
Towards automatically generating
explanations of software systems
Generating explanations of a web-template system in different
abstraction levels

Alex Tao and Mahsa Roodbari

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019





Master’s thesis 2019

Towards automatically generating
explanations of software systems

Generating explanations of a web-template system in different
abstraction levels

ALEX TAO
MAHSA ROODBARI

Department of Computer science and engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019



Towards automatically generating explanations of software systems
Generating explanations of a web-template system in different abstraction levels
ALEX TAO, MAHSA ROODBARI

© ALEX TAO, MAHSA ROODBARI, 2019.

Supervisor: Michel RV Chaudron, Department of Computer Science and Engineer-
ing
Examiner: Robert Feldt, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-421 39 Gothenburg
Telephone +46 72 333 1722

Typeset in LATEX
Gothenburg, Sweden 2019

iv



Towards automatically generated explanations of software systems
Generating explanations of a web-template system in different abstraction levels

ALEX TAO
MAHSA ROODBARI

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Traditional software documentation is often challenging to manage as its content
grow. For example, information becomes scattered, information become hard to re-
trieve and the documentation has to satisfy multiple different stakeholders. The aim
of this study was to find ways to address these challenges. It followed a design science
research approach, with one case used for demonstration and evaluation. A tool,
System Explanation Composer (SEC), was built to explore how software artifacts
and architectural knowledge (AK) could be interrelated and how different aspects
of the case system could be explained and presented. A meta-model which presents
software artifacts and AK was designed. This meta-model interrelates knowledge in
the following four categories; requirements, architecture, rationale, and implementa-
tion. SEC generates explanations to a selected set of commonly asked development
related questions using this meta-model. These explanations were evaluated using
a quantitative and a qualitative approach. Although the sample size of the evalua-
tion was too small for making any generalizable statements, the quantitative results
strongly indicate that participants in this study solved development-related tasks
faster, more accurately and more independently using SEC as opposed to using
file-based documentation. The qualitative results also support this statement and
indicate that SEC could further assist developers in performing their daily tasks
more efficiently after improving two main aspects: the behavior and rationale sec-
tions of the meta-model and the query system of SEC.

Keywords: software, explanation, architectural view, requirement, architecture, ra-
tionale, implementation, ontology, artifacts, architectural knowledge

v





Acknowledgements, Mahsa Roodbari
Firstly I would like to express my sincere gratitude to our supervisor, Professor
Michel R.V Chaudron for his continued support and guidance throughout our mas-
ter thesis study, for his motivation and valuable input and knowledge. Besides our
supervisor, I would like to thank his Ph.D. assistants Truong Ho Quang and Rodi
Jolak and our opponent Humberto Linero for their constructive feedback and review-
ing our work. My sincere appreciation also goes to all those friends and colleagues
who generously spent their time to participate in our interviews and provided us
with a helpful evaluation. Finally, I would like to extend my gratitude to Profes-
sor Robert Feldt, our examiner, for his insightful comments and the hard questions
which encouraged us to improve our research from various perspectives.

Mahsa Roodbari, Gothenburg, February 2019

vii





Acknowledgements, Alex Tao
I would first and foremost like to extend my gratitude towards my academic super-
visor, professor Michel R.V Chaudron and his Ph.D. assistants, Truong Ho Quang
and Rodi Jolak. Their guidance and insight into the research area have been of great
value for our work. Secondly, I would like to thank our thesis opponent Humberto
Linero for his feedback on our work and for participating in evaluating our tool.
Thirdly, I extend my thanks to the other twelve participants that tested and pro-
vided valuable feedback for our tool. We have promised to leave them anonymous
and thus I will not mention any names. Lastly, I would like to show my appreciation
to our examiner Robert Feldt, who has provided us with tough, but fair constructive
criticism throughout the term, making sure the study and writing would uphold a
higher quality and standard.

Alex Tao, Gothenburg, February 2019

ix





Contents

List of Figures xv

List of Tables xvii

1 Introduction 3
1.1 Current documentation and its issues . . . . . . . . . . . . . . . . . . 3
1.2 Features current commonly used CASE tools lack . . . . . . . . . . . 4
1.3 Interrelating software artifacts and AK . . . . . . . . . . . . . . . . . 5
1.4 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Purpose of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 A brief summary of the approach . . . . . . . . . . . . . . . . . . . . 8
1.8 Where our study fits in the literature . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Current software documentation . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Document types for object-oriented software . . . . . . . . . . 11
2.1.2 4+1 architectural view model . . . . . . . . . . . . . . . . . . 12
2.1.3 Software structure and behavior . . . . . . . . . . . . . . . . . 13
2.1.4 Design rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Similar studies . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1.1 Whyline . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1.2 A knowledge-based software information system, LaSSiE 14
2.2.1.3 The Knowledge Architect . . . . . . . . . . . . . . . 14
2.2.1.4 PAKME . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Work that contributes to the general vision . . . . . . . . . . . 16
2.2.3 The use of ontologies . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Developer documentation on demand . . . . . . . . . . . . . . 17
2.2.5 Commonly asked questions during programming tasks . . . . . 17
2.2.6 Program comprehension . . . . . . . . . . . . . . . . . . . . . 17

3 Methods 19
3.1 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Selecting case system . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Overall system design . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xi



Contents

3.4.1 Designing the ontology . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Implementing the ontology . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Patterns and conventions . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Populating the ontology . . . . . . . . . . . . . . . . . . . . . 23

3.5 Explanation design phase . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 Collecting questions . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Design of explanations . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Construction of SEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7.1 Design of evaluation . . . . . . . . . . . . . . . . . . . . . . . 27
3.7.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7.2.1 Quantitative data . . . . . . . . . . . . . . . . . . . . 29
3.7.2.2 Qualitative data . . . . . . . . . . . . . . . . . . . . 29

3.7.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7.4 Performing the evaluation . . . . . . . . . . . . . . . . . . . . 30

4 Design and implementation 31
4.1 Relating software artifacts using an ontology . . . . . . . . . . . . . . 31

4.1.1 Structure and Behavior . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Relations between different sections of the ontology . . . . . . 40

4.2 Design of explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Demonstration of SEC . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 DQ1: Which functionalities exist in the system? . . . . . . . . 48
4.3.2 DQ2: Which architectural patterns exist in the system? . . . . 49
4.3.3 DQ3: What is the role of this feature? . . . . . . . . . . . . . 56
4.3.4 DQ4: How is this feature mapped to its implementation? . . . 56
4.3.5 DQ5: What is the behavior of this feature? . . . . . . . . . . . 57
4.3.6 DQ6: What is the rationale behind the choice of this archi-

tectural pattern? . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.7 DQ7: How is this architectural pattern implemented? . . . . . 61

5 Results 67
5.0.1 Results from usability tests . . . . . . . . . . . . . . . . . . . 67

5.0.1.1 Task times . . . . . . . . . . . . . . . . . . . . . . . 67
5.0.1.2 Task scores . . . . . . . . . . . . . . . . . . . . . . . 72

5.0.2 Results from qualitative interviews . . . . . . . . . . . . . . . 75

6 Discussion 81
6.1 Ontology design, its challenges, and implications . . . . . . . . . . . . 81

6.1.1 The four sections of the ontology . . . . . . . . . . . . . . . . 81
6.1.2 The 4+1 architectural view . . . . . . . . . . . . . . . . . . . 82
6.1.3 System behavior . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Presentation of SEC, challenges and implications . . . . . . . . . . . 83
6.3 Discussion of results from the usability test . . . . . . . . . . . . . . . 84
6.4 Discussion of results from the interviews . . . . . . . . . . . . . . . . 85
6.5 Similarities and differences to related work . . . . . . . . . . . . . . . 86

xii



Contents

6.6 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.1 Construct validity . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.2 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.3 External validity . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion 91

A Appendix A I

B Appendix B V

C Appendix C IX

D Appendix D XIII
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII
D.2 Personal experience questionnaire . . . . . . . . . . . . . . . . . . . . XIV
D.3 Usability test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV

D.3.1 Explore System Knowledge Composer . . . . . . . . . . . . . . XIV
D.4 Part 1 - Perform a task using System Knowledge Composer . . . . . . XV

D.4.1 Part 2 - Perform a task using software documentation . . . . . XVI
D.5 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII

D.5.1 Part 3 - Feedback survey . . . . . . . . . . . . . . . . . . . . . XVII

E Appendix E XIX

xiii



Contents

xiv



List of Figures

3.1 An overview of the method . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 An overview of SEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The layers of SEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Storing identified software artefacts and AK from file-based documen-
tation information into the ontology . . . . . . . . . . . . . . . . . . . 32

4.2 Information retrieval using an ontology . . . . . . . . . . . . . . . . . 32
4.3 Traditional information retrieval . . . . . . . . . . . . . . . . . . . . . 33
4.4 An abstraction of the ontology showing the four sections plus diagrams 34
4.5 A complete view of the ontology . . . . . . . . . . . . . . . . . . . . . 35
4.6 A closer look on the right part of the ontology . . . . . . . . . . . . . 36
4.7 A closer look on the top-left part of the ontology . . . . . . . . . . . . 37
4.8 A closer look on the bottom-left part of the ontology . . . . . . . . . 38
4.9 Composition of feature functionality . . . . . . . . . . . . . . . . . . . 41
4.10 Composition of feature behavior . . . . . . . . . . . . . . . . . . . . . 42
4.11 Tabs shown in red selection . . . . . . . . . . . . . . . . . . . . . . . 43
4.12 The interactive visualization . . . . . . . . . . . . . . . . . . . . . . . 44
4.13 Hovering an entity shows a summary . . . . . . . . . . . . . . . . . . 45
4.14 Clicking an entity highlights both directly and indirectly related en-

tities and links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15 Selecting an entity allows the user to navigate to different explana-

tions of it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.16 The sidebar with textual descriptions . . . . . . . . . . . . . . . . . . 47
4.17 The input to SEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.18 The generated explanation for system functionality . . . . . . . . . . 51
4.19 (Q1) A closer view of the system functionality visualization. . . . . . 52
4.20 (Q2) An overview of the architectural patterns . . . . . . . . . . . . . 53
4.21 (Q2) A closer view of the architecture and implementation via the

development view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.22 (Q2) A closer view of architecture and implementation via physical

layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.23 (Q4) An overview of mapping between feature and implementation . 58
4.24 (Q4) A detailed view of the mapping between feature and implemen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.25 (Q4) A detailed view of how the implementation classes maps to

architectural patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xv



List of Figures

4.26 (Q5) The behavior from a functional perspective . . . . . . . . . . . . 62
4.27 (Q5) The behavior from a logical perspective . . . . . . . . . . . . . . 63
4.28 (Q5) The behavior from a development perspective . . . . . . . . . . 64
4.29 (Q5) The behavior from a UI perspective . . . . . . . . . . . . . . . . 65
4.30 (Q6) Rationale for the architectural pattern "Thin-client MVC" . . . 66

5.1 Comparison between documentation time and tool time . . . . . . . . 68
5.2 Scatter-plot showing tool time versus documentation time . . . . . . 69
5.3 Time average by task type . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Comparison between documentation score and tool score . . . . . . . 72
5.5 Scatter-plot showing tool score versus documentation score . . . . . . 73
5.6 Score distribution of tool versus documentation . . . . . . . . . . . . 74
5.7 Score average by task type . . . . . . . . . . . . . . . . . . . . . . . . 74
5.8 A summary of which areas of SEC the participants liked . . . . . . . 76
5.9 A summary of improvements participants suggested . . . . . . . . . . 77

A.1 Check for normality, tool time . . . . . . . . . . . . . . . . . . . . . . II
A.2 Check for normality, documentation time . . . . . . . . . . . . . . . . III
A.3 F-test, check for equal variances between tool and documentation time IV

B.1 Left side, labeled TQ1 to TQ6 are tool times. Right side, labeled
DQ1 to DQ6 are documentation times . . . . . . . . . . . . . . . . . VI

B.2 Left side, labeled TQ1 to TQ6 are tool scores. Right side, labeled
DQ1 to DQ6 are documentation scores . . . . . . . . . . . . . . . . . VII

C.1 Personal experience for each participant . . . . . . . . . . . . . . . . X
C.2 How familiar participants were with UML models . . . . . . . . . . . XI

E.1 What if, part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XX
E.2 What if, part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI
E.3 What if, part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXII
E.4 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXII
E.5 I like, part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIII
E.6 I like, part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIV
E.7 I like, part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIV

xvi



List of Tables

1.1 Summary of current challenges with software documentation . . . . . 6

2.1 Summary of current problems with software documentation . . . . . . 15

3.1 Libraries used in the application layer . . . . . . . . . . . . . . . . . . 26

4.1 Selected developer questions . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Features of the interactive visualization . . . . . . . . . . . . . . . . . 48
4.3 Attributes of the textual descriptions side-bar . . . . . . . . . . . . . 49

5.1 Tool time and documentation time results . . . . . . . . . . . . . . . 68
5.2 Colored sections of figure 5.2 . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Table containing the results of the t-test and Hedge’s g . . . . . . . . 71
5.4 Summary of system attributes/functionalities the participants liked . 75
5.5 (Part 1) Summary of suggested improvements . . . . . . . . . . . . . 78
5.6 (Part 2) Summary of suggested improvements . . . . . . . . . . . . . 79

6.1 Mapping between top five "I like" feedback to challenges . . . . . . . 85
6.2 Mapping between top five "What if" feedback to challenges . . . . . . 86

D.1 Level of familiarity with UML diagrams . . . . . . . . . . . . . . . . . XIV

xvii



List of Tables

xviii



List of Tables

Glossary
Software artifact Software artifacts are tangible products of a software system.
These products are objects such as requirements, class diagrams, use cases, and
design documents. Here’s a list of the object we refer to as software artifacts in this
study:

• Requirements
• UML models (Class diagrams, deployment diagrams, sequence diagrams, etc)
• Use cases
• User stories
• Features
• Software architecture documentation
• Requirements documentation

Architectural knowledge (AK) Architectural knowledge refers to knowledge that
explains what the architecture is, how it is implemented and why it was chosen to
be implemented. The "why" part is a bit special because it is important but often
left out in documentation. It is also often referred to as the rationale.

Ontology Ontologies are taxonomies that categorize and relate real-world objects
to one another. In this paper, the ontology is often referred to a designed taxonomy
representing software artifacts and architectural knowledge.

SparQL SPARQL is a querying language which can be used to query and manip-
ulate data stored in RDF languages. To query an ontology specified in OWL, the
OWL file is first converted to RDF.

System explanation composer (SEC) System explanation composer is the tool
that was implemented in this project. Its main features are to present explanations
to developers questions by retrieving and presenting software artifacts, AK and their
relationships.

System Explanations System explanations are information presented by SEC to
developers in response to their development-related questions. These explanations
are presented in both graphical structures and textual formats. They present soft-
ware artifacts, their descriptions, and relationships from different points of views.

1



List of Tables

2



1
Introduction

Large-scale software systems tend to be complex and can require teams of develop-
ers to build. This makes it unlikely that a single person knows such a system in its
entirety. As time progresses, important information of the system can be difficult to
access and sometimes lost. The reasons can range from information being forgotten
to developers moving on to new projects. To make sure large-scale systems can be
maintained and understood without being dependent on its original developers, it is
of vital importance that existing documentation is correct and sufficient. However,
practical issues make documentation not only difficult to write but also difficult to
correctly interpret. This can make writing documentation seem like a high effort and
low-value process and can deter developers and architects from writing or reading
documentation altogether. The goal of this study is to find a way to address the
challenges related to the interpretation of software documentation.

