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“Happiness and bacteria have one thing in common;  

they multiply by dividing!” 

― Rutvik Oza, mathematician 

 

 

 

 

Til fjölskyldunnar minnar 
(To my family) 



 

 

ABSTRACT 

Invasive infections affect neonates with the risk of severe morbidity and 
death, and Streptococcus agalactiae (Group B streptococcus, GBS) remains 
one of the most common pathogens. The aim of this thesis was to 
assess infections among neonates and infants, focusing on GBS to 
better understand prevention and treatment. Clinical data and outcomes 
were collected from patients’ medical records.  

Paper I was a prospective cohort study of GBS isolates obtained from 
adults and children with an invasive GBS infection in the years between 
2004 and 2009. The study showed that among infants, serotype III was 
the most prevalent (48%), but serotype V (39%) was most common 
among adults. Paper II and III were observational, retrospective studies 
on early-onset (EO) and late-onset (LO) invasive infections among 
infants living within Gothenburg or five surrounding municipalities, 
from whom a pathogenic organism was isolated from blood or 
cerebrospinal fluid during the years 1997–2017. The studies showed 
that EO infections decreased from 1.4 to 0.9 per 1000 live births from 
1997–2007 to 2008–2017. During the same period, the incidence of LO 
infections increased from 2.0 to 3.1 per 1000 live births. The case fatality 
rate remained unchanged for both studies. Paper IV was a cohort study 
of GBS isolates obtained from pregnant or postpartum women and 
infants with an invasive GBS infection in Western Sweden during 1988-
2001 and 2004-2009. The study showed that invasive isolates exhibited 
more pigmentation compared to commensal isolates.  

Conclusions: These studies have shown that the incidence of EO 
infections has declined, but for LO infections, it has increased. The 
serotype distribution of invasive GBS strains has remained the same. 
The invasive strains exhibit more pigmentation, which provides the 
basis for additional studies to determine if routine laboratory testing can 
be safely used to identify the GBS strains that put the unborn child at 
risk. 
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SAMMANFATTNING PÅ SVENSKA 

Mål: Att studera infektioner hos nyfödda med speciell fokus på grupp 
B streptokocker (GBS) för att få mer kunskap inför prevention och 
behandling. 

Patienter och metoder: I studie I ingick patienter oavsett ålder från 
Västra Götaland och Halland där GBS odlats från normalt sterila 
kroppsvätskor. Bakteriestammarna samlades in under åren 2004-2009 
och serotypades. Studie II och III var retrospektiva studier om tidiga 
(första levnadsveckan) respektive sena (från 3 till 120 dagars ålder) 
infektioner hos nyfödda som innefattade journalgenomgång av alla 
nyfödda vars mammor var bosatta i Göteborg, Mölndal, Härryda, 
Öckerö, Kungälv eller Partille under åren 1997-2017. Resultaten 
jämfördes med tidigare studier från samma befolkning från 1975. I 
studie IV ingick invasiva GBS stammar från nyfödda samt gravida eller 
nyförlösta kvinnor från 1988-2001 samt 2004-2009. Virulensfaktorer 
hos dessa GBS stammar jämfördes med GBS isolat från amerikanska 
gravida GBS bärare. Klinisk information samlades in från 
patientjournaler.  

Resultat: Studierna har visat att incidensen av tidiga infektioner hade 
gått ner men incidensen av sena infektioner hade stigit och den största 
ökningen var inom gruppen som var födda extremt tidigt dvs. före 28 
fulla graviditetsveckor. GBS orsakade 40% av tidiga infektioner. 
Fördelningen av polysackaridkapseln som utgör de olika serotyperna 
hos GBS bakterien hade inte ändrats jämfört med tidigare studier men 
de skiljde sig mellan nyfödda och vuxna. Detta är viktig information för 
utvecklingen av vaccin. Incidensen av tidiga GBS infektioner var högre 
i vårt material än i studier där man screenar för GBS bakterien hos 
kvinnor sent i graviditeten. Screening kan leda till ökad användning av 
profylaktisk antibiotika och därför vore det önskvärt att kunna 
identifiera vilka GBS stammar som orsakar sjukdom och vilka som inte 
gör det. I studie IV såg vi att isolat från svåra infektioner visade ökad 
pigmentering jämfört med isolat från gravida kvinnor i samhället. Detta 
är av intresse för fortsatta studier om vilka stammar som kan orsaka 
perinatal smitta till det ofödda barnet och på längre sikt identifiera vilka 
mödrar som har störst nytta av profylaktisk antibiotika under 
förlossningen.
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THESIS AT A GLANCE 
Paper I II III IV 

Aims To detect any 
changes in 
GBS serotype 
distribution 

I - To assess the 
incidence, 
etiology, and case 
fatality rate of 
EO invasive 
infections  
II - To assess the 
timing of EO 
GBS infections 

I - To assess the 
incidence, 
etiology, and case 
fatality rate of 
LO invasive 
infections 
II – To 
recalculate data 
on infections 3-
27 days of age 
from 1975 

To determine if 
high-risk GBS 
virulence factors 
correlate with an 
invasive GBS 
infection 

Methods 
Study design 
 
 
Population and 
inclusion 
criteria 
 
 
 
Study period 

Prospective 
cohort 
surveillance 
study. 
All ages with 
the cultivation 
of GBS from 
an otherwise 
sterile site. 
 
2004-2009 

Retrospective 
observational 
epidemiological 
study. 
0-6 days of age 
with a 
pathogenic 
organism isolated 
from blood or 
CSF. 
1997-2017 

Retrospective 
observational 
epidemiological 
study. 
3-120 days of age 
with a 
pathogenic 
organism isolated 
from blood or 
CSF. 
1997-2017 
(1975-2017) 

Case-control 
laboratory study 
based on a 
prospective cohort. 
Infants and 
pregnant/ 
postpartum women 
with saved invasive 
GBS isolates. 
 
1988-2001  & 
2004-2009 

Results Serotype III 
was the most 
prevalent 
(48%) in 
neonates and 
Serotype V 
(39%) in 
adults 

A total of 209 
cases gave an 
incidence of 
1.1/1000 live 
births. 15 (7%) 
died. GBS (40%) 
was the most 
common 
pathogen 

A total of 473 
cases gave an 
incidence of 
2.6/1000 live 
births. 29 (6%) 
died. S. aureus 
(25%) and CoNS 
(17%) were the 
most common 
pathogens 

The 233 invasive 
isolates had a 
mean±SE 
pigment score of 
2.4±0.9 
compared to 
1.4±1.0 for the 51 
commensal 
isolates  

Conclusions The serotype 
distribution 
remained 
unchanged, 
which is 
promising 
regarding 
GBS 
vaccination 

The incidence 
has declined, but 
the case fatality 
rate remained 
unchanged. All 
EO GBS cases 
occurred within 
72 hours of birth 

The incidence 
increased in the 
last 10 years. The 
case fatality rate 
was lower 
compared to 
previous 
surveillance data 
(1975-1996) 

The hemolytic 
potential differs 
and skews toward 
more significant 
hemolysis in the 
invasive isolates 
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INTRODUCTION 

Infections at childbirth have been well known for centuries. Childbed 

fever with high maternal mortality was a dreaded complication of 

childbirth, causing almost one-third of every woman to die of puerperal 

sepsis in the early 19th century. Dr. Alexander Gordon, an obstetrician, 

working in Aberdeen, stated in the year 1795 that childbed fever was 

contagious and good hygiene was vital in its prevention (1). In 1847 the 

Hungarian obstetrician Ignaz Semmelweis recognized that medical 

students caused a spread of “decaying animal organic matter” to 

puerperal women by performing autopsies between deliveries while 

practicing in the Erste Wiener Gebärklinik in Vienna. Dr. Semmelwis 

received much criticism from his colleagues and supervisors after 

introducing antiseptic techniques with handwash and chlorine solution 

to prevent the spread. His contribution to science was not accepted 

until after his death in 1865 (2). “Decaying animal organic matter” was 

later diagnosed as Streptococcus pyogenes, or β-hemolytic streptococcus 

group A (GAS), which also causes scarlet fever, tonsillitis, impetigo, 

sepsis, and necrotizing fasciitis. Along with antiseptic techniques and 

potential lower virulence of the bacteria, cases of puerperal sepsis 

declined at the end of the 19th century (3). However, before the 

discovery of penicillin by Alexander Fleming in 1928, physicians were 

helpless against puerperal sepsis, and the mortality remained high.  

Neonates are highly susceptible to infections due to an immature 

immune system. Along with changing etiology of puerperal sepsis, other 

bacterial pathogens, such as Streptococcus agalactiae (the Group B 

streptococcus (GBS)), Listeria monocytogenes, Escherichia coli, and other 

Gram-negatives emerged as pathogens. 

This thesis includes studies covering neonatal infections from 1975 to 

2017. The neonatal care and environment have changed tremendously 

during this long period. With improved care of pregnant women and 

proactive care involving resuscitation and neonatal intensive care 
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(NICU), fundamental improvements were made to increase preterm 

neonates’ survival and survival at lower gestational ages (4).  

The first study within this surveillance between 1975 and 1986, 

conducted by Tessin et al. (5), included neonates between days 0 and 27 

(both days included). Possible commensal organisms like coagulase-

negative staphylococci (CoNS) were not considered pathogens and, 

therefore, not included in the study. With improved survival, the care 

has evolved with extended hospital stays and more invasive procedures, 

exposing the neonates to medical interventions that put them at risk for 

infections with commensals organisms (6). That is why Persson et al., 

in the study - covering the years 1987 to 1996 - included CoNS and 

extended the surveillance to include neonatal infections up to 120 days 

of age (7). 

This thesis covers the last 21 years of this 43-year long surveillance on 

neonatal infections, including 1997 to 2017. The studies include 

comparisons with results from the previous reviews as well as 

comparisons of the last ten years (2008-2017) with the 11 previous years 

(1997-2007).  

This thesis’s work describes the incidence of early- and late neonatal 

infections and various virulence factors in GBS, which has remained 

one of the leading pathogens for neonates. 
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BACKGROUND 

NEONATAL INFECTIONS – AN OVERVIEW 

Invasive infections remain one of the most detrimental risks for the 

neonate causing substantial morbidity and mortality. An invasive 

infection means that the infection, due to bacteria, virus, or fungi, has 

spread invasively to an otherwise sterile site like blood and can cause 

sepsis. In severe cases, the pathogen crosses the blood-brain barrier 

(BBB) and causes meningitis.  

Neonatal infections are divided into groups based on the time of 

presentation. Early-onset (EO) neonatal infections are thought to be 

caused by vertical transmission of pathogens that may have 

contaminated the placenta, amniotic fluid, or the vagina and affect the 

neonate in the womb or during delivery (8, 9). The definition varies but 

refers to infections with symptoms within 72 hours of birth or during 

the first week of life (5, 7, 10-13). Late-onset (LO) neonatal infections 

are, on the other hand, thought to be caused by horizontal transmission 

from the environment or gut after birth. LO-infection has been variably 

defined as an infection that occurs after day 3 to 7 of life and before day 

28, 90, and 120 (10, 14-19). 

The main risk factors for infections are well studied in neonates. 

Maternal colonization with GBS is a significant risk factor for neonatal 

GBS infections of all gestational ages (20, 21). Preterm neonates are at 

higher risk for disease due to a less efficient immune system with 

decreased IgG antibodies, incompetent activation of the complement 

system, and opsonization of bacteria (22). The innate immune system is 

compromised, as well, with an immature epithelial barrier along with an 

increased need for invasive devices that may disrupt the mucosa (23). 

Neonatal sepsis (EOS = early-onset sepsis/LOS = late-onset sepsis) is 

often defined as a pathogen cultivated from blood and/or cerebrospinal 

fluid (CSF). Meningitis is therefore included in most reports on neonatal 

sepsis (24). 
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NEONATAL SEPSIS 

Neonates have the highest incidence of sepsis within all age groups at 

22 per 1000 live births, affecting around 3 million babies worldwide 

each year with a case fatality rate of 11-19%, according to a systematic 

review and meta-analysis covering the years 1979 to 2016 (25). The 

accuracy of these numbers is affected by the lack of standardization of 

diagnostic criteria. Even though consensus regarding pediatric sepsis 

was established over 15 years ago (26), no international consensus exists 

on the definition of neonatal sepsis.  

