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Abstract

In this thesis, we study some exactly solvable, quantum integrable lattice models.
Izergin proved a determinant formula for the partition function of the six-vertex (6V)
model on an n×n lattice with the domain wall boundary conditions (DWBC) of Korepin.
The method has become a useful tool to study the partition functions of similar models.
The determinant formula has also proved useful for seemingly unrelated questions. In
particular, by specializing the parameters in Izergin’s determinant formula, Kuperberg
was able to give a formula for the number of alternating sign matrices (ASMs).

Bazhanov and Mangazeev introduced special polynomials, including pn and qn, that can
be used to express certain ground state eigenvector components for the supersymmetric
XYZ spin chain of odd length. In Paper I, we find explicit combinatorial expressions
for the polynomials qn in terms of the three-color model with DWBC and a (diagonal)
reflecting end. The connection emerges by specializing the parameters in the partition
function of the eight-vertex solid-on-solid (8VSOS) model with DWBC and a (diagonal)
reflecting end in Kuperberg’s way. As a consequence, we find results for the three-color
model, including the number of states with a given number of faces of each color. In
Paper II, we perform a similar study of the polynomials pn. To get the connection to the
8VSOS model, we specialize all parameters except one in Kuperberg’s way.

By using the Izergin–Korepin method in Paper III, we find a determinant formula for the
partition function of the trigonometric 6V model with DWBC and a partially (triangular)
reflecting end on a 2n×m lattice, m ≤ n. Thereafter we use Kuperberg’s specialization
of the parameters to find an explicit expression for the number of states of the model as
a determinant of Wilson polynomials. We relate this to a type of ASM-like matrices.

Keywords: six-vertex model, eight-vertex SOS model, three-color model, reflecting end,
domain wall boundary conditions, partition function, determinant formula, XYZ spin
chain, alternating sign matrices, special polynomials, positive coefficients.
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1 Introduction

In statistical mechanics, the goal is to describe the macroscopic properties of a
system by modeling the microscopic interaction between its components. Each
possible state S of a model has a weight W (S) assigned to it. The partition
function of a model is the sum of the weights of all possible states, given by

Z =
∑
states

W (S). (1.1)

Then W (S)/Z is the probability of finding the system in a certain state S.

Some models are exactly solvable, which means that one can find the thermody-
namic behavior when the system size tends to infinity. In particular the free
energy of the model is determined by the behaviour of the partition function in
the thermodynamic limit. In this thesis we study even more special situations,
where it is possible to find an exact expression for the partition function even
for finite system sizes.

Solvability often depends on quantum integrability, which in situations of inter-
est to us can be described by a family of commuting transfer matrices. One can
also require a local condition, namely, a description in terms of an R-matrix
obeying the Yang–Baxter equation, which guarantees the macroscopic property
of commuting transfer matrices (see further Section 3.1).

We start in Section 2 by introducing some different lattice models and boundary
conditions of interest for this thesis. The lattice models considered in this thesis
are quantum integrable and exactly solved for finite system sizes. In Section 3,
we describe the six-vertex model with domain wall boundary conditions more
carefully, and look into its connections to alternating sign matrices and the XXZ
spin chain. We also describe the six-vertex model with domain wall boundary
conditions and a reflecting end. A variant of this model is studied in Paper
III. Then, in Section 4, we describe the eight-vertex solid-on-solid model with

1
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2 1. Introduction

domain wall boundary conditions and a reflecting end. This is the model of
consideration in Paper I and II. Many ideas important in the analysis of the
six-vertex model generalize to the eight-vertex solid-on-solid model as well.
Furthermore we look at the connection between the eight-vertex solid-on-solid
model and the three-color model. In Section 5, we discuss certain polynomials,
showing up in different contexts. There are connections to the XYZ spin chain
as well as to the eight-vertex model and the three-color model. Finally in
Section 6, we summarize the results of the included papers, and in Section 7,
we discuss ideas for future investigations.

2 Solvable lattice models

In this section, we introduce the lattice models that are relevant for this thesis.
As we will see in later sections, these models are exactly solvable.

2.1 Vertex models

The vertex models that we consider in this thesis are models on a (piece of a)
square lattice (i.e. a lattice with m× n vertices), with edges connecting nearest
neighbours. A state of a model is a lattice with a spin ±1 assigned to each edge.
Graphically a state can be represented by giving each line a positive direction,
which we indicate by an arrow at the end of the line (this will be useful later),
and then spin +1 corresponds to an arrow halfway the edge pointing in the
positive direction of the line, and spin −1 corresponds to an arrow pointing
in the negative direction. In the easiest examples of the vertex models that
we consider, we choose the positive directions to be up and to the right, i.e.
positive spin corresponds to arrows pointing upwards or to the right, and
negative spin corresponds to arrows pointing downwards or to the left. Each

vertex has a local weight w
(

β′

α α′
β

)
that depends on the spins α, β, α′, β′ on the

surrounding edges as in Figure 2.1. The weight of a state is the product of all
local weights.

α α′

β

β′

Figure 2.1: A vertex with spins α, β, α′, β′ = ±1 on the surrounding edges.
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4 2. Solvable lattice models
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Figure 2.2: The possible vertices and their vertex weights for the 6V model.

One of the first examples of a six-vertex (6V) model was introduced to model
hydrogen bonds in ice. The ice model and some other special cases of the 6V
model with periodic boundary conditions in both directions was solved in the
thermodynamic limit by Lieb [25] in 1967, by using the Bethe ansatz (see e.g.
[1, 24]). Later the same year, Sutherland [40] solved the general 6V model with
periodic boundary conditions.

A square lattice can be used for a two-dimensional approximation of the ice
structure. The vertices of the lattice then represent oxygen atoms. Each oxygen
atom has exactly two hydrogen atoms close by, sitting on two of the neighbour-
ing edges. Together they form a water molecule. Furthermore, each oxygen
atom has bonds to two other hydrogen atoms belonging to two other water
molecules. Hence on each edge there is exactly one hydrogen atom. The spins
describe where the hydrogen atoms are, with an arrow pointing inwards to
the vertex if the hydrogen atom is “closest to” that oxygen atom. Thus each
vertex has exactly two arrows pointing inwards and two arrows pointing out-
wards. This imposes the ice rule: at each vertex with spins α, β, α′ and β′ as in
Figure 2.1, the equation

α+ β = α′ + β′ (2.1)

must hold. This yields six possible types of vertices, namely, the vertices in
Figure 2.2, with nonzero local weights a±, b± and c±. In the original ice model,
all vertices, and hence all states, have the same weight. Different choices of the
weights yield models for ferroelectric and antiferroelectric materials.

A generalization of the 6V model is the eight-vertex (8V) model, where the ice rule
only holds modulo 2. This allows for two additional possible configurations

2.1. Vertex models 5

w
( −
+ −
+

)
= d+ w

(
+

− +
−

)
= d−

Figure 2.3: The two additional vertices with their vertex weights for the 8V model.

λ1

λ2

λ3

µ1 µ2 µ3

Figure 2.4: The inhomogeneous 6V model with spectral parameters λi and µj .

around the vertices, namely, a sink and a source, where either all arrows are
pointing inwards or all arrows are pointing outwards from the vertex, see
Figure 2.3. These two vertex weights are called d±.

The case a+ = a−, b+ = b− and c+ = c− is called the symmetric 6V model. As
we will see in Section 3.1, the 6V model is quantum integrable. To explain this
fact and to study the model, the inhomogeneous 6V model is often a useful tool.
In this generalization of the 6V model, we assign a spectral parameter λi to
each horizontal line of the lattice, and a spectral parameter µj to each vertical
line, see Figure 2.4. The weight of a vertex depends on the spectral parameters
λi and µj on the lines going through the vertex, as in Figure 2.5. The vertex
weights are then given by trigonometric functions a±(λi − µj), b±(λi − µj),
c±(λi−µj), see (3.4). A special case is when the weights are taken to be rational
functions.

λi

µj

Figure 2.5: A vertex with spectral parameters λi and µj , and weight w(λi − µj).
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around the vertices, namely, a sink and a source, where either all arrows are
pointing inwards or all arrows are pointing outwards from the vertex, see
Figure 2.3. These two vertex weights are called d±.

The case a+ = a−, b+ = b− and c+ = c− is called the symmetric 6V model. As
we will see in Section 3.1, the 6V model is quantum integrable. To explain this
fact and to study the model, the inhomogeneous 6V model is often a useful tool.
In this generalization of the 6V model, we assign a spectral parameter λi to
each horizontal line of the lattice, and a spectral parameter µj to each vertical
line, see Figure 2.4. The weight of a vertex depends on the spectral parameters
λi and µj on the lines going through the vertex, as in Figure 2.5. The vertex
weights are then given by trigonometric functions a±(λi − µj), b±(λi − µj),
c±(λi−µj), see (3.4). A special case is when the weights are taken to be rational
functions.
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Figure 2.5: A vertex with spectral parameters λi and µj , and weight w(λi − µj).
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Figure 2.6: The possible vertices and their vertex weights for the 6VSOS model.

In the six-vertex solid-on-solid (6VSOS) model, also called the trigonometric solid-
on-solid model, a height is assigned to each face, in addition to the spectral
parameters on the lines. The heights z take values in ρ+ Z, where ρ ∈ C is a
reference height called the dynamical parameter. For z = ρ+ a, we sometimes
also refer to a as the height. Going around a vertex clockwise, the height
decreases by 1 when crossing an arrow pointing outwards and increases by
1 when crossing an arrow pointing inwards. The ice rule ensures that this
description of the heights is well-defined. Going around a vertex, we will
always come back to the same height. Therefore in a state of a lattice, the
heights are determined by the height in one place, for instance we can take
the height in the upper left corner to be ρ. Each vertex weight depends on the
height z in one of the adjacent faces, which we take to be the face in the upper
left corner. The vertex weights a±(λi − µj , z), b±(λi − µj , z) and c±(λi − µj , z)
are trigonometric functions of λi, µj and z, see Figure 2.6.

The same construction is not possible for the 8V model. The sinks and sources
only enable the heights to be well-defined modulo 4. Nevertheless there is
an SOS model related to the 8V model, namely, the eight-vertex solid-on-solid
(8VSOS) model, which was introduced by Baxter [4] to solve the 8V model. The
name is a bit misleading, since it has only six different local states. Therefore
the model is also called the elliptic solid-on-solid model. The model is a two
parameter generalization of the 6V model, the states are the same as in the
6VSOS model, but the weights a±(λi − µj , z), b±(λi − µj , z), c±(λi − µj , z) are
elliptic functions, see (4.10).
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2.2 Boundary conditions

By fixing the spins on the external edges, we impose boundary conditions on
our lattice models. Because of the ice rule, the total number of edges with spin
+1 on the left and bottom boundaries must equal the total number of edges
with spin +1 on the top and right boundaries. Likewise the number of edges
with spin −1 on the left and the bottom must equal the number of edges with
spin −1 on the top and the right.

One option is to take periodic boundary conditions in both directions (i.e.
wrapping the lattice on a torus). This case was studied by Lieb and Sutherland
for the 6V model, and by Baxter for the 8V model (see e.g. [25, 40, 3]). In
this thesis, we focus on fixed boundary conditions. One important case of
fixed boundary conditions are the domain wall boundary conditions (DWBC) [21],
where all edges on the left and on the top have spin −1, and all edges on the
right and at the bottom have spin +1, i.e. ingoing arrows on the top and the
bottom and outgoing arrows to the left and the right, as in Figure 2.7. The ice
rule forces a lattice with DWBC to be an n× n lattice.

Figure 2.7: Lattice with DWBC in the case n = 3.

Figure 2.8: Lattice with partial DWBC. The spins on the top are dictated by the ice rule.

In the case of an m× n lattice where m �= n, DWBC are impossible. In this case
we can have partial DWBC [16], which are normal DWBC on three of the sides
and on one side we leave the spins free, see Figure 2.8. In each configuration,
the spins on the free boundary must add up such that the ice rule can be
followed at all vertices in the lattice.
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Figure 2.9: A lattice with one reflecting end, and spectral parameters λi and µj , for n = 3.

Consider a 2n ×m lattice where the horizontal lines are connected pairwise
at the left boundary, as in Figure 2.9. Such a lattice is said to have a reflecting
end. Each pair of horizontal lines can be thought of as one single line turning
at a wall, i.e. each double line first has the positive direction to the left on the
lower part of the line, then turns and has the positive direction to the right on
the upper part of the line. The spectral parameters at the horizontal lines are
−λi on the lower part of a double line and λi on the upper part.

Each edge at the turn can have either spin +1 or −1, which in the case of
diagonal reflection (see Section 3.2) gives rise to two types of boundary weights,
k±, see Figure 2.10. Here the spin is conserved through the turn, meaning that
one spin arrow points inwards towards the lattice and the other arrow points
outwards. This is the case that we study in Paper I and II. It is also possible
to allow for turns that can absorb or create extra spin arrows, i.e. where both
arrows point in the same direction, see Figure 2.10. This means that the spin
changes in the turn. In the case where we do not allow for absorption of spin
arrows, but only for the other three types of turns, we get a triangular reflection
matrix (see (3.15)). This choice is considered in Paper III.

−λ

k+(λ, ζ)

−λ

k−(λ, ζ)

−λ

kc(λ, ζ)

−λ

ka(λ, ζ)

Figure 2.10: The possible boundary configurations and their boundary weights in the 6V model
with a reflecting end.

For the 8VSOS model with a diagonal reflection matrix, the boundary weights
depend on the height parameter outside the turn, which is the same for all
turns, i.e. if the height ρ is fixed in the upper left corner of the lattice, then all
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boundary weights depend on this parameter. In the general (non-diagonal)
case, the heights outside the turns along the reflecting boundary differ1. For
the 8VSOS model, we only consider diagonal reflection in this thesis. The
boundary weights also depend on the spectral parameter λi on the line, and
a fixed boundary parameter ζ ∈ C, which we can think of as sitting on the
reflective wall, see Figure 2.11. In the 8VSOS model, the weights k±(λi, ρ, ζ)
are elliptic functions, see (4.10). The 6V model with trigonometric weights
is recovered in the limit ρ → ∞ (some more technicalities are needed, see
Section 4).
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ρ

k+(λ, ρ, ζ)

−λ

ρ

ρ + 1

ρ

k−(λ, ρ, ζ)

Figure 2.11: The possible boundary configurations and their boundary weights for the reflecting
end in the 8VSOS model with a diagonal reflection matrix.

λi

µj

z

(a) w(λi − µj , z)
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z

(b) w(λi + µj , z)

Figure 2.12: The different vertices depending on the orientation of the row in the 8VSOS model
with a reflecting end, with spectral parameters λi and µj and height z.

The local vertex weights should always be read off with the positive directions
up and to the right. In the case of a reflecting end, we need to differentiate
between the vertices on the horizontal lines directed to the left and on those
directed to the right. The vertices in the upper part of a double row are those
depicted in Figure 2.6, and the vertices in the lower part are the same, but
tilted 90 degrees counterclockwise, as in Figure 2.12b. The weight of the vertex
in the upper part of a double row (see Figure 2.12a) is w(λi − µj , z), and for
the vertex in the lower part of a double row (see Figure 2.12b), the weight is
w(µj − (−λi), z) = w(λi + µj , z), where w is one of a±, b± or c±.

