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Sammanfattning

Till skillnad fran deras makroskopiska motsvarigheter utvecklas inte
mikroskopiska system deterministiskt pa grund av inverkan fran termiskt
brus. Sadana system é&r foremal fér fluktuationer som endast kan studeras
inom ramen for stokastisk termodynamik. Under de senaste decennierna har
utvecklingen av stokastisk termodynamik lett till mikroskopiska varmemotorer,
icke-jamviktsforhallanden, studien av avvikande diffusion och aktiv Brownsk-
rorelse.

I denna avhandling visar jag experimentellt att icke-Boltzmann-statistik
dyker upp i system som &ar kopplade till ett aktivt bad. Denna icke-Boltzmann-
statistik som hérror fran korrelerat aktivt brus stor ocksa icke jamvikts
forhallandena. Anda visar jag att dessa relationer kan aterstillas med en effektiv
potential metod. Déarefter demonstrerar jag en experimentell implementation
av en mikroskopisk virmemotor. Denna motor, som kallas for den Brownska-
gyratorn, ar kopplad till tva olika virmebad langs vinkelrdta riktningar. Jag
visar att nidr den &r innesluten i en elliptisk félla som inte &r anpassad till
temperaturanisotropin, ar den Brownska partikeln utsatt for ett vridmoment
pa grund av symmetribrottet. Detta vridmoment skapar en autonom motor
vars riktning och amplitud kan kontrolleras genom att justera orienteringen pa
den elliptiska fallan. Sedan visar jag att de kraftfdlt som verkar pa Browniska
partiklar kan kalibreras med en datadriven metod som &vertréaffar de befintliga
kalibreringsmetoderna. An viktigare, jag visar att den héir metoden, med namnet
DeepCalib, kan kalibrera icke-konservativa och tidsvarierande kraftfilt for vilka
det saknas standardiserade kalibreringsmetoder. Slutligen visar jag att en
liknande metod baserad pa maskininldrning kan anvdndas for att karakterisera
avvikande diffusion fran enstaka banor. Denna metod, kallad RANDI, &r mycket
mangsidig och fungerar bra i olika uppgifter inklusive klassificering, skattning
och segmentering av avvikande diffusion.

Arbetet som presenteras i denna avhandling presenterar nya experiment som
frémjar mikroskopisk termodynamik samt nyutvecklade metoder vilka 6ppnar
upp nya mojligheter att analysera stokastiska banor. Dessa resultat har ckat
den vetenskapliga kunskapen i sambanden mellan mikroskopisk termodynamik,
avvikande diffusion, aktiv materia och maskininlarning.

Nyckelord: avvikande diffusion, mikroskopisk termodynamik, virmemotorer,
djupinlédrning, dataanalys, aktiv materia
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THERMODYNAMICS OF MICROSCOPIC ENVIRONMENTS

FROM ANOMALOUS DIFFUSION TO HEAT ENGINES

Aykut Argun
Department of Physics
University of Gothenburg

Abstract

Unlike their macroscopic counterparts, microscopic systems do not evolve
deterministically due to the thermal noise becoming prominent. Such systems
are subject to fluctuations that can only be studied within the framework of
stochastic thermodynamics. Within the last few decades, the development of
stochastic thermodynamics has lead to microscopic heat engines, nonequilibrium
relations and the study of anomalous diffusion and active Brownian motion.

In this thesis, I experimentally show that the non-Boltzmann statistics
emerge in systems that are coupled to an active bath. These non-Boltzmann
statistics that result from correlated active noise also disturb the nonequilibrium
relations. Nevertheless, I show that these relations can be recovered using an
effective potential approach. Next, I demonstrate an experimental realization of
a microscopic heat engine. This engine is referred to as the Brownian gyrator,
which is coupled to two different heat baths along perpendicular directions. I
show that when confined into an elliptical trap that is not aligned with the
temperature anisotropy, the Brownian particle is subject to a torque due to the
symmetry breaking. This torque creates an autonomous engine whose direction
and amplitude can be controlled by tuning the alignment of the elliptical trap.
Then, I show that the force fields acting on Brownian particles can be calibrated
using a data-driven method that outperforms the existing calibration methods.
More importantly, I show that this method, named DeepCalib, can calibrate
non-conservative and time-varying force fields that no standard calibration
methods exist. Finally, I show that a similar machine-learning-based approach
can be used to characterize anomalous diffusion from single trajectories. This
method, named RANDI, is very versatile and performs very well in various tasks
including classification, inference and segmentation of anomalous diffusion.

The work presented in this thesis presents novel experiments that advance
microscopic thermodynamics as well as newly developed methods that open up
new possibilities in analyzing stochastic trajectories. These findings increased
the scientific knowledge at the nexus between microscopic thermodynamics,
anomalous diffusion, active matter and machine learning.

Keywords: microscopic thermodynamics, anomalous diffusion, heat engines,
deep learning, calibration, data analysis, active bath
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CHAPTER 1

Introduction

1.1 Brownian motion and optical trapping

Understanding the physics of tiny particles is very important for research on
cells, nanotechnology and soft matter physics. Microscopic objects are subject
to continuous random collisions from the surrounding molecules when they are
suspended in a liquid or gas environment. These collisions create a random
force acting on these microscopic objects that constantly changes its value and
direction, which is known as thermal noise. As a result of the thermal noise,
small particles in liquid or air environment undergo a random motion that is
known as diffusion. This phenomenon is also referred to as Brownian motion,
which takes its name from Robert Brown, a botanist that observed diffusion
within pollen grains in water in 1827.

Brownian motion of a microscopic particle (also referred to as a Brownian
particle) can be mathematically expressed by the following formula:

d’z dx
mes =V + \/2kpTyW, (1) (1.1)

where ~ represents the friction in the medium, T represents the temperature of
the environment and W, represents an uncorrelated random term that creates
the stochasticity . An example motion of a Brownian particle is shown
in Fig. [[.]{a). At very short timescales (microseconds, inset in Fig. [[.1fa)),
this motion shows a ballistic behaviour due to the particles inertia, while at
longer timescales it becomes completely random. As can be seen from the
example trajectory (and unlike macroscopic objects), microscopic particles do
not have a completely deterministic motion due to the random parameters in
their equation of motion (Eq. , which results in a different outcome for each
realization. Nevertheless, it can still be characterized by ensemble averages
using statistics.

An important measure of Brownian motion is mean-squared-displacement (MSD)
that is expressed in the following way:

MSD(¢t) = ([z(t + 7) — 2(7)]?) (1.2)

where (-) represents the ensemble averaging over many realizations. An example
MSD of a Brownian particle is shown in Fig. [[.I(b). The MSD scales with

1
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Figure 1.1: Brownian motion and optical trapping. (a) Simulation of a
free Brownian particle (R=1 pm, m = 10713 g) in a liquid environment. The
particle’s trajectory x is completely random at long timescales, although its
inertia is observable at shorter (inertial) time scales (inset). (b) The mean
square displacement of the free particle (Eq. has an exponent of o = 2
(ballistic motion) at inertial time scales (t < m/y) and o = 1 (diffusive
motion) for longer time scales (¢t > m/v). (c) Simulated trajectory of the same
Brownian particle in an optical trap (k = 10~¢ N/m). The optical trap confines
the diffusion into a small region around the trapping point. (d) The mean
square displacement of the trapped particle (Eq. reaches to a finite limit
where it becomes constant (a = 0, trapped regime) due to the confinement of
the particle by the optical trap.

