helps to think of the unit of quantization 2π/Ly as an area. In this way the total number of
allowed states is k divided by this area and per unit of k the number of states is Ly/2π.
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Figure 7.4: Due to disorder the Landau levels exhibit a mobility gap µ between the extended states within
which there are no energy levels that contribute to the conductivity.

levels (V < ~ωB) then the energy levels will spread out according to Figure 7.3 (c). �e random poten-
tial introduces localized states around the impurities which do not contribute to the conductivity. �is
can be understood semi-classically by the fact that the centre of cyclotron orbits follows equipotentials ei-
ther around impurities (localized) or in between impurities (extended) [43, 45]. Because the impurities are
modelled by local potential minima and maxima the energies of the localized states are the minimum and
maximum energies of a given Landau level respectively. �is has the e�ect of surrounding the extended
states in the middle of a Landau level with the localized states, as seen in Figure 7.3.

Now the essentials for understanding the stability of the Hall plateaux are introduced. �e argument
is as follows: When the magnetic �eld strength is slowly increased the degeneracy of each Landau level
increases according to Eq. (7.26) and the Fermi level starts to lower. Suppose that initially the Fermi level
Ef1 lies such that the extended states of the third Landau level is �lled, see Figure 7.4. �en the magnetic
�eld is increased such that the Fermi level lowers to Ef2. During this process the conductivity has changed
because the extended states were emptied. �is region of the magnetic �eld strength correspond to the
region in between the plateaux in Figure 7.2 (b). Now, lower the Fermi level further until it reaches Ef3.
During this deformation the Fermi level lies entirely in the mobility gap µ in which there are only localized
states. Changing the �lling of such states can not a�ect the conductivity in any way. �erefore this region
of the magnetic �eld corresponds to the Hall plateaux of Figure 7.2 (b). By this it is understood that the
higher lying plateaux are labeled by lower Chern numbers.

Recall that the linear response theory derivation of the Hall conductivity (Section 7.2) assumed that the
bands (Landau levels) were either full or empty. In essence, it was assumed that all states contribute equally
to the conductivity but this is inconsistent with the above arguments. Luckily, the extended states compen-
sate in conductivity in such a way that Eq. (7.13) holds true on the plateaux [43]. �e full depth behind why
all states of a given Landau level contribute equally to the conductivity was explained by Laughlin [46] in
what is now called Laughlin’s gauge argument. For further discussions on this see also [45].

7.3 Spin�antum Hall E�ect and the Z2-Invariant
In 2005 [6, 7] discovered another type of topological insulator, called a Z2-insulator, which did not re-

quire the presence of a magnetic �eld to induce topological features. �eir model was essentially two copies
of a regular quantum Hall insulator with spin-orbit coupling and it features counter-propagating spin-1/2
particles at the boundaries. �e counter-propagating modes were dubbed helical and are time reversal sym-
metric. One can show [14] that F(k) of Eq. (6.2) obeys F(−k) = −F(k) for a time reversal symmetric
system and therefore the integral of this odd function over the symmetric Brillouin zone vanishes. �e
Chern number can not characterize the di�erent topological phases that arise. It turns out that there are
only two distinct insulating phases for this system and they are characterized by the topological invariant
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ν0 ∈ {0, 1} = Z2. �e physical interpretation of this topological invariant is discussed in Section 9.2. For
now two ways of computing the Z2 invariant in two dimensions are given without proof.

�ere exist many equivalent mathematical formulations of the Z2 invariant [47], all of which are com-
plicated to prove. Assuming that the system is represented by Bloch states, |uα(−k)〉, de�ne the matrix
elements of the sewing matrix

wαβ = 〈uα(−k)|T |uβ(k)〉

where T is the time reversal operator. Out of this form

δa = Pf[w(Λa)]/
√

Det[w(Λa)],

where Λa are all the points in the Brillouin zone where k = −k and the Pfa�an of an antisymmetric matrix
(AT = −A) is de�ned by

(
Pf(A)

)2
= detA. �e Z2-invariant ν is de�ned by

(−1)ν =
∏
a=1

δa.

Alternatively, if the model conserves perpendicular spin the Z2-invariant can be wri�en,

ν = nσmod2, nσ = (n+ − n−)/2,

where nσ is a Chern number. For more mathematical formulations see [47].
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8 �e 10-Fold Way of Topological Matter
Having talked extensively about topological invariants, now one would like to systematically determine

whether or not a system exhibits a topological phase. In a famous paper by Altland and Zirnbauer [48],
characterization of non-interacting, fermionic single-particle Hamiltonians leads to ten symmetry classes.
Later, Schnyder et al. [34] provided a list of possible topological phases for each of those symmetry classes
for dimensions d ≤ 3. It was Kitaev [49] who was able to generalize the result through a K-theory approach
and �nd the possible topological phases for arbitrary dimensions. �is discussion justi�es a review in its
own and therefore only a brief review of the main result and how to obtain it is given.

8.1 Classi�cation of Bloch Hamiltonians
�e objective is to classify Bloch Hamiltonians H(k) with respect to chiral symmetry, time reversal

symmetry and particle-hole symmetry. How many possible symmetry classes are there? Recall that time
reversal symmetry and particle-hole symmetry can both square to ±1. In addition, the symmetries may
not be present at all (square to 0). �is gives a total of nine combinations. In eight of these classes the
existence of chiral symmetry is uniquely determined by T and C . However, in the case where the system is
neither time reversal, nor particle-hole symmetric, then chiral symmetry may be either present or not [23].
�erefore T 2 = C2 = 0 has two classes with chiral symmetry either present or not. �is leads to a total of
ten symmetry classes, hence the name 10-fold way.

Each of these classes possess di�erent restrictions on the Bloch Hamiltonian due to the discrete symme-
tries, see Chapter 2. In the work of Altland and Zirnbauer [48] the resulting single-particle Hamiltonians is
worked out. Each symmetry class is a�ributed a Cartan label. In fact, due to the work of Èlie Cartan in 1926,
there exist eleven large families of symmetric spaces. It is possible to group two of these families together
and then, there is a bijection between the classes of non-interacting, fermionic single-particle Hamiltonians
and all symmetric spaces [48]. �is is an indication of the fact that the list of symmetry classes that has
been found is exhaustive.

�e relevant Cartan label is determined from the resulting time evolution operator. Consider a simple
example. If all three symmetries are non-existent, then H(k) is a generic N × N Hermitian matrix. �e
time evolution operator (U(t) = e−iH(k)) is therefore a generic unitary matrix and U(t) is an element of
the unitary group of N dimensional matrices U(N). �e Cartan label for unitary matrices is A. All ten
Hamiltonians and corresponding Cartan labels have been worked out in [17] resulting in the classi�cation
table given by Table 1. �e columns T and C are ±1 when the square of the operators are ±1 and zero
whenever they are not present. Chiral symmetry is either present (S = 1) or not (S = 0). Note that,
whenever two symmetries are present, the third one is automatically present.

8.2 Classi�cation of Topological Phases
Now the task is to determine whether all symmetry classes with a given dimension of the Brillouin

zone could possibly host a topological phase. �is is done in the famous article by Schnyder et al. [34]
in dimensions 1 to 3, which are the physically relevant dimension for condensed ma�er applications. For
a classi�cation of topological phases in arbitrary dimensions, see [49]. It turns out that both approaches
involve the concept of homotopy groups [14]. Here the classi�cation procedure requires that the Hamilto-
nian is translation invariant. �is condition can be relaxed in a more general discussion but it makes the
procedure simpler.

