
Real-Time Plastic Deformation of Car Body-
works
Master’s thesis in Computer science and engineering

Tom Ille

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2020

Real-Time Plastic Deformation of Car Bodyworks

TOM ILLE

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Real-Time Plastic Deformation of Car Bodyworks
TOM ILLE

© TOM ILLE, 2020.

Supervisor: Marco Fratarcangeli, Department of Computer Science and Engineering,
Chalmers
Examiner: Name, Department

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Four stages of a car being deformed by a collision with an obstacle. The
upper right image shows the original state of the car body. The other three images
show the increasing deformation of the cars front-left as it collides further with an
obstacle. The obstacle is not rendered to increase the visibility on the deformation.

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Real-Time Plastic Deformation of Car Bodyworks
Tom Ille
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Realism in video games is furthered each year. Particularly in racing and driving
games, visual realism in the deformation of cars play a larger and larger role for the
immersion in a virtual world. With the improvements of modern hardware, a new
physically based simulation approach for the deformation of object has emerged.
In this thesis a prototype is developed that aims to implement such a deforma-
tion system for car bodyworks. One of the many challenges is to generate visually
appealing deformations, while remaining within the constraints of the real-time con-
text. There is a variety of deformation techniques in the body of research. At their
core, most work similarly. The deformable object is discretized into smaller units,
so called particles. These particles are subject to the forces of the virtual environ-
ment and thus adjust the superordinate deformable object. The method of choice
for this thesis’ prototype is position-based deformation, as it has many advantages
for a real-time context. In position-based deformation, the particles are intercon-
nect via constraints, which adjust their positions in relation to one-another. These
constraints are solved each frame by an iterative Gauss-Seidel solver.
It was integrated into a deformation module which is used by the physics engine
Unity to compute deformation results. This configuration proved successful as it
makes use of the strengths of both a third-party physics engine and a more perfor-
mant module for time-critical algorithms. The prototype was developed based on
an agile software development philosophy and was continuously improved and opti-
mized. The prototype was analyzed regarding the computational performance and
the visual results. Depending on its configuration, the system computes deforma-
tions within 5-150 ms per frame on an Intel i5-8500 CPU. The results suggest that
the performance can be enhanced by using a more sophisticated solver method and
by utilizing the GPU. The visual results are promising, but suggest that properties
must be distributed thought an object in a non-uniform manner. This can generate
a more visually interesting result, as it mimics the existence of vehicle parts that
are varying in their structural rigidity.

Keywords: computer graphics, plastic deformation, position based deformation.

v

Acknowledgements
I would like to thank Marco Fratarcangeli for the ongoing support and advice
throughout the extended creation of the thesis.

Tom Ille, Gothenburg, June, 2020

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Purpose and research questions . 2
1.2 Delimitations . 2
1.3 Requirements . 3

1.3.1 Performance . 3
1.3.2 Stability . 3
1.3.3 Integratability . 3
1.3.4 Controllability . 4

2 Background 5
2.1 History of Real-Time Deformation . 5
2.2 Deformation Techniques . 5

2.2.1 Physically Based Methods . 6
2.2.1.1 Mass-Spring System 6
2.2.1.2 Finite Element Method 6
2.2.1.3 Finite Difference Method 7
2.2.1.4 Finite Volume Method 7

2.2.2 Position-Based Methods . 7

3 Theory 9
3.1 Deformation . 9
3.2 A Simplified Car Model . 9
3.3 Choosing the Deformation Method 10

3.3.1 The Mass-Spring Model . 10
3.3.2 Physically-Based Continuum Methods 10
3.3.3 Position-Based Deformation 11

3.4 Surface Mesh and Tetrahedral Mesh 11
3.4.1 Surface Mesh . 11
3.4.2 Tetrahedral Mesh . 11

3.5 Barycentric coordinate system . 12
3.6 Constraints . 14

3.6.1 Distance constraints . 14
3.6.2 Volume constraints . 15

ix

Contents

3.6.3 Constraint Stiffness . 16
3.6.4 Collision constraints . 16

3.7 Solver . 17
3.7.1 Gauss-Seidel Solver . 17
3.7.2 Jacobi Solver . 17

3.8 Plasticity . 18
3.9 Position-Based Dynamics . 19

4 Methodology 21
4.1 Requirements . 21
4.2 Development Process . 21
4.3 Tools . 22

4.3.1 Tools for Agile Development 22
4.3.2 Functionality Tools . 22
4.3.3 Choosing a Physics Engine . 23
4.3.4 Unity . 23

4.4 Testing Projects . 24
4.5 Summary . 26

5 Execution 27
5.1 Overview . 27
5.2 The Set-Up . 27
5.3 Execution flow . 28
5.4 Preparation and Initialization . 30

5.4.1 Importing mesh data from TetWild 30
5.4.2 Constraint Generation . 31
5.4.3 Surface Mesh to Tetrahedral Mesh Mapping 32
5.4.4 Barycentric Mapping . 32
5.4.5 Serialization . 33
5.4.6 Code Architecture . 34

5.5 Deformation Loop . 35
5.5.1 Collision Handling . 35

5.5.1.1 Coarse Collision Detection 36
5.5.1.2 Fine Collision Detection and Collision Response . . . 36

5.5.2 Constraint Solving . 37
5.5.3 Solver . 37

5.6 Parallelization . 37
5.7 Force Feedback . 38
5.8 Summary . 39

6 Results 41
6.1 Critical Goal Assessment . 41
6.2 Visual Analysis . 43
6.3 Performance Analysis . 44

6.3.1 Methodology . 44
6.3.2 Initialization . 45

6.3.2.1 Parallelization . 46

x

Contents

6.3.2.2 Barycentric Mapping 47
6.3.2.3 Data Serialization 48

6.3.3 Deformation Loop . 48
6.4 Outlook and Future Work . 50

6.4.1 Utilizing the GPU . 50
6.4.2 A Parallel Gauss-Seidel Solver 51
6.4.3 Simulated Force Feedback from Obstacle Collisions 51
6.4.4 Saving and Loading Deformation States 51
6.4.5 Weight-Painting for Deformation Parameters 52

7 Conclusion 55

Bibliography 57

xi

Contents

xii

List of Figures

1.1 Different aesthetics of crashes in Beam.NG drive and Wreckfest . . . 4

3.1 Spheres represented by a surface mesh and a tetrahedral mesh. 12
3.2 Barycentric mapping in two dimensions. 13
3.3 Position update of a point that is barycentrically mapped to a triangle. 14
3.4 Distance preservation of an edge via a distance constraint. 15
3.5 Tetrahedral volume preservation via a volume constraint. 16
3.6 Projection of collision constraints. 17

4.1 Simplified order of Unity events. 25
4.2 Testing projects with varying complexity. 26

5.1 An overview of the scene hierarchy of the prototype. 28
5.2 A flow diagram of the prototype. 29
5.3 File formats for tetrahedral and surface mesh files. 31
5.4 File format of serialized tetrahedral mesh data. 34
5.5 Exemplarily serialized data. 34
5.6 Excerpt of the flow chart focusing on the deformation loop. 35
5.7 Comparison between AoS and SoA. 38

6.3 Selection of meshes for performance analysis. 45
6.4 Load distribution for different impacts on a Mercedes-Benz CLS-Class. 52
6.5 Mock-Up of a parameter painting tool. 53

xiii

List of Figures

xiv

List of Tables

6.1 Computation time of a serial initialization. 46
6.2 Comparison of a serial and a parallel initialization step. 46
6.3 Computation time of a parallel initialization. 47
6.4 Direct mapping quotas in different meshes. 47
6.5 Comparison of parallel initialization and parallel initialization with

direct mapping. 47
6.6 Computation time of a parallel initialization with direct mapping. . . 48
6.7 Comparison of parallel initialization with direct mapping and data

serialization. 48
6.8 Average computation times of serial deformation loops of different

meshes. 49
6.9 Average computation times of parllel deformation loops of different

meshes. 49
6.10 Comparison of serial deformation loop and parallel deformation loop. 50

xv

List of Tables

xvi

1
Introduction

Consumers have a never-ending demand for increased realism in video games. This
applies to both realism in gameplay mechanics and computer graphics. The demand
is fueled by ever-increasing hardware capabilities for ever-decreasing costs. This de-
velopment does not exclude driving games. To make driving errors more meaningful
it is not enough to penalize the player through the gameplay. For a full immersion,
the game needs a visually appealing damage model.
Initiated by Destruction Derby [4] in 1995, visually detailed damage models started
to find their way into racing games. Destruction Derby was far ahead of competi-
tors as such damage models opened up a lot more opportunities to further graphical
realism in driving games. It took another ten years until 2005, when Rigs of Rods
[18] was published. Rigs of Rods is an open-source physics engine, which employed
soft-body physics and marked the beginning of modern physics-based simulation
techniques in video games. Prior to the development of physics-based deformation
methods, deformations of vehicles were realized by displaying precomputed or man-
ually created, damaged car parts on collision. Artists prepared different deformed
versions of a part of the bodywork (i.e. a door) which were then swapped with the
original model on collision. While this method had great success in the past, it lacks
in detail, variety and visual plausibility. In recent years therefore, some game de-
velopers started to emphasize simulation-based deformation techniques. Prominent
examples are BeamNG.drive (2015) [26], which was developed by a group of Rigs
of Rods-contributors and Wreckfest [36] (2018). Both games employ extensive and
sophisticated visual damage models. Despite the rise of such techniques in recent
years, published information about them are sparse due to the commercial nature of
the projects. This thesis aims to investigate the development of a simulation-based
deformation system for real-time applications. The report describes the steps taken
to successfully develop a prototype implementing such system, as well as the dis-
coveries made.
The structure of this thesis is as follows:

• Chapter 1 Introduction. The remainder of this chapter presents the research
question, the delimitations and the requirements of this thesis.

• Chapter 2 Background. A synopsis of the history of dynamic deformation
in driving games. Video games that are known for prominently featuring
deformations of cars are presented. The existing body of research is presented
and the most commonly used deformation techniques are shown.

• Chapter 3 Theory. The previously presented deformation techniques are an-
alyzed regarding their practicality for this thesis. The Position-Based defor-

1

1. Introduction

mation is chosen as a basis for the prototype development. Common concepts
from the fields of physics, mathematics and computer graphics are explained
and contextualized within the thesis.

• Chapter 4 Methodology. Development tools and methodologies during the
prototype development are presented and motivated.

• Chapter 5 Execution. The development of the prototype is described in detail.
The individual features’ evolution throughout time is explained. Challenges
that were met throughout the prototype development are presented and solu-
tions are motivated.

• Chapter 6 Results. The final prototype is evaluated based on the delimitations
and requirements described in chapter 1 Introduction. The visual quality of
the deformations and the performance of the used algorithms are extensively
assessed.

1.1 Purpose and research questions

The aim of the thesis is to develop an understanding of how to develop a deformation
model for real-time applications. Real-time dependant requirements are considered
to ultimately answer the following two research questions.

Which factors must be considered when designing and developing a real-
time deformation system for car bodyworks in video games? How can
such a method be incorporated into a modern game engine?

This question was used to generate a set of resulting requirements. The requirements
were then used to iteratively develop a prototype, with the intent to answer the
research questions. Discoveries made throughout the prototype development were
used to reconsider the individual requirements. The final prototype answers aspects
of the research questions in differing detail. Section 6.4 offers suggestions for future
work that can further develop the aspects described in the upcoming sections.

1.2 Delimitations

The goal for the prototype is to create a deformation model for the bodyworks of
cars. This is limited to the metal of the bodyworks. Other parts and materials
of the car, such as the glass of windows, the rubber of wheels or the interior are
only modeled primitively as rigid bodies or are completely omitted. The virtual
environment of the car was also modeled primitively. Obstacles the car can collide
with, were modeled as primitive shapes. The target platform for the prototype is a
Windows PC.

2

1. Introduction

1.3 Requirements

The deformation method in this thesis was developed for real-time, interactive ap-
plications such as video games. This circumstance yields a number of requirements.
Generally, the plausibility of the approximation is of higher importance than phys-
ical correctness and completeness. The highest focus was on the performance and
efficiency of the used algorithms. Minor sacrifices in visual quality and physical
correctness were therefore justifiable by enhancing the computation speed or con-
serving computing resources. The following sections lay out a set of requirements for
a deformation technique that is sufficient for a real-time context as well as possible
approaches that could help meeting such requirements.

1.3.1 Performance
One of the most important aspects is the efficiency of the algorithms in use. Com-
monly video games have a desired frame rate of 60 frames per second (fps). Any
loss of frame rate below this limit is clearly noticeable by the consumer according
to –todays standards. Consequently, one frame has approximately 17 ms to be fully
computed and rendered onto the screen. This includes lighting, rendering, AI com-
putations, user input and animations, besides the deformation. This is no simple
task and the code has to be as time-efficient as possible. Increasing the performance
can be done using code parallelization, efficient data structures or by utilizing the
graphics hardware.

1.3.2 Stability
The deformation technique needs to be unconditionally stable. This means that the
method can not corrupt over time or in the case of unpredicted forces. It is a known
phenomenon in the field of simulation-based deformation, that some techniques can
become unstable over time. As the user may drive the same car for an unknown
duration this behaviour has to be prevented strictly. This requirements can mostly
be met by choosing techniques and algorithms that are known to be stable.