The following sections briefly introduce current challenges in documenting software,
current CASE tools, the challenges we intend to resolve and the approach we take.

1.1 Current documentation and its issues
In order to address stakeholders information needs, techniques used for documenting
different aspects of software systems have been developed over the years. Currently,
technical documentation of software systems can commonly be categorized by three
different document types; requirements, architecture/design and implementation.
Each document type uses its own set of artifacts to document system knowledge.
The requirements can be expressed through functional requirements, non-functional
requirements, use cases or user stories. The architecture can be expressed through
different views containing component diagrams, class diagrams, sequence diagrams,
deployment diagrams, data-flow diagrams, and with each of them often an accom-
panying rationale. The implementation level system documentation is often ex-
pressed through comments in the code, commonly describing the inputs, function-
ality and/or outputs of methods or classes.

Software documentation is used by different stakeholders for different purposes. A
new developer may need to learn more about a system’s architecture or find de-
pendencies between requirements and software components to figure out how to
implement a feature. A project manager may need to talk about different aspects of
a system to a customer and could benefit from being able to see how the system’s

3



1. Introduction

features map to the architecture of the system. An architect may need to restruc-
ture a system and understand the drivers and reasoning behind the current system
design before making any changes. The list of use cases for software documentation
goes on, and it has become evident that documentation is a very important resource
for most stakeholders of a software system.

However, due to the generally large and diverse audience of software documentation,
they become difficult to write. To match the information needs of stakeholders, in-
formation has to be repeated, restructured and expressed differently. This tends to
generate many different documents, each targeting different groups of stakeholders.
When information is repeated often and spread out over different documents, it
means that a significant change in the software will require updating its correspon-
dent documentation and repeated instances of this documentation. As such software
documentation become difficult to maintain.

In most cases, software documentation is stored in files, and their contents are lin-
early structured inside as documents. While this kind of content structure is good for
many purposes, it’s not quite optimal for expressing relationships between software
artifacts. Software artifacts tend to form networks of dependencies that are difficult
to express through linear text. The common solution to this problem has been to
distribute unique IDs to different artifacts and link them together by referring these
IDs to each other via tables or hyperlinks. However, as a software system increases in
size, it forms complex networks between components. Information becomes spread
over the different documents and collecting all information related to a subject may
require extensive search and navigation[5], [8], [10]. This way of collecting infor-
mation causes several risks and problems; users may miss important information
and dependencies, users may ignore documentation if it’s too time-consuming to
find or understand, users are more prone to make errors in comprehension and in-
terpretation due to the noise surrounding the sought information and it may take
much time to find all the needed information. In other words, linearly structured
documentation for software are simply inefficient in large and complex systems.

1.2 Features current commonly used CASE tools
lack

This section highlights some findings and discussions from studies regarding what
features current commonly used CASE tools lack. These studies seem to support a
general statement; that developers need better methods to retrieve information that
supports their workflow [5], [8], [10].

In a study on how developers seek, relate and use information [8], developers were
tasked to fix bugs in a system they did not know very well. Even though they had
access to any resource they needed (documentation, tools, source code, etc.) to find
information, it was shown that developers spent a lot of time looking in irrelevant

4



1. Introduction

parts of the code. It was found that when searching for information, 88% of the
searches they conducted yielded irrelevant results and the average time developers
spent looking at irrelevant parts of the code base was measured to be around 36% of
the total time. Based on their findings, the authors discuss that there’s a need for
tools that can (1) reduce the navigational overhead when searching for information
that satisfies developers’ needs, (2) provide more cues of the context before devel-
opers have to read information in full, (3) help developers relate information and
(4) assist developers in collecting information. While these suggestions were mainly
addressing source code, these points also apply for software documentation.

There is a lack of tools that answer high-level questions. In many cases, it requires
developers to break down their original questions to low-level questions, use mul-
tiple different tools to find low-level answers and then build up a final answer to
their original question [10]. However, during this process, the information found
is scattered over different documents and tools. To make sense of the information
developers need ways to collect information, either relying on the developers own
memory or external tools. Memorizing content is often unreliable and difficult and
tools often do not efficiently support important features developers need (such as
tracing information back to its source or tracking information to other closely related
information). As a result, building up answers for high-level questions is cumber-
some and error-prone.

The current specification and requirement documentations are big, complex and of
varied structure, making them difficult to maintain [5]. The results from Lethbridge
et al [5] suggest that software engineers tend to use simple and yet powerful doc-
umentation and tools while ignoring the complex and time-consuming ones. They
discuss that greater documentation relevance could be found by recording and pre-
senting documentation differently and making them easier to update.

To summarize this section, we can categorize the current lack of tool support in five
areas: (1) recording and presenting documentation, (2) navigating documentation,
(3) searching for information, (4) relating information and (5) memorizing/collecting
information.

1.3 Interrelating software artifacts and AK
The challenges regarding documentation and the lack of tool support regarding in-
formation retrieval for developers has given rise to research regarding how to store
software documentation to make retrieval of related software artifacts more effi-
cient[11], [13], [15], [17]. Artifacts such as requirements, design decisions, software
components and diagram elements are represented as entities, linked to one another
and forming a logical linked knowledge structure. By interlinking structures that
can represent relations between different types of software artifacts and AK, the
idea is that such interrelations can represent system knowledge. This knowledge
can then be retrieved to support developers’ information needs during development
and system maintenance. The research in this area is still in its infancy and its

5



1. Introduction

full potential is unexplored. The largest obstacle in applying this concept to the
industry is concerns about its cost to implement.

1.4 Statement of the problem

From the discussions of the previous sections, it should now be evident that the
current challenges with documentation of software systems are plentiful. Table 1.1
summarizes the mentioned challenges.

ID Challenge Description

C1 Size and complexity

Analyzing a system becomes more difficult
when the system increases in size and com-
plexity and reading software documentation
may lead to different interpretations be-
tween individuals.

C2 Scattered information

Documented knowledge tend to be spread
out over different chapters and documents,
which may cause different individuals to
have different versions of documents and lo-
cating some knowledge can become cumber-
some.

C3 Limited approaches for in-
formation retrieval

Current information retrieval techniques
used in documentation are usually limited
to common text/keyword search. In large
documents, this may cause finding relevant
information difficult.

C4 Multiple audiences

Often times, writers must specifically tailor
their text to match the interests of each au-
dience. This makes writing documentation
difficult and redundant.

C5 Excessive or redundant
information

Repeating information in documentation is
a source for inconsistencies. Modifying in-
formation in one place means all repetitions
has to be modified as well. As such docu-
mentation is often difficult to maintain.

Table 1.1: Summary of current challenges with software documentation

The main problems this study addresses are the following four challenges; (C1)
Size and complexity, (C2) Scattered information, (C3) Limited approaches for in-
formation retrieval and (C4) Multiple audiences. However, the solutions to these
challenges may as a side-effect also partially resolve the last challenge; (C5) Exces-
sive or redundant information.

6



1. Introduction

As a basis for this study, two research questions that aim to find partial answers for
the five mentioned challenges were set up:
RQ1: How can existing software artifacts be presented and explained in a way that

increases learnability of the structure and behavior of a software system?
RQ2: Do such explanations help developers find and interpret knowledge of the sys-

tem?

1.5 Purpose of the study
This study will demonstrate some of the benefits of using an interrelated documenta-
tion structure. By demonstrating these benefits, the goal is to put the implementa-
tion costs of interrelating software artifacts and AK into perspective (Graaf, Liang,
Tang Vliet discuss these costs in their article [15]). The benefits will be demon-
strated by performing a design science research study, where a proof of concept will
be built and evaluated. This proof of concept will be referred to as Software Expla-
nation Composer (SEC). SEC will provide navigation and tracing between software
artifacts and AK of a case system and its documentation.

We will address the challenges listed in table 1.1 using two steps. First, by designing
a proof of concept system that retrieves existing software knowledge and generates
explanations to answer developer questions this is SEC. Second, by investigating
how developers can benefit from using this system in solving development-related
tasks. Following the two steps above, a case system will be selected and SEC will
be designed, built and evaluated.

1.6 Scope
To be able to fit the study within the given time frame of 30 weeks, only a sin-
gle open-source software and its documentation will be used as a case study. The
chosen case system is an e-commerce template, Snowflake [14]. With this case as a
base, a new system, SEC, that generates software explanations will be built. The
primary concern of this system is not its generalizability but instead demonstrating
the possible ways of relating software artifacts and using these relations to generate
software explanations for the case.

It is taken into account that not all design choices, decisions, requirements, etc. of
the chosen case system, Snowflake, are presented in the given case documentation.
This means it is also expected that relationships between some components won’t be
expressed. The generated explanations will be based on information that is available
in the documentation.

Another important issue that should be raised is whether software artifacts and
relations from the case system documentation will be automatically identified and
populated. While this functionality is desired, current technology does not have the
capability to do so reliably. Since the main purpose of this study is not to create

7



1. Introduction

or investigate techniques to automatically identify software artifacts and their rela-
tions, this process will be performed manually.

Lastly, to save time and effort from building the new system from scratch, multiple
out of the box open-source libraries will be used as a base.

1.7 A brief summary of the approach
This section gives a brief overview of SEC in order to early on give the reader of this
paper a better grasp of what SEC is and to set the following sections and chapters
into perspective.

There are five commonly recurring concepts mentioned throughout the paper.
• Ontology
• Case documentation and source code
• Commonly asked development questions
• Explanation

To structure and form relationships between software artifacts and architectural
knowledge (AK), we used an ontology. Ontologies were used for mainly two rea-
sons: Firstly, they provide a rich syntax for defining classes and relationships. This is
used to build a meta-model that expresses relationships between software artifacts
and AK. Secondly, they provide the ability to store individuals of these defined
classes and therefore they also function as knowledge bases.

The documentation and source code of the chosen case, Snowflake, was used
to populate the ontology. This would serve as a demonstration of how explanations
from retrieved knowledge can be generated. It is important to note that the process
of populating knowledge into the ontology was entirely manual.

A group of commonly asked development questions was selected from existing
studies. We refer to these as developer questions. These questions were used as a
basis for SEC, as each explanation is tied to a different developers question. SEC
generates explanations by querying knowledge from the ontology using a query lan-
guage called SparQL.

Once knowledge has been queried from the knowledge base, SEC generates ex-
planations. The explanations are composed of two items: One, an interactive vi-
sualization of individuals (software artifacts and AK) and their relationships. Two,
a textual description for each visualized individual.

To learn more about the methodology used to design the system, see Methods
chapter (chapter 3). To see a demonstration of the tool and learn about the actual
design of and reasoning behind the ontology and system, see the chapter dedicated
to design and implementation (chapter 4).

8



1. Introduction

1.8 Where our study fits in the literature
There is existing research in improving tool support for fulfilling information needs
of developers that use a similar approach as this study, but they are not rigorously
generalized (To see a similarities/differences comparison between SEC and these
tools, see section 6.5). Current tools cover the following areas:

1. The design of ontologies for software artifacts and AK [13], [17]
2. Tools for retrieving information using interrelated software artifacts and AK

for one or two cases [11], [15]
3. Tools that support updating/adding new information and forming interrela-

tions between them [11]

Our study stands on the shoulders of these works and aims to further the research
area by studying yet another case and exploring the explanatory power of using a
more specific ontology design, how interrelated information can be used to reduce
navigational overhead, how relevant knowledge can be collected and how different
aspects of a system can be explained.

9



1. Introduction

10



2
Background

This chapter provides a background to our study and the literature most relevant
to it. The first part of this chapter, section 2.1, briefly describes common tech-
niques used for documenting object-oriented software. The second part, section 2.2,
discusses the existing state of the art solutions to some challenges of software docu-
mentation, current similar studies and explains the gap in the literature this study
aims to fill.

2.1 Current software documentation
This section provides a brief introduction to some common techniques used for
documenting software and how the artifacts resulting from these processes relate.

2.1.1 Document types for object-oriented software
For object-oriented software, there are four common types of documentation: re-
quirements specification, software architecture documentation, technical documen-
tation, and test documentation. Each of these documentation types concerns a
different process of software engineering. In this study, we set our focus on require-
ments specification and software architecture documentation. This section describes
the two documentation types in a very simplified manner.

According to IEEE 29148-2011 [12], the purpose of a requirements specification is
to address the following topics: (1) Software functionality, (2) stakeholders needs
and context of use (3) how the software interacts with people, hardware and other
software, (4) performance of the software, (5) attributes of the software and (6)
design constraints. Software functionality is commonly expressed using functional
requirements. They specify what features and functionality the software has to im-
plement. Stakeholders needs and context of use are recorded by documenting the
business purpose, goals, business model and operational scenarios. How software
interacts with people, hardware and other software are commonly expressed using
use cases, user stories, scenarios, etc. These describe the high-level behavior of the
system, and how it interfaces with external objects. The performance, attributes,
and constraints are specified using non-functional requirements. Non-functional re-
quirements specify the quality of the software from many different perspectives, such
as performance, maintainability, security, testability, usability and many more.

11



2. Background

Software architecture documentation is used to document the high-level design of the
system. They address the technologies used, how different subsystems and software
components communicate and interrelate and provide means to reason about high-
level design. According to Dewayne E. Perry and Alexander L. Wolf [3], software
architecture can be summarized as the following: "...architecture is concerned with
the selection of architectural elements, their interactions, and the constraints on
those elements and their interactions necessary to provide a framework in which to
satisfy the requirements and serve as a basis for the design". What is often left out
in software architecture is the reasoning behind the architecture design, which is
referred to as the rationale. This is also an important piece of the architecture.

2.1.2 4+1 architectural view model

The 4+1 architectural view model can be traced back to 1995 where it was first
introduced by Phillip Kruchten. The general idea of this model is that software
systems tend to become difficult to grasp and analyze all at once. By viewing a
system from different perspectives, one can analyze the system based on its dif-
ferent properties, making the process more manageable and structured. The main
four architectural views are; (1) the logical view, (2) the development view, (3) the
process view, and (5) the physical view. The extra view, which is referred to as the
"+1" view, is called the scenarios and use cases.

The logical view shows information from a system functionality perspective as
presented to end-users. The main stakeholders of this view are, obviously the end-
users, but developers, functional testers and architects may find this view equally
useful.

The development view shows how the system implementation is designed and
structured and is concerned with different software modules, packages, classes, etc.
The main stakeholders for this view are developers and architects.

The process view shows the system in terms of processes and threads. It is used to
analyze concurrency. The main stakeholders of this view are developers and testers.

The physical view shows how the system is decomposed physically. It shows the
physical devices that the software runs on, in other words; how the system is de-
ployed. This view is targeted mainly for system engineers and developers.

The last view, the scenarios, shows how the system behaves. Scenarios explain
different ways the system can be used and how the system behaves in these scenarios.
The main stakeholders of this view are both end-users and developers. However,
testers, as well as architects, may also find this view useful.