t? at very short time scales (inertial regime, Fig. b)) when the particle
conserves its velocity, while it scales with ¢ in larger time scales (diffusive
regime, Fig. b)) when its motion becomes completely random. In the large
t limit, the MSD for a spherical Brownian particle will take the form :

T
MSD(t) = 3’;377 =t

(1.3)

where 7 is the viscosity of the environment and R is the radius of the particle.
Importantly, the diffusion of the particle is inversely proportional to its radius,
which means that the Brownian motion becomes a lot stronger as the particles
get smaller. Specifically, the time it takes for a particle to diffuse on the order
of its own size (the time (t) when MSD(t) is proportional to R?) scales with R3,
as MSDoc R~!. This makes extremely difficult to make observations on small
particles in a liquid environment under microscope, such as synthetic colloids,
bacteria, cells and biomolecules. Fortunately, it is possible to confine Brownian



motion by taking advantage of optical forces as proposed by Arthur Ashkin
. Ashkin showed that by focusing a laser beam using a high numerical
aperture objective, one can create a high intensity focal spot that can trap
particles with optical forces in liquid, air or even vacuum. This can be applied
to cells [6], bacteria [7], synthetic microparticles [4] and even individual atoms
. Optical trapping has revolutionized biophysics, cell biology, nanotechnology,
microscopic thermodynamics and soft matter physics since its discovery ﬂgﬂ,
leading to the inventors receiving the Nobel prize in Physics in 2018 .

A particle placed in an optical trap is subject to a restoring force that is
proportional to its displacement from the focal spot. This creates a harmonic
trapping potential where Brownian particles can be trapped . A typical
trajectory of an optically trapped Brownian particle is shown in Fig. c). As
it can be seen from this trajectory, although fluctuations arise due to thermal
forces, the particle is not allowed to leave the trapping region. This behaviour
is also reflected in the particle’s MSD (Fig. [I.1[d)) that does not increase
beyond the value that it asymptotically converges. Stabilizing such small
particles in place permits scientists to make extended measurements for their
properties in their natural liquid environment. In addition, optical tweezers
permit us to measure forces that are as small as femtonewtons, which has
helped to experimentally prove a great number of fundamental theories in the
thermodynamics of small systems .

1.2 Microscopic thermodynamics

Microscopic thermodynamics deals with the relation between thermodynamic
observables (such as work and free energy) of microscopic particles when the
system is driven out of equilibrium. In order to understand the details of non-
equilibrium physics of Brownian particles, their equilibrium behaviour needs to
be observed first. Therefore, we can start by considering a Brownian particle
confined within a potential well U(x). In this case, the particle’s equation of
motion will have the form:

d*x dz  dU(x)
—_— ==Y — 2kpTYW,.(t 1.4
Moy =y T gy TV 2ksTWa(t) (1.4)

If the Brownian particle is micron-sized and it is immersed in water, the viscous
forces are dominant over the inertial forces so the inertial term (mi) can be
neglected . Therefore, we obtain the overdamped version of Eq. (1.4]):

= _idg;@ 2T () (15)

Although there are significant challenges to numerically solve stochastic
differential equations, particularly related with the infinite variance of white
noise, it is possible to solve Eq. (1.5) with finite difference methods
. By numerically simulating Eq. (1.5)), I obtained trajectories for various
potentials, shown in Fig. (d-f). Eq. (1.5) is called the overdamped Langevin
equation and we will be dealing with this equation in the rest of this chapter.




Equilibrium distribution and detailed balance

Eq. (1.5 can also be solved analytically by using the Fokker-Planck equation
[15):

1 dU (z) kT
O P(z,t) = ;ax ( e P(z,t)) + Taﬁp(z,t) (1.6)
where P(z,t) denotes the probability density function of the particle as a
function of x and ¢. For equilibrium, we are looking for a stationary solution
where the particle has thermalized (0;P(z,t) = 0), i.e., when P is a function of
x only. If this is the case, the left hand side of Eq. (1.6) vanishes and we obtain:

o, (dU(x) Peq<x>) — kpTOP.y(2)

dx
_ d[fz ;:c) Pog(2) = kT 0, Pog(z) + C
Peg(z) = %eXp (‘ Zé?) o

where Z = f exp (7 I,ié‘?) is the partition function. Eq. can also be written

using the Helmholtz free energy F = —kpT log(Z):

Peq(w) = exp <U(Z;F)

This distribution is called the Boltzmann distribution. A Brownian particle
subject to thermal noise will reach the Boltzmann distribution when it is confined
in any stable potential well. T also verify this relation numerically from the
distribution of the data obtained by simulating Eq. for various potentials,
as shown in Fig. [[.2)(g-i). In Paper I [16], I also verify experimentally that a
Brownian particle in a harmonic optical trapping potential follows the Boltzmann
distribution, as the starting point to explore the probability distributions of
microscopic particles in active baths.

(1.8)

In dimensions higher than one, having a steady-state distribution, however, is
not enough for a system to be in equilibrium. The system should not have
any probability current, therefore the probability of forward and backward
transitions between any two states should be the same. Consider two of the
available states S; and S5 with energies U; and Us, the transition rates in both
directions should be the same:

p1(®)p[Sa(t + At) [ S1(8)] = pa()p [S1(t + At) | S2(?)]

ex (o ) pI5ate-+ A1) | 510 = oxp (g ) pISi(e+ 80) [ 52(0] (19

this relation is called detailed balance and requires equal rate of transitions
between the two states. Therefore, we can find the rate of conditional
probabilities that represent a forward and backward transition:

plSa(t +At) | Si(t)] ox <—(U2 - Ul))
pISiE+ AN | S]] P knT

I will make use of this equation when I will explain Crooks fluctuation theorem.

(1.10)
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Figure 1.2: Demonstration of Boltzmann distribution for a confined
Brownian particle. (a),(b) and (c): Various confining potentials such as
a harmonic potential (a), a quartic potential (b), and a bistable potential
(c) are shown. (d), (e) and (f): Corresponding simulated trajectories of a
colloidal particle with radius R = 1 pm under the confining potentials shown
in (a), (b), and (c), respectively. Trajectories are obtained by numerically
solving Eq. (L5)). Matlab code is provided in the appendix B. (g), (h) and (i):
Resulting numerical probability distributions (circles) of the particles obtained
from trajectories, which are in perfect agreement with the theoretical probability
ditributions (solid lines) given by Eq.

Stochastic Energetics

The thermodynamics of microscopic systems are very different from that of their
macroscopic counterparts. The fundamental difference between the two, is that
the observable quantities (such as heat, work or free energy) for macroscopic
systems are much larger (typically by a factor of at least ~ 10%°) than kgT
so that the thermal fluctuations do not matter. However, when we consider a
single microscopic particle, the rules of macroscopic thermodynamics do not
apply, although they still hold in average [18].

Consider a Brownian particle confined in a potential U(z), which is not a
function of time but only the position of the particle. Since we do not change
the parameters of the system, we do not perform work on the particle in this
case. However, due to fluctuations, the particle is still constantly exchanging
energy with the surrounding heat bath. In other words, when the particle



climbs up the confining potential with Brownian motion, it borrows energy from
the surrounding water molecules. This means that the change in the particle’s
potential energy comes from the surrounding heat bath:

AU = dQ

In a more general scenario, the heat transferred from the thermal bath to the
particle can be written as :

oU (x)
Or

dQ = dx (1.11)
Unlike macroscopic systems, Brownian particles cannot be isolated from their
heat baths because they are immersed in their environment and are constantly
in contact with the water molecules that surround them. Therefore, it is not
straightforward to realize an adiabatic process on colloids .