1.3.3 Integratability
Current video games almost exclusively use surface-meshes to represent their three-
dimensional objects. The deformation method therefore needed to work with arbi-
trary surface-meshes after being integrated into the games system. It needed to be
avoided to design the deformation technique to be dependant on a certain charac-
teristic of a surface-mesh. It needed to also be able to correctly detect collisions
with common shapes such as cubes or spheres. It was also required that the code
of the deformation technique was written in a way that allowed the addition of new
features. For example, modern video games use collision systems that are more
complex than just primitives. Improving the collision system needed to not alter
any other code of the deformation technique.

3

1. Introduction

1.3.4 Controllability
The method was designed to be used in an interactive, real-time environment. There-
fore, the technique needed to offer a set of adjustable parameters which could pre-
dictably tweak the deformation system. This was important because individual
games and projects have different artistic and aesthetic goals. This point is illus-
trated at the example of BeamNG.drive and Wreckfest in figure 1.1.

Figure 1.1: An example of two crashes presented in two aesthetically different
manners. The crash in BeamNG.drive[26] (left) is much cleaner with less debris
being propelled off the cars. The crash in Wreckfest[36](right) deforms the car less,
but features more visual effects and debris. This difference impacts how frequent
and encouraged crashes are in the specific game and how impactful they look and
feel.

4

2
Background

This chapter presents a synopsis of the history of real-time deformation in driving
games. The evolution from Destruction Derby in 1995 through Wreckfest in 2018 is
described. The classic approach to dynamic deformation as well as a collection of
current deformation methods are presented.

2.1 History of Real-Time Deformation
The traditional approach to deformation in cars simulation is a combination of a
physical simulation and an application of manually created assets from artists. Once
a collision between an object and a deformable car is detected, the affected exte-
rior parts get switched to a deformed version. The earliest video game employing
deformation of car exteriors is Destruction Derby (1995)[4]. While the deformation
technique is rather simple, it was very ahead of its times, no other racing games
used such techniques. The following years, more and more racing and driving games
started to feature car deformation systems. Notable examples are Street Legal Rac-
ing: Redline (2003) [13], FlatOut (2004) [16] and TOCA Race Driver (2003) [10],
which all used developed damage and deformation models for their times and are
well known for the unique integration of the damage models into their gameplay.
Only in recent years, game developers started to replace the traditional approach
to deformation with a simulation-based approach. This is due to the rise of both
demand for more realistic graphics and the availability of computing power in graph-
ics hardware. Two very notable games employing modern techniques are Wreckfest
(2018) [36] and BeamNG.drive (2015) [26]. Both employ highly sophisticated simu-
lation based deformation techniques, which are adjusted to fit the aesthetic concept
of the game. As the specifics of their deformation systems are not published due to
the commercial nature of the games, it is hard to say which set of algorithms they
used to develop their systems. It can however be said that they are forerunners
of using simulation based deformation techniques in a real-time context and in the
future more and more driving and racing games will employ similar techniques to
further graphical quality and realism.

2.2 Deformation Techniques
There are a number of deformation techniques used in the fields of computer graph-
ics, computer animation and computer simulation. They are able to describe a vast
number of physical phenomena related to deformation of materials. Many models

5

2. Background

can plausibly simulate elasticity, plasticity, elasto-viscosity, ductile [12] and brittle
fracture [8] among others.
Generally, all deformation techniques have a similar concept. The deformable object
is discretized into smaller entities. Different approaches name these entities differ-
ently but in this thesis I will refer to them as particles. The particles are used to
simulate the effect of internal and external forces on the object. The specifics of
the discretization as well as the process of handling external and internal forces and
influences depend on the specific technique. In the following sections, a selection of
the most prominent deformation methods is presented.

2.2.1 Physically Based Methods
The use of a physically based approach for the animation of deformable materials
has been proposed by Terzopoulos in the late 1980s [1][3][2]. Terzopoulos and his
colleagues started off a development in computer animation, which has yielded a
large body of research and is still actively researched on today. These methods
manipulate objects by utilizing Newton’s second law of motion. Forces, that are
applied to an objects particles influence their acceleration and velocity and thus
their position directly. transforming the position of a particle then results in the
deformation of the object.

2.2.1.1 Mass-Spring System

The mass-spring model is an early and simple model for deformation [5][7]. It still
is a common method to create simple simulations for deformable materials. The
model handles the deformable object as a set of particles which are connected via
springs. Material characteristics can be achieved by adjusting the spring stiffness
and by adjusting the weights of the particles. This model is very lightweight, which
makes it intuitive, easy to implement and computationally fast. It does however
have a number of significant drawbacks in terms of the accuracy and the ease of
reproducing the desired material behaviour. The way the spring network is setup
greatly influences the deformation behaviour of the object. Furthermore, achieving
the desired material behaviour can be hard, since the spring stiffness is the only ad-
justable parameter in the model. Thus, certain specific material characteristics may
not be achievable. Volumetric effects are very difficult to model with a mass-spring
system as well. While adjusting the spring layout can help to model the volume of
an object, more complex effects like conservation of volume are not recreatable.

2.2.1.2 Finite Element Method

The finite element method (FEM) is the most commonly used representative of a
family of deformation models: the continuum models. In contrast to the mass-
spring model, the continuum models handle the object as a continuum with masses,
forces and energies distributed throughout. This approach is mathematically more
complex but also more physically accurate as it is closer to reality. In order to com-
pute the deformations on an object, it gets discretized into finite, non-overlapping

6

2. Background

elements, over which the continuum gets approximated. The object in its rest con-
figuration is considered as an equilibrium, which is acted on by external forces.
In order to find the deformed configuration of the object, the total energy equation
must be minimized. This is achieved by solving the resulting partial differential
equations (PDE). As the material properties and different forces become more so-
phisticated, the resulting PDEs becomes more and more complex. The FEM offers
a numerical solution to said PDEs. To simplify the PDEs and thus speed up the
computations, boundary conditions can be defined which are derived from domain
knowledge. They restrict the number of variables and thus speed up the compu-
tations. Therefore, to model a given object, all material properties and boundary
conditions are required to apply the FEM in an efficient way.
The FEM is very flexible and can be used on arbitrary object shapes but it is
especially strong for complex shapes [28]. It can also conquer the above explained
shortcomings of a mass-spring system. Furthermore, it can handle volumetric effects
and the material characteristics are not significantly dependant on the layout of the
discretization of the object. The high computation cost makes it most suitable for
offline rather than real-time operations. However, lately there have been attempts
to address this issue [9][11][17][23].

2.2.1.3 Finite Difference Method

The finite difference method (FDM) was proposed by Terzopoulost and colleagues [1]
when they first suggested the use of physical models to animate deformable bodies.
Is is also a continuum model like the FEM, however using the FDM, a deformable
object is discretized into surfaces separated by nodal points, rather than volumetric
elements.
Basloom [28] states that this method is inferior to the FEM both in terms of its
efficiency and in the precision of its approximation. This is also reflected in the
fact that here has been almost no research expanding on the method proposed in
[1] within the field of computer graphics. Instead, a large set of research has been
published utilizing and expanding the FEM, furthermore suggesting that the FDM
is truly inferior.

2.2.1.4 Finite Volume Method

The finite volume method (FVM) discretizes the object into a finite set of elements.
Some researchers argue, that the method is more suited for 3D purposes than the
FEM [28]. Teran et al. [15] state that FVM is computationally cheaper, while
sacrificing some visual detail. They argue however, that in a computer graphics
context, the ability to simulate a large amount of elements is more valuable than
achieving higher realism for a smaller amount of elements.

2.2.2 Position-Based Methods
A serial algorithm for position based dynamics was first introduced to rigidbody
and deformation simulation in 2007 [21] which has later been adapted for parallel
computations in 2014 [25]. In contrast to physics-based methods, position-based

7

2. Background

methods omit the velocity and acceleration layer to directly manipulate the particle
position. A particle is purely formalized as point-masses with a position. This is
the biggest difference to physics based methods. It allows more directly control on
the deformation behaviour, as particle positions are adjusted directly, rather than
indirectly through forces. The total potential energy within an object is not reduced
via forces, but rather in a position-based energy reduction[25]. Particle constraints
restrict the particle positions in relation to other particles or external influences.
Satisfying the constraints is equivalent to an energy reduction in other approaches.
The position-based approach was designed for real-time and interactive applications.
It is computationally less expensive than physics-based methods and allows more
control. These advantages emerge from a more lightweight physics integration as
well as a commitment to sacrificing physical correctness for better computational
performance.

8

3
Theory

3.1 Deformation
Deformation describes change in the shape, size or volume of an object as a result of
a set of external and internal stresses. Typically, an object under stress will deform
in two ways. If the stress is below a certain limit, the deformation will be elastic.
An elastically deformed object will return back to its original form after the stress is
removed. If the stress is above a certain limit, the objects deformation is permanent,
even after the removal of the stress. The maximum stress an object can take before
deforming plastically is called the elastic limit. Deformations in reality are extremely
complex, as they are results of inter-atomic relations. Modelling this behaviour in
detail is not suitable for a real-time context. Additionally, deformations are not
perfectly elastic or plastic in reality and a number of more complex deformation
behaviour has been observed. As a result, deformations in this thesis are represented
by a combination of elastic and plastic deformations. This approach is further
explained in section 3.8

3.2 A Simplified Car Model
A car consists of hundreds of parts, many of which are produced from different
materials to benefit the individual parts’ specific purpose. Some parts are light
and flexible, others heavy and rigid. Modelling and simulating each individual part
would be computationally expensive, time intensive to implement and most impor-
tantly not required for visual plausibility. As specified in section 1.2 the car parts
modelled as deformable are merely the exterior metal panelling as well as the struc-
tural frame of the bodyworks. The glass of the windows, plastic of the headlights,
rubber of the wheels and the interior will not be modeled in a physically plausible
manner as it would be outside the scope of this thesis. The focus rather lies on
developing a prototype that can simulate the deformation of the car exterior in a
way that is suitable for real-time interactive applications.
The bodies of modern cars are designed to deform in certain ways to offer maximum
protection and security to the passengers in case of a crash. The front and back
zones of cars serve as crumple zones to absorb collision energy from frontal impacts.
A structural frame, made from steel or other sturdy materials is built to enlarge the
surface of the impact on both frontal impacts and side impacts, to evenly distribute
load and thus reduce local strain. While implementing the behaviour of said struc-
tural parts could bring benefits for the visual results of the deformation simulation

9

3. Theory

with regards to realism, the focus of the thesis lies on the metal panelling itself. The
entire exterior of the car is thus modelled as a material with a constant rigidity. A
possible approach on implementing the structurally more rigid parts is examined in
section 6.4.

3.3 Choosing the Deformation Method
In section 2.2 the research body of physically based and position-based deformation
techniques was explored. The strengths and weaknesses of each technique are now
highlighted and related to the requirements, presented in section 1.3. Finally, a
method for the development of the prototype of this thesis is chosen.

3.3.1 The Mass-Spring Model
The mass-spring model is a classic approach to deformation modeling. It is real-time
applicable and relatively easy to implement. However, it can become unstable in
certain conditions. It also has the weakness of being dependant on the layout of the
mass-spring network, while having only the spring stiffness parameter to model all
of the desired material properties. Volumetric and angular behaviour is complicated
to model due to the fundamental inner workings of the mass-spring model. Said
behaviours have to be implicitly defined by designing specific mass-spring networks.
This inability to accurately and reliably model material behaviour makes the mass-
spring model unsuited for the purpose of the thesis.

3.3.2 Physically-Based Continuum Methods
Out of the three physically based continuum methods FEM, FDM and FVM, the
FEM is by far the most dominant one in the field of computer animation. The
FEM has gotten far more attention in the research over the past decades than the
other methods. It offers great flexibility and physical accuracy, while being more
efficient than FDM and FVM with arbitrary 3D meshes [28]. There have also been
multiple explorations into utilizing an FEM in the simulation of car crashes, such
as in [30]. The computational cost for all three methods is unfortunately high.
However, there have been multiple attempts to implement the FEM in a real-time
domain as expressed in section 2.2.1.2. The volumetric nature of the FEM could
be used to model the different parts of the car. The outer layer of the model can
have softer properties than the inner layers. This would allow to model the soft
metal paneling in combination with the more rigid structural frame. This is similar
to an approach proposed by Müller et al. in [11]. The disadvantage here would be
that the three-dimensional representation of the object is quite different than the
representation of a typical 3D mesh, which is a set of surfaces rather then volumes.
This complicates mapping from one to the other, both when spatially discretizing
the object, and when applying changes in the deformable model to the 3D mesh.
It is still a viable method that was ruled out merely due to the position-based
methodology being more suitable.

10

3. Theory

3.3.3 Position-Based Deformation

The position-based approach is specifically designed for real-time applications. The
method is fast, stable and controllable[25], while offering the ability to model com-
plex physical material characteristics. It can handle all material behaviour that
physically based methods can handle, while sacrificing some visual detail for better
computational performance. It is also relatively simple to implement. The fact that
the method works purely on the positions of the particles by omitting the velocity
and acceleration layers also proved very convenient when implementing a position-
based system as an add-on to a physics engine. All of these advantages make the
approach extremely well suited for the purpose of this thesis.

