
Classification of role stereotypes for classes
in UML class diagrams using machine
learning
Master’s thesis in Software Engineering

Jobaer Ahmed
Maoyi Huang

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Classification of role stereotypes for classes in
UML class diagrams using machine learning

Jobaer Ahmed
Maoyi Huang

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Classification of role stereotypes for classes in UML class diagrams using machine
learning
Jobaer Ahmed
Maoyi Huang
© Jobaer Ahmed, Maoyi Huang, 2020

Supervisor: Michel R. V. Chaudron, Department of Computer Science and Engi-
neering
Examiner: Riccardo Scandariato, Department of Computer Science and Engineer-
ing

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Classification of role stereotypes for classes in UML class diagrams using machine
learning

Jobaer Ahmed

Maoyi Huang
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Software development process is becoming inherently complex in recent decades.
To reduce the complexity in the development process developers, software practi-
tioners are constantly looking for newer approach. One approach can be under-
standing the software design for instance, the UML models earlier in the software
development process. For analyzing UML models, one could use knowledge about
role-stereotypes. Knowledge about role stereotypes can help during software qual-
ity assessment, for summarizing software and thereby to ease the understanding of
software designs. This study presents a machine learning-based approach for classi-
fying the role-stereotype of classes in UML class diagrams. We have established a
ground truth by manually labelling 391+ classes from 15 open source projects (us-
ing various programming languages). We analyze the performance of the machine
learning approach with the manually established ground truth. Besides, we show a
comparison between our approach and another machine learning approach from an
earlier case study which is based on source code. Furthermore, we compare different
machine learning (ML) algorithms to find out the best ML algorithm for classifying
our dataset. Another noteworthy contribution of this study is an analysis of which
features are most relevant for classifying classes into role stereotype and which fea-
tures generate the best classification performance. According to our findings, the
J48 classifier performs best when classifying the raw dataset and the Random For-
est classifier performs best on a more balanced dataset which has been obtained
by applying SMOTE oversampling. By using our classifier software developers can
analyze patterns in their software design at the early stage of software development
process.

Keywords: role-stereotypes, machine learning algorithm, classification, data analy-
sis, data mining, UML class diagram, software design, software engineering.

v

Acknowledgements

We would like to express our gratitude and thanks to Michel R. V. Chaudron for
being our supervisor from the university and providing us guidance, support and
direction throughout the thesis study.

We wish to extend our gratitude to Felix Dobslaw, Truong Ho-Quang, Rodi Jo-
lak, Arif Nurwidyantoro and Bassem Hussein for helping us with their valuable
suggestions, for participating in the meetings and for giving us feedback in person
or through emails.

We would like to thank our examiner Riccardo Scandariato for his invaluable feed-
back and support.

Finally, we would like to thank everyone who gave us their valuable time, sug-
gestions, feedback and supported us during our case study.

Jobaer Ahmed and Maoyi Huang, Gothenburg, April 2020

vii

Acronyms

CT Controller.

CO Coordinator.

CRI Class Role Identifier.

FP False Positive.

IH Information Holder.

IF Interfacer.

MCC Matthews correlation coefficient.

ML Machine Learning.

RF Random Forest.

ST Structurer.

SP Service Provider.

SrcRI Source-code Role Identifier.

SMOTE Synthetic Minority Over-sampling Technique.

TP True Positive.

URI UML Role Identifier.

UML Unified Modeling Language.

WEKA Waikato Environment for Knowledge Analysis.

ix

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Statement of the Problem . 3
1.3 Purpose of the Study . 3
1.4 Research Questions . 4

2 Background 5
2.1 Software Design . 5
2.2 UML Class Diagrams . 5
2.3 Role Stereotypes . 7

2.3.1 Source Code Level . 8
2.3.2 UML Model Level . 8

2.4 Tools . 8

3 Methodology 11
3.1 Experiment Setup . 12

3.1.1 Lindholmen Database . 12
3.1.2 SDMetrics . 12
3.1.3 Weka Machine Learning tool 12

3.2 Approach . 12
3.2.1 Data selection Criteria . 13
3.2.2 Data Collection . 13
3.2.3 Feature Extraction . 14
3.2.4 Define Role Stereotype Criteria 15

3.2.4.1 Criteria regarding characteristics of classes 15
3.2.4.2 Other Criteria . 16

3.2.5 Manual Labeling and Consolidation 17
3.2.5.1 Manual Labeling and Refining 17
3.2.5.2 Independent Evaluation 17
3.2.5.3 Ground truth - Manual Labeling of Stereotypes . . . 19
3.2.5.4 Distribution of Occurrence of absolute numbers of

role stereotypes . 21

xi

Contents

3.2.5.5 Distribution of relative occurrence of role stereotypes 23
3.2.6 Experiment with Machine Learning Algorithm 24
3.2.7 Analyze Classification Experiments 26

4 Results 27
4.1 Evaluation of the Machine Learning Classifiers 27

4.1.1 Multi-class classification for All Confidence Level 27
4.1.2 Multi-class classification for High Confidence Cases 30

4.2 Comparing Performance of different ML algorithms 32
4.2.1 Deeper analysis of best performing classifiers 33

4.3 Ranking of Relevant Features for predicting role-stereotypes 37
4.4 Discussion . 39

4.4.1 Insights from the Ground truth - Manual labeling 39
4.4.2 Comparison between role-stereotypes in UML Class diagrams

vs in Source Code . 40
4.4.2.1 Manual Labeling perspective 40
4.4.2.2 Machine Learning Perspective 42

4.5 Threats to validity . 43

5 Conclusion & Future Directions 45
5.1 Conclusions . 45

5.1.1 Topological features . 47
5.1.2 Features based on class-names 47

5.2 Future Directions . 48

Bibliography 49

A Appendix A 53

B Appendix B 57

C Appendix C 77

D Appendix D 79

E Appendix E 83

F Appendix F 87

xii

List of Figures

2.1 Example of UML Class Diagram . 6
2.2 Role Stereotypes . 7

3.1 Methodology . 11
3.2 An example of Our Manual Labeling 17
3.3 Color codes for role stereotypes . 18
3.4 Absolute of role stereotypes for each project 20
3.5 Total number of stereotypes . 20
3.6 Total number of Classes for each project 21
3.7 Histogram for absolute values . 22
3.8 Percentage of role stereotypes for each project 22
3.9 histogram of the percentage of role stereotypes in projects 24

4.1 Illustration of Classification Results for All Confidence Level 29
4.2 Illustration of Classification Results for High Confidence Level 32
4.3 Comparison Among Different Machine Learning Algorithms Perfor-

mance . 33
4.4 Comparison between URI and SrcRI classifiers 42

B.1 Bitys UML class Diagram . 57
B.2 JGAP UML class Diagram . 58
B.3 Pizza Delivery System UML class Diagram 58
B.4 GreenHouseXmlParser UML class Diagram (part 1) 59
B.5 GreenHouseXmlParser UML class Diagram (part 2) 59
B.6 GreenHouseXmlParser UML class Diagram (part 3) 60
B.7 JPMC UML class Diagram (part 1) 60
B.8 JPMC UML class Diagram (part 2) 61
B.9 JPMC UML class Diagram (part 3) 62
B.10 JPMC UML class Diagram (part 4) 62
B.11 Neuroph UML class Diagram (part 1) 63
B.12 Neuroph UML class Diagram (part 2) 64
B.13 Neuroph UML class Diagram (part 3) 65
B.14 Xuml UML class Diagram (part 1) 66
B.15 Xuml UML class Diagram (part 2) 67
B.16 MarsSimulation UML class Diagram (part 1) 68
B.17 MarsSimulation UML class Diagram (part 2) 69

xiii

List of Figures

B.18 ACSUFRO UML class Diagram . 70
B.19 ObjectCourseEnd UML class Diagram 70
B.20 BioclipseBrunn UML class Diagram 71
B.21 Java_client UML class Diagram . 72
B.22 SE_project UML class Diagram . 73
B.23 Talon UML class Diagram . 74
B.24 Wro4j UML class Diagram . 75

C.1 Accuracy of J48 classifier on different dataset 77
C.2 Accuracy of Random Forest classifier on different dataset 77
C.3 Accuracy of OneR classifier on different dataset 78
C.4 Accuracy of ZeroR classifier on different dataset 78

D.1 K9 Project Sequence Diagram 1 . 79
D.2 K9 Project Sequence Diagram 2 . 80
D.3 K9 Project Sequence Diagram 3 . 81

E.1 Structurer . 83
E.2 Coordinator . 84
E.3 Controller . 84
E.4 ServiceProvider . 85
E.5 InformationHolder . 85
E.6 Interfacer . 86

F.1 Distribution of role stereotypes in ACSUFRO and Bitys 87
F.2 Distribution of role stereotypes in Talon 88
F.3 Distribution of role stereotypes in MarsSimulation and Neuroph . . . 88
F.4 Distribution of role stereotypes in xUML and BioClipsebrunn 88
F.5 Distribution of role stereotypes in XMLParser and Wroj4j 89
F.6 Distribution of role stereotypes in JGAP and Java Client 89
F.7 Distribution of role stereotypes in Pizza Delivery System 89
F.8 Distribution of role stereotypes in ObjectCourseEnd and JPMC . . . 90
F.9 Distribution of role stereotypes in SE Project 90

xiv

List of Tables

2.1 Role stereotypes distribution in source code 8

3.1 List of Projects with UML Class Diagram 13
3.2 Absolute table for role stereotypes . 19
3.3 Percentage table for role stereotypes 23

4.1 Classification Results for All Confidence Level 28
4.2 Confusion Matrix for Random Forest classifier for the imbalanced

dataset (All confidence level) . 28
4.3 Confusion Matrix for J48 classifier for the imbalanced dataset (All

confidence level) . 28
4.4 Classification Results for High Confidence Level 30
4.5 Confusion Matrix for RF classifier for the imbalanced dataset (High

confidence level) . 31
4.6 Confusion Matrix for J48 classifier for the imbalanced dataset (High

confidence level) . 31
4.7 Comparisons among different classifiers accuracy 32
4.8 Accuracy table for J48 Classifier - All Confidence Level 34
4.9 Accuracy table for J48 Classifier - High Confidence Level 34
4.10 Accuracy table for J48 Classifier - All Confidence Level (SMOTE) . . 35
4.11 Accuracy table for J48 Classifier - High Confidence Level (SMOTE) . 35
4.12 Accuracy table for Random Forest Classifier - All Confidence Level . 35
4.13 Accuracy table for Random Forest Classifier - High Confidence Level 36
4.14 Accuracy table for Random Forest (RF) Classifier - All Confidence

Level (SMOTE) . 36
4.15 Accuracy table for Random Forest Classifier - High Confidence Level

(SMOTE) . 36
4.16 Comparison between Dataset with Regular data and Dataset with

SMOTE . 38
4.17 Comparison between URI and SrcRI classifiers 41
4.18 Confusion Matrix for RF classifier for the imbalanced dataset (SrcRI) 43
4.19 Confusion Matrix for RF classifier for the imbalanced dataset (URI)) 43

A.1 List of Projects . 54
A.2 Repository Link of Projects from Table A.1 55
A.3 Repository Link of Projects from Table A.1 56

xv

List of Tables

xvi

1
Introduction

1.1 Background

In a real world, the occupation can help to define a person. Similarly characteristics
of a software class offer the reader a chance to know their classes better. There are
six types of characteristics used to generalize the software classes, as denoted by
Wirfs-Brock [1]: Information Holder (IH), Interfacer (IF), Controller (CT), Struc-
turer (ST), Service Provider (SP) and Coordinator (CO). They are also called role
stereotypes [1] according to her work.

Each of the Role stereotypes depicts a type of software class that only serves one
certain type of functionality. For example, IH tends to have more attributes than
operations since its main purpose is to contain and serve information. However, as
clearly as the boundaries for each of the role stereotypes are defined, there is a lack
of way to systematically and practically distinguish the roles stereotypes between
software classes. Especially on the design level, there havent́ been a single published
standard that can directly label the characteristics of the class.

There are many ways to classify the role stereotypes on code level, such as the work
from M.R.V.Chaudron & Ho Quang Truong [3]. They listed a couple of machine
learning algorithms and scientifically evaluated each of them and finally made a de-
cision on which algorithm is best performed regarding the classification of the roles
in source code.

Likewise, in this research study, we do the same work but on a different scope. In
our case, our main focus is on the design level which is within the UML model. We
strive to find out if there is a feasible and efficient machine learning algorithm to
classify the role stereotypes for software class within the UML model. In our study,
similar aspects as the classification in source code are considered: coupling level,
private/public modifier of the class, Dependencies and so on.

There are also aspects that are unique for UML models considered, for example, the
name of the class. Arguably the class name is the most obvious and informative
indicator to illustrate the purpose of the software class. And if the person who
designs the software model follows the suggested pattern, we will have very easy
and categorizable role stereotypes. For example, a Controller class normally does
make a decision during the entire software functionality cycle. So its name tends

1

1. Introduction

to be a operator-type such as "manager", "controller" or simply something with a
"control" in the end. Thus, it is feasible to detect a "CT" type of class. However, in
most of the times the class name is poorly designed due to either lack of software de-
sign practices or the long evolving time for the software design model to get updated.

The structure of the class is supposed to be easy-to-understand for the user. If the
time that it takes for comprehending the software class can be reduced in a way,
such as categorizing the software classes into a certain pattern, it may save tremen-
dous effort for the engineers to perform tasks during their development stage. It
can come in handy in certain circumstances. For example when they are receiving
changing requirements, adding new features and maybe adopting new technologies.
The concept of Role stereotype denoted by Rebecca conforms to this idea [1] [3].
She suggests to assign a "role" to the software class so the class can be systematically
distinguished. It can help in various tasks such as software comprehension, software
refactoring and quality assurance etc. These tasks all require extensive knowledge
about the software architecture. So they can greatly help the engineer to speed up
the process of doing their tasks. They can achieve to do the same amount of work
but with less effort. In the 21st century world, needless to say, saving time and effort
equals to saving money [11][12].