1In the general case, it seems better to define the weights to depend on the heights inside
the turns, to get commuting transfer matrices (cf. (3.13)) and to be able to find solutions for the
reflection equation (4.7), (see further [39]). For diagonal reflection it is equivalent to let the weights
depend on the heights outside the turn.
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Figure 2.13: A lattice with DWBC and a reflecting end in the case n = 3.

In Paper I and II, we consider the 8VSOS model with one diagonal reflecting
end and DWBC on the other three boundaries. Pictorially, in terms of arrows,
the DWBC are the same as in the case without the reflecting end, the arrows
point inwards on the top and bottom edges and outwards on the right boundary,
see Figure 2.13. In terms of spins on the horizontal double lines with alternating
orientation, this means that on the right boundary, we have spin −1 on the
lower part of every double line (where the positive direction is to the left), and
spin +1 on the upper part (with positive direction to the right). On the bottom,
the edges have spin +1, and on the top, the edges have spin −1. The ice rule
forces such a lattice to have n vertical lines and 2n horizontal lines.

In Paper III, we consider the 6V model on a 2n ×m lattice, m ≤ n, with one
triangular reflecting end and DWBC on the other three boundaries. On the
three boundaries with DWBC, the arrows are as in the 2n × n case. The ice
rule forces spin conservation at the vertices, so for a lattice of size 2n × m,
m ≤ n, with DWBC on three sides, we must allow for creation of arrows at the
reflecting end, i.e. two arrows pointing inwards towards the lattice. We also
allow for turns where the spins are conserved through the turn, such that one
arrow goes inwards and one arrow goes outwards. A lattice with this type of
boundary conditions is said to have DWBC and a partially reflecting end [17].

2.3 The three-color model

Another model on a square lattice is the three-color model, where the faces are
filled with three different colors, which we call color 0, 1, and 2, such that
adjacent faces have different colors. A weight ti is then assigned to each face
with color i. A state of the three-color model is called a three-coloring. Again,
the weight of a state is the product of the local weights. If we reduce the heights
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Figure 2.14: The DWBC and reflecting end for the three-color model of size n = 3, with colors 0, 1
and 2. The arrows on the edges show the corresponding boundary conditions in the 8VSOS model.

z = ρ + a of the faces in the 8VSOS model to a modulo 3, the states of the
8VSOS model can be identified with states of the three-color model, for which
the upper left corner has color 0 fixed. This bijection was found by Lenard
[25, (note added in the proof)], and the three-color model where each color is
given a weight was then introduced by Baxter [2]. The partition function of the
three-color model, with the color in the upper left corner fixed, is

Z3C
n (t0, t1, t2) =

∑
states

∏
faces

ti. (2.2)

In Paper I and II, we consider the three-color model on a square lattice with
(2n+1)×(n+1) faces, corresponding to a limit of the 8VSOS model with DWBC
and a reflecting end. For the three-color model, these boundary conditions
correspond to the following rules for the colors (see Figure 2.14). In the upper
left corner, we fix color 0. On three of the boundaries, the colors alternate
cyclically. Starting from the upper left corner, going to the right, the colors
increase in the order 0 < 1 < 2 < 0, to reach nmod3 in the upper right corner.
From there, going down, the colors decrease down to (−n)mod 3 in the lower
right corner. Continuing to the left, the colors increase again, up to 0 in the
lower left corner. On the left side, every second face has color 0. Inside the
turns the colors differ. A negative turn in the corresponding state of the 8VSOS
model corresponds to color 1, and a positive turn corresponds to color 2.

In Paper II, we are restricted to special cases of the three-color model, where
we also fix the colors along the second to last column on the right side. Starting
from the bottom of that column, the colors 0, 1 and 2 change in ascending order
modulo 3, except when it crosses the lth edge, where it decreases by 1mod 3 to
then continue in ascending order.
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(2n+1)×(n+1) faces, corresponding to a limit of the 8VSOS model with DWBC
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3 The six-vertex model

In this section, we focus on the six-vertex (6V) model and its connections to
alternating sign matrices and the XXZ spin chain. We start in the first two
sections by giving an algebraic description of the 6V model with different types
of boundary conditions important for this thesis. Thereafter we go through
the proof of Izergin–Korepin’s determinant formula for the partition function
in Section 3.3. In Section 3.4 and Section 3.5, we introduce alternating sign
matrices and discuss their connections to the 6V model, and in Section 3.6, we
turn the attention to the XXZ spin chain.

3.1 Algebraic description of the six-vertex model

λ1

λ2

λ3

µ1 µ2 µ3

Figure 3.1: The 6V model with DWBC and spectral parameters λi and µj , for n = 3.

Let qx = e2πiηx, where η /∈ Z is a fixed parameter. Throughout this section, let

[x] =
qx/2 − q−x/2

q1/2 − q−1/2
. (3.1)

Consider the (inhomogeneous) 6V model on an n× n lattice, as in Figure 3.1.
To each line in the lattice, assign a two-dimensional complex vector space V
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with basis vectors e+ and e−. The space V ⊗ V then has the four basis vectors
e+ ⊗ e+, e+ ⊗ e−, e− ⊗ e+ and e− ⊗ e−. Given a parameter λ ∈ C, define
operators R(λ) ∈ End(V ⊗ V ) by

R(λ)(eα ⊗ eβ) =
∑

α+β=α′+β′

w
(

β′

α α′
β

)
(λ)eα′ ⊗ eβ′ , (3.2)

where w
(

β′

α α′
β

)
(λ) is the weight a±(λ), b±(λ) or c±(λ) corresponding to a

vertex with spins α, β, α′, β′ on the surrounding edges as in Figure 2.2. The
operator is called the R-matrix and is given by

R(λ) =



a+(λ) 0 0 0

0 b+(λ) c−(λ) 0
0 c+(λ) b−(λ) 0
0 0 0 a−(λ)


 , (3.3)

where we take the weights to be parametrized as

a+(λ) = a−(λ) = [λ+ 1],

b+(λ) = b−(λ) = [λ],

c+(λ) = qλ/2, c−(λ) = q−λ/2. (3.4)

Remark 3.1. For DWBC, the weights above are equivalent to the symmetric case
where a+(λ) = a−(λ), b+(λ) = b−(λ), c+(λ) = c−(λ). This follows since the
difference between the number of c− vertices and c+ vertices is equal for all
states, see Section 3.4.

With this parametrization of the weights, the R-matrix satisfies the Yang–Baxter
equation (YBE) on V1 ⊗ V2 ⊗ V3 (where Vi are copies of V ), i.e.

R12(λ1 − λ2)R13(λ1 − λ3)R23(λ2 − λ3)

= R23(λ2 − λ3)R13(λ1 − λ3)R12(λ1 − λ2), (3.5)

where the indices indicate on which spaces the R-matrix acts, i.e.

R12(λ1 − λ2) = R(λ1 − λ2)⊗ Id, (3.6)

R23(λ2 − λ3) = Id ⊗R(λ2 − λ3). (3.7)

In the same way, R13 acts on the first and third space. To make the definition
precise, we first define a permutation operator P ∈ End(V ⊗ V ), by

P (eα ⊗ eβ) = eβ ⊗ eα. (3.8)
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Then

R13 = (Id ⊗ P )(R⊗ Id)(Id ⊗ P )

= (P ⊗ Id)(Id ⊗R)(P ⊗ Id). (3.9)

The YBE is depicted in Figure 3.2.

λ1 λ2 λ3

=

λ1 λ2 λ3

Figure 3.2: The Yang–Baxter equation.

The partition function of the 6V model with DWBC on an n× n lattice depends
on the spectral parameters λi and µj , and is given by

Zn(λ1, . . . , λn, µ1, . . . , µn) =
∑
states

∏
vertices

w(vertex), (3.10)

where w(vertex) is one of the local weights a±(λi−µj), b±(λi−µj) or c±(λi−µj).
It also depends implicitly on the parameter η.

Now consider one row of the lattice. Label the horizontal line by 0, and the
vertical lines by 1, . . . , n, as in Figure 3.3. Then we define the monodromy matrix
T0 ∈ End(V0 ⊗ · · · ⊗ Vn) as

T0(λ, µ1, . . . , µn) = R0n(λ− µn) · · ·R01(λ− µ1), (3.11)

where R0i(λ− µi) is acting on the 0th and ith space, defined in a similar way
as R13 in (3.9) above.

λ

µ1 µ2 µn

· · ·

Figure 3.3: The monodromy matrix.

Writing the monodromy matrix as a matrix in the horizontal space V0, we have

T0(λ, �µ) =

(
A(λ, �µ) B(λ, �µ)
C(λ, �µ) D(λ, �µ)

)

0

(3.12)
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A(λ, �µ) = λ

µ1 µ2 µn

· · · B(λ, �µ) = λ

µ1 µ2 µn

· · ·

C(λ, �µ) = λ

µ1 µ2 µn

· · · D(λ, �µ) = λ

µ1 µ2 µn

· · ·

Figure 3.4: The entries of the monodromy matrix in the horizontal space.

where A(λ, �µ), B(λ, �µ), C(λ, �µ) and D(λ, �µ) are matrices corresponding to fixed
spins on the left and right horizontal edges as in Figure 3.4.

Consider the 6V model with periodic boundary conditions on the horizontal
lines, i.e. the left and right horizontal edges have the same spin. Then only
A(λ, �µ) and D(λ, �µ) from the corresponding monodromy matrix (3.12) occur
in the partition function. Now introduce the transfer matrix as the trace of the
monodromy matrix in the horizontal space,

t(λ, �µ) = tr0T0(λ, �µ) = A(λ, �µ) +D(λ, �µ). (3.13)

Transfer matrices for any two rows commute, i.e. [t(λ, �µ), t(λ′, �µ)] = 0. This
follows from the YBE in a similar way as in the proof of Lemma 3.2 below. The
commutativity of transfer matrices provides a mathematical formulation of
quantum integrability for the 6V model. It is the main reason that the model is
exactly solvable.

3.2 Algebraic description of the six-vertex model
with a reflecting end

Consider the 6V model on a 2n × m lattice where the horizontal lines are
connected pairwise at the left boundary to form a double line, as in Figure 3.5.
To each double line of the lattice we associate a copy of the two-dimensional
vector space V , and define operators R(λ) ∈ End(V ⊗ V ) as in the previous
section.

To describe the reflecting boundary, fix a parameter ζ ∈ C and then define a
diagonal operator K(λ, ζ) ∈ End(V ), such that it satisfies the reflection equation
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Figure 3.5: The 6V model with DWBC and a reflecting end. The parameters µi and λi are the
spectral parameters.

for the R-matrix (3.3) on V0 ⊗ V0′ [38], i.e.

R00′(λ− λ′)K0(λ, ζ)R0′0(λ+ λ′)K0′(λ
′, ζ)

= K0′(λ
′, ζ)R00′(λ+ λ′)K0(λ, ζ)R0′0(λ− λ′), (3.14)

where K0(λ, ζ) = K(λ, ζ)⊗ Id and K0′(λ, ζ) = Id⊗K(λ, ζ), see Figure 3.6. The
operator is called the K-matrix.

−λ′

−λ =

−λ′
−λ

Figure 3.6: The reflection equation for the matrix K(λ, ζ).

The 6V model with a reflecting end is given by the R-matrix (3.3) which can be
parametrized by the weights (3.4), and the K-matrix

K(λ, ζ) =

(
k+(λ, ζ) kc(λ, ζ)
ka(λ, ζ) k−(λ, ζ)

)
, (3.15)

where the entries can be parametrized as

k+(λ, ζ) = q(ζ−λ)/2 [ζ + λ] , k−(λ, ζ) = q(ζ+λ)/2 [ζ − λ] , (3.16)
kc(λ, ζ) = ϕc [2λ] , ka(λ, ζ) = ϕa [2λ] , (3.17)

for fixed boundary parameters ζ, ϕc and ϕa. This yields a solution to the YBE
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18 3. The six-vertex model

(3.5) and the reflection equation (3.14). The weights correspond to the states as
in Figure 2.2 and in Figure 2.10. As seen in Figure 2.10, kc can be thought of as a
turn with creation of arrows and ka can be thought of as a turn with absorption
of arrows, hence the subscripts. For ϕa = ϕc = 0, we get a diagonal reflection
matrix. In Paper III, we consider the 6V model with a reflecting end with an
upper triangular K-matrix, i.e. where ϕa = 0, on a lattice of size 2n×m, m ≤ n
(with the weights parametrized slightly differently).

The partition function of the 6V model with DWBC and a reflecting end de-
pends on the vertex weights as well as on the boundary weights of the turns.
Let w(vertex) be the local weight of a vertex, which depends on the λi and µj

belonging to the lines passing through the vertex, and let w(turn) be the local
weight of a turn, which depends on the λi belonging to the line through the
turn and the boundary parameter ζ. Then the partition function is

Zn(λ1, . . . , λn, µ1, . . . , µm, ζ) =
∑
states

∏
vertices

w(vertex)
∏

turns

w(turn). (3.18)

Implicitly the partition function also depends on η, ϕa and ϕc. The mon-
odromy matrix and transfer matrix in the case of a reflecting end is discussed
in Section 4.1.

3.3 The Izergin–Korepin determinant formula

By establishing properties which together determine the partition function, and
then suggesting a formula which satisfies the conditions, Izergin and Korepin
found a determinant formula for the partition function of the 6V model with
DWBC. Korepin [21] found recurrence relations for the partition function,
which Izergin [19, 20] was able to solve in terms of a determinant formula. We
will now sketch the proof.

Lemma 3.2. The partition function Zn(λ1, . . . , λn, µ1, . . . , µn) of the 6V model with
DWBC is symmetric in the λi’s and the µj ’s respectively.

Proof. Consider two adjacent horizontal rows with spectral parameters λ and
λ′. Insert an extra vertex to the left of the lattice, as in Figure 3.7. Since we
have DWBC, this will be a vertex with weight a+(λ− λ′). By the YBE, the extra
vertex can be moved through the whole lattice and end up to the right, where
it can be removed. On the right side, the extra vertex has the weight a−(λ− λ′).
Since a+(λ) = a−(λ) �= 0, this procedure switches the λ and the λ′. The same
argument applies to the µj ’s.

3.3. The Izergin–Korepin determinant formula 19

a+(λ− λ′) ×

1 2 n

λ

λ′

· · ·

· · ·
=

1 2 n

λ′

λ

· · ·

· · ·

=

1 2 n

λ′

λ

· · ·

· · ·
=

1 2 n

λ′

λ

· · ·

· · ·
× a−(λ− λ′)

Figure 3.7: In case of DWBC, an extra vertex can be moved through the lattice by using the YBE.

The argument in the proof above is sometimes called the train argument.

Lemma 3.3 (Korepin). Specifying λi = µj , or λi = µj − 1, yields a recurrence
relation for the partition function.

Proof. First specify λ1 = µ1. Then for any state with nonzero weight, the
vertex in the lower left corner must be a c− vertex, because of the ice rule.
This happens because a± vertices are not possible in that corner, and terms
including b±(0) disappear. With this specification, the rest of the bottom row
must have a+ vertices and the left column must have a− vertices. In this way,
a part of the lattice is frozen. The remaining lattice is now an (n− 1)× (n− 1)
lattice with DWBC. Hence

Zn(�λ, �µ) = c−(0)

n∏
k=2

a−(λk − µ1)a+(λ1 − µk)

× Zn−1(λ2, . . . , λn, µ2, . . . , µn). (3.19)

Similarly if λn = µ1 − 1, then

Zn(�λ, �µ) = c−(−1)

n−1∏
k=1

b−(λk − µ1)

n∏
k=2

b+(λn − µk)

× Zn−1(λ1, . . . , λn−1, µ2, . . . , µn). (3.20)

The general case follows by the symmetries in Lemma 3.2.