3.4 Surface Mesh and Tetrahedral Mesh

Two types of meshes are frequently referred to in this thesis. They both represent
objects in three-dimensional space, but they offer different advantages and disad-
vantages.

3.4.1 Surface Mesh

Surface meshes represent the object by describing the objects surface. They are also
called 3D models or render meshes. The surface is made up of vertices which are
connected via faces. Surface meshes are essentially hollow and have therefore no
volumetric properties. They are only used to visually represent an object and to
render it onto the screen.
The thesis aims to enhance a driving game environment with deformable bodyworks.
The car model, that was used as the base of the deformation methods is referred to
as the original surface mesh in this thesis.

3.4.2 Tetrahedral Mesh

In order to physically influence a virtual object in a detailed manner, a surface
mesh is not enough. The object needs to be represented by a volumetric mesh,
i.e. a mesh that not only accounts for the surface of the object but the entire
volume of it. The simplest such volumetric mesh is a tetrahedral mesh, a mesh
that discretizes the volume of an object into perfectly tessellated tetrahedra. This
method of splitting up a volume into a set of tetrahedra works nicely with position-
based deformation techniques. The corners of the tetrahedra make up the particles
while other geometrical properties of the tetrahedra can be used to generate the
constraints. Figure 3.1 illustrates the difference between a triangular surface mesh
and a tetrahedral volume mesh.

11

3. Theory

Figure 3.1: The cross-sections of a sphere as a surface mesh (left) and a tetrahedral
mesh (right). Notice, that the surface mesh is hollow, while the the surfaces of the
inner tetrahedra of the tetrahedral mesh are visible.

3.5 Barycentric coordinate system

3D models in game environments are surface meshes. They are the only meshes
that can be rendered by default and are the industry standard. However, mod-
elling deformation behaviour using position-based deformation requires a volumet-
ric, tetrahedral mesh. The tetrahedral mesh is used for a deformation simulation
and the surface mesh for rendering. This yields a need for a mapping algorithm,
that relates the vertices of the surface mesh to the tetrahedral mesh. Barycentric
coordinates can be used to create such algorithm. With barycentric mapping, each
point in the surface mesh can be mapped to a tetrahedron in the tetrahedral mesh.
When tetrahedra are deformed during a collision, the surface mesh can be changed
accordingly to show that deformation on screen.
The barycentric coordinate system is a method of representing points in space.
Typically, we use the Cartesian coordinates system, where points are represented
in relation to the axes of a coordinate system. Barycentric coordinates however,
describe points in relation to the points of a simplex.
A point p with barycentric coordinates b is the center of mass of a tetrahedron T .
T is comprised of the four vertices v1 − v4 with their respective masses m1 −m4.
The barycentric coordinate component bi is

bi = mi/mT

where

mT = T = m1 +m2 +m3 +m4 .. the total weight of tetrahedron

Each barycentric coordinate component bi therefore describes the influence each
point vi has on point p. Increasing the mass mi of a vertex vi moves the center
of mass closer to vi. This will in turn increase the volume Vi of the opposing sub-
tetrahedron that is created by p and the remaining three vertices. In fact, the
proportions of the individual opposite sub-volumes is the same as the proportions of
the vertex masses. Figure 3.2 illustrates the principle of the opposite sub-tetrahedra
in 2D.

12

3. Theory

Figure 3.2: Barycentric mapping in 2D. Point p is mapped to the triangle T . The
barycentric coordinate b is the result the quotient of the area of each sub-triangle
Ai and the total area of the triangle AT .

From this circumstance we can derive a fast method of calculating the barycentric
coordinates b using the volumes of the sub-tetrahedra that are comprised of p and
three vertices. The volume VT of tetrahedron T is

1
6 detDT

v1,x v1,y v1,z 1
v2,x v2,y v2,z 1
v3,x v3,y v3,z 1
v4,x v4,y v4,z 1

To get the volume Vi of the sub-tetrahedron opposite of vertex vi we replace the ith
row of DT by p. For example, for V2 this results in

1
6 detD2

v1,x v1,y v1,z 1
px py pz 1
v3,x v3,y v3,z 1
v4,x v4,y v4,z 1

The barycentric coordinate b is therefore

b =

b1
b2
b3
b4

 =

V1/VT

V2/VT

V3/VT

V4/VT

 =

D1/DT

D2/DT

D3/DT

D4/DT

To get point p from a given tetrahedron T and barycentric coordinates b we use
simply

p = b1v1 + b2v2 + b3v3 + b4v4

13

3. Theory

Figure 3.3: A point p is barycentrically mapped to a triangle (I). As the triangle
deforms in (II), the position of p is adjusted.

3.6 Constraints
Constraints are functions that restrict the positions of groups of particles. Solving
the constraints means that all particles are moved such that all constraints are
satisfied. The different kinds of constraint functions are manifold and are used
to model all behaviour of objects that are deformed via position-based methods.
A constraint C(xi, ...,xn) = a0 restricts a set of position vectors xi, ...,xn of the
particles i. A function of the particles has to equal the given rest value a0. The way
the function is defined and how the rest value is formalized needs to be defined for
each type of constraint. Solving a constraint results in a set of displacement vectors
∆xi (commonly referred to as deltas) which move the involved particles such that
they satisfy the constraint. In the following sections, constraint types that are
relevant to this thesis and their resulting displacement vectors are presented.

3.6.1 Distance constraints
Distance constraint [14] C restricts two particle positions x1 and x2 in their distance
to one another such that

C(x1,x2) = |x2,1| = D0

where

|x2,1| = length of x2 − x1
D0 = the resting distance

To satisfy the constraint, the two particles have to be either pulled apart or pushed
together until their distance equals D0. The resulting displacement vectors are

∆x1 = −1
2 (|x2,1| −D0) n

∆x2 = +1
2 (|x2,1| −D0) n

where

n = x2,1
|x2,1| i.e. the normalized vector x2,1

14

3. Theory

Figure 3.4: A distance constraint between particles p1 and p2 (I). When the
particles are moved apart in (II), the distance is no longer equal to the resting
distance D0 and the constraint is offended. Both particles are adjusted by half the
divergence δ in order to satisfy the constraint (III).

3.6.2 Volume constraints
Volume constraint C restricts the volume of a tetrahedron between the four particle
positions x1,x2,x3,x4 with

C(x1,x2,x3,x4) = 1
6(x2,1 × x3,1) · x4,1 = V0

where

x2,1 = x2 − x1
x3,1 = x3 − x1
x4,1 = x4 − x1
V0 = resting volume

Similarly to the distance constraint, the displacement vectors are the result of the
difference between the current and the desired volume of the tetrahedron. Particles
are either moved inwards or outwards in order to adjust the volume. The direction
of the displacement vector ∆x of a point x is determined by the opposing faces
normal. The magnitude of each displacement is the result of the difference between
the current volume V1 and the desired volume V0 and the total squared sum of all
displacement vector directions.
For position x1, the displacement vector is

∆x1 = d1 ∗ (V1 − V0)/
∑

d2
i

where

d1 = x4,2 × x4,3 .. direction of displacement vector∑
di = |d1|2 + |d2|2 + |d3|2 + |d4|2 .. squared sum of direction magnitudes

15

3. Theory

Figure 3.5: Tetrahedral volume preservation via a volume constraint. For clarity,
the process is shown in 2D. The volume constraint with resting volume V0 acts on
triangle 4p1, p2, p3 (I). The triangle is deformed in (II). (III) shows the adjusting
vectors (amplified for clarity). The vertex positions are adjusted and the triangles
volume is preserved in (IV). Notice that the shape is not preserved.

3.6.3 Constraint Stiffness

Controlling the influence of each type of constraint is important to allow more control
over the material behaviour. There are multiple way to adjust the strength of a
given constraint, but a very common one is to apply a constraint stiffness. The
stiffer a constraint, the stronger their influence on the material behaviour. To apply
a stiffness parameter to a constraint we simply multiply the adjustment vector by a
stiffness parameter before adjusting the vector position.

xi = xi + ∆xi ∗ s

where stiffness s[0..1].

3.6.4 Collision constraints

The last constraint that is used in this thesis is the collision constraint, which is
a unilateral (inequality) constraint. This means that it does not specify a geomet-
ric value which the particles have to satisfy but rather a general area in space in
which particles can not penetrate. Collision constraints represent obstacles in the
virtual space which particles can collide with. A mathematical formalization of the
displacement vector is difficult, as it depends on the shape of the obstacle and the
collision scheme. A common solution for satisfying collision constraints is to project
them orthogonally onto the surface of the colliding obstacle [14]. Figure 3.6 depicts
the particle projection.

16

3. Theory

Figure 3.6: Projection of collision constraints. The particles (blue) move towards
the obstacle (gray) and penetrate it in (II). They are then orthogonally projected
onto the closest surface of the obstacle in (III).

3.7 Solver
The solver is an algorithm that handles the constraint resolution. Solving a large
amount of different constraints is by no means trivial. Generally, a solver is a method
to find the solution of a system of equations. Specifically in this context, a solver
takes sets of functions, such as constraints and iteratively solves them in order to
converge to an optimal solution. Typically, a solver needs to do 3-10 iterations
over the set of constraints to converge to a sufficient solution. The scheme the
solver follows determines how quickly the solver converges, how computationally
expensive it is and whether or not it is stable (i.e. whether it actually finds a
feasible solution). In this thesis two solvers were implemented. The Gauss-Seidel
Solver and the Jacobi-solver. They will be described in the following sections.

3.7.1 Gauss-Seidel Solver
The most common solver is the Gauss-Seidel solver. It iterates over all constraints
and solves them one-by-one. The deltas for the vertices that are influenced by
a constraint are computed (algorithm 1, line 4) and immediately applied to the
vertex position (line 5). This method has a rather quick convergence time but
has one crucial flaw. It is inherently serial and thus can not be paralallized in
code [29]. The Gauss-Seidel method does therefore not take advantage of modern
hardware capabilities. While there are many attempts to parallelize Gauss-Seidel
algorithms, they require large overheads in synchronization structures, which make
them inapplicable for real-time contexts [33].

3.7.2 Jacobi Solver
The Jacobi solver works similarly to the Gauss-Seidel solver, while using an approach
that allows the parallelisation of the execution code. Instead of computing and
immediately applying the vertex displacement vectors succesively, the deltas per
vertex are summed up to a total vertex delta variable (line 5 - line 10). After the

17

3. Theory

Algorithm 1 Gauss-Seidel Solver
1: procedure SolveGaussSeidel
2: for all constraints ci do
3: for all vertices of ci do
4: compute vj.delta
5: vj.position += vj.delta
6: end for
7: end for
8: end procedure

vertex deltas are computed, the average vertex deltas are applied to each vertex
position (lines 11 - 13). The average is computed via the total vertex delta and the
number of constraints that influence this vertex. This requires an initial step that
counts and stores the amount of influencing constraints per vertex (lines 2 - 4).

Algorithm 2 Jacobi Solver
1: procedure SolveJacobi
2: for all vertices vj do
3: SET constraint_countj
4: end for
5: for all constraints ci do
6: for all vertices of ci do
7: compute delta
8: vertexj.delta += delta
9: end for

10: end for
11: for all vertices vj do
12: vertexj.position += vertexj.delta/constraint_countj
13: end for
14: end procedure

3.8 Plasticity
Using the above formalizations will produce a completely elastic deformation. The
rest state for each constraint is never changed, which will drive the system towards
its initial state. Deformations of real materials are however not purely elastic. They
feature both elastic and plastic components. This behaviour can be modeled in the
constraint solution step. After a deformation occurs and the rest value a0 of the
constraint is offended, the rest value gets adjusted. The adjustment is done by using
a plasticity scalar p to linearly interpolate between the previous rest value a0 and
the current state a1. This produces

C(x1, ...xn) = a0 · p+ (1− p) · a1.

18

3. Theory

The precise value of p and the interpolation function are not fixed and can be
adjusted to model a specific material behaviour.

3.9 Position-Based Dynamics
In position-based dynamics, the above concepts are united. The deformable object
is represented as a mesh of particles. These particles are connected via constraints,
which are used to model material behaviour. PBD served as the basis for the
approach used in this thesis. It was adjusted to better fit the tools and software used
for the prototype development and the restrictions that come with those. How and
why said adjustments were made is outlined in chapter 5. Position-based dynamics,
as originally proposed by Müller et al. [20] works in three steps (see algorithm 3).
Position Prediction. After the initialization (lines 1 - 3) the positions pi are
predicted for the particles i (lines 5 - 8). These predicted positions are not applied
to the particles directly, but are rather used as a base for the following step.
Constraint Generation and Solving. After the initialization, the temporary
collision constraints (line 10) are generated and all constraints are solved using the
previously predicted positions (lines 11 - 13) via a solver. The particle positions are
modified so that they satisfy all constraints as precisely as possible using the solver.
Particle Update. Finally, the actual positions and velocities of the particles are
updated (lines 14 - 17) in order to update the particle mesh for the current time
step.