As stated before, an equivalence class is made up of the set of all adiabatically connected Bloch Hamil-
tonians. �us the equivalence classes are the distinct phases of the system. Following the approach of
[14], it is assumed that the spectrum is gapped and that the system is translation invariant. Topological
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Cartan label T C S Group (or coset) of U(t)

A 0 0 0 U(n)

AI +1 0 0 U(n)/O(n)

AII -1 0 0 U(2n)/Sp(2n)

D 0 +1 0 SO(2n)

C 0 -1 0 Sp(2n)

AIII 0 0 1 U(n+m)/U(n)×U(m)

BDI +1 +1 1 O(n+m)/O(n)×O(m)

CI +1 -1 1 Sp(2n)/U(n)

DIII -1 +1 1 SO(2n)/U(n)

CII -1 -1 1 Sp(n+m)/Sp(n)×Sp(m)

Table 1: All ten symmetry classes of a non-interacting, fermionic Bloch Hamiltonian with respect to the
three discrete symmetries time reversal symmetry (T ), particle-hole symmetry (C) and chiral symmetry
(S). �e corresponding Cartan label of the group in which the time evolution operator of the Bloch Hamil-
tonian falls within is given in the �rst column. If a symmetry is not present its value is zero. When a given
symmetry is present it is indicated by the value of the corresponding squared single-particle operator.

classi�cation applies to insulators and to superconductors as well. �e superconductors are described by
superconducting quasiparticles and the gap to be preserved under deformations is that of the quasiparticles
[14]. In such a system the eigenstates are given by Bloch states,

H(k) |uα(k)〉 = Eα(k) |uα(k)〉 ,

where α is a band index. �e Fermi energy is inside the gap such that there is a number n of bands above
the Fermi energy and m bands below.

De�ne the projection operator over �lled Bloch states

P (k) =

filled∑
α

|uα(k)〉 〈uα(k)| .

Out of this, construct the �atband Hamiltonian

Q(k) = 1− 2P (k).

�e total dimension of the matrix is n+m. �e degeneracy of the eigenvalues ±1 shows how many states
were above and below the Fermi energy. �is is easily understood because the Hamiltonian can be wri�en
H(k) =

∑
αEα |uα(k)〉 〈uα(k)| , where the sum is over all bands. It is straightforward to �nd that the

�atband Hamiltonian has the same eigenstates as H but with eigenvalues ±1 (hence the name)

Q(k) =
∑
α

λα |uα(k)〉 〈uα(k)| , λα =

{
−1, α = �lled
+1, α = un�lled

.

�e initially gapped Hamiltonian can always be deformed into the �atband Hamiltonian and therefore they
are topologically equivalent but the �atband Hamiltonian is easier to work with. �e corresponding Q-
matrix Q(k) is the matrix representation of the �atband Hamiltonian,

Q(k) =
∑
k

Q(k) |uα(k)〉 〈uα(k)| .
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It turns out that in the simplest case where H(k) is not subjected to any discrete symmetries the Q(k) is
an element of 16 [34],

Q(k) ∈ U(n+m)/(U(n)× U(m)).

If the Bloch Hamiltonian is in another class then it is subjected to additional constraints and so is the Q-
matrix, making it an element of a new group (or coset). For a complete list of the corresponding �atband
Hamiltonians for all symmetry classes see Schnyder et al. [34].

�e original mission was to �nd all the equivalence classes of Bloch Hamiltonians. Here is the key idea
that allows for this: if two maps from the Brillouin zone to the �a�ened spectrum can be continuously deformed
into each other, then so can the corresponding Bloch Hamiltonians [14]. �erefore, one must �nd all the unique
maps from a d-dimensional torus onto the space of the �atband Hamiltonian.

Because the band structure is given by a mapping from k ∈ Td (momentum is de�ned on a d-dimensional
torus) to H(k) and because every H(k) corresponds to a unique Q(k), the band structure can be seen as
a mapping from k ∈ Td to Q(k). Finding the unique maps k ∈ Td → Q(k) is a simpler way to �nd the
topological phases of the ten classes.

�e homotopy group is the group of equivalence classes of maps from a d-dimensional sphere to the
target space C0, denoted πd(C0). Here C0 is the group or coset of Q(k). �e fact that homotopy groups
regard maps from spheres and not tori turns out to be unimportant in these considerations [23]. �us, the
problem of �nding the possible topological phases has been reduced to �nding homotopy groups. �is is in
general, non-trivial. �e results are merely given here.

Following this approach, the full classi�cation of existing topological phases for non-interacting, fermionic
Bloch Hamiltonians in dimensions 1−3, is given by table 2, which has been dubbed the 10-fold way of topo-
logical ma�er [34]. �e table exhibits a periodicity in that it repeats itself every eight dimensions. However,
the main focus here will entirely on dimensions d ≤ 3 because these are of interest in condensed mat-
ter applications. It should be noted that dimensions d ≥ 4 can become important in certain cases where
H(k) admits parameters which can be interpreted as additional momentum components [14]. �e system
acquires e�ective extra dimensions. �is is not considered in this review. It will just be stated that in total,
there are �ve non-trivial phases in any given dimension, three of which are characterized by Z-invariants
and the rest by Z2-invariants17.

�eZ quantities are winding numbers (Chapter 4) whenever Chiral symmetry is present, otherwise they
are Chern numbers (Chapter 6) [23]. In theory the Z-invariants can take on any integer values, in practice
however, further symmetries puts restrictions on the possible values. For example, the SSH model, which is
labeled by a one-dimensional winding number, turned out to have only two distinct insulating phases. �e
Z2 quantity has di�erent interpretations in di�erent dimensions. In two dimensions, Z2 is interpreted in
terms of the number of Kramers’ pairs (see Section 2.2) that cross the Fermi energy, Ef . In particular, the
topological invariant ν0 is one whenever there exists an odd number of Kramers’ pairs crossingEf and zero
otherwise and is therefore a Z2 = 0, 1 invariant. Further discussions on the two-dimensional Z2-invariant
will be held in Chapter 9. In three dimensions there are four topological invariants ν0, ν1, ν2 and ν3 which
take values in Z2. �ey are interpreted as the number of Kramers’ degenerate band crossings on the surface
of the bulk [34]. �e one dimensional interpretation of the Z2 invariant is trickier. An interpretation in one
dimension due to Kitaev [13] is reviewed alongside one more interpretation in [50]. Kitaev showed that the
topological invariant can be interpreted as the sign of the Pfa�an of the Bloch Hamiltonian wri�en in the
basis of Majorana fermions, see Section 9.3.1.