Lemma 3.4. The normalized partition function qnλn/2Zn(�λ, �µ) is a polynomial in
qλn of degree at most n− 1.
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Proof. The only row containing qλn is the upper row. Multiplying all weights
in the upper row by qλn/2, these new weights are linear in qλn (if qλn appears
in the weight at all). Hence the normalized partition function is a polynomial
in qλn . In the upper row, there is exactly one c− vertex, and the rest of the
vertices in the upper row are a− or b+ vertices. Multiplying the weight of the
c− vertex with qλn/2, yields a constant (seen as a polynomial in qλn), so the
polynomial has degree at most n− 1.

The partition function for a system of size n = 1 has only one term. By
Lagrange interpolation it is possible to determine Zn(�λ, �µ) inductively. Because
of the degree of the normalized partition function, one needs n points for the
Lagrange interpolation. The recurrence relations of Lemma 3.3 are enough to
determine the general partition function. Izergin [19, 20] solved this recurrence
relation.

Theorem 3.5 (Izergin, Korepin). The partition function of the 6V model with DWBC
is given by

Zn(λ1, . . . , λn, µ1, . . . , µn)

=

∏n
i=1 q

(µi−λi)/2
∏n

i,j=1([λi − µj ][λi − µj + 1])∏
1≤i,j≤n([λi − λj ][µj − µi])

det
1≤i,j≤n

K, (3.21)

where
Kij =

1

[λi − µj ][λi − µj + 1]
. (3.22)

With the same method, Tsuchiya [41] was able to find a determinant formula
for the partition function of the 6V model with DWBC and a reflecting end. It
was generalized to the 8VSOS model by Filali [15], see Theorem 4.6. In Paper III,
we use the Izergin–Korepin method to find a determinant formula for the 6V
model with DWBC and a partially reflecting end for a lattice of size 2n×m, for
m ≤ n.

3.4 Alternating sign matrices

An alternating sign matrix (ASM) is a matrix with entries −1, 0, 1, such that in
each row and each column, the nonzero entries have alternating signs, and the
sum of the entries in each row and each column is 1. This means that the first
and last nonzero entry of each row and each column is 1. In particular, the first
and last row and column have exactly one nonzero entry each.
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Kuperberg [22] studied the bijection between ASMs and the states of the 6V
model with DWBC. In the 6V model, focus on the vertices with weights c±. The
c+ and c− vertices must alternate, and for DWBC, each row and each column
must have one more c− vertex than c+ vertices. Now consider the mapping
from a state of the n × n lattice with DWBC to an n × n matrix, where each
entry of the matrix corresponds to a vertex of the lattice in such a way that a
c− vertex is mapped to +1, a c+ vertex is mapped to −1, and all other vertices
are mapped to 0, see Figure 3.8. This mapping is a bijection from the states
of the 6V model with DWBC to the ASMs, the ice rule determines the inverse
uniquely.

←→



0 1 0 0
1 −1 1 0
0 0 0 1
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

Figure 3.8: The bijection between a state of the 6V model with DWBC and an ASM.

Mills, Robbins and Rumsey [27] conjectured an expression for the number of
ASMs.

Theorem 3.6 (Zeilberger). The number of n× n ASMs is

An =

n−1∏
k=0

(3k + 1)!

(n+ k)!
. (3.23)

Zeilberger [42] proved the ASM conjecture, and Kuperberg [22] gave another,
much simpler proof, using the 6V model.

In any n×n state of the 6V model with DWBC, the number of a+ vertices and a−
vertices are equal, the number of b+ vertices and b− vertices are equal as well,
and there are always n more c− vertices than c+ vertices, see [9, Section 7.1].
By specializing η = −2/3, λi = −1/2 and µj = 0, Kuperberg was able to
count the number of ASMs. In this case, the partition function only depends
on (c−(1/2))

n = qn/4. All other factors appear in pairs which cancel each
other. Hence q−n/4Zn(−1/2, . . . ,−1/2, 0, . . . , 0) counts the number of states.
Unfortunately, this specification of the λi’s and µj ’s makes the Izergin–Korepin
determinant of Theorem 3.5 singular. Therefore Kuperberg instead considered
the partition function for λi = −1/2 + iε and µj = (1− j)ε. In this situation he
could compute the determinant explicitly. In the limit ε → 0, the formula in
Theorem 3.6 follows.
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∏n
i=1 q

(µi−λi)/2
∏n

i,j=1([λi − µj ][λi − µj + 1])∏
1≤i,j≤n([λi − λj ][µj − µi])

det
1≤i,j≤n

K, (3.21)

where
Kij =

1

[λi − µj ][λi − µj + 1]
. (3.22)

With the same method, Tsuchiya [41] was able to find a determinant formula
for the partition function of the 6V model with DWBC and a reflecting end. It
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3.4 Alternating sign matrices

An alternating sign matrix (ASM) is a matrix with entries −1, 0, 1, such that in
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3.5 U-turn alternating sign matrices

In addition to the usual ASMs, Kuperberg [23] investigated several other types
of ASMs connected to different types of boundary conditions, among them,
the U-turn alternating sign matrices (UASMs) which generalize the vertically
symmetric alternating sign matrices (VSASMs).

A UASM is a 2n×n ASM with a U-turn on the left side. More precisely, consider
matrices consisting of elements 0, −1 and 1, such that the nonzero elements
alternate in signs vertically and horizontally. The sum of the elements of each
column is 1. Horizontally, connect the rows pairwise on the left side to form a
double row, see Figure 3.9. A row may consist of only zeroes. If a row has any
nonzero elements, the rightmost of these must be 1. The signs alternate if we
read the (2k − 1)th row from right to left, and then continue to read the 2kth
row from left to right. Hence the sum of the elements in a double row must
be 1.

1 0 0
−1 1 0
0 −1 1
1 0 0
0 1 0
0 0 0




Figure 3.9: A U-turn ASM.

A VSASM is an n× n ASM, whose entries are mirrored in the middle column,
see Figure 3.10. The symmetry forces n to be odd and the middle column to
consist of alternating 1’s and −1’s, without any 0’s. Since the middle column is
always the same, we can ignore it and only consider the pattern on the right
half. The top row of this half matrix consists of 0’s so we can ignore it as well. In
this way, a VSASM can be viewed as a special case of UASMs, see Figure 3.10.




0 0 0 1 0 0 0
0 0 1 −1 1 0 0
1 0 −1 1 −1 0 1
0 0 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0




Figure 3.10: A vertically symmetric ASM. The boldface black part shows the corresponding UASM.
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There is a bijection between the UASMs and the states of the 6V model with
DWBC and a (diagonal) reflecting end. In the 6V model with DWBC and a
reflecting end, consider only the c± vertices. As in the 6V model with DWBC
but without reflecting end, the vertices with weight c+ and c− must alternate.
Look at a double row. On the upper part of each double row, the rightmost
c± vertex must be a c−, if the row has any c± vertices at all. On the lower part
of each double row, the rightmost c± vertex must be a c+, if the row has any
c± vertices at all, see further the proof of Lemma 3.1 in Paper I. Furthermore
the leftmost c± vertices (if any at all) can only be c+ vertices at a k+ turn, or
c− vertices at a k− turn. This suggests that in the bijection to the UASMs, c−
in the upper part of a double row corresponds to 1, and c+ corresponds to −1.
On the lower part of a double row, c+ corresponds to 1, and c− corresponds
to −1. In this way the signs will alternate along a double row, see Figure 3.11.
The states where all turns are negative correspond to the VSASMs.

←→

1 0 0
−1 1 0
0 −1 1
1 0 0
0 1 0
0 0 0




Figure 3.11: The bijection between a state of the 6V model with DWBC and one reflecting end and
a UASM.

In Paper III we consider a sort of generalized ASMs, by loosening the condi-
tions that have to hold. Consider matrices of size 2n ×m, m ≤ n, consisting
of elements 0, −1 and 1, such that the nonzero elements alternate in signs
vertically and horizontally. Connect the rows pairwise on the left edge to form
a double row. The sum of the elements of each column is 1, as for ASMs and
UASMs. Horizontally however, we change the conditions. A double row may
consist of only zeroes. If a row has any nonzero elements, the rightmost of
these must be 1. In this way, the objects are UASMs from the right, but at the
turn, the signs of the nonzero elements do not necessarily need to switch when
going from one row to the next, see Figure 3.12. The sum of the entries in a
double row have to be 0 or 1. Equivalently, a double row can not consist of
two rows both having 1 as their leftmost nonzero element (however both of
the leftmost nonzero elements could be −1). In the case m = n, the sum of the
elements in each double row is forced to be 1, and we get the UASMs.
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Figure 3.9: A U-turn ASM.
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consist of alternating 1’s and −1’s, without any 0’s. Since the middle column is
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half. The top row of this half matrix consists of 0’s so we can ignore it as well. In
this way, a VSASM can be viewed as a special case of UASMs, see Figure 3.10.
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Figure 3.10: A vertically symmetric ASM. The boldface black part shows the corresponding UASM.
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There is a bijection between the UASMs and the states of the 6V model with
DWBC and a (diagonal) reflecting end. In the 6V model with DWBC and a
reflecting end, consider only the c± vertices. As in the 6V model with DWBC
but without reflecting end, the vertices with weight c+ and c− must alternate.
Look at a double row. On the upper part of each double row, the rightmost
c± vertex must be a c−, if the row has any c± vertices at all. On the lower part
of each double row, the rightmost c± vertex must be a c+, if the row has any
c± vertices at all, see further the proof of Lemma 3.1 in Paper I. Furthermore
the leftmost c± vertices (if any at all) can only be c+ vertices at a k+ turn, or
c− vertices at a k− turn. This suggests that in the bijection to the UASMs, c−
in the upper part of a double row corresponds to 1, and c+ corresponds to −1.
On the lower part of a double row, c+ corresponds to 1, and c− corresponds
to −1. In this way the signs will alternate along a double row, see Figure 3.11.
The states where all turns are negative correspond to the VSASMs.
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Figure 3.11: The bijection between a state of the 6V model with DWBC and one reflecting end and
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In Paper III we consider a sort of generalized ASMs, by loosening the condi-
tions that have to hold. Consider matrices of size 2n ×m, m ≤ n, consisting
of elements 0, −1 and 1, such that the nonzero elements alternate in signs
vertically and horizontally. Connect the rows pairwise on the left edge to form
a double row. The sum of the elements of each column is 1, as for ASMs and
UASMs. Horizontally however, we change the conditions. A double row may
consist of only zeroes. If a row has any nonzero elements, the rightmost of
these must be 1. In this way, the objects are UASMs from the right, but at the
turn, the signs of the nonzero elements do not necessarily need to switch when
going from one row to the next, see Figure 3.12. The sum of the entries in a
double row have to be 0 or 1. Equivalently, a double row can not consist of
two rows both having 1 as their leftmost nonzero element (however both of
the leftmost nonzero elements could be −1). In the case m = n, the sum of the
elements in each double row is forced to be 1, and we get the UASMs.
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1 0
0 0
−1 1
0 0
1 0
0 0




1 0
0 0
0 0
−1 1
1 0
0 0




1 0 0
0 0 0
0 1 0
0 0 0
0 −1 1
−1 1 0
1 0 0
0 0 0




0 0
0 0
0 1
1 0
0 0
0 0




Figure 3.12: The three matrices on the left are generalized UASMs of the type we consider. The
rightmost matrix is not allowed in our setting.

3.6 The XXZ spin chain

•
s1

•
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•s3

•
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• sn−1

•
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Figure 3.13: A spin chain of length n with spins sj and periodic boundary conditions.

Consider a one-dimensional lattice with n sites. Let Vj = C2 be a vector
space with the standard basis e+ and e−, belonging to the jth site of the chain.
Associate ↑ (spin up) with e+, and ↓ (spin down) with e−. Let Hn = V1⊗· · ·⊗Vn

be the Hilbert space of the whole spin chain, with tensor products of e+ and
e− as basis. We denote the basis elements es1 ⊗ · · · ⊗ esn with bra-ket notation
as |s1 . . . sn〉 where sj ∈ {↑, ↓}. Let

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.24)

be the Pauli matrices with respect to the standard basis, such that σze± = ±e±.
Let σ(j)

x , σ(j)
y , and σ

(j)
z be the Pauli matrices acting on the jth site of the spin

chain, e.g. σ(j)
x = Id⊗(j−1)⊗σx⊗ Id⊗(n−j), where Id is the 2×2 identity matrix.

Impose periodic boundary conditions, such that σ(n+j)
x = σ

(j)
x , σ(n+j)

y = σ
(j)
y ,

and σ
(n+j)
z = σ

(j)
z . We can think of this periodic spin chain as n quantum

particles of spin 1/2 on a circle, as in Figure 3.13.
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The XXZ spin chain is defined by the Hamiltonian

HXXZ = −1

2

n∑
j=1

(
σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y +∆σ(j)
z σ(j+1)

z

)
. (3.25)

For ∆ = q+q−1

2 , the XXZ-Hamiltonian HXXZ commutes with the transfer matrix
t of the homogeneous 6V model (i.e. µi = µj for all 1 ≤ i, j ≤ n).

3.6.1 Supersymmetry

We do not use supersymmetry in this thesis, but we mention it since it gives
a physical motivation to why the case ∆ = −1/2 is important. Consider
∆ = −1/2 (given by η = −2/3). Let Tn be the translation operator acting on
the basis elements in Hn as

Tn |s1 . . . sn−1sn〉 = |sns1 . . . sn−1〉 . (3.26)

Consider a state with Tn |Ψ〉 = tn |Ψ〉. Since Tn
n = Id, the eigenvalue tn is an

nth root of unity. Now introduce operators qj : Hn → Hn+1, 0 ≤ j ≤ n, which
act on site j as

qj |s1 · · · sj−1 ↑ sj+1 · · · sn〉 = 0, (3.27)

qj |s1 · · · sj−1 ↓ sj+1 · · · sn〉 = (−1)j−1 |s1 · · · sj−1 ↑ ↑ sj+1 · · · sn〉 , (3.28)

for 1 ≤ j ≤ n, i.e. basis elements with ↑ at site j are canceled by qj , whereas a ↓
at site j is changed to ↑ ↑. Because of this, the spins sj+1 · · · sn are shifted one
step to the right. Because of the periodic boundary conditions, we also need to
introduce

q0 |s1 · · · sn−1 ↑〉 = 0, (3.29)
q0 |s1 · · · sn−1 ↓〉 = − |↑ s1 · · · sn−1 ↑〉 . (3.30)

Like qn, this operator acts on the last site of the spin chain. It cancels an element
with ↑ on the last site, whereas a ↓ is changed to a pair ↑ ↑ on site n+ 1 and 1.

Let Wn be the subspace of Hn consisting of eigenvectors |φ〉 for Tn with eigen-
value (−1)n+1, i.e.