The pediatric guidelines modified the systemic inflammatory response 

syndrome (SIRS)-criteria (26) based upon the previous consensus for 

adults (27). However, adults’ criteria had an excessive focus on 

inflammation and the consensus changed in 2016 with the Third 

International Consensus Definitions for Sepsis and Septic Shock 

(Sepsis-3) (28, 29). A linear relationship between the number of affected 

organs and sepsis-related mortality exists in adults (30). In the Sepsis-3 

consensus, there is a clinical approach with less emphasis on traditional 

microbiological results. Sepsis is instead defined as a life-threatening 

organ dysfunction caused by a dysregulated host response to infection 

(28). Organ dysfunction is rarely used as a diagnostic criterion for 

neonatal invasive infections, and the presentation of infection may 

differ for the term and preterm neonate. Organ dysfunction may be 

occult, and the neonates can deteriorate quickly from bacteremia to 

fulminant sepsis with septic shock.  

There are screening tools for sepsis to enable the clinician to identify 

patients with suspected sepsis early. In adults, qSOFA (Quick 

Sequential Organ Failure Assessment) is used to identify organ 

dysfunction bedside taking into account increased respiratory rate, 

systolic blood pressure, and altered mentation (28). Pediatric SOFA 

(pSOFA) has adjusted physiological parameters to age-related cut-offs 

(31). Wynn et al. suggested a neonatal-specific SOFA – nSOFA, based 

on four different scorings (from 0 to 3 regarding the following six 

systems: 1. Respiratory-, 2. Cardiovascular-, 3. Renal- and 4. The central 
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nervous system, along with 5. Platelets- and 6. Absolute neutrophil 

counts (32). nSOFA might predict mortality in very low birth weight 

(VLBW) neonates with LO sepsis (33, 34).  

The challenges for the assessments of these scores for neonates are 

multivariate. The baseline for neonates is often not known. Platelets, 

absolute neutrophil counts as well as the proportion of immature to 

total neutrophil ratio (I:T), have poor predictive value with low 

sensitivity and wide variations due to multiple clinical factors like 

gestational age, maternal hypertension, and induced labor affecting and 

limiting their validity (35-39).  

The clinical diagnosis of neonatal sepsis is based on a combination of 

factors, including; clinical presentation of the neonate, perinatal history 

of risk factors, for example, maternal infection, and different 

biomarkers as white blood cells (WBC) count, C-reactive protein (CRP), 

procalcitonin (PCT) and cytokines, including interleukin (IL) – 6, IL-8 

and tumor necrosis factor (TNF) – α, figure 1. Polymerase chain 

reaction (PCR) and cultures are used to identify a possible pathogen, 

but antibiotic treatment for culture-negative sepsis is frequent among 

neonates since up to 60% of blood cultures can be falsely negative (13, 

40). No single biomarker fulfills the criteria of a perfect biomarker for 

neonatal invasive infection (41). Most biomarkers increase both due to 

a bacterial infection and other inflammations, figure 2 (42). That is why 

most biomarkers have a higher negative- than positive predictive value.  

CRP and PCT are both acute-phase reactant proteins produced mainly 

by the liver when stimulated by cytokines. They correlate with the 

severity of the infection and can be used to monitor the response to 

antibiotics (43). 
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 Kinetic profiles of biomarkers for bacterial infection. Downloaded and 

reproduced with courtesy of bioMérieux Sweden AB from 

http://www.biomerieux-diagnostics.com/vidas-brahms-pct, accessed on 13-Apr-

2021. Adapted from Meisner M et al. Crit Care. 1999;3(1):45-50. 

PCT is both detected, and returns earlier to normal as the infection 

resolves compared to CRP, figure 1. Meta-analysis have shown PCT to 

have higher sensitivity (79% vs. 69%) and specificity (84% vs. 77%) 

compared with CRP (44, 45). PCT is more specific in differentiating 

bacterial infection from other inflammations than CRP alone, and mode 

of delivery does not affect PCT in contrast to CRP (46, 47). However, 

CRP has better availability, and its predictive value increases when 

combined with a cytokine biomarker (41). Cytokines like IL-6, IL-8, and 

TNF-α are the precursors of acute-phase proteins and therefore have a 

quicker onset but also a shorter half-life. IL-6 has been shown to have 

a high sensitivity (89%) and negative predictive value (91%) in LO-

sepsis among VLBW infants (48). However, they can be undetectable 

despite an ongoing infection if taken too late, making it essential to 
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combine cytokines with biomarkers with slower kinetics like CRP (49), 

figure 1.  

 The release of pro-inflammatory cytokines mediates the acute 

inflammatory response. PAMPs = pathogen-associated molecular patterns (for 

example bacteria). DAMPs = damage-associated molecular patterns (for 

example, injury). PRRs = pattern recognition receptors trigger pro-inflammatory 

and antimicrobial responses by inducing the release of a broad range of 

cytokines. Modified and reproduced from Slaats et al. 2016 (42) under the 

attribution 4.0 International of creative commons 

https://creativecommons.org/licenses/by/4.0/ 

Most studies on biomarkers for infections are done by comparison of 

infection with otherwise healthy individuals. This scenario is not 

relevant for a NICU. The neonates may have other factors that cause 

an inflammatory response, like perinatal asphyxia, respiratory distress, 

intraventricular hemorrhage (IVH), pneumothorax, or tissue damages 

related to instrumental birth. A quick, affordable biomarker that would 

identify a bacterial infection in need of antibiotics utilizing small sample 

volumes in these settings would be of great value. 

Serum amyloid A (SAA) and lipopolysaccharide binding proteins (LPB) 

are also biomarkers synthesized by the liver and have improved the 

diagnostics of neonatal sepsis in some studies (50-52). However, neither 

differentiate between infectious nor non-infectious systemic 

inflammatory response (41). Progress has been made in molecular 

diagnostics of infections with PCR technology. They are widely used in 

detecting pathogens in CSF but are now developed to detect pathogens 



Neonatal invasive infections focused on GBS 

 

8 

 

from whole blood (53). These non-culture-based methods on 

identifying a possible pathogen with antimicrobial resistance gene 

testing provide an opportunity to use antibiotics with a more narrow 

spectrum within hours. They have their limitations, but with further 

improvements and lower costs, molecular diagnostics are promising for 

future diagnostics and treatment for invasive infections. 

Kaiser EO-sepsis calculator – http://newbornsepsiscalculator.org/ was 

designed to predict the risk of EO-sepsis based on maternal intrapartum 

risk factors and was later combined with clinical symptoms of the 

neonate (54-56). This calculator places the neonate into three risk-

groups - 1) treat empirically, 2) observe and evaluate and 3) continued 

observation - and has been shown to reduce antibiotic use among 

neonates and especially among infants with low risk of EO-sepsis (57-

59). However, this calculator has not been validated for infants born 

<34 weeks gestation and does not apply to LO-sepsis. 

In papers II and III (on EO and LO neonatal invasive infections), the 

criteria for an invasive infection were the isolation of an infective 

organism from blood or CSF by culture with specific criteria for 

pathogens of unclear clinical relevance. This is one of the most common 

criteria used in diagnosing neonatal sepsis and meningitis (24). 

Australian and New Zealand Neonatal Network have added CSF PCR 

into their criteria (60). PCR techniques have a high sensitivity and 

specificity in diagnosing infection and are often relied upon in clinical 

settings (9). 

Research on neonatal infections is even more challenging because the 

definition of time of onset varies between studies. Early-onset (EO) is 

defined variably as an infection within the first 48 hours of life (60-62), 

within the first 72 hours of life (10-12, 63)) or within the first week of 

life (day 0-6) (5, 7, 13). Some studies differ depending on if the neonates 

are born preterm/term or depending on the pathogen. Many studies, 

especially on GBS, report EO infection within the first week of life (9, 

64-66).  

http://newbornsepsiscalculator.org/
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These different definitions make the comparison of the outcomes from 

sepsis-related research more complicated than it has to be. The lack of 

standardization and international consensus makes it essential to follow 

the same population’s incidence, etiology, and prognosis using the same 

criteria.  

NEONATAL MENINGITIS 

Meningitis is most common within the first month than at any other 

time of life (67). Reports often define neonatal sepsis as isolation of an 

infective organism from blood or CSF, including neonatal meningitis. 

Reports specified on meningitis have shown that the incidence is 

significantly higher among infants born preterm (2/1000 live births if 

born <32 weeks) compared to at term (0.3/1000 live births), and 

preterm infants are accounting for 30% of neonatal meningitis (68, 69).  

Meningitis may occur in up to 15% of neonates with bacteremia. 

Among those with GBS, 5-10% of EO and about 25% of those with 

LO infections have meningitis (70-73). GBS and E. coli are the 

pathogens in 65-75% of EO meningitis cases, and E. coli is up to seven-

fold more frequent in preterm than term infants (12, 69, 74-79). 

Meningitis can occasionally occur with normal CSF parameters, 

especially if lumbar puncture (LP) is done early in the course. If an LP 

is repeated, there is always pleocytosis when the meninges are inflamed 

(80). Molecular methods are used increasingly to diagnose meningitis, 

and they have a high sensitivity as they are not affected by prior 

antibiotics (81, 82).  

In this thesis, only infections confirmed by culture are included. CSF 

cultures are included in the calculations on neonatal sepsis incidence if 

not otherwise specified. 
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EARLY-ONSET NEONATAL INFECTIONS  

Most cases of EO - infection occur among term infants, but the 

incidence and case fatality rate are higher among infants born preterm 

(12, 17, 83). As previously mentioned, the etiology can depend on the 

mothers’ cultivation, as neonatal EO infections are often caused by the 

transmission of pathogens from the mothers’ genitourinary tract. These 

pathogens can ascend the vagina and infect the amniotic fluid and cause 

a neonatal infection that sometimes leads to intrauterine fetal demise 

(IUFD). Additionally, the neonate can get exposed during delivery 

through the vaginal canal (figure 3). The most common pathogens are 

GBS and E. coli which have the highest case fatality rate (9). The 

incidence of EO neonatal infections due to GBS has declined by 

treating the mother with intrapartum antibiotics. However, GBS 

remains one of the most common pathogens (9). The increased use of 

intrapartum antibiotics may lead to increased cases of neonatal sepsis 

due to ampicillin-resistant E. coli (84). Some studies have reported a rise 

in infections caused by E. coli after the implementation of intrapartum 

antibiotic prophylaxis (IAP), especially among the neonates born 

extremely preterm. But the mortality has not increased despite that E. 

coli has higher case fatality rate compared to GBS (12, 17, 19, 66). Most 

EO cases are associated with preterm birth, premature rupture of 

membranes (PROM), and maternal chorioamnionitis (39, 56, 85). 

The Gram-positive bacteria Listeria monocytogenes, responsible for 

listeriosis, and the parasitic protozoan eukaryote Toxoplasma gondii, 

causing toxoplasmosis, are food-borne, intracellular pathogens that are 

usually transmitted via transplacental hematogenous spread in utero 

(figure 3). The incidence of listeriosis and toxoplasmosis has decreased, 

possibly due to decreased consumption of high-risk foods by pregnant 

women due to better education (86-88). 
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 Dissemination of infections during pregnancy can cause IUFD or 

early-onset invasive infection (ascending infection in yellow and hematogenous 

in green). Modified image reproduced with courtesy from www.freepik.com 

In pregnancy, untreated syphilis caused by Treponema pallidum leads 

to a fetal infection rate of almost 100%. The latent stage causes no 

symptoms for the mother but still can cause a transplacental 

transmission to the fetus at any time during gestation (89). Intrauterine 

herpes simplex virus (HSV) infection is usually transplacental but can 

be an ascending infection and infect the neonate vertically through 

exposure during labor (90). 