12



2. Background

2.1.3 Software structure and behavior
Software can commonly be explained by its structure and behavior, which are often
expressed using diagrams. Structural diagrams describe the skeleton of a system.
They express the composition and structure of components/classes/packages/etc.
Such diagrams give developers information about the properties of components and
how they inherit from, relate to and/or depend on one another. Some examples of
structural UML diagrams are:

1. Class diagrams
2. Component diagrams
3. Package diagrams
4. Deployment diagrams

Behavioral diagrams describe, as the name suggests, the behavior of the system.
Often, these diagrams refer to the same components that are found in the structure
but explain the system from a behavioral standpoint. Such diagrams describe how
the components interact and communicate to complete specific tasks. Examples for
behavioral UML diagrams are:

1. Activity diagrams
2. Sequence diagrams
3. State machines

2.1.4 Design rationale
Designing good software, whether it be on the software level or on the architectural
level, requires careful decisions based on reasoning and thought. For example, one
way to represent the design rationale was proposed by A.Tang et al Tang2006 who
identified a comprehensive list of generic design rationales. This list captures most
of the reasoning that decisions are based on during design. The list is the follow-
ing: (1) Design constraints, (2) design assumptions, (3) weakness, (4) benefit, (5)
cost, (6) complexity, (7) certainty of design, (8) certainty of implementation and (9)
trade-offs.

In this study, we will use a simplified representation of the design rationale. It will
focus on three categories: (1) Assumptions, describing assessments that are based
on beliefs due to factors being unknown. (2) Arguments, providing motivation and
discussion of a design. (3) Constraints, describing constraints in the system that
affect the design and the constraints that result from the design.

2.2 Related work
This section aims to give the reader a view of prior work in the area and to demon-
strate the void this study fills in the current literature. It describes some similar
studies, previous use of ontologies for software documentation and research that
serve as a basis for motivating this study.

13



2. Background

2.2.1 Similar studies
This section describes some studies that are similar to SEC and some key aspects
SEC differs from them. At the end of this section, a summary of the key contribu-
tions of SEC will be highlighted.

2.2.1.1 Whyline

This system was designed and implemented by Andrew J. Ko and Brad A Myers [6].
Its purpose was to assist developers in debugging their code, doing so by answering
a set of "why" questions about the code. Unlike the tool of this study (SEC), it
answers questions at a program level rather than at the documentation level. The
questions Whyline answers are in the lines of "Why did pac resize to 0.5" or "Why
didn’t pac resize to 0.5" and shows why (or why not) the resize statement had been
called. The tool allows the user to play the program execution both forward and
backward, analyze its callgraph and view variable values.

2.2.1.2 A knowledge-based software information system, LaSSiE

Lassie is a tool designed by P. Devanbu et al back in 1989 [2]. It is a tool that allows
users to express detailed relations between software artifacts and source code. The
user interfaces with the tool by natural language query input, and the tool outputs
search results to the user. One weakness with this tool was that the relations
between artifacts were very detailed, and constructing the knowledge-base was very
labor expensive.

2.2.1.3 The Knowledge Architect

Jansen et al [11] created a tool called The Knowledge Architect whose goal was
to solve six different challenges with software architecture documentation (See ta-
ble 2.1). Their tool is a complete package, from capturing AK from existing doc-
umentation to visualizing AK and its relations. When evaluating the Knowledge
architect with two industrial cases, they found significant evidence that using their
tool instead of documentation would increase the quality of architecture reviews.
However, it failed to prove that using the tool would make reviewing architecture
more efficient.

2.2.1.4 PAKME

The purpose of PAKME [7] is to help architects, developers and software maintain-
ers to analyze software systems. Its purpose and features are very similar to the
Knowledge Architect. PAKME has four main features:

1. Knowledge acquisition. Provides tools to edit or add new knowledge.
2. Knowledge maintenance. Provides features to modify, delete and instantiate

artifacts.
3. Knowledge retrieval. Provides basic and advances search functionality to find

desired AK.

14



2. Background

ID Challenge Description

1 Understandability

The understandability of a document be-
comes lower when the system increases in
size and complexity. Simply reading the
SAD usually leads to different interpreta-
tions between individuals.

2 Locating relevant AK

Documented knowledge is often informally
spread around, this causes the risk that dif-
ferent individuals have different versions of
the knowledge. The other problem is locat-
ing AK may be difficult when they are large
and spread out.

3 Traceability

Documents have limited ability to relate AK
such as between requirements and software
architecture. It is often not clear how they
relate to one another.

4 Change impact analysis

Without reliable ways to locate and trace
between Architectural knowledge (AK), it
becomes difficult to analyze the impact of
changes.

5 Design maturity assess-
ment

Current architecture documentations have
no overview of the status of the qualities
of the architecture, such as conceptual in-
tegrity, correctness, completeness and build-
ability. This makes it difficult to assess it.

6 Trust

In large systems, changes occur frequently
and the cost of updating the architecture
can be high. Thus the documentation can
quickly become outdated and its reliability
becomes compromised.

Table 2.1: Summary of current problems with software documentation

15



2. Background

4. Knowledge presentation. Provides support for generating different views of
AK residing in the knowledge base.

2.2.2 Work that contributes to the general vision
This section highlights the work that serves as a groundwork to this study. They
form underlying the concepts, theories, and motivation for conducting this study
and building SEC.

2.2.3 The use of ontologies
The research from Klaas Andries de Graaf et al, [13] showed that using ontologies
to structure, store and retrieve the relations between software architecture, such
as design decisions, requirements and architectural elements, improved developers
understanding of the architecture of a system. It provides means to trace between
requirements, design decisions and architectural structure of the system. The archi-
tecture section of their ontology design is simplified and very similar to a component
diagram. Elements of the architecture are stored as components that reside within
subsystems. Subsystems and components in turn offer interfaces for communica-
tion between one another. This makes the model more general and entering data
into the ontology less complicated. However, there’s a trade-off with a simplified
ontology design, as it affects the power of search results. We found this study to be
interesting, and used their ontology as an inspiration when building ours.

In a further study, they compared how efficient it was to retrieve information using
an ontology-based architecture documentation in comparison to a file-based docu-
mentation [15]. Their ontology had been improved to a small extent but was mostly
the same. They performed experiments with two companies, asking developers to
find dependencies between decisions, requirements, components, and other architec-
tural artifacts. The developers used ontologies that were populated with architec-
ture documentation of software they worked with in their company. The researchers
then compared how efficient this was against retrieving the same information using
the original file-based architecture documentation. The results showed that when
developers used the ontology to search for answers for the given questions, the re-
sults were on average more accurate and faster to collect. The goal of this study
was to measure the feasibility of using ontologies for storing architectural knowl-
edge (AK). While this study, just like our project, investigates the effectiveness of
categorizing and relating software artifacts and AK, the two studies have different
approaches. The difference is that our objective is to take this one step further by
investigating solutions to the same problems with a more presentation-based focus
on how software systems can be explained using an underlying ontological structure.

Mohamed Soliman et al [17] identified the difficulty in finding architectural knowl-
edge among programming knowledge in online developer communities, and devel-
oped a new search approach for browsing online developer communities (in this case

16



2. Background

Stack Overflow1) for architecture related posts. Just as we do, the authors of this
study acknowledge the importance of the higher level documentation of software
systems. Their approach to answering the problem was to explore techniques for
retrieving high-level architecture related knowledge using search in online developer
communities. Using their proposed approach, they built a system on top of an on-
tology which models architectural knowledge. The ontology was designed based on
analyzing annotated, unstructured architecture related posts of their case system in
Stack Overflow to find structure and categorization of architectural elements. To
measure the effectiveness of their search approach, they performed experiments with
16 practitioners, comparing their tool to traditional search methods. They found
that practitioners performed significantly better using their tool.

2.2.4 Developer documentation on demand
A community of researchers advocates for a new vision for how to satisfy informa-
tion needs of developers[16]. The goal is to find methods to automatically generate
high-quality documentation from the given user query, minimizing the manual work
of collecting information from different sources such as from experts, QA forums and
documentation. They propose establishing precise links between software artifacts,
constructing software that can automatically infer undocumented properties of sys-
tems, finding new ways for developers to request system information and new ways
to generate, select and present software documentation based on the user request.

The vision underlying our study stems from this article. Their vision to retrieve, in-
fer, generate and present documentation from different abstraction levels of software
from the system level to the implementation, clearly requires multiple specialized
studies to fulfill. Our intent is to contribute to this vision by specializing in interre-
lation, presentation, and explanation of software artifacts at the system level.

2.2.5 Commonly asked questions during programming tasks
One of the elements of SEC is the questions SEC generates explanations for. Most
of the questions were chosen from the set of questions identified by Jonathan Sil-
lito in his paper "Asking and Answering Questions during a Programming Change
Task" [10]. The key elements from this paper that were useful for our study were
the 44 identified types of questions and the discussion of current tool support gap
in answering given questions.

2.2.6 Program comprehension
Back in 2005, Margaret-Anne Storey [18] performed a survey on program compre-
hension tools, theories, and methods. The mentioned theories and methods align
quite well with the objectives of this study. There are three especially notable points

1Stack Overflow is a forum for developers where they can ask questions and share knowledge
about different software systems

17



2. Background

she discusses which we aim to address with our tool; the top-down and bottom-up
comprehension theories, and that programming environments should provide differ-
ent views of visualizing programs.

The top-down approach assumes that a programmer understands a piece of software
by first trying to comprehend the software at a high abstraction level and steadily
moving downwards toward implementation. The bottom-up approach assumes that
the developer learns by analyzing a system by starting at a low level (such as imple-
mentation) and building up a higher level understanding by grouping or chunking
knowledge.

Margaret also mentions that other works have shown that comprehension depends
on the specific task, the individual and the program characteristics (such as how well
it is documented and what language the program uses). Any of these two methods
can be used differently, by different individuals and in different situations. The tool
presented in this paper aims to support these methods by providing the ability to
trace and navigate from high-level system knowledge into low-level system knowl-
edge, and the other way around.

Margaret later writes the following “...Programming environments should provide
different ways of visualizing programs. One view could show the message call graph
providing insight into the programming plans, while another view could show a rep-
resentation of the classes and relationships between them to show an object-centric
or data-centric view of the program. These orthogonal views, if easily accessible, can
facilitate comprehension, especially when combined”[18]. While the tool presented
in this paper will not be generating call graphs, the point still stands: Developers
comprehension of software can be improved when they can view a software sys-
tem from different perspectives. To support this aspect, the tool presents system
knowledge by different architectural views[4], by structural elements, by behavioral
elements and across different abstraction levels.

18



3
Methods

This study has two main objectives. Firstly to design and implement a proof of
concept to demonstrate a possible approach to automatically generating system ex-
planations. And secondly to evaluate the usefulness of such generated explanations.

Figure 3.1 shows the methods used and the order they are performed. The first
phase of the study began with a research phase where relevant work and common
developer questions were collected and explanation templates were designed based
on these questions. The second phase was about designing and building the ontol-
ogy and populating it with software artifacts and AK. Next, we built a system that
uses the ontology to present explanations to the developer questions. Lastly, we
evaluated our system by gathering quantitative and qualitative data from usability
tests and interviews.

The rest of this chapter will describe the methods for research, design, implementa-
tion, and evaluation of the built system, System Explanation Composer (SEC).

3.1 Research method
This study is a design science research and the methodology is different from natural
science research in one key aspect. Natural science concerns observing existing phe-
nomena, while design science concerns creating things that serve human purposes
[1]. According to Ken Peffers et al [9], design science research is performed using six
steps.

1. Problem identification and motivation
2. Define objectives for a solution
3. Design and development
4. Demonstration
5. Evaluation
6. Communication

Problem identification and motivation were performed by browsing existing research
in the problem area and identifying problems that currently exist for documentation.
This process is reflected in the introduction and related works. Based on the results
of the problem identification, an objective for the research was then defined, which

19



3. Methods

Figure 3.1: An overview of the method

is reflected by the statement of the problem. The design and development phase
constituted of developing the underlying ontology and SEC, which is explained in
chapter 4. The demonstration phase is tied to the case, Snowflake, which we use to
populate the ontology with. An evaluation was also performed, where both quanti-
tative metrics and qualitative feedback were collected. And lastly, communicating
the details of the project resulted in this thesis report.

3.2 Selecting case system
In order to select a case system that has enough documentation, while also fitting
within the boundaries of the project scope, a few simple criteria were set up:

• It should have documentation related to requirement, design, architecture, and
rationale.

• The code has to be available (i.e., open source).
• The size of the system should be relatively small, so we can quickly learn it

and enter all its documentation into SEC.

20



3. Methods

The selected case system is an e-commerce template called Snowflake [14]. It is a
web application of 100 classes with detailed documentation for requirements, archi-
tecture, rationale and system design which matched the criteria mentioned above.

3.3 Overall system design
To generate explanations, three system components are built and used (See figure
3.2). The first component is the ontology. The ontology serves as a knowledge base
to model and store architectural knowledge. The ontology is hosted in an Apache
Jena Fuseki Server, allowing outside applications to fetch information from the on-
tology via SparQL queries. The second component is a set of common questions
which developers frequently ask during development tasks. SEC is designed to an-
swer these questions. The third and last component is the explanation generator
which makes use of all the previous components. The explanation generator queries
the ontology to fetch links, entities, textual descriptions, etc. and builds both tex-
tual and visual explanations for the developer questions. Each of these components
is in further explained in the following sections.

Figure 3.2: An overview of SEC

21



3. Methods

3.4 Ontology

An ontology was used as a database to store software artifacts and AK found in the
documentation. Although designing software ontologies were not part of the main
purpose of the system, it was required as a base to build SEC, which in turn was
required to answer the research questions. As a result, an ontology was designed,
implemented and populated during the thesis.

3.4.1 Designing the ontology

The ontology designed in this study was originally inspired by the ontology demon-
strated by Klaas de graaf et al [13]. However, after some analysis of their ontology,
it was found that it was not designed to represent two key aspects required for this
project. Firstly, it has a limited ability to differentiate between different perspec-
tives/abstraction levels of software architecture. Secondly, it lacked representation
of some software artifacts which were found in the case documentation. It was con-
cluded that ignoring these two factors could limit the expressiveness of the ontology
and the explanations created from it.

In response to the above, minor modifications were made to specifically contain the
architectural knowledge found in the case documentation. While analyzing the con-
tent of the documentation, it was found that the 4+1 architecture view model [4]
provided a good fit to store the existing architectural knowledge. This would provide
a more comprehensive model which could express different views and software arti-
facts. The trade-offs of using a more comprehensive ontology are that firstly more
work to populate the classified software artifacts will be required, and secondly that
the ontology model may not be an as good fit for different types of projects. How-
ever, since different software system designs and implementations can differ from
one another by a large margin, creating a single ontology that fits every type of
software system while being expressive but also simple enough, may prove to be a
very difficult task. It could be argued that there is no ideal general solution to this
problem, that instead different variations of ontologies should be used for different
system types.

3.4.2 Implementing the ontology

The ontology was built using Protégé1 as an ontology editor. It was used for both
building the meta-model and for populating the ontology. A few simple patterns
and conventions were followed when implementing the ontology which is discussed
next.

1https://protege.stanford.edu/

22



3. Methods

3.4.3 Patterns and conventions
While designing and implementing the ontology, the following general patterns and
conventions were followed to make the ontology easy to reuse, read, populate and
manage.