Wn = {|φ〉 ∈ Hn : Tn |φ〉 = (−1)n+1 |φ〉}. (3.31)
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Consider a state with Tn |Ψ〉 = tn |Ψ〉. Since Tn
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nth root of unity. Now introduce operators qj : Hn → Hn+1, 0 ≤ j ≤ n, which
act on site j as
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for 1 ≤ j ≤ n, i.e. basis elements with ↑ at site j are canceled by qj , whereas a ↓
at site j is changed to ↑ ↑. Because of this, the spins sj+1 · · · sn are shifted one
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q0 |s1 · · · sn−1 ↓〉 = − |↑ s1 · · · sn−1 ↑〉 . (3.30)
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Define an operator Qn : Hn → Hn+1, called a supercharge, by

Qn =




(
n

n+1

)1/2 ∑n
j=0 qj on Wn,

0 on Hn \Wn.
(3.32)

These operators decrease the number of down pointing spins. Now define the
adjoint supercharge Q†

n : Hn+1 → Hn as the Hermitian conjugate of Qn by
〈φn|Q†

n |φn+1〉 = 〈φn+1|Qn |φn〉∗, where |φn〉 ∈ Hn and |φn+1〉 ∈ Hn+1. Both
Qn and Q†

n are “nilpotent”, in the sense that Qn+1Qn = 0 and Q†
nQ

†
n+1 = 0.

Restricted to Wn, the XXZ-Hamiltonian can be written in terms of an “anticom-
mutator” of the supercharges and adjoint supercharges,

HXXZ = Qn−1Q
†
n−1 +Q†

nQn + E0, (3.33)

where E0 = −3n/4 is the ground state eigenvalue of HXXZ. In this case, the
spin chain is called supersymmetric. For further details, see [14, 18].

3.6.2 Components of the ground state eigenvectors

Consider spin chains of odd length n = 2k + 1 with ∆ = −1/2. In this case,
the eigenvalues of the XXZ-Hamiltonian are (at least) doubly degenerate. In
particular, there are two ground state eigenvectors

HXXZ |Ψ±〉 = E0 |Ψ±〉 . (3.34)

Because of parity symmetry, it is enough to consider the eigenvector |Ψ−〉,
which is the ground state eigenvector for which all nonzero components have
an odd number of down spins. The number of down spins is k for odd k, and
k+1 for even k. Denote the coefficients of |s1 . . . sn〉 in the components of |Ψ−〉
by Ψs1···sn , where sj ∈ {↑, ↓}. Normalize |Ψ−〉 so that
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This turns out to be the smallest nonzero component. Razumov and Stroganov
[29] conjectured that the largest component,

Ψ↑↑↓↑↓···↑↓, for odd k, and Ψ↑↓···↑↓↑↓↓, for even k, (3.36)

is given by Ak which is the number of ASMs of size k × k (see Theorem 3.6).
Furthermore they stated conjectures about the sum of the components and the
sum of the squares of the components. All these numbers seem to be counting
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ASMs in different ways. These conjectures have now been proven [33, 12].

The study of related problems eventually led to the famous Razumov-
Stroganov conjecture [30], which was proven by Cantini and Sportiello [10]. It
gives a combinatorial interpretation of the ground state for the XXZ spin chain
of even length with twisted periodic boundary conditions by relating it to so
called fully packed loops, see e.g. [44].
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4 The eight-vertex SOS model

In this section, we focus on the eight-vertex (8V) solid-on-solid (SOS) model,
which is a generalization of the 6V model. In the first two sections, we give
an algebraic description of the 8VSOS model with domain wall boundary
conditions (DWBC) and a reflecting end, and summarize the proof of Filali’s
determinant formula for the partition function. Then we discuss the connec-
tions to the three-color model in Section 4.3.

4.1 Algebraic description of the 8VSOS model with
a reflecting end

Let p = e2πiτ and q = e2πiη , where τ and η are fixed parameters with Im(τ) > 0
and η /∈ Z + τZ. By qx we mean e2πiηx, and when we write p1/2, we mean
p1/2 = eπiτ . Define the theta function

ϑ(x, p) =
∞∏
j=0

(1− pjx)(1− pj+1/x). (4.1)

We will often suppress the p and write ϑ(x) := ϑ(x, p), and write out the second
parameter only when it is not just p. Define the short hand notation

[x] = q−x/2ϑ(qx). (4.2)

When p = 0, we get ϑ(x) = 1 − x, and [x] = q−x/2 − qx/2 as in (3.1) (up to a
constant). There are several useful identities for the theta functions, including

ϑ(x2) = ϑ(x)ϑ(−x)ϑ(p1/2x)ϑ(−p1/2x), (4.3)

29
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and the addition rule

ϑ(x1x3)ϑ(x1/x3)ϑ(x2x4)ϑ(x2/x4)− ϑ(x1x4)ϑ(x1/x4)ϑ(x2x3)ϑ(x2/x3)

=
x2

x3
ϑ(x1x2)ϑ(x1/x2)ϑ(x3x4)ϑ(x3/x4), (4.4)

where x, x1, x2, x3, x4 are arbitrary.

Consider the 8VSOS model on a 2n× n lattice where the horizontal lines are
connected pairwise at the left boundary, as in Figure 3.5. As in Section 3.1,
assign a two-dimensional vector space V to each line. Given parameters
ρ, λ ∈ C, define operators R(λ, qρ) ∈ End(V ⊗ V ) by

R(λ, qρ)(eα ⊗ eβ) =
∑

α+β=α′+β′

w
(

β′

α α′
β

)
(λ, qρ)eα′ ⊗ eβ′ , (4.5)

where w
(

β′

α α′
β

)
(λ, qρ) is one of the weights a±(λ, q

ρ), b±(λ, qρ) or c±(λ, q
ρ)

belonging to a vertex with spins α, β, α′, β′ on the surrounding edges as in
Figure 2.1. Similarly as for the 6V model, it is possible to define this operator
in a way such that it satisfies the dynamical Yang–Baxter equation (DYBE) on
V1 ⊗ V2 ⊗ V3 (where each Vi is a copy of V ) [13], i.e.

R12(λ1 − λ2, q
ρ−σ(3)

z )R13(λ1 − λ3, q
ρ)R23(λ2 − λ3, q

ρ−σ(1)
z )

= R23(λ2 − λ3, q
ρ)R13(λ1 − λ3, q

ρ−σ(2)
z )R12(λ1 − λ2, q

ρ), (4.6)

where Rij are defined similarly as in Section 3.1, and where σ
(i)
z is the third

Pauli operator acting on the basis vectors of the ith space, i.e. σze± = ±e±. The
DYBE depends on the spectral parameters as well as the heights, see Figure 4.1.

λ1 λ2 λ3

ρ =

λ1 λ2 λ3

ρ

Figure 4.1: The dynamical Yang–Baxter equation.

Fix a parameter ζ ∈ C. To describe the reflecting boundary, define a diagonal
operator K(λ, qρ, qζ) ∈ End(V ). Similar to how we did for the 6V model with
a reflecting end, we can define the matrix K(λ, qρ, qζ) such that it satisfies the
dynamical reflection equation on V0 ⊗ V0′ , i.e. [38, 8]

4.1. Algebraic description of the 8VSOS model with a reflecting end 31

R00′(λ− λ′, qρ)K0(λ, q
ρ, qζ)R0′0(λ+ λ′, qρ)K0′(λ

′, qρ, qζ)

= K0′(λ
′, qρ, qζ)R00′(λ+ λ′, qρ)K0(λ, q

ρ, qζ)R0′0(λ− λ′, qρ), (4.7)

where K0(λ, q
ρ, qζ) = K(λ, qρ, qζ) ⊗ Id and K0′(λ, q

ρ, qζ) = Id ⊗ K(λ, qρ, qζ),
see Figure 4.2.

−λ′

−λ

ρ

=

−λ′
−λ

ρ

Figure 4.2: The dynamical reflection equation for the matrix K(λ, qρ, qζ).

The weights of the 8VSOS model are given in terms of theta functions. The
8VSOS model with a reflecting end is given by the following solutions of (4.6)
[5] and (4.7) [8]:

R(λ, qρ) =



a+(λ, q

ρ) 0 0 0
0 b+(λ, q

ρ) c−(λ, q
ρ) 0

0 c+(λ, q
ρ) b−(λ, q

ρ) 0
0 0 0 a−(λ, q

ρ)


 , (4.8)

and

K(λ, qρ, qζ) =

(
k+(λ, q

ρ, qζ) 0
0 k−(λ, q

ρ, qζ)

)
, (4.9)

where the entries can be parametrized by

a+(λ, q
ρ) = a−(λ, q

ρ) =
[λ+ 1]

[1]
,

b+(λ, q
ρ) =

[λ][ρ− 1]

[ρ][1]
, b−(λ, q

ρ) =
[λ][ρ+ 1]

[ρ][1]
,

c+(λ, q
ρ) =

[ρ+ λ]

[ρ]
, c−(λ, q

ρ) =
[ρ− λ]

[ρ]
,

k+(λ, q
ρ, qζ) =

[ρ+ ζ − λ]

[ρ+ ζ + λ]
, k−(λ, q

ρ, qζ) =
[ζ − λ]

[ζ + λ]
. (4.10)

These functions correspond to the states as in Figure 2.6 and in Figure 2.11.

Remark 4.1. To keep it simple in Section 2.1, we defined the weights as w(λ, z)
and k±(λ, z, ζ), without introducing q. Here we have defined these weights as
w(λ, qz) and k±(λ, q

z, qζ) instead, as it seems better for Paper I and II.
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Remark 4.2. In general, K(λ, qρ, qζ) does not need to be diagonal, but in this
thesis we only consider diagonal matrices K(λ, qρ, qζ).

Remark 4.3. In the trigonometric limit, i.e. letting p → 0, and then qρ → ∞, the
elliptic weights become essentially the trigonometric weights in (3.4) and (3.16)
(some more technicalities are needed to make the relation precise).

The partition function of the 8VSOS model with DWBC and a reflecting end
depends on the vertex weights as well as on the boundary weights of the turns.
Let w(vertex) be the local weight of a vertex, which depends on the λi and µj

belonging to the lines passing through the vertex and on the heights of the
adjacent faces, and let w(turn) be the local weight of a turn, which depends on
the λi belonging to the line through the turn, the height outside the turn and
the boundary parameter ζ. Fix the reference height in the upper left corner to
be ρ. Then the partition function can be defined as

Zn(q
λ1 , . . . , qλn , qµ1 , . . . , qµn , qρ, qζ) =

∑
states

∏
vertices

w(vertex)
∏

turns

w(turn).

(4.11)
Implicitly the partition function also depends on η and τ .

Remark 4.4. One needs to check that the partition function is well-defined, i.e.
that specifying qλi and qλi+1/η yield the same results, and likewise for µj , ρ
and ζ. The weights contain factors q−x/2 = e−πiηx, for x = λi, µj , ρ and ζ, but
q−(x+1/η)/2 = −q−x/2, so one needs to be careful. The proof is included in
Paper I (Section 2.2).

λ

µ1 µ2 µn

· · ·
ρ

Figure 4.3: The monodromy matrix.

−λ

µ1 µ2 µn

· · ·
ρ

Figure 4.4: The opposite monodromy matrix.

To define the transfer matrix, we need a double row monodromy matrix, which
is created as follows. Define the monodromy matrix

T0(λ, µ1, . . . , µn, q
ρ) = R0n(λ− µn, q

ρ−
∑n−1

i=1 σ(i)
z ) · · ·R01(λ− µ1, q

ρ), (4.12)

as in Figure 4.3, and the opposite monodromy matrix

T 0(λ, µ1, . . . , µn, q
ρ) = R10(µ1 + λ, qρ) · · ·Rn0(µn + λ, qρ−

∑n−1
i=1 σ(i)

z ), (4.13)

as in Figure 4.4.
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Then we define the double row monodromy matrix by

T0(λ, µ1, . . . , µn, q
ρ, qζ)

= T0(λ, µ1, . . . , µn, q
ρ)K(λ, qρ, qζ)T 0(λ, µ1, . . . , µn, q

ρ), (4.14)

as in Figure 4.5. Commuting double row transfer matrices are then obtained
by multiplying the double row monodromy matrix by a second K-matrix
associated to a boundary on the right, and then taking the trace over V0 (see
[38] for details).

−λ·

·

·

·

·

·

µ1 µ2 µn

ρ

ρ

Figure 4.5: The double row monodromy matrix

4.2 Filali’s determinant formula

By following the Izergin–Korepin method of Section 3.3, Filali [15] could find
a determinant formula for the partition function of the 8VSOS model with
DWBC and a reflecting end, i.e. by determining properties which together
define the partition function in a unique way, and then suggesting a formula
which satisfies the conditions. The following conditions hold true for the
partition function of the 8VSOS model with DWBC and a reflecting end.

(i) The partition function of the 8VSOS model with DWBC and a reflecting
end is symmetric in the λi’s and in the µj ’s respectively.

Proof. The symmetry in the µj ’s is proven with the DYBE in the same
way as in Lemma 3.2. The alternating orientations on the horizontal lines
do not affect the train argument. To prove the symmetry in the λi’s, we
add two extra vertices on the right, as in Figure 4.6. The vertices can then
be pulled through each other in a similar way as in Lemma 3.2, using the
DYBE and the reflection equation. Because of the boundary conditions
and the ice rule, the extra vertices give rise to two extra factors on each
side of the equation, see Figure 4.6. Since a+(λ, q

ρ) = a−(λ, q
ρ), the extra

factors cancel.
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(ii) For n = 1, the partition function is just a sum of two terms, since there
are only two possible states.

(iii) Specializing λn = µn in the partition function for a 2n× n lattice yields
a recurrence relation for Zn. In the same way, λ1 = −µn yields another
recurrence relation. By the symmetry in (i), any specialization λi = ±µj

yields a recurrence relation.

Definition 4.5. Fix η and τ . Then f is a theta function of order n and norm t in
the variable x if there exist constants a1, . . . , an and C with a1 + · · ·+ an = t,
such that f(x) = C[x− a1] · · · [x− an].

(iv) The normalized partition function

Z̃n(q
λ1 , . . . , qλn , qµ1 , . . . , qµn , qρ, qζ)

=
n∏

i=1

[ρ+ ζ + λi][ρ+ λi]

[2λi]
Zn(q

λ1 , . . . , qλn , qµ1 , . . . , qµn , qρ, qζ) (4.15)

is a theta function of order 2n − 2 and norm n − 1 as a function of the
variable λi.

Idea of proof. To find the order, check that each vertex weight has one
factor [λi − a], for some a, which together have order 2n in λi. Each turn
has one such factor in the numerator, and a factor [ρ+ ζ + λi] or [ζ + λi]
in the denominator which is canceled by one of the prefactors in the
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normalized partition function. The denominator of the prefactor together
with the turns add 2 to the order. As we explain below, one can prove
that the partition function is divisible by [2λi]. We can rewrite [2λi] with
(4.3) and thus realize that each such factor has order 4. All of this sums
up to 2n− 2.

To find the norm, and to prove that the partition function is divisible
by [2λi]. Filali uses an argument with a change of basis and a Drinfel’d
twist. Alternatively, both these properties follow immediately from the so
called crossing symmetry of the partition function under transformations
λi → −λi − 1. A proof of this symmetry is given in [24].

Because of (iv), the partition function is completely determined by its values
in 2n − 2 independent points: The order yields that it is enough to specify
2n− 1 points, and because of the norm, one of these points is dependent on the
others so we need one point less. By (iii), there are enough points λi = ±µj for
which we can find recurrence relations. Hence by induction, starting at n = 1,
it follows that the partition function is uniquely determined.

In [15], Filali presented a determinant formula for the partition function. The
formula can be proven by checking (i) –(iv) above.