In this paper, we will present a research study that classifies the role stereotypes for
UML models. The target of the UML models will be in range of the typical UML
diagrams such as class diagram, sequence diagram and domain models, depending
on their characteristics and the revealed information from the diagram. In our case,
we mainly focus on the class diagram since its provided features to describe the
software, i.e. classes, attributes, operations/methods and the relations among them
are suitable candidates in order to classify the software classes into a certain pattern
or stereotype. So, in order to make accurate classification, we will take use of the
provided features from the UML class diagram. We will define the ground truth of
the features so we know which role stereotypes can be detected by using a certain
composition of the features. For example, a interface stereotype is suggested to have
high number of attributes and little to none operations, according to Wirf-Brock’s
work [1] and Chaudron & Troung’s selection criteria for source code [3] [9]. In order
to make sure the role stereotypes we identify at UML models are valid and justifi-
able, we will conduct a manual inspection joined by Prof.Michel Chaudron and Ph.D
candidate Truong to determine viable picks. Then we run automated identification
algorithms to use the defined ground truth to detect the stereotypes in a training
data set. The training data is set to be the lindholmen data base [13] along with the
Github software project repositories. The former will be the primary resource since
it contains over thousands of software projects with its UML model defined. The
Weka [14] [15] machine learning tool which specializes in data mining tasks is the
one to use after, for the automated classification process. When the training data
set is processed through we will compare and analyze the result and see if there is
any amend to be made. If it is necessary the already defined ground truth will be
changed and apply on the training data set again. When the ground truth is refined
and ready, we will apply it to the testing data set. The result acquired from the

2

1. Introduction

testing data set will be presented and analyzed in this study.

1.2 Statement of the Problem
According to the paragraphs before, we know that it is beneficial to apply role-
stereotypes to characterize classes. However, there are not so many studies about
finding the characteristics of the software in the design level. There are successful
research studies that have categorized the characteristics of the software from its
source code.
In software development process UML diagram or design of the software are more
consistent than the source code. Source code can change in any stage of the software
development cycle. So, finding role-stereotypes based on UML diagram is more se-
cure.
For getting more coverage of the data and solving the data scarcity problem that
we face while using the regular classification technique based on the source code.
New engineers faces problem with understanding a new system. As they have to
look at the system with thousands lines of code without even knowing the systems
behavior, dependencies. If we can define the systems behavior based on the stereo-
types we will find from the UML diagram, we can reduce the hurdle of new engineers
to comprehend the system. Besides, the company can invest less time and money
for the new engineers.

1.3 Purpose of the Study
Chaudron et al. presented a ML-based classifier which classifies classes in Java onto
their stereotype based on features extracted from source code [3]. Our case study
followed another approach to build a ML-based classifier, where we extracted fea-
tures from the design level which is the UML diagram of the software development
process. The main goal of our research work is to use the extracted features from
the UML diagram for characterizing different classes and labeling them based on
the role-stereotypes.
Role stereotypes can help in various tasks in software development and maintenance
such as program design, program comprehension, summarising [3], [4], quality assur-
ance [33], and reverse engineering [34], [35]. This case study proposes an automated
machine learning-based approach for classifying role-stereotypes of classes in the
design level [2]. At first, we have selected 15 to 20 projects and collected its UML
diagrams. Then, we have extracted the features from the UML diaram which would
be used by the machine learning algorithms. Next, we defined the ground truth.
Later we used those features for characterizing and labeling the role-stereotypes in
all classes.
In this case study, we predicted the behaviour of the classes based on the role-
stereotypes that we will find from the UML diagrams. Based on the results, we
could discover the relation among different classes. We figured out if there is high

3

1. Introduction

coupling and low cohesion or vice versa between 2 classes.

1.4 Research Questions
The main purpose of our research work is to establish a machine learning (ML)
based classifier which will classify all classes which exists in the UML class diagram.
In order to achieve this, we set up research questions as the follows:

• RQ 1. How can Machine Learning be used to build a useful classifier for role
stereotypes of classes in UML class diagrams?
– RQ 1.1. Which features are useful for identifying role stereotypes in UML

class diagrams?
– RQ 1.2. Which machine learning algorithm yields the best performance

in classifying role stereotypes?
• RQ 2. How does the classifier of classes in UML diagrams compare to the

existing classifier for classes in source code?
RQ1 is broken down in two parts: RQ 1.1 studies feature selection criteria to de-
termine whether or not a feature is able to be used to classify stereotypes. RQ 1.2
studies which ML algorithm yields the best performance. The performance of the
ML algorithm is evaluated against a ground truth of manually labelled classes. In
addition to this, we studies whether the performance of our classifier is better or
worse than the existing classifier for classes in source code [3]. This is captured by
RQ2.

4

2
Background

This study is carried out as a continuation of a previous study: "Improving the Au-
tomated Classification of Role-Stereotypes by Machine Learning" [3]. The previous
case study serves as a path finder for the research, and it will also be a facilitation
for any future works.
In the following sections, we will introduce some related works that inspired us to
get our desired solutions for this research study.

2.1 Software Design
The idea of design is connected to the human characteristics, which is one of most
distinctive one. These characteristics are the making and use of tool. Tools are
artifacts, which can be used to create more artifacts. And, producing any form
of artifact is an act that uses some element of design activity. Another human
characteristic is communication. Converting the design into a product needs com-
munication, to convey the idea to the development team so that they can develop
the design into a product. The product can be a software or physical object. There
are various artifacts, which are the results of various applications of the design pro-
cess plays an influential role in our daily lives. For example: we ride in cars, trains,
airplanes, we live in houses or flats etc. are the products that are outcome of the
design process [18].

Similarly, in case of software system, design plays a vital role. Majority of the
people will think, bigger system needs to be well designed and precisely tested. But
good design is necessary for smaller systems as well. As the user needs efficiency,
reliability irrespective of the size of the system. Although, there is a high exposure
in the design process during the software development, good design practices are not
followed rigorously. In general, the way people carry out the design process is not
structured [18]. In the area of computer science and software engineering, software
design is one of the main problem-solving technique besides the notion of theory
and abstraction [19].

2.2 UML Class Diagrams
In traditional code-centric development, developers uses simple sketches for design
ideas, often they don’t even store the sketch for future use. It was sufficient at that

5

2. Background

period. In model driven approach the models are the primary source for develop-
ing an optimal software. A clear understanding of models are required to create a
structured model. For instance, an UML model can be used to describe software
design, pattern and processes [22]. An example of UML class diagram is illustrated
in the figure 2.1

Chaudron et al.[21] discussed the gaps that are identified during effective UML
modeling in his paper. Furthermore, he described the empirical evidence of the
usefulness of UML modeling in software development. His research mainly focused
on the costs and benefits, and on industrial practice. He mentioned, modeling for
analysis and understanding or modeling as a sketch is loose style of modeling. Be-
cause, that way was followed for personal understanding and it can be done on a
white board. By developing a structured UML diagram, a developer can reduce
the cognitive complexity to manage huge details of the design in his mind. There

Figure 2.1: Example of UML Class Diagram

are many types of UML diagrams, among them UML class diagrams are a key re-
source for developing object oriented software system. Because they establish the
ground for the future design and development. It can be said that, if the quality of
the UML class diagram is significantly higher, then the software system will be of
higher quality. In this modern era quality of the software is really important. Soft-
ware quality should be maintained from the early stage of the development cycle [23].

The quality assurance methods are more effective in the initial stage of develop-
ment, rather than applying them in the end of the development cycle. Detecting
bugs and fixing them is more expensive during the last stage of the development life
cycle. So it is better to put some more effort during the design phase of the software
system, then it will be easier to avoid unwanted cost [23].

6

2. Background

2.3 Role Stereotypes
As noted by Rebecca Wirfs-Brock’s [1], assigning a role to a class characterizes ini-
tial candidate objects and communicate designer’s ideas to whomever use the system
later [1]. If a class is well-defined and distinguishable, it can even propagate some
level of implementation details to the developers in an early stage. Also she noted
that the role stereotype is not only for designing new objects, but also it can be used
to dissect the design patterns of a software [1].

One of the commonly accepted ideology from Wirfs-Brock’s classification rule is
that there are 6 types of role stereotypes in software. Each of them serves a certain
purpose and they complement each others’ functionality. This idea is also supported
by Prof. Michel Chaudron and Dr. Ho Quang Truong in their criteria of classifica-
tion for the classes[3]. For more information about the stereotypes, it can be viewed
in the graph here:

Figure 2.2: Role Stereotypes

As shown in figure 2.2, the role stereotypes are:
• Information Holder(IH): An object designed to know certain information and

provide that information to other objects.
• Structurer(ST): An object that maintains relationships between objects and

information about those relationships.
• Service Provider(SP): An object that perform specific works and offers services

to others on demand.
• Controller(CT): An object designed to make decisions and control complex

task.
• Coordinator(CO): An object that is not involved with making decisions, but

in a way delegates work to other objects. E.g., SP, CT etc.
• Interfacer(IF): An object that transfers and changes information or requests

between distinct part of the system.

7

2. Background

2.3.1 Source Code Level
It can be benefitial to have extensive research studies about the identification on
role stereotypes. So far most of the works are conducted on source code level, in this
section we will introduce some related works that presented some intricate findings
regarding the roles stereotypes on source code level.
In the study of Chaudron et al. (2019), Automated Classification of Class Role-
Stereotypes via Machine Learning, they suggest that there could be interrelations
between role stereotypes and there are patterns that can be found across software
projects [3]. For example, if there is high percentage of service provide (SP) found
in a software project comparing to the other role stereotypes, it indicates that this
software project has a high chance of being a daily routine software program such
as E-commerce platform or a workout program.
In their study they have collected an extensive number of projects which consist of
779 Java classes in total, and they have done manual labelling to label each class.
After that, they ran several machine learning algorithms to testify the labels are
given correctly. In the result, they discovered a distribution of the role-stereotypes
across all the Java classes (for a handful of projects). We attach the distribution
result in Table 2.1:

Role IT CO CT SP IH ST Total
Dist. Abs 77 79 20 323 231 49 779
Dist. % 9.9% 10.1% 2.5% 41.5% 29.7% 6.3% 100%

Table 2.1: Role stereotypes distribution in source code

2.3.2 UML Model Level
As important as the stereotypes existed in source code level, the role stereotypes
are equally vital on the design level. To some extent, the UML model requires more
precise measurement and precision calculation of real-world geographical entities
such as the Global Navigation Satellite System (GNSS) [31]. Michel and Truong [9]
also notified that the UML class diagrams are used for designing and describing the
architecture of the software, they are an essential tool for the engineers to understand
the basic structure of the system. In terms of industrial and academic perspective,
it is even more beneficial to grasp the characteristics of the UML model’s stereotype
[9]. According to Moha and Yann-Gaël’s work, there are also a special type of
stereotypes for UML models which is called the Anti-pattern [10]. The anti-pattern
indicates to a bad design solution to a software. It can be detected by algorithms
that can capture the certain number of features. We use the anti-patterns as a spare
equipment to detect the UML stereotypes in this study.

2.4 Tools
Alhindawi et al. demonstrated in his paper that source code stereotypes reduces the
overall effort of a developer to find the suitable methods for extracting features [6].

8

2. Background

For identifying method stereotypes Dragan et al. have classified the different stereo-
types using a taxonomy which occurs frequently [7]. Their proposed method is
mainly based on the C++ programming language. A method can be labeled with
one or more stereotypes. Although the proposed method was developed for mainly
C++ projects, it can be useful for Java-based projects or other types of projects.
In another case study, Moreno et al. presented a tool, which can automatically
detect the source code stereotypes in java-based projects [8]. It works as an eclipse
plugin and can classify any java project based on the discovered stereotypes from
the methods and classes.

9

2. Background

10

3
Methodology

Figure 3.1 shows an overview of our research methodology. First we have collected
projects with UML class diagram in .xml, .xmi and .uml file format. Besides, we
have prioritized the projects we have used based on different factors. Next, we have
input the selected projects in the SD Metrics tool to analyze and to extract the
first batch of metrics or features we have used during our experiment with machine
learning algorithms. We have established our ground truth by manually labeling
approximately 400 classes from 15 projects. Here, stage 4, 5 and 6 are an iterative
process and we went back to the former stages several time to refine our features.
Then, in stage 5, we experiment our features with various machine learning algorithm
and evaluate their performance. In the final stage, we have presented and analyzed
our experiment results based on our classifier "UML Role Identifier (URI)".

Figure 3.1: Methodology

11

3. Methodology

3.1 Experiment Setup
In this section, we will describe the tools and technologies used for this research
study. Since the research is divided into several stages, there will be tools for certain
stages and for some stages i.e. manual labelling and analyze classification result will
have no specific tools which needs to be systematically operated in order to get the
result.

3.1.1 Lindholmen Database
Lindholmen database is an open source database [17] which collects over 93000 UML
models across more than 24000 github repositories. The purpose of establishing this
database is to assist the academic and also industrial researchers to get access to the
open source software projects which contains UML. From Industrial perspective, the
use of UML class diagrams were studied extensively. On the other hand, there are
not much information about the UML uses in Free/Open source software (FOSS)
projects. The main goal of this dataset is to find out if the models which were
used in the software projects are updated throughout the project’s life cycle or not.
For collecting the datasets, the researches have used a semi-automated approach
to collect the UML, which are stored in images, .xmi and .uml format. They have
scanned 10 percent of all Github projects (1.24 million). After gathering all the
information they have analyzed the models and found that 12% of the models are
duplicated. In conclusion, they have prepared a list of Github projects that include
UML files. In our case study, we have used this list, to collect projects with .xmi
files, which we have used for extracting features.

3.1.2 SDMetrics
The SDMetrics is the software that we have used to extract our features during the
fourth step of our methodology 3.1. We have used this tool for getting an overview
of all the projects, that we have used in this case study. With its built-in design
rules and well-refined criteria in terms of deciding the design models, it can help
us to check various aspects of our UML design for its completeness, consistency,
correctness, design style issues such as dependency cycles, and more.

3.1.3 Weka Machine Learning tool
The tool is a collection of machine learning algorithms [14] [15] specifically designed
for data mining tasks. The Weka contains algorithms for data preparation, classi-
fication, regression, clustering, association rules mining and also visualization. It is
also an open source software issued by the GNU General Public License.

3.2 Approach
In this section, the first 5 steps from our methodology will be described in detail. The
last step Analyze Classification Experiments will be desribed in the following

12

3. Methodology

chapter, which is the result chapter.