Upper level ontology: This pattern means that general terms that are the same
over different domains are modeled in a hierarchical structure. The upper level of
the ontology should be general across domains while becoming increasingly more
domain-specific farther down the hierarchy. This pattern provides some semantic
interoperability to the ontology.

Hierarchy untangling: This pattern means that there should be no poly-hierarchies
(e.g no entity with more than a single parent) in the ontology. This pattern was
used to simplify the model and minimize ontology management problems.

Explicitly stating unrequired relations: Since ontologies use an open world
assumption, everything that is not modeled in the ontology is assumed possible.
In other words, modeling an ontology only serves to constrain the model. This
means some types of relations do not need to be explicitly expressed between entities
(e.g relations with cardinality 0 to many). However, as a convention to make the
ontology more readable and self-documenting, such relations were expressed in the
model anyway.

3.4.4 Populating the ontology
The ideal scenario for populating the ontology with data would be to find ways to
automatically do so. However, there is no previous documented approach where this
was done successfully with high enough precision and recall. As inventing a method
(or teaching a machine) to do so would require an entire or possibly multiple studies
of its own, no such system was created. Instead, software artifacts and AK from the
case documentation were manually identified and inserted into the ontology.

Data insertion was performed using an iterative process. Populating the ontology
started from one of the case system’s features. The ontology was then traversed
to fill out other entities also related to this feature until all entities, both directly
and indirectly, related to the feature had been populated. We call this a "slice".
As one such "slice" was completed, new knowledge and insight about the ontology
were discovered. The ontology design was then updated as needed. A new iteration
for inserting next "slice" began once the ontology design had been properly updated.

3.5 Explanation design phase
In the explanation design phase, a set of high-level questions which developers tend
to ask during development tasks were selected from various studies [5], [8], [10].

23



3. Methods

These questions served as a basis for the explanations generated by SEC. Once
questions were selected, the explanations were designed. The explanations aim to
answer the chosen questions by fetching information from the ontology. The process
of these two steps are in further detail explained in the following two sections.

3.5.1 Collecting questions
The goal of the system explanations was to answer a set of high-level questions
based on given software artifacts. Later we could determine whether the answer to
these questions was perceived as useful by developers. The process of designing the
questions was performed as follows:
Firstly, a set of questions were written based on the authors’ own experiences in
learning or understanding software systems. This phase served mostly as a warm-
up.

Secondly, relevant questions were collected from other research [5], [8], [10]. They
were selected based on the following criteria:

• The questions should relate to common development tasks.
• There should be evidence that these questions are commonly asked by devel-

opers.
• The questions should touch the architecture, rationale, requirements or imple-

mentation.
• There should be questions that touch the structural aspects of the system.
• There should be questions that touch the behavioral aspects of the system.

Since the collected questions were gathered from different sources, they were also
originally based within different contexts. To make sure the questions were coherent,
they were modified to fit a single context.

Lastly, the questions were validated using two steps. The first step was to pinpoint
what kind of software artifacts held the answer to each question. In many cases, it
was found that the answers to questions could easily be found by combining different
types of software artifacts. The second step was to verify this theory, which was
done by answering the questions by hand using the identified software artifacts.
Paragraphs in the given case documentation which were identified as holding part
of the answer to the question were found and mapped to a software artifact type.

3.5.2 Design of explanations
The issue of designing the explanations was open for creativity as long as the solu-
tion addressed the previously mentioned challenges shown in table 1.1. No formal
idea generation process was used to find the solutions, rather ideas were discussed
between the authors and supervisors of the project. Potential ideas were expressed
and presented using sketches and digital mock-ups and were changed or improved
upon until they were satisfactory for further prototyping. If they were not satisfac-

24



3. Methods

tory, they were simply discarded. The final selection of ideas had to conform to at
least two of the following points:

1. Implementable as a prototype within the time-frame
2. Addresses one or more of the challenges listed in table 1.1
3. Explores new areas that have not been covered by previous research

The ideas that were satisfactory for prototyping were lastly built into SEC.

3.6 Construction of SEC
The two main purposes of SEC were to use it as a proof of concept to experiment
with solutions and to evaluate whether these solutions would help developers to be
more efficient in learning and understanding the chosen case system. As such, the
main concerns for the implementation of SEC was to be able to quickly prototype
and test solutions and to provide a somewhat intuitive user interface. Since it was
important to quickly prototype and test the ideas, the speed of implementing SEC
was the primary concern when choosing technologies and structuring the system.
This means no formal system design was planned beforehand.

The system was implemented using three layers, the presentation layer, the appli-
cation layer, and the data layer (see figure 3.3) and this section will briefly describe
each layer and the technologies used.

Figure 3.3: The layers of SEC

25



3. Methods

The responsibility of the presentation layer is to provide a graphical user interface
to the user. Its purpose is to draw the user interface and all the visualizations based
on given HTML, CSS and JavaScript source code. In this case, we used the Google
Chrome browser for this purpose.

The application layer which holds all the system logic was built using Python,
HTML, CSS, and JavaScript. This layer was built on a Flask server which fetches
data from the data layer to build explanations. Given a developer question, SEC
builds the structure behind the visualizations by fetching entities and relations that
make up the explanations. Then it structures and lays out descriptions which are
later passed on to the presentation layer for rendering. Lastly, it is responsible for
serving the layouted HTML and JavaScript code to the presentation layer for ren-
dering. The languages used were chosen due to how easy they were to use and learn,
and the sheer amount of open source content that was available for them, making
UI layouting and visualization very simple. See table 3.1 for a list and summary of
each library used for each programming language.

Library Language Summary

D3 2 JavaScript Used to visualize given data structures

Dagre 3 JavaScript Used to translate data structures into a graph

DagreD3 4 Javascript Used to draw and automatically layout dagre
graphs

JQuery 5 Javascript Used to make http POST and GET requests to
application server

TippyJS 6 Javascript Used to create tool tips

Flask Python Used as a simple framework for hosting the ap-
plication server

SPARQL
Wrapper Python Used to perform SparQL queries to the data layer

Jinja HTML Used to build reusable HTML templates

JSON JSON Used to translate python dictionary to JSON

Table 3.1: Libraries used in the application layer

The data layer was built using an Apache Jena Fuseki 7 server in which the ontology
is hosted in. This server has three important features which are specifically good
for this project; (1) it serves as an endpoint for querying data from the ontology,
(2) it has a library of different inference engines and (3) the chosen inference engine
is simple but fast, which reduces querying time significantly. In this case, we used

7https://jena.apache.org/documentation/fuseki2/

26



3. Methods

only some basic features of the inference system, and thus a simple version of the
inference was sufficient.

3.7 Evaluation
In order to assess whether the explanations provided by SEC assists developers
in solving development-related tasks, we conducted supervised usability tests and
semi-structured interviews. In this section, we will discuss the design of each of
these methods; the data collection and the participants of our evaluations.

3.7.1 Design of evaluation
The evaluation consisted of 3 segments, the first segment was a questionnaire re-
garding personal experience, the second was a usability test and the third was a
semi-structured interview. We will explain the design of each of these segments in
the following sections (to see the evaluation guide see appendix D).

Personal experience questionnaire:
At the beginning of the evaluation, the participants were asked to fill in a question-
naire where they indicated their level of experience in software development, in web
development (due to our case system being a website), software architecture and
UML diagrams.

Design of Usability tests:
Usability tests were performed in 2 main phases. Phase 1 was initiated with a short
demo of SEC followed by a hands-on exploration of the tool by the participants
(took around 10 minutes). Once relatively familiar with the tool, participants were
then given a scenario and asked to complete 6 tasks regarding that scenario by us-
ing SEC. In phase 2, participants were given a different scenario and were asked to
use the using the case system’s file-based documentation to complete some 6 tasks
regarding that scenario.

The scenarios in these phases were not identical but very similar in nature and level
of difficulty. They were designed to be practical and to resemble a common develop-
ment scenario that developers are familiar with to make it more intuitive for them
to perform the tasks.

The 6 tasks in phase 1 were each mapped to the other 6 tasks in phase 2. These
mapped tasks were not identical in their phrasing since the terms of certain artifacts
varied between the tool and the documentation. However, they referred to the
same artifacts and had the same level of difficulty. There was an exception made
in the case of the task related to implementation. Since the documentation had no
information regarding the implementation, this task had to be replaced with another
task regarding architecture for phase 2. This was done to keep format, scoring, and
timing of both phases similar.

27



3. Methods

The usability test was designed to require the participants to utilize all features of
SEC. This was done to achieve an evaluation of all parts of the system at the same
level. Each task was in the format of several questions, and the correct answer to
those questions would result in the completion of the task. Tasks were assigned
general scores based on the users’ performance and a weight based on the level of
difficulty of the task (to see the weights see appendix B).
The scoring of the tasks was designed as followed:

• Score 3: Correct answer without the moderator’s intervention.
• Score 2: Correct answer with intervention or partly correct answer without

intervention
• Score 1: Partly correct answer with intervention
• Score 0: Out of time or wrong answer

When performing one phase after another, participants could gain knowledge of the
case system. This could affect how efficiently they complete the second phase. To
cancel out advantages caused by learning due to the order of the phases, the order
of phase 1 and 2 was swapped for every other participant.

Design of the semi-structured interview:
Open-ended semi-structured interviews were conducted to obtain participants’ opin-
ion about SEC after having used it to perform the usability tests. The questions in
these interviews were open-ended because such questions usually result in broader
answers and give the participants a chance to express their own opinions. This
would make their answers less prone to respondent errors and less biased since they
themselves chose to express a certain opinion or topic. The questions are based
on the first two questions of the I Like, What if, I wish method 8. The questions
encouraged participants to provide feedback in three basic forms: First, they were
asked to explain what they liked about using SEC in comparison to using the case
system’s documentation. Second, they were asked to imagine using SEC to assist
their current work and think of changes or additions of functions that would be use-
ful for them. Lastly, they had an opportunity to speak freely about their opinions
of SEC.

The interview questions were designed this way to encourage the participants to give
honest feedback. The first question simply asked what they liked when comparing
using SEC against using the case documentation. This question is relatively easy
to answer and gives us feedback of which parts of SEC were especially valuable to
the participants. The second question has a bit more thought behind it. While
planning the evaluation, we made the assumption that people, in general, tend to
be conservative about expressing negative opinions and feedback, and that negative
feedback generally isn’t all that useful on its own anyway. As such, instead of asking
what they did not like about SEC, we asked them whether SEC lacked features that
they thought would be useful for them and whether there were any areas they would
have liked to see improved. This question allowed them to use their imagination to
suggest new ideas, while also providing us with feedback of areas of SEC that would

8https://ilikeiwish.org/

28



3. Methods

likely need to be improved. Lastly, we gave them free room to express whatever
they wanted about the tool, in case they had other comments in mind, this gave the
participants some room to express opinions not covered by the interview questions.

3.7.2 Data collection
This section describes the data that was collected during the evaluations. There are
two types of data: quantitative and qualitative. Their format is explained below.

3.7.2.1 Quantitative data

Two types of quantitative data were collected during the usability tests:

Task time: The time it takes for completion of a task.

Task score: The quality of performing a task. In other words, how correctly and in-
dependently (without the help of the moderator) did the participants solve the tasks.

From the above data, we can get a sense of efficiency, which is a combined measure
of how fast the participants solved the tasks and how well they scored. Analyzing
these measurements to see if SEC can improve developers efficiency in performing
development tasks, will partly answer our second research question. This will be
discussed in depth in the results section.

3.7.2.2 Qualitative data

These were mainly the data gathered from the interviews. The qualitative data
contained what participants liked about SEC, what they wish existed in the tool
and other comments. The analysis of this data also partly answers our second re-
search question from the perspective of a developer’s perception. This will also be
discussed further in the results section.

3.7.3 Participants
Since we wanted feedback from different points of views, we sent out participation
requests to researchers and other master students from Chalmers/Gothenburg uni-
versity as well as software developers currently working in the industry.

A total of 13 people volunteered to take part in the evaluations; out of which two
only participated in pilot evaluations due to their prior interaction with SEC. The
main purpose of the pilots was to get feedback on the evaluation design. Since the
evaluation design was slightly changed after the pilot evaluations, we excluded these
results from the quantitative calculations. However, the qualitative feedback from
these participants was useful and was thus kept as part of the results.
Of the remaining 11 participants who performed the actual version of the evaluation,
7 had an industrial background and 4 had an academic background (for the full list

29



3. Methods

of participants’ personal experience and background, see appendix C). During one of
the evaluation sessions, the task times of one participant was lost. The quantitative
analysis of the task times thus had a sample size of 10 while the same analysis for
the scores had a sample size of 11.

3.7.4 Performing the evaluation
Each participant attended one session of evaluation which lasted about 60-90 min-
utes. There were two moderators present throughout the session. One of them was
mainly responsible for guiding the participants’ through the evaluation and the other
took the main role of a scribe and kept track of time. However, both took notes of
answers, personal observation and kept track of whenever participants received tips
for the tasks.

Since it was the first time participants had seen the tool, the moderators would
answer participants’ questions as long as the answers wouldn’t directly help them
solve the tasks. For example; they could get help finding the correct part of the
tool or get some tips about the chapters they may find things they were looking
for, but the moderators would not help them analyze the content. Every task had a
time limit of 5 minutes to keep the sessions within 90 minutes, but whenever there
was extra time, giving participants some additional time to solve their problems was
prioritized over staying within time limits. This was applied to both documentation
and SEC.

30



4
Design and implementation

This section explains how we approached the first research question: "How can exist-
ing software artifacts be presented and explained in a way that increases learnability
of the structure and behavior of a software system?". Here we explain and discuss the
ontology design, the explanation design and lastly demonstrate the functionalities
of SEC.

4.1 Relating software artifacts using an ontology
Software systems are commonly expressed using collections of design, specification
and software artifacts which together form a network of relations and dependencies.
To be able to present and explain these networks, it is first necessary to model
and store knowledge of how the artifacts are categorized and interrelate. However,
the act of storing and expressing knowledge has some special needs that traditional
table-based and document-based databases are not very good at fulfilling:

• Expressing knowledge of a domain
• Have a rich language that expresses how elements relate to one another
• Combining different knowledge models to aid collaboration and improvements;

in other words, knowledge models that are extendable, reusable and modifiable
Ontologies are specifically designed to fulfill the points above and thus they make a
great match for the database needs of this project. On top of providing the needs
mentioned above, when comparing ontologies to traditional file-based documents;
since they differ in how information are stored, they also differ in the way informa-
tion can be retrieved (See figure 4.1, 4.2 and 4.3).

When responding to queries, traditional information retrieval methods match the
words and analyzes surrounding text in documents to retrieve likely related para-
graphs, pages or chapters (See figure 4.3). Using ontologies to find information on
the other hand, enables retrieval of relevant information across different levels of
abstractions and their relationships in a meaningful context. This allows the infor-
mation retriever to a certain extent understand the information to answer high-level
questions (See figure 4.2).

Based on the above reasoning, we chose to use an ontology as our database. Our
goal was to design an ontology meta-model that includes the important software
artifacts of the case system, expresses the needs of different stakeholders and is easy
enough to populate and understand.