Is the table consistent with results from previous chapters? Recall that the SSH model with real param-
eters (Section 3.3) was characterized by a winding number. Winding numbers are theoretically allowed to
take on any integer value and so the SSH model is characterized by a Z invariant. �e SSH model, with

16�e coset U(n+m)/(U(n)× U(m)) is called the complex Grassmanian and denoted Gn,n+m(C).
17Zn is the group of integers under addition with modulo n.
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Cartan label T C S d=1 d=2 d=3
A 0 0 0 - Z -
AI +1 0 0 - - -
AII -1 0 0 - Z2 Z2

D 0 +1 0 Z2 Z -
C 0 -1 0 - Z -

AIII 0 0 1 Z - Z
BDI +1 +1 1 Z - -
CI +1 -1 1 - - Z

DIII -1 +1 1 Z2 Z2 Z
CII -1 -1 1 Z - Z2

Table 2: �e 10-fold way of topological ma�er is a list of possible topological phases for non-interacting,
fermionic Bloch Hamiltonians in each of Altland’s and Zirnbauer’s ten symmetry classes. If a symmetry is
not present its value is zero. When a given symmetry is present it is indicated by the value of the corre-
sponding squared single-particle operator. �e di�erent dimensions d can host only trivial phases, indicated
by −, a theoretically in�nite number of phases labeled by an integer Z or two phases, labeled by Z2.

Bloch Hamiltonian
HSSH(k) =

(
0 v + we−ik

v + weik 0

)
,

was found to be chiral symmetric, which is what makes it o�-diagonal. Is it time reversal symmetric?
�e condition on the Bloch Hamiltonian for time reversal symmetric models was found to be Eq. (2.29),
T H∗(−k)T −1 = H(k) with T = 1 for spinless fermions. �e condition is ful�lled.

�us, the SSH model has both chiral symmetry and time reversal symmetry, which means that it is also
particle-hole symmetric. �e three symmetries are related by Eq. (2.37), namely S = TC , giving

C = T−1S = Kσ̂z.

�e particle-hole operator squares to +1. �is puts the SSH model into the BDI class, see Table 2. As
expected, a one dimensional model, with all symmetries present and T 2 = C2 = +1 (BDI-class) is charac-
terized by a Z-invariant, namely the winding number.

�e process of identifying a topological phase of a given gapped non-interacting fermionic model has
become very streamlined. First one identi�es the symmetries of the model and �nds the corresponding
symmetry class. By looking at Table 2 the topological invariant which describes the topological phase is
found and one can calculate it by means of any of the formulas or interpretations presented in this review.
To investigate possible points in parameter space where a topological phase transition could occur, one can
look for gap closings.

It should be noted that in some cases the Q-matrix may remain in a subset of the same space by im-
posing some additional constraint. For example, in the class AI, the corresponding Q-matrix is in the same
group but with an additional constraint Q∗(k) = Q(−k). In that case this homotopy group approach is
insu�cient and one needs to resort to one of the more advanced approaches outlined before. Within the
other approaches the Hamiltonians are random matrices, meaning they are not translation invariant [14].
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9 Gapless Edge Modes
In this chapter the gapless edge modes which occur for all non-interacting topological systems and the

accompanying boundary physics is discussed. First, the existence of gapless edge modes in the SSH model
(Section 3.3) will be shown and then the bulk-boundary correspondence which was �rst encountered in
that section will be discussed in more general terms. Lastly, the reason for the robustness of these states
is discussed and to �nish the developments of this review a brief overview of one of the most promising
phenomenon for technological application, namely Majorana zero modes, is given.

9.1 �e Gapless Edge Modes of the SSH Model
�e open chain SSH model is given by the single-particle Hamiltonian

H =

N∑
m=1

vm |m,B〉 〈m,A|+
N−1∑
m=1

wm |m+ 1, A〉 〈m,B|+ h.c. . (9.1)

�e model has been generalized to allow position dependent hopping amplitudes, vm andwm. In the end the
case vm = v and wm = w, ∀m will be considered. �e coe�cients are still real. A general single-particle
state can be expanded in terms of the basis kets {|m,A〉 , |m,B〉}, for m = 1 . . . N ,

|Ψ〉 =

N∑
m=1

(am |m,A〉+ bm |m,B〉). (9.2)

�e aim is to �nd gapless boundary modes located near the edges of the chain. In Section 3.3 it was argued
that the gapless modes have zero energy. �us, the gapless modes |Ψ0〉 must obey,

H |Ψ0〉 = H

N∑
m=1

(am |m,A〉+ bm |m,B〉) = 0.

�is results in a total of 2N equations. In the simple case where N = 2 it is found that,

H |Ψ0〉 = v1b1 |1, A〉+ v2a2 |2, B〉+ (v2b2 + w1b1) |2, A〉+ (v1a1 + w1a2) |1, B〉 = 0.

�e 2N equations are,
v2b2 + w1b1 = 0, v1a1 + w1a2 = 0,

v1b1 = 0, v2a2 = 0.

�e coe�cients am and bm never mix due to the chiral symmetry de�ned by the subla�ices A and B of the
Hamiltonian. �e equations are generalized for arbitrary N ,

vmam + wmam+1 = 0, wmbm + vm+1bm+1, m = 1 . . . N − 1, (9.3)

with boundary conditions,
v1b1 = 0, vNaN = 0.

(9.4)

Because the equations do not mix one can focus on �nding eigenstates of the form,

|L〉 =

N∑
m=1

am |m,A〉 . (9.5)
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�e only limit of interest is the thermodynamic limit where N →∞. In this case the �rst of Eqs. (9.3) can
be solved in terms of a1 according to

a2 = − v1
w1
a1, a3 =

v1v2
w1w2

a1, . . . aN =
v1v2 . . . vN
w1w2 . . . wN

a1. (9.6)

�e coe�cient a1 is determined from imposing normalized eigenstates (| 〈L|L〉 |2 = 1). However, the
boundary condition Eq. (9.4) forces aN = 0 which in turn requires a1 in Eq. (9.6) to be zero, which results
in the solution am = 0, ∀m. However, it can be shown [19], that in the thermodynamic limit (N → ∞)
and only when v < w then the coe�cient |aN | can be wri�en,

|aN | = |a1|e−(N−1)/ε, (9.7)

with the localization strength, ε = 1

log |w|−log |v|
, where log |v| and log |w| are the so called bulk-averages,

log |v| = 1

N − 1

N−1∑
m=1

log |vm|, log |w| = 1

N − 1

N−1∑
m=1

log |wm|.

�erefore, in the thermodynamic limit (where topological invariants are de�ned) there is a non-trivial so-
lution for Eq. (9.3). �e solutions of Eq. (9.3) for arbitrary N are

aN = |a1|e−(N−1)/ε, am =
(m−1∏
j=1

− vj
wj

)
a1, m = 1 . . . N − 1. (9.8)

�e gapless, zero energy eigenstates |L〉 given by Eq. (9.5) has the coe�cients (9.8), where a1 is determined
from the normalization condition, becomes

|L〉 =

N∑
m=1

am |m,A〉 = − v1
w1
a1 |1, A〉+

v1v2
w1w2

a1 |2, A〉+ . . .+
( 1∏
j=1

−vj
wj

)
a1 |N − 1, A〉+ aN |N,A〉 .