Now, consider that the confining potential also depends on a control parameter
A(t) that is time dependent. In this case, we are also going to perform work on
the Brownian particle as we change the control parameter:

U= Uz, A1)

U (x, \(t)) oU (x, \(t))
d
or T an
aQ
The first law of thermodynamics states :

dU = A (1.12)

AU = dQ + dW (1.13)

Combining Eq. (1.13)) and Eq. (1.12)) yields:

OU(z, A(t))

W =—5

d\ (1.14)
Therefore, we do thermodynamics work on the Brownian particle by changing
the parameters of the potential energy. Eq. and Eq. provide us
with a framework for theoretical studies in microscopic thermodynamics, first
introduced by Sekimoto . Eq. assures that this notation satisfies the
first law of thermodynamics. The second law, however, is not always satisfied for
microscopic systems . This phenomenon got a lot of researchers interested
and similar results for different microscopic systems were found by a number of
groups [22}25]. Even though the second law can no longer be taken for granted
for microscopic thermodynamics, it has been shown that it still holds in average

[20).

I numerically demonstrate a simple non-equilibrium thermodynamic process
for a microscopic particle in Fig. [I.3] while the particle is in an optical trap
with a varying stiffness over time. In this example, the temperature of the
environment is kept constant (isothermal process) while the stiffness of the trap
is raised from k; = 1 pN/um (Fig. a)) to k¢ = 1 pN/pm (Fig. b)) Some
of the sample trajectories from different realizations of the same protocol are
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Figure 1.3: Demonstration of a thermodynamic process for a micro-
scopic particle. (a): The initial potential well and the initial probability
distribution of the particle are shown. (b): The final potential and the final
probability distribution of the particle are shown, the process takes 7 = 0.5 s
time. (c): Several sample trajectories of a Brownian particle in a harmonic trap
which undergoes an isothermal compression. Note that different realizations of
the same non-equilibrium protocols yield significantly different trajectories. The
particle’s standart deviation over time is calculated over 1000000 realizations
and indicated with the light blue background shading. (d): Work done on the
trajectories that are shown in (c). Average work done is also shown by black
line. Note that in such a stochastic process, fluctuations around the mean value
are significant.



shown in Fig. c). Evidently, (unlike macroscopic systems) the microscopic
particle follows a different trajectory each time, leading to a work that changes
for each realization, as shown in Fig. [[.3[d). This is because of the thermal
fluctuations that are play a prominent role in the microscopic world as I will
explain in detail in the next section.

The first thermodynamic heat engine was proposed by Sadi Carnot in 1824
. These heat engines became progressively smaller with the advancement
of technology during the 20-th century. After the fundamentals of microscopic
thermodynamics were established, scientists discovered methods to convert
thermal energy into work even for micro-scale systems with only a few degrees
of freedom. Ideas of such engines started with Brownian ratchets that
couple physical asymmetries of the system with thermal asymmetries in order
to create propulsion or rotation. These were followed by the first realization
of a micron-sized Stirling engine and Carnot engine . In Paper II
, I demonstrate how we experimentally realized a Brownian gyrator
that is both externally controllable and autonomous. I show that the Brownian
gyrator is capable of extracting work with a minimal degree of complexity while
being in simultaneous contact with two heat baths.

Fluctuation theorems

Observations of the violation of the second law of thermodynamics triggered
substantial follow up research in the field of stochastic thermodynamics. Due to
the fact that fluctuations play a prominent role, a single stochastic trajectory
would behave in a way that is not allowed by the second law of thermodynamics.
In other words, a microscopic thermodynamic system might produce negative
entropy during limited time. However, the second law of thermodynamics still
holds on average . This is due to the fact that the probability of producing
negative entropy is lower than the probability of producing positive entropy.
In fact, it has been shown that these probabilities relate to each other with an
equality for microscopically reversible systems, such as a Brownian particle .
In this section, I will illustrate some fundamental fluctuation theorems, namely
Crooks fluctuation theorem, the Jarzynski equality and the integral fluctuation
theorem.

I will start by considering a Brownian particle in a thermal bath driven by an
overdamped Langevin equation. Such a system is Markovian as the particle’s
future trajectory has no dependence on its history. I assume that the particle is
initially held in a potential of the following form:

Ulz) = Ulz, \o) (1.15)

where )¢ is the initial value of a control parameter that can be driven externally.
We start changing this control parameter at ¢ = t3 and end the process at
t = ty. Without loss of generality, we can change A(t) in a discrete manner:

AFE)\O:>>\1"')\n:>)\n+1"')\N:>)\N+1 . (1.16)
t=to t=t, t=tn

The limit N — oo corresponds to the continous case. I denote a certain
trajectory, X as follows:

X :X(l'o(to),xl(tl), ..... l'n(tn) ..... ‘TCNfl(thl),ifN(tN)) (117)



Given that the particle is initially at xg at ¢ = tg, the probability of observing
the trajectory X can be written as a product of conditional probabilities:

Pr(X) =plzi(t1) [ zo(to)]y, P len(tn) | Tn—1(tn-1)]y, = Plen(En) | 2N-1(EN-1)])
(1.18)

N

Now consider that I operate the time-reversed protocol A g, which starts with
An+1 and ends with Ay, opposite to Ag:

ABE/\N-l-lﬁ)\N"')\n—i—l?)\n"')\l?)\O . (1.19)
=to =tln =tn

It is possible to write down explicitly the probability to observe the reversed
trajectory under the reversed protocol. Similar to Eq. (1.18]), we can express
this probability given that the particle initially starts at xy:

Pr(X)=plen—i(tn-1) | 2n(En)]lyy - P @n—1(tn1) | Za(tn)]y, -+ plxo(to) [ 21(t1)]y,
(1.20)

=plrolto) [ x1(t)]y, -+ Plon—1(tna) [zaltn)ly, - Plev-1(in-1) [ 28 (EN)]y,
(1.21)

Now we can calculate the rate of the probabilities of observing the time reversed
trajectory under the time reversed protocol:

Pp(X)  plzi(ty) | zolto)ly, ._P[ﬂfn(tn) | Tp—1(tn-1)]y, mp[ffN(tN) | zn—1(tn-1)l,,
plan—1(tn-1) | zn(EN)]y,

Pr(X) p[xo(to) | xl(tl)])\l . Plrn_1(tn-1) | xn(tn)h

n

Each fraction in the above equation is the rate between the forward and
backward transitions between two states under the same control parameter. If
the system is Markovian and therefore independent from its history, this ratio
of probabilities will be the same as if the particle were in equilibrium. In other
words, if the particle is known to be at a certain position at a certain time, it
is not important whether it has been in equilibrium or not for a Markovian
system. Therefore, each fraction in the above expression can be replaced by the
energy difference between the initial and final energies of the particle according

to Eq. (L.10):

PF(X) p [‘rl(tl) | xo(to)])\l p [xn(tn) | xnfl(tnfl)b\

plan(tn) [ on—1(tN-1)]y,

Pa(X)  plrolto) [z1(t)]y,  plon-ilta—1) [2alta)]y, plov-1(tn-1) [ 2x(tn)]y,

n

exp(—BQ1) exp(—BQn) EXP((*ﬁQJ\B)
1.22
]]jii))% =exp[-f(Q1+ Q2+ Q3+ .... + Qn)] (1.23)

which leads to:
Pp(X(1), A(t) | 2(to) = 20) _ -sq

Pr(X(1),A(t) | x(to) = zn)
where @ = Q1+ Q2 + Q3 + .... + Qn is the total heat transfer from the thermal

bath to the particle during the forward protocol. Note that this equation holds
if the initial position is set to x( in the forward and xy in the backward process.