Other viral infections during pregnancy can cause fetal demise or be 

transmitted to the neonate and cause an EO infection, such as hepatitis 

B and C, cytomegalovirus, human immunodeficiency virus, parvovirus 

B-19, and Zika virus (91). The studies in this thesis, however, only 

include bacterial and fungal pathogens.  
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LATE-ONSET NEONATAL INFECTIONS 

Study III in this thesis includes infants with LO-infections from an out-

of-hospital setting as well as VLBW infants within a NICU since it is 

population-based and includes all infants at the age of 3-120 days.  

Infants with LO infections often have comorbid conditions, most 

common being respiratory, gastrointestinal, and cardiovascular (92). 

However, LO-sepsis occurs more frequently among preterm infants 

and especially among those born extremely preterm. Studies have 

shown that about 21-27% of surviving infants born earlier than 28 

gestational weeks experience at least one episode of LO-sepsis before 

discharge from the NICU (14, 93). 

Background causes of preterm birth may explain the increased risk of 

LO infections. Fetal growth restriction and/or maternal hypertensive 

disorder were strong risk factors for LO-sepsis irrespectively of the 

duration of central catheters, according to Letouzey et al. in the French 

EPIPAGE-2 cohort study (94). However, many studies have shown 

that central catheters constitute a significant risk factor for LO 

infections, especially since the most common pathogens are 

staphylococci (93, 95-99). 

Implementing care bundles on caring for intravascular lines has had 

success in diminishing CoNS sepsis which further suggests that 

intravascular catheters are a major risk for LO infections (19, 100). If 

the mother has a hypertensive disorder and the fetus is growth-

restricted, the choice of birth route is often cesarean. Olivier et al. found 

that the odds of CoNS sepsis were higher for neonates born before 32 

weeks gestation if the birth route was cesarean vs. vaginal, possibly due 

to dysbiosis since the birth route influences the composition of neonatal 

gut microbiota (101, 102).  

Intravascular catheters, especially central catheters like umbilical-, 

peripherally inserted central- (PICCs), and central venous catheters 

breach barriers and are associated with LO-infections (11, 14, 97). Both 
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S. aureus and CoNS produce a biofilm when in contact with a surface. 

These biofilms protect the bacteria against immune defenses and 

antibiotics and trigger dispersal mechanisms to other sites in the body 

where they can seed new biofilm production and thrive on another 

foreign device (103), figure 4. That is why foreign devices should 

promptly be removed when S. aureus is cultivated. Even though a central 

line can be salvaged in about half of CoNS cases, their removal is 

strongly recommended and essential if the bacteremia persists (104, 

105).  

 Biofilm production in S. aureus and CoNS. Modified and reproduced 

from Lister et al. 2014 (103) and Di Domenico et al. 2019 (106) adapted from 

Mind the Graph (https://mindthegraph.com). Both under the attribution 4.0 

International of creative commons https://creativecommons.org/licenses/by/4.0/. 

https://mindthegraph.com/
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GROUP B STREPTOCOCCI 

GBS is a β-hemolytic Gram-positive coccus first reported as a cause of 

cow mastitis in 1887 (107). It was differentiated from other streptococci 

by Rebecca Lancefield in the 1930s after isolation from the milk of 

affected cows - thereof its name; a-galactiae means no milk in Latin 

(108).  

Human infections were first observed as sepsis, meningitis, and 

endocarditis and emerged as a leading cause of neonatal sepsis in the 

1970s (109, 110). 

INCIDENCE  

GBS is a common asymptomatic colonizer of healthy adults’ lower 

genitourinary- and gastrointestinal tracts (111-113). Among pregnant 

women, vaginal colonization rates of GBS vary from 11-35% worldwide 

(114). This asymptomatic harmless opportunistic organism colonizing 

otherwise healthy adults can subvert suboptimal host defenses to cause 

severe invasive disease and tissue damage (115-117). 

ADULTS 

Laboratory surveillance reports have shown a rise in invasive GBS 

infections among non-pregnant adults, with around 0.1 cases per 1000 

persons and one-third of the patients needing intensive care (70, 118, 

119). The incidence rises with age and is more than doubled in patients 

65 years and older (70, 120, 121). Almost all adult cases have an 

underlying condition. The most common are obesity and diabetes, and 

their increase in prevalence might have contributed to the rise in 

invasive GBS infections (119, 122, 123). Obesity and diabetes, along 

with tobacco use, are also risk factors for the colonization of pregnant 

women (124, 125). 

Skin and soft tissue infections, septic arthritis, septicemia without 

known focus, pneumonia, and endocarditis are the most common 

clinical presentations among non-pregnant adults (126-128). Pregnancy 
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is an immunosuppressed state, and GBS can cause endometritis, 

mastitis, and in rare cases, sepsis (129). The most significant risk with 

GBS vaginal colonization is the development of neonatal GBS disease 

and preterm birth (75, 117).  

NEONATES AND INFANTS 

Neonates are susceptible to GBS before, at, and after birth. If the 

mother is colonized with GBS, the bacteria can pass from the vagina 

into the amniotic fluid and cause IUFD and preterm birth (130, 131). A 

further risk for exposure happens during passage through the birth 

canal (132) and after birth via breast milk or the environment (133, 134). 

The incidence of GBS infections among neonates and infants 

worldwide is about 0.5 per 1000 live births (135, 136). The incidence of 

EO infections has declined since studies from the 1980s showed that 

fewer neonates got EO GBS infections by administering antibiotics to 

the mothers at partus (132, 137, 138). In the United States, the incidence 

of EO infections declined from 1.8 per 1000 live births in the 1990s 

(139) to as low as 0.2 per 1000 live births in 2016 (72) due to tackling 

the most significant risk factor for neonates – the colonization of the 

mothers - by implementing IAP. 
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INTRAPARTUM ANTIBIOTIC PROPHYLAXIS – 
DIFFERENT STRATEGIES 

The American College of Obstetricians and Gynecologists (ACOG) 

recommended IAP to prevent GBS disease in 1996 (21), and the 

American Academy of Pediatrics recommended it in 1997 (140). The 

Swedish National Board of Health and Welfare published guidelines on 

IAP more than ten years later in 2008 (141).  

Universal screening for GBS with rectovaginal cultures late in 

pregnancy was recommended in the USA in 2002, after revising the 

guidelines (142). Screening is recommended at 36+0 to 37+6 weeks of 

pregnancy, except for women who have previously given birth to an 

infant with invasive GBS infection or have had GBS bacteriuria – they 

get IAP nevertheless, and screening is not needed (143, 144). The 

reason for a screening near term is that many women have transient or 

intermittent colonization, and GBS colonization status may not be 

correct if taken too early (111, 132, 145). 

The Swedish recommendations have been unchanged since 2008 and 

still recommend a risk factor-based approach for identifying IAP 

candidates. The risk factor-based IAP is based on the presence of one 

or more following risk factors to identify parturient who should receive 

IAP during labor:  

1. Intrapartum fever ≥38°C,  

2. Preterm birth (<37 weeks),  

3. Rupture of membranes ≥18 hours,  

4. Previous delivery of an infant with invasive GBS infection or  

5. GBS bacteriuria in the current pregnancy.  

These risk factors are cumulative, with an increase in risk if more than 

one is present (54). The problem with the risk-based strategy is that 

some cases do not present with any risk factors or are not identified. 

The screening-based strategy seems to have a more significant impact 

than risk factor-based IAP on EO GBS infection. That is why many 

recommend IAP strategy based on screening (143, 146-153).  
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VIRULENCE OF GROUP B STREPTOCOCCI 

GBS possesses several different virulence factors assisting the bacteria 

in adhesion, invasion of host epithelial cells and colonization, and 

immune evasions as well as adaptation to the host environment (154-

156).  

GBS have surface-associated proteins like adhesins, such as hyper 

virulent GBS adhesin (HvgA), fibrinogen-binding proteins, pili, 

plasminogen-binding proteins, and serine rich-repeat glycoproteins. 

These proteins make it possible for GBS to bind to and colonize 

epithelial cells and, in some cases, to cross the mucosal barrier of the 

host and become invasive pathogens (157).  

GBS encodes many two-component signal transduction systems at 

cellular levels. The most studied is CovR/CovS (control of virulence) 

two-component system (CovR/S), where it serves as a regulatory 

system, either activating or repressing genes that may affect its 

virulence, such as the hemolysin operon cyl (157, 158). A 

transmembrane-bound protein known as Abx1 has been shown to form 

a signaling complex with the histidine kinase CovS in GBS (159).  

SEROTYPES 

GBS possesses two saccharides, the group B carbohydrate in the cellular 

wall and an extracellular capsular polysaccharide (CPS) which is rich in 

sialic acid and constitutes one of the main virulence factors of GBS. It 

helps GBS escape from the host defenses by interfering with the 

macrophages’ phagocytic killing (160). The CPS’s are classified into 

serotypes based upon structural differences. There are ten distinct CPS 

antigens described (Ia, Ib, II-IX) (161), and they are all antigenically 

distinct (162). 

Serotype distribution differs between neonates and adults, with serotype 

III and Ia predominating among neonates and infants and serotype V 

being most common in infections among adults (112, 136, 163, 164).  
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A highly virulent clonal complex 17 (CC17) strains in serotype III, 

which possesses the adhesin HvgA has enhanced ability to penetrate the 

BBB and cause meningitis (165). 

Studies have shown that serotype distribution differs between countries 

and changes over time (118, 119, 164, 166-169).  

A successful GBS vaccine must be directed against the CPSs of the most 

common GBS serotypes. That is why it is vital to have ongoing 

surveillance and consider possible changes when GBS vaccines are 

formulated.  

THE CAMP FACTOR 

The Christie Atkins Munch Peterson (CAMP) factor is a protein 

exotoxin that forms oligomeric pores on susceptible cell membranes, 

promoting intracellular survival and systemic dissemination by entering 

the pathogen into host cells (170). It is not considered an essential 

virulence factor in humans (171). The CAMP factor has variable 

hemolytic activity and acts synergistically with sphingomyelinase, a 

protein secreted by Staphylococcus aureus. The CAMP reaction, shown as 

a triangular-hemolytic shape on blood agar when grown near the 

colonies of S. aureus, is used as a diagnostic tool for identifying GBS 

(172), figure 5. 

 

  A sketch of the CAMP 

reaction, showing an arrowhead 

where the zone of hemolysis 

occurs on blood agar when GBS is 

grown near S. aureus 
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THE HEMOLYTIC PIGMENT 

The β-hemolysis sometimes called complete hemolysis – compared to 

partial hemolysis with α-hemolysis – is one of the earliest identified 

virulence factors of GBS (173). It has been identified to be vital for the 

penetration of the BBB in GBS meningitis (174). Removal of the 

hemolytic pigment - which mediates the hemolysis - renders it avirulent 

and leads to inefficient vaginal colonization (175-178). The pigment is 

required for the bacteria to resist the host’s immune response (177, 179). 

Low levels of pigment expression are favorable for vaginal colonization, 

and high levels are necessary to penetrate tissues (180, 181). Over-

expression of the pigment induces an effective host immune response, 

diminishing colonization, which may be why hyper-pigmented GBS 

strains are seldom isolated from the vagina (180, 182, 183). A balance 

of the expression of hemolytic pigments is vital for the virulence of GBS 

(183). This hemolytic pigment can also be used to identify GBS as 

hemolytic GBS strains produce an orange-brick-red pigment 

(Granadaene) when cultivated on granada medium (184, 185). 

CovR/S regulates the hemolytic pigment expression negatively by 

repressing the expression of the cyl operon, which is necessary for the 

biosynthesis of the hemolytic pigment (158, 186). Genetic ablation of 

covR/S makes GBS hyper-hemolytic and hyper-pigmented (175). Some 

hyperhemolytic clinical isolates have altered amino acid sequences in 

CovR/S, which might explain the phenotype of the hyperhemolytic 

GBS strains (187). A study on mice that were vaginally inoculated with 

non-hemolytic GBS had decreased bacterial dissemination and more 

minor fetal injury (179). GBS strains with increased hemolytic 

expression had accelerated GBS invasion of the amniotic cavity in a 

nonhuman primate model (178). CovR/S-deficient GBS strains are 

hyperhemolytic, and they have a better success of penetrating the BBB 

and have enhanced production of cytotoxins in the bloodstream. Still, 

most clinical GBS isolates have a functional CovR/S as the CovR/S 

seems to be critical for colonization and epithelial cell invasion, 

reflecting the importance of a balance of the expression of the 

hemolytic pigment (187).  
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Identifying the degree of hemolysis in GBS strains in human cases may 

lead to a better understanding of hemolysin’s role in GBS infection in 

humans. 