Where is |L〉 localized? To make a connection with the SSH model introduces in Section 3.3, set vm = v
and wm = w, ∀m. �e eigenstate Eq. (9.5) becomes,

|L〉 = − v
w
a1 |1, A〉+

v2

w2
a1 |2, A〉+ . . . (−)N−1

vN−1

wN−1
a1 |N − 1, A〉+ aN |N,A〉 . (9.9)

From the phase diagram of the SSH model, Figure 3.10 (b), it is known that the topological phase exists for
the regime v < w. When v < w, the eigenstate Eq. (9.9) has ever decreasing amplitude on la�ice sites m
further away from m = 1. In the thermodynamic limit, the amplitude of (9.9) inside the bulk is vanishing.
�erefore |L〉 is seen to be a le� boundary mode, or an edge mode. It is possible to solve for bm in Eqs. (9.3)
and (9.4) and obtain another edge mode that is localized at the opposite end of the chain.

It holds in general that, a topological insulator18 or superconductor has gapless energy states at its bound-
aries. �is statement is the result of the previously mentioned bulk-boundary correspondence, to be dis-
cussed in more detail in the following section.

18It should be noted that the term topological insulator o�en (and here) refers to non-interacting insulators with topological prop-
erties that are characterized by their symmetries. �is means that, interacting systems which are insulators and have non-trivial
topology (by for example topological order) are not known as topological insulators. Indeed, topologically ordered insulators do not
necessarily have gapless boundary modes.
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9.2 Bulk-Boundary Correspondence
In the context of the SSH model it was shown in Section 3.3 that the number of gapless zero-energy

modes (now identi�ed as edge modes) at one side of the chain is equal to the winding number of the model.
�e bulk-boundary correspondence says that there will always be gapless modes at the interface between
insulators with non-equal topological invariants. �ere exists no rigorous, general proof of this theorem
that applies to all models at the same time. Instead, it has been shown to hold for speci�c cases like for
example Chern insulators [51], Dirac Hamiltonians [52], complex classes of topological insulators [53] and
many other. �ere does however exists a very general, logical proof.

To understand the emergence of gapless modes on the boundaries of topological insulators, consider
a chunk of material embedded in a vacuum. �e material is in a topological phase, say that it has a non-
vanishing Chern number,C = 1. �e vacuum is gapped and topologically equivalent to any trivial insulator
[27], with C = 0. �e Chern number changes at the interface between the topological insulator and the
trivial insulator and it is known that a topological invariant can not change without closing the gap. �e
conclusion is that the gap must close at the interface between the two materials, see Figure 9.2 (a). As a
result, topological insulators will always host gapless edge states in two dimensions and gapless surface
states in three dimensions.

�is intuitive proof is not without �aws. Intuitively, the topological invariant changes at the interface
between the two materials because inside the materials, the topological invariant has its de�ned value.
However, the topological invariants are only well-de�ned in the bulk, because they rely on translational
invariance. �e one-dimensional winding number of Chapter 4 was expressed in terms of the determinant
of the upper-right block of the Bloch Hamiltonian and the Chern number of Section 6 was expressed in
terms of Bloch states, both of which require translation invariance. �is means that, as one moves closer to
the edge of the sample, the description of the topological invariants falls apart and they are not well-de�ned
in the crucial region where the bulk-boundary correspondence makes predictions. Not to worry, the above
argument is merely a way of motivating the bulk-boundary correspondence which is complicated to prove
rigorously. For a given Hamiltonian that models a sample the parameters are (if time independent) �xed
through out the sample. At the edge however, the parameters take a discontinuous step when leaving the
material, even though this is not happening in time, it can be seen as highly unadiabatic and in that sense
the topological invariant is allowed to change at the boundary.

�ere exists a formula statement of the bulk-boundary correspondence which expresses the number
of gapless energy modes which arise. �e statement is di�erent for Z-topological insulators and Z2-
topological insulators. For Z-systems in two dimensions (d = 2) the number of boundary modes that
occur on the boundary is determined by the Z bulk-boundary correspondence [27],

�eorem 9.1 (Bulk-boundary correspondence of Z-insulators in d = 2) �e di�erence in number of
right-moving modes NR and le�-moving modes NL at the interface of a topological insulator in d = 2 is
the di�erence in Chern number across the surface of the sample

∆C = NR −NL.

Since the di�erenceNR−NL (at any particular energy) can not be changed by one edge mode alone, see Fig-
ure 9.2, there must be ∆C gapless edge modes at the boundaries to ful�ll the bulk-boundary correspondence.
It should be noted that the theorem is not proven in generality but has been shown for several independent
systems. It has also been veri�ed experimentally in for example the quantum Hall e�ect. �e emergence
of chiral modes (moving in one direction) can be understood semi-classically in terms of cyclotron orbit
skipping, see Figure 9.1. A right-moving mode is characterized by a non vanishing group velocity dE/dkx
in x-direction, like the solid line in Figure 9.2 (b). Under a perturbation the di�erence in right and le� mov-
ing edge modes can not change. For one and three-dimensional systems the Z-insulator bulk-boundary
correspondence is expressed in terms of winding numbers, see [26].
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Figure 9.1: Semi-classical description of emergence of chiral edge modes in the quantum Hall e�ect. �e
cyclotron orbits of the electrons, induced by the magnetic �eld, bounces of the edge and causes chiral
motion.

�e bulk-boundary correspondence of Z2-insulators is a bit trickier and here the discussion is limited
to two-dimensional systems with time reversal symmetry. �is means that the symmetry classes under
consideration are AII and DIII. For a spinful, time reversal symmetric model in class AII the spin quantum
Hall e�ect may emerge [14]. �e spin quantum Hall e�ect is essentially two copies of the quantum Hall
e�ect which are sorted in spin such that there exists two chiral edge currents with opposite spin and velocity
and these are the type of edge modes that appear for Z2-insulators in two dimensions, see Figure 9.3 (a).

For spin-1/2 particles, the time reversal operator squares to minus one, T 2 = −1. By Kramers’ theorem
(see Section 2.2.2) it is known that the spectrum is at least doubly degenerate. Furthermore, along the
edge the one-dimensional momentum kx exhibits so called time reversal invariant points. In these points
(k = ±π, 0) the spectrum must be doubly degenerate as discussed in Section 2.2.2. �is property of the
spectrum is shown in Figure 3.3.

Any edge state must be accompanied by a partner by Kramers’ theorem and together the two edge states
make up a Kramers’ pair. �ere are two possibilities in which Kramers’ pairs of edge states can cross the
Fermi energy which is taken to lie within the bulk gap, see Figure 9.3 (b)-(c). As discussed and illustrated
in [54], when there is an an even number of Kramers’ edge pair crossings the edge states can be deformed
to close the gap while still preserving time reversal invariant momentum points. �erefore the spectrum is
topologically equivalent to that of a trivial insulator. For an odd number of Kramers’ pair crossings this is

Trivial

Insulator C=0

(a) Chiral edge modes exist at the in-
terface between insulators with di�er-
ent Chern numbers.

Ef
H
H

Conduction Band

Valence Band

(b) Under a perturbation of the system
H to H′, the di�erence in right and le�-
moving edge modes remains.

Figure 9.2: �e characteristics of topological Z-insulators include chiral edge modes, �gure (a). �e di�er-
ence in right and le�-moving edge modes remains the same under perturbations, �gure(b).