If the systems are initially thermalized, we have to multiply the probability of
the initial position of the required trajectory:

PF(X(t)? )‘(t)) — o hRQ peq(x0> )\O) — o8Q eXp(—ﬂ(U(.Tm )\0) — Fz)

Pr(X(t),\(t)) Peq(TN, AN 1) exp(—=B(U(xn, An+1) — Fy)
(1.24)

which leads to:

PrX(0), A1) _ sav-q-ar) _ pov-ar) (1.25)
Pr(X (1), A1)

This means that all the trajectories that yield the same work in a non-equilibrium
process are equally likely to be reversed under time-reversed protocol if the
system is initially thermalized. Therefore, I arrive at the work fluctuation

theorem [33]:
Pe(+W) _ sw-ar)
— X = 1.26
Pr(—=W) ( )

Eq. [[.26] is a very powerful equality in order to calculate free energy differences
between different microscopic states, even from a few repetitions of a forward
and backward thermodynamic protocol. It has been used, for example, to
measure the free energy differences of RNA folding and reconstruct free
energy profiles of DNA hairpins . I will now numerically demonstrate the
use of this equality in an example.

Consider a Brownian particle (R = 1 pm) that is held in a potential that
transitions from a double-well to a single-well trap:
4 2

Uz, A(t)) = KTxA(t) + % (1 - 2X(t)) (1.27)
where U(x, \(t)) represents the potential energy, K = 1.05 x 108 N/m?) and
k =3.64 x 107 N/m) are coefficients representing the cubic and linear forces.
I assume that the control parameter A(¢) linearly decreases from A(0) =1 to
A7) = 0 during a time span of 7, resulting in a transition from a double-
well well into a single-well. I remark that this is a completely random choice
that I fancy, this example would work for any arbitrary protocol. I call this
protocol the forward process (Fig. a)) and the time reversed version of
this protocol (A(0) = 0 to A(T) = 1) the backward process (Fig. [L.4[a)). I
start the simulation at ¢ = —2, meaning that the particle has a relaxation time
of 2 seconds in the initial potential before the protocol begins. I repeat this
experimental protocol 10 million times and I calculate the work I apply on
the particle (Eq. each time in the forward and backward processes. This
provides me a very smooth distribution of the work applied during forward
(solid lines) and backward (dashed lines). I repeat this numerical experiment
with different speeds, specifically 7 = 200 ms (red lines), 7 = 50 ms (red lines)
and 7 = 20 ms (red lines). I show that the applied work and the extracted work
distributions (Pr(W) and Pr(—W)) of the forward and backward processes
overlap less as the process is executed faster (7 is smaller), which means it
becomes less reversible, as shown in Fig. [1.41 However, Pp(W) and Pr(—W)
are always equal at W = AF (dashed black line). Finally, the ratio of P (W)
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Figure 1.4: Numerical demonstration of Crooks fluctuation theorem
in an arbitrary process. (a) The forward protocol is demonstrated: Initially
the particle is held in a bistable potential and the potential changes into a
harmonic potential within time 7. (b) The backward protocol is demonstrated:
this is the opposite of the protocol. (c¢) Resulting work distributions in the
forward (solid lines) and backward (dashed lines) processes for different driving
time 7. Note that no matter how fast we operate the process, Pr(+W) and
Pr(—=W) are equal at the value of the change in free energy AF (black dashed
line). (d) The rate of probabilities of the applied work in the forward protocol
and extracted work in the backward protocol. For various durations of the
protocol, Eq. is verified. Work distributions are obtained by repeating
the protocols 10 million times.
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Figure 1.5: Numerical demonstration of Jarzynski equality in a
time-dependent harmonic trap. (a) The protocol of the nonequilibrium
process. The stiffness (k) is subject to a sinusoidal change with a period of 100
milliseconds. (b) The average work applied as a function of time during the
process described in (a). Note that in average, I apply greater work than the
change in free energy in an irreversible process, which is in agreement with the
second law. (c¢) Numerical presentation of Jarzynski equality. The Boltzmann
weighted exponential average of the work applied follows exactly the Boltzmann
weighted exponential of the change in free energy. The work values are averages
over 100000 realizations of the same protocol.

and Pr(—W) perfectly obeys Eq. independent from how irreversible to
process is, as shown in Fig. d).

An important implication of Eq. [I.20] is the Jarzynski equality, although it
can be derived in multiple different ways . In order to demonstrate
Jarzynski equality, I will calculate the exponential average of the applied work
in a nonequilibrium process ((exp (—FW))) using Eq.

(exp (—BW)) = / exp (—AW) Pp(W)dW

Here, Pr(W) is the probability of applying the work W along the forward
non-equilibrium process. I will substitute Pp(W) from Eq. (1.26):

(exp (—BW)) = / exp (—BW) Pa(—W) exp [V — AF) W (1.28)



_ / exp (— BAF) Pr(—W)dW (1.29)

Note that exp (—SAF) is constant, and can be moved out of the integral. The
rest of the right hand side is a probability integral that equals unity according
to normalization. Therefore, we arrive at the Jarzynski equality:

(exp (—BW)) = exp (—BAF) (1.30)

Eq. is a remarkable theoretical that allows us to recover free energies
from non-equilibrium trajectories. Therefore, it is no surprise that this equation
helped many scientists to experimentally measure free energies such as stretching
RNA molecules , individual titin molecules , defects in diamonds ,
trapped ion systems , small friction forces and electronic systems . I
will now demonstrate the use of Jarzynski equality with a numerical example.

I consider a Brownian particle (R = 1 pm) held in a harmonic potential with
an oscillating stiffness:

Uz, A(t)) = %k[?) + 2sin(wt)]z? (1.31)

where the stiffness is subject to a sinusoidal change (w = 207) between & (0.2
fN/pm) and 5k (1 fN/pm). This process is shown in Fig. [[.5(a). The applied
work on the particle is averaged over 100000 realizations of the same protocol.
As it can be seen in in Fig. (b), the average applied work on the particle
is higher than the free energy change, which is in agreement with the second
law. Unfortunately, the second law allows us to only predict an upper bound
for the free energy change, even if we have many measurements. Exponential
average of the work applied using the left hand side of Eq. (1.30]), however,
agrees perfectly with the exponential change of the free energy (exp (—SAF)),
as shown in Fig. c). Therefore, the free energy difference can be calculated
if the distribution of the work from a nonequilibrium process is known.

As T have numerically shown, both Eq. and Eq. are very useful for
estimating free energies from non-equilibrium processes. However, in Paper
11 , I show that this is not true for systems that are coupled to an active
environment. We also show that this is due to the non-Gaussian distributions
in the trapping potential due to the properties of the active bath, which makes
the assumption in Eq. invalid. Nevertheless, I show these nonequilibrium
relations can still be recovered by considering the effective potential potential
energy that satisfies the Gaussian distribution of the steady state [16].