Algorithm 3 Position Based Dynamics [20]
1: for all vertices i do
2: initialize xi = x0

i ,vi v0
i , wi = 1/mi

3: end for
4: loop
5: for all vertices i do vi ← vi + wifext(xi)∆t
6: end for
7: for all vertices i do pi ← xi + vi∆t
8: end for
9: for all vertices i do generateCollisionConstraints

10: end for
11: loop iterationCount times
12: solveConstraints(C1, ..., CM+MColl

)
13: end loop
14: for all vertices i do
15: vi ← (pi − xi)/∆t
16: xi ← pi

17: end for
18: end loop

19

3. Theory

20

4
Methodology

This chapter describes the approach taken to achieve the aim of the thesis. The goal
of developing a prototype of a real-time deformation system for car bodies, comes
with a set of requirements on the software development process. This asks for an
appropriate software development philosophy, which is presented in this chapter.
Additionally, the third-party tools and software used in the development of this
thesis are presented and motivated.

4.1 Requirements
In the following sections two types of requirements are used to explain challenges
faced in the thesis process. These two requirements will be called prototype require-
ments and software development requirements. Prototype requirements are what are
commonly called software requirements. They describe the requirements on features
and functionality of the prototype, among others. These requirements are described
in detail in section 1.3. Software development requirements are a set of requirements
on the software development process itself. They are a result of both the prototype
requirements and the development environment of this thesis.
Many of the questions answered in this thesis were open-ended at the beginning.
Specific prototype requirements were therefore difficult to define initially. Further-
more, discoveries throughout the prototype development were expected to modify
existing prototype requirements or add new ones. This imposed a set of require-
ments on the prototype development process. The prototype development process
needed to be designed to allow an ever-changing environment with a set of changing
prototype requirements.

4.2 Development Process
The nature of this thesis demanded to allow new discoveries to alter existing proto-
type requirements. A software development philosophy that is known for its adap-
tivity is agile software development. There are various approaches grouped by agile
methodology and most focus on similar philosophies. Agile software development
methods are aiming to adjust software development to a quickly changing environ-
ment. This is done by having small teams produce granular improvements to the
software in a rapidly iterative fashion. The software is frequently released and cus-
tomer feedback is immediately addressed within the following development cycles.
While the team-oriented nature of agile methodology could not be respected due

21

4. Methodology

to this thesis being a solo-project, many other influences have been implemented.
To make use of agile methodologies a step was taken at the start of the develop-
ment. The goal was to create a minimally functional prototype. All features were
represented by simplified versions of themselves. This allowed for feature-by-feature
improvements of the prototype in an agile manner. The advantage of following
this approach was that effects of a new feature were immediately visible and newly
emerged requirements could be tracked. This enabled continuous code testing and
continuous integration into the final prototype, which are both pillars of the agile
methodology. A backlog was kept to keep track of features as well as old and newly
emerged requirements. Implementing a quasi-agile philosophy proved useful as the
prototype could be gradually improved while new discoveries were tracked along the
way.

4.3 Tools
Throughout the prototype development, a set of software and tools was used. Some
provided important functionality to the final prototype while others enabled an
efficient workflow and an organized process. These tools are now presented and
motivated.

4.3.1 Tools for Agile Development
To effectively implement a quasi-agile software development process, a set of tools
was required. Trello[24] was used to keep a backlog of desired features and require-
ments which was ordered by urgency. GitHub was used to version-control code [22],
which allowed for tracking the progression of features, tracing issues and errors as
well as enabling an easy option to deploy the prototype onto different systems. The
last point was especially important for collecting the run-time data and statistics of
the prototype that are presented in chapter 6.

4.3.2 Functionality Tools
In order to implement all the features that were required for the prototype, a few
additional tools were needed. One of the requirements of the prototype was, that
it could enhance a game environment with deformable car bodies. This implies
that existing car models need to be made accessible for PBD. For that purpose, 3D
models which are typically triangular or rectangular surface meshes, needed to be
converted into volumetric tetrahedral meshes. This task is by no means trivial, which
motivated the use of TetWild [34], a software which generates tetrahedral meshes
from surface meshes. TetWild has certain requirements on the surface meshes, which
generated a need to modify them. This was done using Blender, an open-source 3D
modelling software.
Writing code that was efficient and fast, called for two third party libraries. OpenGL
Mathematics (glm) [38] is a library that provides many functions and classes for 3D
geometry as well as matrix and vector manipulation. Intel ®Threading Building

22

4. Methodology

Blocks was used to parallelize code and thus make use of all available cores of the
CPU.

4.3.3 Choosing a Physics Engine
The prototype was developed using a physics engine. Physics engines provide fea-
tures that could significantly speed up the initialization of the prototype develop-
ment. Most engines provide physics and rendering frameworks, that could be build
upon as well as having user interface frameworks. These features were essential in
the early prototype development as it meant a relatively quick start up time. There
is a vast amount of physics engines on the market which could assist the prototype
development.
Four different options were tested: Bullet [32], Open Dynamics Engine [27], PhysX
[31] and Unity [19]. Each test involved creating a minimal prototype that resem-
bled the plan for the thesis’ final prototype. The tests were intended to explore the
engines different features and properties. The most crucial evaluated points were:

• release under permissive license
• ease of use
• amount of online learning and help resources
• amount of required and optional features
• flexibility of the physics framework

The final point was especially important, as most physics engines do not explicitly
support custom deformation for models. The engine therefore needed to be flexible
enough to allow the creation of a custom extension to the physics framework. After
the test were absolved for each option, the decision was made in favor of Unity. This
was made mostly due to three points. Unity has a large online community, with
help and discussion forums and tutorials. Also I have experience using Unity, which
allowed for a smooth workflow right away, as well as removing much of the slow
learning process. Unity also provides many features the other three engines do not
and has a graphical interface. All these properties enabled a very quick initialization
step. Many features that were required as a base for the prototype already existed
and non-existing ones could be implemented quickly due to my prior experience.
Unity had one disadvantage however. It is programmed using C#, a rather slow
programming language. This would significantly slow down the deformation compu-
tations to a point where they would no longer be sufficient for real-time applications.
The solution to this was to develop a library in C++ (DLL) for handling the de-
formation computations. C++ can achieve much better performance than C# and
is used by most other physics engines, that do not use proprietary languages. This
solution proved beneficial later on, as it enabled the use of all Unity features, like the
user input, rendering and rigid body physics capabilities, while the DLL provided
the fast deformation computations.

4.3.4 Unity
Unity provides many features that were used in this thesis. It is therefore necessary
to present how Unity functions internally and what features it provides.

23

4. Methodology

The base object in Unity is the so called GameObject. Every object in Unity is a
GameObject at its core, but GameObjects themselves do not provide any inherent
behaviour. Components can be attached to GameObjects and enhance them with
behaviour. By default, each GameObject has a transform component, which controls
the position, rotation and scale of the object in 3D space, but components can han-
dle much more. GameObjects can be nested, so that the child objects inherits some
component properties of the parent object. They are extremely powerful and con-
tain all functionality of a game. Among others, they are used to generate sounds,
handle user input, control artificial intelligence, rendering and animations. For a
complete list of available features, the reader is referred to their online user manual
[41]. The user can write custom components, which are called scripts. Scripts are
programmed with C# or JavaScript and are used to provide any features that go
beyond the features provided by the default components.
Scripts in Unity follow a specific order of execution which is determined by Unitys
core game loop. Event functions are called each frame by Unity and trigger com-
ponent behaviour. By implementing event functions new behaviour can be added
to a given script, which is executed at a certain time each frame. For instance,
implementing collision events allows a script to react to a collision that is regis-
tered internally by Unity. A simplified order of executions that is focused on the
events relevant to this thesis is depicted in figure 4.1. For a complete overview, the
interested reader is referred to the official web manual page on event functions [42].

Unity also provides many features that speed up the development of games and in-
teractive programs, such as a intuitive user interface system, drag-and-drop imports
of common 3D, audio and image files. DLLs can be linked easily and immediately
used in custom components. Furthermore, Unity-projects can be easily built and
exported to different platforms.

4.4 Testing Projects

The development of the prototype required the implementation of many inter-
dependent algorithms in an agile manner. As multiple algorithms were often de-
veloped at the same time, the origins of bugs became hard to determine at times.
This problem was furthered by the fact that the prototype featured large amounts
of constraints and forces. To individually assess and test algorithms in an isolated
manner, test projects were created. These projects featured minimal, often hard
coded data for the algorithms and omitted most other algorithms. For instance,
an algorithm that solves constraints was initially implemented in a very primitive
environment (see figure 4.2). A singular tetrahedron was created and the algorithms
was tested. Once this functionality was as expected, the environment got more and
more complex until it could be included in the actual prototype.

24

4. Methodology

Figure 4.1: Simplified order of Unity events. Typically, a script is initialized
by implementing Awake(1) or Start(2). Behaviour that is to be triggered each
frame, such as reacting to user input is typically implemented via FixedUpdate(3)
or Update(6). Collision handling behaviour uses the OnTrigger(4) or OnCollision-
events(5).

25

4. Methodology

Figure 4.2: Three projects for testing a constraint solver in a progressively more
complex environment. The first level of complexity ensures the correct functionality
on a singular tetrahedron under gravity. The second level tests the algorithm on
multiple connected tetrahedra under gravity. The third level lets the developer freely
move the vertices and thus test the model under arbitrary forces.

4.5 Summary
In this chapter, the tools and philosophy for the software development process were
described. The requirements that motivated the use of both the tools and the
philosophy were outlined. Most notably, this thesis’ context called for a flexible
development process which could incorporate new findings into the existing process.
This requirement on the development process motivated the use of a quasi-agile
development methodology. Trello and GitHub were used to make the agile process
more efficient and easier to track and validate. Additionally, the physics engine Unity
was chosen, which was later used to implement the general game features that the
prototype required. The choice for Unity was based mainly on Unitys wide range of
features and on the prior experience I had with the engine. Both aspects allowed for
a relatively fast start-up time with the project. Unitys internal events were used to
control the flow of the game, which proofed as a stable run-time for the prototype.
The Unity editor could additionally be used to set up the prototype scene as well
as test projects, which were used to validate certain, complex algorithms.

26

5
Execution

The implementation of the prototype was the main part of this thesis and will
be thoroughly described in this chapter. The prototype set-up and execution flow
are outlined. The evolution and development of each step are explained in their
respective sections.

5.1 Overview
The prototype can be separated into two parts. Unity serves as the run-time en-
vironment. The user loads the surface mesh and the tetrahedral mesh generated
by TetWild. With these two meshes, the deformation module is initialized. All
necessary data for future deformation computations is generated and sent to the
second part: the deformation module. Constraints are generated, the surface mesh
is barycentrically mapped to the tetrahedral mesh and the positions of all obstacles
are sent to the deformation module.
After the initialization phase, the user can control the car via keyboard input. Each
frame of the game loop, the position and rotation of the car is sent to the deforma-
tion module, which determines whether there are any intersections with obstacles
in the scene. If this is the case, the deformation computations begin. Each particle
of the tetrahedral mesh that collides with an obstacle is displaced. The solver now
iteratively solves the constraints, which are aiming to return to their determined
resting state. After the solver runs through a number of iterations, Unity queries
the deformation module for the new positions of the surface vertices. The surface
mesh gets adjusted and changes in the underlying tetrahedral mesh are visible. This
loop repeats until the end of the run-time.

5.2 The Set-Up
Unity serves as the run-time environment. Figure 5.1 depicts the set-up of the Unity
scene with the most relevant GameObjects and components. The deformable car is
controlled by the attached Car Controller script. It reads user input and adjusts
the gas and steering. The script also simulates the weight of the car, surface friction,
turning radius and other physical properties. The Car Controller is part of Unitys
standard assets pack[40]. The Surface Mesh GameObject has two important com-
ponents. The Mesh Filter component contains all vertices and faces of the original
surface mesh, while the Mesh Renderer component renders them onto the screen.
Both components are part of the default Unity render pipeline. The car GameObject

27

5. Execution

also holds a set of colliders, which are used for the coarse collision handling layer
(see section 5.5.1).
The Dll Manager GameObject holds a the Dll Interface script, which is used to
send data to the deformation module, retrieve data from it and prompt deformation
computations each frame. Each obstacle the car can collide with in the virtual world
is represented by a GameObject which are grouped in the Obstacles-GameObject.
The Obstacle Manager contains references to each obstacle and sends them to the
Dll Interface script at the run-time initialization step. The data is then sent to the
deformation module where it is stored and used for the collision handling.

Figure 5.1: An overview of the scene hierarchy of the prototype. The most impor-
tant GameObjects (black) are depicted with their attached components (blue) and
child objects.

5.3 Execution flow

The DLL Interface script controls the flow of the run-time. Figure 5.2 presents a
detailed flow chart with all important functions that are executed in the initialization
step and each frame of the run-time. The generation of the tetrahedral mesh is not
depicted in the chart, as it can take between a few minutes and multiple hours to
fully generate a tetrahedral mesh, depending on the complexity of the mesh. This
action should therefore be done before the prototype execution starts.
The prototype was implemented to integrate into Unity and thus implements Unitys
event functions, which are recommended to be used to control the flow of a Unity
project. This results in the execution flow being strongly influences by the Unity
order of execution [42].
When the prototype starts, Unity internally imports all assets, including the original
surface mesh (2). The Awake function (3) initiates the initialisation step. The
deformation module is supplied with the data needed to prepare the module for the
run-time. This data includes:

• the starting position and rotation of the car,
• the surface mesh of the car,
• the position, rotation and size of all obstacles,
• the file path to the tetrahedral mesh file, generated by TetWild and
• a set or parameters to control the deformation behaviour

28

5. Execution

After the deformation module received the data, the tetrahedral mesh is loaded
from the specified file path (4) and the constraint generation is prompted on the
base of the tetrahedral mesh (5). The mapping between the surface mesh and the
tetrahedral mesh is generated(7).
The game loop is handled by Unity callbacks as well. The OnTrigger-events are
used to register collisions between obstacles and the car each frame. The user input
gets registered and applied in Unitys Update function (11) and the new position and
rotation of the car are passed to the deformation module (12). The deformation
module is then prompted to handle collisions (13), solve the constraints (14) and
update the surface mesh (15).