31



4. Design and implementation

Figure 4.1: Storing identified software artefacts and AK from file-based documen-
tation information into the ontology

Figure 4.2: Information retrieval using an ontology

To make sure the ontology meta-model includes the most important software ar-
tifacts of the case system, the case system was analyzed and the specific artifacts
being used were identified. For example; some projects may use class diagrams to
show their system design, while others use component diagrams instead. Others
may use both or something entirely different. As such, when modeling the meta-
model, generic interfaces were used to represent the same type of models. Each of

32



4. Design and implementation

Figure 4.3: Traditional information retrieval

these generic interfaces was designed to be extendable and specialized to satisfy the
needs of different software systems.

The information needs of different stakeholders differ between projects, which means
there is no simple way to model ontologies that satisfy them all. One way to ap-
proach this issue is by analyzing the needs of the specific stakeholders for the case
system and build the meta-model around that analysis. However, this would make
the model specialized for a specific system and less reusable. It is important to note
that one of the key aspects of ontology modeling is enabling the ability to extend
and reuse it. As such, we made the choice to go for a direction which supports
extension and modification of the model by using the following three methods; (1)
by using common interfaces for ontology classes as explained in the paragraph just
above, (2) dividing the ontology into different sections, which touches different types
of software artefacts each and (3) by using a slightly adapted version of the 4+1
architectural view model [4].

The four main sections this ontology consists of are requirements, architecture, ra-
tionale, and implementation (See figure 4.4). There are three reasons for dividing
the ontology into these four different sections. First, these four sections can repre-
sent most artifacts of common software systems. Second, it enables extension and
modification within each section without affecting other sections of the ontology,
which improves the extensibility and modifiability of the model. Third, it improves
the understandability of the meta-model by making it easier to visually comprehend
and analyze.

The architectural views of the 4+1 architectural view model are different perspec-

33



4. Design and implementation

Figure 4.4: An abstraction of the ontology showing the four sections plus diagrams

tives to view the architecture of a system. Typically four different views are used
to describe a software system: the physical view, the development view, the logical
view, and the process view. In addition to these views, there are also scenarios and
use cases which represents the "+1” part of the view model.

The original 4+1 architectural view model was not fully adhered to in this case,
since this case-system is a web-based e-commerce system where the User Interface
(UI) components are vital, the less prominent process view (based on the given case
documentation) was replaced with a UI view (shown in figure 4.5 and 4.7). Each
of these views consists of structures and some of them also contain behavior. The
behavior components are deconstructed from scenarios (the +1 component of the
view model). Structures express the structural artifacts of the case system from the
perspective of the given view. For example; structures of the development view are
structural artifacts such as classes from class diagrams (see figure 4.8). They express
the structure of the system’s architecture from the development point of view, while
structures of the physical view show how different components of the case system
are deployed 4.7. Some architectural views also have behaviors. Behaviors of a given
view describe how the structural artifact of the same view behaves. They are usually
visualized using sequence diagrams, activity diagrams and/or state machines.

34



4. Design and implementation

Figure 4.5: A complete view of the ontology

35



4. Design and implementation

Figure 4.6: A closer look on the right part of the ontology

36



4. Design and implementation

Figure 4.7: A closer look on the top-left part of the ontology
37



4. Design and implementation

Figure 4.8: A closer look on the bottom-left part of the ontology
38



4. Design and implementation

4.1.1 Structure and Behavior

In the ontology, each of the architectural views have structures (see figure 4.7
and 4.8). The structures for a specific view expresses how the system is structured
from this viewpoint. These "structure" classes (i.e DevelopmentStructure, Logical-
Structure, PhysicalStructure and UIStructure) in the ontology are not meant to be
instantiated. Instead, they serve two main functions. First, they are used as in-
terfaces that enable extensibility and reusability of the ontology. And second, they
make structural and behavioral entities easier to distinguish. In general, structures
are commonly expressed using structural diagrams such as:

• Class diagrams
• Component diagrams
• Package diagrams
• Deployment diagrams
• Object diagrams
• Composite structure diagrams

Recall that to simplify the ontology, only diagrams that were found in the case
system of the project were modeled in the ontology. For this case, the deployment
diagram was modeled in the physical view. Class diagrams were used in the logi-
cal, UI and development views. Package diagram was used in the development view.

The UI, Logical and Development views also have "behavior" classes. The behavior
of a specific view expresses how the structural components of that view behave.
These behaviors are commonly expressed using the following behavioral diagrams:

• Sequence diagrams
• Activity diagrams
• Use case diagrams
• State machines

In the ontology, sequence diagrams were modeled in all three of the views (Logical,
Development, and UI) and state machines were modeled only in the Logical view.

4.1.2 Rationale

The rationale of the ontology consists of two main types of artifacts; design options
and technology. Design options are alternatives to design considered for building
the architecture of the system. To differentiate between design options that are
implemented in the system from design options that are not, the implemented design
options are marked as chosen (using a class variable). The reasoning behind the
design options is expressed by arguments, constraints, and assumptions.
The technology class in the ontology represents libraries, languages, frameworks
and other software technologies that were used to implement the case system. They
are specializations of design options, meaning they inherit the properties of design
options. Technologies can also be marked as chosen, and their reasoning is also
expressed by arguments, constraints, and assumptions.

39



4. Design and implementation

4.1.3 Relations between different sections of the ontology
Recall that the physical view shows the physical nodes and devices of the system.
The development view and shows the actual modularization of the software. It shows
how the system is decomposed to subsystems and components and how they relate
to one another. The physical and development views are related since the software
components of the system has to reside within some physical device. The relations
between the physical and development view are modeled via the "deploys" and "de-
ployedBy" relations between the DevelopmentStructure and the PhysicalStructure.

The logical view which focuses on the end-user and shows an abstraction of the
system based on the problem domain also has a connection to the development view.
The logical view functions as an intermediate that allows tracing from the structural
aspects of the development view onto the features and requirements. In other words,
the link between the logical view and the development view allows tracing and
navigation from the software modules to the requirements and functionalities of the
system. This relation is expressed using the "designs" and "designedBy" relations
which reside between the "Logical" and "Development" classes of the ontology.

4.2 Design of explanations
To make sure the SEC can answer questions that developers tend to ask, a few
frequently asked developer questions [10] were selected from previous studies (see
section 3.5.1). All questions are listed in table 4.1. The questions that were inspired
by previous studies are the questions DQ2 to DQ5. DQ1 was necessary to include
since it gives an overview of the system functionality. Although this question is
not specifically mentioned in previous studies, we deemed it useful for providing an
overview of the system. DQ6 and DQ7 are useful for architects, but also in some
cases for developers. They may not be commonly asked, but they are important
questions that can be difficult to answer using common file-based documentation.

ID Question

DQ1 Which functionalities exist in the system?

DQ2 Which architectural patterns exist in the system?

DQ3 What is the role of this feature?

DQ4 How is this feature mapped to its implementation?

DQ5 What is the behavior of this feature?

DQ6 What is the rationale behind the choice of this architectural pattern?

DQ7 How is this architectural pattern implemented?

Table 4.1: Selected developer questions

40



4. Design and implementation

Based on one of the questions from the list above, explanations are composed by
selecting "sub-graphs" of the ontology. For example; to explain which functionalities
exist in the system, a subset of the ontology classes and relations are selected. In this
case, they are features, requirements, user stories, use cases, and their interrelations
(see figure 4.9). When it comes to more complicated questions, such as the question
regarding the feature behavior, different answers can be composed since there are
multiple different possible compositions of "sub-graphs" that answer the question.
Each different composition answers the question from a different perspective or
abstraction level. For this problem, we have chosen to display the compositions that
we think are useful for developers (see figure 4.10).

Figure 4.9: Composition of feature functionality

41



4. Design and implementation

Figure 4.10: Composition of feature behavior

The resulting explanation design consists of two connected main components; a
graphical component (interactive visualization of software artifact relations) and a
textual component (descriptions accompanying the visualization). Some questions
touch multiple different views of the architecture and to make the visualizations
easier to interpret and to some extent minimize cluttering in the graph, different
tabs are used to display each different view (see figure 4.11). Although when needed,
information from different views can also be combined to be displayed in a single tab.

42



4. Design and implementation

Figure 4.11: Tabs shown in red selection
43



4. Design and implementation

Figure 4.12: The interactive visualization
44



4. Design and implementation

Figure 4.13: Hovering an entity shows a summary

Figure 4.14: Clicking an entity highlights both directly and indirectly related
entities and links

45



4. Design and implementation

Figure 4.15: Selecting an entity allows the user to navigate to different explana-
tions of it

In order to generate interactive visualizations, input from the user is required. The
input is one of the developer questions, and if the question requires it, also one
or more accompanying software artifacts. After input has been given, the system
queries data from the ontology. Using this data, it constructs a visual explanation of
the given question. The visual consists of the concerning software artifacts and their
relations. As per the design of the ontology, there are five main types of software
artifacts that can be visualized: requirements, architecture, rationale, diagrams, and
implementation. The visualization serves as a means to explain overall structure and
relations within and between these artifact types. To further support navigating,
tracing and comprehending different sections of the system, it has three features
listed in table 4.2.

The visualization is also accompanied by an extendable side-bar containing textual
descriptions of the visualized entities (see figure 4.16). The first section in the
side-bar briefly describes what the interactive graph is showing. The other sections
show descriptions and diagrams of each visualized entity. The side-bar has several
attributes which are designed to complement the visualization which is described in
table 4.3.

4.3 Demonstration of SEC
This section will demonstrate the explanations to each developer question. As just
described in the previous section, in order to generate explanations from SEC, a
starting input has to be provided. This input is formed by providing a developer

46



4. Design and implementation

Figure 4.16: The sidebar with textual descriptions
47



4. Design and implementation

Type Description Figure

Interaction

Summarized information of the entity can
be revealed by hover figure 4.13

It has the ability to highlight paths and en-
tities relevant to a specific entity figure 4.14

Navigating links is directly accessible by se-
lecting entities of the visualization figure 4.15

It has basic functionalities to make the
graph more readable (i.e zooming and pan-
ning).

Consistent coloring
Each entity of the visualization is con-
sistently differently colored by their type
across explanations

figure 4.12

Automatic layouting
Entities are automatically clustered by their
artefact type figure 4.12

Entities are automatically laid out in sepa-
rate levels depending on their relations figure 4.12

Table 4.2: Features of the interactive visualization

question (see section 4.2), and if the question requires it, also an entity (see fig-
ure 4.17). SEC uses this input to query structure and descriptions related to the
question and creates explanations based on the queries.

4.3.1 DQ1: Which functionalities exist in the system?
System functionality corresponds to the features and requirements in the ontology,
the classes are features, requirements, user stories, and use cases. Creating an ex-
planation to this question means fetching all entities and the relations among them
from the ontology and displaying them visually and textually (See figure 4.18). As
can be seen in figure 4.19, all features are displayed on the left-hand side and each of
them connects to one or more functional requirement(s). These functional require-
ments, in turn, connect to use cases and user stories. In this case, no non-functional
requirements were related to the features and were thus not displayed. In terms
of explanation, the requirements and user stories present the functionalities which
exist in the system and the use cases present how these functionalities are used.

This visualization, while very high level and not very detailed, can be useful to
different stakeholders such as new developers, functional testers and other non-
developers (such as end-users or managers). For example; new developers can use
the view to quickly identify system requirements and use cases, functional testers
can use it to identify what requirements, user stories, and use cases needs to be

48



4. Design and implementation

Name Description Figure

Current question The current question in focus is located at the
top of the extendable side-bar

Automatic scrolling

Whenever an entity is selected in the inter-
active visualization, the right-hand side auto-
matically scrolls down to the section with the
description of that entity.

Retractable side-bar
It is extendable and retractable, allowing the
user to make more room for the visualization
if needed.

Grouped by direct
class

Entities are grouped by their direct class types
(i.e all functional requirements are grouped to-
gether).

Expandable/collapsible
sections

Each text section is extendable and collapsi-
ble, making navigation of large amounts of
text a bit more manageable.

Table 4.3: Attributes of the textual descriptions side-bar

validated and verified, and non-technical stakeholders can use it to learn more about
the system without diving into technical details. Lastly, it can also be used as a
tool that assists developers or architects in maintaining the documentation. From
the visualization, it is easy to see whether requirements or use cases are missing for
a certain feature.

4.3.2 DQ2: Which architectural patterns exist in the sys-
tem?

All existing architectural patterns that exist in the system, and how they are traced
to implementation are shown in this explanation. The explanation consists of three
tabs, an overview, the physical view, and the development view.

The overview tab shows all architectural patterns in the system and the roles that
together make up the pattern. For example, a client-server pattern would consist of
two roles; the client and the server. This view simply serves as a means to quickly
get a glance over the existing patterns in the system (See figure 4.20).

The physical view tab shows the architectural patterns and roles in the system
(same as the ones from the overview), connecting to the physical view, development
view and down to the implementation classes (see figure 4.22). It shows in which
physical devices different parts of the software components are located. For exam-
ple; by selecting the web application server role, paths to the physical devices which
implement this role, and implementation classes that reside within these physical

49



4. Design and implementation

Figure 4.17: The input to SEC

devices, are highlighted. It can also be used the other way around; by selecting
an implementation class, we can highlight the physical device it resides in and the
architectural pattern(s) and role(s) it is part of.

The development view tab shows the same architectural patterns as the previous
two views, but bypasses the physical layer, instead, the roles connect directly to the
development view (see figure 4.21). Much like the physical view tab, it enables
tracing from patterns to implementation classes but from a software perspective.
This view focuses mainly on providing information to developers, but can also be
useful for architects. Here are some examples of a few ways this view can be used.

• It can be used to see the architectural responsibility of a specific implementa-
tion class. This is done by highlighting an implementation class, and tracing
back to the architectural patterns.

• It can be used to see all classes that together serve a responsibility of an
architectural pattern. This is done by highlighting one of the roles and tracing
the roles to the implementation classes.

• If a system design has been made before implementation, this tab can be used
as a means to see which parts of the system design has not been implemented
yet.

• It can be used to check whether certain implementation classes have taken on
more responsibility than they should. E.g classes should in most cases not
implement both model and view functionality.

• It can be used to see which classes are affected by specific architectural pat-
terns. This knowledge can be useful if the system architecture is in need of
changes.

50



4. Design and implementation

Figure 4.18: The generated explanation for system functionality

51



4. Design and implementation

Figure 4.19: (Q1) A closer view of the system functionality visualization.

52



4. Design and implementation

Figure 4.20: (Q2) An overview of the architectural patterns
53



4. Design and implementation

Figure 4.21: (Q2) A closer view of the architecture and implementation via the
development view

54



4. Design and implementation

Figure 4.22: (Q2) A closer view of architecture and implementation via physical
layer

55



4. Design and implementation

4.3.3 DQ3: What is the role of this feature?
The role of a feature can be interpreted as, what functionality does the feature
provide, and what is its responsibility in the system? The answer to this question
is almost the same as "DQ1: Which functionalities exist in the system?", except
it focuses on a single feature. Once the functionality of the system evolves and
increases in volume, this question can be useful to filter out some noise.

4.3.4 DQ4: How is this feature mapped to its implementa-
tion?

This question targets the mapping between the problem domain to the implementa-
tion level. The problem domain consists of features, requirements and logical view
while the implementation level consists of development view and implementation
classes. Constructing answers to this question thus concerns querying the entities
and relations of these ontology classes. The explanation to this question consists of
three tabs; overview, detailed view and pattern view. They are more elaborately
described below.