GBS HYALURONIDASE 

Studies on mice have shown that cervical hyaluronan plays a role in 

epithelial barrier protection of the lower reproductive tract (188, 189). 

GBS hyaluronidase (HylB) is an enzyme that cleaves the extracellular 

matrix’s hyaluronic acid into disaccharides (190). These disaccharides 

can then block the toll-like receptors critical for detecting bacteria and 

prevent the host immune system’s response (191). GBS strains 

belonging to the same serotype exhibit varying hyaluronidase activity 

levels, and the activity is not correlated to specific capsular serotypes. 

Vornhagen et al. showed that hyaluronidase expression was higher in 

clinical GBS isolates than commensal isolates. GBS deficient of 

hyaluronidase had reduced ability to establish in utero infections due to 

increased immune recognition (192).  

Defining mechanisms underlying different GBS virulence factors may 

lead to the development of strategies for identification and further 

intervention to battle GBS neonatal infections. 
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VACCINATION 

Studies have shown that maternal antibodies against GBS CPS antigen 

as well as against some surface proteins may protect the neonate against 

perinatal infection (193-196). However, many GBS colonized women 

do not have sufficient antibody response at the time of delivery. Even 

though IAP may protect against neonatal disease, it is often missed (197, 

198). 

The group B carbohydrate non-CPS antigen common to all GBS strains 

is not a vaccine candidate as the antibodies induced are not protective 

(199). 

Several different GBS antigens are included in potential vaccines (200). 

Vaccines based on serotypes (CPS) were the initial antigens included in 

developing a GBS vaccine and have come farthest in the development 

(200). Conjugation with protein antigens with tetanus toxoid or a 

genetically modified diphtheria toxin as the carrier protein was 

implemented to enable better immunogenic response and has been 

shown to prevent vaginal colonization in phase II trials (198, 201-203). 

This is based on the same principles as the conjugated vaccines against 

Haemophilus influenzae type b and pneumococcal vaccines (204). The 

development of a vaccine for elderly individuals is ongoing but with a 

focus on serotype V (205, 206). 

Complete genome sequences for GBS allow vaccine development of a 

combination vaccine against different potential antigens, such as surface 

proteins combined with CPS (207-209). This offers advantages over 

vaccines containing irrelevant proteins as tetanus toxoid by combining 

antigens, not among the included serotypes, thereby providing a 

multivalent vaccine that protects against several serotypes. 
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AIMS 
The studies incorporated in this thesis aimed to investigate neonatal 

invasive infections’ epidemiology with a special focus on GBS to gain 

information for possible prevention and improvements on diagnostic 

sensitivity.  

The specific aims of each study were: 

I. To survey the serotype distribution of invasive GBS strains 

obtained prospectively between 2004 and 2009 and to compare 

it with previous studies (1998-2001) within the same area to 

detect any changes over time. 

 

II. To assess the incidence, etiology, and any changes in the case 

fatality rate of neonatal invasive infections within the first week 

of life by comparing the last ten years (2008-2017) with 1997 – 

2007 and two previous studies covering the period 1975 – 1996 

(5, 7). A secondary aim was to evaluate if a change in EO 

neonatal infections’ definition to <72 h after birth, instead of 

within the first week of life, would lead to missing cases of EO 

GBS infections.  

 

III. To assess the incidence, etiology, and case fatality rate of LO 

neonatal invasive infections between 1997 and 2017, defining 

LO as infections occurring at 3-120 days of age. A secondary 

aim was to recalculate data on infections occurring between 3 

and 27 days of age from 1975 and onwards to evaluate possible 

changes over a 43-year surveillance period. 

 

IV. To determine if GBS isolates from pregnant or postpartum 

women and neonates with GBS invasive disease exhibit 

differences in virulence factor expression, strain genetics, and 

immune evasion compared to commensal isolates.  
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PATIENTS AND METHODS 

OVERVIEW OF THE METHODS 

Paper I II III IV 

Study 
design 

Prospective 
cohort 
surveillance 
study 

Retrospective 
observational 
epidemiological 
study 

Retrospective 
observational 
epidemiological 
study. 

Case-control 
laboratory study 
based on a 
prospective 
cohort 

Population Patients of 
all ages 
living 
within the 
counties 
Region 
Västra 
Götaland 
or Region 
Halland  

Newborns at 
0-6 days of age 
and their 
mothers living 
in Gothenburg 
or five 
surrounding 
municipalities 
at the time of 
birth 

Infants 3-120 
days of age and 
their mothers 
living in 
Gothenburg or 
five 
surrounding 
municipalities 
at the time of 
birth 

Infants and 
pregnant/post-
partum women 
living within the 
counties Region 
Västra Götaland 
or Region 
Halland and 
anonymous 
commensal 
isolates from the 
UW 

Inclusion 
criteria 

Invasive 
GBS 
infection in 
western 
Sweden 

A pathogenic 
organism 
isolated from 
blood or CSF 
and mother 
living within 
the study area 
at the time of 
delivery 

A pathogenic 
organism 
isolated from 
blood or CSF 
and mother 
living within 
the study area 
at the time of 
delivery  

Saved invasive 
GBS isolates 
from neonates, 
pregnant/post-
partum women, 
and commensal 
isolates from 
pregnant 
women. 

Study 
period 

2004-2009 1997-2017 1997-2017 
(1975-2017) 

1988-2001 &  
2004-2009 

Main 
research 
question 

Serotype 
distribution 
of GBS 

Incidence and 
etiology of 
early-onset 
neonatal 
infections 

Incidence and 
etiology of late-
onset neonatal 
infections 

Is the expression 
of high-risk GBS 
virulence factors 
correlated with 
an invasive 
infection? 
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STUDY DESIGN 

Paper I was a prospective cohort surveillance study of invasive GBS 

infection among all ages between January 1, 2004, and December 31, 

2009, in two counties in western Sweden. Invasive infection was defined 

as isolation of the organism from blood, CSF, or synovial fluid. No GBS 

isolates came from the pleura, pericardium, peritoneum, or corpus 

vitreum. 

Paper II and III were retrospective observational epidemiological 

studies on infants with a pathogenic organism isolated from blood or 

CSF during 1997 – 2017, both years included.  

Their mothers had to be living in Gothenburg or five surrounding 

municipalities (Mölndal, Härryda, Partille, Öckerö or Kungälv) at time 

of birth. Flowcharts of included and excluded patients are shown in 

figures 6 and 7. 

Paper IV was a case-control laboratory study based on a prospective 

cohort of invasive GBS strains collected from patients in western 

Sweden between 1988 – 2001 and 2004 – 2009. Strains from 214 infants 

and 19 pregnant or postpartum women were identified. Control group 

of 51 commensal GBS isolates were obtained from pregnant women 

through the University of Washington, Seattle, USA.  
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 Flowchart of included and excluded patients in Paper II. (Modified and 

reprinted under the terms of the Creative Common Attribution 4.0 International 

License http://creativecommons.org/licenses/by/4.0/: Gudjónsdóttir et al. BMC 

Pediatrics 2019, Vol. 19, Iss. 1.) 

 

 
 

 Flowchart of included and excluded patients regarding the years 1997-

2017 in Paper III 

http://creativecommons.org/licenses/by/4.0/
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DATA COLLECTION 

In papers I and IV, invasive GBS isolates were collected prospectively 

from bacteriological laboratories that served the hospitals in Västra 

Götaland and Halland, two counties of western Sweden. Data on 

patient characteristics and outcomes were retrieved in retrospect from 

the medical records. In the paper IV control group, GBS clinical isolates 

were obtained from general screening. Rectovaginal swabs were 

obtained from women in their third trimester of pregnancy at the 

University of Washington Medical Center and Harborview Medical 

Center, without any identifiers or clinical information. 

In papers II and III, data on positive cultures were obtained from the 

Clinical Microbiology laboratory at Sahlgrenska University Hospital, 

Gothenburg. We retrieved data on the mothers’ ZIP code and possible 

risk factors from the electronic medical record Obstetrix (Cerner). Data 

on patient characteristics and outcomes we collected from the 

electronic medical record system Melior (Cerner). 
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DEFINITION OF A PATHOGENIC ORGANISM 

GBS was the only organism included in papers I and IV. Invasive 

isolates were identified as GBS by colony morphology, microscopy of 

Gram-stained smears, and co-agglutination with group-specific 

reagents.  

In papers II and III, organisms were defined either as a recognized 

pathogen or, if less clear clinical significance, as commensal species, 

table 1. The occurrence of recognized pathogens was, in all cases, 

regarded as the cause of infection. Species regarded as commensal were 

considered the cause of infection if both of the following criteria were 

fulfilled; otherwise, they were excluded from the studies:  

1. At least one of the following signs and symptoms as a 

change from baseline: (1) Apnea, (2) Bradycardia, (3) 

Temperature <36.5° or >38°C. 

2. Appropriate antibiotics were intended for >120 hours, and a 

central catheter in place within 72 (paper II) and 48 (paper III) 

hours before the culture was drawn. 

 

 Recognized pathogens and species of less clear clinical 
significance. 

*Was considered a recognized pathogen in the EO study (Paper II). 
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SEROTYPING OF GBS 

The isolates were stored in a broth at -70°C until serotyping was 

performed. The latex agglutination test with type-specific antisera for 

serotypes Ia, Ib, II, III, IV, V, VI, VII, VIII, and IX was used for 

serotyping (Statens Serum Institut, Copenhagen, Denmark) as 

previously described (210). 
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CHARACTERISTICS TESTS OF GBS 

The wild-type GBS strain COH1, a clinical isolate obtained from an 

infected newborn, is a capsular serotype III, hypervirulent ST-17 clone 

(211), and the hyper-pigmented GBS strain NCTC 10/84 (212) were 

used as controls in the characteristics tests of GBS as described below.  

 

CAMP-FACTOR 

First, S. aureus was streaked vertically down the agar plate. Then a single 

GBS colony was streaked horizontally near S. aureus. The plate was then 

incubated for 24 hours at 37°C, and the triangular hemolysis graded 

from 0 - ++++ and photographed for second grading. 

 

 Control 

picture. On the left of 

the plates is GBS 

COH-1 replicated 3 

times. This is 

equivalent to +++ for 

CAMP factor. On the 

right of the plate is 

NCTC 10/84. This is 

equivalent to 0 for 

CAMP factor.  
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ΒETA-HEMOLYSIS  

A single GBS colony was streaked in alternating directions on sheep 

blood agar and incubated for 24 hours at 37°C. Hemolysis was 

determined between 0 and +++ according to control, as is shown in 

figure 9. 

  On the right of the plate is NCTC 10/84. This is equivalent to +++ for 

hemolysis, and on the left of the plate is GBS COH-1 which is equivalent to ++ 

for hemolysis. The same plate but 24 hours later in the picture on the right. 

GRANADA 

 A single GBS colony was streaked on Granada media and incubated 

for 24 hours at 37°C. Pigment production was evaluated on a scale of  

0 to ++++ in comparison with control, according to figure 10. 

 On the left is GBS COH-1 WT on Granada, replicated four times. This 

is equivalent to +++ in terms of pigmentation and on the right is GBS NCTC 

10/84 equivalent to ++++ in terms of pigmentation. 
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COVR/COVS SEQUENCING 

For each of the 284 GBS isolates, the entire covR/S region was 

amplified. Amplified samples were confirmed by gel electrophoresis 

and then column purified with a Genejet PCR purification kit 

(Thermofisher Scientific, Waltham, MA, USA) and prepared for Sanger 

Sequencing according to Genewiz recommendations 

(https://www.genewiz.com). Samples were diluted and mixed with 

seven different primers that anneal to multiple locations in covR/S. The 

sequences returned by Genewiz overlapped and encapsulated the entire 

covR/S region. Codon location and changes were recorded for non-

synonymous mutations in covR/S for each isolate. 