1.3 Anomalous diffusion

So far, everything I have discussed was driven by standard Brownian motion,
which is considered Markovian. This means that the particle’s future trajectory
depends only on its current state, not on the location history. In addition,
the standard Brownian motion is also ergodic, which means that the ensemble
average and time average yield the same results. However, many systems show
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Figure 1.6: Anomalous diffusion models. Sample trajectories of anomalous
diffusion including (a) annealed transient time motion (ATTM), (b) continous
time random walk (CTRW), (c) fractional Brownian motion (FBM), (d) Levy
walk (LW) and (e) scaled Brownian motion (SBM).

present diffusive dynamics that deviate from this behavior. Examples include
the intracellular environment, foraging animals, particles in turbulent flows or
financial time series [44H47]. These anomalous diffusion systems exhibit different
kinds of diffusion dynamics than can be discontinuous, non-Markovian or non-
ergodic. Importantly, anomalous diffusion is not always driven by uncorrelated
noise that is Markovian, which leads to the violation of thermodynamic relations
for various cases . These systems are instrinsically out of equilibrium and
can only be treated within the framework of nonequilibrium thermodynamics
149-52]. In this section, I will discuss the properties of different types of
anomalous diffusion and their properties.

There are several models to describe different kinds of anomalous diffusion
behaviour [47]. An important measure of an anomalous diffusion trajectory is
its MSD (Eq.|1.2]), where the exponent « indicates the growth of MSD with time
(MSDw t%). Unlike the regular diffusion where the exponent of the anomalous



diffusion is @ = 1, anomalous diffusion trajectories might have an exponent that
is smaller (ov < 1) or larger (o > 1), which are referred to as sub-diffusion and
super-diffusion, respectively. I am going to describe some of the most commonly
used anomalous diffusion models:

Annealed transient time motion (ATTM): This is a Brownian motion
with random changes in the diffusion coefficient . The waiting times have
the probability distribution of the form p(dt) ~ §t*T1. An example trajectory
of a ATTM model is shown in Fig. [L.6]a).

Continous time random walk (CTRW): This is a Brownian motion (with
Gaussian distributed steps) with power-law distributed random waiting times
between steps . CTRW is a sub-diffusive or diffusive model that is not
ergodic. An example trajectory of a CTRW model is shown in Fig. b).

Fractional Brownian motion (FBM): This is a model with correlated
Gaussian increments that are correlated . Depending on the sign of the
correlations, FBM can be either sub-diffusive (for negative correlations) or
super-diffusive (for positive correlations). This model is ergodic. An example
trajectory of a FBM model is shown in Fig. c).

Lévy walks (LW): Lévy walk is a model where the particle is always travelling
with a constant velocity in a random direction that randomly changes . The
duration of walks in each random direction is power-law distributed. Lévy walks
are super-diffusive and non-ergodic. An example trajectory of a LW model is

shown in Fig. [L.6{d).

Scaled Brownian motion (SBM): This is a model with deterministically
changing diffusion coefficient, also known as time-rescaled Brownian motion
. SBM can simply be obtained by simulating a regular Brownian motion
with rescaled time (¢ — ). An example trajectory of a SBM model is shown

in Fig. [L.6[e).

There is a number of other models that undergo anomalous diffusion as well
as due to the potential energy landscape . For the purpose of this thesis,
we will consider these models as well as active Brownian motion [48], which is
also an anomalous diffusion and has been widely used to model artificial and
natural microswimmers.

Active Brownian Motion

Lots of biological organisms can propel themselves in a liquid environment,
such as Escherichia coli 60]. This permits them to have a directed motion,
although this is disturbed by the rotational diffusion or tumbling motion [61]
in longer timescales. Whether they are smooth swimmers or run-and-tumble
bacteria, they exhibit similar statistics . Similar to biological swimmers,
artificial microswimmers can also have directed motion by creating an asymmetry
in their vicinity, either by chemical reactions [63}65], thermophoresis or
critical demixing . Active Brownian motion can be described by the following
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Figure 1.7: Active Brownian motion and the mean square displace-
ment (MSD) of active Brownian particles. (a) Simulated active Brownian
motion (Eq. Dy =2x 107!, Dr = 0.5) for swimming velocities of V =0
(blue trajectory), V =1 pm/s (yellow trajectory), V = 2 um/s (green trajectory)
and V =3 pm/s (orange trajectory). (b) Corresponding mean square displace-
ments of these microswimmers obtained by numerically simulating Eq.
(symbols) and the analytical solution (Eq. lines).

equations of motion [65]:

& =V cos(p)\/ 2D W, (t) (1.32)
j = Vsin(¢)y/2D7r W, (1) (1.33)
¢ = \/2DRrWy(t) (1.34)

where ¢ represents the orientation of the self-propelled particle, which is subject
to rotational diffusion (with rotational diffusion coefficient D) and V' is the
swimming velocity. Here, W,, W, and Wy are white noises with mean zero
and variance 1. I numerically demonstrate active Brownian motion for various
velocities in Fig. a). The mean square displacement of such a swimmer in 2
dimensions can be analytically derived as 68]:

MSD(t) = [ADp + 2V27p]t + 2V273 [e_t/TR - 1} (1.35)

while 7p = Dlgl represents the characteristic timescale of the particle’s rotational
motion. I numerically demonstrate Eq. in Fig. b) where

Both natural and artificial activity play a massive role advancing research in
microbiology, nanotechnology and statistical physics . When the active
noise is present in the medium, lots of interesting out-of-equilibrium phenomena
occur such as crowd control , directed transport , cluster formation
[75H77] and energy harvesting from a single bath 79]. I underline that
none of these are possible to observe in a Markovian environment. Therefore,
it is very compelling and important to understand to what extent the rules of



equilibrium and nonequilibrium thermodynamics will hold under the presense
of non-Markovian (correlated) active noise. In Paper I , I show that an
active system can behave like a thermal system that is held at a higher effective
temperature if the length scales of the trapping potential is larger than the
characteristic length of the active noise. I also demonstrate experimentally
that if the particle is confined into a length scale that is smaller than this
characteristic length, the system does not represent any equivalent thermal
bath with an effective temperature. This can be shown from its steady state
distribution behaviour as well as its response to nonequilibrium processes .

1.4 Analysis of stochastic trajectories

From single molecules to stock markets, many systems in physics and biology
exhibit diffusion dynamics whose measurements yield stochastic trajectories.
Examples include Brownian particles in a potential energy landscape, animals
that search for food or changes in climate. Therefore, it is crucial to accurately
analyze these trajectories and extract a greater amount of information that is
contained within these noisy sequences. The type of analysis can be done to
characterize the underlying dynamics , to predict future states or to
calibrate an experimental setup . However, analyzing stochastic trajectories
is challenging because often the experimentally obtained trajectories are limited
in length and corrupted by measurement noise .

An important task that is performed via analysis of single trajectories is the
measurement of force fields. Many experiments in biology, physics and material
science requires an accurate measurement of the microscopic force fields |5

86H88|. Examples include interparticle interactions [89-91], elasticity of cells
and nonequilibrium relations . When the force field

is widely known and the a large amount of data is available (such as an
optically trapped particle in a harmonic potential), there are several methods to
perform calibration such as the variance method, distribution method and power
spectral density . However, as the type of force field gets more arbitrary and
the amount of data gets more limited, the number of existing methods that
are applicable reduces dramatically. Only some of the methods, such as the
distribution method, can be extended to more complicated force fields, but they
still have to be conservative and the amount of data grows astronomically with
the complexity of the potential. More advanced calibration methods, such as
FORMA can be employed for non-conservative fields, but it requires a high
frequency measurement. In Paper ITI , I represent a data-driven approach
for calibrating force fields that is powered by recurrent neural networks. I
show that this method does not only overperform the existing methods but
also expands possibilities of characterizing data in an arbitrary and even time
dependent force fields that were not possible to predict before . In addition,
I made our method publicly accessible as a Python software package on Github
that we name DeepCalib .