The overview tab in this explanation shows a brief answer to the selected question
(see figure 4.23). This can be verified by looking at the top of the side-bar, which
displays the developer question and by reading the summary, which mentions the
feature in focus. The explanation shows the entity and all requirements related to it.
It then shows that the requirements relate to some development classes (which are
abstracted away to hide unneeded details) in the architecture. Lastly, these devel-
opment classes relate to implementation classes. In a broad sense, the overview tab
is showing what required functionality and what implementation classes are related
to the selected feature "Purchase products". What is useful from this view, is that
all implementation classes related to "Purchase products" can easily be identified,
which makes it easier to find implementation classes. This can be useful for many
tasks, such as for maintenance (i.e re-factoring, change tasks) or learning the system.

The detailed view tab, much like the overview, also shows how the selected fea-
ture is implemented. What differs from the overview is that it explains the relations
in more detail (see figure 4.24). The architecture is no longer abstracted away, and
the specific logical and development classes in the architecture cluster are shown.
This enables the ability to more specifically trace implementations of individual
functionalities of the feature.

The pattern view tab does not directly answer the developer question "How is this
feature mapped to its implementation". Instead, it is a complementary tab that can
be useful to better understand how the implementation classes are architecturally
structured (see figure 4.25). This tab has shifted focus away from the feature entity
and instead uses the implementation classes generated from the other two views,
i.e the implementation classes that are related to "Purchase products", as input.
From this input, SEC queries the ontology to find out how they are mapped to

56



4. Design and implementation

architectural patterns. As can be seen from figure 4.25, the implementation classes
map to the development view, much like the other views, and further into the roles
the classes play within each architectural pattern. This view can be useful for
developers and architects alike to gain insight to the roles of the classes (e.g do they
belong to the client or the server) which can assist developers in writing code that
properly follows the architecture of the system or architects in identifying which
parts of the systems will be affected by proposed architectural changes.

4.3.5 DQ5: What is the behavior of this feature?
Explaining system behavior is a bit different from explaining system structure. Since
the current iteration of the ontology lacks the vocabulary for expressing system be-
havior, a workaround has been made to express it. For this purpose, SEC relies on
existing behavioral diagrams. SEC shows the system structure that relates to the
chosen feature, and then the behavioral diagrams that in turn relate to the system
structure.

As with all tabs in this explanation, the functional viewpoint tab starts with
the feature in focus, "Purchase products", positioned on the leftmost part of the
visualization (see figure 4.26). Other functional entities and their relations to "Pur-
chase products" are structured, just as in DQ5. In this view, what can be counted as
behavior are mainly the use cases which explain system behavior for specific cases.
Since the ontology lacks the vocabulary to actually express the behavior itself, SEC
instead visualizes diagrams that are related to the use cases since these diagrams
would with high probability express the case behavior.

The logical viewpoint tab shows how "Purchase products" and its requirements
relate to the structures in the logical view which in turn are expressed by behavioral
entities (see figure 4.27). In this case, the behavioral entities are states. The ontol-
ogy does not model the exact behavior and relations between the shown states. It
only models the structural entities these behavioral states express. To show system
behavior, SEC relies instead on existing diagrams to show it. As such, these state
entities are related to diagrams, which in turn explain how these states work to-
gether. The main use of this tab is that it in detail shows tracing between structural
and behavioral entities. This allows the user to ask questions such as; "what be-
haviors does the cart have?", or "which logical entities are affected by this behavior?".

The development viewpoint tab shows the system behavior of "Purchase prod-
ucts" in more detail, explaining the behavior of structural classes from the develop-
ment standpoint (see figure 4.28). The system functionality is connected to classes
and packages of the development view, which in turn are connected to the behav-
ioral entities and lastly to the diagrams. In this case, these behavioral entities are
lifelines from sequence diagrams. Same as with the logical view, the ontology does
not express lifeline relations, instead, SEC leaves this task to the existing diagrams.

The UI viewpoint works the same way as above except describing the behavior

57



4. Design and implementation

Figure 4.23: (Q4) An overview of mapping between feature and implementation
58



4. Design and implementation

Figure 4.24: (Q4) A detailed view of the mapping between feature and implemen-
tation 59



4. Design and implementation

Figure 4.25: (Q4) A detailed view of how the implementation classes maps to
architectural patterns60



4. Design and implementation

of the UI classes (see figure 4.29).

4.3.6 DQ6: What is the rationale behind the choice of this
architectural pattern?

The pattern we have chosen to demonstrate for this question is "Thin-client MVC"
(see figure 4.30). This explanation consists of one tab showing how "Thin-client
MVC" relates to design options, which in turn relates to other design options, non-
functional requirements, constraints, arguments, and assumptions. For this pattern,
there are no defined assumptions and thus they are not visualized.

Choosing to use architectural pattern "Thin-client MVC" is a result of the design
option "Choice of using mixed fat and thin client MVC". This design not only re-
sults in using the "Thin-client MVC" but also the "Fat-client MVC", as the name
states, it uses a mix of both. Furthermore, the choice of using this design is moti-
vated by other design options, requirements, arguments, constraints or assumptions.

For this specific case, the design option "Choice of using mixed fat and thin client
MVC" has three types of artifacts that motivate it.

1. Different arguments, each of them arguing for why this design was chosen.
2. Previous design options that were already made.
3. Non-functional requirements of the system

These together motivate for why this design option was made for the system, and in
turn, motivates why the architectural pattern "Thin-client MVC" was implemented
in the system.

4.3.7 DQ7: How is this architectural pattern implemented?
This question is similar to DQ1. The only difference is that it is specific for one ar-
chitectural pattern. It is useful when the user chooses to study a single architectural
pattern as it hides information from the other patterns.

61



4. Design and implementation

Figure 4.26: (Q5) The behavior from a functional perspective
62



4. Design and implementation

Figure 4.27: (Q5) The behavior from a logical perspective
63



4. Design and implementation

Figure 4.28: (Q5) The behavior from a development perspective
64



4. Design and implementation

Figure 4.29: (Q5) The behavior from a UI perspective
65



4. Design and implementation

Figure 4.30: (Q6) Rationale for the architectural pattern "Thin-client MVC"
66



5
Results

This chapter will present the result of the evaluations and some analysis of these re-
sults to address our second research question; whether explanations and presentation
of existing software artifacts are useful for developers. We answer two sub-questions:
1) Do the explanations presented by SEC tool increase developers’ efficiency in per-
forming development related tasks? 2) How are these explanations perceived by
developers subjectively?

5.0.1 Results from usability tests
Usability tests were conducted to determine whether explanations provided by SEC
increase developers’ efficiency in performing development related tasks (for more
information about the design of the evaluation, refer to section 3.7).
Efficiency is a combined measure between how fast the participants solved the tasks
and how well they scored. As such, to measure whether participants were more
efficient in solving development-related tasks using the tool than using the docu-
mentation, participants of the evaluation were both timed and scored for all tasks.
Also recall that one observation for task times was lost, and thus the sample size
for the task times is 10 while the sample size of the task scores is 11. The sections
below will in more detail present the results of the timing and scoring.

5.0.1.1 Task times

Each task was timed separately, both when the participants used the documentation
and when they used the tool. Since the tasks for documentation and the tasks for
the tool could be mapped close to a 1 to 1 ratio, this made it possible to compare
time efficiency between them in three ways: (1) Comparing their the total time be-
tween the two phases, (2) comparing the total time per task type and (3) performing
a t-test to check the significance of the results. See table 5.1 for results.
There are two ways to view the total time comparison. The first way to view it
is using a bar chart comparing time differences between using the tool and using
documentation. From figure 5.1, we can state the following:

When comparing the total time of solving tasks using tool versus using
documentation, all participants completed their tasks faster using the
tool.

67



5. Results

Participant Tool time Documentation time

P1 1361 1532

P2 1628 2157

P3 813 1408

P4 1184 1354

P5 703 1012

P6 1002 1523

P7 1040 1760

P8 943 2084

P9 860 1604

P13 1149 1504

Table 5.1: Tool time and documentation time results

Figure 5.1: Comparison between documentation time and tool time

The second way to view this data is to plot the documentation time on one axis,
and the tool time on the other. This is visualized in figure 5.1. In the figure, several
lines have been drawn, and the section between the lines are colored. Each section
marks a certain time ratio of using the tool compares to using documentation. The
sections of the figure can be interpreted in the way shown in table 5.2. From this
graph, we can observe that:

68



5. Results

Figure 5.2: Scatter-plot showing tool time versus documentation time

Color Tool to documentation time ratio

Green 2+

Lime 1.5-2

Yellow 1.5-0.75

Orange 0.75-0.5

Red 0.5-

Table 5.2: Colored sections of figure 5.2

Half of the participants were more than 1.5 times faster to solve their
given tasks using the tool.

69



5. Results

The other way to compare the time efficiency is time comparison by task type, re-
quirements, architecture, behavior, and rationale (see figure 5.3). This comparison
shows how each task type compares to another, averaged over all participants. It can
show which areas the participants perform better when using the tools, and which
areas they perform worse. It also shows the magnitude of the difference. Figure 5.3
shows the following:

Figure 5.3: Time average by task type

On average, the participants completed the requirements and architec-
ture tasks twice as fast using the tool, while the performance differences
in the behavior and rationale sections were very small. The participants
perform slightly better using SEC in the behavior section, and slightly
worse in the rationale section

Lastly, a t-test was used to check whether the participants’ time differences between
using the tool versus using the documentation were significant (see appendix B for
data). However, before conducting the t-test, we checked for normality using a
Shapiro-Wilk test and QQ-plot and checked for equal variances using the F-test.
The results showed that both data sets follow a normal distribution and their vari-
ances are equal (see appendix A). As such the following hypotheses were set up

H0: The participants solved tasks faster using the documentation
H1: The participants solved tasks faster using the tool

70



5. Results

Statistic Result (seconds)

Mtool 1068.30

Mdoc 1593.80

SDtool 275.23

SDdocumentation 338.73

SDpooled 308.62

Single-tailed Welch t-test p-value 0.00065

Hedges’ g 1.55

Table 5.3: Table containing the results of the t-test and Hedge’s g

With this knowledge in mind, the significance level was set to 0.05 and a single-tailed
T-test was used to test the significance of H0.

The t-test (see table 5.3) shows that the probability that the participants solved
tasks faster using the documentation is 0.065 percent. This strongly suggests that
the participants, in fact, solved the tasks faster using SEC. However, the significance
of the results often does not provide the entire picture. Another way to view the
results is how much faster participants solved the tasks using SEC. To gauge the
power of the effect, the effect size was calculated using Hedges’ g, with correction
for small sample sizes using the following formula:

g = Mtool − Mdoc

SDpooled

∗ N − 3
N − 2.25 ∗

√
N − 2

N

where Mtool and Mdoc are the means of the two samples, SDpooled is the pooled
standard deviation for the two samples and N is the combined sample size. SDpooled

was calculated according to Cohen’s "correct" pooled standard deviation formula in
the following manner:

SDpooled =
√

(ntool − 1) ∗ SDtool + (ndoc − 1) ∗ SDdoc

ntool + ndoc − 2
where ntool and ndoc are the sizes of the two samples and SDtool and SDdoc are
standard deviations of the two samples. According to general guidelines, the value
of Hedges’ g can be interpreted using a specific rule of thumb; 0.2 or lower for a
small effect, around 0.5 for a medium effect, 0.8 or higher for a large effect. The cal-
culation of Hedges’ g resulted in the value 1.55 (see table 5.3), which is a large effect.

To summarize the task times, both the individual data analysis and the t-
test show that participants solved their given tasks faster using SEC and
Hedge’s g shows that power of the difference between the two samples

71



5. Results

is large. With these results in mind and without discussing threats to
validity (which we will do later in the discussion) we can conclude that
participants solved their given tasks faster using SEC than using the case
documentation.

5.0.1.2 Task scores

In addition to timing, the tasks were also scored. The scoring can be viewed in
the following way: (1) compare total score between the two phases (see figure 5.4
and 5.5), (2) comparing the score by task type (see figure 5.7) and (3) comparing
the score level distribution. What differs from the timing, is that in this case, we
chose not to perform a t-test, since normality of the samples could not be assumed.

Figure 5.4: Comparison between documentation score and tool score

From figure 5.5, it can be seen that when participants used the tool, they scored
higher than or equal to their scores when using documentation in every instance.
Also, in no instance did the participants score full points using the documentation,
while three participants scored full points using the tool.

Figure 5.5 also shows that most participants scored from 1 to 1.5 times better using
the tool. One participant did exceptionally well, and the rest had the same score on
both tool and documentation.

Just as with the time comparison by task type, the task types for the scores are
requirements, architecture, behavior, and rationale When comparing the score per
task types (see figure 5.7), on average the participants scored higher using SEC
for every task type. When comparing SEC score to the case documentation score,
participants scored rather well on requirement and moderately on architecture and
rationale while the behavior had the lowest score differences. The scoring difference
between tool and documentation is noticeable, although not quite as large as the

72



5. Results

Figure 5.5: Scatter-plot showing tool score versus documentation score

timing results (see section 5.0.1.1).

73



5. Results

Figure 5.6: Score distribution of tool versus documentation

Figure 5.7: Score average by task type

Comparing the score level distribution is useful since it shows how independently
the participants could perform overall. This is visualized in figure 5.6. The scoring
distribution for the tool shows that 39 of the total tasks were given a score of 3.
The ratio is around 70 percent since the total amount of tasks are 55. The scoring

74



5. Results

Topic Summary

Traceability
Being able to trace from the problem domain to the sys-
tem design and implementation was an attribute that
many participants found useful.

Analysis The ability to trace and navigate the visualization was
useful for analyzing the system.

Look and feel The look and feel of the system was good

Relevancy The explanations were relevant to answering the speci-
fied question.

Visuals and text The connection between the visualization and text was
useful for learning and comprehending the system.

Meta model design The design of the meta model seems to properly model
the domain

Navigation Navigating the visualization is useful for finding infor-
mation about the system

Learnability SEC makes the system easy to comprehend and learn.

Overview SEC gives a good overview of the system.

Table 5.4: Summary of system attributes/functionalities the participants liked

distribution for the documentation shows that 28 of the total tasks were given a
score of 3. This gives us just a bit over 50 percent. As for the lower scores, the
documentation has higher numbers on every score level. To summarize, it shows
that the participants, in general, could more independently and correctly solve their
given tasks by using the tool.

The results of the task scoring shows that in general, when participants
used SEC instead of the case documentation; (1) all of them scored higher
using SEC, (2) the scores mostly were in the 1 to 1.5 ratio range and (3)
they more often had a perfect score for the tasks. With these results in
mind, we can conclude that participants seem to score equal to or better
using SEC.

5.0.2 Results from qualitative interviews
We performed semi-structured interviews after the usability tests were done to find
out how developers perceived SEC tool (for more information about the evaluation
design, see section 3.7).
In these interviews, participants were asked to provide feedback in three basic forms.
First, they were asked to explain what they liked about using SEC in comparison
to using the case documentation. Second, they were asked to imagine using SEC to

75



5. Results

assist their current work and think of changes or additions of functions that would
be useful for them. Lastly, they had the opportunity to speak freely about their
opinions of SEC. The collected answers are summarized to the topics shown in ta-
ble 5.4, 5.5 and 5.6 (See appendix E to see the data). Figures 5.8 and 5.9 shows
how many participants mentioned each topic during the interview.

