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Abstract
The Autonomous Drive (AD) systems and Advanced Driver Assistance Systems
(ADAS) in the current and future generations of vehicles include a large number
of sensors which are used to perceive the vehicle’s surroundings. The production
sensors of these vehicles are verified and validated against reference data that are
originated from high-accurate reference sensors that are placed in a reference roof
box at the top of the vehicle.
In this thesis, are explored ways to strengthen the reference camera data by applying
deep machine learning algorithms together with other techniques for 2D object de-
tection. For this reason, they are used two driving related datasets, public Berkeley
DeepDrive dataset (BDD100K) and Volvo’s annotated data. Also they are trained
and evaluated two state of the art deep learning algorithms for object detection,
Mask R-CNN [5] and YOLOv4 [25]. Finally, it is implemented in conjunction, a
semi-supervised technique to improve the predictive performance using unlabeled
data. The utilized semi-supervised learning framework is called STAC and it is
introduced in the paper A Simple Semi-Supervised Learning Framework for Object
Detection [27].

Keywords: Object detection, machine learning, camera, sensors, semi-supervised
learning.
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1
Introduction

With recent developments of artificial intelligence (AI), Autonomous Driving (AD)
is become more popular and considered the future of smart transportation. An AD
system allows the vehicle to be driven without human’s intervention. In order to
achieve self driving capabilities, it is crucial for any AD algorithms to perceive the
surrounding environment, locate the vehicle’s positions, as well as detect and rec-
ognize surrounding objects that may interfere with its movement, in order to assure
the safe movement without human supervision. The safety of these vehicles is highly
dependent on the performance of multiple sensors in order to make correct decisions.
In order to achieve human-level perception, it is common for a modern autonomous
vehicle to be equipped with a variety of high-quality sensors. These sensors include
radars, cameras, Light Detection and Ranging (LiDAR) [1], differential GPS system,
ultrasonic sensors and their output is used by sensor fusion. However, there remain
some challenges that needs to be addressed for existing sensor systems. Particu-
larly, they often operate in environments that are very noisy, while the underlying
processing algorithms could be imperfect, hence even if the state-of-art sensors are
installed, they may still produce wrong outputs, which could hamper the perfor-
mance of the underlying AD systems. This project concerns the verification and
validation of the sensors that are used for AD during every car development pro-
cess. More specifically, the outcome of the project is a system that can provide
correct reference (ground-truth) data to verify the performance of the installed sen-
sors. These sensors are referred to as production sensors and are integrated around
and inside the vehicle in order to have a clear picture of the surrounding world.

While there are many techniques to provide the ground-truth reference data, Volvo
Car Corporation (VCC) would like to automate this process so that every single
manufactured car can be automatically verified. Currently, in order to verify the
production sensors, Volvo installs another sensor system which contain more sensors
with high resolutions and better accuracy (compared to the production sensors).
These sensors are referred to as reference sensors and are placed in a reference box
on top of the vehicles. The reference box can be seen in Figure 1.1. The sensors
that are integrated in the reference box are LiDAR, radar, camera, differential GPS
system, and so on. Figure 1.2 shows the field of view of the four cameras that
are placed on the reference box and the field of view of the LiDAR. The data of
these sensors is referred to as reference data and is used to verify the production
sensors placed in the vehicle. In the ideal case, the reference data is expected to
provide ground-truth reference, so that the performance of production sensors can
be evaluated. Therefore, the goal of the project is to generate correct ground-truth
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1. Introduction

reference data.

Figure 1.1: The reference box placed on the roof of the vehicle, which is used for
the AD and ADAS development and verification.

Figure 1.2: Field of view of the LiDAR and the four camera sensors that are
integrated in the reference box.

Object detection is a computer vision technique that deals with detecting locations
and assigning correct labels to the objects that are captured in an image or a video.
This method has many applications in AD systems and Advanced Driver Assistance
Systems (ADAS). Some examples are vehicle and pedestrian detection, lane and
road edge detection, traffic signs/lights detection and so on.

This thesis will apply machine learning algorithms for 2D object detection to the
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1. Introduction

reference data from the front camera of the reference box. The thesis is conducted in
cooperation with VCC. A fraction of the frames of video recordings of VCC reference
cameras are annotated and used for training and testing.

1.1 Objective

As highlighted above, one important issue is the verification and validation of the
production sensors integrated in vehicles that are used in the ADAS & AD systems.
One way to validate these sensors is to use reference data from the reference box, post
process them and compare their performance with the production sensors data. This
post process could be done with the use of a huge amount of annotated (labelled)
data from the cameras placed in the reference box. Annotating a huge amount of
data, though, is time-consuming and expensive. The reference camera data that is
provided from the reference box at the moment have incomplete labelling.

The research question is if it is possible to develop a trained network using an
existing annotated dataset, and apply it to the data that we get from the reference
box, and in return get high accurate object detection and classification. The current
project focuses mainly on contributing to the high-level outputs from the reference
camera sensors by materializing high accuracy object detection to these camera data.
There is plenty of data that is collected and stored with these cameras and there
are different methods that they can be applied to reach this goal.

1.2 Background and Motivation

Lately, by using deep neural network based algorithms, object classification, de-
tection and semantic segmentation solutions are significantly improved [56, 10, 9].
Deep learning based object detection algorithms are divided into two categories,
two-stage detectors and one-stage detectors. Two-stage detectors (Faster R-CNN
[4], Mask R-CNN [5]) are known to have high localization and object recognition ac-
curacy, whereas the one-stage detectors (YOLO [7], SSD [10]) are known to achieve
high inference speed. The first stage of two-stage detectors, proposes candidate ob-
ject bounding boxes and the second stage extracts features for the classification and
bounding-box regression tasks. On the other hand, the one-stage detectors propose
predicted boxes from input images directly without region proposal step [18]. The
technology though evolves so fast and the newer two-stage detectors tend to be faster
and the one-stage detectors tend to be more accurate.

The present project is aimed to improve the reference data from the reference camera
sensors, to measure the production camera sensors performance. For this reason,
this study focuses on a highly accurate detection of objects (cars, tracks/buses,
pedestrians, motorcycles and bicycles). A lot of research has been done to the field
of object detection for AD. Most of these studies focuses on real time speed detection
[22, 57] or they solve 3D object detection problems [23, 58, 59] which is not our case.

3
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On the other hand, a lot of advance has been made to highly accurate object detec-
tors in general. Some of the state-of-the-art deep learning models for object detection
are FPN [24], Mask R-CNN [5], RetinaNet [17] and YOLOv4 [25]. There are also
important studies in semi-supervised learning in the object detection field that claim
to be as accurate or even more than common supervised techniques [27, 60].

Mainly this project aims to apply machine learning algorithms for object detection
on the camera data of the reference box after post processing the collected data.
Right now reference data is LiDAR based only and cameras of the reference box
are used mainly for visualization. In this project are explored different methods for
object detection to the camera data that can give us the best performance. From
the performance aspect, not only the accuracy of the neural network is required but
also all the process of training and labeling the data are needed to be taken into
consideration. Based on these facts, a novel method is investigated. In the future
our results can be fused with the LiDAR output to have a better reference system.

1.3 Goals and Challenges
The overall encompassing goal for this thesis is to enhance the reference data of
camera sensors on the reference box by applying deep learning methods for object
detection. The detected objects are then used as reference data to validate the
production sensors. To achieve this goal, we study the use of two state of the art
object detectors and apply them to Volvo data. In addition, we also investigate the
use of a semi-supervised learning approach that trains a network on labeled data
and then improves it using unlabeled data.

Some of the challenges that are handled is the large amount of data which is not
trivial and the different camera characteristics (resolution, color balance, focal length
etc.) and scene characteristics (objects in different poses, different relative frequency
of objects etc.) of the public and Volvo’s dataset. For this reason it is tested
image rescaling, color adjustments data augmentation and further training of the
networks with Volvo’s annotated data. Finally, data provided by camera sensors are
usually noisy or contain missing/occluded regions. This is one more challenge that
is handled.

1.4 Method outline
Various scientific approaches are appropriate for this challenge. In this thesis, they
are used existing state-of-the-art algorithms, Mask R-CNN [5] and YOLOv4 [25].
These algorithms are trained with a public, driving dataset and then it is used
transfer learning and the networks are trained more with annotated images from
the reference cameras. Their performance is compared and presented. Finally it
is used a semi-supervised technique that is presented in the paper A Simple Semi-
Supervised Learning Framework for Object Detection [27]. Following this technique,
a network is trained with labeled data and then it is trained in conjunction with
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unlabeled data with pseudo labels. This last technique is implemented to view if
there is any increase of the performance of the detector when it is given additional
unannotated data.
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2
Theory

2.1 Computer Vision
Computer Vision is the field of computer science that seeks to develop techniques
that enable computers to gain high-level understanding of the visual world. Com-
puter vision researchers focus on developing a wide range of visual perception al-
gorithms for many practical tasks such as: (i) object recognition and classification,
which aims to predict and determine the classes of the objects of interest that are
present in an image, (ii) object detection in order to determine the location of the
semantic objects of a given class that appear in an image, and (iii) image segmen-
tation in order to translate an image into meaningful segments by classifying each
pixel. In practice, several algorithms are often combined in one vision system to
fulfill a specific task. All these computer vision problems are extremely challenging
because they require the utilization of a broad range of mathematics and statistical
models so that they can recover unknowns from insufficient amount of informa-
tion to fully specify the solutions in the real world with the highest accuracy [62].
Some of the best-known computer vision techniques that are relevant to this project
include image classification, object detection, semantic segmentation and instance
segmentation. In addition, several other applications such as Structure from Mo-
tion (SfM) [80], Simultaneous Localization and Mapping (SLAM) [81] are also very
popular in many autonomous driving systems.