Another challenge in single trajectory analysis is the characterization of
anomalous diffusion trajectories . Such an analysis can be done in
different ways, such as classification of the underlying anomalous diffusion
model, inference of the anomalous diffusion exponent or the segmentation of the



single trajectories with different characteristics. All of these tasks get extremely
challenging when the trajectories are short and have measurement errors .
These difficulties motivated scientists to organize the Anomalous Diffusion
Challenge (AnDi Challenge [98]), which aimed to benchmark state-of-the-art
analysis techniques for analyzing single anomalous diffusion trajectories in
classification, inference and segmentation. This challenge started in March 2020
with the announcement of the challenge as well as the software package for
generating standardized data-sets . In Paper IV , I show a method
(that we name RANDI) based on a data-driven approach that won 4/9 categories
of the AnDi challenge. In fact, our team was the only team that ranked in the
top three in all tasks, which shows the versatility of the method. In addition,
we show that RANDI performs better than all methods that participated in
the AnDi challenge in 8/9 categories (We did not have enough time during the
challenge to fully apply our method to higher dimensions, which we did later
during the writing of the manuscript). RANDI is publicly available as a Python
package, which can readily be downloaded and used for further studies .



CHAPTER 2

Research results

2.1 Thermodynamics of a bacterial heat bath

As discussed in the introduction section, whether an active bath can be
considered as a thermal bath at a higher effective temperature is a key
question in active matter. Although there are studies that indicate that the
effective temperatures can be used for active systems , various experimental
observations show that such a system coupled to an active bath shows out-of-
equilibrium behaviour. In addition, whether the fluctuation theorems of the
stochastic thermodynamics apply to the systems that are coupled to an active
environment is unknown . This motivated our research in Paper I , in
which we seeked for answers to these questions.

In Paper I 7 we start by comparing the free diffusion trajectories of the
particles that are coupled to a thermal bath and active bath. This allows
us to characterize the motion of a Brownian particle in the active system.
Experimentally, we recorded the trajectory of a Brownian particle that is in a
thermal bath (blue trajectory, Fig a)) and compared it to that of a particle
placed in an active bath that. We realized the active bath by culturing motile
E. coli bacteria [103]. We show that the trajectories in the active bath (orange
trajectory, Fig[2.1{a)) yield persistent motion at shorter length (time) scales
and diffusive behaviour at the longer length (time) scales. This is presented
also in the mean squared displacement of the particle (right panel, Fig (a))
that transitions from super-diffusion at short length (time) scales to diffusion
at long length (time) scales, in agreement with the previous studies .
This is due to the active noise that is correlated at shorter length (time) scales,

as presented in Eq. [[.35

We also show that when a particle in an active bath is trapped in a harmonic
potential that has longer length scales than the persistence length of the active
bath, the system can be characterized with a higher effective temperature as the
distribution is still Gaussian. However, if the particle is confined into smaller
length scales than its characteristic persistence length, the distributions become
non-Gaussian, which indicates that the system cannot be characterized with
a higher effective temperature, as the distribution of a Brownian particle in a
harmonic trap should always be Gaussian at all temperatures. As shown in
Fig. b), this becomes particularly evident when looking at the heavy tails of
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Figure 2.1: Non-Boltzmann stationary distributions and nonequilib-
rium relations in an active bath. (a) Unlike in water (blue trajectory, left
panel), a Brownian particle (R = 4.2 pum) in an active bath has a persistent
motion (orange trajectory, left panel) in short length (time) scales. This is also
visible in the comparison of mean-square displacements (right panel). (b) When
confined into larger scales than the persistence length (L,,orange bar) in an
active bath, a Brownian particle has a Gaussian distribution in a harmonic trap
(left). However, the distribution becomes highly non-Gaussian as the particle
is confined into smaller lengthscales than the persistence length (right). (c)
The Crooks fluctuation theorem (solid line, left panel) does not work in active
bath with an effective temperature approach, but it can be recovered with
effective potentials that is derived from experimental stationary distributions

(right panel) [16].



the distribution, when the particle is confined in a length scale that is shorter
than its persistence length (orange bars, Fig. b)) in the active bath.

Finally, we perform nonequilibrium measurements on the particle in an active
bath by moving the trapping potential back and forth with a constant period.
We demonstrate that the nonequilibrium relations, such as Crooks fluctuation
theorem (left panel, Fig. C))7 Jarzynski equality and the integral fluctuation
theorem, do not hold for particles that are coupled to active baths due to their
non-Boltzmann behaviour at the stationary state. Nevertheless, we show that
these relations can be recovered by using an effective potential energy that
satisfies the Boltzmann distribution for the stationary state.

My contributions

The results in Paper I is a product of a fruitful collaboration of a number of
authors (Ali-Reza Moradi, Ercag Pince, Gokhan Barig Bagei, Alberto Imparato
and Giovanni Volpe) that worked in great harmony. I contributed to the initial
discussions and designing of the experiments with Giovanni Volpe, building the
experimental setup with Ali-Reza Moradi, performing all the experiments as
well as analyzing data. Ercag Pince provided help with the development of the
bacterial solution. Gokhan Baris and Alberto Imparato provided theoretical
support. I have made all the experimental measurements and data analysis
that is presented in all figures. I have made the programming and operation of
nonequilibrium experiments where we were required to change the trap position
as a function of time. I interpreted the results with Gékhan Barig Bagci, Alberto
Imbarato and Giovanni Volpe. I designed and prepared all the figures and
contributed to the preparation of the manuscript.

2.2 Experimental realization of a minimal heat engine

Microscopic heat engines are capable of harvesting energy and generate
rotational motion in a microscopic environment. The first microscopic Stirling
engine was realized by Blickle and Bechinger and microscopic Carnot
engine by Martinez et. al. . Both are great examples of how energy can
be harvested in microscopic environments with inspirations from the classical
thermodynamics, by externally controlling the system parameters in a time
cycle. In Paper 1T [31], we experimentally realized a Brownian gyrator that was
initially proposed by Reimann . The Brownian gyrator is not only operating
between two heat baths as a heat engine autonomously in a controllable way,
but also creates torque in a microscopic environment.

In Paper II , we realized a Brownian gyrator by experimentally creating an
elliptical potential (along 2" and ¢/, Fig. a)) and coupled to two perpendicular
heat baths (along z and y, Fig. that have different temperatures.
The elliptical potential was created by highly focusing an asymmetric laser
beam by using a spatial light modulator . The temperature asymmetry
is created by increasing the effective temperature along one axis by adding
artificial random forces that mimic thermal noise [104]. If the axes for the
temperature and for the elliptical trap are not aligned, the asymmetry that
is created results in a systematic rotational motion. This motion is shown as
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Figure 2.2: Realization of a minimal microscopic heat engine. (a)
Position distribution of a Brownian particle that is placed in an elliptical trap
(ky = 1.63 pN/pm and k,» = 0.86 pN/um) in an environment with different
effective temperatures (7, = 1750 K and T, = 292 K). The blue arrows
represent the drift fields of that are obtained from the particle trajectory. The
direction of the flow this drift can be controlled by the alignment of the elliptical
potential. (b) Measured torque as a function of the relative orientation of the
temperature anisotropy and those of the potential (left panel). The torque as
a function of the difference in temperature is shown in the right panel. (c)
The heat exchange as a function of the relative orientation of the temperature
anisotropy and those of the potential (left panel). The torque as a function of
the difference in temperature is shown in the right panel. The symbols represent
the experimental data and the solid lines are the theoretical predictions .



the experimentally measured torque values in Fig. b). These measurements
show great agreement with theoretical predictions. Importantly, we show that
the rotation and the amplitude of this torque can be controlled by changing the
angle between x and z’ or by changing the difference in effective temperatures
along z and y, as shown in Fig. 2.2|b).