3.2.1 Data selection Criteria
1. Projects uses UML class diagrams
2. Any software programming language (no restriction)
3. The UML design is represented in a format of XMI, XML (.uml file types)
4. Quality assurance

• Diagram must be a Forward Design (not Reverse Engineered)
• Must be able to read class-, method- and attribute-names (for verifica-

tion)
• No non-UML elements in the diagram
• Number of classes > 8 , with ‘some’ attributes & methods
• Not poorly designed. e.g., one class relates to all
• Not many ‘orphan’-classes (without relations)

3.2.2 Data Collection

Name of the Project No. of classes in the UML
1. Neuroph 24
2. Mars-simulation 40
3. Wro4j 20
4. JGAP 18
5. Java_Client 57
6. JPMC 24
7. ACSUFRO 9
8. Bioclipse-brunn 42
9. Bitys 11
10. Green_House_XML_Parser 31
11. Object_Course_End 12
12. Pizza_Delivery_System 13
13. SE_Project 30
14. Talon 15
15. XUML 45

Table 3.1: List of Projects with UML Class Diagram

In this case study we have collected 30+ projects (Look at Table A.1) from Lindhol-
men dataset [17]. From those projects we have selected 15 of them which has .xmi
or .xml files, which are shown in the table 3.1. Reasons for choosing projects with
.xmi file.

• At first we have selected project with UML class diagram image file. In that
case, we couldn’t find images in high resolution for some projects and our tool
couldn’t analyze the images because of the low resolution.

• The scarcity of projects with UML class diagram image file.

13

3. Methodology

Besides, we have made sure that the .uml, .xml and .xmi files are not extracted from
the reverse engineered uml class diagram images.
In our initial step, we have considered all the classes from the 15 projects that we
have selected for this case study. For establishing the ground truth for this case
study, we have taken an iterative approach from step two to five (see figure: 3.1).

3.2.3 Feature Extraction
The features or metrics that are used for classifying the classes will be listed here.
There are two types of them:

• One type of metrics are derived from the SDMetrics (3.1.2)
• The other type of metrics are created manually, based on our findings.

.
SDMetrics (3.1.2) is a popular tool, which is used by software practitioners dur-
ing feature extraction from UML models. We have extracted several metrics from
SDMetrics, from those metrics we have selected the metrics which have values and
removed others which doesn’t have any values. So the selected metrics are as fol-
lowing:

1. Metrics derived from SDMetrics.
• NumAttr: The number of attributes in the class
• NumOps: The number of operations in the class
• NumPubOps: The number of public operations in the class
• Setters: The number of operations with a name starting with ’set’
• Getters: The number of operations with a name starting with ’get’, ’is’

or ’has’
• Nesting: The nesting level of class (for inner class)
• IFImpl: The number of interfaces the class implements
• NOC: The number of children in the class (UML generalization)
• NumDesc: The number of descendants of the class (UML generaliza-

tion)
• NumAnc: The number of ancestors of the class
• DIT: The depth of the class in the inheritance hierarchy
• CLD: Class of leaf depth
• OpsInh: The number of inherited operations
• AttrInh: The number of inherited attributes
• Dep_Out: The number of the elements on which this class depends
• Dep_In: The number of the elements that depend on this class
• NumAssEl_ssc: The number of associated elements in the same scope

of the class
• NumAssEl_sb: The number of associated elements in the same scope

branch of the class
• NumAssEl_nsb: The number of associated elements not in the same

scope of the class
• EC_Attr: The number of times the class is externally used as an at-

tribute type

14

3. Methodology

• IC_Attr: The number of attributes in this class having another class or
interface as their type

• EC_Par: The number of times the class is externally used as a param-
eter type

• IC_Par: The number of parameters in this class having another class
or interface as their type

2. Newly added metrics.
• EndWithManager, Controller: The number of Boolean flag for classes

with a name ending with ’Manager’,’Controller’ or ’Control’.
• HasType, Annotation, List: The number of Boolean flag for classes

with a name containing ’Type’, ’Annotation’, ’List’ or ’Data’.
• EndWithFactory, Impl, Implementation: The number of Boolean

flag for classes with a name containing ’EndWithFactory’, ’Impl’ or ’Im-
plementation’.

• isEntity: The number of Boolean flag for classes which are entities.
An entity can be a person, place, or object. For instance: Customer,
Employee, Car etc.

3.2.4 Define Role Stereotype Criteria
At first we have decided to establish some initial set of criteria, which can be used
during our manual labeling stage of the methodology 3.1. That means, we have set
these criteria so that we can follow them while establishing our ground truth. We
have refined these criteria of selection based on our final results. The initial idea
was taken from the paper written by Wirfs-Brock [1].

In the following paragraph, the criteria is listed for each role stereotype which was
mentioned by author Wirfs-Brock in her paper [1]. The selection criteria for role
stereotypes can be divided into 2 categories:

1. Criteria regarding characteristics of classes.
2. Other Criteria.

3.2.4.1 Criteria regarding characteristics of classes

These criteria focuses on the attributes, name of the class, functions and method
names. Some of the criteria can be a bit similar to the work of Dragan, Moreno and
Chaudron. But, in our case study we have considered them for labelling classes in
UML class diagrams, where as they have used them for labelling classes in source
code. They have particularly focused on the size, frequency and the magnitude while
labelling the classes [7][8][3].

1. Information Holder: An object designed to know certain information and
provide that information to other objects. Selection Criteria:
(a) If a class is with type ENUM (metrics TBD)
(b) If the class ends with DATA, GEO, CONFIG, CMD, REQ
(c) Class name may contain “-Type”, “-Annotation”, “-List”
(d) Class name may be an entity. e.g. “User”
(e) May contain getters/ setters.

15

3. Methodology

(f) May contain data/information/info in their class name.
(g) May be represented as enum class
(h) Can be an interface, if its methods are only setters and getters (in general:

giving access to its attributes)
2. Structurer: An object that maintains relationships between objects and in-

formation about those relationships. Complex structures might pool, collect,
and maintain groups of many objects; simpler structures maintain relation-
ships between a few objects. Selection Criteria:
(a) It might have composition or aggregation relationship with its subclasses.
(b) Has method(s) to maintain relationships between objects
(c) Methods that manipulate the collection such as sort(), compare(), vali-

date(), remove(), updates(), add(), etc.
(d) Methods that give access to a collection of objects such as get(index),

next(), hasNext(), etc.
3. Service provider: An object that performs specific works and offers services

to others on demand. Selection Criteria:
(a) Class name may end with “-er” (eg. Provider) or “-or” (eg. Creator,

Detector)
(b) Class name may end with “Impl”
(c) Class name may end with “Function”
(d) Class name may contain “Factory”
(e) Class name may contain "Listener" or "Exception"
(f) Class name may contain "Processor" or "Operator"

4. Controller: An object designed to make decisions and control complex task.
Selection Criteria:
(a) Class name may ended with “Controller” or “Manager”
(b) Have access to Information holders, coordinators or service provider

5. Coordinator: An object that doesn’t make many decisions but, in a rote or
mechanical way, delegate work or other objects. Selection Criteria:
(a) Class name may contain “Connection” or "Connector"
(b) Class name may contain "Binder" or "Event"

6. Interfacer: An object that transforms info or requests between distinct part
of the system. The edges of an application contain user-interfacer objects that
interact with the user and external interfacer objects, which communicate with
external systems. Interfacer also exist between subsystems. Selection Criteria:
(a) Class name may contain “Abstract”
(b) High values in NumOps, NumPubOps and NumDesc metrics.
(c) Class name may contain "<interface>" tag or label.
(d) Exception case: It might contain "Factory".

3.2.4.2 Other Criteria

Labelling classes can become trickier when some classes represents dual or multiple
roles. This concept is also mentioned by Wirfs-Brock [1] and Dragan [7]. These are
the exception cases which were discussed during our meeting with experts. And, we
have labelled the classes based on those discussions.

16

3. Methodology

3.2.5 Manual Labeling and Consolidation
This section can be divided into two more subsections:

1. Manual labeling and refining the labeling based on the criteria of selection.
2. Independent evaluation of the labelled classes by the experts.

3.2.5.1 Manual Labeling and Refining

We have followed an iterative approach while manual labeling the selected 15 projects (check
Table 3.1). Each of the two authors labelled the classes of the projects individually.
They have labelled the projects one at a time. After labeling each project, they
had a discussion regarding the differences between their classification. Based on the
discussion, they have refined the criteria of selection. An illustration of our manual
labeling is shown in the figure 3.2.

In this figure 3.2, we have shown the initial labeling we did for ACSUFRO. Af-
ter discussion, we have refined our labeling and added them in our final dataset.
We went through this process for 4 times, until we have reached a point where the
criteria is refined and can define our labeling adequately. For each project, we have
spent 6 hours, that means for 15 projects we needed 90 hours time. Each of the
author spent 45 hours and the overall manual labeling process took approximately
12 weeks. Finally, we have established a ground truth merging 391 classes from 15
projects.

Figure 3.2: An example of Our Manual Labeling

3.2.5.2 Independent Evaluation

After the manual labeling process we have created colored UML class diagrams for
the 15 projects. In figure 3.3, we have illustrated the color codes we have followed for
each role stereotypes while labeling the classes in the UML class diagrams. We have
provided these colored UML class diagrams and the corresponding excel sheet with
labelled classes to our supervisor and one PhD student for evaluation. Both of them
evaluated the resources separately. Later, we had several meetings for discussing
the differences in our classification.

17

3. Methodology

At this point, we have planned to use a label to show our confidence while la-
beling the classes. We have named this label as "Confidence Level". We have set
a scale for this label, which is one to five, where one shows the lowest ’Confidence
Level’ and five shows the highest "Confidence Level".

When a class shows multiple roles, we have used this label to show our confidence
while labeling the classes with role stereotype. If we have put a label five, that
means, the class doesn’t show dual role and everyone involved in the labeling agreed
about it. When we have labeled the classes with ’Confidence Level’ one to four, that
means the classes are playing a dual or multiple roles, and we have disagreements.

We have made 2 datasets, one dataset has 391 labelled classes (All Confidence
cases) and another dataset has 328 classes (High Confidence cases). We have put a
label five confidence on a class, when we all have agreed on certain role stereotype
for that class. For other classes we have put a label from one to four confidence level,
based on how many have agreed or disagreed. The dataset with High confidence
cases refers to the fact that we didn’t have any disagreements when labeling the 328
classes on this dataset. If we remove the high confidence cases from the all confi-
dence cases then we have 63 classes. We had disagreements during labeling these 63
classes, and we went for the popular choice while labeling them. That means, we
have agreed for most of the labeling, and we didn’t agree when a class is showing
dual or multiple role. Based on our discussion the criteria for selection, labeling and
the dataset was refined. We made sure all our data are consistent throughout the
case study.

Figure 3.3: Color codes for role stereotypes

Some of the colored UML class diagrams are added in the Appendix B as a reference.
We have created a repository where all the UML class diagrams and other resources
from our case study will be found 1. For now we have skipped adding all of them in
the appendix, so that we don’t over-flood the thesis report.

1https://github.com/hammer007/umlRoleIdentifier

18

3. Methodology

3.2.5.3 Ground truth - Manual Labeling of Stereotypes

In this section, we will show the raw data table which is called the "Absolute table
for role stereotypes". Then we have the percentage table which takes the calculated
data and shows it in percentages as a way to present the role stereotypes’ distribu-
tion among projects. After that we generated a stack-columned chart with those
data. For an overview, we have graphs for total number of project, total number of
stereotypes. On top of that, we also have generated some histograms to show the
data in an statistic view.
The absolute table & charts
In section 3.2.5, we conducted our manual labeling and consolidation step. We ex-
amined a set of software projects from Lindholmen Data Set [17] and finalized with
15 projects. When we completed the manual labeling process in iterations, we have
recorded the number of instances of each role stereotype in every project. Finally,
we have established a ground truth of 391 classes from those 15 projects. As a result,
we have a table to show the numbers recorded as below:

Absolute of role stereotypes for each project
Project List IH SP IF CT ST CD Total
Java_Client 47 2 1 7 0 0 57
xUML 22 5 7 0 11 0 45
Bioclipse-brunn 20 8 10 0 0 4 42
Mars-simulation 32 0 0 4 4 0 40
GreenHouseXMLParser 6 15 1 9 0 0 31
SE_Project 1 16 7 0 5 1 30
Neuroph 3 15 0 0 6 0 24
JPMC 9 7 4 2 0 2 24
Wro4j 4 9 6 1 0 0 20
JGAP 7 7 3 0 0 1 18
Talon 13 2 0 0 0 0 15
Pizza_Deliver_System 0 7 3 1 2 0 13
ObjectCourseEnd 3 3 1 3 0 2 12
Bitys 0 7 11 0 0 0 4
ACSUFRO 0 0 0 6 0 3 9
Total 167 103 47 33 28 13 391

Table 3.2: Absolute table for role stereotypes

In the given table 3.2, we can see that there are many cases that it has a value 0
for the stereotype within the project and it happens quite often. There are extreme
cases that one stereotype takes a significant number of instances when we compare
it with the others for that single specific project, e.g., Java_client with 47 IH iden-
tified. And last but not the least, the number of role stereotypes are not quite
distributed evenly execept for project ObjectCourseEnd, with the value of 1-3 on
each identified role stereotypes. For the reference, we added one more figure which
shows the percentage of the absolute number below in figure 3.3.

19

3. Methodology

Figure 3.4: Absolute of role stereotypes for each project

Figure 3.5: Total number of stereotypes

As a complementary view to the absolute table, we have created a graph that can
visualize the data in the absolute table. As shown in figure 3.4, we can see that some
projects such as Bitys have very limited role stereotypes as there are only Interfacer

20

3. Methodology

Figure 3.6: Total number of Classes for each project

and Structurer identified in the class. And some projects such as Java_Client and
Mars-simulation, has one type of stereotype that was intensively found during the
manual labeling.

3.2.5.4 Distribution of Occurrence of absolute numbers of role stereo-
types

Here we introduce the histogram to help to interpret the overall level of data. The
histogram is used to show the distributional result of the provided data set. The
x-axis shows the value of the result, in our case this should be the number of stereo-
types we detected for each project. And as for y-axis, it is the number of projects
that were identified with this number of stereotypes accordingly.