Figure 5.8: A summary of which areas of SEC the participants liked

The results from what participants liked about SEC (shown in figure 5.8)
shows that most participants liked: (1) the aspects of traceability be-
tween software artifacts and AK, (2) how SEC assisted them in learning
the case system and (3) how SEC could be used to navigate between soft-
ware artifacts and AK. Some participants liked: (1) the overview SEC
provides, (2) the look and feel of the UI, (3) that SEC helped them ana-
lyze the case system and (4) that the textual descriptions of the software
artifacts were close to the visualization.

The results from suggested improvements (see figure 5.9) shows that the
most requested features were: (1) a querying system that allows par-
ticipants to perform customized queries to fetch information, (2) the
developer questions to be summarized and (3) the ontology to be auto-
matically populated. Some participants suggested: (1) that SEC should
appeal to more use cases and stakeholders, (2) to make improvements to
the UI to make it more intuitive, (3) to allow access directly to the source
code in SEC and (3) to abstract the visualizations to improve scalability.

76



5. Results

Figure 5.9: A summary of improvements participants suggested

77



5. Results

Topic Summary

Add tutorial
The participants may need some time to familiarize
with the tool. Adding some tutorials would help with
this process.

Add querying system
The current iteration of the tool only has a question/an-
swer format. It would be useful to be able to make cus-
tomized queries to fetch information from the system.

Diagram abstraction

In bigger systems, the diagrams will be very cluttered.
Finding a way to group entities into bigger chunks, or
abstract away unnecessary information would be quite
useful.

Detailing questions

It is a bit challenging to predict what the questions
will answer. Some kind of a summary showing how the
answers to each question will be structured could solve
this problem.

Fully utilize inference
engine

Inference engines for ontologies can be used to infer
"new" knowledge of the system. It could be a useful
method to provide interesting information about the
system.

Automate ontology
population

Populating the ontology is one of the main challenges
with tools such as this. Finding an approach to au-
tomatically populate the ontology would make imple-
menting solutions like this much more attractive.

Appeal to more use
cases

The use cases for SEC can be extended to support more
task types and stakeholders.

Improve UI The UI can be improved to make use of the tool more
efficient and intuitive.

Access to source code Being able to browse the source code directly from SEC
makes it easier to learn more about the system.

Customizability The tool should be customizable to fit for different
stakeholders.

Text-focused alterna-
tive

Sometimes showing text may be more useful and in-
tuitive than showing a visualization. This especially
applies to the rationale.

Bookmarking and note
system

SEC can be useful as a tool for communication between
teammates. Functions to mark certain elements, write
notes and share them would be useful.

Table 5.5: (Part 1) Summary of suggested improvements

78



5. Results

Topic Summary

Add data input system
SEC currently lacks the ability to add new system
knowledge in the UI. There should be a UI that allows
easy input of such knowledge.

Automatic bug predic-
tion SEC could be used to predict bugs

Automatic software en-
gineering

The tasks that the participants solved during the eval-
uation could be automated.

Table 5.6: (Part 2) Summary of suggested improvements

79



5. Results

80



6
Discussion

The results of the evaluations suggest that participants who use SEC to solve
development-related tasks are generally more efficient than they are when using
the case documentation. The goal of this chapter is to provide a brief discussion
about the design of SEC and the results from the evaluation. First, we discuss the
key SEC design features and some of the challenges and implications related to that.
Second, we discuss the results of the evaluation and how they relate to the current
challenges with software documentation that this study focuses on. Third, we dis-
cuss the similarities and differences between SEC and other similar tools. Lastly,
we discuss the threats to validity in the results.

6.1 Ontology design, its challenges, and implica-
tions

The first research question was to study how software artifacts and AK of a system
can be presented and explained. A part of our approach to tackling this issue was
to store relationships between software artifacts and AK. We did this by building an
ontology which served as a meta-model for storing and accessing software artifacts
and AK in SEC.

6.1.1 The four sections of the ontology
In contrast to most similar studies and tools that also use ontologies [11], [13], [17],
the ontology designed in this study consists of software artifacts among four differ-
ent major sections; requirements, architecture, rationale, and implementation. This
means the ontology in our study covers a more diverse range of software artifacts
than most other ontologies made in the research area. The existence of these sec-
tions also made it easier to present software artifacts and their relationships from
different areas of concern which helps developers answer high-level questions using
the information from across these sections.
The main challenge of modeling the ontology this way (see figure 4.5 for a complete
view of the ontology) was to find the correct abstraction level to build it. It is easy
to make the ontology too detailed or too simple. The tricky part is to find a good
balance between the two. The border that was set in this study lies between being
able to trace from each software artifact to other related artifacts and staying on a
high level without going into specific details of how they communicate and interact.

81



6. Discussion

For example, many of the ontology classes relate to one another via the "compris-
esOf" and "partOf" relations. The idea of only showing these relations is that they
provide a meaningful way to view the structure of the system without revealing all
the exact details of how different software components interact. To express the ex-
act interaction between components, the ontology relies on external diagram images
and descriptions. Designing the ontology this way provides a range of benefits such
as minimizing cluttering of the visualization and making insertion of instance data
less complex.

The result from the evaluation showed that the participants, in general, solved their
given tasks faster using SEC. Even though the positive result from the evaluation is
also affected by other factors than the ontology structure alone, it seems to indicate
that this way of storing software artifacts was successful in assisting developers to
navigate, trace, reason about the system and answer high-level questions. However,
to find out whether this is specific ontology is optimal for the purposes stated above
would require further research in the matter.

6.1.2 The 4+1 architectural view
The design of the architecture section of the ontology was based on the 4+1 ar-
chitectural view model [4], with some modifications. This way of modeling the
architecture component was useful for categorizing different software artifacts. The
categorization made different abstraction levels of the architecture section of the
ontology distinguishable. This resulted in separating concerns, reducing room for
misinterpretation and increasing the expressiveness of the ontology. For example;
without each view of the architecture, it becomes hard to express and interpret
whether two architectural artifacts belong to the same abstraction level or not. By
utilizing the architectural views, a general rule can be applied. If the two archi-
tectural artifacts belong to the same view, or to the views that are closely related,
they are likely on the same abstraction level, otherwise, they are not. The 4+1 view
not only affected the dynamics of the ontology but also affected how SEC presents
software artifacts. The views provided good ways to cluster entities and explain the
same developer-question from different abstraction levels.

As with most design, the expressiveness of the ontology also comes with a cost.
Integrating the 4+1 view model into the ontology means each entity instance added
to the ontology needs to be classified more elaborately. If a system that uses machine
learning to learn how to populate ontologies was to be used for this case, just
identifying architectural artifacts would not be enough, it would also need to classify
which views these artifacts belong to. This adds another level of challenge for moving
towards automatically populating ontologies.

6.1.3 System behavior
Another notable challenge of modeling the ontology was finding out how to represent
system behavior. The behavior of a system is usually modeled differently from the

82



6. Discussion

system structure since they describe the system from different perspectives. System
structure concerns aspects such as class hierarchy and code structure while system
behavior concerns execution paths and interaction between classes. Modeling such
interactions or execution paths in the ontology would have made it too complicated
and detailed. The way we approached this problem was modeling the behavior in
the ontology by storing a replica of all entities affected by the behavior and linking
these entities to existing diagrams and their structural counterparts. This means
that the ontology itself cannot explain the behavior. Instead, it relies on existing
diagram images and diagram descriptions from the case documentation to do so.
The responsibility of the ontology is to merely map the structural entities to dia-
grams that express their behavior. The idea is that this way, it is possible to trace
from structural entities to their behavior without modeling the exact details of the
behavior into the ontology.

From the results of the evaluation, it seems that modeling the behavior using this
method did not help participants solve tasks related to system behavior any faster.
This suggests that the behavioral section of the ontology may need improvements.
However, as with their structural counterparts, these results are not only affected
by the ontology design, but also by how the behavior was presented in SEC. We
suspect that it is actually the presentation of the behavior which holds the main
responsibility for this result (discussed in the next section).

6.2 Presentation of SEC, challenges and implica-
tions

The first research question asks how can SEC can present and express software ar-
tifacts in such a way that it increases learnability of the structure and behavior of
the software system. The presentation of the artifacts was done by showing a graph
and a textual description. The graph presented the structure of the artifacts and
their relationships.

As you may recall, the results for behavior and rationale showed that participants
did not necessarily perform better in these areas. We previously explained that we
believe one of the significant causes behind this effect is the way system behavior
and rationale was presented.

Designing the presentation of system behavior was particularly challenging since
the ontology does not model behavioral interaction between software artifacts. One
solution to this challenge could be to directly integrate the actual images of the
diagrams (such as sequence diagrams, state machines and other UML diagrams that
represent system behavior) into the structural graph of the artifacts. Using this
method, the entities in the structural graph would be visually connected to their
counterparts in the diagram image. This way both the structure of entities and
their relationships as well as the behavioral interactions among the entities will be
displayed in one view. However, at this time, this process is technically challenging

83



6. Discussion

and requires a tool that can visually translate images containing UML models to a
format computers can understand (such as coordinates, names, size, etc.).

Rationale type tasks had the poorest performance compared to the other tasks. As
with system behavior, designing the presentation for rationale is also a problem that
could be further investigated. In this case, for the sake of consistency, we chose to
show the rationale visually, like all other explanations. During the evaluation, we
could observe that participants found it difficult to solve rationale related tasks.
This was later also confirmed by the quantitative results. Some participants sug-
gested that for the rationale type tasks specifically, textual descriptions could be
more useful than the structural graph. The reason being that it is more intuitive to
read rationale textually than to view it as a structural graph.

6.3 Discussion of results from the usability test
The results of the usability tests show that overall, all participants were faster and
more precise when solving their given tasks using SEC. When looking into the dif-
ferent task types, we saw that SEC was particularly effective in requirements and
architecture related questions.

In the grand scheme of things, the results from the usability test seem to align with
the results gathered by other studies [11], [15]. Although their tools and evaluations
differ from ours, they also found that in general, developers were more effective in
solving development related tasks using tools than using traditional documentation.
The results of this study mainly differ from theirs in that participants did not seem
to complete tasks related to rationale and behavioral aspects more efficiently using
SEC.

We believe that the reason rationale and behavior sections of SEC performed worse
was due to a combination of three main factors: (a) First, the approach used to
visualize the behavior and rationale was not what the participants expected to see.
For example; as we previously mentioned, one participant commented that for the
rationale, they preferred a textual explanation rather than a graphical one. The
reason being that argumentation is easier to understand when expressed in words
than when visualized. Regarding the behavior, we suspect that participants had dif-
ficulties interpreting how the visualizations expressed behavior since the behavioral
diagrams were not directly shown in the interactive visualization. (b) The second
factor is that most of the participants saw SEC for the first time. Some participants
actually expressed that they probably would have performed better if they had more
time to look into and use SEC. (c) The third factor is that the user interface was
not fully developed, and some features and interactions that would have been useful
for improving participants’ efficiency were not present. For example, at the time of
the usability test, the visualization was not "synced" with the textural description
in SEC. Many participants expected that the side-bar at the right-hand side would
automatically scroll down to the correct entity description when they selected an

84



6. Discussion

entity in the visual representation. Since it did not, they had to both search for
the entity they were looking for in the left-hand side visualization, while also in the
right-hand side, scroll to find the text that belongs to that entity. Some participants
found this cumbersome and sometimes would, therefore, choose not to look for in-
formation from the textual descriptions at all.

Based on what we have discussed regarding the rationale and behavior related parts
of SEC, we believe that there are obvious improvements that can be made to SEC
to improve performance in these areas. The explanations related to rationale should
be more text-focused, the explanations related to behavior could include behavioral
diagrams directly in the visualization and the user interface can be improved to
make SEC more intuitive for the user.

6.4 Discussion of results from the interviews
During the open-ended semi-structured interview, participants expressed what they
liked about SEC. What is worth discussing is that per the design of the evaluation,
the moderator did not lead the participant to express their opinions about specific
parts of SEC. Rather participants were asked what they liked about using SEC in
comparison to their experience of using the case documentation. As such, not all
topics were discussed by all participants which could have led to a lower total count
per topic. However, what is valuable with this format is that it enabled us, without
introducing bias by specifically asking the participants about the topics, to check
whether SEC actually addressed the identified documentation challenges listed at
the beginning of the paper (see table 1.1). The qualitative results show that trace-
ability, learnability, navigation, overview and look and feel were the top five areas of
SEC which participants liked. These correspond quite well with some of the iden-
tified challenges, as can be seen in table 6.1 which shows a mapping between the
challenges and the areas of SEC the participants liked.

Challenge What participants liked

(C1) Size and complexity Learnability, Navigation

(C2) Scattered information Navigation, Traceability

(C3) Limited approaches for informa-
tion retrieval Navigation, Traceability

(C4) Multiple audiences -

(C5) Excessive or redundant informa-
tion -

Table 6.1: Mapping between top five "I like" feedback to challenges

The first three challenges correspond quite well to the areas of SEC participants

85



6. Discussion

liked. What about suggested improvements? Areas that participants suggested im-
provements for are areas where they most likely believed were weak. Table D.1
shows the mapping between the challenges and the top five suggested areas of im-
provements.

Challenge Suggested improvements

(C1) Size and complexity -

(C2) Scattered information -

(C3) Limited approaches for informa-
tion retrieval Add querying system

(C4) Multiple audiences Appeal to more use cases

(C5) Excessive or redundant informa-
tion -

Table 6.2: Mapping between top five "What if" feedback to challenges

According to comments from the participants, SEC needs some improvements to
fully resolve the challenges C3 and C4. What should be taken into account is that
at the time of the evaluation, SEC was not a fully developed system. As such it
lacked many core features which would have been important to have in an industrial
setting. Regarding C3, the only method for participants to find information about
the case system was via the developer questions. As such it is not surprising that a
more customizable and flexible information retrieval system was desirable. The fact
that participants both expressed that they liked the existing format and suggested
improvements upon it, shows that the implemented solution seems to partly address
the challenge but more traditional methods (text search, some query language, etc.)
should be implemented as well. Regarding C4, 5 participants suggested that the
SEC could adhere to more use cases. What is worth to mention is that most of the
comments suggested new ideas for improving the range of use cases. The same argu-
ment could be made here since SEC was not complete at the time of the evaluation,
it did obviously not support most use cases. However, in the way the ontology is
modeled and how the system is structured, we have attempted to make the system
easy to extend for implementing more use cases and adhere to more stakeholders in
the future.

6.5 Similarities and differences to related work
SEC is composed of several components that are both similar and different from
previous work in the field of research. This section is dedicated to highlighting and
discussing these similarities and differences.

86



6. Discussion

SEC is similar to other existing tools in two ways. First is that it uses the same
technique to achieve a certain outcome (such as using an ontology to interrelate
artifacts). Second is that it tries to achieve the same underlying goals (such as gen-
erating explanations), but uses another method or does so in a different abstraction
level.