For further details, see the methods section in manuscript IV.  

 

HYALURONIDASE EXPRESSION 

GBS strains were centrifuged to cultured supernatants after growing 

them overnight in tryptic soy broth. Hyaluronic acid was added to each 

GBS culture. Hyaluronidase (Sigma-Aldrich, Saint Louis, USA, 

https://www.sigmaaldrich.com) was used to make standards at 

different concentrations. Following incubation, sodium tetraborate was 

added to the samples and hyaluronidase standard and 4-

dimethylaminobenzaldehyde after further incubation. A color change to 

magenta was evaluated since that indicated hyaluronidase activity. 

Samples and standards were transferred to a 96-well plate to measure 

absorbance at 585 nm immediately following a color change. The GBS 

clinical wild-type strain GB37 (high activity) (213) and isogenic 

hyaluronidase deficient GB37ΔhylB (low activity) were used as positive 

and negative controls, respectively. For further details, see the methods 

section in manuscript IV. 
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STATISTICAL METHODS 

In all papers, the characteristics of the data were explored. Distribution 

patterns were tested for normality with the Kolmogorov-Smirnov test. 

Demographic data were presented as mean with 95% confidence 

interval (CI), standard deviation (SD), or standard error (SE) when 

normally distributed and median with interquartile range (IQR) if 

otherwise.  

In papers II and III, incidences were estimated as the number of 

infected infants overall or by subgroup, divided by the total number of 

live births within the population or the total number of live births 

reported for the same subgroup. Reports on the number of live births 

were retrieved from Statistics Sweden (www.scb.se/en), and the 

number of live births according to gestational age within the study 

population was retrieved from the Swedish Medical Birth 

Register/Medicinska födelseregistret (MFR) (www.socialstyrelsen.se) 

for study III. The data was retrieved according to the postal code of the 

maternal residence at the time of birth. Cases with missing or wrongly 

registered gestational age were included in calculations on overall 

incidence data but otherwise excluded. 

Independent sample t-tests were used for normally distributed data. 

Non-normally distributed data were compared using Mann Whitney U 

Test. Correlations between continuous outcomes were analyzed using 

the Spearman test. Fisher’s exact test (two-tailed) was used for 

comparisons of proportions (http://graphpad.com/quickcalcs/ 

contingency1.cfm and https://www.socscistatistics.com/tests/fisher/ 

default2. aspx).  

For papers I, II, and III, statistical analyses were also performed using 

IBM SPSS Statistics version 25.0 and 26.0 (IBM corporation, Armonk, 

NY, USA). For paper IV, statistical analyses were performed by Dr. Jeff 

Munson by programming in R. 

A p-value <.05 was considered significant in all papers.  

http://www.socialstyrelsen.se/
http://graphpad.com/quickcalcs/%20contingency1.cfm
http://graphpad.com/quickcalcs/%20contingency1.cfm
https://www.socscistatistics.com/tests/fisher/
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ETHICAL CONSIDERATIONS 

The concerned authorities approved all studies in this thesis. 

Paper I was approved by the Ethics Committees of Gothenburg 

University (Registration nr: Ö 524-03) and Lund University 

(Registration nr: LU 855-03). The committees did not require individual 

consent because the clinical data were obtained in retrospect when 

many patients and/or relatives could not be found. 

Paper II and III were retrospective studies spanning a significant time 

interval. Approval from each individual was not considered reasonable 

nor possible to obtain. It was approved by the Ethics Committees of 

Gothenburg University (Registration nr: Ö 020-03) and extended twice, 

once by the Ethics Committees of Gothenburg University (Registration 

nr: T760-16) and once by the Swedish Ethical Review Authority 

(Registration nr: EPM 2020-06340). 

Paper IV included GBS strains collected in previous studies between 

1988-2001 and strains collected for paper I with the approval from the 

Ethics Committees of the University of Gothenburg and Lund 

University. The committees did not require individual consent because 

the clinical data were all obtained in retrospect when many patients 

and/or relatives could not be found. The isolates were approved for 

shipping to the University of Washington and further study by The 

Swedish Ethical Review Authority on February 8, 2019, registration 

number EPM 2019-00549. Permit to Import Infectious Biological 

Agents was given from the Centers for Disease Control and Prevention 

(PHS Permit no. 20190529-3089A). GBS commensal isolates in the 

control group were collected without any identifiers or clinical 

information, and a waiver for written informed consent was obtained 

for testing anonymous samples. 

No identifiable data can be linked to any study subject in any of the 

studies. 
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RESULTS 

PAPER I 

“Serotypes of group B streptococci in western Sweden and comparison 

with serotypes in two previous studies starting from 1988” 

A total of 410 GBS strains were isolated from 398 patients. Ten patients 

had two infectious episodes, and one patient had three episodes with 

intervals between 10 and 25 months. All patients with recurrent 

infections were adults. A flowchart of the included isolates is shown in 

figure 11. 

 

 Flowchart of 410 serotyped isolates 



Neonatal invasive infections focused on GBS 

 

38 

 

NEONATES AND INFANTS 

Among the 91 isolates from neonates or infants, the median age was 

one day (0 - 209 days). Unfortunately, we could not recover documents 

on clinical manifestation from one neonate with EO, serotype Ia. The 

clinical manifestation of the 87 live-born neonates and infants is shown 

in table 2. 

 Clinical manifestations and onset among 87 infants and neonates 

Clinical manifestation Early-onset Late-onset No. (%) 

Sepsis of unknown focus 

Meningitis 

Pneumonia 

Skin infection 

Urosepsis 

Septic arthritis 

46 

5 

6 

0 

0 

0 

17 

7 

2 

2 

1 

1 

63 

12 

8 

2 

1 

1 

(72)  

(14) 

(9) 

(2) 

(1) 

(1) 

Total 57 30 87 (100) 

 

Of the 87 live born infants were 33 (38 %) born preterm. Twenty of the 

infants born preterm had EO disease, and 13 had LO disease. 

ADULTS 

There were 318 isolates from adults, and the records of one adult patient 

could not be found. The median age of the remaining 317 adults was 73 

years (23 – 103 years). Underlying medical conditions were documented 

in 259, with the most common being cardiovascular disease, 36% 

(114/317), diabetes, 25% (80/317), and malignant disease, 20% 

(62/317). Sepsis with unknown focus - with 29% (92/317) of the cases 

- was the most common clinical manifestations among the adults, 

followed by erysipelas 24% (75/317) and septic arthritis 16% (52/317). 
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SEROTYPE DISTRIBUTION 

The results of the serotype distribution of invasive GBS infections 

showed that it had not changed compared to previous studies in the 

same region (164, 167). Serotype III continued to be the most common 

serotype in isolates from neonates and infants (48% (44/92)), followed 

by serotypes Ia (18% (17/92) and V (16% (15/92). In adults, serotype 

V was still the most prevalent (39% (124/318), followed by III (19% 

(62/318) and Ib (14% (45/318). Serotype distribution according to 

clinical manifestation among infants (upper panel) and adults (lower 

panel) is shown in figure 12. 

 

 Percentage of serotype distribution according to the three most 

common clinical manifestations among neonates and infants (upper figure) and 

adults (lower figure).  
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PAPER II 

“Changes in incidence and etiology of early-onset neonatal infections 

1997-2017 – a retrospective cohort study in western Sweden” 

INCIDENCE AND ETIOLOGY OF EO-INFECTIONS 

The incidence of EO-invasive infections within the first week of life 

declined from 1.4 per 1000 live births in 1997 – 2007 to 0.9 per 1000 

live births in 2008 – 2017 (p=.004), but the case fatality rate at 7% did 

not differ during the study period, table 3. There was no difference in 

patients characteristics during the study period except the mean birth 

weight was lower (2376g (CI 2095-2658) in period II compared to 

period I, (2874g (CI 2663-3085)) (p=.004), which was in agreement with 

a higher proportion of extremely preterm infants, born <28 weeks 

gestation, among the patients with EO infection (25/90 in 2008-2017 

vs. 12/119 in 1997-2007, p=.002). 

 Incidence of EO invasive infections (per 1000 live births) and 
case fatality rate according to pathogen. 

*Enterococci, Listeria monocytogenes, pneumococci, beta-hemolytic streptococci group A and C, 
Actinomyces spp. **E. coli, Klebsiella pneumoniae, K. oxytoca, Proteus mirabilis, Serratia 

Marcescens, other Enterobacter spp. Pseudomonas spp., Hemophilus influenzae, Burkholderia 

cepacia, Neisseria meningitides, Bacteroides spp. 

The most common organism was GBS (84/209), causing 40% of the 

cases with an incidence of 0.45 per 1000 live births. None of the cases 

between 72 hours and one week of life was caused by GBS. 
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FATAL CASES OF EO INFECTIONS 

Among the 15 fatal cases, 13 were born before 37 weeks gestation, and 

62% (8/13) of them were born extremely preterm (<28 weeks 

gestation), figure 13. The case fatality rate of 7% did not change 

between 1997-2007 and 2008-2017 (8/119 vs. 7/90)  

 

 Fatal EO-cases according to pathogen and gestational age group.  
*E. coli (n=2), Klebsiella pneumoniae (n=2), Hemophilus influenzae (n=1), Proteus 

mirabilis (n=1) 
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PAPER III 

“Late-onset Neonatal Infections 1997 to 2017 within a cohort in western 

Sweden – the last 21 years of a 43-year surveillance” 

INCIDENCE AND ETIOLOGY OF LO-INFECTIONS 

The incidence of LO-infection between 3 and 120 days of age increased 

from 2.0 per 1000 live births in 1997–2007 to 3.1 per 1000 live births in 

2008-2017 (p<.001). The timing of LO infections according to 

gestational age is shown in figure 14, and the distribution of pathogens 

is shown in figure 15. 

 

 The timing of late-onset infections according to gestational age among 

469 infants with late-onset infection, 3-120 days of age during 1997-2017 (4 

cases with unknown gestational age are excluded). 
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 The incidence of LO-infections per 1000 live births stratified by 

organisms isolated from blood and/or cerebrospinal fluid from 473 infants 3-120 

days of age during 1997-2007 compared to 2008-2017.  
*p-value < .05. **Staphylococcus epidermidis, S. hominis, S. capitis. ***S. parasanguinis, 

S. anginosus, S. pneumoniae, Bacillus cereus, Rothia mucilaginosa, Beta-hemolytic 

streptococci group A. †Escheria Coli, Klebsiella pneumonia, K. oxytoca, Serratia 
marcescens other Enterobacter spp. ††Pseudomonas aeruginosa, Haemophilus influenzae 

type b, Acinetobacter spp, Moraxella spp, Stenotrophomonas maltophilia. †††S. aureus and 

enterococci (n=3), S. aureus and Acinetobacter (n=1), K. pneumoniae and enterococci (n=1), 
K. pneumoniae and Pseudomonas aeruginosa (n=1), K. pneumoniae, and E. coli (n=1). 

 

Term infants, among the infants with an infection after 28 days of age, 

were as many (66/176) as the infants born extremely preterm (66/176), 

figure 14, and the etiology differed between in- or out-of-hospital 

settings, table 4. 
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 Cultivated pathogen in LO-infections, 3-120 days of age during 
1997-2017, according to in-hospital settings and out-of-hospital settings.  

 

*Staphylococcus epidermidis, S. hominis, S. capitis **S. parasanguinis, S. anginosus, S. pneumoniae, 

Bacillus cereus, Rothia mucilaginosa, Beta-hemolytic streptococci group A. ***Escherichia coli, 

Klebsiella pneumonia, K. oxytoca, Serratia marcescens other Enterobacter spp. †Pseudomonas 
aeruginosa, Haemophilus influenzae type B, Acinetobacter spp, Moraxella spp, Stenotrophomonas 

maltophilia. ††S. aureus and Enterococcus (n=3), S. aureus and Acinetobacter (n=1), K. pneumoniae 

and Enterococcus (n=1), K. pneumoniae and Pseudomonas aeruginosa (n=1), K. pneumoniae, and E. 

coli (n=1). 
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FATAL CASES OF LO INFECTIONS 

The case fatality rate at 6% (29/473) did not differ during the study 

period, and the fatal cases according to pathogen and gestational age are 

shown in figure 16.  