Theorem 4.6 (Filali). The partition function of the 8VSOS model with DWBC and a
reflecting end is

Zn(q
λ1 , . . . , qλn , qµ1 , . . . , qµn , qρ, qζ)

= [1]n−2n2
n∏

i=1

[2λi][ζ − µi][ρ+ ζ + µi][ρ+ (2i− n− 2)]

[ζ + λi][ρ+ ζ + λi][ρ+ (n− i)]

×
∏n

i,j=1[λi + µj + 1][λi − µj + 1][λi + µj ][λi − µj ]∏
1≤i<j≤n[λi + λj + 1][λi − λj ][µj + µi][µj − µi]

det
1≤i,j≤n

K, (4.16)

where
Kij =

1

[λi + µj + 1][λi − µj + 1][λi + µj ][λi − µj ]
. (4.17)

4.3 The 8VSOS model and the three-color model

By specializing the parameters in the determinant formula for the partition
function of the 6V model with DWBC, Kuperberg found an enumeration of
the ASMs. With the same specialization in the partition function of the 8VSOS
model with DWBC (no reflecting end), Rosengren [34] found an expression
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for the partition function of the three-color model with the same boundary
conditions.

To get a partition function invariant under translations with 1/η in the variables
λi, µi and ρ, Rosengren defines the normalized partition function

Z̃(qλ1 , . . . , qλn , qµ1 , . . . , qµn , qρ) = qn
∑n

i=1(λi+µi)/2
∑
states

∏
vertices

w(vertex),

(4.18)
with the vertex weights w(vertex) defined as in Section 4.1. Taking out some
factors from the vertex weights into a prefactor, it is possible to write the
remaining part of the vertex weight as a function depending only on the
adjacent faces, and not on the type of vertex. Let ρ be the reference height in
the upper left corner of the lattice and define ρ̃ = qρ. Specialize η = −2/3,
λi = −1/2 and µj = 0. Define ω = e2πi/3. Then the partition function (4.18)
specializes to

Z̃(ω, . . . , ω, 1, . . . , 1, ρ̃) = ω(
n+1
2 )ϑ(ρ̃3, p3)n

2 ∑
states

∏
vertices

1

ϑ(ρ̃ωa)ϑ(ρ̃ωb)ϑ(ρ̃ωd)
,

(4.19)
where a, b, d are the heights on three of the four adjacent faces of each vertex.
Hence in all states, each face in the interior of the lattice gives rise to three
factors 1/ϑ(ρ̃ωa). On the boundaries, each face gives rise to a different number
of factors, but because of the boundary conditions, this contribution is the
same in all states and one can compute the contribution explicitly. Finally the
partition function becomes

Z̃(ω, . . . , ω, 1, . . . , 1, ρ̃) = ω(
n+1
2 )ϑ(ρ̃

3, p3)n
2+2n+2ϑ(ρ̃ωn)

ϑ(ρ̃ω2)2ϑ(ρ̃ωn+1)2

∑
states

∏
faces

1

ϑ(ρ̃ωa)3
.

(4.20)
By specifying ta = 1/ϑ(ρ̃ωa)3, the sum yields the partition function of the
three-color model. As a corollary, Rosengren could find the probability that a
random face of a random state of the three-color model has color a. In Paper I,
we do the above (except for Rosengren’s corollary) for the 8VSOS model with
DWBC and a reflecting end.

5 Special polynomials

In Section 3, we saw that the XXZ spin chain for ∆ = −1/2 has many con-
nections to combinatorics. When studying similar problems for the XYZ spin
chain, special polynomials show up. Many of these polynomials seem to have
positive coefficients. This indicates that there should be combinatorial interpre-
tations in the XYZ case as well, but up till now, not much is known about these
connections. In Section 5.1 and Section 5.2, we introduce certain polynomials
of Bazhanov and Mangazeev. These polynomials have been conjectured to be a
special case of Rosengren�s polynomials, which we present in Section 5.3 and
Section 5.4.

5.1 Bazhanov’s and Mangazeev’s polynomials

In order to solve the 8V model, Baxter [3] introduced the Q-operator. Bazhanov
and Mangazeev [6] studied the ground state eigenvalue of this operator in the
case where η = −2/3. They found that the eigenvalue can be written in terms
of certain polynomials

Pn(x, z) =
n∑

k=0

r
(n)
k (z)xk, (5.1)

where r
(n)
k (z), k = 0, . . . , n are polynomials with integer coefficients, normal-

ized by r
(n)
n (0) = 1. The polynomials r

(n)
k (z) are conjectured to have positive

integer coefficients [7]. They introduced polynomials sn(z) = r
(n)
n (z) and

sn(z) = r
(n)
0 (z) and gave a recurrence relation [6], with initial conditions

s0(z) = s1(z) = 1, which uniquely determines the polynomials sn(z) for all
n ∈ Z. Furthermore they stated the following conjecture [26].

37
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Conjecture 5.1 (Mangazeev, Bazhanov).

1. The polynomials s2k+1(z
2), k ∈ Z, factorize over the integers,

s2k+1(z
2) = s2k+1(0)pk(z)pk(−z), (5.2)

where pk(z) are polynomials in z with integer coefficients, pk(0) = 1 and
deg pk(z) = k(k + 1). Note that p−1(z) = p0(z) = 1.

2. The polynomials pk(z), k ∈ Z, have the symmetry

pk(z) =

(
1 + 3z

2

)k(k+1)

pk

(
1− z

1 + 3z

)
. (5.3)

3. The polynomials s2k(z2), k ∈ Z, factorize over the integers,

s2k(z
2) = ck(1 + 3z)k(k+1)p−k−1

(
z − 1

1 + 3z

)
qk−1(z), (5.4)

where qk(z) are polynomials in z with integer coefficients, qk(0) = 1,
deg qk(z) = k(k+1), ck = 2−k(k+2), for k ≥ 0, and ck = 2−k2

(2/3)2k+1, for
k < 0.

4. The polynomials qk(z), k ∈ Z, have the symmetry

qk(z) =

(
1 + 3z

2

)k(k+1)

qk

(
z − 1

1 + 3z

)
. (5.5)

The function s2k(z
2) in (5.4) is an even function. It follows from the symmetry

in (5.3) that qk(z) is also even, i.e. qk(z) = qk(−z). The polynomials qk(z) and
pk(z) also seem to have positive coefficients for non-negative k. They were
introduced in order to state results about the ground state eigenvectors of the
XYZ-Hamiltonian for spin chains of odd length (see Conjecture 5.2).

5.2 The XYZ spin chain

As in Section 3.6, consider a periodic spin chain of length n. The XYZ spin chain
is defined by the XYZ-Hamiltonian

HXYZ = −1

2

n∑
j=1

(
Jxσ

(j)
x σ(j+1)

x + Jyσ
(j)
y σ(j+1)

y + Jzσ
(j)
z σ(j+1)

z

)
. (5.6)

5.2. The XYZ spin chain 39

A special case of the XYZ-Hamiltonian is when

JxJy + JyJz + JzJx = 0, (5.7)

which can, up to normalization, be parametrized by rational functions of one
parameter,

Jx =
2(1 + ψ)

ψ2 + 3
, Jy =

2(1− ψ)

ψ2 + 3
, and Jz =

ψ2 − 1

ψ2 + 3
. (5.8)

For ψ = 0, we recover the Hamiltonian of the supersymmetric XXZ spin chain
with ∆ = −1/2. The XYZ-Hamiltonian commutes with the transfer matrix of
the 8V model for appropriate values of the parameters.

The XYZ-Hamiltonian is supersymmetric when (5.8) holds. The supercharges
for the XYZ spin chain are defined in a similar way as for the XXZ spin chain
in Section 3.6, but now the qj ’s depend on the parameter ψ, and are defined by

qj |s1 · · · sj−1 ↓ sj+1 · · · sn〉 = (−1)j−1 (|s1 · · · sj−1 ↑ ↑ sj+1 · · · sn〉
−ψ |s1 · · · sj−1 ↓ ↓ sj+1 · · · sn〉) , (5.9)

q0 |s1 · · · sn−1 ↓〉 = − (|↑ s1 · · · sn−1 ↑〉 − ψ |↓ s1 · · · sn−1 ↓〉) . (5.10)

Again ψ = 0 corresponds to the XXZ case. Because of the extra component for
each qj , the Qn’s do not decrease the number of negative spins in the XYZ case,
see further [18].

For odd n = 2k + 1, the eigenvalues of the XYZ-Hamiltonian are (at least)
doubly degenerate. There are two ground state eigenvectors

HXYZ |Ψ±〉 = E0 |Ψ±〉 . (5.11)

Because of parity symmetry, it is enough to consider |Ψ−〉, which is the ground
state eigenvector for which all nonzero components have an odd number of
down spins. As in the XXZ case, denote the coefficients of its components as
Ψs1···sn , where sj ∈ {↑, ↓}. Normalize |Ψ−〉 so that

Ψ↑ · · · ↑︸ ︷︷ ︸
k+1

↓ · · · ↓︸ ︷︷ ︸
k

∣∣
ψ=0

= 1, for odd k, and Ψ↑ · · · ↑︸ ︷︷ ︸
k

↓ · · · ↓︸ ︷︷ ︸
k+1

∣∣
ψ=0

= 1, for even k.

(5.12)

Mangazeev and Bazhanov [26] (see also [32]) stated several conjectures about
the components of this ground state eigenvector.
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k

∣∣
ψ=0

= 1, for odd k, and Ψ↑ · · · ↑︸ ︷︷ ︸
k

↓ · · · ↓︸ ︷︷ ︸
k+1

∣∣
ψ=0

= 1, for even k.

(5.12)

Mangazeev and Bazhanov [26] (see also [32]) stated several conjectures about
the components of this ground state eigenvector.



40 5. Special polynomials

Conjecture 5.2 (Mangazeev, Bazhanov).

1. The component of the eigenvector |Ψ−〉 with exactly one spin down is given by

Ψ↑↑...↑↑↓ =
1

n
ψk(k−1)/2sk(1/ψ

2), (5.13)

for n = 2k + 1.

2. The component of the eigenvector |Ψ−〉 with all spins down is given by

Ψ↓↓...↓↓ = ψk(k−1)/2sk(1/ψ
2), (5.14)

for n = 2k + 1.

3. Let Ak(ψ) be the components of |Ψ−〉 with alternating spins,

Ak(ψ) =

{
Ψ↑↑↓↑↓...↑↓, for odd k,

Ψ↑↓...↑↓↑↓↓, for even k.
(5.15)

The components of |Ψ−〉 with alternating spins is given by

A2m(ψ) = 2m(2−m)(3 + ψ)m(m−1)ψm(m−1)pm−1

(
1− ψ

3 + ψ

)
qm−1(1/ψ),

(5.16)

A2m+1(ψ) = 2−m2

(3 + ψ)m(m+1)ψm(m−1)pm−1

(
1− ψ

3 + ψ

)
qm−1(1/ψ).

(5.17)

Progress on these conjectures has been made by Hagendorf (private correspon-
dence).

5.3 Rosengren’s special polynomials

Rosengren [36, 37] introduced a general family of polynomials T , which seems
to contain the polynomials sn, sn, pn, and qn of Bazhanov and Mangazeev as
special cases. Define

G(x, y) = (ψ+2)xy(x+ y)+ψ(2ψ+1)(x+ y)− 2(ψ2+3ψ+1)xy−ψ(x2+ y2),
(5.18)

5.3. Rosengren’s special polynomials 41

let ∆(x1, . . . , xn) =
∏

1≤i<j≤n(xj − xi), and define

T (x1, . . . , x2n) =

∏n
i,j=1 G(xj , xn+i)

∆(x1, . . . , xn)∆(xn+1, . . . , x2n)
det

1≤i,j≤n

(
1

G(xj , xn+i)

)
.

(5.19)
Up to a prefactor and a variable change, these polynomials are equivalent to
Filali’s determinant (4.16), see Section 4.1 of Paper I. Recall that p = e2πiτ and
ω = e2πi/3. The variable change is given by [37]

ψ = ψ(τ) =
ω2ϑ(−1)ϑ(−p1/2ω)

ϑ(−p1/2)ϑ(−ω)
, (5.20)

x(z) = x(z, τ) =
ϑ(−p1/2ω)2ϑ(ωe±2πiz)

ϑ(−ω)2ϑ(p1/2ωe±2πiz)
. (5.21)

The variables xj in (5.19) are related to the spectral parameters in (4.10) as

xj = x((λj − 1)/3), xn+j = x(µj/3), (5.22)

for 1 ≤ j ≤ n.

Now we specialize some of the variables to ξi = x(γi), where

γ0 = 0, γ1 = τ/2, γ2 = 1/2 + τ/2, γ3 = 1/2, (5.23)

i.e.

ξ0 = 2ψ + 1, ξ1 =
ψ

ψ + 2
, ξ2 =

ψ(2ψ + 1)

ψ + 2
, ξ3 = 1, (5.24)

and define

T (k0,k1,k2,k3)
n (x1, . . . , xm) = T (x1, . . . , xm, ξ(k0,k1,k2,k3)), (5.25)

where

ξ(k0,k1,k2,k3) = (ξ0, . . . , ξ0︸ ︷︷ ︸
k0

, ξ1, . . . , ξ1︸ ︷︷ ︸
k1

, ξ2, . . . , ξ2︸ ︷︷ ︸
k2

, ξ3, . . . , ξ3︸ ︷︷ ︸
k3

), (5.26)

and m and ki are non-negative integers and m+
∑3

i=0 ki = 2n.

Rosengren extends the definition of T (k0,k1,k2,k3)
n (x1, . . . , xm) to negative ki’s

as well. This extension can be motivated from the recursion relation (iii) in
Section 4.2, which says that specializing λi = ±µj , for given i and j, in the
2n× n determinant formula yields a determinant of one size smaller. Hence
specializing one variable in Tn to x(γi) and another to x(γi + 1/3) should also
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reduce n by 1. As we have seen, specializing a variable to x(γi) corresponds to
increasing ki by 1, so x(γi + 1/3) must reduce ki by 1 to add up to a one size
smaller determinant Tn−1. It turns out that this naive idea does not quite work.
One should first apply the operator (σf)(z) = f(z + 1/3) + f(−z + 1/3) to −ki
variables and then let z → γi.