70



not possible and Kramers’ theorem enforces the existence of states that traverse the gap. �is de�nes two
di�erent topological states which are characterized by a Z2-invariant. �e mathematical statement of the
bulk-boundary correspondence for Z2-insulators becomes [47],

�eorem 9.2 (Bulk-boundary correspondence of Z2-insulators in d = 2) �enumber of Kramers’ pairs
of edge modes Nk which intersect the Fermi energy is the di�erence in the Z2-invariant ν across the interface
of the sample

Nk = ∆νmod 2.

Due to the existence of Kramers’ pairs and the inversion through the energy axis symmetry imposed by time
reversal, ν can only change by a multiple of two under adiabatic deformations. �us the actual topological
invariant is the parity of ν.

Because all topological insulators and topological superconductors have gapless edge modes it is some-
time taken as the de�nition. �e bulk-boundary correspondence becomes a very powerful tool because one
could determine topological invariants by counting the gapless edge modes.

9.3 Robustness
To conclude this review, a brief discussion of a phenomenon with promising technological applications,

namely the robustness of the gapless edge modes, is given. As was seen for the SSH model (Figure 3.10
(a)) the gapless states exist throughout the topological phase. �is topological protection is enforced by
the bulk-boundary correspondences which says that these edge states must exist. Furthermore, the states
remain regardless of how the boundary is deformed. �is is because the bulk Hamiltonian is independent
of the shape of the boundary. �erefore the topological invariants remain well de�ned. Also, topological
insulators are robust against perturbations that destroy the translation invariance of the crystal [14]. �is
means that a given sample can be reasonably deformed and dirty, that is, have imperfections, yet the gapless
edge modes will remain. �e edge states are thus said to be topologically protected. �is is o�en the case
for samples in the lab and this has tremendous experimental and technological implications.

In the area of quantum computations, the robustness of topological edge states is most welcome. A
quantum computer stores information in quantum bits or qubits, which are quantum systems of two states.
For example, a system characterized only by its spin can be in either spin up |+〉 or spin down |−〉. �e

(a) Chiral edge states �ltered in
terms of spin that arise on the inter-
face of a Z2-insulator.

Ef

k
0

(b) A time reversal symmetric Z2-insulator
with an even number of Kramers’ pairs
crossing the Fermi energy. �e spectrum is
symmetric by re�ection through the energy
axis.

Ef

k
0

(c) A time reversal symmetric Z2-insulator
with an odd number of Kramers’ pairs cross-
ing the Fermi energy. �e spectrum is sym-
metric by re�ection through the energy axis.

Figure 9.3: �e characteristics of topological Z2-insulators include spin �ltered pairs of chiral edge modes,
�gure (a) and Kramers’ pairs crossing the Fermi energy, �gure (b)-(c).
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advantage that quantum computers bring over classical computations arise from the fact that a given state
can also be in a superposition of these states α+ |+〉+α− |−〉. Essentially, this allows a quantum computer
to solve many tasks at the same time and the computing power grows exponentially with the number of
available qubits.

To compute something using qubits, they are transformed by unitary operations. �is process may in-
troduce errors. Furthermore, because it is not possible to completely isolate a quantum system, interactions
with the environment may also give rise to errors. �ese errors are known as quantum noise or quan-
tum decoherence, see [55]. Using topologically protected states, the hope is to achieve highly fault-tolerant
quantum computations. One approach to fault-tolerant quantum computation is exploiting Majorana zero
modes.

Another remarkable property of the edge modes that might have important consequences for transport
physics is ballistic transport. For a particle occupying a state in the middle of the gap (an edge mode), see
Figure 9.2 (b), there is simply no way for that particle to reverse its velocity. �ere are no states available
for backsca�ering. �is means that particles are free to move uninhibited at the boundary and this gives
rise to, in theory, ballistic transport, meaning that there is no resistivity. However, an actual sample has
�nite temperature which allows for inelastic backsca�ering and therefore a �nite conductivity is always
measured.

9.3.1 Majorana Zero Modes

In 1937 E�ore Majorana [56] found real wave function solutions to the Dirac equation. �ese curious
solutions, known as Majorana fermions, are unlike Dirac fermions, their own antiparticle

γ = γ†. (9.10)

No known elementary particle has this property, with the exception of neutrinos which may ful�ll the
property. With ci an ordinary Dirac fermion, the Majorana fermions can be wri�en

γ2i−1 = c†i + ci, γ2i = i(c†i + ci)

and they obey
{γi, γ†j} = 2δij . (9.11)

Another object of fundamental research interest is the Majorana zero mode (MZM). In addition to Eqs. (9.10)
and (9.11), MZMs obey

[H , γi] = 0. (9.12)

�is means that their occurrence is followed by a ground state degeneracy. �e groundstate, |ψ0〉 obeys

H |ψ0〉 = E0 |ψ0〉

and therefore the state γi |ψ0〉 has the same energy

H (γi |ψ0〉) = γi(H |ψ0〉) = E0(γi |ψ0〉).

MZMs occur theoretically in topological phases of superconductors like the one-dimensional p-wave super-
conductor [57]. �e Kitaev Hamiltonian that models such a system is

H = −µ
N∑
i=1

c†i ci −
N−1∑
i=1

(tc†i ci+1 + ∆eiφcici+1 + h.c.). (9.13)
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�e model describes spinless fermions hopping to nearest neighbours on a one-dimensional, open chain.
∆eiφ is the p-wave pairing between adjacent sites [57]. �e Dirac fermions can be wri�en in terms of
Majorana fermions

ci =
e−φ/2

2
(γi,A + iγi,B).

�e Majorana operators γi,A and γi,B are two di�erent types of Majorana operators at la�ice site i. �e
construction of two new Majorana operators at each la�ice site is a mathematical trick motivated by the
simplicity of the Hamiltonian Eq. (9.13) in the special case µ = 0, t = ∆ where it admits the form

H = −it
N−1∑
i=1

γi,Aγi+1,B . (9.14)

�e Hamiltonian can be wri�en like this in the region −2t < µ < 2t [57], as long as the gap does not
close. Clearly, γ1,B and γN,A are not in the Hamiltonian and therefore they ful�ll the MZM condition Eq.
(9.12). �ey are the MZMs of the model and they are located at the opposite ends of the chain. Because the
MZMs are not coupled to anything at all it follows that they have zero energy because a given Majorana
fermion γ with energy E has a corresponding antiparticle γ† = γ with energy −E. Because Majoranas
are their own antiparticle E = −E = 0. �e MZMs exist only in the region −2t < µ < 2t for the special
case µ = 0, t = ∆ and disappear when the gap is closed. �erefore the number of MZMs is a topological
invariant and this region in parameter space represents a topological phase.

A pair of MZMs, γ1 and γ2, can be used as a two level system because they can be used to write Dirac
fermions [14] as

c =
1

2
(γ1 + iγ2), c† =

1

2
(γ1 − iγ2)

which can be either occupied (cc† = 1) or unoccupied (cc† = 0). Interestingly, the MZMs can be arbitrar-
ily far apart, meaning that they are stable against local perturbations. �is can happen for a long chain,
corresponding to a large N in Eq. (9.14).