Figure 5.2: A flow diagram of the prototype. The diagram shows the functions of
the initialization (2-7) and of the deformation loop (8-15).

29

5. Execution

5.4 Preparation and Initialization

This sections describes preparation steps before the prototype executes and steps
at the beginning of the execution. The original surface mesh is prepared for being
used in the prototype. Necessary data is generated, such as different meshes and
constraints. These steps are summarized in the flow diagram 5.2 in steps (2)-(7).

For the deformation simulation, the program requires a surface mesh and a tetrahe-
dral mesh. The surface mesh is the original model of the car that is to be used in the
simulation. The tetrahedral mesh is later used for the deformation computations.
To generate a tetrahedral mesh from the given triangular surface mesh, TetWild[35]
was used. TetWild takes an .obj file (i.e. a surface mesh) and a set of parameters
and generates a tetrahedral mesh as well as a triangular mesh of the surface of that
tetrahedral mesh. The car models are taken from the web . TetWild imposes a set
of constraints on the models as a result of its inner workings. Depending on how
TetWild’s parameters are set up, a too detailed triangular model would either lose
the detail in the process or result in a high increase in tetrahedralization time.
Generating an overly detailed tetrahedral mesh causes a significant slowdown of the
deformation simulation later down the line, due to its high number of simulated
vertices and constraints. In chapter 6, the effects of different mesh resolutions on
the execution speed are investigated in detail.
TetWild demands a set of features for the input mesh in order to properly gener-
ate a tetrahedral mesh. The input mesh must be watertight, i.e. there can not be
any holes in its surface. Additionally, the mesh must be strictly triangular, which
can introduce issues depending on the software the mesh was created with. Often,
modelling software is based on quad meshes, which can ease the modelling process
and provide workflow benefits. Since freely available car models are generally not
created with these constraints in mind, the models used in this thesis had to be mod-
ified by hand via Blender [6]. Unwanted detail was removed, holes were filled and
quadratic faces had to be triangulated. These time consuming issues can mostly be
eliminated in a production environment. 3D artists can produce watertight models
with relative ease and triangulation of quad meshes can be automated before the
tetrahedralization step, if necessary.

5.4.1 Importing mesh data from TetWild

TetWild generates the tetrahedral mesh and saves its vertices and tetrahedra in a
file. Additionally, TetWild generates a triangular mesh, which contains all vertices
and faces of the surface of the tetrahedral mesh. The prior is required as the core
of the deformation algorithms, while the latter can be used to implement a simple
method of visualization. This method will be expanded on in upcoming sections.
Neither of the files follow any established standard, which required a custom im-
porter to extract the data from the files. The importer reads the files line-by-line
and parses the data to entries of data structures.

30

5. Execution

Figure 5.3: The format for the tetrahedral mesh file (left) and the surface mesh
file (right).

5.4.2 Constraint Generation

The tetrahedral mesh is now represented in code by a set of 3D vertices and a set
of tetrahedra which hold the indices of their respective four vertices. To simulate
a deformation a set of constraints is required, which was generated on the basis
of the tetrahedral mesh. Volume constraints represent the volume of each tetra-
hedron which allows one constraint to be generated per tetrahedron (algorithm 4,
line 3). Distance constraints represent the four edges of each tetrahedron, i.e. the
distances of the four vertices to each other. Since most edges are shared by adjacent
tetrahedra, generating four distance constraints per tetrahedron results in a large
amount of duplicates, which in turn results in unwanted deformation behaviour.
Therefore, a duplicate check is required before adding a distance constraints to the
final constraint set (lines 4-8).

Algorithm 4 Constraint Generation
1: procedure GenerateConstaints(t) . List t of tetrahedra
2: for all tetrahedra ti do
3: generate volume constraint with volume of ti
4: for all edges of ti do
5: if distance constraint of edge does not exist then
6: generate distance constraint
7: end if
8: end for
9: end for

10: end procedure

31

5. Execution

5.4.3 Surface Mesh to Tetrahedral Mesh Mapping
The final step of the initialization is generating a mapping between the tetrahedral
mesh and the triangular render mesh. The deformation simulation acts exclusively
on the tetrahedral mesh. To show the deformation for the user, changes in the
triangular render mesh are required. However, the mapping between the two is not
trivial, as not all vertices of the render mesh are present in the tetrahedral mesh and
the tetrahedral mesh contains a lot more vertices than the render mesh. This first
iteration of a mapping algorithm uses the surface mesh file generated by TetWild.
This mesh is not identical with the render mesh, hence it can not be used as a
final mapping algorithm. However, it can be rendered in Unity, which allows for
a simple method of visually validating changes in the tetrahedral mesh during the
deformation. It therefore was used in the beginning of the development, before a
more advanced mapping algorithm was implemented and enabled debugging of the
deformation algorithms without any interference of the mapping algorithm.
The mapping between the surface mesh generated by TetWild and the tetrahedral
mesh is simple as this surface mesh contains all surface vertices and surface faces of
the tetrahedral mesh. The surface vertices are therefore a subset of the tetrahedral
vertices, which enables the use of a simple indexing algorithm (algorithm 5). A
array is created that has the same size as the array that holds the surface vertices
(line 2). For each vertex of the surface mesh, the algorithm finds the index of the
vertex in the tetrahedral mesh that is identical to it and stores it in the map (lines 4
- 7). A maximal distance is set for two vertices to be considered equal (line 3). This
accounts for floating number rounding errors and vertices that are very similar.

Algorithm 5 Subset indexing
1: procedure IndexSubset
2: initialize map with surfaceMesh.vertexCount elements
3: initialize maxDistance
4: for all vertices s in surfaceMesh do
5: for all vertices t in tetrahedralMesh do
6: if distance(s, t) ≤ maxDistance then
7: map[s] = t
8: end if
9: end for

10: end for
11: end procedure

5.4.4 Barycentric Mapping
The direct mapping algorithm explained in section 5.4.3 was an algorithm for quick
testing and visualization only. It does not enable the tetrahedral mesh to modify the
original render mesh. To allow the deformation of the tetrahedral mesh to impact
the render mesh, barycentric coordinates were used. The algorithm finds the index
of the closest tetrahedron to each vertex (algorithm 6, line 3) and then computes the
barycentric coordinates of the vertex in relation to its closest tetrahedron (line 4).

32

5. Execution

This closest tetrahedron is determined for each vertex by finding the tetrahedron
with the minimal distance between the vertex and the tetrahedrons center.

Algorithm 6 Barycentric Mapping
1: procedure GenerateBarycentricMapping
2: for all vertices vi in renderMesh do
3: determine closest tetrahedron ti
4: determine barycentric coordinate bci

5: end for
6: end procedure

Due to the way TetWild generates the tetrahedral mesh, 50%-80% of surface ver-
tices are equal to vertices in the tetrahedral mesh (see section 6.3). Utilizing this
circumstance, a modified version of the barycentric mapping algorithm could be
implemented. Before determining the closest tetrahedron for each vertex, the algo-
rithm checks whether there exists a vertex in the tetrahedral mesh that is in the
same position (algorithm 7, line 3). Algorithm 5 was used for this feature. When
an identical vertex was found, it was stored and the barycentric mapping step (line
4-5) was skipped. If no equal tetrahedral vertex could be determined, the vertex is
mapped barycentrically, as shown previously in algorithm 6. This accelerated the
initialization speed by a factor of up to 2.5. More detailed performance information
are laid out in chapter 6.

Algorithm 7 Barycentric Mapping with identical map
1: procedure GenerateBarycentricMapping(renderMesh,
tetrahedralMesh)

2: for all vertices vi in renderMesh do
3: if not index of identical vertex vt in tetrahedralMesh exists then
4: determine closest tetrahedron ti
5: determine barycentric coordinate bci

6: end if
7: end for
8: end procedure

5.4.5 Serialization
For a given tetrahedral mesh and render mesh, the barycentric mapping and the
generated constraints are constant. Each time, the program is started the initializa-
tion has to load and generate the data again. In early iterations, the initialization
was not optimized for performance, which caused the start of the program to be
rather slow. To solve this issue, the data was serialized after being generated, which
would store the loaded and generated data into a file with the .tetmesh extension.
The deformation module can be prompted to load the serialized data from the file
rather than going through the costly generation process. Storing the data during
the initialization increases the initialization time by 25%-30% for most meshes. This

33

5. Execution

however is well compensated for by the fact that loading the serialized data from
a file reduces the initialization time by 70%-95%. The effect of the serialization on
the performance is explored more thoroughly in chapter 6.

Figure 5.4: The format of the serialized data in the .tetmesh file. The 3-character
identifier uniquely identifies what data is to follow. The count specifies how many
entries need to be reserved in the data structure, that the serialized data is to be
stored in. The count field also allows for faster reading of the file, as it defines how
many lines need to be read before looking for a new identifier.

Figure 5.5: Exemplarily serialized data. This snippet contains 1244 barycentric co-
ordinates, identified by the identifier bcc and the 1244 respective related tetrahedron
indices, identified by the bct identifier.

5.4.6 Code Architecture
In early iterations, the initialization step was done on the side of Unity. All data
was loaded from files and generated in a C# script and was then passed to the
deformation module in order to proceed with the simulation. This decision was
made in order to verify the logical correctness of algorithms. As all data from within
Unitys scripts is available at run time, debugging was very simple. Information could
be simply accessed, printed to screen and analyzed in step-by-step debugging, which
allowed for a rigorous testing of the algorithms of the initialization.
In later iterations, all initialization were ported from C# to C++ and moved to
the deformation module. This decision was motivated by improved code design.
Most of the data generated in the initialization step is not required by Unity and
is exclusively used by the deformation module. Generating and storing data in a
Unity script that is not required for the program is unnecessary. C# is generally
slower than C++ and frequent passing of data between Unity and the deformation
module additionally slows down the execution.
The deformation module was also designed to be a self contained module. This
includes having a minimal interface to the program that is using it and generating
all the required data on its own. This allows the deformation module to be freely
changed and even used in different game engines, with minimal requirements on the
game engine.

34

5. Execution

5.5 Deformation Loop
After all data necessary for the deformation simulation is generated in the initial-
ization step, the deformation loop is started. Unity registers obstacles in the scene
which collide with the car. The user can control the car using the keyboard. Con-
trolled by Unitys internal game loop via the Update function, the deformation sim-
ulation gets invoked each frame. Collisions between the particles of the tetrahedral
mesh and the obstacles are detected and resolved and the constraints are solved in
order to compute the deformation for each frame.

Figure 5.6: Excerpt of the flow chart focusing on the deformation loop. Functions
that are executed each frame are shown.

5.5.1 Collision Handling
The collision handling step is the first of two steps in the deformation simulation.
Collision handling involves detecting collisions between the vertices of the tetrahe-
dral mesh and obstacles as well as responding to collisions. Collisions are typically
handled by three-dimensional objects called colliders. In computer graphics, there
is a large variety of collider types varying in complexity and applicability to dif-
ferent contexts. One of the simplest and most used collider types are axis aligned
bounding boxes, commonly abbreviated as AABBs. AABBs are characterized by a
position and the three dimensions of width, length and depth. Due to their simplic-
ity, AABBs were implemented in this thesis as the only collider type. All colliders

35

5. Execution

are furthermore static. Static colliders are fixed in their position through the entire
run time of the program. This allows Unity to pass the colliders positional data and
size data to the deformation module in the initialization step, rather than continu-
ously. This decision was made to focus on the deformation, rather than properties
of the virtual environment. It was however made sure, to make the addition of new
collider types as seamless as possible.
The collision detection is concerned with finding which vertices of the tetrahedral
mesh collide with obstacles. The collision detection evolved throughout the course of
this thesis to be increasingly sophisticated. The final state of the collision detection
works on two layers, which are presented in the following sections.

5.5.1.1 Coarse Collision Detection

The first, coarse layer detects collisions between the entire car and the obstacles.
This ensures that only relevant obstacles are checked for each particle, which greatly
reduces the number of collision checks each frame. This step is handled by Unitys
collision system. A box collider is attached to the car GameObject which serves as
a convex hull to the car. Whenever this collider detects a collision with an obstacle
in Unitys OnTrigger events, the index of that obstacle is registered by the Obstacle
Manager object. The resulting list of relevant obstacle indices is then passed to the
deformation module. Whenever the car and a certain obstacle no longer collide,
that obstacles id is removed from the list.

5.5.1.2 Fine Collision Detection and Collision Response

The deformation module can now handle the second, fine layer of collision detection.
The tetrahedral meshes space is local to the car it is attached to. This is done to
limit the input, Unity has to give to the deformation module each frame. Instead
of passing the world-space position of each vertex each frame, the vertices are local
to the car, and the cars position and rotation is passed. This leads to the colliders
and the tetrahedral mesh being in different spaces in the deformation module. To
handle collisions, the vertices are transformed into global space (line 3). Then a
collision check is performed. If the vertex collides with the collider, it is projected
onto the surface of the collider and is transformed back into car-local space.