More specifically, define

T (x1, . . . , xk;xk+1, . . . , x2n)

=

(
Id⊗k ⊗ σ̂⊗(2n−k)

)
∆(x1, . . . , x2n)T (x1, . . . , x2n)

∆(x1, . . . , xk)∆(xk+1, . . . , x2n)
, (5.27)

where σ̂ is a uniformization of σ (see [36] for details). Replacing the oper-
ator Id⊗k ⊗ σ̂⊗(2n−k) by (−1)l(n−k)

(
Id⊗k ⊗ σ̂⊗(n−k) ⊗ Id⊗l ⊗ σ̂⊗(n−l)

)
in the

formula above, we can let σ̂ act on different variables and we get

T (x1, . . . , xk, xn+1, . . . , xn+l;xk+1, . . . , xn, xn+l+1, . . . , x2n)

=

∏
1≤i≤k

l+1≤j≤n
(xn+j − xi)

∏
k+1≤i≤n
1≤j≤l

(xi − xn+j)
∏n

i,j=1 G(xi, xn+j)

∆(x1, . . . , xk)∆(xk+1, . . . , xn)∆(xn+1, . . . , xn+l)∆(xn+l+1, . . . , x2n)
detB,

(5.28)

where

Bi,j =




1

G(xi, xn+j)
, for 1 ≤ i ≤ k, 1 ≤ j ≤ l,

Q(xi, xn+j)

(xn+j − xi)G(xi, xn+j)
, for 1 ≤ i ≤ k, l + 1 ≤ j ≤ n,

Q(xn+j , xi)

(xi − xn+j)G(xi, xn+j)
, for k + 1 ≤ i ≤ n, 1 ≤ j ≤ l,

R(xi, xn+j)

G(xi, xn+j)
, for k + 1 ≤ i ≤ n, l + 1 ≤ j ≤ n,

(5.29)

and

Q(x, y) = y(y − 2ψ − 2ψ − 1)((ψ + 2)y − 3ψ)

− x((ψ + 2)y − ψ)(2ψ + 1− 3y), (5.30)

R(x, y) = 3(ψ + 2)2x2y2 + ψ(ψ + 2)(2ψ + 1)(x2 + y2)

− 2(ψ2 + 4ψ + 1)((ψ + 2)xy + ψ(ψ + 1))(x+ y)

+ 4(ψ4 + 4ψ3 + 8ψ3 + 4ψ + 1)xy + 3ψ2(2ψ + 1)2. (5.31)

5.4. Specializations of Rosengren’s polynomials 43

Now to define T
(k0,k1,k2,k3)
n for general kj , we specialize some of the variables

in (5.28) to ξj . Let k+j = max(kj , 0) and k−j = max(−kj , 0). Then for n ∈ Z,
kj ∈ Z, 0 ≤ j ≤ 3, and m = 2n−

∑3
j=0 kj ≥ 0, define

T (k0,k1,k2,k3)
n (x1, . . . , xm)

=
(−1)(

|k−|
2 )T (x1, . . . , xm, ξ(k

+
0 ,k+

1 ,k+
2 ,k+

3 ); ξ(k
−
0 ,k−

1 ,k−
2 ,k−

3 ))

2|k−| ∏3
i,j=0 G(ξi, ξj)

k−
i k+

j
∏m

j=1

∏3
i=0 G(xj , ξi)k

−
i

, (5.32)

where |k−| =
∑3

j=0 k
−
j .

In the case where all xi’s are one of the ξj ’s, the only dependence on a variable
is that the ξj ’s depend on ψ. Therefore we also define

t(k0,k1,k2,k3)(ψ) = T (ξ0, . . . , ξ0︸ ︷︷ ︸
k0 times

, ξ1, . . . , ξ1︸ ︷︷ ︸
k1 times

, ξ2, . . . , ξ2︸ ︷︷ ︸
k2 times

, ξ3, . . . , ξ3︸ ︷︷ ︸
k3 times

), (5.33)

with kj ∈ Z and
∑3

j=0 kj = 2n.

The polynomials T (x1, . . . , x2n) possess many symmetries. In Paper I and
Paper II, the following symmetries ([37, Proposition 2.2]) are used together
with (5.39) and (5.38) below, to get expressions for qn and pn in terms of
t(2n+2,0,0,0)(ψ) and t(2n+1,0,0,−1)(ψ) respectively.

Proposition 5.3. The polynomials t(k0,k1,k2,k3)(ψ) have the symmetries

t(k0,k1,k2,k3)(ψ) =

(
ψ + 2

ψ(2ψ + 1)

)n(n−1) 3∏
j=0

ξ
kj(n−1)
j t(k1,k0,k3,k2)(ψ) (5.34)

=

(
ψ − 1

ψ + 2

)n(n−1)

t(k2,k1,k0,k3)(−ψ − 1). (5.35)

5.4 Specializations of Rosengren’s polynomials

Zinn-Justin [45] studied polynomials equivalent to Rosengren’s polynomials T .
He noticed that Bazhanov’s and Mangazeev’s polynomials seem to be given by
specializing the variables in a determinant equivalent to T (5.19). In terms of
Rosengren’s functions, Bazhanov’s and Mangazeev’s polynomials are related
to t(k0,k1,k2,k3)(ψ) by [37]
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(
(ψ + 2)(2ψ + 1)

2

)�n2/4�
sn

(
ψ

(ψ + 2)(2ψ + 1)

)

=
(−1)�n/2� (ψ/2 + 1)

n(n−1)−�(n−1)2/4�

ψn(n−1)(ψ + 1)n(n−1)(2ψ + 1)�(n−1)2/4� t
(n,n,0,0)(ψ), (5.36)

(
(ψ + 2)(2ψ + 1)

2

)�n2/4�
sn

(
ψ

(ψ + 2)(2ψ + 1)

)

=
(−1)�n/2�+12n−1 (ψ/2 + 1)

n2−1−�(n−1)2/4�

ψn2−1(ψ + 1)n(n−1)(2ψ + 1)�(n−1)2/4� t(n,n,1,−1)(ψ), (5.37)

pn

(
1

2ψ + 1

)
=

(−1)nCn(ψ + 2)n
2−n−1

ψn2−2n−1(ψ + 1)n(n−1)(2ψ + 1)n2+n+1
t(−1,2n+1,0,0)(ψ),

(5.38)
where Cn = 2n for n ≥ 0 and Cn = 3n+1/2n+2 for n ≤ −1,

qn

(
1

2ψ + 1

)
= Dn

(
ψ + 2

ψ(ψ + 1)(2ψ + 1)

)n(n+1)

t(0,2n+2,0,0)(ψ), (5.39)

where Dn = 2n for n ≥ −1 and Dn = 3n+2/22n+3 for n ≤ −2.

That these polynomials are identical to the polynomials of Bazhanov and
Mangazeev defined in the beginning of Section 5.1 is still a conjecture. In
Paper I and II, we take (5.38) and (5.39) as the definitions of the polynomials pn
and qn. They can also be defined via recurrence relations [45]. Let a = 1− 1/z2.
Since qk(z) is even, we can consider q̃k(a) = qk(z). From [45], we get the
recurrence relation

D0q̃k−2(a)q̃k(a) = D1(q̃k−1(a))
2 +D2q̃k−1(a)q̃

′
k−1(a)

+D3(q̃
′
k−1(a))

2 +D4q̃k−1(a)q̃
′′
k−1(a), (5.40)

for k ∈ N, with initial conditions q̃−1(a) = q̃0(a) = 1, and

D0 = 2(a− 1)a(4k − 1)(4k + 1)2(4k + 3),

D1 = 3
(
a2(4k + 1)(40k3 + 31k2 − 1)− 2a(316k4 + 320k3 + 75k2 − 9k − 2)

+ 32(k − 1)k(2k + 1)(4k + 1)) ,

D2 = −(a− 1)(a+ 8)
(
a2(32k2 + 12k + 1) + 4a(92k2 + 36k + 7)

− 32(8k2 + 6k + 1)
)
,

D3 = 2(a− 1)2a(a+ 8)2(4k − 1)(4k + 3),
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D4 = −2(a− 1)2a(a+ 8)2(4k + 1)2. (5.41)

The first few polynomials are

q−1(z) = q0(z) = 1,

q1(z) = 1 + 3z2,

q2(z) = 1 + 8z2 + 29z4 + 26z6,

q3(z) = 1 + 15z2 + 112z4 + 518z6 + 1257z8 + 1547z10 + 646z12,

q4(z) = 1 + 24z2 + 291z4 + 2338z6 + 13524z8 + 54474z10 + 150472z12

+ 276678z14 + 312195z16 + 192694z18 + 45885z20. (5.42)

The polynomials pk(z) are not even, but we can still define them via a function
p̃k(a), where

pk(z) =

(
z + 1

2

)k(k+1)

p̃k

(
8z(1− z)

(1 + z)2

)
. (5.43)

The recurrence relation for p̃k(a) is given by [45]

D0p̃k−2(a)p̃k(a) = D1(p̃k−1(a))
2 +D2p̃k−1(a)p̃

′
k−1(a)

+D3(p̃
′
k−1(a))

2 +D4p̃k−1(a)p̃
′′
k−1(a), (5.44)

for k ∈ N, with initial conditions p̃−1(a) = p̃0(a) = 1, and

D0 = 4a(4k − 1)2(4k − 3)(4k + 1),
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− 6a2(168k4 − 172k3 + k2 + 21k − 3)

+ 12a(284k4 − 232k3 − 17k2 + 28k − 3)

+ 128k(k − 1)2(4k − 1),

D2 = 2(a− 1)(a+ 8)
(
a2(24k2 − 4k + 1) + 4a(76k2 − 24k − 1)

− 64k(4k − 1)) ,

D3 = −4(a− 1)2a(a+ 8)2(4k − 3)(4k + 1),

D4 = 4(a− 1)2a(a+ 8)2(4k − 1)2. (5.45)

The first few polynomials are

p−1(z) = p0(z) = 1,

p1(z) = 1 + z + 2z2,

p2(z) = 1 + 2z + 7z2 + 10z3 + 21z4 + 12z5 + 11z6,
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p3(z) = 1 + 3z + 15z2 + 35z3 + 105z4 + 195z5 + 435z6 + 555z7

+ 840z8 + 710z9 + 738z10 + 294z11 + 170z12,

p4(z) = 1 + 4z + 26z2 + 82z3 + 319z4 + 840z5 + 2488z6 + 5572z7

+ 13524z8 + 24920z9 + 48776z10 + 72800z11 + 114716z12

+ 135464z13 + 169536z14 + 148972z15 + 141835z16 + 85044z17

+ 58406z18 + 17822z19 + 7429z20. (5.46)

Rosengren [35] also proved that there are polynomials p(R)
n (not to be confused

with the polynomials pn of Bazhanov and Mangazeev) with integer coefficients,
such that the partition function of the three-color model with DWBC can be
written in terms of these. These polynomials are conjectured to have positive
coefficients. In [37], Rosengren shows that these polynomials can be written in
terms of the functions t(k0,k1,k2,k3)(ψ) as

p(R)
n (ψ) =

(−1)�n/2�(ψ/2 + 1)n(n−1)−�(n−1)2/4�

(1− ψ)ψn(n−1)(ψ + 1)n2−2n−1(2ψ + 1)�n2/4� t
(n+1,n,0,−1)(ψ).

(5.47)

Since T is equivalent to Filali’s determinant, all polynomials sn, s̄n, pn, qn and
p
(R)
N are special cases of the 8VSOS partition function with DWBC and a reflect-

ing end. This indicates that the three-color model with DWBC and a reflecting
end could be used to interpret some of these polynomials combinatorially. This
is the objective of Paper I and Paper II.

6 Summary of papers

6.1 Paper I - A combinatorial description of certain
polynomials related to the XYZ spin chain

The goal of Paper I is to study the connection between the three-color model
with DWBC and a reflecting end and the polynomials qn introduced by
Bazhanov and Mangazeev (see Section 5.1). Following Kuperberg [22] and
Rosengren [34], we specify the parameters η = −2/3, λi = −1/2 and µj = 0
in the partition function of the 8VSOS model with DWBC and a reflecting
end (see Section 4). This specialization of the 8VSOS partition function can be
written in terms of the partition function for the three-color model with the
same boundary conditions (see Section 2.3) as

Zn(ω, . . . , ω︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, ρ, ζ)

= (−1)(
n
2)

n∑
m=0

(
ϑ(ρζω−1)

ϑ(ρζω)

)m (
ϑ(ζω−1)

ϑ(ζω)

)n−m

ωn2+n−m

× ϑ(ρ3, p3)2n
2+2nϑ(ρ)n+3ϑ(ρω−1)2mϑ(ρω)2(n−m)B

× Z3C
n,m

(
1

ϑ(ρ)3
,

1

ϑ(ρω)3
,

1

ϑ(ρω2)3

)
, (6.1)

with

B =




1, for n ≡ 0 mod 3,

ϑ(ρω−1)

ϑ(ρ)
, for n ≡ 1 mod 3,

ϑ(ρω)ϑ(ρω−1)

ϑ(ρ)2
, for n ≡ 2 mod 3,

(6.2)

47



46 5. Special polynomials

p3(z) = 1 + 3z + 15z2 + 35z3 + 105z4 + 195z5 + 435z6 + 555z7

+ 840z8 + 710z9 + 738z10 + 294z11 + 170z12,

p4(z) = 1 + 4z + 26z2 + 82z3 + 319z4 + 840z5 + 2488z6 + 5572z7

+ 13524z8 + 24920z9 + 48776z10 + 72800z11 + 114716z12

+ 135464z13 + 169536z14 + 148972z15 + 141835z16 + 85044z17

+ 58406z18 + 17822z19 + 7429z20. (5.46)

Rosengren [35] also proved that there are polynomials p(R)
n (not to be confused

with the polynomials pn of Bazhanov and Mangazeev) with integer coefficients,
such that the partition function of the three-color model with DWBC can be
written in terms of these. These polynomials are conjectured to have positive
coefficients. In [37], Rosengren shows that these polynomials can be written in
terms of the functions t(k0,k1,k2,k3)(ψ) as

p(R)
n (ψ) =

(−1)�n/2�(ψ/2 + 1)n(n−1)−�(n−1)2/4�

(1− ψ)ψn(n−1)(ψ + 1)n2−2n−1(2ψ + 1)�n2/4� t
(n+1,n,0,−1)(ψ).

(5.47)

Since T is equivalent to Filali’s determinant, all polynomials sn, s̄n, pn, qn and
p
(R)
N are special cases of the 8VSOS partition function with DWBC and a reflect-

ing end. This indicates that the three-color model with DWBC and a reflecting
end could be used to interpret some of these polynomials combinatorially. This
is the objective of Paper I and Paper II.

6 Summary of papers

6.1 Paper I - A combinatorial description of certain
polynomials related to the XYZ spin chain

The goal of Paper I is to study the connection between the three-color model
with DWBC and a reflecting end and the polynomials qn introduced by
Bazhanov and Mangazeev (see Section 5.1). Following Kuperberg [22] and
Rosengren [34], we specify the parameters η = −2/3, λi = −1/2 and µj = 0
in the partition function of the 8VSOS model with DWBC and a reflecting
end (see Section 4). This specialization of the 8VSOS partition function can be
written in terms of the partition function for the three-color model with the
same boundary conditions (see Section 2.3) as

Zn(ω, . . . , ω︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, ρ, ζ)

= (−1)(
n
2)

n∑
m=0

(
ϑ(ρζω−1)

ϑ(ρζω)

)m (
ϑ(ζω−1)

ϑ(ζω)

)n−m

ωn2+n−m

× ϑ(ρ3, p3)2n
2+2nϑ(ρ)n+3ϑ(ρω−1)2mϑ(ρω)2(n−m)B

× Z3C
n,m

(
1

ϑ(ρ)3
,

1

ϑ(ρω)3
,

1

ϑ(ρω2)3

)
, (6.1)

with

B =




1, for n ≡ 0 mod 3,

ϑ(ρω−1)

ϑ(ρ)
, for n ≡ 1 mod 3,

ϑ(ρω)ϑ(ρω−1)

ϑ(ρ)2
, for n ≡ 2 mod 3,

(6.2)

47



48 6. Summary of papers

and where
Z3C
n,m(t0, t1, t2) =

∑
states with

m turns of color 2

∏
faces

ta (6.3)

is the partition function of all three-colorings with a given number m of turns
with color 2, and where ta is the weight assigned to color a.