Enterobacteriaceae (13/29) were the most common pathogens cultivated 

from fatal LO infections. Five fatal cases had a positive culture with 

CoNS.  

 

 Fatal LO – cases during the study period 1997-2017 according to 

pathogen and gestational age group.  
*Klebsiella pneumonia (n=4), Serratia marcescens (n=3), K. oxytoca (n=2), Escherichia 

coli (n=1), other Enterobacter spp. (n=3). **E. coli + K. pneumoniae (n=1). 
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NEONATAL INFECTIONS <28 DAYS OF LIFE 

BETWEEN 1975 AND 2017 

The incidence of neonatal sepsis <28 days of life (CoNS and viridans 

streptococci not included) decreased from 3.2 per 1000 live births 

during 1975-1996 to 2.1 per 1000 live births in 1997-2017 (p<.001), and 

the case fatality rate dimidiated from 12% (64/540) to 6% (23/380) 

during the same period, (p=.003). The incidence of invasive infections 

due to GBS, S. aureus, and Enterobacteriaceae <28 days of life between 

1975 and 2017, both years included, is shown in figure 17. 

 

 Incidence per 1000 live births of GBS, S. aureus, and 

Enterobacteriaceae during the first 28 days of life between 1975 and 2017.  

*Escherichia coli, Klebsiella pneumoniae, K oxytoca, other Enterobacter spp., Salmonella, 

Serratia marcescens, Proteus mirabilis 
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A total of 11% (97/920) had culture-confirmed meningitis among the 

invasive infections <28 days of life. The case fatality rate was 7% (7/97). 

The most common pathogens cultivated from CSF were GBS (34% 

(33/97)) and Enterobacteriaceae (36% (35/97)). The incidence of EO 

meningitis was lower (0.03 per 1000 live births) in 2008-2017 compared 

to 1975-1996 (0.16 per 1000 live births, p<.001) and LO meningitis (3-

27 days of age) the incidence went from 0.3 to 0.1 per 1000 live births 

(p<.001). 
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PAPER IV 

“Virulence Factors of Invasive Group B Streptococcus Isolates 
Obtained from Swedish Pregnant Women and Neonates” 

A total of 233 invasive GBS isolates were identified and compared to 

51 commensal isolates, figure 18. 

 

 GBS isolates included in the study and their site of origin. 
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 The percentage of scoring of hemolytic pigment expression between 0 

and 4 on Granada media for the 233 invasive isolates (red) and the 51 

commensal isolates (blue). 

The mean scoring of hemolytic pigment expression on Granada media 

was significantly higher for the invasive isolates (2.4 ± 0.1 SE) compared 

to commensal isolates (1.4 ± 0.1 SE), p<.001, figure 19. No difference 

was noted for the EO isolates compared to the LO isolates, figure 20. 

 The percentage of scoring of hemolytic pigment expression between 0 

and 4 on Granada media for the 160 EO-invasive GBS isolates (4 cases of IUFD 

included) (lighter red) and the 54 LO-invasive GBS isolates (darker red). 



Neonatal invasive infections focused on GBS 

 

50 

 

  
D

IS
C

U
S
S
IO

N
 



Neonatal invasive infections focused on GBS 

 

51 

 

DISCUSSION 

The studies presented in this thesis have advanced our knowledge of 

neonatal infections with a focus on GBS.  

We found that there had not been any significant changes in the 

serotype distribution of invasive GBS infections compared to previous 

studies (164, 167). This is promising regarding a GBS vaccine since a 

successful CPS vaccine has to target the most common GBS serotypes.  

We made observations on changes in incidence, etiology, and short-

time prognosis over a long follow-up period of 43 years. We found that 

the incidence of EO invasive infections had decreased despite a 

proportional rise of extremely preterm infants. However, the incidence 

of LO invasive infections up to 120 days of age increased during the last 

ten years, especially among neonates born extremely preterm.  

Infections after 72 hours are more likely acquired horizontally than 

vertically transmitted by exposure at birth, and that applies to GBS as 

well since all GBS infections <7 days in our study occurred within 72 

hours.  

We did not find that the incidence of EO GBS had decreased 

significantly after the implementation of IAP.  

In studies on the virulence of GBS isolates, we found that the invasive 

isolates had more significant hemolytic potential compared to 

commensal isolates.  
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INCIDENCE OF INVASIVE NEONATAL 

INFECTIONS   

During the study period 1997-2017, there were 181 928 live births 

within the study population, and 6% (10 221/181 928) were born 

preterm before gestational week 37. During the study period, infants 

born extremely preterm rose from 0.24% (208/85331) to 0.33% 

(317/96544). There was no change regarding infants born after 28 

weeks gestation. 

 

One of the limitations in papers II and III is the observational design 

and the inability to determine causality. We can only speculate on 

possible reasons for changes in incidence since the risk of bias is high 

(214). In addition, the study population was observed over 43 years, and 

therefore, many unknown factors may have contributed to possible 

differences.  

Laboratory criteria were not included as criteria for neonatal sepsis in 

our studies. The treating physician has evaluated it as a true infection 

using the intention to treat with antibiotics >120 hours or five days as 

a criterion. Not surprisingly, after reviewing the cases, most of them had 

positive biomarkers like elevated CRP or IL-6, which are widely used as 

a screening tool for infection and symptoms in the clinical setting. Few 

or none of the cases would have been excluded if we also would have 

included laboratory criteria for a pathogenic infection depending on the 

biomarkers cut-off point. 

The intention to treat for more than four days of antibiotics is a 

common criterion for the diagnosis of neonatal sepsis and, in some 

studies, regardless of the pathogen (24, 61-63). Thus, even though we 

only included this criterion regarding organisms that might otherwise 

be regarded as contaminants, it is unlikely that we have over-evaluated 

the incidence of recognized pathogens since these infections would 

seldom be treated for less than five days. 
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We did not exclude polymicrobial cultures in papers II and III. 

However, we evaluated every case, and cases fulfilling the inclusion 

criteria were presented as mixed-infections since more than one 

organism can cause clinical symptoms concurrently (24, 215). None of 

the mixed-infections included in our studies was caused by organisms 

that might otherwise be regarded as a contaminant.  

Bacteroides spp. were considered a recognized pathogen in the EO study 

(paper II), in which there were only two cases. Both were cultivated 

within 24 hours of birth, and they had symptoms of an infection with 

elevated CRP. However, in paper III on LO infections, they were 

considered as possible commensal bacteria.  

To keep consistency in the calculations on the incidence of neonatal 

infections <28 days of life from 1975 and onwards, CoNS and viridans 

streptococci were excluded in comparing the different study periods 

covering 1975-2017. Over the 43 years, there were 19 cases of EO 

meningitis (<72 hours), and 63% were due to GBS 12/19. The 

incidence among preterm infants was 0.2 per 1000 live births compared 

to 0.05 among the overall birth population. That the incidence of EO 

meningitis is higher among preterm infants agrees with other studies 

reporting 0.7 cases per 1000 live births at 22–28 weeks’ gestation (216) 

and 0.02–0.04 cases per 1000 live births within the overall birth 

population (75, 83). Although infants with culture-confirmed meningitis 

often have blood cultures yielding the same organism, the concordance 

is not 100%, and CSF cell count parameters may not always identify 

meningitis (80). 

PCR is more often relied upon in the clinical setting to rule out 

meningitis since an LP is often postponed until the patient has received 

antibiotics and is clinically stable enough for the procedure (39). Since 

our studies only included pathogens yielded by culture, the incidence of 

neonatal meningitis is most likely undervalued. 
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FATAL INFECTIONS 

In our studies, the case fatality rate of neonatal sepsis was 7% (15/209) 

within the first week of life and 6% (29/473) for LO - infections after 

72 hours of life. The overall case fatality rate for neonates with invasive 

infection within the first 120 days of life between 1997 and 2017 was 

6.7% (42/626), and 32 of the 42 fatal cases (76%) were born preterm. 

This agrees with other studies reporting an overall case fatality rate of 

5-10% (66, 83, 217).  

Among extremely preterm infants, neonatal sepsis remains a major 

cause of death. Other studies have reported a 25-29% case fatality rate 

for preterm neonates with an EO infection and 18% with LO infections 

(14, 63, 218). Case fatality rate differs between studies, especially if the 

incidence of “low-mortality” pathogens like CoNS is high (219). Gram-

negative sepsis is associated with a more fulminant course with septic 

shock that may result in death within 48 hours (63, 220-224). A recent 

Swedish study reported a 15% case fatality rate in EO Gram-negative 

infections, with the definition of EO being within 72 hours of life and 

more than doubled (34%) for LO Gram-negative infections (225). The 

case fatality rate in EO Gram-negative infections agrees with 13% 

(6/47) in our EO study, including infants within the first week of life. 

However, the case fatality rate among LO Gram-negative infections was 

much lower or 10% (14/138) (mixed infections not included). This 

discrepancy could be explained by our study being population-based, 

including all infants up to 120 days of age, whereas their study included 

only infants within a neonatal unit. A cohort that included neonates of 

all birth weights and gestational ages with LO sepsis had a frequency of 

fatal cases with Pseudomonas spp 56%, E. coli 19%, Enterobacter spp 14%, 

Klebsiella spp 13%, S. aureus 6%, and CoNS 1% (220). Our studies 

between 1997 and 2017 showed that 40% (17/42) of the fatal cases 

among neonates and infants before 120 days of age were due to Gram-

negative infections.  

Five of the 42 fatal cases among neonates and infants 0-120 days of age 

had a positive culture with CoNS. They were either born preterm 
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or/and had an underlying condition with more than one culture yielding 

CoNS and elevated biomarkers.  

Neonatal invasive infection is a risk factor for long-term sequelae, 

especially for infants born extremely preterm, either by direct infection 

of the central nervous system (CNS) or indirectly due to inflammation, 

leading to cerebral palsy and vision impairment (226-228).  

In our studies between 1997 and 2017, 62% (52/84) of EO GBS 

infections were born at term, and the case fatality rate was 8% (7/84) 

but all seven fatal cases were among preterm neonates. The case fatality 

rate among preterm infants was 22% (7/32), which agrees with other 

reports that the mortality is around 20-30 % in preterm infants and 1-

3% in term infants (72, 229, 230). None of the 46 LO GBS infections 

was fatal, but half of the cases were infants born prematurely (22/44, 

two had missing data on gestational age). This agrees with other studies 

showing that preterm infants are more susceptible to LO GBS 

infection, and the rise in survival of preterm infants might explain the 

increase in incidence (72, 118, 163).  

EARLY-ONSET INVASIVE INFECTIONS 

Results from paper II showed that the incidence of EO infections 

significantly declined from 1.4 in 1997-2007 to 0.9 per 1000 live births 

in 2008-2017. Studies on EO sepsis (<72 hours) from the US have 

shown a similar incidence; A study from the San Francisco Bay area in 

California, representing ~ 5% of US live births between 2005 and 2014, 

reported an incidence of approximately 0.8 per 1000 live births (83). In 

a study from Stoll et al. covering the years 2015-2017 (12), the incidence 

was 1.08 per 1000 live births, and E. coli had succeeded GBS and was 

the most frequent pathogen in 37% of the cases. A report from the 

German Neonatal Network on VLBW infants E. coli was the most 

common pathogen in 35% of EO cases, and surprisingly CoNS was 

described as a pathogen in 24% of cases and GBS in 16% (231). 

Bizzarro et al. also reported E. coli as the most common cause of 

invasive EO-sepsis between 2004 and 2013 (19). A reason for E. coli 
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being more frequent than GBS might be that IAP has had more impact 

on reducing EO GBS infections among term neonates and E. coli 

infections are more common among preterm neonates (75, 83, 232). 

Other reports show the same as ours that GBS is still more common 

than E. coli (83, 233, 234). A Norwegian study found that E. coli was 

more common than GBS among neonates born extremely preterm, but 

for all neonates, GBS was the most common (235). 