Experimental con�rmations of the existence of MZMs have not been unquestionably established due to
a number of di�culties [14]. However, there are strong reasons to believe that they are there. As our knowl-
edge of quantum systems increases and our ability to manipulate them becomes greater, MZMs provide a
very promising approach to fault-tolerant quantum computations.
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10 Conclusion
To properly conclude this review I would like to give a brief summary in which the various key topics

of the review are pointed out and at the same time I present possible elaborations.
In this review I have de�ned what a topological phase is, how to characterize it and discussed the physical

implications that it carries with. �is has been done by rigorous derivations and the occasional example.
�e focus of this review has been on the physical interpretations but care has been taken to hint towards
the underlying mathematics.

In Chapter 2 the discrete symmetries chiral symmetry, time reversal symmetry and particle-hole sym-
metry were presented. I introduced chiral symmetry in terms of non-bonded subsystems which provides
a be�er intuition than how it is normally introduced, namely as a construction out of time reversal and
particle-hole operators. Time reversal was introduces in the standard way along with Kramers’ theorem. I
instead constructed the particle-hole operator out of the other operations. Alternatively particle-hole sym-
metry could have been discussed in the context of the Bogoliubov–de Gennes Hamiltonian which would
further establish its role as a particle-hole operator. �e invariance relations for the Bloch Hamiltonian
under the above-mentioned symmetries were established and various resulting spectra were examined in
Chapter 3.

�e concept of topological invariants and topological phases were introduced in a discussion on the SSH
model in Chapter 3. �e bulk-boundary correspondence came about from the equivalence of the winding
number and the number of gapless edge modes (at one side of the chain), which was shown later in Chapter
9. �e winding number of the SSH model was generalized in Chapter 4. I provided an alternative inter-
pretation of the one-dimensional winding number in terms of poles and zeros. In three dimensions and in
fact, in any odd dimension, there exist a very general expression for the winding number which is properly
interpreted as the number of windings of the map from the Brillouin zone de�ned by the o�-diagonal matrix
of the �atband Hamiltonian. Although heavily mathematical it is a very powerful result which is outside
the scope of an introductory text. �e interested reader may refer to [34].

�e geometrical phase known as the Berry phase was introduced in the classical sense in Chapter 5
and then interpreted physically as the sum of relative phases of neighbouring eigenstates along the path of
deformation. I presented two example calculations of the Berry phase and discussed how it arises in physics
for a two-band model, see Section 5.3, and via the Aharonov-Bohm e�ect, see Section 5.4. Going beyond
this review would imply studying the holonomy interpretation and discuss the non-Abelian Berry phase
that arises for degenerate systems, see [14].

Out of the Berry phase the Chern number is constructed in Chapter 6 simply by integrating over a closed
surface in parameter space, or over all momenta. In this way the Chern number becomes immediately fea-
sible to compute. To understand why it is quantized I presented two alternative interpretations, namely the
gauge problem in Section 6.1.1 and enclosed e�ective magnetic monopoles as sources of Chern number in
Section 6.1.2. �e monopole method was exploited to �nd the Chern number for the QWZ model in Section
6.2. Yet a third way to understand the Chern number is in terms of the wrappings parameter space surface
around the unit sphere [14]. �is approach establishes the similarities between winding numbers and Chern
numbers but is outside the scope of this review. Following the description of Chern number quantization I
showed how the quantum Hall e�ect is connected to topology by deriving the Hall conductivity by means
of the Kubo formula in Section 7.2 and the stability of the plateaux which was then showed to be a result
of the impurities of the sample.

�e Altland-Zirnbauer classi�cation of Hamiltonians and the 10-fold way of topological ma�er was
presented in Chapter 8 and the basic procedure for constructing the classi�cation table was introduced.
Although o�en looked up in tables, the relevant homotopy groups can be determined, see [15].

In Chapter 9 the Z2-invariant which arises in the spin quantum Hall e�ect is interpreted in terms of
Kramers’ edge pairs crossing the Fermi energy. I derived explicitly the existence of gapless edge modes of the
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SSH model in the topological phase only. �e bulk-boundary correspondence was discussed forZ-insulators
and Z2-insulators with time reversal symmetry in two dimensions for both cases. I give an intuitive way of
understanding the bulk-boundary correspondence. With the bulk-boundary correspondence taken to hold
I explain how the edge states remain robust as a consequence. To end the review, I presented in Section
9.3.1 a brief discussion about topological superconductors and Majorana zero modes and their potential
applications in fault-tolerant quantum computations.

For anyone who wishes to continue beyond this review and learn more about the subject of topological
phases of ma�er I could suggest studying the mathematics of topological spaces and di�erential geometry
from the book ”Geometry, topology and physics” by Nakahara [15] and learning more about interacting
systems from ”Introduction to topological quantum ma�er and quantum computation” by Stanescu [14]
which presents the subject in the context of quantum computation theory.
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A SymmetryRelations of theHamiltonian
Matrix in Position Space

Following the reasoning of Chiu et al. [18] the symmetry relations of the Hamiltonian matrix,H (in real
space), is to be found from imposing that the symmetries are actual symmetries of the second quantized
Hamiltonian, H , meaning

[S ,H ] = [T ,H ] = [C ,H ] = 0.

For an operation, U , to be regarded as a symmetry of a non-interacting, fermionic system, it must, commute
with the Hamiltonian,

[H ,U ] = 0⇔ U H U −1 = H (A.1)

and preserve the canonical (anti)commutation relation

U {ci, c†j}U
−1 = {ci, c†j}.

�e second quantized Hamiltonian is wri�en in terms of the Hamiltonian matrix and creation and annihi-
lation operators according to

H = c†iHijcj , (A.2)

where repeated indices are summed. �e operator ci (c†i ) annihilates (creates) a fermion on la�ice site i.
Time reversal symmetry, T , is an antiunitary operation (like its matrix representation) which trans-

forms the creation and annihilation operators according to

T ciT
−1 = Tijcj , T c†iT

−1 = c†j(T
†)ji, (A.3)

where T is a unitary matrix. By antiunitary, time reversal switches the sign of complex numbers

T iT −1 = −i.

To �nd the e�ects of time reversal symmetry on the Hamiltonian matrix, evaluate T H T −1 and start by
applying Eq. (A.2),

T H T −1 = T c†iHijcjT
−1 = (T c†iT

−1)(T HijT −1)(T cjT
−1).

Apply Eq. (A.3) and remember thatHij is a complex number

T H T −1 = c†k(T †)ki(H∗)ijTjlcl.

With T a symmetry of the system, Eq. (A.1) holds, T H T −1 = H , implying

c†k(T †)ki(H∗)ijTjlcl = c†kHklcl.

In matrix form
T †H∗T = H.

�erefore, the single-particle time reversal operator can be implemented by an antiunitary operator T =
TK , where K is the complex conjugator (see Section 2.2). It holds that

T−1HT = H.
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Time reversal remains a normal symmetry in the matrix representation and it remains antiunitary.
Particle-hole symmetry, C , is a unitary operation (unlike in matrix form) which transforms the creation

and annihilation operators according to

C ciC
−1 = (C∗)ijc†j , C c†iC

−1 = cj(CT )ji, (A.4)

where C is a unitary matrix. Finding the e�ects of particle-hole symmetry on the Hamiltonian matrix is
done by evaluating C H C−1,

C H C−1 = C c†iHijcjC
−1 = (C c†iC

−1)(CHijC−1)(C cjC
−1) = ck(CT )kiHij(C∗)jlc†l .