We then rewrite Filali’s determinant in terms of Rosengren’s functions T , which
we can then express in terms of Bazhanov’s and Mangazeev’s polynomials qn
by using (5.39). Thus we get another expression for the partition function in
terms of qn, namely,

Zn(ω, . . . , ω, 1, . . . , 1, ρ, ζ)

= (−1)(
n
2)

n∑
m=0

(
ϑ(ρζω2)

ϑ(ρζω)

)m (
ϑ(ζω−1)

ϑ(ζω)

)n−m

ωn2+n−m

×
(
n

m

)
ϑ(ρω)mϑ(ρω−1)n−m

ϑ(ρ)n

(
ϑ(−ω)2ϑ(−p1/2)ϑ(p1/2ω)3

ϑ(ω)2ϑ(−1)ϑ(p1/2)2ϑ(−p1/2ω)4

)n(n−1)

× B̃ ((ψ + 1)(2ψ + 1)2)n(n−1)qn−1

(
1

2ψ + 1

)
, (6.4)

where

B̃ =



1, for n ≡ 0, 2 mod 3,
ϑ(ρω−1)

ϑ(ρ)
, for n ≡ 1 mod 3,

(6.5)

and where ψ is given by (5.20). Combining the two expressions (6.1) and
(6.4), we get the partition function of the three-color model in terms of the
polynomials qn. By changing variables to ta = 1/ϑ(ρωa)3 and z = 1/(2ψ + 1),
we reach our main result.

Theorem 6.1 (Theorem 1.1 in Paper I). Let ta be the weight assigned to color a, and
let m be the number of faces on the left boundary with color 2. For any m, it holds that

Z3C
n,m(t0, t1, t2)

=




(
n
m

) tm−n
2

tm1

t0(t0t1t2)
(2n2+4n)/3

(z(z2−1))(n2−n)/3
qn−1(z), n ≡ 0, 1 mod 3,

(
n
m

) tm−n
2

tm1

(t0t1+t0t2+t1t2)(t0t1t2)
(2n2+4n−1)/3

(3z2+1)(z(z2−1))(n2−n−2)/3
qn−1(z), n ≡ 2 mod 3,

(6.6)

where
(t0t1 + t0t2 + t1t2)

3

(t0t1t2)2
=

(3z2 + 1)3

(z(z2 − 1))2
. (6.7)

6.1. Paper I - A combinatorial description of certain polynomials related to the
XYZ spin chain 49

As we saw in Section 5.4, qn(z) can be computed recursively (5.40). By inserting
the expressions for qn(z) into Theorem 6.1, and simplifying with (6.7), we can
compute the partition function for the three-color model with reflecting end
and DWBC. Here we have computed Z3C

n,m(t0, t1, t2) for some small n and m,

Z3C
1,0(t0, t1, t2) = t30t

2
1t2,

Z3C
1,1(t0, t1, t2) = t30t1t

2
2,

Z3C
2,0(t0, t1, t2) = t60t

6
1t

3
2 + t60t

5
1t

4
2 + t50t

6
1t

4
2,

Z3C
2,1(t0, t1, t2) = 2(t60t

5
1t

4
2 + t60t

4
1t

5
2 + t50t

5
1t

5
2),

Z3C
2,2(t0, t1, t2) = t60t

4
1t

5
2 + t60t

3
1t

6
2 + t50t

4
1t

6
2,

Z3C
3,0(t0, t1, t2) = t90t

8
1t

5
2(t0t1 + t0t2 + t1t2)

3 − t110 t101 t72,

Z3C
4,0(t0, t1, t2) = t130 t121 t82(t0t1 + t0t2 + t1t2)

6 − 3t150 t141 t102 (t0t1 + t0t2 + t1t2)
3

− 2t170 t161 t122 . (6.8)

Inserting t0 = t1 = t2 = 1 yields the number of three-colorings (see further
Corollary 6.5 in Paper I).

Let N (m)(k0, k1, k2) denote the number of states in the three-color model with
exactly m positive turns and ki faces of color i, then

Z3C
n,m(t0, t1, t2) =

∑
(k0,k1,k2)∈Z3

N (m)(k0, k1, k2)t
k0
0 tk1

1 tk2
2 . (6.9)

Similarly, let N (0)(k0) denote the number of states with m positive turns and
k0 faces of color 0. By inserting t0 = z(z + 1)/(z − 1)2, t1 = t2 = 1 and m = 0
into Theorem 6.1, we get

qn−1(z) =
∑
k0∈Z

N (0)(k0)(z(z + 1))k0−(n2+5n+a)/3(z − 1)(5n
2+7n+2a)/3−2k0 ,

(6.10)
with a = 3, for n ≡ 0, 1mod 3, and a = 1, for n ≡ 2mod 3, and

It is clear that the coefficients of qn(z) are integers. Unfortunately the above
does not prove the conjecture that qn(z) has only positive integer coefficients.
It is not enough to notice that N (0)(k0) is always non-negative, one would need
some further constraints on N (0)(k0). However, we have a weaker result.

Corollary 6.2 (Corollary 6.1 in Paper I). The polynomials (z + 1)n(n+1)qn

(
1

z+1

)

and qn(z + 1) have positive integer coefficients.

We also get some non-trivial results for the three-color model.
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Inserting t0 = t1 = t2 = 1 yields the number of three-colorings (see further
Corollary 6.5 in Paper I).

Let N (m)(k0, k1, k2) denote the number of states in the three-color model with
exactly m positive turns and ki faces of color i, then

Z3C
n,m(t0, t1, t2) =

∑
(k0,k1,k2)∈Z3

N (m)(k0, k1, k2)t
k0
0 tk1

1 tk2
2 . (6.9)

Similarly, let N (0)(k0) denote the number of states with m positive turns and
k0 faces of color 0. By inserting t0 = z(z + 1)/(z − 1)2, t1 = t2 = 1 and m = 0
into Theorem 6.1, we get

qn−1(z) =
∑
k0∈Z

N (0)(k0)(z(z + 1))k0−(n2+5n+a)/3(z − 1)(5n
2+7n+2a)/3−2k0 ,

(6.10)
with a = 3, for n ≡ 0, 1mod 3, and a = 1, for n ≡ 2mod 3, and

It is clear that the coefficients of qn(z) are integers. Unfortunately the above
does not prove the conjecture that qn(z) has only positive integer coefficients.
It is not enough to notice that N (0)(k0) is always non-negative, one would need
some further constraints on N (0)(k0). However, we have a weaker result.

Corollary 6.2 (Corollary 6.1 in Paper I). The polynomials (z + 1)n(n+1)qn

(
1

z+1

)

and qn(z + 1) have positive integer coefficients.

We also get some non-trivial results for the three-color model.
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Corollary 6.3 (Corollary 6.2 in Paper I). Let N (m)(k0, k1, k2) be the number of
states with m positive turns and ki faces of color i. Then

N (m)(k0, k1, k2) =

(
n

m

)
N (0)(k0, k1 +m, k2 −m). (6.11)

Corollary 6.4 (Corollary 6.3 in Paper I). Let N (m)(k0, k1, k2) be the number of
states with m positive turns and ki faces of color i. Then

N (m)(k0 + d, k1 −m, k2 +m− n), (6.12)

with

d =

{
1, n ≡ 0, 1 mod 3,

0, n ≡ 2 mod 3,
(6.13)

is a symmetric function of k0, k1, k2.

Furthermore we discuss the states with the maximum and minimum number
of faces of each specific color. We have the following corollary. Some parts of
the corollary are easy to prove combinatorially, while others seem harder to
understand, see the discussion after the proof in Paper I.

Corollary 6.5 (Corollary 6.4 in Paper I). Let N (m)
i (k) be the number of states with

m positive turns and k faces of color i. For each m, the number of states with the
minimum number of faces of each color is

N
(m)
0

(
n2 + 5n+ a

3

)
= N

(m)
1

(
n2 + 5n+ c

3
−m

)

= N
(m)
2

(
n2 + 2n+ c

3
+m

)
=

(
n

m

)
, (6.14)

and the number of states with the maximum number of faces of each color is

N
(m)
0

(
5n2 + 7n+ 2a

6

)
= N

(m)
1

(
5n2 + 7n+ 2c

6
−m

)

= N
(m)
2

(
5n2 + n+ 2c

6
+m

)
=

(
n

m

)
2n(n−1)/2, (6.15)

where

a =

{
3, for n ≡ 0, 1 mod 3,
1, for n ≡ 2 mod 3,

and c =

{
0, for n ≡ 0, 1 mod 3,
1, for n ≡ 2 mod 3.

(6.16)
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6.2 Paper II - A combinatorial description of certain
polynomials related to the XYZ spin chain. II.
The polynomials pn

Paper II is a continuation of Paper I. In Paper I, we studied the polynomials qn,
and in Paper II, we perform a similar study of the polynomials pn of Bazhanov
and Mangazeev (see Section 5.1). We specify all but one of the parameters in
the partition function of the 8VSOS model with DWBC and a reflecting end in
Kuperberg’s way. We specialize1 η = −2/3, λi = 1 and µj = 0, for 1 ≤ i ≤ n
and 1 ≤ j ≤ n − 1. The last parameter we specialize as µn = 1/4 to find a
connection to the polynomials pn. The main idea is the same as in Paper I, but
due to the different specialization of one of the parameters, the expressions we
encounter are more involved than those in Paper I, and sometimes we need to
go about things in a different way. We get a connection to a special case of the
three-color model.

We rewrite Filali’s determinant formula in terms of Rosengren’s functions T ,
which we can then express in terms of Bazhanov’s and Mangazeev’s polynomi-
als pn by using (5.38). The partition function is then

Zn(ω, . . . , ω︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n−1

,−ω, ρ, ζ)

= (−ω)(
n+1
2 )+n

(
ϑ(−ω)2ϑ(−p1/2)

ωϑ(−1)ϑ(p1/2)2ϑ(p1/2ω)ϑ(−p1/2ω)4ϑ(ω)2

)n2−n

× B̃ ϑ(p1/2ω)2(n−1)(2n−1)(ϑ(−p1/2ω2)ϑ(−p1/2))n−1

ϑ(ρ)nϑ(ω)

×
(

ψ

2ψ + 1

)n−1

((ψ + 1)(2ψ + 1)2)n
2−npn−1

(
− 1

2ψ + 1

)

×
n∑

m=0

((
n− 1

m− 1

)
ω−mϑ(−1)ϑ(−ρω2)ϑ(ρω)m−1ϑ(ρω2)n−m

−
(
n− 1

m

)
ω−m−2ϑ(−ω)ϑ(−ρ)ϑ(ρω)mϑ(ρω2)n−m−1

)

×
(
ϑ(ρζω2)

ϑ(ρζω)

)m (
ϑ(ζω2)

ϑ(ζω)

)n−m

, (6.17)

1Remark: The specialization λi = 1 yields the same specialization of the parameters in the
partition function as the specialization λi = −1/2 in Paper I, since q−1/2 = q = ω.
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is a symmetric function of k0, k1, k2.

Furthermore we discuss the states with the maximum and minimum number
of faces of each specific color. We have the following corollary. Some parts of
the corollary are easy to prove combinatorially, while others seem harder to
understand, see the discussion after the proof in Paper I.
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polynomials related to the XYZ spin chain. II.
The polynomials pn

Paper II is a continuation of Paper I. In Paper I, we studied the polynomials qn,
and in Paper II, we perform a similar study of the polynomials pn of Bazhanov
and Mangazeev (see Section 5.1). We specify all but one of the parameters in
the partition function of the 8VSOS model with DWBC and a reflecting end in
Kuperberg’s way. We specialize1 η = −2/3, λi = 1 and µj = 0, for 1 ≤ i ≤ n
and 1 ≤ j ≤ n − 1. The last parameter we specialize as µn = 1/4 to find a
connection to the polynomials pn. The main idea is the same as in Paper I, but
due to the different specialization of one of the parameters, the expressions we
encounter are more involved than those in Paper I, and sometimes we need to
go about things in a different way. We get a connection to a special case of the
three-color model.

We rewrite Filali’s determinant formula in terms of Rosengren’s functions T ,
which we can then express in terms of Bazhanov’s and Mangazeev’s polynomi-
als pn by using (5.38). The partition function is then

Zn(ω, . . . , ω︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n−1

,−ω, ρ, ζ)

= (−ω)(
n+1
2 )+n

(
ϑ(−ω)2ϑ(−p1/2)

ωϑ(−1)ϑ(p1/2)2ϑ(p1/2ω)ϑ(−p1/2ω)4ϑ(ω)2

)n2−n

× B̃ ϑ(p1/2ω)2(n−1)(2n−1)(ϑ(−p1/2ω2)ϑ(−p1/2))n−1

ϑ(ρ)nϑ(ω)

×
(

ψ

2ψ + 1

)n−1

((ψ + 1)(2ψ + 1)2)n
2−npn−1

(
− 1

2ψ + 1

)

×
n∑

m=0

((
n− 1

m− 1

)
ω−mϑ(−1)ϑ(−ρω2)ϑ(ρω)m−1ϑ(ρω2)n−m

−
(
n− 1

m

)
ω−m−2ϑ(−ω)ϑ(−ρ)ϑ(ρω)mϑ(ρω2)n−m−1
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×
(
ϑ(ρζω2)
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)m (
ϑ(ζω2)
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1Remark: The specialization λi = 1 yields the same specialization of the parameters in the
partition function as the specialization λi = −1/2 in Paper I, since q−1/2 = q = ω.
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where

B̃ =



1, for n ≡ 0, 2 mod 3,
ϑ(ρω−1)

ϑ(ρ)
, for n ≡ 1 mod 3.

(6.18)

The partition function can also be written in terms of the partition function of
the three-color model. The fact that one of the spectral parameters is specified
differently than the others has the consequence that we need to split the parti-
tion function of the 8VSOS model into a sum of partition functions of special
states of the three-color model, where we, besides specifying the colors on the
boundaries, also specify the colors in the column closest to the right boundary
(see Figure 6.1). The partition function for the 8VSOS model can then be written
as a sum of all such specialized partition functions, as

Zn(ω, . . . , ω, 1, . . . , 1,−ω, ρ, ζ)

= (−1)(
n+1
2 )ω−(n+1

2 )+1ϑ(ρ)
n+3ϑ(−1)2n−1ϑ(ρ3, p3)2n(n+1)−1

ϑ(ω)2n−1
X

×
n∑

m=0

ϑ(ρω)2(n−m)ϑ(ρω2)2m

ω2(n−m)

(
ϑ(ρζω2)

ϑ(ρζω)

)m (
ϑ(ζω2)

ϑ(ζω)

)n−m

×
2n∑
l=0

(−1)lωl

(
ϑ(−ω)

ϑ(−1)

)l−1

ϑ(ρω−n+l)ϑ(ρω−n+l−1)ϑ(−ρω−n+l+2)

×
∑

states with
m positive turns

and ← on lth row

∏
faces

1

ϑ(ρωa)3
, (6.19)

for

X =




1, n ≡ 0 mod 3,
ϑ(ρω2)

ϑ(ρ)
, n ≡ 1 mod 3,

ϑ(ρω)ϑ(ρω2)

ϑ(ρ)2
, n ≡ 2 mod 3,

(6.20)

and where a is the height of each face respectively. Here we choose to express
the partition function in terms of arrows on the edges, but because of the
bijection to three-colorings, one could equally well think of it as a result for
the three-colorings. That a state has its left pointing arrow on the lth row from
below means for the three-coloring that when starting from the bottom of the
second to last column to the right, the colors 0, 1 and 2 change in ascending
order modulo 3, except when it crosses the lth edge, where it decreases by
1mod 3, to then continue the ascending order, see Figure 6.1.
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Figure 6.1: On the edges between the (n− 1)th and nth column of vertices, there is exactly one
left arrow in each state. The single left arrow is on row l = 2k − 1 counted from below in the first
lattice, and on row l = 2k counted from below in the second lattice.
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tion function of the 8VSOS model into a sum of partition functions of special
states of the three-color model, where we, besides specifying the colors on the
boundaries, also specify the colors in the column closest to the right boundary
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the partition function in terms of arrows on the edges, but because of the
bijection to three-colorings, one could equally well think of it as a result for
the three-colorings. That a state has its left pointing arrow on the lth row from
below means for the three-coloring that when starting from the bottom of the
second to last column to the right, the colors 0, 1 and 2 change in ascending
order modulo 3, except when it crosses the lth edge, where it decreases by
1mod 3, to then continue the ascending order, see Figure 6.1.
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Figure 6.1: On the edges between the (n− 1)th and nth column of vertices, there is exactly one
left arrow in each state. The single left arrow is on row l = 2k − 1 counted from below in the first
lattice, and on row l = 2k counted from below in the second lattice.
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Due to the summation over l, it seems hard to study the full partition function
of the three-color model as we did in Paper I. Instead, we consider the special
cases ρ = −ωa, a = 0, 1, 2. This allows us to study cases of the three-color
model where two colors have equal weight. We identify the terms with the
same m in the two expressions (6.17) and (6.19) and then we change to the
variable z = −1/(2ψ + 1). Then we get the following theorem.