Image Classification

Image classification aims to automatically classify images into predefined classes
(as shown in Figure 2.1(a)). The great development of image classification occurred
when the large-scale image dataset “ImageNet” [15] was created by Feifei Li in 2009.
It contained 15 million images across 22000 classes of objects. At the same period,
deep learning began to obtain great results in computer vision. Deep learning is a
machine learning algorithm, which automatically extracts higher level features from
the input with the use of neural networks (more than three layers) and incremen-
tally boosts the achieved accuracy when given a huge training dataset. AlexNet
[65] is classic convolutional neural network (CNN) architecture that represents a
remarkable milestone in the modern history of neural network and won the first
prize at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
Inspired by AlexNet, VGGNet [66] and GoogleNet [67] focus on designing deeper
networks and improve further the accuracy. ResNet [26] was the winner of ILSVRC
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2. Theory

in 2015 by proposing to use a shortcut connection between residual blocks to make
full use of information from previous layers and keep the gradients during backward
propagation. DenseNet [68] establishes connections between all previous layers and
the current layer. SENet [69] proposes a “squeeze-and-excitation” (SE) unit by tak-
ing channel relationship into account. NASNet [70] adopts a neural architecture
search (NAS) framework derived from reinforcement learning [71] and achieves the
state-of-the-art accuracy on ImageNet.

Figure 2.1: An example of different computer vision techniques: (a) image classifica-
tion, (b) object detection, (c) semantic segmentation, and (d) instance segmentation
[61].

Object Detection

Object detection is a computer vision technique which aim is to determine and locate
the objects of interest in an image or a video (as shown in Figure 2.1(b)). Both object
detection and image classification handle a large number of objects which in most
cases differ a lot and are not easily recognised. However, object detection is more
difficult than image classification, because it focuses on identifying the accurate
location of the object of interest. A deeper description of this technique is presented
in following sections.

Semantic & Instance Segmentation

Image segmentation is a pixel-level classification which divides an image into regions
where an object or area of interest is represented. This is succeeded by classifying
each pixel into a specific category. Image segmentation can be divided into two sub-
branches: (i) semantic segmentation, which aims to assign each pixel in an image to
a semantic object class (as shown in Figure 2.1(c)), and (ii) instance segmentation,
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2. Theory

which further improves semantic segmentation by predicting different labels for dif-
ferent instances of the same class (as shown in Figure 2.1(d)). Fully convolutional
network (FCN) [72] is the forerunner framework for segmentation tasks that suc-
cessfully implements pixel-wise dense predictions for semantic segmentation in an
end-to-end CNN structure. FCN uses convolution layers instead of fully-connected
layers that are used by most of the well-known architectures of classification tasks
(e.g.VGG [66], GoogleNet [67], etc.). These layers can have inputs of varying sizes,
and their output is a heatmap instead of a vector with classification scores [62].
Some of the state-of-the-art methods on this field are DeepLab [73], RefineNet [74]
PSPNet [75] Mask-RCNN [5] and path aggregation network (PANet) [37].

2.2 Traditional Object Detection Models
The problem definition of object detection is to place a bounding box where the
objects are located in the input image (object localization) and determine the cate-
gory of the object in each box (object classification). Before the deep learning era,
most research efforts focused on detecting a single class such as pedestrian [76, 77]
and face [78] by designing a set of appropriate features (e.g. HOG [51], Harr-like
[52], etc.). In these methods, object detection occurs by matching a number of pre-
defined feature templates with each location in the image or the feature pyramids.
Classifiers such as SVM 1 [28] and Adaboost [54] are often used for this purpose [62].
In general, the tree main steps that each traditional object detection model follows
are: informative region selection, feature extraction and classification.
In the informative region selection step a multi-scale sliding window is used to scan
the whole image so that all objects in any position, aspect ratio and size can be
captured. In this way, all the possible positions of the objects can be found, but it is
a computationally expensive method since there are produced many windows that
are redundant. On the other hand, if the number of sliding window is restricted
regions may be poor.
In the feature extraction step visual features are extracted to provide semantic and
robust representation of different objects. Haar-like features [52], SIFT [50] and
HOG [51] are the representative ones. It’s difficult, though, to manually design
a robust feature descriptor to describe all kinds of objects due to the diversity of
appearances, illumination conditions and backgrounds.
Finally, in the classification step it is used a classifier to distinguish the category of
an object from all the other categories. Commonly, support vector machines (SVM)
[28] are used due to their good performance on small scale training data. Other
options for the classification step is Deformable Part-based Model (DPM) [53] and
AdaBoost [54].
However, during 2010-2012, small gains were obtained on PASCAL VOC object
detection competition [16] based on these traditional methods. This showed the
limitations of traditional detectors. More significant gain was obtained with the
application of deep convolutional neural networks for object detection based on deep

1Support Vector Machine (SVM) is an algorithm that finds a hyperplane that
best separates data based on a set of features.
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learning techniques. Compared to traditional feature extractors, deep convolutional
neural networks have deeper architectures having the ability to learn more complex
features than the shallow ones [13].

2.3 Convolutional Neural Networks
Neural Networks are a set of algorithms that are trying to recognize underlying
relationships in a set of data through a process that is similar to the way the human
brain operates. Convolutional Neural Networks (CNNs) are a specialized kind of
Neural Network that processes data that has a known grid-like topology like time-
series data (1-D grid) and image data (2-D grid of pixels). The structure of CNNs
is similar to regular Neural Networks, with trainable weights and biases, weighted
sums over neuron inputs with computed outputs trough activation functions, and
a problem specific loss function. The main difference between regular Deep Neural
Networks and CNNs is two CNN-specific layers called convolution layers and pooling
layers [57]. CNNs execute a mathematical operation called convolution which is a
specialized type of linear operation. The convolution operation is the below:

s(t) =
∫
x(a)w(t− a) da, (2.1)

where x and w are functions and w function is reversed and shifted. This oper-
ation is used to extract features from an image. A CNN architecture consists of
Convolutional Layers, Pooling Layers and Fully Connected Layers.

Convolutional Layer
A convolutional layer is composed of neurons with learnable weights and biases.
Each neuron in a convolutional layer receives inputs and calculates their outputs
based on the learned weights and biases. The weights are visualized as matrices
called filters or kernels. The convolutional operation (convolution) is executed by
sliding the filter over the input in both directions, rows and columns. At every
location, an element-wise multiplication is performed and summed together and the
result is placed in the output feature map. In order to understand how convolutional
layer operates, Figure 2.2 is displayed. Based on the Figure 2.2, we have an input
image of 3×4 pixels, and a 2×2 2D convolution kernel. The kernel will execute 1
stride move from top left pixel to the bottom right pixel of the image. The kernel
is a 2×2 matrix of weights (each component of the matrix is a weight). The result
of all the convolutional operations is called feature map matrix and in our example
it has 2×3 dimensions.
The stride specifies how much the filter shifts in each step when sliding through the
input data. In our example the stride is one. When the stride increases, the out-
put feature map is significantly reduced in size. An other option is to use padding.
Padding is when additional columns and rows are added to enclose the input map
with zeros. This increases the size of the input map and also it increases the perfor-
mance, because it enables better extraction of information from the original borders
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Figure 2.2: Example of 2-D convolution. The input image is 3×4 pixels, the kernel
is 2D with dimensions 2×2 and the output feature map matrix has 2×3 dimensions
since the kernel executes 1 stride2.

of the input image. In the described example it was not used padding.

Pooling Layer
A pooling layer in a CNN can be perceived as a kind of down-sampling function.
It is used to reduce the spatial size of the output feature map, hence it reduces
the number of parameters and the computational complexity. It takes an activation
map as input and it outputs a summary statistic of values from the input grid. Max
pooling is one of the most often used types of pooling. This type splits the input
feature map into equally sized regions and only the maximum value present in each
region is kept as output. Two examples of pooling layers is presented in Figure 2.3

Fully Connected Layers
After features have been learned from convolutional and pooling layers, the rea-
soning from the features can be done through fully connected layers. The use of
fully connected layers relies on the type of output aimed for, because it allows the
movement from a grid representation to single values. This is typically useful when
performing classification or regression based on the input as a whole. The first fully
connected layer takes the output of the previous feature analysis layer and turns it

2http://www.deeplearningbook.org/contents/convnets.html
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Figure 2.3: Left: A pooling layer with filter size 2 and stride 2 downsamples the
input volume of size [224x224x64] into output volume of size [112x112x64]. Right:
A max pooling example of stride 2 takes the max over 4 numbers of each 2x2 colored
squares [79].

into a single vector (“flattens” the output) so that it can be an input for the next
stage. It moves each individual feature map matrix value into a vector where each
position in the vector is interpreted as an input value to the following fully connected
layer. Then the first fully connected layer applies weights to predict the correct la-
bel. Finally the fully connected output layer gives the final output (classification or
regression).