Using the fundamental (anti)commutation relations {ci, c†j} = δij ,

C H C−1 = (δkl − c†l ck)(CT )kiHij(C∗)jl = (CT )liHij(C∗)jl − c†l (C
T )kiHij(C∗)jlck. (A.5)

�e �rst term in Eq. (A.5) can be simpli�ed

(CT )liHij(C∗)jl = (C)ilHij(C†)lj = (C)il(C†)ljHij ,

by unitarity,
(C)il(C†)ljHij = δijHij = Hii = TrH.

Eq. (A.5) becomes

C H C−1 = TrH− c†l (C
T )kiHij(C∗)jlck = TrH− c†l (C

∗)jlHij(CT )kick = TrH− c†l (C
†)lj(HT )ji(C)ikck.

With C a symmetry of the system, Eq. (A.1) holds, C H C−1 = H , implying

TrH− c†l (C
†)lj(HT )ji(C)ikck = c†lHlkck.

�e trace of H is a constant with no creation or annihilation operator and must vanish for the equality to
hold. �us, by Hermicity of the Hamiltonian,

−c†l (C
†)lj(H∗)ji(C)ikck = c†lHlkck.

In matrix form this becomes
C†H∗C = −H.

�erefore, the single-particle particle-hole operator can be implemented by an antiunitary operator (unlike
in second quantization) C = CK . It holds that

C−1HC = −H.

Particle-hole symmetry anticommutes with the Hamiltonian in matrix form and is described by an antiu-
nitary operator, unlike in second quantization.

Chiral symmetry, S , is a antiunitary operation (unlike in matrix representation). It inherits the antiu-
nitary from the time reversal operator because the chiral operator is wri�en S = T C . �e chiral operator
transforms the creation and annihilation operators according to

S ciS
−1 = (S∗)ijc†j , S c†iS

−1 = cj(ST )ji, (A.6)

where S = T ∗S∗ is a unitary matrix. Once more, consider S H S −1,

S H S −1 = S c†iHijcjS
−1 = (S c†iS

−1)(SHijS −1)(S cjS
−1) = ck(ST )ki(H∗)ij(S∗)jlc†l .
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Using the fundamental (anti)commutation relations

S H S −1 = (δkl − c†l ck)(ST )ki(H∗)ij(S∗)jl.

In exact analogy with particle-hole symmetry, the �rst term becomes TrH, meaning that Eq. (A.6) simpli�es
to

S H S −1 = TrH− c†l (S
T )ki(H∗)ij(S∗)jlck = TrH− c†l (S

∗)jl(H∗)ij(ST )kick =

= TrH− c†l (S
†)lj(H†)ji(S)ikck.

By Hermicity of the Hamiltonian,

S H S −1 = TrH− c†l (S
†)ljHji(S)ikck

With S a symmetry of the system, Eq. (A.1) holds, S H S −1 = H , implying

TrH− c†l (S
†)ljHjiSikck = c†lHlkck.

�e trace of the Hamiltonian vanishes as per the same arguments used before,

−c†l (S
†)ljHjiSikck = c†lHlkck.

In matrix form this becomes
S†HS = −H.

�erefore, the single-particle chiral operator can be implemented by a unitary operator (unlike in second
quantization) S = S . It holds that

S−1HS = −H.

To summarize, it has been shown that the three discrete symmetry operators T (antiunitary), C (unitary)
and S (unitary), which commute with a second quantized Hamiltonian, are realized as T (antiunitary and
commuting), C (antiunitary and anticommuting) and S (unitary and anticommuting) operators in matrix
representation, respectively.

In the paper by Chiu et al. [18] it is stated that one can Fourier transform Eq.(A.2) and show that the
following invariance relations hold for the Hamiltonian matrices in momentum space

TH(k)T−1 = H(−k), (A.7a)
CH(k)C−1 = −H(−k), (A.7b)
SH(k)S−1 = −H(k). (A.7c)

�is is proven in the main text in braket notation in order to be�er introduce the physical properties of
T,C and S.
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B Di�erential Forms
�is section follows Kurt Bryan [58] and it is here to familiarize the reader with di�erential forms and

to demonstrate how to integrate them. In general, di�erential forms allow for a coordinate free way to
compute integrals and derivatives. �e method is coordinate free in the sense that no metric needs to be
de�ned. Instead, knowledge about the manifold that is being integrated is needed. Ultimately, the goal is to
provide enough understanding such that expressions like

γL(t) =
1

2

∮
S

dRµ ∧ dRνΩµν(R) (B.1)

can be integrated. Note that this is not a complete introduction. Only one example will be given and a reader
encountering these objects for the �rst time might need more examples. For a more complete introduction,
see [58].

A zero-form is merely a function, which everyone is familiar with. �e simplest one-form is ω(1) = dxi.
�e most general one-form is

ω(1) = F1(x)dx1 + F2(x)dx2 + . . .+ Fn(x)dxn, x ∈ Rn = (x1, x2 . . . xn).

Any form, is said to ”act” on vectors [58]. In particular, a general one-form acts on one input vector according
to

ω(1)(v) = F1(x)v1 + F2(x)v2 + . . .+ Fn(x)vn. (B.2)

Equation Eq. (B.1) is an example of a two-from. �e simplest two-form is given by ω(2) = dxi ∧ dxj .
�e operation ∧ is known as the wedge product or exterior product. It is known as an antisymmetric tensor
product [14]. It has the property

dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi = −dxj ∧ dxi.

And as a trivial result
dxi ∧ dxi = 0.

A two-form acts on two input vectors. the simplest two-form acts on two vectors according to

ω(2)(v1,v2) = dxi ∧ dxj(v1,v2) = det
(
dxi(v1) dxi(v2)
dxj(v1) dxj(v2)

)
.

�e most general two-form is
ω(2) =

∑
1≤i<j≤n

Fij(x)dxi ∧ dxj .

Note that the sum can be taken such that i < j because whenever i > j, that contribution can be de�ned
into the term i ↔ j with a minus sign because dxi ∧ dxj = −dxj ∧ dxi. A general two-form acts on two
input vectors according to

ω(2)(v1,v2) =
∑

1≤i<j≤n

Fij(x)dxi ∧ dxj(v1,v2) =

=
∑
i,j>i

Fij(x)det
(
dxi(v1) dxi(v2)
dxj(v1) dxj(v2)

)
. (B.3)

�e matrix consists of very simple one-forms. Such one-forms act on one vector and takes out one compo-
nent of them

dxi(v) = vi.