If we take a look into figure 3.7, we can see that the coordinator class in a number
of 5-ish is identified all around the place with 15 projects. The Structurer (ST) class
at value 1.00 to 2.00 is the second highest occurrences which can be found in around
13 projects. Followed up by Controller (CT) class at 4-5 and Interfacer (IF) class
at around 5.56-7, they have been detected with 12 instances and 11 instances for
the IF class. They both have another occurrence at higher value (CT=9, IF=10-11)
but with lower than 5 projects to be detected. And there are around 6 projects
that have no Information Holder class designed for their UML diagrams. The only
high percentage stereotype can be found is Information Holder and the value is at
44.84%. There is only one project containing high ratio of IH like that. And last but
not the least, the most often discovered range for percentages are between 0.00% to

21

3. Methodology

around 13%.

Figure 3.7: Histogram for absolute values

Figure 3.8: Percentage of role stereotypes for each project

22

3. Methodology

3.2.5.5 Distribution of relative occurrence of role stereotypes

In order to get a more detailed view of the data set, we decided to furter analyze the
data. So we calculated the number of instances of table 3.2 and generated a table
with percentage values. It serves a similar purpose of the absoltue table but with a
more high-end overview.

Percentage of role stereotypes for each project
Project List IH ST SP CT CD IF
Neuroph 12.5% 25.0% 62.5% 0.0% 0.0% 0.0%
Mars-simulation 80.0% 10.0% 0.0% 10.0% 0.0% 0.00%
Wro4j 20.0% 0.0% 45.0% 5.0% 0.0% 30.0%
JGAP 38.9% 0.0% 38.9% 0.0% 5.6% 16.7%
Java_Client 82.4% 0.0% 3.5% 12.2% 0.0% 1.7%
JPMC 37.5% 0.0% 29.1% 8.3% 8.3% 16.6%
ACSUFRO 0.0% 0.0% 0.0% 66.7% 33.3% 0.0%
Bioclipse-brunn 47.6% 0.0% 19.0% 0.0% 9.5% 23.8%
Bitys 0.0% 0.0% 63.6% 0.0% 0.0% 36.4%
GreenHouseXMLParser 19.3% 0.0% 48.3% 29.0% 0.0% 3.2%
ObjectCourseEnd 25.0% 0.0% 25.0% 25.0% 16.7% 8.3%
Pizza_Deliver_System 0.0% 15.3% 53.8% 7.7% 0.0% 23.0%
SE_Project 3.3% 16.7% 53.3% 0.0% 3.3% 23.0%
Talon 86.7% 0.0% 13.3% 0.0% 0.0% 0.0%
xUML 48.9% 24.4% 11.1% 0.0% 0.0% 15.6%

Table 3.3: Percentage table for role stereotypes

In table 3.3, we can observe that the most common stereotype in Talon is Informa-
tion Holder. It has a significant 86.70% among all other stereotypes in any other
projects. The least found role stereotype is Service Provider which was identified
with 0 occurrences within 8 projects. On the contrary, the most high frequency
role stereotype is the Information Holder which has only 2 projects that were not
detected with Information Holder class and it tends to exceed over 80% in at least
3 projects (Mars-sim, Java_Client and Talon).

For the graph 3.8, we can see that many results conform to our previous obser-
vations such as the blue column, which is the Service Provider (SP) always takes
up a certain portion within all of the projects that we have selected. As well as the
Information Header (IH) has the highest frequency to be the most identified stereo-
types. It has up to 98.7% in a project.Another notable findings from this graph is
that not all stereotypes can be found within a project, we tend to find 3-4 types of
role stereotypes within one project, and in some rare cases there are only 2-3 role
stereotypes identified, e.g., Talon and Bitys. In the graph we can also see that the
percentage of the role stereotypes are not evenly distributed, it diverges heavily to
a direction that one or two stereotypes have the dominant partition in the project.
Even in the projects that have almost all the role stereotypes, it still has this major

23

3. Methodology

Figure 3.9: histogram of the percentage of role stereotypes in projects

role stereotype(s) that is close to the half ratio among the entire stereotypes’ dis-
tribution. For example, in JPMC it has Information Holder identified with 37.50%
which can be considered as a dominant attribute when we compare it with other
roles: IF: 29.10%, CT: 8.30%, CD: 8.30% and ST: 16.66%.

In figure 3.9, we can see that the distributions of the each role stereotype and how
many instances of them at which level of percentage. Take the Coordinator (CD) as
an example, it shows a significant percentage distribution at 0.09 (9%) with around
13 projects. With a similar tendency, the Structurer (ST) can be found more often
on the low percentages of the frequency, with 0%-10%, 10%-20% and 20%-30% on
10, 3, 2 projects respectively.

3.2.6 Experiment with Machine Learning Algorithm
One of the most important machine learning (ML) prediction models is "classifica-
tion technique" [24]. It can be described as the process of arranging the objects in
groups or categories in a systematic way [25]. In our experiment we have used 4
machine learning algorithm which are, OneR, ZeroR, Random Forest (RF) and J48.
These ML algorithms are really popular and broadly used in the software engineer-
ing area. For figuring out which ML algorithm works best these suite of algorithms
are used.

In ML experiment it is quite important to build a baseline of performance using

24

3. Methodology

a baseline classifier. It provides a point of reference which can be used to compare
other ML algorithms performance. With this point of reference it is easier to see
how much the performance has increased for other ML algorithms. In this case
study, the OneR and ZeroR Algorithms are used for achieving that purpose.

ZeroR is the simplest classification methods, where it predicts only the majority
category based on the training dataset. Although it doesn’t have much predictabil-
ity power, it can be used as a benchmark for other types of ML algorithms [26].

On the other hand, OneR is also a simple classification algorithm. Which pro-
duces a one-level decision tree. It generates one-rule for each of the attributes in the
dataset and then it selects the rule which has minimum error as the "one-rule"[29].
In our experiments, we have used both the ZeroR and the OneR algorithms to de-
termine a baseline performance for other algorithms.

In our experiments, we have used the gold standard 10-fold cross-validation [26].
In weka, the default value is 10-fold. We could increase or decrease the fold, as
our dataset is medium large, the 10-fold was sufficient to measure the performance
of our model. Another test option is Percentage split, which is used to train 66%
of our dataset and the remaining 34% of the data will evaluate the performance
of our model. We have measured the performance of our classification using TP
(true positive) rate, FP (false positive) rate, precision, recall, F-measure and MCC
(Matthews Correlation Coefficient).

We did two experiments for the ML algorithms we have mentioned earlier. In
both experiments we have used all the role stereotypes as a separate classification
category. As the classification category is more than two, it will be considered as
Multi-class or Multi-role classification. For both experiment we have used 10-fold
cross validation. In case of second experiment, we have used the dataset where we
have considered all data which has "Confidence Level" attribute value from one to
five. In case of 2nd experiment we have considered the dataset with highest value
in the "Confidence Level" attribute, which is five. After running both experiments
with the regular dataset, we have saved the results.

For improving the performance of our classifier and avoiding the overfitting problem
we have used SMOTE (Synthetic Minority Over-sampling Technique) [27]. Over-
fitting occurs due to the imbalance in the dataset. It can happen when a trained
classifier explains a given set of dataset but doesn’t give the concrete rationale behind
it [28]. One of the solution for overfitting problem is to train the classifier with more
data, because of that we have decided to use SMOTE technique. So that we can do
over-sampling of the minority classes and under-sampling of the majority classes. In
both 1st and 2nd experiment we have used SMOTE after saving the results from the
regular dataset. Later, we will do a comparison between the performance of each
classifier which we will get from the regular dataset and using the SMOTE technique.

Next we have selected the ML algorithm, which performed best during the clas-

25

3. Methodology

sification of our dataset. Then we have performed feature selection on our dataset,
to check which attributes are more relevant to predict the role stereotypes.

3.2.7 Analyze Classification Experiments
In this section we will describe how we have analyzed the classification results of our
experiments. We will run 2 experiments where each experiment will have 2 parts.
In the first part of each experiment we will do a classification with the imbalanced
dataset, in the second part we will run a classification after applying SMOTE re-
sampling technique on the imbalanced dataset.

In each experiment, we will do an analysis of the confusion matrix, if 2 or more
classifier have similar performance, then we will analyze and compare both for find-
ing out the similarities and differences. Next, we will do a comparison among all the
machine learning classifiers. Besides, we will run another experiment for finding out
the ranking of the most relevant features for predicting the role-stereotypes. After
analyzing the classification experiments, we will have a section where we will discuss
our learning from those experiments and the case study in general.

26

4
Results

In this chapter we present the result of our experiments. The result can be divided
into two parts. In the first part we will discuss the result from our manual label-
ing and consolidation step (see figure: 3.1), which is the ground truth. The second
part illustrates the outcome of our classification result by using machine learning
algorithms. In details, several accuracy indicators such as Precision, Recall Rate
are used in order to evaluate whether or not the determined result is reliable. The
confusion matrix is analyzed in order to understand the faultiness and correctness
in the distribution.

4.1 Evaluation of the Machine Learning Classi-
fiers

In this section, we will describe the results of the experiments that we did for
evaluating the classifiers that we built for classifying classes in UML class diagrams.
In the section 3.2.5.2, we have mentioned that we have 2 datasets and we have used
the label "Confidence Level" to differentiate between them. As we have low number
of classes in each project, we have considered all the classes from the selected 15
projects together in each dataset 3.1. In the following sections, we will describe the
classification results that we got after applying ML algorithm on those two datasets.

4.1.1 Multi-class classification for All Confidence Level
In this experiment, we have considered classes which are labelled with one to five
confidence level, that means all level in the Confidence Level scale are considered
here. Our dataset consists of 391 classes from 15 projects (see table 3.1). In the
following table 4.1, we have displayed the result for different ML algorithms. The
first four rows are showing the results for the baseline classifiers, and the last four
rows are showing the result for in-depth classifiers. First we have run classifier
on the regular imbalanced dataset, and next we have applied SMOTE resampling
technique on the dataset to see if the accuracy has improved. In the table, we have
written "SMOTE" beside the classifier name, when it is not the regular imbalanced
dataset. We can see from the table 4.1 that the classifiers performed best when we
have applied SMOTE for balancing the imbalanced dataset.

27

4. Results

Multi-roles Classification Result (All Confidence Level)
TP Rate FP Rate Precision Recall F-Measure MCC

OneR 0.427 0.427 0.000 0.427 0.000 0.000
ZeroR 0.427 0.427 0.000 0.427 0.000 0.000
OneR
(SMOTE) 0.821 0.040 0.909 0.821 0.837 0.818

ZeroR
(SMOTE) 0.227 0.227 0.000 0.227 0.000 0.000

J48 0.637 0.165 0.627 0.637 0.628 0.483
Random
Forest 0.670 0.224 0.743 0.670 0.635 0.526

J48
(SMOTE) 0.736 0.077 0.000 0.736 0.000 0.000

Random
Forest
(SMOTE)

0.904 0.024 0.905 0.904 0.904 0.882

Table 4.1: Classification Results for All Confidence Level

For the imbalanced dataset, the TP rate, FP rate, recall are similar for both OneR
and ZeroR classifier, which are the benchmark for the other 2 classifiers. The Pre-
cision, F-measure and MCC values are unavailable for OneR and ZeroR. On the
other hand, all the values in the accuracy table 4.1 are present for J48 and Random
Forest (RF) classifier and RF performed better than the J48 classifier. So, we can
conclude that RF is the best performing classifier for the imbalanced dataset.

In case of dataset after applying SMOTE, we can see from the accuracy table 4.1
that, the values have changed a lot. For ZeroR classifier, the TP rate, FP rate and
Recall values are reduced from the benchmark. On the other hand, the values for
OneR, J48 and RF has increased a lot. In this case, Precision, F-measure and MCC
are unavailable for ZeroR and J48. According to the result, the Random Forest
classifier has achieved the highest score for the dataset with SMOTE. For getting a
better picture of the classification result, an illustration has been shown in figure 4.1.

IH ST SP CT IF CO
IH 158 0 9 0 0 0
ST 23 4 1 0 0 0
SP 39 0 63 0 1 0
CT 10 0 1 22 0 0
IF 26 1 6 0 14 0
CO 10 0 2 0 0 1

Table 4.2: Confusion Matrix for
Random Forest classifier for the

imbalanced dataset (All confidence level)

IH ST SP CT IF CO
IH 134 10 17 1 5 0
ST 14 10 3 1 0 0
SP 32 1 54 3 6 7
CT 1 0 5 26 1 0
IF 14 2 8 2 21 0
CO 2 0 6 0 1 4

Table 4.3: Confusion Matrix for J48
classifier for the imbalanced dataset (All

confidence level)

28

4. Results

We have shown the confusion matrix for the Random Forest (RF) and J48 classifier
on the imbalanced dataset in the figure 4.3 figure 4.2 sequentially. The best per-
forming fold was selected from the 10-fold cross-validation. The first column and
the first row are showing the actual and predicted role-stereotypes consecutively. In
this case, the classification accuracy of RF and J48 are quite similar. In the next
paragraph we will do a comparison to see which classifier performed best.

In case of RF, if we look at the diagonal of the confusion matrix we can see that 262
classes are classified correctly out of the 391 classes. Due to the imbalance in the
dataset, the classifier misclassified 129 classes. The RF classifier has classified 158
Information Holders correctly out of 167. It has classified 63 Service Providers cor-
rectly, out of 103. The current accuracy for RF classifier is 67%, for this imbalanced
dataset. After applying the SMOTE in the dataset, the accuracy for RF classifier
has increased to 90.43%.

In case of J48 classifier, when we look at the diagonal of the matrix we can see
that, the classifier has correctly classified 249 instances and it classified 142 in-
stances incorrectly. It has classified 134 information holders properly out of 167,
which is less, comparing to the RF classifier. In this case the classifier classified
54 service providers out of 103, which is less than RF. Other than that, J48 clas-
sified structurer, controller, coordinator and interfacer more accurately than RF.
The current accuracy for J48 classifier is 63.68%, for this imbalanced dataset. After
applying the SMOTE in the dataset, the accuracy for J48 classifier has increased to
73.59%. That means, the imbalance behavior in the dataset can affect the perfor-
mance of the classifiers. By seeing the comparison, we can say that RF classifier has
performed best when classifying the imbalanced dataset for All Confidence Level.