In addition, we also derive the expression for the heat exchange between the
two heat baths as a function of both the alignment of the elliptical trap and the
difference in effective temperatures along x and y. We show excellent agreement
between our theoretical predictions and the experimental results, as shown in
Fig. C). It is important to underline that, unlike torque, the direction of the
heat flow cannot be controlled with the alignment of the elliptical trap, at it is
thermodynamically impossible. Nevertheless, we can control the quantity of
heat flow between the two heat baths by tuning the alignment of the elliptical
trap or the difference in effective temperatures along x and y.

My contributions

The experiments that were performed in Paper II was proposed by Lennart
Dabelow, Stefano Bo and Ralf Eichhorn, who also provided theoretical support.
I made the initial numerical simulations and concluded with Giovanni Volpe that
this is a promising and experimentally feasible project. I built the experimental
setup and performed measurements together with Jalpa Soni. I have analyzed
the data and and prepared the figures of the manuscript. Giuseppe Pesce
provided support with the synthetic random forces that increased the effective
temperature. I also contributed to the preparation of the manuscript.

2.3 Calibration of force fields

Around the half time of my Ph.D., we started getting interested in deep learning
and its applications to microscopic systems. After developing a particle tracking
software , we discussed on a new method to calculate force fields from
Brownian trajectories. Calibration of force fields has been a challenge, especially
from trajectories that are limited in length . This analysis gets
particularly difficult if the underlying force field is non-conservative or time
varying. In Paper III , we present a machine learning based method to
calculate force fields directly from individual trajectories that can be applied to
any force field system including non-conservative or time-varying force fields.
We name our method DeepCalib that we publish as a free Python software
package for anyone who would need to use it .

Unlike algorithmic methods, DeepCalib is a data-driven method to analyze
Brownian trajectories in order to predict the underlying force field. We used
recurrent neural networks, in particular long-short-term-memory (LSTM) layers.
We train the network using simulated data. A schematic view of DeepCalib is
shown in Fig. a). For the case of harmonic trap, all of the methods including
the variance method, autocorrelation method and FORMA show systematically
inaccurate results, particularly, if the stiffness is too small or too large. However,
DeepCalib provides the best results through a wide range of stiffness values. It
is important to underline that these results that we present are for the ideal
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Figure 2.3: Calibration of microscopic force fields using machine
learning (a) The trajectory of a Brownian particle in a harmonic trap is given as
an input to the recurrent neural network (RNN) to predict the stiffness parameter
of the trap (k). The bottom panel shows comparisons of the predictions from
various methods. As it can be seen, DeepCalib provides the most accurate
results through the entire range. (b) Calibration of a rotational force field using
DeepCalib (orange density plots) outperforms FORMA (blue density plots). (c)
Calibration of a double well potential using DeepCalib (orange density plots)
outperforms the potential method (blue density plots) and the extrema method
(green density plots). (d) Calibration of a dynamical nonequilibrium force field
when the stiffness of a harmonic trap is oscillating between ki and kpjgn with
a period 7. There are no existing calibration methods for such a force field that
is time-varying. Evidently, DeepCalib successfully predicts all parameters both
for simulated (top panel) and experimental (bottom panel) trajectories. |96



conditions with simulated data that has no artifacts. We also demonstrate in
Paper III that DeepCalib is robust against measurement noise, varying
viscosity, asymmetries in force fields and varying input length.

We also show that DeepCalib can accurately calculate non-conservative
rotational force fields better than the existing methods, where we have two
parameters that represent the force field, the central force stiffness k and the
rotational parameter €. Although being accurate for lower values of the k,
FORMA struggles at higher force values because of the data points becoming
uncorrelated. DeepCalib is able to estimate the parameters of the rotational
force field better than FORMA as shown in Fig. 2.3|b).

DeepCalib improves also the calibration of a double-well over the existing
methods, where we have a potential energy profile with two wells of depth AU,
separated by a distance L. We demonstrate that DeepCalib provides more
accurate results than the standard methods as shown in Fig. 2.3|c). We also
demonstrate in Paper 111 that in fact Deepcalib is robust in analyzing
experimental data that has a slightly different potential energy profile than
the simulations. We also show that DeepCalib can be extended to asymmetric
double wells.

Finally, we show that DeepCalib can be used to calibrate dynamical nonequi-
librium force fields that vary over time. It is important to point out that no
calibration methods exist for such force fields. As an example of an arbitrarily
time-varying force field, we choose a harmonic trap with changing stiffness
between kioy and kpign with a period 7. As it can be shown in the top panel of
Fig. d)7 DeepCalib can very accurately predict all of these three parameters
from a short trajectory of 1000 data points. We also show that DeepCalib can
also be applied to experimental data that has the same protocol (bottom panel,

Fig. 2.3(d)).

All of the results we present in Paper 111 can be reproduced by using the
example files that are publicly available on Github .

My contributions

I developed the method DeepCalib and tested on numerical data. Tobias
Thalheim and Frank Cichos provided the experimental data for testing the
robustness of DeepCalib. I prepared the codes and the example files of the
software that is published on Github , I received feedback from all coauthors
on the example code files. I prepared all the figures as well as the supplementary
material. T and Stefano Bo drafted the manuscript that was revised by all
coauthors.

2.4 Characterizing of anomalous diffusion trajectories

During the period when we were developing DeepCalib , a competition for
characterizing anomalous diffusion trajectories (named AnDi Challenge) was
announced. I decided to compete in this competition with my collaborator
Stefano Bo. We used a similar neural network architecture to the one of



DeepCalib as we found it powerful to analyse stochastic trajectories. We
developed a workflow for all tasks in the ANDI challenge including classification,
inference and segmentation of the anomalous diffusion trajectories that we
explain in Paper IV [100]. Our method was ranked first in the 4/9 categories
of the challenge and top three in all of the categories, which proves the versatility
and power of our method that we name RANDI. We also published RANDI as
a free Python software package .

RANDI uses machine learning to characterize anomalous diffusion trajectories.
Specifically, we used a recurrent neural network architecture (Fig. a)) with
two LSTM layers. The data required for training is obtained by simulating
trajectories using ANDI datasets package . We found out that the
performance of each neural network is better when they are trained for inputs
that are length specific, as shown in Fig. b). For this reason, we trained
multiple neural networks in order to analyze trajectories of random length that
has uniform distribution between 10 and 1000. In the classification task, the
neural network receives a short input trajectory (with an unknown random
exponent) that is corrupted with measurement noise and outputs the probability
of the input belonging to one of the anomalous diffusion models (ATTM, CTRW,
FBM, LW, SBM, see Section . We used multiple networks for different
lengths of input trajectories. With this method RANDI manages to classify
trajectories with an overall accuracy of 87.05% for 1D, 89.16% for 2D and
93.76% for 3D trajectories, all of them are better than the best results that are
submitted to the ANDI challenge, which shows that our method stands out in
classifying the anomalous diffusion trajectories [100]. The accuracy of RANDI
as a function of input length for all dimensions is shown in Fig. b).