Algorithm 8 Collision Handling
1: procedure CollisionHandling
2: for all tracked colliders ci do
3: for all vertices vj do
4: transform vj into world space
5: if vj collides with ci then
6: project vj onto surface of ci

7: end if
8: transform vj into car-local space
9: end for

10: end for
11: end procedure

36

5. Execution

5.5.2 Constraint Solving
The deformation module uses two types of constraints for the deformation compu-
tations: distance constraints and volume constraints. Distance constraints preserve
the distance between two vertices, while volume constraints preserve the volume of
a tetrahedron. Both types are generated on the basis of the tetrahedral mesh as
explained in section 5.4.2.

5.5.3 Solver
The step of solving the constraints is the core of the simulation step as it is com-
putationally the most expensive and handles the actual deformations. There are
different strategies in solving the set of constraints. Both the Gauss-Seidel solver
and the Jacobi-solver were implemented. Unfortunately, the computationally less
expensive Jacobi solver proved as unstable. The solver used in this thesis therefore
is the Gauss-Seidel solver. The implementation adds an iterative loop, that executes
the solver multiple times to converge closer towards a perfect solution (see algorithm
9). Furthermore, different constraint types are solved consecutively, as their solving
functions differ.

Algorithm 9 Iterative Gauss-Seidel Solver
1: loop iterationCount times
2: solveDistanceConstraintsGaussSeidel()
3: solveVolumeConstraintsGaussSeidel()
4: end loop

5.6 Parallelization
Enhancing performance, especially for the deformation loop had a big emphasis. The
most impactful step was to transform serial implementations into parallel implemen-
tations. Most loops could be simply re-written into code that enabled the multi-core
CPU to process tasks in parallel. This was accomplished via Intels Threading Build-
ing Blocks (short: TBB) library. TBB offers a range of algorithms that emulate
standard programming loops. Through TBB almost all loops could be parallelized
which significantly increased the performance in both the initialization phase and
the deformation loop. Details on the impact of parallelisation on the prototypes
performance are explored in detail in chapter 6, section 6.4.
The algorithms that could not be parallelized were all hindered by one circum-
stance. They were dependent on the order of execution of their sub-tasks. When an
algorithm is programmed parallely, there is little control over which sub-task gets
computed first. The order of executed tasks is entirely determined by the scheduler
of the underlying parallelization solution, i.e. TBB. This results in inconsistencies
in the time each sub-task takes which in turn imposes on the algorithm that is can
not depend on the order of execution. There are methods of synchronizing the sub-
tasks but this did not suffice for this thesis. This issue existed in three algorithms.

37

5. Execution

The first is the deformation loop as a whole. The solver needs to be applied to
the underlying, deformed mesh in multiple iterations. One iteration has to be fully
executed before the subsequent one starts. A parallel implementation can therefore
not accomplish this task, as the algorithm is logically serial. This also applied to
the Gauss-Seidel solver. The algorithm is designed to compute each constraint solu-
tion individually in a way that later constraints depend on the results of previously
processed ones. The third algorithm that was execution order dependent, was the
constraint generation algorithm. Other then the prior algorithms, its serialism is not
of logic nature. It is caused by the way constraint data is generated and stored into
the data container. Consider a distance constraint. A constraint has data values
for:

• An index to each of its vertices
• A resting value

This data can be stored in two ways. The first way is an array of structures (AoS). A
structure in this context is a custom data type that composites of multiple variables.
The opposite approach is a structure of arrays (SoA) which organizes each data type
in a distinct array. One can retrieve the data of a specific constraint by getting the
data from each array at the constraints index.

Figure 5.7: Comparison between an Array of Structures (left) and a Structure of
Arrays (right) approach to storing data.

The prior approach is the more conventional as it is more intuitive for programmers.
The latter is commonly used in real-time applications as the programmer has more
direct access to the data, which enhances performance. It is however the origin
of the order-dependency of the constraint generation algorithm. When thousands
of constraint vertices and rest values are added to their respective data containers
in parallel, it can not be guaranteed that both the vertex indices and the rest
values are added to the container at the same time. This can bring the data entries
indices out of order, which disturbs future manipulations on the constraints. As the
algorithm is part of the initialization step, which has been greatly sped up through
data serialization, there was no greater need to parallelize it.

5.7 Force Feedback
When a car collides with an obstacle and a deformation is computed, there are not
only physical influences on the particles that make up the underlying meshes. The

38

5. Execution

car as a whole gets decelerated, rotated or diverted in its path. Modelling this be-
haviour with the current prototype is a challenge. In the prototype, there are two
main systems working together. Unity handles the physics of the car as a whole,
while the deformation module manipulates the particle positions of the cars under-
lying tetrahedral mesh. This setup has many advantages for a real-time deformation
method, but it also comes with certain restrictions. Specifically, forces, accelerations
and velocities are entirely unknown to the deformation module. It operates purely
on particle positions. This restricts the way the deformation module can determine
a collisions resulting force on the whole car. In this thesis’ prototype, the force feed-
back on the car is handled by Unitys collider objects. The car object contains a set
of colliders that can collide with obstacles in the environment and produce changes
in the cars position and rotation. This computation happens as a part of Unitys in-
ternal game loop. This has the upside of being perfectly integrated in Unitys physics
system but the downside of being entirely separate from the deformation module.
Furthermore, the colliders are entirely rigid and impose this rigidity on areas in the
tetrahedral mesh, which will hinder their deformation. In section 6.4 Outlook and
Future Work of the following chapter, possibilities for a more accurate approach are
investigated.

5.8 Summary
In chapter 5, the implementation of this thesis’ prototype was outlined. A position-
based deformation technique was the basis of the implementation. Details of the
implementation were adapted to fit the context and requirement of this thesis. The
separation of the deformation module and the game engine introduced some require-
ments on the design of the code architecture and the design of individual algorithms.
The execution flow of the prototype can be separated into two main steps. The
initialization step is responsible for generating all the data necessary for the de-
formation simulation. This includes generating all constraints and barycentrically
mapping the tetrahedral mesh to the surface mesh. The deformation loop is the
second step of the prototype which computes the deformation of the tetrahedral
mesh and maps it to the surface mesh. The most notable algorithms in the defor-
mation loop are the handling of the collision of particles with obstacles, the solving
of the constraints in the tetrahedral mesh and the barycentric update, which maps
the deformations in the tetrahedral mesh to deformations in the surface mesh. Ad-
ditionally, to the execution flow and set up, methods to increase the performance
were discussed. Specifically, the parallelization of the code, data serialization and
a performance increase in the barycentric mapping algorithm were explained. The
effect of these performance increases is laid out in detail in the upcoming chapter.

39

5. Execution

40

6
Results

In this chapter, the final prototype will be assessed regarding the research question
and requirements stated in the first chapter of the thesis. The prototypes perfor-
mance, stability, integratability and controllability as well as the visual quality are
assessed based on data collected from the prototype. Subsequently, suggestions for
future work are presented and related to currently existing features.

6.1 Critical Goal Assessment
In the first chapter of this thesis, the requirements for the development of the proto-
type were stated. The feasibility of the prototype with regards to each requirement
will now be assessed. As performance and the quality of the visual results posed the
most crucial requirements, an entire section is devoted to each the visual analysis
and the performance analysis.
Scalability. The prototype allows the usage of an arbitrary surface mesh with an
arbitrary tetrahedral mesh. One limitation comes with the use of TetWild to gen-
erate tetrahedral meshes from surface meshes. When a certain complexity of the
meshes is reached TetWild will no longer be able to generate tetrahedral meshes.
This however is no direct shortcoming of the prototype at hand. The deformation
module is written in a way that existing features can be altered with relative ease
and new ones can be added. This is a result of the modular design of the code.
For instance, while only one type of collider was implemented for the prototype, the
code was created with the addition of more collider types in mind. This also applies
to other areas like the solver and different constraint types. The addition of more
than one deformable vehicle is not currently supported, as the interface between
Unity and the deformation module is not set up to allow so. This as a deliberate
decision, to ease the prototype development, as more challenges (such collisions be-
tween vehicles) would arise.
Stability. The requirement for stability in chapter 1 stated that the deformation
technique must be unconditionally stable. This could not be accomplished with
absolute certainty. In certain collision scenarios with specific parameter set-ups the
deformation module can become unstable. This is relatively rare however. The use
of a Gauss-Seidel solver enables good stability for a majority of cases.
Integratability. The deformation module is well integrated into the Unity game
loop. It utilizes functions that are part of Unitys standard flow control and is con-
nected to Unity via a limited interface. The interface is used to send data back
and forth, set up parameters and serialization paths and to query deformation com-

41

6. Results

putations. The module is imported into Unity as a standard dynamic link library
(DLL), which can be imported and used by most physics and game engines. The
corresponding software thus needs to merely implement the interface and the mod-
ule can be used. One shortcoming with regards to integratability is that the module
works only based on obj-files. Other 3D formats are not supported.
Controllability. The deformation module offers different parameters that can be
changed throughout the run-time of the prototype. The plasticity of the material
as well as the stiffness of the two constraint types can be adjusted to alter the
material behaviour of the car. The iterations of the solver can be changed in or-
der to modulate the solver convergence and the computation time. However, many
characteristics of metals are hard to approximate with the given parameters. A
typical property of cars bodyworks is that a deformation in the material propagates
throughout an entire bodywork component. This can not be adjusted in the current
state of the prototype. Furthermore, the deformations are completely independent
of the collision speed. This is in part due to the inner workings of the position-
based approach to deformation. As the physical force layer is omitted, it is difficult
to incorporate it into the system.

42

6. Results

6.2 Visual Analysis

The visual quality of the deformations was developed with the performance con-
straints of the real-time environment in mind. The goal for the thesis therefore
was to generate visually plausible deformations that could be generated within the
given time constraints. Features that could potentially increase visual quality were
implemented based on whether they were feasible with regards to their computa-
tional complexity. The visual results are analysed based on images taken from the
prototype. Figure 6.1 shows the deformation of a vehicle as a result of an obstacle
collision.

Figure 6.1: The process of a car being deformed by an obstacle collision. The
obstacle has been made invisible for better visibility. The top left image shows the
vehicle in its original state. The more it drives into the obstacle, the more it deforms.
The deformation is especially visible on the cars front left corner.

Note that not only the vertices of the car that collide with the obstacle are displaced.
The influence of the two constraints achieve a propagation effect of the deformation.
This models the material characteristics of a part of a car bodywork. This defor-
mation propagation can also result in visual artifacts. This is illustrated in figure
6.2.

43

6. Results

Figure 6.2: A car before and after a frontal collision. Artifacts are visible especially
on the right side of the hood and the right side panel.

These artifacts are a result of the constraints trying to preserve the volume of the
entire car. A decrease of the volume in the front area results in a propagation
throughout the entire vehicle. This effect originates from the fact, that the entire
vehicle is modeled by a single, continuous tetrahedral mesh. The bodyworks of real
vehicles are made up of multiple individual panels, which typically limit the defor-
mation propagation to more localized areas. A method of modeling this behaviour
is proposed in section 6.4.5. With the current implementation of the prototype,
such artifacts can not be avoided entirely. Tuning the parameters that control the
strength of the constraints as well as the overall plasticity of deformations can how-
ever reduce their occurrence.

6.3 Performance Analysis
Performance was the most crucial aspect of the prototypes development. This sec-
tion will therefore explain in detail which algorithms take most of the computation
time of both the initialisation step and the deformation loop. Subsequently, it is
evaluated how the measures that were taken to increase performance have actually
contributed.

6.3.1 Methodology
To generate a performance assessment that is as general and broad as possible, dif-
ferent configurations for the surface and tetrahedral mesh have been evaluated. Two
surface meshes were used to generate four tetrahedral meshes each. The underlying
surface meshes are respectively comprised of 1259 and 3764 surface vertices. Each
mesh was then tetrahedralized via TetWild into tetrahedral meshes comprised of
~1000, ~5000, ~10,000 and ~50,000 vertices. A tuple of a given surface mesh and
a tetrahedral mesh generated from it will be referred to as a mesh combination. A
total eight mesh combination were created as it was expected that different algo-
rithms were differently dependent on the complexities of the tetrahedral mesh and
the surface mesh. For instance, barycentric mapping is influenced by both meshes,
while most of the deformation computations are dependent on only the tetrahedral

44

6. Results

mesh. Therefore, having a range of variability in both mesh types is important.
Figure 6.3 shows the two surface meshes used for the performance analysis and the
surfaces of a selection of resulting tetrahedral meshes.

Figure 6.3: Top Row: The two surface meshes used for the generation of tetrahe-
dral meshes, with 1259 (top left) and 3764 (top right) surface vertices. Center and
Bottom Row: Tetrahedral meshes of 1000 (center left), 5000 (center right), 10,000
(bottom left) and 50,000 (bottom right) vertices.

When analyzing a specific optimization, each of the eight mesh combinations were
used in a standardized virtual environment. The vehicles ran through a given sce-
nario without the considered optimization, five times per mesh combination and the
data was collected. The vehicles than ran through the scenario another five times
per mesh combination, this time with the optimization enabled. The data could
then be compared and evaluated. This procedure is executed on a computer with
an Intel Core i5-8500 @3.00 GHz CPU and 8.00 GB RAM.