Figure 4.1: Illustration of Classification Results for All Confidence Level

29

4. Results

4.1.2 Multi-class classification for High Confidence Cases
In this experiment, we have considered the dataset where classes are labelled with
only the high confidence level which is five. This time the dataset consists of 328
classes from the 15 projects (see table 3.1). In the following table 4.4, we have dis-
played the result for different ML algorithms. The first four rows are showing the
results for the baseline classifiers, and the last four rows are showing the results for
in-depth classifiers. First we have run classifier on the regular imbalanced dataset,
and next we have applied SMOTE technique on the dataset to see if the accuracy
has improved. In the table, we did not write anything beside the classifier name,
when it is a regular imbalanced dataset, otherwise we have written "SMOTE" beside
the classifier name.

In the imbalanced dataset, the TP rate, FP rate, recall are similar for both OneR
and ZeroR classifiers, which are the benchmark for the other 2 classifiers. The Pre-
cision, F-measure and MCC values are unavailable for OneR, ZeroR and Random
Forest (RF). In case of J48 classifier, all the values in the accuracy table 4.4 are
available. The TP rate, FP rate and Recall values of Random Forest (RF) classifier
is a bit higher than the values of J48 classifier. Still we can say that J48 classifier
classifies the imbalanced dataset more precisely, as it has all the values at hand.
So, we can draw the conclusion by saying that, J48 classifier is the best performing
classifier for the imbalanced dataset.

Multi-roles Classification Result (High Confidence Level)
TP Rate FP Rate Precision Recall F-Measure MCC

OneR 0.442 0.442 0.000 0.442 0.000 0.000
ZeroR 0.442 0.442 0.000 0.442 0.000 0.000
OneR
(SMOTE) 0.776 0.059 0.000 0.776 0.000 0.000

ZeroR
(SMOTE) 0.223 0.223 0.000 0.223 0.000 0.000

J48 0.683 0.154 0.669 0.683 0.669 0.543
Random
Forest 0.695 0.222 0.000 0.695 0.000 0.000

J48
(SMOTE) 0.847 0.039 0.900 0.847 0.850 0.834

Random
Forest
(SMOTE)

0.881 0.030 0.891 0.881 0.878 0.858

Table 4.4: Classification Results for High Confidence Level

In case of dataset with SMOTE, we can see from the table 4.4 that, the values for
OneR, J48 and Random Forest (RF) classifiers have increased. On the other hand,
the values of ZeroR classifier in the accuracy table 4.4 has been reduced. Precision,
F-measure and MCC values are missing for both OneR and ZeroR classifiers. In
this case, both J48 and RF have all the values in the accuracy table 4.4. For RF

30

4. Results

the TP rate, recall, F-measure and MCC have higher values than the corresponding
J48 classifier values. So, we conclude by saying that, RF classifier has achieved the
best score for classifying the dataset with SMOTE. For getting an overview of the
classification result, an illustration has been portrayed in the figure 4.2.

IH ST SP CT IF CO
IH 139 0 5 0 1 0
ST 20 4 1 0 0 0
SP 29 0 54 0 0 0
CT 8 0 1 21 0 0
IF 25 0 4 0 10 0
CO 4 0 2 0 0 0

Table 4.5: Confusion Matrix for RF
classifier for the imbalanced dataset

(High confidence level)

IH ST SP CT IF CO
IH 123 8 9 1 3 1
ST 14 8 2 1 0 0
SP 19 2 53 0 7 2
CT 1 1 1 26 1 0
IF 14 1 12 0 11 1
CO 1 0 2 0 0 3

Table 4.6: Confusion Matrix for J48
classifier for the imbalanced dataset

(High confidence level)

We have illustrated the confusion matrix for the Random Forest (RF) and the J48
classifiers on the imbalanced dataset in the figure 4.6 and figure 4.5 consecutively.
We have selected the best performing fold out of the 10-fold cross-validation. The
first column and the first row are showing the actual and predicted role-stereotypes
in a successive manner. As the performance of RF and J48 classifiers are almost
similar, we will see the similarities and the differences in the following 2 paragraphs.

Looking at the values for RF classifier in the confusion matrix, we can see that,
the diagonal of the matrix represents the number of classified classes, which is 228.
Outside the diagonal there are 100 classes, which are incorrectly classified. Here,
the RF classifier has classified 139 Information Holders out of 145 of them, which
is quite accurate. On the other hand, RF classifier has failed to classify any Co-
ordinators. In this dataset, the number of coordinators are really low, which is 6,
it could be a reason for the failure. Low number means, the classifier can look
at few examples to train itself. The accuracy of the RF classifier during classify-
ing the imbalanced dataset is 69.51%. When we have applied SMOTE resampling
technique on the dataset, the accuracy of RF classifier has been increased to 88.14%.

Next we will look at the values of J48 classifier in the confusion matrix. From
the diagonal of the confusion matrix, we can see that 224 instances are classified
correctly, whereas it failed to correctly classify 104 instances or classes. In this
case, the J48 classifier has correctly classified 123 Information Holder out of 145 of
them, that means J48 is a bit inaccurate than RF during classifying the Information
Holder. On the contrary, J48 classifier has successfully classified 3 coordinators out
of 6. The accuracy of the J48 classifier during classifying the imbalanced dataset is
68.29%. When we have applied SMOTE resampling technique on the dataset, the
accuracy of J48 classifier has been increased to 84.71%. By seeing the similarities
and differences we can say that J48 classifier has performed slightly better than the
RF classifier during classifying the imbalanced dataset.

31

4. Results

Figure 4.2: Illustration of Classification Results for High Confidence Level

4.2 Comparing Performance of different ML al-
gorithms

In this section, we have discussed the comparisons among different classifiers per-
formance. By comparing the classification results between the table 4.1 and the
table 4.4, we can say that the dataset with high confidence level is classified more
accurately than the dataset with all confidence level values. After applying the
SMOTE balancing technique on the dataset, the classification accuracy of the clas-
sifiers has increased even more. In the table 4.7, we have displayed the performance
results for different classifiers that we have considered. For better understanding an
overview has been illustrated in the figure 4.3.

Comparisons Among Different Classifiers Accuracy (in percentage)

Algorithm
Names

All
Confidence
Level

All Confidence
Level (SMOTE)

High
Confidence
Level

High Confidence
Level (SMOTE)

OneR 42.71 82.07 44.21 77.57
ZeroR 42.71 22.66 44.21 22.29
J48 63.68 73.59 68.29 84.71
Random
Forest 67.00 90.43 69.51 88.14

Table 4.7: Comparisons among different classifiers accuracy

From the table 4.7, we can see that the two baseline classifiers OneR and ZeroR acted

32

4. Results

Figure 4.3: Comparison Among Different Machine Learning Algorithms Perfor-
mance

differently, when we have applied SMOTE. After applying SMOTE the performance
of OneR has increased and the performance of ZeroR has decreased. By comparing
the two table, table 4.1 and table 4.4, we can draw a conclusion by saying that, the
RF classifier performed best when classifying the dataset with all Confidence Level,
on the other hand J48 classifier performed best when classifying the dataset with
High Confidence Level. Performance distribution or classification accuracy of the 4
classifiers on different datasets are added in the appendix C.

4.2.1 Deeper analysis of best performing classifiers
In this section, we will describe the classification accuracy for each role-stereotype
by J48 and Random Forest classifiers. In table 4.8, 4.9, 4.10 and 4.11, we have
shown the classification accuracy for J48 while classifying the six role-stereotypes
namely, Information Holder (IH), Structurer (ST), Service Provider (SP), Controller
(CT), Interfacer (IF) and Coordinator (CO). In this section we will describe the four
accuracy table that we have produced during the classification experiment with J48
classifier.

The first two table illustrates the classification accuracy on imbalance dataset with
All Confidence Level 2 and the High Confidence Level consecutively. The rest two
table illustrates the results for imbalanced dataset with All and High confidence
level sequentially, in this case we have ran those experiment after applying SMOTE
resampling technique.

2Confidence Level is a label which has been introduced by us, for measuring the confidence
during the prediction of role stereotypes. The scale for the label is one to five, where five is the
highest confidence level

33

4. Results

Similarly we have described the table 4.12, 4.13, 4.14 and 4.15 for the RF clas-
sifier. The first two table illustrates the classification accuracy on imbalance dataset
with All Confidence Level and the High Confidence Level successively. The rest
two table illustrates the results for imbalanced dataset with All and High confidence
level consecutively, in this case we have ran those experiment after applying SMOTE
resampling technique.

We can see from table 4.8 that J48 is really good at detecting the IH and CT
classes when classifying the dataset with All Confidence Level. Besides, we can see
from the table that J48 is medium good at detecting the SP, IF classes. On the
contrary, it was not that good when it comes to classifying the CO and ST classes.

J48 classifier - Imbalance dataset - All Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.802 0.281 0.680 0.802 0.736 0.516
ST 0.357 0.036 0.435 0.357 0.392 0.352
SP 0.524 0.135 0.581 0.524 0.551 0.402
CT 0.788 0.020 0.788 0.788 0.788 0.768
IF 0.447 0.038 0.618 0.447 0.519 0.472
CO 0.308 0.019 0.364 0.308 0.333 0.314

Table 4.8: Accuracy table for J48 Classifier - All Confidence Level

From table 4.9, we can see that, J48 is better when it comes to detecting IH and
CT classes when classifying the dataset with High Confidence Level. The SP and
CO classes falls into the second category, as J48 was medium good when detecting
them. We can add the ST and IF classes in the last category as the number of TP
rate is really low for these two cases.

J48 classifier - Imbalance dataset - High Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.848 0.268 0.715 0.848 0.776 0.577
ST 0.320 0.040 0.400 0.320 0.356 0.311
SP 0.639 0.106 0.671 0.639 0.654 0.541
CT 0.867 0.007 0.929 0.867 0.897 0.887
IF 0.282 0.038 0.500 0.282 0.361 0.316
CO 0.500 0.012 0.429 0.500 0.462 0.452

Table 4.9: Accuracy table for J48 Classifier - High Confidence Level

Table 4.10 shows that, J48 classifier failed to classify the IH role stereotype when
classifying the dataset with All Confidence Level and we have run the experiment
after applying SMOTE resampling technique on the dataset. According to the table
J48 classified SP, CT and CO better than other stereotypes. The classifier was
medium good during the detection of ST and IF.

34

4. Results

J48 classifier - dataset with SMOTE - All Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.000 0.000 0.000 0.000 0.000 0.000
ST 0.786 0.000 1.000 0.786 0.880 0.873
SP 1.000 0.341 0.462 1.000 0.632 0.552
CT 0.939 0.000 1.000 0.939 0.969 0.964
IF 0.830 0.000 1.000 0.830 0.907 0.891
CO 0.913 0.000 1.000 0.913 0.955 0.950

Table 4.10: Accuracy table for J48 Classifier - All Confidence Level (SMOTE)

J48 classifier - dataset with SMOTE - High Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.986 0.182 0.586 0.986 0.735 0.684
ST 0.810 0.000 1.000 0.810 0.895 0.886
SP 0.446 0.006 0.902 0.446 0.597 0.605
CT 0.942 0.000 1.000 0.942 0.970 0.965
IF 0.833 0.000 1.000 0.833 0.909 0.892
CO 0.927 0.003 0.978 0.927 0.952 0.945

Table 4.11: Accuracy table for J48 Classifier - High Confidence Level (SMOTE)

From the table 4.11 we can see that, J48 classifier performed best when detecting
IH, CT and CO during the classification of the dataset with High Confidence Level
data. We have ran this experiment after applying SMOTE technique on the dataset.
The classifier was medium good when detecting the ST and IF. It performed poorly
when detecting the SP role stereotype.

Random Forest classifier - regular imbalanced dataset - All Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.946 0.482 0.594 0.946 0.730 0.492
ST 0.143 0.003 0.800 0.143 0.242 0.322
SP 0.612 0.066 0.768 0.612 0.681 0.590
CT 0.667 0.000 1.000 0.667 0.800 0.804
IF 0.298 0.003 0.933 0.298 0.452 0.499
CO 0.077 0.000 1.000 0.077 0.143 0.273

Table 4.12: Accuracy table for Random Forest Classifier - All Confidence Level

Table 4.12 represents that RF classifier performed best when detecting IH, CT
and SP classes when classifying the imbalanced dataset with all confidence level
classes. Besides, from this table we can see that RF is medium good when it comes
to identifying the ST and IF classes. The RF classifier performed poorly when
identifying the CO classes.

35

4. Results

Random Forest classifier - regular imbalanced dataset - High Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.959 0.470 0.618 0.959 0.751 0.523
ST 0.160 0.000 1.000 0.160 0.276 0.387
SP 0.651 0.053 0.806 0.651 0.720 0.644
CT 0.700 0.000 1.000 0.700 0.824 0.824
IF 0.256 0.003 0.909 0.256 0.400 0.455
CO 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.13: Accuracy table for Random Forest Classifier - High Confidence Level

According to the table 4.13, Random Forest (RF) discovered the IH, CT, and SP
classes quite accurately when classifying the imbalanced dataset with high confidence
cases. We can also notice from this table that, RF performed fairly good when
discovering the IF and ST classes. On the other hand, the RF classifier didn’t
perform well enough when spotting the CO classes.

Random Forest classifier - dataset with SMOTE - All Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.778 0.038 0.823 0.778 0.800 0.757
ST 0.884 0.008 0.943 0.884 0.912 0.901
SP 0.917 0.038 0.875 0.917 0.896 0.865
CT 0.955 0.000 1.000 0.955 0.977 0.973
IF 0.952 0.032 0.886 0.952 0.918 0.897
CO 0.952 0.004 0.971 0.952 0.961 0.956

Table 4.14: Accuracy table for Random Forest (RF) Classifier - All Confidence
Level (SMOTE)

From table 4.14, we can see that Random Forest (RF) classifier performed better
when identifying the SP, CT, IF and CO classes. In this case, we have run the
experiment on the dataset after applying SMOTE resampling technique and we
have considered All Confidence Level. Besides, from this table we can see that RF
is medium good when it comes to identifying the IH and ST classes.