Our study on EO infections showed that most EO infections, including 

GBS, were within the first 48 h of life. No infection due to GBS within 

the first week of life occurred after 72 hours so we chose to have the 

LO cut-off point after 72 hours, even for GBS.  

INTRAPARTUM ANTIBIOTIC PROPHYLAXIS 

As previously mentioned, IAP based on screening seems to impact EO 

GBS infections more than IAP based on risk factors. The incidence of 

EO GBS at 0.45 per 1000 live births in our study was higher than in 

studies where screening has been implemented (12, 83). 

Universal screening for GBS in pregnant women is performed in the 

United States, Canada, and many European countries like France, Italy, 

Germany, Spain, and Belgium (143, 236, 237). However, the United 

Kingdom, Ireland, the Netherlands, and all Nordic countries – except 

for Finland that screens for GBS with PCR at time of delivery (238) - 

still recommend risk-based IAP (153, 239-241).  

Seedat et al. from the United Kingdom argued in a study published in 

2019 that universal screening cannot be recommended as it may cause 

more harm than good (239). They pointed out that maternal culture 

does not accurately predict EO GBS in the neonate and that 99.8% of 

cases with positive screening would get unnecessary IAP. Excessive 

IAP may have adverse effects, like possible maternal anaphylaxis and an 

effect on the neonatal microbiota. The risk of maternal anaphylaxis and 

adverse effect of possible unnecessary IAP exists as well for risk-based 

strategy. Mothers may benefit from IAP as GBS colonized women who 
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receive IAP have a lower risk of chorioamnionitis and wound infection 

than non-colonized parturients (124).  

A major argument for not starting screening is that more women would 

get unnecessary IAP. In Sweden, that would mean that 30% of pregnant 

women would receive IAP instead of 20% with one or more risk factors 

(112). However, since neonates born to non-colonized women with one 

risk factor seldom get EO GBS disease, the risk for unnecessary IAP is 

high (20). A retrospective study on introducing a <2 hours GBS PCR 

test on intrapartum mothers with risk factors and only offering IAP to 

the women with a positive test has shown to reduce the use of 

antibiotics by 40% without seeing an increase of EO GBS infections 

(242).  

The quick real-time PCR assays for GBS are promising with high 

sensitivity and specificity (243). They provide information on GBS 

colonization status when needed (not several weeks prior) but are more 

expensive than IAP (244).  

A systematic review and meta-analysis from 2020 by Hasperhoven et al. 

reported that IAP based on screening had a more significant impact on 

reducing EO GBS compared to risk-based strategy (relative risk (RR) 

0.43 (95% CI 0.32-0.56)) (153). There was no significant reduction when 

comparing risk-based strategy vs. no strategy at all (RR 0.86 (95% CI 

0.61-1.2)). No randomized controlled study was included in the review.  

There was not a significant reduction after the implementation of risk-

based IAP in our study. However, a significant bias in our and other 

observational studies is the timing of when IAP started. ACOG 

recommended IAP to prevent GBS disease in 1996 (21). Thus, there is 

a possibility that mothers with one or several risk factors received IAP 

from the attending physician before the publication of the Swedish 

guidelines in 2008 (141). In our unit, the Swedish guidelines were not 

formally implemented until 2011.  



Neonatal invasive infections focused on GBS 

 

58 

 

A randomized multi-center trial aiming to compare screening with the 

United Kingdom’s current risk-based approach is ongoing. At least 

320 000 women from 80 hospitals around the UK will be included in 

the GBS3 trial, https://www.gbs3trial.ac.uk/home.aspx (accessed 17th 

of May 2021). The trial will also compare screening with the quick real-

time PCR assays for GBS. We wait with anticipation on the first results 

from this randomized trial which will hopefully provide additional 

guidelines in the debate whether universal screening for GBS saves 

more lives, and if so, what kind of screening would be most cost-

effective. 

IAP is missed in both strategies, and most of the neonates with EO 

GBS infection were born to GBS colonized mothers (21). The essential 

in this discussion regarding screening or risk-based strategy has to be 

that IAP should be given to the ones that benefit it the most.  
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LATE-ONSET INVASIVE INFECTIONS 

The study in this thesis includes infants with LO-infections from an 

out-of-hospital setting as well as VLBW infants within a NICU since it 

is population-based and includes all infants at the age of 3-120 days.  

The etiology for LO infections differs according to settings. In our 

study, Gram-negative bacteria were the most common pathogens 

cultivated from infants in an out-of-hospital setting. Within the neonatal 

department, the majority of infections were either due to S. aureus or 

CoNS.  

The physical environment, health care workers, and parents may be 

reservoirs for S. aureus transmission within a NICU and after 

methicillin-resistant S. aureus (MRSA) emerged and spread across the 

globe in the 1990s, infection control policies like surveillance, isolation 

procedures, and decolonization strategies have been developed in an 

attempt to contain its spread (245). However, neonates are vulnerable 

due to the establishment of their microbiota, and routine chlorhexidine 

bathing is contraindicated due to the potential neurotoxicity from 

hexachlorophene (246). Studies have shown that transmission decreases 

by decolonizing parents and healthcare workers (247, 248). However, 

eradication seems challenging. Despite aggressive measures, 

transmission and subsequent infections still occur both for MRSA and 

methicillin-sensitive S. aureus (MSSA), and screening for both is 

becoming increasingly important within the NICU (245, 249). 

Preterm neonates are at increased risk of LO infections because of 

multiple risk factors directly linked to each other. Due to maternal or 

fetal distress, the birth choice is often cesarean section, which affects 

the neonatal microbiota, leading to dysbiosis and a reservoir for LO 

sepsis with pathogens transmitting across the epithelial barrier (101, 

250). Since the neonates have low birth weight and might even be 

growth restricted, they need parenteral nutrition through intravascular 

lines increasing the risk for infections due to staphylococci spp. 

Episodes with inflammation where sepsis cannot be ruled out lead to 
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antibiotic treatments affecting the establishment of the microbiota 

further. Not to mention the immature immune system of the preterm 

neonates to battle these risk factors.  

Other studies agree with our finding that the incidence of LO infections 

has increased and a likely reason for this is that prematurity is a major 

risk factor for LO infection and the preterm neonates have increased 

survival rates.  

We know that neonates and especially the ones born most preterm and 

VLBW infants with culture-proven invasive infection have an increased 

risk for various complications and diseases like retinopathy of 

prematurity, patent ductus arteriosus, necrotizing enterocolitis (NEC), 

IVH, bronchopulmonary dysplasia (BPD), and death (14, 17, 231, 251, 

252). This is why caregivers often have a low threshold for treatment 

for possible infection in neonates and infants, leading to overtreatment 

with antibiotics and many cases of "culture-negative sepsis".  

"CULTURE-NEGATIVE" INFECTIONS 

Decreased incidence of EO GBS after IAP may be due to low likelihood 

of positive culture because of maternal antibiotics since most studies 

only include infections confirmed by culture. Seedat et al. speculate that 

this could explain the reduction in incidence between screening and 

risk-based IAP strategy without affecting the true incidence since 

neonatal sepsis mortality is no different (239). This speculation would 

mean that the incidence of culture-negative sepsis has increased after 

IAP implementation and that the incidence would be higher in the 

settings where screening is preferred over a risk-based strategy.  

Studies have shown that empirical antibiotic treatment for very preterm 

infants is associated with increased rates of NEC, BPD, and death (216, 

253-257). However, the sickest infants get the most antibiotics and have 

the highest risk for complications. 
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Even shorter periods (less than three days) with antibiotics affect the 

microbiota with decreased levels of intestinal bifidobacteria and this 

imbalance in gut microbiota, so-called dysbiosis, which may modulate 

vascular development and reduce immunity (258-260). Association has 

also been shown between antibiotics in infancy and health problems as 

asthma and obesity later in childhood (261, 262). Mode of delivery, type 

of feeding, and gestational age affect the microbiota as well (258).  

The mothers of neonates with EO infection have a high rate of 

chorioamnionitis, but only a small portion of the neonates of mothers 

with chorioamnionitis develop an infection. A review estimated that 

around 450 neonates exposed to chorioamnionitis would have to be 

treated per case of confirmed EO-sepsis (85). Serial physical 

examinations within the first three days of life in term neonates with 

suspected EOS or exposed to maternal chorioamnionitis have been 

shown to reduce the burden of antibiotic exposure without delay of 

treatment or change in the outcome of infected neonates (263). 

Inflammatory markers as CRP, PCT, and IL-6 increase in response to 

infection and other inflammatory stimuli as asphyxia, pneumothorax, 

and naturally after birth (47, 264). Invasive infection is unlikely if these 

values are consistently normal, but serial abnormal values should not be 

used to extend the antibiotic therapy in the absence of a positive culture 

(39). A German study from 1997 described that it was safe to stop 

antibiotics when CRP was <10 mg/L 24-48 hours after starting 

antibiotics for EO-infections within the first week of life (265). Infants 

with elevated CRP were called “probably infected,” and antibiotic 

treatment continued until CRP normalized or completed at least five 

days of treatment. This study stated that this would shorten the days on 

antibiotics and became quite influential despite not reporting any 

clinical features. A randomized controlled intervention study performed 

in 18 hospitals in four countries reported that PCT-guided decision 

making was superior to standard care in reducing the antibiotic therapy 

in EO-sepsis <72 hours of age (266). In the study, discontinuation of 

antibiotic treatment was not recommended despite negative cultivation 
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if the following three factors existed; risk factors, clinical signs, and 

abnormal routine laboratory values, which meant at least seven days of 

antibiotics. The intervention was only in the group where infection was 

possible (2 of 3) or unlikely (<2) then antibiotic therapy could be 

stopped after at least 24 hours if two consecutive PCT values were 

within range (taken after 12 h, 24 h, 36 h and repeated every 24-48 h 

>72 h). Cessation of antibiotics for EOS guided by CRP and clinical 

symptoms has also been shown to reduce the duration of antibiotics 

(267). However, other studies have shown that it is safe to stop 

antibiotics after 48-72 hours if blood cultures are negative in a clinically 

well neonate without considering biomarkers (268, 269).  

Three days of antibiotics – which is often practiced in the wait for a 

negative culture - might be enough in those cases when the bacterial 

load is so low that it is not captured in a blood culture. This can probably 

be shortened further to 36-48 hours of treatment if the neonate has 

improved since most cultures are positive within this time, thereby 

shortening the days with antibiotics further (270). Saturation screening 

has increased the detection of sepsis and could be of benefit if included 

in the Neonatal EO-Sepsis calculator along with other clinical 

presentation and possible risk factors (55, 271).  

Culture-negative sepsis is impossible to compare between studies in lack 

of a proper definition of neonatal sepsis. The challenge with research 

on neonatal sepsis is multivariate; the gold standard of a positive culture 

does not mean that there is an infection, and the lack of a pathogen 

from a culture does not rule out an infection either.  

The studies this thesis is based upon do not include suspected infections 

with negative cultures, but culture-negative sepsis is not an uncommon 

diagnosis in neonatal practice. Venipuncture of an infant can be 

demanding. You need to capture the pathogen in a small amount of 

blood, and the sensitivity of blood cultures is linked to the amount 

inoculated. Schelonka et al. found that as many as 60% would be falsely 

negative if only 0.5 ml would be sampled in low-colony-count sepsis, 

and obtaining 1-2 ml of blood for cultivation would improve the blood 
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culture yield in neonates (40). Another study by Kellogg et al. found that 

low-level bacteremia was common in neonates and infants up to 2 

months of age and that up to 6 ml of blood (up to 4.5% of an infant's 

total blood volume!) was required for the detection of pathogens (272). 

However, quantitative blood culture studies have shown that neonates 

have high levels of bacteremia (273). The level of CoNS has shown 

correlations with whether it is a clinically significant infection or not as 

low-level bacteremia is often, but not always, clinically assessed as 

contaminants (99, 274-276). It is in the guidelines to achieve at least 1 

ml of blood for culture at our neonatal unit, but we did not control or 

measure the amount of blood inoculated in our studies. 