6.3.2 Initialization
In the initialization steps, performance increases were accomplished by three mea-
sures. First, all algorithms were parallelized, when possible. Second, a data seri-
alization method was implemented to avoid the generation of previously generated
data. Third, an algorithm was implemented that could reduce the computation time

45

6. Results

of the barycentric mapping process. This measure was taken, as it became clear that
the barycentric mapping of surface mesh to tetrahedral mesh took up a large amount
of the processing time in the initialization. Each of the measures is now evaluated
based on data collected from the performance tests. Throughout the analysis, a
mesh combination of medium complexity is used to show which algorithms take up
which portion of the total time. This mesh combination is comprised of a surface
mesh with 3764 vertices and a tetrahedral mesh with 5000 vertices.

Table 6.1: The computation time (ms) of a serially implemented initialization step
of a mesh combination of medium complexity.

file reading constraint generation barycentric mapping total time
40 14 2571 2639

By far the most influential algorithm on initialization performance is the barycentric
mapping algorithm (table 6.1). This can be attributed to the time complexity of
O(ns ∗ nt), where ns is the number of surface mesh vertices and nt is the number of
tetrahedral mesh vertices. The complexity results from the algorithm going through
all tetrahedral mesh vertices vertex to find the closest one to each surface vertex.
While this complexity is inherent to the algorithm, it is clear that the barycentric
algorithm is to be optimized first to increase performance of the initialization step.
There are two measures that were taken.

6.3.2.1 Parallelization

The first measure is the parallelization of the initialization code. Table 6.2 shows
the results of the comparison between a serial and a parallel implementation of the
initialization step. The more the complexity of the underlying meshes increases, the
more does the performance increase. For simple meshes the parallel implementation
outperforms the serial one by a factor of 2.49. For mesh combinations of higher
complexity this factor rises to op to 5.20.

Table 6.2: Comparison between the initialization times (ms) of a serial implemen-
tation (se) and a parallel implementation (pa).

Surface Vertices
1259 3674

se pa res se pa res

Te
t
Ve

rt
s 1000 164 65 2.49 411 110 3.73

5000 964 229 4.21 2600 533 4.95
10000 1800 418 4.37 5200 1000 5.15
50000 9700 2100 4.56 2910 5600 5.20

Most of this performance increase results from a reduction in the barycentric map-
ping algorithm. However it still consumes most of the computation time.

46

6. Results

Table 6.3: The computation time (ms) of a parallelly implemented initialization
step of a mesh combination of medium complexity.

file reading constraint generation barycentric mapping total time
38 14 467 533

6.3.2.2 Barycentric Mapping

The internal functionality of TetWild results in a tetrahedral mesh, that has many
vertices in the exact same position as vertices of the underlying surface mesh. Table
6.4 shows that 50%-82% of surface vertices can be mapped directly to a vertex
in the tetrahedral mesh. These surface vertices do not require the computationally
expensive search for the closest tetrahedron and can be simply mapped to a singular
tetrahedral vertex. This approach is explained in detail in section 5.4.4.

Table 6.4: The quota of surface vertices that can be mapped directly to vertices
of the tetrahedral mesh.

Surface Vertices
1259 3767

Te
t
Ve

rt
s 1000 0.82 0.50

5000 0.82 0.53
10000 0.82 0.53
50000 0.82 0.51

The following table gives an overview of how much this increases performance com-
pared to the parallel implementation without a direct mapping.

Table 6.5: Comparison of the initialization times (ms) of a parallel implementa-
tion (pa) and a parallel implementation with a direct mapping (pd) to improve the
computation speed of the barycentric mapping step.

Surface Vertices
1259 3674

pa pd res pa pd res

Te
t
Ve

rt
s 1000 65 56 1.17 110 88 1.25

5000 229 111 2.01 533 310 1.72
10000 418 180 2.32 1000 594 1.71
50000 2100 851 2.5 5600 3300 1.68

The contribution of the barycentric mapping algorithm to the total computation
time is still prominent but has been much decreased.

47

6. Results

Table 6.6: The computation time of a parallelly implemented initialization step
with a direct mapping algorithm for a mesh combination of medium complexity
(combination 3674/5000).

file reading constraint generation barycentric mapping total time
38 14 248 310

6.3.2.3 Data Serialization

With a given mesh combination, the generated data for constraints and barycentric
mapping are constant. This circumstance has been exploited with a data serializa-
tion implementation that lets the user save and load currently generated data. The
data that resulted from this last improvement is shown in table 6.7.

Table 6.7: Comparison of the initialization times (ms) of a parallel implementation
with a direct barycentric mapping (pd) and an initialization that is replaced by data
deserialization (dd).

Surface Vertices
1259 3674

pd dd res pd dd res

Te
t
Ve

rt
s 1000 56 12 4.68 88 18 4.79

5000 111 66 1.69 310 75 4.13
10000 180 136 1.31 594 148 4.00
50000 851 774 1.10 3300 782 4.25

As this optimization decreased the loading time to under 1 second, the result was
deemed sufficient for this thesis’ purpose.

6.3.3 Deformation Loop
Similarly to the analysis of the initialization step, the deformation loop is analyzed
in a standardized environment. The same collisions are executed multiple times and
the performance data is collected for each mesh combination. The resulting data
is averaged per frame. For computer applications, 30 frames per seconds (fps) is
often used as the standard for an interactive speed. 60 fps is regarded as real-time
speed. This time frame is comprised of all functionality that is executed each frame
of the game loop, including rendering, physics calculations and artificial intelligence.
Therefore, the deformation simulation should take only a fraction of the above time
frames.
The deformation loop can be separated into three steps. First, the vertices are
displaced by collisions with obstacles (section 5.5.1). Second, the solver iteratively
solves the constraints according to the prior deformation and the provided parame-
ters (section 5.5.3). Finally, the surface mesh is updated via the barycentric update
(section 5.4.4). The first iteration of this process was implemented serially, without
the use of any parallel hardware capabilities. The CPU used, is an Intel i5-8500 @
3.00 GHz. Table 6.8 shows the collected data for the eight mesh combinations. It

48

6. Results

is important to note that the times noted for the constraint solving step are taken
for a single iteration, whereas typically Gauss-Seidel solvers are run multiple times.
It becomes clear that the focus lies on the collision projection and the constraint
solving step, as they take up most of the frames time.

Table 6.8: Averaged execution times (ms) of a serial implementation of the defor-
mation loop for different mesh combinations.

Surface Vertices
1259 3674

cp cs bc total cp cs bc total

Te
t
Ve

rt
s 1000 0.18 0.18 0.02 0.38 0.19 0.19 0.05 0.43

5000 0.94 1.21 0.03 2.17 0.85 1.15 0.07 2.08
10000 1.80 2.32 0.03 4.16 1.75 2.42 0.08 4.25
50000 10.73 15.52 0.04 25.29 13.44 14.31 0.09 27.85

where
cp .. collision projection (ms)
cs .. constraint solving (ms)
bc .. barycentric update (ms)
total .. total deformation loop (ms)

To optimize the serial implementation, the collision projection and barycentric up-
date algorithms were parallelized. As a Gauss-Seidel approach was used for the
constraint solver, this step is inherently serial. Still, the performance could be in-
creased significantly, as shown in table 6.9.

Table 6.9: Averaged execution times (ms) of a parallel implementation of the
deformation loop for different mesh combinations.

Surface Vertices
1259 3674

cp cs bc total cp cs bc total

Te
t
Ve

rt
s 1000 0.09 0.17 0.03 0.29 0.10 0.20 0.06 0.36

5000 0.23 1.15 0.04 1.42 0.23 1.25 0.07 1.55
10000 0.38 2.36 0.05 2.79 0.39 2.50 0.07 2.96
50000 1.51 14.31 0.05 15.87 1.53 14.25 0.08 15.86

where
cp .. collision projection (ms)
cs .. constraint solving (ms)
bc .. barycentric update (ms)
total .. total deformation loop (ms)

When compared to the serial implementation (see table 6.10), a number of things
can be noticed. The performance of the collision projection algorithm can be boosted

49

6. Results

greatly from a factor of 1.93 up to a factor of 8.19. The difference in the constraint
solving step is fluctuating inconsistently. This can be attributed to external factors,
as the algorithm of the solver has not been adjusted. Interestingly, the barycentric
update function loses performance on parallelization for smaller surface vertices. As
the barycentric update encompasses merely ~1000 tasks, the overhead for setting up
a parallel loop outweighs the faster computation speed. From the data it can also
be deduced that the biggest factor still is the constraint solution, especially with a
solver that runs through multiple iterations. A big change in the performance of
the collision projection algorithm has only little impact on the performance of the
entire deformation loop. In the following chapter it is explored how the constraint
solving step can be accelerated.

Table 6.10: A comparison between the serial and the parallel implementation of the
deformation loop. The factors with which the parallel implementation outperforms
the serial one are displayed. For instance, the parallel implementation of a collision
projection step in the mesh combination 1259/1000 outperforms the serial version
by 2.09

Surface Vertices
1259 3674

cp cs bc total cp cs bc total

Te
t
Ve

rt
s 1000 2.09 1.03 0.60 1.29 1.93 0.96 0.81 1.20

5000 4.04 1.05 0.69 1.53 3.73 0.92 1.08 1.34
10000 4.73 0.98 0.75 1.49 4.52 0.97 1.20 1.44
50000 7.10 1.01 0.78 1.59 8.79 1.00 1.12 1.76

where
cp .. collision projection (ms)
cs .. constraint solving (ms)
bc .. barycentric update (ms)
total .. total deformation loop time (ms)

6.4 Outlook and Future Work
In this final chapter, possible extensions to the deformation system are presented.
Existing research that could possibly assists such extensions is outlined. Further-
more, existing features that could be re-used or expanded on are outlined. For
complex extensions, requirements for a desired algorithm are laid out.

6.4.1 Utilizing the GPU
The deformation simulation in this thesis’ prototype is entirely done on the CPU.
However, almost all calculations of computer graphics can achieve better perfor-
mance when designed for and run on a GPU. GPUs are specifically designed to

50

6. Results

process computations that are common for computer graphics. Especially the con-
straint solving step can undoubtedly benefit greatly from being implemented on the
GPU.

6.4.2 A Parallel Gauss-Seidel Solver
The core of the deformation simulation is the constraint solver. Optimizations are
therefore most critical in this algorithm. In the final prototype a Gauss-Seidel
method was implemented, which proved as unconditionally stable but computa-
tionally slow. The relatively slow execution time is caused by the Gauss-Seidel
algorithm being inherently serial. A parallelization is therefore impossible without
complex synchronization techniques which is unsuitable for a real-time context. The
implementation of a Jacobi solver could eradicate that issue as it is inherently can
be parallel. The Jacobi implementation proved as unstable however. As this charac-
teristic of the Jacobi algorithm is well known in the field of computer graphics, there
is current research done on the issue. Fratarcangeli et. al provide a semi-parallel
solver algorithm that combines the stability of a Gauss-Seidel method with the fast
computation speed of Jacobi [29].
This method seems very applicable to this thesis’ context. In the initialization, the
set of constraints is partitioned into subsets, via a randomized graph coloring algo-
rithm. The subsets are generated in a way that all constraints within a given subset
are independent of one another. This allows all constraints within a given subset
to be solved in parallel while the subsets themselves are solved iteratively. This
method is capable of solving hundred-thousands of constraints in a few milliseconds
using the Gauss-Seidel approach at its core.

6.4.3 Simulated Force Feedback from Obstacle Collisions
The current method of force feedback on the car is highly performant as it makes
use of Unitys physics and collision system. However, it lacks in visual detail and
configurability. It works entirely independent of the deformation module and there-
fore can not be modified. For future work, it is therefore worthwhile to investigate a
method of generating a force feedback on the car as a function of how many particles
are hit and how the respective parameters are set up. Implementing such a method
requires extracting the velocity data from Unity which was previously not needed
for any computations. The Rigidbody component is used to contain and manipu-
late all physical properties of an object in Unity. The physical data can simply be
extracted from the cars Rigidbody component and sent to the deformation module
each frame. The more challenging task is the inclusion of external physical data into
the position-based approach.

6.4.4 Saving and Loading Deformation States
In the early state of the prototype development the generation of constraints and
other initialization data executed rather slowly, which resulted in slow loading times
of the program. To speed up the initialization, a feature was added that could store

51

6. Results

all data generated to a file (see section 5.4.5). Now, the previously generated data
could be loaded from a file, which reduced the initialization time to a few seconds.
For a future extension, this data serialization feature could be used. The feature
would enable the user to store and load the current deformation state of the car. To
implement this, the file format that is currently used has to be extended to contain
the current states. To enhance the saving and loading speed of the files as well as
the space efficiency of the stored data, the data should be stored in binary form as
opposed to the current text form.

6.4.5 Weight-Painting for Deformation Parameters

Vehicle exteriors do not deform uniformly across the entire surface. Some exterior
parts are softer and more easily deformable than others. Typically, cars have load
paths that distribute and dissipate the energy of a crash (see figure 6.4). Modelling
this behaviour could significantly improve the realism of a deformation. To account
for different vehicle types and to allow creative choices, a general solution as to be
added.