Random Forest classifier - dataset with SMOTE - High Confidence Level
TP Rate FP Rate Precision Recall F-Measure MCC

IH 0.883 0.086 0.727 0.883 0.798 0.744
ST 0.870 0.007 0.956 0.870 0.911 0.898
SP 0.530 0.008 0.898 0.530 0.667 0.661
CT 0.967 0.003 0.983 0.967 0.975 0.970
IF 0.955 0.042 0.866 0.955 0.909 0.882
CO 0.969 0.002 0.989 0.969 0.979 0.976

Table 4.15: Accuracy table for Random Forest Classifier - High Confidence Level
(SMOTE)

36

4. Results

According to the table 4.15, Random Forest (RF) discovered the CT, IF and CO
classes quite accurately when classifying the dataset after applying SMOTE. In this
case, we have considered the high values of Confidence Level metrics. We can also
notice from this table that, RF performed fairly good when discovering the IH and
ST classes. On the contrary, the RF classifier didn’t perform well enough when
detecting the SP classes.

4.3 Ranking of Relevant Features for predicting
role-stereotypes

In this section, we have demonstrated the relevant features for predicting the role-
stereotypes in the UML class diagrams. In the previous section 4.2, we have seen
that the classifiers performs best on the dataset with only "High Confidence Level"
data. That is why we have run feature selection on the dataset with "High Confi-
dence Level" data. Before running the feature selection, we have selected the "select
attribute" tab from the explorer tab of weka. Then, we have selected the Correla-
tionAttributeEval option from the Attribute Evaluator pane. We have used Ranker
search, as it was the recommended search with this feature selection method. We
ran this feature selection on two dataset. One dataset is the regular one with only
"High Confidence Level" data, and the other one is"High Confidence Level" data with
SMOTE. The comparison between these two results are presented in the table 4.16.

From the table 4.16, we can see that the attributes are listed from higher to lower
ranked value. The attribute with larger number in the ranked column means, it
is more relevant for predicting the role-stereotypes. Besides table 4.16 shows that,
when we have added SMOTE in the dataset, the ranking has changed for many
attributes. There are a lot of similarities and differences in both outcome of the
feature selection method.

In both results, the attribute "EndWithManager,Controller" has the largest value,
this metrics was added by us. We have created this metrics for detecting the Con-
troller (CT) classes. The higher rank means, it is a deciding factor when labeling
the Contoller (CT) classes (check 3.2.3 & 3.2.4). Two other interesting attributes
are, "IsEntity" and "Getters", which are the deciding factor when labeling the Infor-
mation Holder (IH) classes. The attribute "EndWithFactory, Impl,Implementation"
is a deciding factor while labeling the Service Provider (SP), although its rank is not
higher in the results, it played a important role while labeling the role stereotypes.
Another attribute "HasType,Annotation, List" is also an important factor when la-
beling the Information Holder, in both results it has a lower ranked value. Lower
ranked value means, the dataset doesn’t have that many classes which is related to
"HasType,Annotation, List" attribute. For other attributes the ranked has shown
drastic changes, when we have run feature selection method on the dataset with
SMOTE.

37

4. Results

Comparison Between Feature Selection
Relevant Attributes
in Regular Dataset

Relevant Attributes
in Dataset with SMOTE

Attributes Ranked Attributes Ranked
EndWithManager,
Controller 0.246 EndWithManager,

Controller 0.309

OpsInh 0.228 IsEntity 0.182
DIT 0.222 CLD 0.171
Getters 0.204 Getters 0.139
NumAnc 0.201 NumAssEl_ssc 0.135
CLD 0.170 NOC 0.134
NumPubOps 0.157 OpsInh 0.131
NumAttr 0.149 NumDesc 0.130
NumOps 0.147 DIT 0.125
AttrInh 0.143 NumOps 0.123
NOC 0.141 IFImpl 0.122
Setters 0.136 Nesting 0.119
NumDesc 0.128 Setters 0.117
EC_Attr 0.121 NumPubOps 0.114
IFImpl 0.121 NumAssEl_nsb 0.111
IC_Par 0.117 NumAssEl_sb 0.109
NumAssEl_sb 0.113 Name 0.107
NumAssEl_ssc 0.099 IC_Par 0.101
Dep_Out 0.099 NumAnc 0.099
Dep_In 0.098 EC_Attr 0.099
Nesting 0.095 IC_Attr 0.098
IC_Attr 0.091 EC_Par 0.094
HasType,
Annotation,
List

0.090 Dep_Out 0.089

EndWithFactory,
Impl,
Implementation

0.087 AttrInh 0.088

EC_Par 0.085 Dep_In 0.086
NumAssEl_nsb 0.067 NumAttr 0.085

IsEntity 0.066
HasType,
Annotation,
List

0.060

Name 0.046
EndWithFactory,
Impl,
Implementation

0.043

Table 4.16: Comparison between Dataset with Regular data and Dataset with
SMOTE

38

4. Results

4.4 Discussion
In this section, we will discuss our findings and the learning outcome of this case
study. The classifier that we have built during the course of this case study was
designed by keeping the software design and UML class diagrams in mind (check
2.1 & 2.2). Our classifier has a simple design and easy to implement. Throughout
this case study several decisions were taken, based on those decisions we have up-
dated the criteria of selection and other parts of the case study. A lot of time and
effort was given during the manual labeling of the classes in UML class diagrams.
We have repeated each steps in the methodology several times to establish and refine
our ground truth.

As we have mentioned earlier in section 3.2.4, that we have used the six role-
stereotypes from Wirf-brocks research [1] to label the classes in UML class diagrams.
Role stereotypes were useful during the investigation of the design pattern of UML
class diagrams. Chaudron et al. demonstrated how they have used role-stereotypes
for labeling the classes in Source Code [3]. In another case study, Dragan et al. has
mentioned how useful role-stereotypes are in case of source code, besides they have
mentioned the term role-stereotypes in UML [7]. In our case study, we have used
role-stereotypes for labeling the UML class diagrams. We have found that, there
are several important factors which plays key role at the time of deciding the role-
stereotype of a certain class. Class names, method names and type of dependencies
are some of the important factor that we have checked while labeling the classes
from UML class diagrams.

In section 3.2.3, we have demonstrated how we have extracted features or metrics to
use during the Machine Learning (ML) experiment. In the beginning we have used
only the metrics that we got from the SD Metrics tool. Later, we have discussed
these results with our thesis supervisor and other experts, they have suggested us
to introduce new metrics based on our experience from those experiment. We have
created some features by looking at the class names which are repetitive, method
names and other characteristics which indicates certain role-stereotype. After we
have added our own created features, the ML classification performance has been
improved immensely. This way we have learned how adding nominal types of fea-
tures which are relevant to the UML class diagrams, can affect the performance of
a ML algorithm.

4.4.1 Insights from the Ground truth - Manual labeling
In our manual labeling stage, we defined our ground truth which aimed to shape
the scope of our research study. In the meanwhile, we have received our most valu-
able result from this stage. As shown in section 3.2.5.3 in table 3.2 and 3.3, we
can see that there are many empty values for the Structurer (ST) in our projects
(>9). However, the total number of ST classes are not the least comparing to the
Coordinator Classes. This could simply mean that the ST type of classes are aimed
to help to define a project’s architecture, which should "delegate" some parts of the

39

4. Results

work of the system to the outside world[1][9]. However, all of these projects that
are missing with the ST seem to be either with less than 10 classes, e.g., ACSOFRO
(9) and ObjectCourseEnd (12) or it is more of a utility-based project such as Wro4j
and JGAP.

As noted in table 3.2, the highest value was detected in Java_Client for role In-
formation Holder. In fact, if we look at the total number of classes in this project
we can find that this project takes up to 82.40% of the entire role stereotypes in
this project. There are a handful of other roles but they are much less significant
to be analyzed in this case. So we did a dig into the project and examined the
provided UML class diagram. We found that most of the classes that are labelled
IH or Interfacer (IF) has many attributes which contain data and a few methods
that reads/retrieves/transfers these data to another place. Thus we assume that
when a project has a high number of IH classes, it tends to have a strong data
flow/exchange within the project.

Another thing is that, in figure 3.5 it displays the overall distribution of all 6 role
stereotypes in all of our selected projects. From this distribution, we can observe
that IH has the highest percentage of occupancy, with 42.7% identified rate. The
least detected role is Coordinator (CD) with only 3.30%. The Structurer (ST) and
Controller (CT) follows up the CD closely with 7.20% and 8.40% which are both
lower than 10%. As for the Interfacer (IF) and Service Provider (SP) they have
decent identified rate with 12.% on IF and 26.30% which is the second highestly
idenfied role stereotypes after IH. What we can see with this data is that a decent
software project is formed with classes that can define its data structurer. Then it
should have a decent amount of SP as every software should some meanings in "Do
something". Therefore the SP is one necessary role stereotype that can do these.

4.4.2 Comparison between role-stereotypes in UML Class
diagrams vs in Source Code

In this section we will describe the similarities and differences between our classifier
and the source code classifier from Chaudron’s et al. paper [3]. Our discussion
will be based on two perspective, they are manual labeling perspective and machine
learning perspective.

4.4.2.1 Manual Labeling perspective

In this section, we will compare our classifier URI (UML role identifier) with the
CRI (Source Class Role Identifier) [3], which is shown in table 4.17. Chaudron et al.
has presented CRI in his research, which classifies class role-stereotypes in source
code. They have established their ground truth based on 779 labelled classes se-
lected from source code (based on manual labeling) [3], and in our case study we
have established our ground truth based on 391 classes discovered from UML class
diagrams (Based on our manual labeling). Both our studies and their studies has
considered the six role-sterotypes from Wirfs-Brock research [1], for labeling the

40

4. Results

classes.

From this point on, we will write SrcRI to refer to Chaudron’s Source code Classifier
(called CRI in their paper) order to make the abbreviations easier to recognize as
referrring to source code (and URI to refer to our UML-level class-classifier). In this
comparison, we have calculated the frequencies of role-stereotypes in percentage, as
the number of classes are different in both case study. As we have used percentage
instead of the absolute number of the classes, the reader can comprehend the dif-
ferences between URI and SrcRI more easily. In table 4.17, we have four column,
the first column represents the six role-stereotypes, second and third column rep-
resents the percentages of role-stereotypes occurrences in our 2 datasets (All and
High "Confidence Level 4") and the fourth column represents the percentages of role-
stereotypes occurrences in source code. The fourth column values are adapted from
Chaudron et al. case study, which can be found in figure 4 from their case study [3].

Comparison between URI and SrcRI (frequencies of role-stereotypes as %)

Role Stereotypes All Confidence
Level (URI)

High Confidence
Level (URI) SrcRI

Information Holder 42.71 44.21 29.7
Structurer 7.16 7.62 6.3
Service Provider 26.34 25.30 41.5
Controller 8.44 9.15 2.5
Coordinator 3.32 1.83 10.1
Interfacer 12.02 11.89 9.9
Total no. of classes (absolute value) 391 328 779

Table 4.17: Comparison between URI and SrcRI classifiers

We can see from table 4.17, the 2nd and 3rd column values are quite similar as the
data-sets are classified by the same URI classifier. By seeing the comparison, we
can say that "Information holder" role-stereotype is more visible ([42.71%,44.21%])
when classifying with URI, on the other hand SrcRI detected "Service provider"
role-stereotype more often (41.5%) when classifying the source code. Another in-
teresting fact about the two classifiers is that, "Information Holder" and "Service
Provider" occurs predominantly than other role-stereotypes when classifying with
URI and CRI. In case of URI, the 3rd role stereotype which is predominant is
"Interfacer" ([11.89%,12.02%]), on the contrary for SrcRI the 3rd predominant role-
stereotype is Coordinator (10.1%). In both cases, the percentage of occurrences for
"Structurer" role-stereotype is quite similar.

Another noticeable fact in table 4.17, the frequency of controllers and coordinators.
In case of URI, controller ([8.44,9.15]) has a higher frequency than the coordina-
tor ([1.83,3.32]). In case of SrcRI an opposite scenario is visible, where coordina-

4Confidence Level is a label which has been introduced by us, for measuring the confidence
during the prediction of role stereotypes. The scale for the label is one to five, where five is the
highest confidence level

41

4. Results

tor (10.1) has a higher frequency over the controller (2.5). It could be we were biased
when labeling the controller, as we have decided the labels based on the class names,
method names and type of dependencies which are visible in UML class diagrams.
Otherwise, it might be an error that occurred in the earlier case study, when labeling
the classes based on the source code. As we are not sure about which study labelled
them correctly, we looked at the combined occurrences of coordinator and controller
in both study, then we see that there is not much difference.
By comparing between URI and SrcRI classifier, we can conclude that URI clas-

Figure 4.4: Comparison between URI and SrcRI classifiers

sifier is quite accurate during classifying the different role-stereotypes. So, we can
make early predictions using URI classifier during software development process and
in that way we can save time, cost and effort. An illustration of the comparison is
illustrated in the figure 4.4.

4.4.2.2 Machine Learning Perspective

In the previous part we have seen the differences between frequency of occurrences
of role-stereotypes while classifying with URI and SrcRI. In this section we will
discuss the differences between these two classifiers from the Machine Learning (ML)
perspective. For this we have taken a confusion matrix from Fabian’s case study [32],
which is shown in the table 4.18, they produced this confusion matrix by running
SrcRI (which is called CRI in Chaudron’s paper [3]) classifier on their imbalanced
dataset. For this reason, we have taken a confusion matrix from our experiment
results, that we got from similar settings (see section 4.1.1). That means by running

42

4. Results

URI (Random Forest) classifier on our imbalanced dataset, here we have considered
All Confidence level cases. Our confusion matrix is illustrated in the table 4.19.

IH ST SP CT CO IT
IH 463 13 47 2 2 14
ST 21 24 41 1 0 13
SP 35 10 448 2 6 38
CT 5 1 19 29 1 8
CO 17 2 38 4 27 14
IT 10 3 42 1 2 144

Table 4.18: Confusion Matrix for RF
classifier for the imbalanced dataset

(SrcRI)

IH ST SP CT IF CO
IH 158 0 9 0 0 0
ST 23 4 1 0 0 0
SP 39 0 63 0 1 0
CT 10 0 1 22 0 0
IF 26 1 6 0 14 0
CO 10 0 2 0 0 1

Table 4.19: Confusion Matrix for RF
classifier for the imbalanced dataset

(URI))

From table 4.18, we can see that SrcRI has classified service provider (SP) and infor-
mation holders (IH) more accurately than other role-stereotypes. From table 4.19,
we can see that our classifier URI has done a similar job, it has classified SP and
IH more accurately. SrcRI couldn’t classify Controller (CT) classes properly and
URI couldn’t classify coordinator classes accurately. In case of SrcRI there are less
controllers in the dataset, so it can be said that the classifier does not have many
examples to train itself properly. In our case, we had few coordinator (CO) classes
in our dataset, that’s why the URI classifier could not classify CO classes accurately.
This is actually a pretty common scenario when doing machine learning with im-
balanced dataset. The SrcRI tool provides 74% to 98% classification accuracy [32],
whereas our URI classifier provides 70% to 90% classification accuracy. From this
discussion we can see that SrcRI and CRI has performed quite similarly.