Viral infections and especially respiratory viruses were detected in 4% 

of suspected LO infections (277). In the same study, 11% of suspected 

LO-sepsis had blood culture-proven bacterial infection leaving 85% of 

suspected LO-sepsis at risk for evaluation as “culture-negative 

infection”. The biggest problem with culture-negative sepsis is that 

studies have shown that more antibiotics are used (as much as 10-fold) 

when the culture is negative compared to sepsis verified by culture (13, 

278). Culture-negative sepsis is most likely not sepsis. However, it might 

still be an infection, but without bacteremia such as pneumonia. Hence, 

it is essential to look for other signs of infection and evaluate the infant's 

clinical status before discontinuing the antibiotic treatment.  

In our studies, we did not differ between the kind of central catheter in 

use at the time of infection. Studies have not found any significant 

differences in the incidence of nosocomial infections regarding the 

central catheter type. However, studies have shown that the longer they 

are in use, the increased risk of LO-sepsis (279-282). 

Studies that have had success in decreasing the incidence of LO-

infections have mostly been done by quality improvements with 

"bundles of care". Therefore, it is harder to pinpoint precisely what 

improvements make the difference (19, 283-286). Perhaps it is this kind 

of "bundles" that make the difference – "a chain is no stronger than its 

weakest link" (Thomas Reid 1786)…  
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GROUP B STREPTOCOCCI 

The main aim of paper I was to survey the serotype distribution of 

invasive GBS infections and compare the results with previous studies 

to detect any changes over time. The first case of serotype V in our 

region appeared in 1993 in the study of Berg et al. and became the most 

common serotype among adults (42%, 47/111) in the study of Persson 

et al. Since then; there have not been any significant changes in the 

serotype distribution of invasive GBS infections within our study 

population. We serotyped fourteen isolates as serotype VII-IX in our 

study, and none was non-typeable. There were five non-typeable 

isolates in the previous studies, and none was serotyped above V (164, 

167). Improved methods on serotyping with the GBS latex test 

published in 2003 (210) and the identification of serotype IX in 2007 

(161) might explain the emergence of isolates VII-IX and that none of 

the isolates in our study was non-typeable. 

In a study from the United States, serotypes Ib, II, and IV accounted 

for 75% of the increase in incidence between 2008 and 2016 (119). It 

has been speculated that these serotypes, along with an increase in the 

prevalence of underlying diseases as obesity and diabetes, might explain 

the increasing incidence of invasive GBS infections among non-

pregnant adults (119, 122). We cannot speculate on changes in incidence 

since our study was not population-based. However, we did not observe 

a higher prevalence of these serotypes among adults with an invasive 

GBS infection than in previous studies (164, 167).  
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VIRULENCE OF GBS 

One of the study's strengths in paper IV includes the repository of >200 

GBS invasive isolates with corresponding clinical outcomes. The study 

provides the ability to test many virulence factors that would easily be 

replicable with standard laboratory techniques. We showed that the 

invasive isolates were more pigmented compared to the commensal 

isolates. We need to verify these results with quantitative hemolytic titer 

assays. Studies have demonstrated that the hemolytic pigment has a role 

in colonization, fetal damage (179, 181), and various clinical 

manifestations (176, 287) and that it is vital for the survival of GBS in 

the human host. This makes the pigment an exciting target for testing 

clinical relevance for IAP and a target for future vaccine development.  

The CAMP factor is not considered an essential virulence factor in 

humans, and the in vivo significance of hemolysis only when red blood 

cells have been pre-sensitized to staphylococcus hemolysin is unknown 

(171). It is, however, thought to promote intracellular survival and 

systemic dissemination into host cells (170), and in our study, the mean 

CAMP activity was higher among the invasive isolates compared to the 

commensals 

The majority or 62% (52/84) of EO GBS cases occurred within 24 

hours, which agrees with other studies that most EO GBS cases occur 

in utero by ascending GBS (83, 115, 288). It is known that cervical viral 

infection (289) and lower cervical hyaluronic acid levels (188) 

predispose to ascending bacterial infection, and studies suggest that 

hyaluronidase plays a vital role in ascending GBS infection. Both by 

reducing anti-bacterial inflammation in uterine tissue as well as by 

dissemination and immune evasion (191, 192, 290). GBS with high 

hyaluronidase enzyme activity appears to be able to disseminate into 

deeper tissues such as fetal tissues that may result in IUFD or preterm 

birth (192).  

In our study, the immune suppression achieved by increased 

hyaluronidase might promote virulence since known invasive strains 
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had higher levels of hyaluronidase enzyme activity than commensal 

strains. Further studies need to clarify its clinical relevance. If this would 

be the case, it might be of great benefit to evaluate HylB activity to 

identify the strains at high risk for invasive infection.   

It is not only the infection itself that may be damaging. The host 

inflammatory response causes a big part of the CNS injury in cases of 

GBS meningitis. A study on mice showed that the pigment beta-

hemolysin caused a part of the neuronal damage in GBS meningitis by 

neutrophil recruitment with chemokines and cerebral blood flow 

disturbances, and this pigment is believed to be crucial to GBS 

manifestation in the CNS (174). 

Colonization with GBS can be transient (291), and its density can vary 

(292). Around 18-20% of pregnant women are transiently colonized 

with GBS with regional variations from 11% in Asia to 35% in African 

countries (112-114, 124). The variable colonization rates may be due to 

means of diagnosing GBS, cultivation vs. PCR-based methods but a 

systematic review and meta-analysis showed that the prevalence of 

colonized women and the serotype distribution vary, even after 

adjusting for laboratory methods (114). Previous GBS colonization, 

obesity, diabetes, and tobacco use are known risk factors for 

colonization (8, 116, 117). Studies have shown that relatively few clonal 

types cause a significant portion of invasive infection in humans (293, 

294). Identification of these strains might lead to better prevention.  

Since GBS colonization varies globally, relevant prevention efforts 

should be applied accordingly, as interventions need to have minimal 

detrimental effects on the microbiome and a low number needed to 

treat. The screening program likely misses a significant portion of 

colonization during pregnancy as ascending infection may occur at any 

time during pregnancy leading potentially to preterm birth or IUFD. 

IAP does not help in these situations nor with LO infections.  

A GBS vaccine has been on the horizon for many years and has proven 

to be challenging. GBS vaccine has not had the shortcut as covid-19–
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vaccines, and there is a reluctance to include pregnant women in 

vaccination research due to fear of large lawsuits in case of adverse 

events and since invasive GBS disease is that uncommon massive trials 

are needed to demonstrate efficacy (295). Anti-vax movements with a 

reluctance or refusal to be vaccinated are a growing problem worldwide. 

The World Health Organization (WHO) lists vaccine hesitancy as one 

of the top 10 risks to global public health (https://www.who.int/news-

room/spotlight/ten-threats-to-global-health-in-2019, accessed 6th of 

April 2021). So challenges will exist even after a successful 

implementation of a vaccine.  

https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
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LIMITATIONS 

Some of the limitations of the studies have already been discussed to 

some extent in this thesis. One of the most important limitations is the 

observational design of the studies in papers II and III, making it 

impossible to conclude cause and effect. We can only speculate on 

possible causality regarding significant changes. In paper I, we 

compared the distribution of serotypes with previous studies, and we 

compared the last ten years with 11 years prior and previous studies in 

papers II and III. These historical controls lead to bias due to 

healthcare- and methodological improvements over time.  

We did not define neonatal sepsis as occurring only within the first 28 

days of life, as is the classical definition, which may affect the 

comparison with other studies. The reason for this is that we wanted to 

include the time of care that infants born extremely preterm have within 

a neonatal unit. For example, an infant born at 23 weeks of gestation is 

not ready for discharge four weeks later and may still need interventions 

at 27 weeks of gestational age, putting the infant at risk for infections. 

That is why we assess that later onset of infections should be added to 

the total burden of neonatal infections. However, since we did a 

population-based study including infants up to 120 days of age, we 

included healthy neonates with a community-acquired infection later on 

in life and infants with a nosocomial infection within a NICU. This 

heterogeneity limits the study's comparability in paper III with other 

studies that include only LO cases within a NICU. 

Unfortunately, the commensal isolates used for control in paper IV 

were neither contemporary nor obtained from the same country as the 

invasive isolates. Since screening is not performed in Sweden, the 

controls were obtained from a universal screening of pregnant women 

in Washington State. The unequal sample size might have influenced 

the difference in the outcome of virulence factors, and some 

commensal strains were possibly invasive that could have led to an 

invasive infection. We had no information on the control group's 
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clinical outcome since the isolates were obtained anonymously, and if 

we had, the outcome would possibly be affected by IAP.  

Finally, all studies in this thesis include invasive isolates collected in 

western Sweden, affecting the studies' generalizability.  

SIGNIFICANCE AND CLINICAL RELEVANCE 

This research project gives information on changes in incidence, 

etiology, risk factors, and short-time prognosis on invasive infections 

among neonates over a long follow-up period of 43 years. This is 

important for the initial treatment and prevention of neonatal infections 

(Paper II and III). 

The best possible GBS vaccines must be directed against the 

polysaccharides of the most common GBS serotypes. Since changes 

occur over time, it is essential to have ongoing surveillance and consider 

possible changes when GBS vaccines are formulated (Paper I).  

The collaboration with the research team at the University of 

Washington gives us the opportunity to compare the virulence factors 

of over 230 invasive GBS strains causing infection among neonates and 

postpartum women with commensal wild-type isolates. One of the 

study's strengths in paper IV includes the repository of >200 GBS 

invasive isolates with corresponding clinical outcomes. The study 

provides the ability to test virulence factors that would easily be 

replicable with standard laboratory techniques. We showed that the 

invasive isolates were more pigmented compared to the commensal 

isolates. Studies have demonstrated that the hemolytic pigment has a 

role in colonization, fetal damage (179, 181), and various clinical 

manifestations (176, 287) and that it is vital for the survival of GBS in 

the human host. This makes the pigment an exciting target for testing 

clinical relevance for IAP and a target for future vaccine development 

(296). Comparing the virulence factors between invasive and 

commensal isolates gives us information and a foundation on which 
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virulence factors to focus on in future research. Future research might 

elucidate GBS infection's pathogenesis and increase the diagnostic 

sensitivity to predict preterm delivery, neonatal GBS sepsis, intrauterine 

fetal death, and other pregnancy and child outcomes (Paper IV).  

CONCLUSIONS 

I. The serotype distribution remained unchanged 

between 2004 and 2009 compared to previous studies. 

This is promising regarding GBS vaccination. 

 

II. The incidence of EO invasive infections had continued 

to decline the last ten years compared to 1997-2007, but 

the case fatality rate remained unchanged during 1997-

2017. The case fatality rate was lower when compared 

to previous studies. There was no difference in EO 

GBS whether the definition of EO would be <3 days 

or <1 week of life since all EO GBS cases occurred 

within 72 hours.  

 
III. The incidence of LO neonatal invasive infections 

increased in 2008-2017 compared to 1997-2007, 

especially among the extremely preterm neonates, but 

the case fatality rate remained unchanged. When 

comparing the whole 43-year period <28 days of life, 

the incidence and the case fatality rate had decreased. 

 
IV. GBS isolates from pregnant or postpartum women and 

neonates with invasive GBS disease had significantly 

greater hemolytic potential and hyaluronidase activity 

than commensal isolates. 
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FUTURE PERSPECTIVES 

Research is needed to identify neonates at risk for infection without 

overtreatment with antibiotics.  

We need to abolish culture-negative sepsis. Use other microbiological 

identification measures like PCR to identify both bacterial and viral 

pathogens more quickly. If they are negative, the focus should be on 

non-infectious reasons for clinical symptoms and minimize the use of 

antibiotics as much as possible if not necessary. 

There is a need for a validated consensus definition of neonatal sepsis 

to compare different studies and improve neonatal infection research.  

Hopefully, we will get a GBS vaccine for pregnant women in the near 

future, but in the meantime, we should provide IAP to those that 

benefit from it the most. Better diagnostic tools to determine if a 

woman is colonized with a virulent GBS strain or not could help 

identify who should benefit from IAP. Thereby decreasing and 

pinpointing the number needed to treat to prevent neonatal disease.  
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