2.4 Deep Learning based Object Detection Mod-
els

The deep learning methods for object detection are mainly categorized into two
types, two-stage detection and one-stage detection. The first type, initially generates
region proposals in the image, regions where a possible object may be and then it
classifies each proposal as a background or an object with specific label (category).
The second type doesn’t have a separately region proposal stage. It considers object
detection as a regression or classification problem. It divides the original image
roughly into a 2D grid and then each grid cell is used as a rough region to predict
categories and locations.
Some of the most well-known two-stage detection methods are R-CNN [2], SPPNet
[12], Fast R-CNN [3], Faster R-CNN [4], R-FCN [6] , FPN [24] and Mask R-CNN [5].
Some of these algorithms are correlated with each other, for instance Faster R-CNN
improves Fast R-CNN by adding a region proposal network (RPN) to generate
region proposals. The one-stage detection methods include YOLO [7], SSD [10],
YOLOv2 [8], RetinaNet [17], YOLOv3 [9] and YOLOv4 [25]. These two pipelines
are correlated by the anchors introduced in Faster R-CNN [13]. Two-stage detectors,
in general, have high localization and object recognition accuracy, whereas the one-
stage detectors achieve high inference speed.

2.4.1 Two-stage Detection
The first stage of two-stage detectors, proposes candidate object bounding boxes and
the second stage extracts features for the classification and bounding-box regression
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tasks. Region based CNN (R-CNN) family belongs to two-stage method.

2.4.1.1 R-CNN

The flowchart of R-CNN can be divided into the following three stages:
• Finding regions in the image that might contain an object. These regions are

called region proposals.
• Extracting CNN features from the region proposals.
• Classifying the objects using the extracted features.

These steps can be shown in Figure 2.4.

Figure 2.4: The stages of R-CNN [2] algorithm: 1) takes as an input an image, 2)
extracts 2000 bottom-up region proposals, 3) computes features for each proposal
using a CNN, and 4) classifies each region with class-specific linear SVMs.

The R-CNN [2] method generates about 2k region proposals via Selective Search [14]
for each image. Selective Search is a region proposal algorithm that uses hierarchical
and complementary grouping strategies based on size, color, texture, and shape
compatibility to generate a small set of high-quality object locations (regions). Each
region proposal is rescaled to a fixed size image and fed into a CNN trained on
ImageNet [15] to extract features. Then, linear Support Vector Machine (SVM)
classifiers are used to predict if there is an object in each region or if there is only
background and classify the possible object. R-CNN yield a significant improvement
on Pascal VOC07 dataset [16] on mean Average Precision (mAP) (from 33.7% to
58.5%). Mean average precision is described in §3.3.1.3. The main weakness of this
model is the extremely slow detection speed (14s per image with GPU).

2.4.1.2 SPPNet

SPPNet [12] method overcomes the slow detection speed problem by introducing
the Spatial Pyramid Pooling (SPP) layer (see Figure 2.5). This layer is placed on
top of the last convolutional layer. It pools the features from the previous layer
and generates a fixed-length output regardless of the size of the image or the region
of interest. The output of SPP layer is fed into the fully connected layers. The
feature maps are computed from the entire image only once, and then fixed-length
representations of arbitrary regions are generated for training the detectors. This
avoids repeatedly computing the convolutional features. SPPNet is almost 20 times
faster than R-CNN and has as high accuracy (VOC07 mAP=59.2%). The two
drawbacks of SPPNet are: 1) the training is still multi-stage (feature extraction
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stage, network fine-tuning stage, SVM training and bounding box regressor fitting),
2) it only fine-tunes the fully connected layers and ignores all previous layers. The
latter can result to an accuracy drop of very deep networks.

Figure 2.5: The architecture of SPPNet method [12].

2.4.1.3 Fast R-CNN

Fast R-CNN detector [3] improves further the R-CNN and SPPNet. Fast R-CNN
enables the simultaneously training of a detector and a bounding box regressor by
shared convolutional features. The whole image is processed with convolutional
layers to produce feature maps, as it was in SPP-net. Then, a fixed-length feature
vector is extracted from each region proposal with a region of interest (RoI) pooling
layer, using Selective Search [14]. The RoI pooling layer is a case of SPP layer with
only one pyramid level. Each feature vector is fed into a sequence of fully connected
layers and the output is softmax probabilities and bounding-box regression offsets
for each RoI. In Fast R-CNN method it is used multi-task loss function that jointly
trains classification and bounding-box regression. Fast R-CNN increased the mAP
to 70.0% for VOC07 and also icreased the detection speed over 200 times more than
R-CNN. The architecture of Fast R-CNN is shown in figure 2.6.

Figure 2.6: The architecture of Fast R-CNN method [3].

2.4.1.4 Faster R-CNN

Faster R-CNN [4] breaks through the speed bottleneck of Fast R-CNN by replacing
Selective Search, which was used for generating region proposals, with the Region
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Proposal Network (RPN). Convolutional feature maps that were used by region-
based detectors, like Fast R-CNN, are used for generating region proposals as well
in this model. On top of these convolutional features, Region Proposal Networks
(RPNs) are constructed.

The Region Proposal Network, takes an image of any size as input and outputs a set
of object proposals (rectangular), each with a score that measures membership to a
set of object classes versus background that is called objectness score. This idea is
modeled with a fully-convolutional network.
In particular, a small network slides over the convolutional feature map of the last
shared convolutional layer and it generates the region proposals. This network is
fully connected to a n × n spatial window of the input convolutional feature map.
Each sliding window is mapped to a fixed lower-dimensional vector and then it is fed
into two sibling fully-connected layers, a box-regression layer and a box-classification
layer. This architecture is naturally implemented with n × n convolutional layer
followed by two sibling 1× 1 convolutional layers (for regression and classification).
ReLUs3 are applied to the output of the n× n convolutional layer.

In Figure 2.7 it is illustrated the Region Proposal Network. As it is shown in Figure
2.7, at each location of the sliding window, k region proposals are suggested. The k
proposals are relative to the k reference boxes and are called anchors. Each anchor
is centered at the corresponding sliding window, and has different scale and aspect
ratio. In Figure 2.7 are used 3 scales and 3 aspect ratios, so k = 9 anchors at each
position.

Figure 2.7: Region Proposal Network (RPN) [4].

Faster R-CNN is the first end-to-end, and the first near-realtime deep learning
detector. Faster R-CNN increased the mAP of VOC07 to 73.2% and achieved
mAP@.5=42.7% and mAP@[.5,.95]=21.9% to COCO dataset [35]. Region Pro-
posal Network enables nearly cost-free region proposals. The architecture of Faster
R-CNN is shown in Figure 2.8.

3The rectified linear activation function or ReLU is a piecewise linear
function that outputs the input directly if it is positive, otherwise, it outputs
zero. It is a common activation function for many types of neural networks.
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Figure 2.8: The architecture of Faster R-CNN method [4].

2.4.1.5 FPN

Before Feature Pyramid Network (FPN) [24], most of the deep learning based detec-
tors run detection only to the network’s top layer. The features in deeper layers of
a CNN are known to be useful for class recognition but they are not so contributory
to localizing objects. Hence, FPN introduces a topdown architecture with lateral
connections, for building high-level semantics. A CNN naturally forms a feature
pyramid through its forward propagation, so the FPN shows great advances for de-
tecting objects with a wide variety of scales. FPN in a Faster R-CNN model achieves
state-of-the-art results on the MS COCO dataset [35] (mAP@.5=59.1%, mAP@[.5,
.95]=36.2%). FPN is a basic building block of many latest detectors.

2.4.2 One-stage Detection
The one-stage detectors directly predict object bounding boxes for an image without
intermediate task. They pre-define a set of boxes to look for objects, then they use
convolutional feature maps to predict class scores and bounding boxes. One-stage
detectors are usually time efficient and can be used for real-time devices, but they
sometimes struggle to adapt to arbitrary tasks (such as mask prediction).

2.4.2.1 YOLO

The first one-stage detector introduced was YOLO [7] and is the abbreviation of
“You Only Look Once”. It applies a single neural network to the full input image.
This network divides the image into an S × S grid, it predicts a specific number of
bounding boxes and confidence for each grid cell and it calculates the probabilities for
each class in each of those boxes simultaneously. The confidence score of a bounding
box is calculated by multiplying the class probability with the corresponding IoU
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(see Section 2.6) between the predicted box and the actual box. Figure 2.9 illustrates
the above steps. YOLO divides the input image into an S × S grid and predicts
B bounding boxes for each grid, confidence for each box, and class probabilities.
The final layer of the network outputs an S × S × (C + B × 5) tensor. The five in
the equation corresponds to the x-coordinate for bounding box center, y-coordinate
for bounding box center, bounding box width, bounding box height, and prediction
confidence score.

Figure 2.9: YOLO algorithm divides the input image into an S × S grid and for
each grid cell predicts B bounding boxes, confidence for those boxes, and class
probabilities [7].

The architecture of YOLO method was inspired by the GoogLeNet model [67].
YOLO has 24 convolutional layers that extract features from the input image and
they are followed by 2 fully connected layers that predict the output probabilities
and bounding box coordinates. The network architecture of YOLO is shown in
Figure 2.10.

Figure 2.10: The architecture of YOLO consists of 24 convolutional layers and 2
fully connected layers [7].
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The main contribution of YOLO is real-time detection. Also, YOLO handles de-
tection as a regression problem, so a unified architecture extracts features from
input images straightly to predict bounding boxes and class probabilities. How-
ever, YOLO’s downsides are that it has worse localization accuracy than two-stage
detectors and it gives unsuccessful detection of small objects.

2.4.2.2 SSD

Single Shot MultiBox Detector (SSD) [10] introduced the multi-reference and multi-
resolution detection techniques, which improved the detection accuracy of one-stage
detectors, especially for small objects. The main idea of multi-reference detection is
to pre-define a set of reference boxes (anchor boxes) with different aspect-ratios and
sizes at different locations in an image, and then predict the detection box based
on these references. Multi-resolution detection, on the other hand, is a technique
that detects objects of different scales at different layers of the network. Before
SSD, detectors only run detection on their top layers. Multi-reference and multi-
resolution detection is used by most of the state of the art object detection systems.
SSD improves both the speed and the accuracy of the detection.