4.5 Threats to validity
Threats to internal validity:
It refers to the factors which jeopardizes internal validity. Internal validity refers to
the cause and effect relationship between the experiment and the outcome. Lack of
case studies related to our research can have a negative affect on the internal validity.

Besides, the size of the dataset might be increased, but manual labeling and other
steps are time consuming, due to the time limit, increasing the data seemed to be
a bit out of scope. The correctness of the ground truth can have an adverse affect
on the internal validity. For reducing the experimenter bias, we have used the same
dataset, same metrics or features for each experiment.

Threats to external validity:
It refers to factors which threaten the external validity. External validity refers
to how generalizable the findings of our case study. We have used the lindholmen
dataset, source forge and the github as resources for our case study. It is difficult to
get good selection of UML class diagrams. The UML class diagrams we have used

43

4. Results

are from open source projects. These may not be representative for diagrams which
are used in practice.

In this case study, we have considered only the .xmi files for our experiment, may be
if we have used some other types of sources the results can be a bit different. This
can be debated by saying, we didn’t find that many projects with other sources,
for instance, we have found images(.png, .jpg), but those images were not clear and
there were insufficient tools for converting the images into concrete data. For avoid-
ing this we have used the .xmi files, which were available than the other resources.

44

5
Conclusion & Future Directions

In this chapter, we will draw a conclusion based on our findings and discussion.
Besides, we will give a future outlook for the possible consecutive works for this
research study.

5.1 Conclusions
In order to gain insight in the structure of software designs, we seek a way to sys-
tematically categorize the software projects in design level into stereotypes. From
earlier studies in role-stereotypes in software, we know that there are stereo-typical
responsibilities within a software and when used properly it leads to well-design
systems.

In this research study we have presented an approach to label the software classes
into stereotypes from UML classes; i.e. design level representation of system. Af-
ter that, we have used several machine learning (ML) algorithms to compare and
evaluate the labelling of role stereotypes. To be more specific, we manually labeled
six types of roles for the class diagrams of 15 selected software projects. We have
experimented with several ML algorithms. Now, we can see which labels are given
correctly or more precisely in the manual labeling stage. Furthermore we can check
which ML algorithm provides the best result in terms of classification accuracy. In
the next two paragraphs, we will describe our steps of gathering the results in a
concise manner.

The manual labelling result proves that it is possible to assign labels to software
classes on the abstraction level provided by UML class diagrams. In our case the
labeling of classes are done following Wirf Brock’s categorization of role stereotype’s
[1]. However, this manual labeling process is preferably to be carried out within a
well-defined background in order to guarantee the precision. Otherwise the outcome
may come out with low precision rate which is not preferable. This step is to reduce
the level of biases so we know we can have a commonly acknowledged result. In our
projects, the authors have done the initial manual labelling. The complete labelling
was reviewed by the supervisor Michel Chaudron and his PhD student Rodi Jolak
(both of which are familiar with role stereotypes)

We have found that the J48 algorithm performs best when classifying the imbal-
anced dataset (without oversampling). It achieves an accuracy of 65.7 on the overall

45

5. Conclusion & Future Directions

dataset and 68.3 for the data in which the manual labellers have high-confidence. On
the other hand, Random Forest (RF) performs best when classifying the entire data
set with SMOTE oversampling (check 4.1): it achieves accuracy of 89.6. Random
Forest did not show an improvement when focussing only on the high-confidence
level (accuracy of 88.3). J48 comes close to this with an accuracy of 84.7.

Figure 4.3 shows that Random forest with SMOTE performs the best among all
other machine learning algorithms. This figure 4.3 also shows how J48 performed
better in case of imbalanced dataset. However, it is notable to say that even the
classifier performs the best on an overall level, it does have different levels of per-
formance for different stereotypes. For example, in table 4.2 it gives the best result
on Information Holder, it gives medium good result on Service Provider, Interfacer
and Controller, poor result on Structurer. Moreover, it failed to correctly classify
any coordinators. One likely reason is the low number of occurrences of these roles
in several projects. Thus there are few examples from which the ML-classifier can
learn what are the key characteristics of this stereotype. Also it could be that there
are other features which could be helpful in increasing the classification result but
we did not take them into consideration. To address this, one can experiment with
more feature extracting tools as well as perform model analyzing by ourselves to
enhance the possibility of discovering new features. Other approaches such as in-
creasing the size of the project, number of projects and selecting projects with more
standardized class diagrams can also be considered in order to increase the accuracy
for using classifier.

In Figure 3.6 we presented a pie chart with the overall distribution for all the role
stereotypes. And we have discussed (in Section 4.4) that the distribution of the role
stereotypes in this graph should be further analyzed and utilized in order to show
the general distribution. As we have talked before, it is reasonable that if a project
has a high number of IH and SP classes, and low number of CO and ST. It matches
the description that Wirfs Brock[1] mentioned that a regular software project should
spend most of its portions devoted to store and transfer some data [1]. And, in the
meanwhile have a certain number of implementations that execute some tasks with
the usage of those data. And then there should be a small amount of classes such
as Interfacers (IF) that talk to another system or system layer and some Controller
(CT) classes that make some sort of decisions among the system. Then we can con-
clude that if a software project’s architecture shows a different type of distribution
in terms of the role stereotypes then this project must serve a different purpose. Be
it an utility-based project which will mostly have Service Provider (SP) classes.

To answer RQ 1, we can say that it is possible to classify role stereotypes for classes
in UML diagrams. After we have manually labelled over 15 software projects, we
can confirm that it is feasible to label classes in a software project based on human
assessment. However, there are some preliminary requirements need to be fulfilled.
It requires some extent of software knowledge, especially in the UML model area
so that the evaluator or whoever is labelling the UML diagrams has some basic
knowledge of the UML model and what purposes those diagrams serve. Then the
evaluator should havea good understanding of the concept of role stereotypes. He

46

5. Conclusion & Future Directions

should also know the criteria to distinguish between one stereotype to another. Our
labels reached a good level of agreement before we used it with machine learning
algorithms.

For RQ 2, the features that we used to identify the role stereotypes for UML classes
can be divided into two parts. We will describe them in the following two paragraphs.

5.1.1 Topological features
The first part is the automatically generated features that we derived from using
tool SDMetrics. SDMetrics is well-known for classifying and extracting software
features for a project. However, considering the format of UML classes are more
often to appear in an image such as .png, .jpg and jpeg etc, and the SDMetrics
tool is unable to directly process the UML diagrams in image format so we suggest
to convert the UML diagrams from imagine format (.png, .jpg, .bmp etc) to XML
format. The available ones are .XML, .XMI which are both accepted by SDMetrics.
Some other less often used XML formats can worth a try in SDMetrics too but it is
not guaranteed. A list of derived features can be viewed in section 3.2.3. So for the
conclusion, our opinion is to get the basic metrics such as NumAttr, NumOps for a
UML diagram and use it as a foundation to classify the role stereotypes. And not all
of the features are necessary in order to classify the stereotypes, the irrelevant ones
should be tested and removed. For that part, we explained our process of filtering
out the irrelevant features in section 3.2.3 too.

5.1.2 Features based on class-names
In table4.16 there are features named in a different way: EndWithManager, End-
WithFactory/Impl/Implementation (EndWithFact) etc. These features are made
by the researcher after analyzing the software project as well as the UML class di-
agrams for that project. In this list we have ranked the importance of each feature
and how they affected our automated classification process using machine learning.
From the table we can see that most of the derived features has a high importance
value except for the EndWithManager/Controller (EndWithMan) feature. This fea-
ture was part of the criteria which we used to determine the Controller (CT) role
stereotype within a project. So what we can conclude in this table, is that most
of the naturally derived features such as OperationInteritance (OpsInh), NumAttr
and NumOps should be fine to be considered as the first hand metrics to classify
role stereotypes. Especially the features provided by SDMetrics, it has given reli-
able result and high accuracy in terms of automated role labeling. However, if it is
preferred to increase the confidence level of the result, it is acceptable to add own
metrics which can be useful in most of the software projects. In our case, the recom-
mended customized features are EndWithManager, HasType/Annotation/List and
EndWithFactory as they can be used to detect multiple stereotypes and also has a
good ranking result.

47

5. Conclusion & Future Directions

For answering RQ 3, we need to look at section 4.1.1 and section 4.1.2. In those
section, we have analyzed the accuracy table and confusion matrix from our exper-
iments. We have 2 datasets: one with All Confidence Level 4". Another dataset
contains only datapoints with High Confidence Level. In each experiment, we have
2 segments, in first segment we run our classifier URI (UML Role Identifier) for
the imbalance dataset, and in the the second segment we have run URI on the
dataset after applying SMOTE resampling technique. For getting an overview of
how different machine learning algorithms performed for our 2 dataset, look at ta-
ble 4.3. After analyzing all these results, we have found that J48 machine learning
(ML) algorithm performs best when classifying the imbalance dataset and Random
Forest ML algorithm performs best when classifying the dataset with SMOTE. An
illustration of these classifiers performances can be observed from this figure 4.3.

5.2 Future Directions
This research study can serve as a basis for follow-up studies.

In our case study, we have focused only on one type of UML models, which is UML
class diagrams. There is another type of UML diagram which might be interesting
to work with for a similar kind of research. The UML diagram type we are talking
about is sequence Diagram. This study can be an extension of our research, which
will go through similar kind of experiment, but with sequence diagram. Later, a
comparison can be made between our result and the outcome from this future study.
We have shown some examples of sequence diagram from the K9 projects in the ap-
pendix D.

Another continuation of our case study can be running the same experiment with a
larger data set. Currently, we have developed a ground truth of 391 classes from 15
projects (see 3.2.5.3). The main challenging part of the future work will be to gather
relevant projects and labeling the classes manually. For our case study, the whole
process took about 3 months. By doing an extension of our study, the classification
accuracy of the machine learning algorithms might be improved. As more example
instances means more data to train the classifier.

Our case study has contributed by providing a classifier which can classify the role-
stereotypes in the UML class diagrams. Another contribution of this research is
that, all the datasets and analysis are made available through a github repository 5.
There are many other types of UML models which can be used for similar types of
research, we kept these options open for future work.

4Confidence Level is a label which has been introduced by us, for measuring the confidence
during the prediction of role stereotypes. The scale for the label is one to five, where five is the
highest confidence level

5https://github.com/hammer007/umlRoleIdentifier

48

Bibliography

[1] WirfsBrock, R. J. (2006). Characterizing classes. IEEE software, 23(2), 911.

[2] Thung, F., Lo, D., Osman, M. H., Chaudron, M. R. (2014, June). Condensing
class diagrams by analyzing design and network metrics using optimistic
classification. In Proceedings of the 22nd International Conference on Program
Comprehension (pp. 110-121).

[3] Nurwidyantoro, A., HoQuang, T., & Chaudron, M.R.V. (2019, April).
Automated classification of class rolestereotypes via machine learning. In
Proceedings of the Evaluation and Assessment on Software Engineering (pp.
7988). ACM.

[4] Osman, Mohd Hafeez, Michel R.V. Chaudron, and Peter Van Der Putten. An
analysis of machine learning algorithms for condensing reverse engineered class
diagrams. In 2013 IEEE International Conference on Software Maintenance,
pp. 140-149. IEEE, 2013.

[5] Baltes, S., Diehl, S. (2014, November). Sketches and diagrams in practice.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (pp. 530-541). ACM.

[6] Alhindawi, N., Dragan, N., Collard, M. L., Maletic, J. I. (2013, September).
Improving feature location by enhancing source code with stereotypes. In 2013
IEEE International Conference on Software Maintenance (pp. 300309). Ieee.

[7] Dragan, N., Collard, M. L., Maletic, J. I. (2010, September). Automatic
identification of class stereotypes. In 2010 IEEE International Conference on
Software Maintenance (pp. 110). IEEE.

[8] Moreno, L., Marcus, A. (2012, September). Jstereocode: automatically
identifying method and class stereotypes in java code. In Proceedings of the
27th IEEEACM International Conference on Automated Software Engineering
(pp. 358361). ACM.

[9] HoQuang, T., Chaudron, M. R. V., Samúelsson, I., Hjaltason, J., Karasneh, B.,
Osman, H. (2014, December). Automatic classification of UML class diagrams
from images. In 2014 21st AsiaPacific Software Engineering Conference (Vol.

49

Bibliography

1, pp. 399406). IEEE.

[10] Moha, N., Gueheneuc, Y. G., Leduc, P. (2006, September). Automatic
generation of detection algorithms for design defects. In 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06) (pp.
297300). IEEE.

[11] Ali, N., Lai, R. (2014, November). Managing requirements change in global
software development. In 2014 International Conference on Data and Software
Engineering (ICODSE) (pp. 15). IEEE.

[12] Debnath, N. C., Uzal, R., Montejano, G., Riesco, D. (2006, May). Software
projects leadership: elements to redefine" risk management" scope and mean-
ing. In 2006 IEEE International Conference on ElectroInformation Technology
(pp. 280284). IEEE.

[13] Hebig, R., Quang, T. H., Chaudron, M. R. V., Robles, G., Fernandez,
M. A. (2016, October). The quest for open source projects that use UML:
mining GitHub. In Proceedings of the ACMIEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems (pp. 173183). ACM.

[14] Witten, I. H., Frank, E., Hall, M. A., Pal, C. J. (2016). Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

[15] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1), 1018.

[16] Vinco, S. (2019, September 23). Random
forest. Retrieved October 15, 2019, from
https://en.wikipedia.org/wiki/Random_forest/media/File:Kernel_Machine.svg.