Now that di�erential forms are be�er understood, it is time to show what it means to integrate them.
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B.1 Integrating Di�erential Forms
Take the example of the one-form ω(1) = F1(x)dx1 +F2(x)dx2 + . . .+Fn(x)dxn. It is to be integrated

over a one-dimensional manifold that is embedded into n dimensions. �e manifoldM , is parameterized by
X(t) = (x1(t), x2(t) . . . xn(t)) and t ∈ [a, b]. �e integral of this one-form over the manifold M is given
by ∫

M

ω(1) =

∫ b

a

(
F1(x)dx1 + F2(x)dx2 + . . .+ Fn(x)dxn

)(
X′(t)

)
dt. (B.4)

�ere is an important lesson here. When integrating di�erential forms, they ”act” on the derivative of the
vectors that parameterize the manifold. �at is, in Eq. (B.1) the two-form acts on the derivatives of the
vectors that parameterize the surface S. Furthermore, because di�erential forms in integrals always act on
vectors which are de�ned from the manifold being integrated over, the integrals are o�en wri�en with a
suppressed notation ∫

M

(
F1(x)dx1 + F2(x)dx2 + . . .+ Fn(x)dxn

)
. (B.5)

Everything in equation Eq. (B.4) can be inferred from Eq. (B.5) by knowledge of the manifold. �is is why
the hern number can be wri�en in the simple way in the simple way of Eq. (6.2). A one-form acts on vectors
according to Eq. (B.2), such that the integral becomes∫

M

ω(1) =

∫ b

a

(
F1(x)

∂x1
∂t

+ F2(x)
∂x2
∂t

+ . . .+ Fn(x)
∂xn
∂t

)
dt.

�is is integrable using ordinary calculus and this was the goal of this section. To be able to understand
what it means to integrate di�erential forms.

Note that all of these notions can be extended to any dimension k by discussing k-forms.

B.2 Example Calculation
As a last example, consider the two dimensional manifold, M , parameterized by

X(u) = (u1, u1 − u2, 3− u1 + u1u2,−3u− 2), u21 + u22 < 1.

Here u = (u1, u2) ∈ D where D is a region inR2 and the manifold is embedded inR4. Note that now the
manifold is two dimensional such that two variables are needed to describe it. �e two-form to be integrated
is

ω(2) = x2dx1 ∧ dx3 − x4dx3 ∧ dx4. (B.6)

�e integral is again de�ned such that the form acts on the derivative of the vectors that parameterize the
manifold ∫

M

ω(2) =

∫
D

ω(2)
(
(
∂X

∂u1
,
∂X

∂u2
)
)
du1du2 =

=

∫
D

(x2dx1 ∧ dx3 − x4dx3 ∧ dx4)
(
(
∂X

∂u1
,
∂X

∂u2
)
)
du1du2.

�e two derivatives become

∂X

∂u1
= (1, 1, u2 − 1, 0),

∂X

∂u2
= (0,−1, u1,−3).
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�e two-form Eq. (B.6) acts on these vectors according to Eq. (B.3),

ω(2)
( ∂X

∂u1
,
∂X

∂u2

)
=
∑
i,j>i

Fij(x)det
(
dxi(

∂X
∂u1

) dxi(
∂X
∂u2

)

dxj(
∂X
∂u1

) dxj(
∂X
∂u2

)

)
.

In this particular example, the function Fij(x) which characterizes the two-form is given by

Fij(x) =


0 ij 6= 13 or 34

x2 ij = 13

−x4 ij = 34

.

Consequently

ω(2)
( ∂X

∂u1
,
∂X

∂u2

)
= x2det

(
dx1( ∂X∂u1

) dx1( ∂X∂u2
)

dx3( ∂X∂u1
) dx3( ∂X∂u2

)

)
− x4det

(
dx3( ∂X∂u1

) dx3( ∂X∂u2
)

dx4( ∂X∂u1
) dx4( ∂X∂u2

)

)
=

= x2det
(

1 0
u2 − 1 u1

)
− x4det

(
u2 − 1 u1

0 −3

)
= u21 − u1u2 − 9u22 + 9u2.

�e integral becomes ∫
D

(
u21 − u1u2 − 9u22 + 9u2

)
du1du2 =

=

∫ 1

−1

∫ √1−u2
1

−
√

1−u2
1

(u21 − u1u2 − 9u22 + 9u2)du1du2 = −2π.
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C CharacterizingTopological Phases of In-
teracting Models

�e 10-fold way of non-interacting systems (Chapter 8) is based on the homotopy groups of the Q-
matrix which is uniquely de�ned by the Bloch Hamiltonian. Clearly it becomes impossible to de�ne a Bloch
Hamiltonian that characterizes the whole system due to the appearance of four operators in the two-body
processes of an interacting Hamiltonian

H =
∑
i,j

aji c
†
i cj +

∑
i,j,k,l

bk,li,j c
†
i c
†
jckcl.

Although there exists no general classi�cation of topological phases of interacting systems some progress
has been made with methods of tensor categories [59] and group cohomology theory [60]. For the rest of
the review the focus has been on symmetry protected topological phases. Symmetry protection holds for
some interacting systems as well, however other systems require the concept of quantum entanglement to
be topologically classi�ed. �at is, even without symmetry constraints there exists topologically distinct
phases. �e phases exhibit what is called topological order.

�ere are di�erent methods of approaching entanglement within a system [61]. Here a short introduc-
tion to one such approach, based on topological entanglement entropy [62] is given. �e goal is to determine
the degree of entanglement within a system. Formally, an entangled state is a state which can not be wri�en
as a product of one-particle states. As an example

1√
2

(|+,−〉+ |−,+〉)

does not admit the form |α〉 ⊗ |β〉 and is therefore an entangled state.
To understand entanglement entropy, consider an arbitrary partitioning of a system, in real space, into

two subsystems A and B. �e density operator of the pure ground state |Ψ〉 is

ρ = |Ψ〉 〈Ψ| .

Taking the partial trace over the B subsystem de�nes the operator

ρA = TrB |Ψ〉 〈Ψ| . (C.1)

As an example, consider the entangled state

|Ψ〉 = |+1,+2〉+ |+1,−2〉+ |−1,+2〉+ |−1,−2〉 .

�e index labels particle one or two which can have either spin up (+) or down (−). If the two subsystems
is de�ned by two di�erent particles, then the partially traced density operator Eq. (C.1) becomes

TrB |Ψ〉 〈Ψ| = TrB
(
|+1,+2〉 〈+1,+2|+ |+1,+2〉 〈+1,−2|+ . . .

)
=

= TrB
(
|+1〉 〈+1| ⊗ |+2〉 〈+2|+ |+1〉 〈+1| ⊗ |+2〉 〈−2|+ . . .

)
=

=
∑

σ∈{+,−}

(
|+1〉 〈+1| ⊗ 〈σ| (|+2〉 〈+2|) |σ〉+ |+1〉 〈+1| ⊗ 〈σ| (|+2〉 〈−2|) |σ〉+ . . .

)
=

= 2
(
|+1〉 〈+1|+ |+1〉 〈−1|+ |−1〉 〈+1|+ |−1〉 〈−1|

)
.
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For a more general partitioning of the system, the von Neumann entropy S is given by

S = −TrA(ρA log ρA).

It has the form [62]
S = αL− γ +O(L−1)

where L is the length of the boundary that separates the systems, α is a constant and γ is the topological
entanglement entropy. γ is a constant which is independent of the speci�cs of how the two subsystems
were de�ned and therefore it is a topological property of the system. When γ 6= 0 the system exhibits
long-range entanglement. Long-range entangled states are said to be topologically ordered. Topologically
ordered states are characterized by di�erent topological invariants from those of the main text. Examples
include the entanglement entropy and the ground state degeneracy for systems de�ned on topologically
non-trivial manifolds [14]. Two well-known systems which exhibit topological order are the Toric code and
the fractional quantum Hall liquid [14].

For further developments regarding topologically non-trivial interacting systems see [63, 64, 65].
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