2.4.2.3 YOLOv2

YOLOv2 [8] is an improved version of YOLO, which adopts a plethora of ideas
from past works with novel concepts and significantly improves YOLO’s speed and
precision. The techniques that improved YOLO are namely: Batch Normalization
[55], high resolution classifier, convolutional with anchor boxes, predicting the size
and aspect ratio of anchor boxes using dimension clusters, fine-grained features,
multi-scale training and a custom deep architecture Darknet19.

2.4.2.4 YOLOv3

YOLOv3 [9] is an improved version of YOLOv2. YOLOv3 algorithm uses multi-label
classification to adapt to more complex datasets containing many overlapping labels.
Additionally, it utilizes three different scale feature maps to predict the bounding
box. The last convolutional layer outputs a 3-d tensor with class predictions, ob-
jectness, and bounding box. Finally, YOLOv3 proposes a deeper and robust feature
extractor, called Darknet-53, inspired by ResNet [26].

2.5 Semi-Supervised Learning
The progress made on object detection is mainly on training a stronger or faster
object detector given sufficient amount of annotated data. There are cases though
where it is hard to manually produce a sufficient number of annotated images. In
such situations it is used a semi-supervised learning approach for object detection
where the detector is improved by using unlabeled training data. In the subsections
that follow, there are described three methods within semi-supervised learning that
are utilized in the semi-supervised framework that is used in this report, called
Consistency Regularization, Pseudo-Labeling and Noisy Student Training.
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2.5.1 Consistency Regularization
Many recent state-of-the-art semi-supervised learning algorithms use consistency
regularisation technique. This technique utilizes unlabeled data by relying on the
assumption that the model should be invariant to perturbations happen on the same
unlabelled image. In semi-supervised learning the perturbations have typically been
based on image augmentations [30] [31]. Image augmentation is a technique which
artificially creates images with different ways of processing, with rotation, shifts,
flips and more.

2.5.2 Pseudo-Labeling
Pseudo-Labelling is a semi-supervised technique that has as main idea that the
model itself should be used to obtain artificial labels for unlabeled data. Its initial
motivation derives from entropy minimization, to encourage the network to perform
confident predictions on unlabelled data [30] [31].

2.5.3 Noisy Student Training
Noisy Student Training [29] is a semi-supervised learning approach, which is based on
the student-teacher framework. In this framework, a teacher generates targets that
a student uses to train. In particular, Noisy Student Training has three main steps:
1) train a teacher model on labeled images, 2) use the teacher to generate pseudo
labels on unlabeled images, and 3) train a student model on the labeled images and
pseudo labeled images. This algorithm is iterated by putting back the student as
the teacher and relabel the unlabeled data. When training the student, it is applied
noise (e.g. dropout, stochastic depth, data augmentation via RandAugment) to
make the student generalize better than the teacher.

2.6 Evaluation Metrics for Object Detection
Object detection models generally have a vary amount of predictions depending on
the input image. This varying amount of outputs implies non-trivial evaluation.

Intersection over Union (IoU)

The Intersection over Union (IoU) is the ratio of the area of the intersection of the
predicted bounding box and the ground truth bounding box and the area of the union
of the two bounding boxes (see Figure 2.11). A perfect bounding box prediction has
IoU = 1. It is common to have as a threshold for a positive prediction an IoU that
is greater than 0.5 (they overlap by 50% or more). However, each dataset has its
definition of what is a true positive prediction.

Possible scenarios of object detection prediction

Generally, there are four possible scenarios of predictions that can be made from an
object detector.
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Figure 2.11: Graphical explanation of Intersection over Union4.

• True positive (TP): IoU over the threshold (e.g >0.5) with the correct classi-
fication.

• True negative (TN): A correct prediction of background (no bounding box).
• False positive (FP): A predicted bounding box that does not match with any

ground truth object or an IoU less than the threshold (or an additional over-
lapping prediction).

• False negative (FN): When there is no detection at all of an existing object or
it detects wrong object category.

mean Average Precision (mAP)

Precision and recall are two commonly used metric to measure the performance
of a given classification model. Precision refers to the percentage of the correctly
predicted bounding boxes out of all bounding boxes predicted. Recall refers to the
percentage of the correctly predicted bounding boxes out of all objects in the photo.

Precision = TP

TP + FP
(2.2)

Recall = TP

TP + FN
(2.3)

The more predictions are made the recall percentage increases, but precision drops or
becomes erratic as false positive predictions are made. The recall (x-axis) is plotted
against the precision (y-axis) for each number of predictions to create a curve or
line. The value of each point on this line is maximized (Interpolated Precision). The
Interpolated Precision for a given Recall Value (r) is:

pinterpolated(r) = max
r′≥r

p(r′) (2.4)

The area under the interpolated Precision-Recall curve is the Average Precision (AP)
value for the class. There are variations on how AP is calculated. PASCAL VOC
dataset [16] and MS COCO dataset [35] calculates it in a different way. The mean
of the average precision (AP) of the images in a dataset is called the mean average
precision, or mAP.

4https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
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2.7 Transfer Learning
Transfer learning is a machine learning technique where a model trained on one task
is exploited to improve generalization in another related task. In particular, a base
network is firstly trained on a base dataset and task, and then the learned features
are transferred to a second target network and are trained on a target dataset and
task. This technique works better when the features are suitable to both base and
target tasks and not only to the base task [48].
There are two transfer learning approaches, develop model approach and pre-trained
model approach. In the first approach it is used an abundance of data to train the
network and then all or parts of this model is used by the model of the second task
as a starting point. The final model may need to be adapted or refined on data
available for the task of interest. In the second approach it is chosen a pre-trained
source model from released models created from large and challenging datasets. This
pre-trained model is used as the starting point for the second task of interest. The
model is then trained more on the data of the second task. The pre-trained model
approach is common in the field of deep learning.
There are three possible benefits when transfer learning is used and they are illus-
trated in Figure 2.12. The first one is that the initial performance in the target task
using only the transferred knowledge is higher compared to how it otherwise would
be. The second possible benefit is the small amount of time that is needed when
using transfer learning compared to the amount of time is needed when learning
from scratch. Finally, it is the higher final performance level achievable in the tar-
get task when transfer learning is used. Ideally, all three benefits can be seen from
a successful application of transfer learning [49].

Figure 2.12: Three possible benefits of using transfer learning [49].

Transfer learning is a really useful technique especially when there is not much data
available. This technique can enable to develop skillful models that they could not
be developed otherwise.
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Convolutional Neural Networks has pushed the limits of what was possible in the
domain of image processing. The ability of deep learning techniques to learn feature
representations automatically from data resulted to major improvements in object
detection [32, 33]. For this reason all methods that are used in this project are
within the deep learning field.
In the present project two methods for training object detection models in a super-
vised fashion are developed and evaluated. The utilized methods are Mask R-CNN
[5] and YOLOv4 [25]. In both cases it is used transfer learning to succeed a better
and faster result.
Mask R-CNN was introduced in the 2017 paper titled “Mask R-CNN” [5] and was
revised on 2018. It is one of the state-of-the-art approaches for object recognition
tasks. It is flexible, simple to train, easy to generalize to other tasks, gives top
object detection results and won the Best Paper Award (Marr Prize) at the 16th
International Conference on Computer vision (ICCV) 2017. We decided to use Mask
R-CNN as it is one of the most representative two stage region-based CNN object
detection algorithm and has state-of-the-art results on MS COCO dataset [35].
On the other hand, YOLOv4 was published in April 2020 and it is a significant up-
grade, compared to YOLOv3, in terms of performance and speed. The architecture
of YOLOv4 algorithm as well as some optimizations to the training method and
many more improvements made it the fastest and most accurate real-time model for
object detection. All the above together with the facts that it is an one stage detec-
tor with state-of-the-art performance and that succeeds better accuracy than Mask
R-CNN to MS COCO dataset [35], made us to utilize it and test it’s performance
to BDD100K and Volvo’s dataset.

3.1 Tools
Object detection is a complex technique that is hard to be implemented without
using existing libraries and frameworks. Below are some of the tools and algorithms
that are used in this thesis.

Tensorflow
TensorFlow is an open source software framework for machine learning. It has a
comprehensive ecosystem of tools, libraries and community resources for machine
learning. TensorFlow can be used in a variety of devices, such as mobile devices, or
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CPU/GPU clusters. It has been developed within Google, written in C++ and it
can be accessed using API like Python, C and C++1.

Keras
Keras is a deep learning library that supports convolutional and recurrent networks.
It is written in Python and it can be run on top of TensorFlow, CNTK, or Theano.
It can run both on CPU and GPU2.

CUDA
CUDA [20] is a parallel computing platform created by Nvidia. CUDA enables users
to run parts of their code on the GPU and speed up execution. The speed-up is
achieved through exploiting the GPU for specific operations such as matrix multipli-
cation, that GPUs can perform more effectively than CPUs. Matrix multiplication
is used extensively when performing both forward and back propagation through
a neural network, meaning that CUDA enables significant speed-up when training
deep neural network.

3.2 Datasets
Training a deep neural network requires a large amount of data that should be
relevant to the case of study. Collecting and annotating this type of data takes a
significant amount of time. For this reason it is essential to use transfer learning
(see Section 2.7).