[17] Hebig, R., Quang, T. H., Chaudron, M. R. V., Robles, G., Fernandez,
M. A. (2016, October). The quest for open source projects that use UML:
mining GitHub. In Proceedings of the ACMIEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems (pp. 173183). ACM.

[18] Budgen, D. (2003). Software design. Pearson Education.

[19] Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A.
J., Young, P. R. (1989). Computing as a discipline. Computer, 22(2), pp6370.

[20] Jones, J. C. (1992). Design methods. John Wiley Sons.

[21] M.R.V. Chaudron, W. Heijstek, A. Nugroho (2012). How effective is UML
modelling? An empirical perspective on costs and benefits. Softw Syst Model,

50

Bibliography

pp571580.

[22] Seidewitz, E. (2003). What models mean. IEEE software, 20(5), 26-32.

[23] Genero, M., Piattini, M., Calero, C. (2005). A survey of metrics for UML
class diagrams. Journal of object technology, 4(9), pp5992.

[24] Kotsiantis, S. B., Zaharakis, I., Pintelas, P. (2007). Supervised machine
learning: A review of classification techniques. Emerging artificial intelligence
applications in computer engineering, 160, pp324.

[25] Alghamdi, M., AlMallah, M., Keteyian, S., Brawner, C., Ehrman, J., Sakr, S.
(2017). Predicting diabetes mellitus using SMOTE and ensemble machine learn-
ing approach: The Henry Ford ExercIse Testing (FIT) project. PloS one, 12(7).

[26] Brownlee, J. (2019). Machine learning mastery with Weka. Ebook. Edition: v.
1.4.

[27] Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P. (2002).
SMOTE: synthetic minority oversampling technique. Journal of artificial
intelligence research, 16, 321357.

[28] Padhi, S., Millstein, T., Nori, A., Sharma, R. (2019, July). Overfitting in
synthesis: Theory and practice. In International Conference on Computer
Aided Verification (pp. 315-334). Springer, Cham.

[29] Buddhinath, G., Derry, D. (2006). A simple enhancement to one rule classifi-
cation. Department of Computer Science Software Engineering. University of
Melbourne, Australia.

[30] Etxeberria, L., Sagardui, G. (2008, May). Quality assessment in software
product lines. In International Conference on Software Reuse (pp. 178181).
Springer, Berlin, Heidelberg.

[31] WanSeob, B., Bo, Y., SaKyun, J., OkBae C. (2004). Extension and
implementation of iconic stereotype for GNSS application in the UML class
diagram. 2004 International Conference on Cyberworlds (pp. 162169). Tokyo,
Japan.

[32] Fabian Fröding, Duy Nguyen Ngoc (2020). The Evolution of Role-Stereotypes
and Related Design (Anti)Patterns. B.Sc. thesis Chalmers & Gothenburg
University,Department of Computer Science and Engineering.

[33] A. Nugroho, M. R. V. Chaudron and E. Arisholm, Assessing UML design
metrics for predicting fault-prone classes in a Java system, 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR 2010), Cape

51

Bibliography

Town, 2010, pp. 21-30.

[34] Ana M. Fernández-Sáez, Michel R. V. Chaudron, Marcela Genero, and Isabel
Ramos. 2013. Are forward designed or reverse-engineered UML diagrams more
helpful for code maintenance? a controlled experiment. In Proceedings of
the 17th International Conference on Evaluation and Assessment in Software
Engineering (EASE ’13). Association for Computing Machinery, New York,
NY, USA, 60–71. DOI:https://doi.org/10.1145/2460999.2461008.

[35] Fernández-Sáez, A.M., Genero, M., Caivano, D. et al. Does the level
of detail of UML diagrams affect the maintainability of source code?:
a family of experiments. Empir Software Eng 21, 212–259 (2016).
https://doi.org/10.1007/s10664-014-9354-4.

52

53

A. Appendix A

A
Appendix A

Sequence Name of the Project UML file type
1. ACSUFRO .xmi
2. Bioclipse_brunn .xmi
3. Bitys .xmi
4. Calligra .xmi
5. Object_Course_End .xmi
6. Green_House_Xml_Parser .xmi
7. SE_Project .xmi
8. Talon .xmi
9. Pizza_Delivery_System .xmi
10. FIB-PROP .png
11. example-cloudbigdata-app .png
12. ModuloCaixaSugestao .png
13. JavaChatAgain .xmi
14. agendaidt .png
15. BigPrototype15 .jpg
16. CandyCrush .xmi
17. ClimateControlSytem .uml
18. html5multi .gif
19. JTravelAgency .jpg
20. QtOpenDynoScreen .xmi
21. Mvp4g .png
22. Oodp_lab .jpg
23. TravelDream .svg
24. Visuwall .jpg
25. JCoAP .xmi
26. Games .xmi
27. JGAP .xml
28. Wro4j .xml
29. Xuml .xml
30. JavaClient .xml
31. Neuroph .xmi
32. Mars-Simulation .xml
33. JPMC .xml

Table A.1: List of Projects

54

A. Appendix A

Seq. Repository Link

1. https://github.com/jbarriosc/ACSUFRO/blob/master/LGPL/
CommonSoftware/acsGUIs/alarmsDefGUI/doc/class_diagram.xmi

2. https://github.com/jonalv/bioclipse.brunn
/blob/master/docs/classDiagram.xmi

3. https://www.github.com/shnee/bitys/tree/
master/doc/class_diagram.xmi

4. https://www.github.com/wyuka/calligra/tree/highlighter/
kexi/migration/xbase/doc/Class Diagram.png

5. https://github.com/Jackerty/ObjectCouresEnd/
blob/master/doc/ClassDiagram.xmi

6. https://www.github.com/JackKarichkovskiy/greenhouse-xml-parser
/tree/master/diagram/classDiagram.xmi

7.
https://www.github.com/a7medfahmy94/
SE_Project/tree/master/Phase 2
extended/SocialNetworkClassDiagram.jpg

8. https://www.github.com/929528/talon/tree/master/talon.xmi

9. https://github.com/TCameron/PizzaDeliverySystem/blob/
master/trunk/docs/class_diagram.xmi

10. https://github.com/jmigual/FIB-PROP/
blob/master/EntregLatex/Diagrama3.png

11. https://github.com/ZuInnoTe/example-cloudbigdata-app/blob/
master/doc/img/architecture/designarchitecture.png

12.
https://github.com/zucoloto/
ModuloCaixaSugestao/blob/master/modelagem/
Diagrama%20de%20Classe/Diagrama%20de%20Classe.png

13. https://www.github.com/91kerezi/
JavaChatAgain/tree/master/spec/server.xmi

Table A.2: Repository Link of Projects from Table A.1

55

A. Appendix A

Seq. Repository Link

14. https://www.github.com/acamiestudios/agendaidt/tree/master/protected
/modules/cruge/doc/Diagrama-de-clases-proceso-de-autenticacion2.png

15. https://github.com/joprecht/bigPrototype15/blob/master/prototyp
%20videoshop/app/src/main/analysis/eCateringClassDiagram.jpg

16. https://www.github.com/seddikouiss/candycrush/tree/master/
diagramme_classe/MD/diagramme_apres_TP_Noter.xmi.xmi

17. https://www.github.com/MykytaPonikarov/Test/tree/master/
ClimateControlSystem/diagram/ControllerDetailsController.uml

18. https://www.github.com/ziarrek/html5-multi/tree/
master/server/serverGame/UMLServer.jpg

19. https://github.com/mvaraga/JTravelAgency/blob/
master/Class%20Diagram1.jpg

20. https://www.github.com/fville/QtOpenDynoScreen/tree/master/
source/AnalogWidgets/Doc/AnalogWidgets.xmi

21. https://github.com/mvp4g/mvp4g/blob/master/etc/
uml/mvp4g_class_diagramoverview.png

22. https://github.com/zubidlo/oodp_labs/blob/master/
src/lab_7/lab_5.part_2_ULM_class_diagram.jpg

23. https://www.github.com/teopalva/travel-dream/tree/master/
Deliveries/Documentation/ClassdiagramRASD.svg

24.
https://www.github.com/n0rad/visuwall/tree/master/
projects-for-testing/struts/core/src/main/java/org/
apache/struts/validator/doc-files/validatorUML.jpg

25. https://github.com/dapaulid/JCoAP/blob/master/
Documentation/ClassDiagram/JCoAP.xmi

26. https://github.com/dgschwind/Games/blob/master/src/org/
douggschwind/games/boardgames/monopoly/ClassDiagrams.xmi

Table A.3: Repository Link of Projects from Table A.1

56

B
Appendix B

In this appendix, we have illustrated the colored UML class diagrams of the 15
projects that we have created for the evaluation.

Figure B.1: Bitys UML class Diagram

57

B. Appendix B

Figure B.2: JGAP UML class Diagram

Figure B.3: Pizza Delivery System UML class Diagram

58

B. Appendix B

Figure B.4: GreenHouseXmlParser UML class Diagram (part 1)

Figure B.5: GreenHouseXmlParser UML class Diagram (part 2)

59

B. Appendix B

Figure B.6: GreenHouseXmlParser UML class Diagram (part 3)

Figure B.7: JPMC UML class Diagram (part 1)

60

B. Appendix B

Figure B.8: JPMC UML class Diagram (part 2)

61

B. Appendix B

Figure B.9: JPMC UML class Diagram (part 3)

Figure B.10: JPMC UML class Diagram (part 4)

62

B. Appendix B

Figure B.11: Neuroph UML class Diagram (part 1)

63

B. Appendix B

Figure B.12: Neuroph UML class Diagram (part 2)

64

B. Appendix B

Figure B.13: Neuroph UML class Diagram (part 3)

65

B. Appendix B

Figure B.14: Xuml UML class Diagram (part 1)66

B. Appendix B

Figure B.15: Xuml UML class Diagram (part 2) 67

B. Appendix B

Figure B.16: MarsSimulation UML class Diagram (part 1)

68

B. Appendix B

Figure B.17: MarsSimulation UML class Diagram (part 2)

69

B. Appendix B

Figure B.18: ACSUFRO UML class Diagram

Figure B.19: ObjectCourseEnd UML class Diagram

70

B. Appendix B

Figure B.20: BioclipseBrunn UML class Diagram

71

B. Appendix B

Figure B.21: Java_client UML class Diagram

72

B. Appendix B

Figure B.22: SE_project UML class Diagram

73

B. Appendix B

Figure B.23: Talon UML class Diagram

74

B. Appendix B

Figure B.24: Wro4j UML class Diagram

75

B. Appendix B

76

C
Appendix C

In this appendix, we have illustrated the classification accuracy of different ML
algorithms for our datasets.

Figure C.1: Accuracy of J48 classifier on different dataset

Figure C.2: Accuracy of Random Forest classifier on different dataset

77

C. Appendix C

Figure C.3: Accuracy of OneR classifier on different dataset

Figure C.4: Accuracy of ZeroR classifier on different dataset

78

D
Appendix D

In this appendix, we have illustrated some sequence diagrams from the K9 project.

Figure D.1: K9 Project Sequence Diagram 1

79

D. Appendix D

Figure D.2: K9 Project Sequence Diagram 2

80

D. Appendix D

Figure D.3: K9 Project Sequence Diagram 3

81

D. Appendix D

82

E
Appendix E

In this appendix, we attach the charts that show the ranking of projects for each
role stereotype. It is sorted in descending order.

Figure E.1: Structurer

83

E. Appendix E

Figure E.2: Coordinator

Figure E.3: Controller

84

E. Appendix E

Figure E.4: ServiceProvider

Figure E.5: InformationHolder

85

E. Appendix E

Figure E.6: Interfacer

86

F
Appendix F

In this appendix, we attach the pie charts that show the percentage of role stereo-
types for each project.

(a) ACSUFRO (b) Bitys

Figure F.1: Distribution of role stereotypes in ACSUFRO and Bitys

87

F. Appendix F

(a) Talon

Figure F.2: Distribution of role stereotypes in Talon

(a) Mars-sim (b) Neuroph

Figure F.3: Distribution of role stereotypes in MarsSimulation and Neuroph

(a) xUML (b) Bioclipsebrunn

Figure F.4: Distribution of role stereotypes in xUML and BioClipsebrunn

88

F. Appendix F

(a) GreenHouseXMLParser (b) Wro4j

Figure F.5: Distribution of role stereotypes in XMLParser and Wroj4j

(a) JGAP (b) Java_Client

Figure F.6: Distribution of role stereotypes in JGAP and Java Client

(a) Pizza Delivery System

Figure F.7: Distribution of role stereotypes in Pizza Delivery System

89

F. Appendix F

(a) ObjectCourseEnd (b) JPMC

Figure F.8: Distribution of role stereotypes in ObjectCourseEnd and JPMC

(a) SE_project

Figure F.9: Distribution of role stereotypes in SE Project

90

	List of Figures
	List of Tables
	Introduction
	Background
	Statement of the Problem
	Purpose of the Study
	Research Questions

	Background
	Software Design
	UML Class Diagrams
	Role Stereotypes
	Source Code Level
	UML Model Level

	Tools

	Methodology
	Experiment Setup
	Lindholmen Database
	SDMetrics
	Weka Machine Learning tool

	Approach
	Data selection Criteria
	Data Collection
	Feature Extraction
	Define Role Stereotype Criteria
	Criteria regarding characteristics of classes
	Other Criteria

	Manual Labeling and Consolidation
	Manual Labeling and Refining
	Independent Evaluation
	Ground truth - Manual Labeling of Stereotypes
	Distribution of Occurrence of absolute numbers of role stereotypes
	Distribution of relative occurrence of role stereotypes

	Experiment with Machine Learning Algorithm
	Analyze Classification Experiments

	Results
	Evaluation of the Machine Learning Classifiers
	Multi-class classification for All Confidence Level
	Multi-class classification for High Confidence Cases

	Comparing Performance of different ML algorithms
	Deeper analysis of best performing classifiers

	Ranking of Relevant Features for predicting role-stereotypes
	Discussion
	Insights from the Ground truth - Manual labeling
	Comparison between role-stereotypes in UML Class diagrams vs in Source Code
	Manual Labeling perspective
	Machine Learning Perspective

	Threats to validity

	Conclusion & Future Directions
	Conclusions
	Topological features
	Features based on class-names

	Future Directions

	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