Figure 6.4: Load distribution for frontal impacts (left) and side impacts (right) on
a Mercedes-Benz CLS-Class. [37]

One option for adding such functionality is to create a tool that allows artists to
freely assign different material parameters to different areas of a vehicle model (see
figure 6.5). This approach is inspired by Blenders weight painting tool [39]. Weight
painting is a method frequently used in the animation of 3D objects.

52

6. Results

Figure 6.5: Mock-Up of a tool for painting parameter values onto the mesh of a
vehicle. The red areas are assigned greater values. This can be used to assign areas
of a mesh different physical properties.

53

6. Results

54

7
Conclusion

The aim of this thesis was to investigate how one can implement a deformation
system for a real-time application, such as a video game. The first part of the thesis
was oriented around finding out the appropriate technology, software development
methodology and simulation algorithms. The approach chosen was to develop a
deformation library that could be used as a plug-in to a game engine. For this
project, the game engine Unity3D was chosen as it can provide features that let
me develop the prototype with a relatively low start-up time. The deformation
library was developed to use a position-based approach to simulate deformations.
The approach was chosen based on its low computational cost and based on the
fact that it fit together quite well with the way game engines represent 3D objects
and physics. The position-based approach was adjusted to fit the specific challenges
of this thesis’ set-up. Specifically, the particle movement was not computed as a
part of the deformation simulation, but was inferred from Unitys internal physics
simulation.
The second part of the thesis was focused around the details and challenges of the
implementation. Algorithms were discussed in detail and opportunities for opti-
mization were explained. Finally, the performance of the algorithms was tested in
detail and the effect of optimization steps was evaluated. The performance of both
steps that the deformation library executes could be increased. The deformation-
loop could be sped up by a factor of 1.20 to 1.7, while the initialization step could
be sped up by a factor of up to 8.
Finally, possibilities for future work are outlined. The two most important oppor-
tunities are the utilization of the GPU and the inclusion of force-feedback in the
deformation simulation. Using the GPU instead of the CPU for the deformation
simulation has the potential to significantly increase the performance of the defor-
mation loop In conjunction with the use of the GPU, the solver algorithm has to
be adjusted to allow for an efficient parallelization. A real-time force feedback is
necessary to seamlessly use the deformation library as a plug-in.

55

7. Conclusion

56

Bibliography

[1] Demetri Terzopoulos, John Platt, and Kurt Fleischert. “Elastically Deformable
Models”. In: ACM SIGGRAPH Computer Graphics 21.4 (1987), pp. 205–214.
doi: 10.1145/37401.37427.

[2] Demetri Terzopoulos and Kurt Fleischer. “Deformable models”. In: Computer
(1988), pp. 306–331.

[3] Demetri Terzopoulos and Kurt Fleischer. “Modeling inelastic deformation :
Viscoelasticity, Plasticity, Fracture”. In: ACM SIGGRAPH Computer Graph-
ics 22.4 (1988), pp. 269–278. doi: 10.1145/378456.378522.

[4] Psygnosis. Destruction Derby. 1995.
[5] David Baraff and Andrew Witkin. “Large steps in cloth simulation”. In: Pro-

ceedings of the 25th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’98. New York, New York, USA: ACM Press, 1998,
pp. 43–54. isbn: 0897919998. doi: 10.1145/280814.280821.

[6] Blender Foundation. Blender. Amsterdam, 1998.
[7] Mathieu Desbrun, Peter Schröder, and Alan Barr. “Interactive animation of

structured deformable objects”. In: Proceedings of the 1999 conference on
Graphics interface ’99. Kingston, Ontario, Canada: Morgan Kaufmann Pub-
lishers Inc. San Francisco, CA, USA, 1999, pp. 1–8.

[8] James F. O’Brien and Jessica K Hodgins. “Graphical Modeling and Animation
of Brittle Fracture”. In: Proceedings of ACM SIGGRAPH 1999 21.3 (1999),
pp. 137–146.

[9] Gilles Debunne et al. “Dynamic real-time deformations using space &
time adaptive sampling”. In: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’01. New York,
New York, USA: ACM Press, 2001, pp. 31–36. doi: 10.1145/383259.383262.
url: http://portal.acm.org/citation.cfm?doid=383259.383262.

[10] Codemasters Interactive. TOCA Race Driver. 2002.
[11] Matthias Müller et al. “Stable real-time deformations”. In: SCA ’02 Proceed-

ings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer an-
imation. San Antonio, Texas, 2002, pp. 49–54. doi: 10.1145/545261.545269.

[12] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. “Graphical
modeling and animation of ductile fracture”. In: ACM Transactions on Graph-
ics 21.3 (2002), pp. 291–294. issn: 07300301. doi: 10.1145/566654.566579.

[13] Activision Interactive. Street Legal Racing: Redline. 2003.
[14] Thomas Jakobsen. “Advanced Character Physics”. In: Game Developer Con-

ference (2003). doi: 10.1063/1.1595059.

57

https://doi.org/10.1145/37401.37427
https://doi.org/10.1145/378456.378522
https://doi.org/10.1145/280814.280821
https://doi.org/10.1145/383259.383262
http://portal.acm.org/citation.cfm?doid=383259.383262
https://doi.org/10.1145/545261.545269
https://doi.org/10.1145/566654.566579
https://doi.org/10.1063/1.1595059

Bibliography

[15] J Teran et al. “Finite Volume Methods for the Simulation of Skeletal Mus-
cle”. In: SCA ’03 Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation. San Diego, California: Eurographics As-
sociation Aire-la-Ville, Switzerland, Switzerland ©2003, 2003, pp. 68–74. isbn:
1-58113-659-5. url: https://dl.acm.org/citation.cfm?id=846285.

[16] Empire Interactive. FlatOut. 2004.
[17] Markus Gross and Matthias Müller. “Interactive virtual materials”. In: GI

’04: Proceedings of Graphics Interface 2004. London, Ontario, Canada, 2004,
pp. 239–246. isbn: 1-56881-227-2. url: http://portal.acm.org/citation.
cfm?id=1006087.

[18] Rigs Of Rods Contributors. Rigs Of Rods. 2005. url: https://www.rigsofrods.
org/.

[19] Unity Technologies. Unity. 2005. url: https://unity.com/.
[20] Matthias Müller et al. “Position based dynamics”. In: 3rd Workshop in Virtual

Reality Interactions and Physical Simulations, VRIPHYS 2006 (2006), pp. 71–
80. doi: 10.1007/978-3-319-08234-9{_}92-1.

[21] Matthias Müller et al. “Position based dynamics”. In: Journal of Visual Com-
munication and Image Representation 18.2 (2007), pp. 109–118. issn: 10473203.
doi: 10.1016/j.jvcir.2007.01.005.

[22] Tom Preston-Werner, Chris Wanstrath, and P.J. Hyett.GitHub. San Francisco,
CA, 2008.

[23] Eric G. Parker and James F. O’Brien. “Real-time deformation and fracture
in a game environment”. In: SCA ’09 Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation January 2009 (2009),
pp. 165–175. doi: 10.1145/1599470.1599492.

[24] Trello. London, 2011. url: https://trello.com/.
[25] Jan Bender et al. “Position-based simulation of continuous materials”. In:

Computers and Graphics 44.1 (Nov. 2014), pp. 1–10. issn: 00978493. doi:
10.1016/j.cag.2014.07.004.

[26] BeamNG GmbH. BeamNG.drive. 2015.
[27] Russel Smith. Open Dynamics Engine. 2015. url: http://www.ode.org/.
[28] Huda Basloom. “A Survey On Physical Methods For Deformation Modeling”.

In: Computer graphics forum 5.10 (2016), pp. 59–64.
[29] Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. “Vivace: A prac-

tical gauss-seidel method for stable soft body dynamics”. In: ACM Trans-
actions on Graphics 35.6 (2016), pp. 1–9. issn: 15577368. doi: 10 . 1145 /
2980179.2982437.

[30] Andrew Hickey and Shaoping Xiao. “Finite Element Modeling and Simulation
of Car Crash”. In: International Journal of Modern Studies in Mechanical
Engineering 3.1 (2017), pp. 1–5. doi: 10.20431/2454-9711.0301001.

[31] Ageia and NVIDIA. PhysX. 2018. url: https://www.geforce.com/hardware/
technology/physx.

[32] Erwin Coumans. Bullet. 2018. url: https://pybullet.org/wordpress/.
[33] Marco Fratarcangeli, Huamin Wang, and Yin Yang. Parallel iterative solvers

for real-time elastic deformations. ACM, 2018. doi: 10 . 1145 / 3277644 .
3277779.

58

https://dl.acm.org/citation.cfm?id=846285
http://portal.acm.org/citation.cfm?id=1006087
http://portal.acm.org/citation.cfm?id=1006087
https://www.rigsofrods.org/
https://www.rigsofrods.org/
https://unity.com/
https://doi.org/10.1007/978-3-319-08234-9{_}92-1
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1145/1599470.1599492
https://trello.com/
https://doi.org/10.1016/j.cag.2014.07.004
http://www.ode.org/
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.20431/2454-9711.0301001
https://www.geforce.com/hardware/technology/physx
https://www.geforce.com/hardware/technology/physx
https://pybullet.org/wordpress/
https://doi.org/10.1145/3277644.3277779
https://doi.org/10.1145/3277644.3277779

Bibliography

[34] Yixin Hu et al. “Tetrahedral Meshing in the Wild”. In: ACM Trans. Graph.
37.4 (2018), 60:1–60:14. issn: 0730-0301. doi: 10.1145/3197517.3201353.

[35] Yixin Hu et al. TetWild. New York, NY, 2018. url: https://github.com/
Yixin-Hu/TetWild.

[36] THQ Nordic. Wreckfest. 2018.
[37] Daimler AG. The bodywork: A first: frameless, all-aluminium doors. 2019. url:

https://media.daimler.com/marsMediaSite/ko/en/9361919.
[38] OpenGL Mathematics. 2019. url: https://glm.g-truc.net/0.9.9/index.

html.
[39] Blender Foundation. Weight Paint - Introduction. 2020. url: https://docs.

blender.org/manual/en/latest/sculpt_paint/weight_paint/introduction.
html#the-weighting-color-code.

[40] Unity Technologies. Standard Assets (for Unity 2017.3). url: https://assetstore.
unity.com/packages/essentials/asset-packs/standard-assets-for-
unity-2017-3-32351.

[41] Unity Technologies. Unity Manual. url: https : / / docs . unity3d . com /
Manual/index.html.

[42] Unity Technologies. Unity Manual: Order of Execution for Event Functions.
url: https://docs.unity3d.com/Manual/ExecutionOrder.html.

59

https://doi.org/10.1145/3197517.3201353
https://github.com/Yixin-Hu/TetWild
https://github.com/Yixin-Hu/TetWild
https://media.daimler.com/marsMediaSite/ko/en/9361919
https://glm.g-truc.net/0.9.9/index.html
https://glm.g-truc.net/0.9.9/index.html
https://docs.blender.org/manual/en/latest/sculpt_paint/weight_paint/introduction.html#the-weighting-color-code
https://docs.blender.org/manual/en/latest/sculpt_paint/weight_paint/introduction.html#the-weighting-color-code
https://docs.blender.org/manual/en/latest/sculpt_paint/weight_paint/introduction.html#the-weighting-color-code
https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-for-unity-2017-3-32351
https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-for-unity-2017-3-32351
https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-for-unity-2017-3-32351
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

Bibliography

60

	List of Figures
	List of Tables
	Introduction
	Purpose and research questions
	Delimitations
	Requirements
	Performance
	Stability
	Integratability
	Controllability

	Background
	History of Real-Time Deformation
	Deformation Techniques
	Physically Based Methods
	Mass-Spring System
	Finite Element Method
	Finite Difference Method
	Finite Volume Method

	Position-Based Methods

	Theory
	Deformation
	A Simplified Car Model
	Choosing the Deformation Method
	The Mass-Spring Model
	Physically-Based Continuum Methods
	Position-Based Deformation

	Surface Mesh and Tetrahedral Mesh
	Surface Mesh
	Tetrahedral Mesh

	Barycentric coordinate system
	Constraints
	Distance constraints
	Volume constraints
	Constraint Stiffness
	Collision constraints

	Solver
	Gauss-Seidel Solver
	Jacobi Solver

	Plasticity
	Position-Based Dynamics

	Methodology
	Requirements
	Development Process
	Tools
	Tools for Agile Development
	Functionality Tools
	Choosing a Physics Engine
	Unity

	Testing Projects
	Summary

	Execution
	Overview
	The Set-Up
	Execution flow
	Preparation and Initialization
	Importing mesh data from TetWild
	Constraint Generation
	Surface Mesh to Tetrahedral Mesh Mapping
	Barycentric Mapping
	Serialization
	Code Architecture

	Deformation Loop
	Collision Handling
	Coarse Collision Detection
	Fine Collision Detection and Collision Response

	Constraint Solving
	Solver

	Parallelization
	Force Feedback
	Summary

	Results
	Critical Goal Assessment
	Visual Analysis
	Performance Analysis
	Methodology
	Initialization
	Parallelization
	Barycentric Mapping
	Data Serialization

	Deformation Loop

	Outlook and Future Work
	Utilizing the GPU
	A Parallel Gauss-Seidel Solver
	Simulated Force Feedback from Obstacle Collisions
	Saving and Loading Deformation States
	Weight-Painting for Deformation Parameters

	Conclusion
	Bibliography