In this project it is used the Berkeley DeepDrive dataset (BDD100K) one of the
most popular public autonomous driving datasets available for research purposes.
Additionally, Volvo’s data, that is collected from the front camera of the reference
box of one of Volvo’s vehicles, is also used for training and testing. We decided to
use BDD100K dataset because it is closely related to Volvo’s data with very similar
categories and scenery. Therefore, BDD100K provides a good pre-trained network
so that we can utilize and train on Volvo’s data.

3.2.1 Berkeley DeepDrive dataset
Berkeley DeepDrive dataset3 [21] is a large-scale driving video dataset with extensive
annotations for heterogeneous tasks. For this thesis it is used part from the image
dataset that consists approximately 100000 images which are annotated with 2D
bounding boxes. In particular it uses a set of 69863 images for training the network
and a set of 10000 images for validating/testing its performance. Ten object cate-
gories are available: bus, traffic light, traffic sign, person, bike, truck, motor, car,

1https://www.tensorflow.org/
2https://keras.io/
3The dataset was downloaded from the web page: https://bdd-data.berkeley.edu/
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train, and rider. Figure 3.1 shows a long-tail distribution histogram that represents
the number of instances of each category of BDD100K dataset.

Figure 3.1: Number of instances in each category of BDD100K dataset [21].

The images are collected from many cities and regions in US (New York, San Fran-
cisco Bay Area, and other regions). They contain large portions of extreme weather
conditions, such as snow and rain. They also include a diverse number of different
scenes across the world and contain approximately an equal number of day-time and
night-time cases. The dimensions of all images are 1280/720 pixels.

3.2.2 Volvo’s Data
In this thesis it is used a set of approximately 1200 images collected from the camera
on the reference box of one of Volvo’s vehicles. In particular it is used a set of 914
images for training the network and a set of 228 images for validating/testing its
performance. Annotation is been held with the help of one of Volvo’s annotation
tools for the needs of this master thesis. The object categories are five: car, big
vehicle (including buses and trucks), pedestrian, motorcycle (with rider) and bicycle
(with rider). They are all dynamic objects. The instances of each category is shown
in Figure 3.2. The images are captured in different cities in Europe, day and night,
with different weather conditions. The dimensions of all images are 4096/2176 pixels.

Figure 3.2: Number of instances in each category of Volvo’s dataset.
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3.3 Methods

3.3.1 Mask R-CNN
The Mask Region-based Convolutional Neural Network (Mask R-CNN) [5] is a two
stage detector. Mask R-CNN uses the Faster R-CNN architecture and extends it
by adding in parallel with the bounding box recognition branch, another branch
for predicting the object’s mask. (see Figure 3.3). The added branch is a fully
convolutional network on top of a CNN based feature map, where the input is the
CNN feature map and the output is a matrix with 1 if the pixel belongs to an object
and 0 elsewhere, known as binary mask. Mask R-CNN model supports both object
detection (bounding boxes) and object segmentation (masks). The datasets that
are used for this project do not provide annotated masks, so we do not focus on the
image segmentation abilities of the Mask R-CNN model.

Figure 3.3: Mask R-CNN framework [5].

An implementation of the model from scratch would be time consuming so we used a
third-party implementation build on top of the Keras deep learning framework. The
name of it, is Mask R-CNN Project and it is developed by Matterport4. The mrcnn
library uses Tensorflow for training the deep network and Python 3 programming
language.
Our Mask R-CNN model has ResNet-101 [26] as a backbone and it is based on
Feature Pyramid Network (FPN). The maximum detection instances in each image
are 100.

3.3.1.1 Load and read the data

To load and read the data, Mask R-CNN library (mrcnn) requires to be created
a dataset object. As a consequence, we created a class that extends the mr-
cnn.utils.Dataset class and we defined four functions to load the dataset, extract
the boxes of each image, load the mask and load an image reference (path) respec-
tively. To the function that loads the dataset, we specify the object classes, the paths
for the images, the annotation files and how we split the training and validating set.
To the function that extracts the boxes we specify how to gain the information of
annotation that is included in the json files. To the function that loads the mask
since we don’t have masks, we just load the bounding boxes and return them as

4https://github.com/matterport/Mask_RCNN.
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masks. The library then infers bounding boxes from our “masks” which are the
same size. Finally the function that loads the image reference, returns the path of
the image.

3.3.1.2 Train the model

We use transfer learning to train our model so that we can take advantage of pre-
trained model on BDD100K dataset and then transfer it to Volvo’s data. In partic-
ular, we used initially pre-trained MS COCO5 weights to all layers apart from the
output layers for the classification label, bounding boxes and masks. The output
layers of the model, we trained them by using BDD100K dataset. Then we used
transfer learning and trained this model more by using Volvo’s data. For the training
we used one Tesla T4 GPU with memory 14249MB. For training BDD100K dataset
the learning rate was 0.001, the epochs were 5, the steps per epoch were 34932,
the images per GPU were 2 and it took approximately 14,2 hours per epoch. For
training Volvo’s dataset, on the other hand, the learning rate was 0.001, the epochs
were 8, the steps per epoch were 457 and the images per GPU were 2.

Loss Function

The loss function of Mask R-CNN is a combination of the classification loss, local-
ization loss and segmentation mask loss:

L = Lcls + Lbox + Lmask (3.1)

where Lcls and Lbox are same as in Faster R-CNN:

Lcls = 1
Ncls

∑
i

Lcls(pi, p∗i ) = 1
Ncls

∑
i

(−p∗i logpi − (1− p∗i )log(1− pi)) (3.2)

and
Lbox = λ

Nbox

∑
i

p∗i · Lsmooth1 (ti − t∗i ) (3.3)

Lmask is the average binary cross-entropy loss. It only includes the k-th mask if the
region is associated with the ground truth class k.

Lmask = − 1
m2

∑
1≤i,j≤m[yij log ŷkij + (1− yij) log(1− ŷkij)] (3.4)

where yij is the label of a cell (i, j) in the true mask for the region of size m x m;
ŷkij is the predicted value of the same cell in the mask learned for the ground-truth
class k.
Lsmooth1 is the smooth L1 loss.
pi Predicted probability of anchor i being an object.
p∗i Ground truth label (binary) of whether anchor i is an object.
ti Predicted four parameterized coordinates.
t∗i Ground truth coordinates.

5http://cocodataset.org/#home
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Ncls Normalization term, set to be mini-batch size (∼ 256).
Nbox Normalization term, set to the number of anchor locations (∼ 2400) in the
paper Faster R-CNN [4].
λ A balancing parameter, set to be ∼ 10 in the paper Faster R-CNN [4] (so that
both Lcls and Lbox terms are roughly equally weighted).

3.3.1.3 Evaluation of the model

The performance of our object detection model was evaluated using the mean average
precision, or mAP. It was also calculated the mAP of each category and the confusion
matrix on Volvo’s dataset.

3.3.2 YOLOv4
According to YOLOv4: Optimal Speed and Accuracy of Object Detection [25] an
object detector is usually composed of a backbone which is pre-trained on ImageNet
[15] and a head which predicts classes and bounding boxes of objects. The head is
either one-stage or two-stage detector (Section 2.4). Recent object detectors usually
insert some layers between backbone and head. In YOLOv4 [25] these layers are
called neck and they are used to collect feature maps from different stages with
several bottom-up and top-down paths. All the above can be seen schematically in
Figure 3.4. Our implementation of YOLOv4 uses as a backbone CSPDARKNET53
[36], as a neck Path-Aggregation Network (PANet) [37] and as a head YOLOv3 [9].

Figure 3.4: Architecture of recent object detectors [25].

YOLOv4 utilizes the CSP connections with the Darknet-53 that was used in YOLOv3
as the backbone in feature extraction (CSPDARKNET53). The letters CSP stands
for Cross-Stage-Partial connections. These connections separate the input feature
maps into two parts, one that goes through a block of convolutions, and one that
does not. Then, the results are aggregated. The network that is used as a neck is
a modified version of the PANet (Path Aggregation Network) [37]. The idea is to
aggregate information to get higher accuracy.
Apart from YOLO’s architecture that is liable for its good performance, there are
also some optimizations that are called in YOLOv4 bag of freebies and bag of spe-
cials.
Bag of freebies are the optimizations to the training method that induce better accu-
racy without increasing the inference cost. For instance it is used data augmentation
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which increases the variability of the input images, so that the trained model has
higher robustness to the various images. The bag of freebies that are used to the
backbone and the detector are shown in Table 3.1.