RANDI is also capable of inferring the anomalous diffusion exponent v (MSD =
t*) of the trajectories. For this task, we used a similar RNN architecture to the
one used for classification. The RNN has only one output node that is connected
directly to the 2 LSTM layers. For inference of the anomalous diffusion exponent,
RANDI has a mean absolute error of 0.1558 for 1D trajectories, which is only
2.4% higher than the best results that are submitted to the ANDI challenge.
In higher dimensions RANDI has a mean absolute error of 0.1345 for 2D and
0.1109 for 3D, which are better than the best results that are submitted to
the ANDI challenge . The details of the accuracies of all dimensions as a
function of the input trajectory length is shown in Fig. c).

Finally, RANDI is also able to perform segmentation of anomalous diffusion
trajectories with the state-of-the-art accuracy. This task includes a switching
time of the anomalous diffusion model and/or the anomalous diffusion exponent
at a random time in a trajectory. An example input trajectory is shown in
Fig. d), where we predict the model class for both the first and the second
segment, the switching time ¢4 as well as the anomalous diffusion exponent of
both segments. Again, with the segmentation task, RANDI’s segmentation is
better than the best results that are submitted to the ANDI challenge .

The training and the analysis we perform with RANDI can be repeated by
running the example codes on the Github page of RANDI [101].



My contributions

Paper IV is a great result of a very fruitful collaboration with Stefano
Bo. T and Stefano Bo weekly discussed the models, training results and the
output accuracies our method provided during and after the ANDI challenge in
order to push it to the limit where we did not only think about which method
would provide the most accurate results but also thoroughly investigated all
possible ways of improvement such as pre-processing of the data, normalization,
fine tuning the hyper-parameters and reshaping input. I contributed to the
discussion and development of the methodology that we followed during the
ANDI challenge. I built the software for training networks together with
Stefano. I prepared the data-sets and performed the training of the networks,
analyzed the results, prepared the figures and contributed to the drafting of
the manuscript.
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Figure 2.4: Classification, inference and segmentation of anomalous
diffusion trajectories using machine learning (a) The architecture of
the recurrent neural network (RNN) we use to analyse anomalous diffusion
trajectories. (b) The accuracy of RANDI in classifying the anomalous diffusion
trajectories that is better than the best results submitted to anomalous diffusion
challenge in all dimensions. (c) The accuracy of RANDI in inferring the
anomalous diffusion exponent. The results in 2D and 3D are better than the
best results submitted to anomalous diffusion challenge. (d) The accuracy of
RANDI in segmenting the anomalous diffusion trajectories. RANDI provides
more accurate results than the best results submitted to the anomalous diffusion
challenge in all dimensions. [100]



CHAPTER 3

Conclusions and outlook

During the last few years, advances in research on anomalous diffusion, active
matter and deep learning has been growing very rapidly. During my Ph.D.
studies, I felt challenged by the pace of progress in these fields, but enjoyed
working on all of these interesting subjects, which are crucial to understand
and interpret the dynamics of the microscopic world.

In Paper 1 , I showed under which conditions the statistics of an active
bath can be characterized with an effective temperature. Although there had
been both studies where the use of effective temperature is useful
and where it is not convenient , I showed a transition that highlights
the importance of the length scales of the confinement. I also showed that
the nonequilibrium relations do not hold for particles that are coupled to an
active bath. Nevertheless, I showed that they can be recovered by using an
effective potential energy that ensures the Boltzmann distribution is satisfied.
In particular, the work and heat values in an active matter system can be
redefined using this effective potential. These results imply that the trajectories
of a particle in an active bath yield entropy production [109H112]. As many
systems including biological media are intrinsically active, the findings of Paper
1 contributes to the possibility of applying nonequilibrium relations on
systems that are coupled to active baths. The results of Paper 1 played an
important role in motivating further theoretical study of modelling the motion
of a Brownian particle in an active bath [113H117].

Microscopic heat engines are promising tools to convert energy flows between
heat reservoirs into work or useful motion in a microscopic environment. The
first realizations of microscopic heat engines were based on externally driven
protocols . In Paper 11 , I experimentally realized a minimal
microscopic heat engine that is autonomous. This is realized by creating an
elliptical confinement and different temperatures along two dimensions. When
the principle axes of the elliptical trap and the temperature anisotropy are not
aligned, the system symmetry is broken. This creates a torque that is acting
on the Brownian particle. We show that the quantity and the direction of this
torque can be controlled by tuning the alignment of the elliptical trap and the
temperature asymmetry. An important advantage of the Brownian gyrator is
that it directly transfers the heat flow into rotational motion in the microscopic
environment . This experiment features an autonomous yet controllable
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microscopic heat engine with minimal degree of complexity.

The interpretation of most experiments in microscopic thermodynamics (such
as the ones the ones I present in Paper 1 and Paper II |31]), biophysics
and soft matter depend on the initial calibration of the force fields that are
used in the experimental protocol. Therefore, it is fundamental to calibrate
the force fields accurately in order to extract the most reliable information the
experimental trajectories. In Paper III , I present a data-driven method
to calibrate the force fields from Brownian trajectories that outperforms the
standard methods. Importantly, this method is made available as a free Python
software package, named DeepCalib that users can customize and apply to
their systems. DeepCalib is capable of accurately estimating the parameters of
any force field that is non-conservative or time-varying. I also present in the
Paper III that Deepcalib works perfectly on experimental data and it is
robust against measurement noise, varying viscosity and varying input length.
Finally, DeepCalib makes it possible to calibrate complex dynamical force fields
that no standard calibration methods exist. It can be used to improve the
accuracy of calibration for microscopic heat engines, to analyze trajectories that
are in a complex force field and to extract more information from experimental
trajectories with limited length.

As Paper 111 shows, the machine learning based methods perform very
well in analysing stochastic trajectories. Neural networks become particularly
useful in analysing anomalous diffusion trajectories as the existing methods
for characterizing anomalous diffusion is limited . Therefore, I have
developed a software for classification, inference and segmentation of anomalous
diffusion trajectories that provides better results than all methods participating
in the AnDi challenge in in 8 tasks out of 9. This software is presented in
Paper IV [100] is named RANDI and it is available as a free Python software
package . Paper IV presents that RANDI performs better than
all the methods that are competed in the AnDi challenge in classification and
segmentation of the anomalous diffusion trajectories in all dimensions. For the
inference of the anomalous diffusion trajectories, RANDI provides results better
than the best result submitted to the AnDi challenge in 2D and 3D. Together
with Paper III , Paper IV shows that recurrent neural networks are
very powerful and versatile for analysis of short stohastic trajectories.

During my Ph.D., I have carried out research in a variety of subjects including
active matter, optical trapping, microscopic thermodynamics, anomalous
diffusion and deep learning. This has allowed me to learn theoretical
knowledge, performing simulations, building experimental setups, making
measurements and analyzing data. Every project that I have been involved in
was genuinely interesting that made my challenging journey enjoyable. It was
absolutely pleasant to work with such a wide range of subjects, from stochastic
thermodynamics to deep learning applications in microscopy. Most importantly,
I have learned how to navigate through the ocean of scientific knowledge and
find the right drops that is useful for me to solve my problems.
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