Theorem 6.6 (Theorem 6.1 in Paper II). Formulas for pn−1(z) are given by

(
n− 1

m− 1

)
pn−1(z) =

∑
l≡nmod 3

k0∈Z

(
(−1)n+l (Nm,l(k0) +Nm,l−1(k0))

× (z(z − 1))(3k0−n2−6n+l−c)/3

(z + 1)(6k0−5n2−9n+2l−2c)/3

)
, (6.21)

(
n

m

)
pn−1 (z) =

∑
l≡nmod 3

k1∈Z

(
(−1)n+l (Nm,l(k1) +Nm,l+1(k1))

× (z(z − 1))(3k1−n2−6n+3m+l−d)/3

(z + 1)(6k1−5n2−9n+6m+2l−2d)/3

)
, (6.22)

and
(
n− 1

m

)
pn−1 (z) =

∑
l≡nmod 3

k2∈Z

(
(−1)n+l (Nm,l+1(k2) +Nm,l+2(k2))

× (z(z − 1))(3k2−n2−3n−3m+l−d)/3

(z + 1)(6k2−5n2−3n−6m+2l−2d)/3

)
, (6.23)

where

c =

{
3, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3,
and d =

{
0, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3,
(6.24)

and Nm,l(ki) is the number of states with m positive turns, ki faces of color i and
where the left arrow of the second to last column is on the lth row from below.

Although this gives combinatorial expressions for the polynomials pn, we can
not see from them that the coefficients of pn are positive.
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6.3 Paper III - Exact results for the six-vertex model
with domain wall boundary conditions and a
partially reflecting end

In Paper III, we consider the trigonometric 6V model on a lattice of size 2n×m,
m ≤ n, with DWBC and a partially reflecting end, i.e. with a triangular K-
matrix, extending the work of Foda and Zarembo [17] to the trigonometric
case. We obtain a determinant formula for the partition function by using the
standard method of Izergin and Korepin, see Section 3.3. In an appendix, we
instead use another method, by Foda and Wheeler, to find the determinant
formula for the partition function.

We parametrize the local weights slightly differently in Paper III than in Sec-
tion 3. We define f(x) = ex − e−x, and define the weights as2

a±(λ) = 1, b±(λ) = e∓η f(λ)

f(λ+ η)
, c±(λ) = e±λ f(η)

f(λ+ η)
,

k±(λ, ζ) = eζ∓λf(ζ ± λ), kc(λ, ζ) = ϕf(2λ). (6.25)

The first main theorem is the following.

Theorem 6.7 (Theorem 3.5 in Paper III). For the 6V model with DWBC and a
partially reflecting end on a lattice of size 2n×m, m ≤ n, the partition function is

Zn,m(λ,µ) = ϕn−me((
m
2 )−nm)ηf(η)m

m∏
i=1

[
eµi+ζf(µi − ζ)

] n∏
i=1

f(2λi)

×
∏n

i=1

∏m
j=1 f(µj ± λi)∏

1≤i<j≤m f(µj ± µi)
∏

1≤i<j≤n [f(λi − λj)f(λi + λj + η)]
det

1≤i,j≤n
M,

(6.26)

where M is an n× n matrix with

Mij =





1

f(µi ± λj)f(µi ± (λj + η))
, for i ≤ m,

h((n− i)(2λj + η)), for m < i < n,

1, for i = n,

(6.27)

where f(x) = 2 sinhx, h(x) = 2 coshx and where f(x± y) = f(x+ y)f(x− y).

2In Paper III, we use the letter γ instead of η.
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Due to the summation over l, it seems hard to study the full partition function
of the three-color model as we did in Paper I. Instead, we consider the special
cases ρ = −ωa, a = 0, 1, 2. This allows us to study cases of the three-color
model where two colors have equal weight. We identify the terms with the
same m in the two expressions (6.17) and (6.19) and then we change to the
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Theorem 6.6 (Theorem 6.1 in Paper II). Formulas for pn−1(z) are given by

(
n− 1

m− 1

)
pn−1(z) =

∑
l≡nmod 3

k0∈Z

(
(−1)n+l (Nm,l(k0) +Nm,l−1(k0))

× (z(z − 1))(3k0−n2−6n+l−c)/3

(z + 1)(6k0−5n2−9n+2l−2c)/3

)
, (6.21)

(
n

m

)
pn−1 (z) =

∑
l≡nmod 3

k1∈Z

(
(−1)n+l (Nm,l(k1) +Nm,l+1(k1))

× (z(z − 1))(3k1−n2−6n+3m+l−d)/3

(z + 1)(6k1−5n2−9n+6m+2l−2d)/3

)
, (6.22)

and
(
n− 1

m

)
pn−1 (z) =

∑
l≡nmod 3

k2∈Z

(
(−1)n+l (Nm,l+1(k2) +Nm,l+2(k2))

× (z(z − 1))(3k2−n2−3n−3m+l−d)/3

(z + 1)(6k2−5n2−3n−6m+2l−2d)/3

)
, (6.23)

where

c =

{
3, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3,
and d =

{
0, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3,
(6.24)

and Nm,l(ki) is the number of states with m positive turns, ki faces of color i and
where the left arrow of the second to last column is on the lth row from below.

Although this gives combinatorial expressions for the polynomials pn, we can
not see from them that the coefficients of pn are positive.

6.3. Paper III - Exact results for the six-vertex model with domain wall
boundary conditions and a partially reflecting end 55

6.3 Paper III - Exact results for the six-vertex model
with domain wall boundary conditions and a
partially reflecting end

In Paper III, we consider the trigonometric 6V model on a lattice of size 2n×m,
m ≤ n, with DWBC and a partially reflecting end, i.e. with a triangular K-
matrix, extending the work of Foda and Zarembo [17] to the trigonometric
case. We obtain a determinant formula for the partition function by using the
standard method of Izergin and Korepin, see Section 3.3. In an appendix, we
instead use another method, by Foda and Wheeler, to find the determinant
formula for the partition function.

We parametrize the local weights slightly differently in Paper III than in Sec-
tion 3. We define f(x) = ex − e−x, and define the weights as2

a±(λ) = 1, b±(λ) = e∓η f(λ)

f(λ+ η)
, c±(λ) = e±λ f(η)

f(λ+ η)
,

k±(λ, ζ) = eζ∓λf(ζ ± λ), kc(λ, ζ) = ϕf(2λ). (6.25)

The first main theorem is the following.

Theorem 6.7 (Theorem 3.5 in Paper III). For the 6V model with DWBC and a
partially reflecting end on a lattice of size 2n×m, m ≤ n, the partition function is

Zn,m(λ,µ) = ϕn−me((
m
2 )−nm)ηf(η)m

m∏
i=1

[
eµi+ζf(µi − ζ)

] n∏
i=1

f(2λi)

×
∏n

i=1

∏m
j=1 f(µj ± λi)∏

1≤i<j≤m f(µj ± µi)
∏

1≤i<j≤n [f(λi − λj)f(λi + λj + η)]
det

1≤i,j≤n
M,

(6.26)

where M is an n× n matrix with

Mij =





1

f(µi ± λj)f(µi ± (λj + η))
, for i ≤ m,

h((n− i)(2λj + η)), for m < i < n,

1, for i = n,

(6.27)

where f(x) = 2 sinhx, h(x) = 2 coshx and where f(x± y) = f(x+ y)f(x− y).

2In Paper III, we use the letter γ instead of η.
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Thereafter we specify the spectral parameters in Kuperberg’s manner in the
definition of the partition function as well as in the determinant formula to
finally end up with an expression for the number of states. It is not a priori
clear that one can do so. In the case of partial DWBC on an n × m lattice, it
seems hard since phases appear [16]. However, in the case of partial reflection
and DWBC, similar phases do not appear, due to the alternating orientations
of the lines.

After specializing the spectral parameters in the determinant formula, we
show that the determinant has a Hankel determinant part and a Vandermonde
determinant part. Following ideas of Colomo and Pronko [11], we show that
the determinant can be written in terms of certain orthogonal polynomials,
namely, the Wilson polynomials

Wk

((
t

6

)2

;
1

3
,
1

2
,
2

3
, 1

)

= (5/6)k(4/3)kk!

k∑
j=0

(−k)j(3/2 + k)j(1/3 + it/6)j(1/3− it/6)j
(5/6)j(4/3)j(j!)2

, (6.28)

where (a)j = a(a+1) · · · (a+j−1), for j ≥ 1, and (a)0 = 1 is the rising factorial.
This yields our second main result.

Theorem 6.8 (Theorem 5.1 in Paper III). For the 6V model with DWBC and a
partially reflecting end, the number of states with exactly k turns of type k+ is

Nk =

(
m

k

)
2n

2−n−m2−m(n−m)!

32m2−m−n2+n−mn

n∏
j=1

(2j − 2)!

(4j − 3)!

m∏
j=1

(6j − 2)!

(4j − 1)!

n∏
j=m+1

1

(j − 1)!

× det
1≤l,j≤n−m

(
Wm+j−1

(
− l2

9
;
1

3
,
1

2
,
2

3
, 1

))
. (6.29)

By summing over k, we get that the total number of states of the model is

A(m,n) :=
m∑

k=0

Nk =
2n

2−n−m2

(n−m)!

32m2−m−n2+n−mn

n∏
j=1

(2j − 2)!

(4j − 3)!

m∏
j=1

(6j − 2)!

(4j − 1)!

×
n∏

j=m+1

1

(j − 1)!
det

1≤l,j≤n−m

(
Wm+j−1

(
− l2

9
;
1

3
,
1

2
,
2

3
, 1

))
. (6.30)
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We also show that we can rewrite Nk as an (n−m)-fold hypergeometric sum,

Nk =

(
m

k

)
2n

2−n−m2−m(n−m)!

32m2−m−n2+n−mn

n∏
j=1

(2j − 2)!

(4j − 3)!

m∏
j=1

(6j − 2)!

(4j − 1)!

×
n∏

j=m+1

(5/6)j−1(4/3)j−1

n−m∏
j=1

(5/2 + 2n− 2j)j−1

(1− n)j−1(m+ 3/2)j−1

×
n−1∑

l1,l2,...,ln−m=0

(
n−m∏
i=1

((1− i)/3)li((1 + i)/3)li(1− n)li(m+ 3/2)li
(5/6)li(4/3)li(li!)

2

×
∏

1≤i<j≤n−m

(li − lj)


 . (6.31)

Furthermore we show that there is a bijection from the states of the 6V model
to a type of ASM-like objects described in Section 3.5.

Proposition 6.9 (Proposition 4.3 in Paper III). Consider matrices of size 2n×m,
m ≤ n, consisting of elements 0, −1 and 1, for which the following properties hold.
Vertically and horizontally the nonzero elements alternate in sign and the sum of the
elements of each column is 1. Horizontally the rows are pairwise connected to the
nearest row at the left edge to form a double row. If a row has any nonzero elements,
the rightmost of these must be 1. Furthermore the sum of the entries in a double row
must be 0 or 1. Then the expression A(m,n) yields the number of such matrices.

It also follows that Nk counts the number of matrices equivalent to states of
the 6V model with k positive turns. In the case m = n, the sum of the elements
in each double row must be 1, and A(m,n) counts the number of UASMs [23].
The case where m = n and k = 0 corresponds to VSASMs.
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7 Future problems

In Paper I, we restricted ourselves to the case λi = 1, µj = 0. In this case, the
partition function of the 8VSOS model with DWBC and a reflecting end is a
factor times t(2n,0,0,0), which is connected to the polynomials qn−1 by (5.39). In
Paper II, we specialize λi = 1, µj = 0, for 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1, and
µn = 1/4. This lets us write the partition function in terms of t(2n+1,0,0,−1),
which is connected to pn by (5.38). Another natural case to investigate is when
λi = 1, µj = 0, for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, and where λn is specialized
differently.

One could of course also consider other choices of the parameters λi and µj ,
for instance to get t(n,n,0,0) which is connected to sn by (5.36). It would also
be possible to keep one parameter free, e.g. λk, and look at T (2n−1,0,0,0)

n (λk).
For the 6V model, one free parameter corresponds to refined enumerations of
ASMs, which counts the number of ASMs where the unique 1 of the first row
is in a given column [43]. Refined enumerations of UASMs have been studied
e.g. by [31]. Following [34], another idea would be to compute the probabilities
that a random face from a random three-coloring has color i.

In Paper III, we consider the 6V model of size 2n×m, where m ≤ n, with DWBC
and a partially reflecting end. We find the partition function and can then count
the number of states. Here the reflection matrix is an upper triangular matrix. It
would be interesting to perform a similar investigation with a lower triangular
reflection matrix, corresponding to the case where m ≥ n. Another natural
research idea is to explore the case with a full reflection matrix. In both these
cases it is not clear how to find recursion formulas for the Izergin–Korepin
procedure. The frozen regions in the proofs of Tsuchiya [41], Foda and Zarembo
[17] and the proof in Paper III are obtained since a particular element in the
K-matrix is zero.

The model in Paper III is connected to a type of generalized UASMs. Ku-
perberg [23] presented several other types of ASMs and vertex models, with
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different boundary conditions. For instance there are the double U-turn ASMs
(UUASMs), with U-turns on the left side and also on the top, and several
types of models with a square lattice on a triangular domain, e.g. OSASMs,
OOSASMs, UOSASMs. Other future problems would be to try to find deter-
minant or Pfaffian formulas for the partition functions of the 8VSOS general-
izations of these models. The next step would be to look at the corresponding
three-colorings.

Pozsgay [28] used the homogeneous limit of Tsuchiya’s 2n× n determinant to
compute overlaps (i.e. inner products) between (off-shell) Bethe states of the
XXZ spin chain and certain simple product states, such as the Néel states. In a
similar way, Foda and Zarembo [17] used their rational 2n×m determinant
formula to compute the overlaps between Bethe states of the XXX spin chain
and more general objects which they call partial Néel states. This suggests that
it could be possible to compute similar overlaps in the trigonometric case of
the XXZ spin chain.
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