Location Bag of freebies Description

Backbone

CutMix [38] Data Augmentation
Mosaic Data Augmentation
DropBlock [39] Regularization method
Class label smoothing Regularization Technique

Detector

CIoU-loss [40] Bounding box regression loss
CmBN Normalization of the network activa-

tions by their mean and variance
DropBlock [39] Regularization method
Mosaic Data Augmentation
Self-Adversarial
Training (SAT)

Data Augmentation

Eliminate Grid Sensi-
tivity

Bounding box computation improve-
ment

multiple anchors for a
single ground truth

threshold to assign a box as object
or background: IoU(truth, anchor) >
IoU_threshold

Cosine annealing
scheduler [41]

Learning rate adjustment

Optimal hyper-
parameters

Hyper-parameter selection using ge-
netic algorithms

Random training
shapes

Automatic increase of mini-batch size
during small resolution training by us-
ing Random training shapes

Table 3.1: Bag of freebies used in backbone and detector of YOLOv4

On the other hand, bag of specials are called the set of modules that improve the
accuracy of object detection significantly with only increasing a little the inference
cost. The bag of specials that are used to the backbone and the detector of YOLOv4
are shown in Table 3.2.
The improvements that were introduced in YOLOv4 [25] are the following. Mosaic
is a new data augmentation strategy that combines four images into one for training
instead of two that are used in CutMix [38]. This allows detection of objects outside
their normal context and it significantly reduces the need for a large mini-batch
size. On the other hand Class Label Smoothing is used for mitigating overfitting
by adjusting the target upper bound of the prediction to a lower value to use this
value in calculating the loss. This is useful so that it is avoided to memorize the
data instead of learn it.
Moreover, Cross mini-Batch Normalization (CmBN) was also introduced in YOLOv4
[25]. It is a modified version of Cross-Iteration Batch Normalization (CBN) [42]
that collects statistics only between mini-batches within a single batch, instead of
collecting statistics inside a single mini-batch.
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Location Bag of specials Description

Backbone

Mish activation [43] Activation
Cross-Stage Partial connections (CSP)
[36]

Skip-connections

Multi-input Weighted Residual Con-
nections (MiWRC)

Skip-connections

Detector

Mish activation [43] Activation
SPP-block [12] Additional blocks
SAM-block [45] Additional blocks
PAN [37] Path-aggregation

blocks
DIoU-NMS [40] Bounding box regres-

sion loss

Table 3.2: Bag of specials used in backbone and detector of YOLOv4

Self-Adversarial Training (SAT) is another data augmentation technique that was
introduced in YOLOv4 [25]. It works in two forward backward stages. In the first
stage the model changes the image such that it can degrade the detector perfor-
mance the most instead of changing the network weights as it is usually done in the
backpropagation. In the second stage, the model is trained to detect an object on
this modified image. This technique helps to generalize the model and to reduce
overfitting.
Another optimization that was applied in YOLOv4 is the eliminate grid sensitivity
where it is used a factor in the computation of the bounding box so that the effect
of grid on which the object is undetectable can be eliminated.
Finally Multi-input Weighted Residual Connections (MiWRC) was introduced to
the bi-directional feature pyramid network (BiFPN) [44] and was modified a bit
to YOLOv4 [25] to make it suitable for efficient training and detection. MiWRC
is proposed to execute scale-wise level re-weighting, and then add feature maps of
different scales.

3.3.2.1 Train the model

An implementation of the model from scratch would be time consuming so we used
the source code of YOLOv4 which is on the open source neural network framework
called Darknet6. It is written in the C and Python programming languages and uses
CUDA technology.
We use transfer learning to train our model. MS COCO pre-trained weights of the
network were available, so we used them and then we train it by using BDD100K
dataset. Finally we train it more by using Volvo’s data. For the training we used one
Tesla T4 GPU with memory 14249MB. For training BDD100K dataset the learning
rate was 0.001, the epochs were 62, the batch size was 64, the mini batch size was
32, the images per GPU were 2 and it took approximately 2,5 hours per epoch. For

6https://github.com/AlexeyAB/darknet
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training Volvo’s dataset , on the other hand, the learning rate was 0.001, the epochs
were 756, the batch size was 64, the mini batch size was 16 and the images per GPU
were 4.

Loss Function

YOLO’s multi-part loss function (localization, classification, confidence loss) that
was introduced to [7] is presented below:

λcoord
S2∑
i=0

B∑
j=0

1objij [(xi − x̂i)2 + (yi − ŷi)2]

+λcoord
S2∑
i=0

B∑
j=0

1objij
[(√

wi −
√
ŵi

)2
+
(√

hi −
√
ĥi

)2]

+
S2∑
i=0

B∑
j=0

1objij
(
Ci − Ĉi

)2
+ λnoobj

S2∑
i=0

B∑
j=0

1noobjij

(
Ci − Ĉi

)2

+
S2∑
i=0

1obji
∑

c∈classes
(pi(c)− p̂i(c))2

(3.5)

where 1obji indicates if the object appears in grid cell i.
1objij indicates that the jth bounding box predictor in grid cell i is responsible for
that prediction. 1objij is 1 if there is object in the cell and 0 if there is not.
1noobjij is inverse of 1objij , where it is 1 if there is no object in the cell and 0 if there is.
λcoord is a parameter that increases the weight for the loss in the boundary box
coordinates.
λnoobj is a parameter that weights down the loss when detecting background.
xi, yi is the location of the centroid of the anchor box.
S is the dimensions of the grid (SxS) that the input images is divided.
B the number of bounding boxes that are predicted for each grid cell.
wi, hi is the width and height of the anchor box.
Ĉi is the confidence score of the box j in cell i.
p̂i(c) class probability for class c in cell i.
As we can see, wi, hi are under square root. The square root is present to penalize the
smaller bounding boxes as we need to adjust them more since the small deviations
in large boxes matter less than in small boxes.
One of the improvements in loss function that was added in YOLOv4 [25] is CIoU-
loss [40]. CIoU-loss increases the overlapping area of the ground truth box and the
predicted box, minimizes their central point distance, and maintains the consistency
of the boxes’ aspect ratio. The mathematical formula is the below:

LCIoU = 1− IoU + ρ2(b,bgt)
c2 + αυ (3.6)

Where ρ is the Euclidean distance, b and bgt are the central points of the pre-
dicted and target box respectively, c is the diagonal length of the smallest enclos-
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ing box covering the two boxes, υ measures the consistency of aspect ratio υ =
4
π2 (arctanwgt

hgt −arctanwh )2 and α is the trade-off parameter defined as α = υ
(1−IoU)+υ .
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Results

4.1 Mask R-CNN Results

4.1.1 After training with BDD100K dataset

Since we had the pre-trained weights of MS COCO dataset available, we firstly
calculated the mAP of the test set of 10000 images of BDD100K dataset to have
it as a baseline. We have to take into consideration that the number of categories
that MS COCO dataset contains is 80 and BDD100K contains only 10 which are
not all of them included to COCO dataset. MS COCO dataset does not have rider
and traffic sign categories that BDD100K dataset has. In particular we assumed
that the BDD100K’s category rider corresponds to the COCO’s category person.
Also COCO dataset doesn’t detect all the traffic signs, but only the stop sign. As
a result not all of the traffic signs were detected by this model. Consequently the
result of the mAP calculation was mAPtest_set = 0.215 or 21.5%.

As it was described in Section 3.3.1.2, we trained the output layers of the Mask
R-CNN model with BDD100K dataset for 5 epochs. We chose the weights of epoch
5 because after measuring the mAP using the weights of the first 13 epochs, we saw
that the mAP was decreasing after epoch 5 and since one epoch took approximately
14.2 hours, we decided not to continue training more.

We calculated the mAP of the train set (69863 images) and the mAP of the test set
(10000 images) and we found that they are: mAPtrain_set = 0.457 and mAPtest_set =
0.456. Compared to the baseline mAP, the performance of model was improved after
training it to the BDD100K dataset and this was something that was expected.
Table 4.1 presents the mAP of Mask R-CNN model in total and for each category
after training it with BDD100K dataset. These results are from implementing the
model to the BDD100K test set which has 10000 images. From the results on the
Table 4.1, we can see that cars and humans have higher mAP values than the other
categories. The lower mAP is for the category train, motorcycle and bike. We have
to take into account that all classes impact the overall mAP.
Figure 4.1 presents a visualized example an image in the BDD100K test set where
the ground truth boxes on the left image, and the predicted box on the right image.
As we can see there are some false positive boxes where they predict wrongly an
object instead of background but also there are many true positives.
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mAP 0.456
mAPcar 0.553
mAPperson 0.359
mAPbicycle 0.162
mAPtruck 0.258
mAPbus 0.216
mAPmotorcycle 0.153
mAPrider 0.484
mAPtraffic_sign 0.377
mAPtraffic_light 0.328
mAPtrain 0.0

Table 4.1: Evaluation of Mask R-CNN model trained to BDD100K dataset.

Figure 4.1: Visualized results of Mask R-CNN model: On the left, is the actual
annotated boxes and on the right, is the predicted objects from Mask R-CNN model.

4.1.2 After training with Volvo’s data
We used the previous model that was trained to BDD100K dataset to first calculate
the mAP on Volvo’s test set to have it as a baseline and then train it further with
Volvo’s train set and evaluate it so that we can compare.
Since BDD100K dataset has ten categories and Volvo’s dataset has only 5 we had
to make some assumption to calculate the accuracy of Volvo’s test set. We assumed
that the categories of BDD100K dataset, truck and bus belong to the same category
of Volvo’s dataset named big vehicle. Also in BDD100K dataset there is a separate
category for the rider of the bicycle and the motorcycle named rider but in Volvo’s
dataset the categories bicycle and motorcycle include the rider in the bounding box.
So our assumption was that the bounding box of the bicycle with or without a
rider has not a big difference in terms of the area, the same was assumed for the
motorcycle. So we ignored the rider and assumed that the bike and motor from
BDD100K is the same with the bicycle and motorcycle from Volvo’s dataset. Of
course there may be the case that the model trained to BDD100K dataset detects a
bicycle parked on the side of the road having no rider, but this object is not annotated
in Volvo’s dataset since we are only interested for dynamic objects. Consequently,
the mAP of Volvo’s test set using the previous model trained to BDD100K dataset
was mAP = 0.543 or 54.3%.
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As it was described in Section 3.3.1.2 we trained the output layers of the Mask
R-CNN model with Volvo’s train set for 8 epochs. We chose the weights of epoch 8
because after measuring the mAP using the weights of the first 12 epochs, we saw
that the mAP was decreasing after epoch 8 so we stopped the training.
We calculated the mAP of the train set (914 images) and the mAP of the test set (228
images) and we found that they are: mAPtrain_set = 0.676 and mAPtest_set = 0.631.
As we can see the performance of the model to Volvo’s test set was improved after
training it to Volvo’s dataset as it was expected. In the Table 4.2 it is presented
the mAP of our model in total and for each category after training it with Volvo’s
dataset tested to Volvo’s test set (228 images).

mAP 0.631
mAPcar 0.682
mAPpedestrian 0.549
mAPbig_vehicle 0.591
mAPbicycle 0.348
mAPmotorcycle 0.75

Table 4.2: Evaluation of Mask R-CNN model after trained to Volvo’s dataset.

The confusion matrix of Volvo’s test set is also presented in Table 4.3. The diagonal
of the matrix (yellow cells) shows the correct classification results. The right column
(green cells) shows the actual objects that where not detected, in other words they
were detected as a background. So this column shows the False Negative cases.
Finally the last row (red cells) shows the wrong detections where there was not an
actual object there (ghost object). These are the False Positive cases. As we can
see from this matrix, 883 cars were detected correctly as cars and 3 were detected
wrongly as big vehicles, 27 pedestrians were detected correctly as pedestrians and
1 was detected wrongly as bicycle, 198 big vehicles were detected correctly as big
vehicles and 21 were detected wrongly as cars, 5 bicycles were detected correctly
as bicycles, 1 was detected wrongly as pedestrian and 1 was detected wrong as
motorcycle. Finally 13 motorcycles were detected correctly as motorcycles and 1
was detected wrongly as car.

Predicted Classes
car pedestrian big vehicle bicycle motorcycle background

A
ct
ua

lC
la
ss
es car 883 0 3 0 0 391

pedestrian 0 27 0 1 0 36
big vehicle 21 0 198 0 0 95
bicycle 0 1 0 5 1 11
motorcycle 1 0 0 0 13 4
background 510 21 95 1 2 0

Table 4.3: Confusion Matrix of Mask R-CNN model on Volvo’s dataset

Figure 4.2 presents an example from the Volvo’s dataset with the ground truth boxes
on the left, and the predicted boxes from Mask R-CNN model on the right. As we
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can see in general the predictions are accurate but there is a detected big vehicle
instead of a background.

Figure 4.2: Visualized results of Mask R-CNN to Volvo’s dataset: On the left, is the
actual annotated image and on the right, is the predicted objects from our model.

4.2 YOLOv4 Results

4.2.1 After training with BDD100K dataset

Utilizing the available pre-trained weights of MS COCO dataset for YOLOv4 model,
we calculated the mAP of the test set of 10000 images of BDD100K dataset to have
it as a baseline as we did to the previous model. As it was mentioned, the number of
categories of MS COCO dataset differs from BDD100K dataset. For this reason we
did the same assumptions, we assumed that the category rider that BDD100K has
is the same as the category person that COCO has and the category traffic signs
from BDD100K is the same as stop sign from COCO. Thus, the result of the mAP
calculation before training was mAPtest_set = 0.346 or 34.6%.

As it was described in Section 3.3.2.1, we trained YOLOv4 model with BDD100K
dataset for 62 epochs. Specifically, we trained it for 72 epochs, but the best weights
with the best mAP were in epoch 62. We calculated the mAP of the test set (10000
images) and we found that it is: mAPtest_set = 0.693. The performance of our model
was improved after training it to the BDD100K dataset as it was expected. In the
Table 4.4 it is presented the mAP of our model in total and for each category after
training it with BDD100K dataset tested to BDD100K test set (10000 images).
Table 4.4 shows that all categories have relatively high mAP except from motorcycle
and bicycle. All values of mAP are higher than the corresponding ones from Mask
R-CNN (Table 4.1). A more detailed comparison will be held in Section 4.3.

In Figure 4.3 we presented an example image of BDD100K dataset with the ground
truth bounding boxes to the left figure, and the predicted ones to the right figure
from YOLOv4 model. As we can see there is a false positive box where it predicts
wrongly a car instead of background but also there are some cars far away that are
not detected.
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mAP 0.693
mAPcar 0.734
mAPperson 0.492
mAPbicycle 0.416
mAPtruck 0.552
mAPbus 0.517
mAPmotorcycle 0.35
mAPrider 0.579
mAPtraffic_sign 0.666
mAPtraffic_light 0.583
mAPtrain 0.0

Table 4.4: Evaluation of YOLOv4 model trained to BDD100K dataset.

Figure 4.3: Visualized results of YOLOv4 model: On the left, is the actual anno-
tated boxes and on the right, is the predicted objects from YOLOv4 model.

4.2.2 After training with Volvo’s data
Before we start further training of the model with Volvo’s dataset, we calculated,
firstly, the mAP on Volvo’s test set using the weights after training with BDD100K,
to have it as a baseline.
We make the same assumptions for the categories of BDD100K and Volvo’s dataset
as we did to the Mask R-CNN model. Particularly we assumed that the truck and
bus categories of BDD100K dataset correspond to the big vehicle category of Volvo’s
dataset. Also we assumed that the bounding box of the bicycle or the motorcycle
with or without a rider has not a big difference in area. So we ignored the rider
and assumed that the bike and motor from BDD100K is the same with the bicycle
and motorcycle from Volvo’s dataset respectively. Thus, the mAP of the YOLOv4
model trained to BDD100K dataset applied to Volvo’s test set, is mAP = 0.535 or
53.5%.
Subsequently we further trained the YOLOv4 model with Volvo’s train set (914
images) for 756 epochs. Specifically, we trained it for 980 epochs, but the best
weights (best mAP) were in epoch 756. We calculated the mAP of the test set
(228 images) and we found that it is: mAPtest_set = 0.755. As it is obvious the
performance of our model to Volvo’s test set was improved after training it to Volvo’s
dataset as it was expected. In the Table 4.5 it is presented the mAP of YOLOv4
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model in total and for each category after training it with Volvo’s dataset tested to
Volvo’s test set. As we can see motorcycle category has the best mAP and pedestrian
category has the lowest mAP.

mAP 0.755
mAPcar 0.787
mAPpedestrian 0.66
mAPbig_vehicle 0.742
mAPbicycle 0.795
mAPmotorcycle 0.875

Table 4.5: Evaluation of YOLOv4 model after trained to Volvo’s dataset.

Predicted Classes
car pedestrian big vehicle bicycle motorcycle background

A
ct
ua

lC
la
ss
es car 979 0 10 0 0 288

pedestrian 0 39 0 2 0 23
big vehicle 6 0 234 0 0 74
bicycle 0 1 0 14 0 3
motorcycle 0 0 0 0 15 3
background 273 22 64 2 3 0

Table 4.6: Confusion Matrix of YOLOv4 model on Volvo’s dataset

Figure 4.4: Visualized results of YOLOv4 to Volvo’s dataset: On the left, is the
actual annotated image and on the right, is the predicted objects from YOLOv4
model

It is also calculated the confusion matrix of Volvo’s test set of YOLOv4 model and
is presented in Table 4.6. As we described before, the diagonal of the matrix (yellow
cells) shows the correct detections, the right column (green cells) shows the False
Negative cases and the last row (red cells) shows the False Positive cases. As we can
see from this matrix, 979 cars were detected correctly as cars and 10 were detected
wrongly as big vehicles, 39 pedestrians were detected correctly as pedestrians and
2 were detected wrongly as bicycle, 234 big vehicles were detected correctly as big
vehicles and 6 were detected wrongly as cars, 14 bicycles were detected correctly as
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bicycles and 1 was detected wrongly as pedestrian and finally 15 motorcycles were
detected correctly as motorcycles and 3 were not detected at all (background).
In Figure 4.4 we presented an example of Volvo’s dataset with the ground truth
bounding boxes on the left and the predicted ones of YOLOv4 model on the right.
As we can see in general the predictions are accurate except from a wrongly detected
hidden car instead of a background.

4.3 Comparison of Mask R-CNN and YOLOv4
models

In this Section are presented some tables and plots to have a clearer picture of the
two models so that the comparison is easier.

Models
Mask R-CNN YOLOv4

Te
st

Se
t BDD100K mAPbefore train(COCO weights) 0.215 0.346

mAPafter train(BDD100K weights) 0.456 0.693

Volvo mAPbefore train(BDD100K weights) 0.543 0.535
mAPafter train(V OLV O weights) 0.631 0.755

Table 4.7: Total mAP of Mask R-CNN and YOLOv4 models before and after
training them to BDD100K and Volvo’s dataset tested to BDD100K and Volvo’s
test sets.

In Table 4.7 we presented the total mAP of BDD100K and Volvo’s test sets calcu-
lated before and after training them with these two datasets for both Mask R-CNN
and YOLOv4 models. In all cases YOLOv4 has higher mAP than Mask R-CNN
apart from the case of Volvo’s test set that the mAP is calculated before training
the model with Volvo’s data. Over there YOLOv4 has a bit lower mAP (0.535) than
Mask R-CNN (0.543). Also, in all cases the performance of each model to each test
set is better after training it with the corresponding dataset.
In Figure 4.5 we presented the mAP of each category of BDD100K dataset for Mask
R-CNN and YOLOv4 models. As we can see in all cases YOLOv4 outperforms
Mask R-CNN. Car is the category that is detected better in both models and train
is the worse detected category.
In Figure 4.6 it is presented the mAP of each category of Volvo’s dataset for Mask
R-CNN and YOLOv4 models. As it was observed before, in all cases YOLOv4
outperforms Mask R-CNN but here the difference between the two models in each
category is lower apart from the category bicycle where YOLOv4 model performs
more than twice as good as Mask R-CNN.Motorcycle is the category that is detected
better in both models and bicycle is the worse detected category for Mask R-CNN
and pedestrian is the worse detected category for YOLOv4.
Moreover it is quoted Table 4.8 and Table 4.9 with the intention to compare the
results of the confusion matrices of the two models in Tables 4.3 and 4.6. Table
4.8 shows the percentages of the False Positive cases on Volvo’s test set for Mask

39



4. Results

Figure 4.5: Histogram of mAP for each class of BDD100K dataset for both Mask
R-CNN and YOLOv4 models.

Figure 4.6: Histogram of mAP for each class of Volvo’s dataset for both Mask
R-CNN and YOLOv4 models.

R-CNN and YOLOv4 models. It is reminded that False Positive are the cases where
there are detected objects that are not actual there or the IoU is less than the
threshold. In all cases YOLOv4 has lower percentages than Mask R-CNN except
from motorcycle where is a bit higher. The low values of YOLOv4 shows that it has
less wrong detections than Mask R-CNN.
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False Positive
Mask R-CNN YOLOv4

Car 36.04% 21.7%
Pedestrian 42.86% 35.48%
Big vehicle 32.09% 20.78%
Bicycle 14.28% 11.11%
Motorcycle 12.5% 16.67%
TOTAL 35.28% 21.87%

Table 4.8: Percentage of False Positive cases for Mask R-CNN and YOLOv4 on
Volvo’s test set.

Table 4.9 on the other hand shows the percentages of the False Negative cases
where an actual object is not detected (failure cases). YOLOv4 has lower values to
all categories. This means that YOLOv4 detects more objects than Mask R-CNN
does. It is also quoted Figure 4.7 with False Negative cases (failure cases) to have
a graphical picture of what is shown in Table 4.9. From this graph we can see
that pedestrians and bicycles are the categories that Mask R-CNN mostly misses to
detect.

False Negative
Mask R-CNN YOLOv4

Car 30.06% 22.55%
Pedestrian 56.25% 35.93%
Big vehicle 30.25% 23.57%
Bicycle 61.11% 16.66%
Motorcycle 22.22% 16.66%
TOTAL 31.76% 23.12%

Table 4.9: Percentage of False Negative cases for Mask R-CNN and YOLOv4 on
Volvo’s test set.

Figure 4.7: Histogram of percentage of False Negative cases for Mask R-CNN and
YOLOv4 on Volvo’s test set.
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Finally we measured the inference time of both models. The inference time of Mask
R-CNN is approximately 3.3482 sec or 3348.2 milli-seconds and the inference time
of YOLOv4 was 34.582 milli-seconds. Mask R-CNN is almost 100 times slower than
YOLOv4 in Volvo’s dataset.
Figure 4.8 and Figure 4.9 are two images from Volvo’s dataset. They present the ac-
tual image, the annotation and the prediction of Mask R-CNN model and YOLOv4
model. In both cases we can see that the objects that are near the camera are
detected correctly, mistakes happen when the objects are far from the camera.

a) Actual image b) Annotated image

c) Mask R-CNN detection d) YOLOv4 detection

Figure 4.8: Visualized results of an images of Volvo’s test set.

a) Actual image b) Annotated image

c) Mask R-CNN detection d) YOLOv4 detection

Figure 4.9: Visualized results of an images of Volvo’s test set.
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5.1 Annotation of Datasets
The values of mAP in Table 4.1, Table 4.4 and graphically results in Figure 4.5 for
the category train of BDD100K dataset, made us explore what is going on with the
annotation of some images of BDD100K dataset. We realized that there are some
errors, where trains either are missed and are not annotated, or there are some
objects that belong to different category, wrongly annotated as trains. We are not
that much interested the final model to detect trains but what made us sceptical is
if these small mistakes are decreasing the performance of our models.
On the other hand before we start annotating Volvo’s images, we designated to an-
notate the objects that are not hidden from other objects in a way to be hard to
recognize. For example in Figure 5.1 it is shown the original image and the annota-
tion made for this image. The yellow box at the right bottom side of each image is
a zoom in of the central box. As we can see in the picture there are four to five cars
in a row where some of them are hidden by the others. We decided to annotate two
of them, the ones that are obvious. In Figure 5.2 it is shown the predictions of Mask
R-CNN model and YOLOv4 model. Mask R-CNN in this example detects almost
all the cars including the hidden ones that were not annotated. From the other
side YOLOv4 detects the annotated cars but also detects wrongly a pedestrian and
misses one pedestrian that is far away. This observe made us understand a bit more
the high values of False Positives in confusion matrices in Tables 4.3 and 4.6.

Figure 5.1: Annotation of an image of Volvo’s dataset.

Finally we believe that it was problematic that we had different categories in BDD100K
and Volvo’s dataset and maybe if we changed from the beginning the categories of
BDD100K, to be the same as Volvo’s dataset and train from the beginning like this,
maybe the models would perform better.
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Figure 5.2: Predictions of an image of Volvo’s dataset.

5.2 Semi-Supervised Learning
For the needs of this thesis it was annotated approximately 1200 images by placing
a 2D bounding box to objects that belonged to one of the 5 categories of interest.
This experience made us realize how difficult and time-consuming this procedure
is. As a result we started searching for different methods where less annotated data
are required and have the same and sometimes better results. So we ended up to
the semi-supervised method for object detection. In particular we implemented a
semi-supervised learning framework along with a data augmentation strategy for
object detection that is described in [34] and it is called STAC. STAC is a simple
and effective framework for object detection that claims to be more data efficient
than the baseline models and brings significant gain in mAPs. We decided to use
STAC because it is a state-of-the-art method with great results and simple to use.
STAC combines self training via pseudo label (see Section 2.5.2) of unlabeled images
and consistency regularization based on strong data augmentations (see Section
2.5.1). The training is been held in two stages as it happens to the Noisy Student
framework (see Section 2.5.3). In the first stage Faster R-CNN [4] model is trained
to labeled data and then it is used to predict the classes and bounding boxes to the
unlabeled images. Then, it is applied to each predicted box a confidence-based box
filtering with high threshold value. The output pseudo labels are with high precision.
In the second stage the model is trained with labeled and unlabeled data with the
pseudo labels having strong data augmentations. The data augmentation strategy
consists of global color transformation, global or box-level geometric transformations
[46] and Cutout [47].
In our implementation we utilized the described framework and set BDD100K train
set (69863 images) to be the labeled dataset and Volvo’s train set (914) to be the
unlabeled dataset. We resized Volvo’s images so that they have the same size as the
ones from BDD100K and we used only five of BDD100K’s categories the ones that
are in Volvo’s dataset. Again we had to make the assumption that the bounding box
of a bicycle or a motorcycle having rider and not having a rider has almost the same
area and that truck and bus categories from BDD100K dataset are corresponding
to the Volvo’s category big vehicle.
The preliminary results from this attempt are shown in Table 5.1. In particular it
is presented the measurements of mAP during the procedure of training STAC to
BDD100K and Volvo’s dataset. We calculated the mAP of the two test sets after
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the first stage where only labeled data are used for training and after the last stage
where labeled and unlabeled data are used and we have the final model. We have to
take into consideration that the calculation of mAP in this case is calculated with
a different function than in Mask R-CNN and YOLOv4 so the comparison with the
mAP values of the two detectors is not valid.

BDD100K test set Volvo’s test set
mAP after stage 1 0.588 0.602
mAP after stage 2 0.569 0.530

Table 5.1: Preliminary results of STAC. Calculation of mAP to both BDD100K and
Volvo’s dataset after stage 1 where the Faster RCNN model is trained to labelled
data only and after stage 2 were the STAC model is completely trained to labeled
and unlabeled data with pseudo-labels.

As we can see in Table 5.1 the mAP decreases after training with unlabeled data
which was not our intention. We believe that this happened because our unlabeled
dataset was very small compared with the ones in the [34]. Also the labeled and
unlabeled sets in our case were from different datasets with different categories and
size of images which made it more difficult to calculate good quality of pseudo-labels.
Due to the limit of time we leave to future work the test of efficacy of STAC to a
bigger dataset of Volvo’s unlabeled data, using as labeled data the ones we already
have from Volvo. We believe that this method is very promising.
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6
Conclusion and Future Work

In this thesis we presented an implementation of two deep learning object detection
methods to two driving related datasets. In particular we utilized Mask R-CNN and
YOLOv4 methods and BDD100K and Volvo’s annotated datasets.
We have concluded that it is possible to apply the algorithms with high accuracy to
the reference data of Volvo’s vehicles. We succeeded to achieve better performance
after training the two models with the two driving related datasets. We observed
that YOLOv4 is better in terms of speed and mAP values than Mask R-CNN. So
we can say that YOLOv4 is the best suited method for post-processing reference
data from cameras.
As a future work we could have some improvements to our mAP if we train from
the beginning the two models with the five classes of interest, and if we could double
check the annotations of Volvo’s data. Also, we leave as a future work the implemen-
tation of the Semi-supervised technique STAC with using more Volvo’s unlabeled
data. This technique is very promising as it claims to improve object detection
model performance by using unlabeled data which is very useful since large-scale
annotated data for our task is not available at the moment. STAC combines self-
training and consistency regularization based on the strong data augmentations and
improves the AP 0.5 of VOC07 dataset from 76.30 to 79.08 and demonstrates 2 ×
higher data efficiency on MS-COCO by achieving 24.38 mAP using only 5% labeled
data than supervised baseline that marks 23.86% using 10% labeled data [34]. These
results from the paper [34] shows that the implementation of STAC in our case can
be very interesting. We can, additionally, use the calibration files that Volvo has
to extract word coordinates and finally we can fuse the output of our method with
LiDAR data to have a better reference system.
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