The tools that are most similar to SEC are tools that interrelate software artifacts,
support tracing, navigation and provide user interfaces for retrieving knowledge,
they are: The Knowledge Architect, ArchiMind, LaSSiE, and PAKME. SEC is sim-
ilar to these tools in the following aspects:

1. Interrelates software artifacts
2. Uses ontology for storing domain model and artifact instances
3. Supports querying knowledge from the ontology
4. Supports tracing and navigation between artifacts
5. Has very similar objectives

In addition to being similar to the above tools, SEC is also similar to Whyline.
They are similar in the way that both tools have the underlying idea of generating
explanations to software systems based on given questions. All the mentioned simi-
larities are core elements of SEC, but they are also expected to be similar since the
purpose of SEC was to use these existing technologies and ideas to explore further
possibilities, extending the boundary of knowledge in the area. This leads to the
topic of how SEC differs from the aforementioned tools, which are highlighted below.

1. SEC does not inherently support maintenance of knowledge as there are ex-
isting tools that demonstrate this ability.

2. In contrast to most of the aforementioned tools, the ontology of SEC covers
a larger range of software artifacts, from architecture and requirements to
implementation.

3. In comparison to other tools, the ontology of SEC has very simplistic struc-
tural relations between artifacts. Its function is to coarsely relate artifacts
for navigation and traceability rather than expressing exact dependency and
communication patterns. These kinds of expressions are left to be presented
through images and descriptions.

4. SEC puts focus on aspects of collection, presentation, explanation, and navi-
gation of software artifacts.

5. In contrast to other tools, SEC does not implement a keyword search system
to retrieve AK.

6. SEC instead presents knowledge by composing explanations to a selection of
predefined high-level questions. It is the first tool (to the best of our knowl-
edge) in this research area that generates explanations using this technique.

7. The explanations differ from the ones generated by Whyline in abstraction
level. SEC answers high-level questions related to architecture and specifica-
tion while Whyline answers implementation level questions.

87



6. Discussion

6.6 Threats to validity

This section describes threats to the validity of this research and how they have
been addressed.

6.6.1 Construct validity
The most prominent threat to construct validity is that SEC is better designed to
answer the kind of tasks given in the evaluation than the case documentation is. It is
thus expected that the results would be somewhat biased towards participants being
more efficient when using SEC. In an attempt to mitigate this problem, annotations
to the documentation index were made to point out sections which may be especially
relevant to architecture, requirements, user stories, etc. While the pilot tests show
that the annotations provided a noticeable improvement in participants performance
when solving the tasks using the documentation, it not clear whether it provided
too much or too little support. However, in our opinion, having an annotated index
for the case documentation definitely makes the playground fairer than without.
One common threat to the construct validity is called mono-method bias. This hap-
pens when only one method of measurement is used. To mitigate such threat, we
used both a usability test that mainly provided us with quantitative data as well
as an interview with open ended-questions that provided the qualitative data. This
makes it possible to check whether the results of the two methods align or not.

The last construct validity is about learning and ordering of the usability test. Recall
that the usability test consisted of two parts. In the first part, the participant solved
development related tasks using SEC. In the second part, they solved similar tasks
using the documentation. These two parts were very similar, and since both parts
used the same case system, participants could have gained some knowledge after
completing part one and therefore could apply this knowledge to the second part.
This could have helped them to solve the second part more efficiently. To mitigate
this risk, the order of these parts were swapped for every other participant. As a
result, half of the participants used the documentation first and the other half used
the SEC tool first to answer the questions.

6.6.2 Internal validity
The result of the quantitative section of the evaluation strongly suggested that par-
ticipants solved development-related tasks more efficiently when using SEC than
they did using the case documentation. However, as with all results, it is worth
discussing whether it is valid or not.

The main limitation that caused internal validity threats during the quantitative
section of the evaluation was the time constraint. Time was constrained for mainly
two reasons; (1) participants were not paid to participate, and as such would not
agree to participate if the sessions were too long and (2) too long sessions tend to

88



6. Discussion

tire out the participants which may affect the results.

The strategy to mitigate the issue of time limitation consisted of the following four
steps. First, a time limit was set on each task to adhere to the time limit. Second,
since the main focus was not to evaluate the intuitiveness and learnability of the UI
or the case documentation, but rather whether the tool helped participants solve
their tasks more efficiently or not, participants were allowed to ask the moderator of
the evaluation for pointers and directions when they felt lost (both when using the
tool and documentation). Third, in order to help participants move forward with
the tasks, whenever the participants failed to complete a task within the time limit,
help was provided to find the solution (this was reflected in their task score).

While these validity threats may have caused the results to be biased, we did at-
tempt to minimize the damage as much as possible. First, pointers were provided
both when participants were using SEC and when they were using the documenta-
tion. Second, when providing pointers, the questions were never directly answered
for them. Instead, the evaluation moderator merely explained where certain features
were located or pointed to chapters where they may find their answers. Third, since
the documentation was much larger and harder to learn and browse than SEC, we
provided a few simple annotations on the index page to point them into the right
direction (e.g which chapters were related to requirements, architecture, etc). And
lastly, to mitigate the fact that almost none of the participants (except 1) had seen
SEC before, they were allowed to explore the tool for 10 minutes where the moder-
ator explained all its features, how the visualizations and textual descriptions were
connected and how they could be interpreted.

With regard to these internal validity threats, we believe the bias would lean more
towards causing the participants to solve tasks faster using the documentation than
the other way around. Despite this, the results still turned out positive that par-
ticipants were more efficient using SEC. In our opinion, this strengthens the result
that participants solved their given tasks more efficiently when using SEC.

Another common internal validity threat is the bias in the selection of participants.
The results could, for example, be affected depending on whether: (a) participants
were very familiar with using the case documentation or SEC, (b) participants were
not familiar with using any kind of documentation all, or (c) if they were all from
industrial or academic backgrounds. Of course, some of these biases are very difficult
to mitigate. In this case, the actions taken to mitigate this kind of bias were to make
sure to select the participants that are representative of the population, software
developers and to make sure to select participants with certain background diversity.
The selected participants all knew how to code, and had at least seen or used SAD
to perform software development related tasks before. Half of the participants had
an industrial background and the other half had an academic background.
The last validity threat we will discuss is the sample size. The sample size of the
quantitative data we measured is 10. This is very small, and the results can obviously
not be generalized to the general population of software developers. As such it could

89



6. Discussion

be argued that due to this large risk for error, the quantitative data are not of any
use. However, since our main purpose of the evaluation was not to use the data to
make general statements about SEC, but rather aimed at collecting further insight
regarding whether the participants solved their given tasks more efficiently or not.
The quantitative data here is mainly used as a validity check to see whether the
qualitative results from the interviews hold or not. For example, a participant can
express that they think that SEC helped them perform much better, but in reality,
perhaps it did not. Using the quantitative data in this scenario allows us to check
the validity of that statement. If the two data contradict, then there is obviously
a conflict to reflect on, if not, the two results can strengthen each other. Now,
we did use the data to perform a t-test and calculate the effect size. And while
these results aren’t useful for predicting how future evaluations will perform, they
do provide insight into how well these specific participants performed and provide
pointers to the areas of SEC that may need improvements. We also believe that
the fact that most participants performed significantly better using SEC than the
case documentation, warrants a further investigation in the topic, and indicates
potential.

6.6.3 External validity
The external validity concerns to what extent the results of the findings of this study
can be generalized. The external validity threats in this study are due to constraints
in both time and resources, only a single case system was used as a reference to
design the ontology, to populate it and to evaluate the tool. This obviously severely
limits the ability to generalize the results of this study. By the design of the study,
generalizability was never a primary concern, rather the primary purpose of the
study was to explore how a tool can explain and present software artifacts of a case
system in such a way that increases understandability and traceability. However, as
previously discussed in this paper, creating a generalized tool that can explain any
kind of software system is a difficult task. The results from this study could be used
as a lesson or inspiration for future work, whether that be another case or towards
engineering a more generalized tool.

90



7
Conclusion

The current format of software documentation is commonly wiki-based or file-based,
both of which have their shortcomings; they provide limited traceability and naviga-
tion between software artifacts especially as documents grow in size and complexity.
Also, each software system often has multiple documentations to meet the needs
of different stakeholders and therefore information tends to become scattered over
different documents and platforms.

The purpose of this study was to explore ways to address these shortcomings. It is a
design science research studying one case, where the design issue was to examine (a)
how to represent relationships that can properly express the interrelations between
different software artifacts and AK of the case and (b) how to compose and present
information from such relationships to the user. The end goal with this tool was to
provide assistance to developers in navigating, understanding and tracing artifacts
of software systems. To achieve this goal, a case system was selected and a tool
was developed. The tool is called System Explanation Composer (SEC) which was
built using four parts: (1) an ontology to structure and store software knowledge,
(2) a case system to populate the ontology with, (3) a selection of frequently asked
questions by developers, which is also referred to as developer questions, (4) an ex-
planation generator that creates explanations to the developer questions

The ontology design has three distinct attributes that are unique from other similar
research in the area. The first attribute is that the ontology is designed to store and
interrelate software artifacts among four different categories.

1. Requirements, which holds information about the problem domain.
2. Architecture, which expresses how the system is designed.
3. Rationale, which holds the reasoning behind the design of the architecture.
4. Implementation, which holds information about the source code.

The second unique feature is the architecture section of the ontology. It is based
on the 4+1 architectural view model [4] which targets the information needs of dif-
ferent stakeholders by providing guidelines to express several abstraction levels of
system design. These two attributes made the ontology more expressive and gave
SEC the ability to provide tracing from features to implementation. It also has the
ability to answer high-level questions by combining knowledge from different areas
of a software system.

The final unique feature to SEC is that it generates explanations to high-level ques-
tions about the system. Unlike most other research in the field that focuses on

91



7. Conclusion

insertion and retrieval of information[2], [7], [11], [13], [17], SEC instead demon-
strates how retrieved information from ontologies can be composed and presented
to form explanations to high-level questions. The other studies provided the ground-
work, while SEC further explores and demonstrates the potential value of structuring
software documentation in ontologies.
With the ontology as a base, explanations to the chosen developer questions could be
generated. The explanations presented a structural graph and textual descriptions
to the entities of the structural graphs side by side. This made it possible for SEC
to show how certain software artifacts were structured while providing descriptions
of them at once.

To find out whether SEC would prove to be useful for developers, a two-part evalu-
ation was performed. The first part was a usability test, which had a sample size of
10. The second part was a semi-structured interview, which was performed after the
usability test, with a sample size of 13. The results from the usability tests show that
in general, participants were significantly more efficient in solving given tasks using
SEC in comparison to using the file-based case documentation. This was especially
true with tasks related to requirements and architecture. In the case of behavioral
and rationale related tasks, there seemed to be no noticeable improvements nor re-
cessions in performance when using SEC. However, there are good indications that
the low performing areas of SEC can be greatly improved in the future.

After the usability tests, participants were also interviewed using a semi-structured
format with open-ended questions. Unprompted, almost all participants expressed
that they liked the traceability aspect of SEC. More than half of the participants also
expressed that they noticed improvements in learnability, navigation, and overview
when using SEC. The areas most participants suggested improvements for were
including a more customizable querying system, providing short summaries to ex-
planations and finding techniques to automate ontology population. These results
suggest that participants believe that SEC addresses some challenges of software
documentation and has much room for growth.

Despite the fact that we had a small sample size and could not generalize these
results to the whole population of software developers, we still believe our results
show potential and are useful for promoting further research within this area.

Future work should aim at automatically populating ontologies as it would pave the
way for a tool such as SEC to be used in the industry. However, finding a method
to do this is obviously not a simple task. Other interesting areas to look into are;
(1) finding ways to better model and/or present the behavior and rationale sections
of the ontology and (2) providing a customizable querying system alongside the
question/answer format, (3) finding ways to make manual population of the ontology
user-friendly and effortless, (4) abstracting entities to reduce graph cluttering and
(5) connecting SEC to the IDE for closer access to source code. If solutions to these
problems were developed, despite the lack of automation of ontology population,
we believe tools like SEC will prove to be a valuable asset to software development

92



7. Conclusion

processes.

93



7. Conclusion

94



Bibliography

[1] H. A. Simon, “The sciences of the artificial”, Cambridge, MA, 1969.
[2] P. Devanbu, R. Brachman, and P. G. Selfridge, “Lassie: A knowledge-based

software information system”, Communications of the ACM, vol. 34, no. 5,
pp. 34–49, Jan. 1991. doi: 10.1145/103167.103172.

[3] D. E. Perry and A. L. Wolf, “Foundations for the study of software architec-
ture”, ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52,
Jan. 1992. doi: 10.1145/141874.141884.

[4] P. Kruchten, “Architectural Blueprints — The “ 4 + 1 ” View Model of Soft-
ware Architecture”, vol. 12, no. November, pp. 42–50, 1995.

[5] T. C. Lethbridge, J. Singer, A. Forward, and D. Consulting, “How Software
Engineers use Documentation : The State of the Practice Documentation ”,
2003.

[6] A. J. Ko and B. A. Myers, “Designing the whyline”, Proceedings of the 2004
conference on Human factors in computing systems - CHI 04, 2004. doi: 10.
1145/985692.985712.

[7] M. A. Babar, X. Wang, and I. Gorton, “Pakme: A tool for capturing and using
architecture design knowledge”, 2005 Pakistan Section Multitopic Conference,
2005. doi: 10.1109/inmic.2005.334419.

[8] A. J. Ko, B. A. Myers, S. Member, M. J. Coblenz, and H. H. Aung, “An
Exploratory Study of How Developers Seek , Relate , and Collect Relevant
Information during Software Maintenance Tasks”, vol. 32, no. 12, pp. 971–
987, 2006.

[9] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design
science research methodology for information systems research”, Journal of
management information systems, vol. 24, no. 3, pp. 45–77, 2007.

[10] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and Answering Questions
during a Programming Change Task”, vol. 34, no. 4, pp. 434–451, 2008.

[11] A. Jansen, P. Avgeriou, and J. S. V. D. Ven, “Enriching software architecture
documentation”, Journal of Systems and Software, vol. 82, no. 8, pp. 1232–
1248, 2009. doi: 10.1016/j.jss.2009.04.052.

[12] Systems and software engineering - Life cycle processes - Requirements engi-
neering, IEEE 29148, 2011.

[13] K. A. D. Graaf and A. Tang, “Ontology-based Software Architecture Docu-
mentation”, 2012. doi: 10.1109/WICSA-ECSA.212.20.

[14] L. L. Escoriza, “Analysis , design and development of a web-shop template
using SPHERE . IO e-commerce platform”, no. January, 2014.

95

https://doi.org/10.1145/103167.103172
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/985692.985712
https://doi.org/10.1109/inmic.2005.334419
https://doi.org/10.1016/j.jss.2009.04.052
https://doi.org/10.1109/WICSA-ECSA.212.20


Bibliography

[15] K. A. D. Graaf, P. Liang, A. Tang, and H. V. Vliet, “Science of Computer
Programming How organisation of architecture documentation affects archi-
tectural knowledge retrieval”, Science of Computer Programming, vol. 121,
pp. 75–99, 2016, issn: 0167-6423. doi: 10.1016/j.scico.2015.10.014.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2015.10.014.

[16] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, et al., “On-demand
developer documentation”, in Software Maintenance and Evolution (ICSME),
2017 IEEE International Conference on, IEEE, 2017, pp. 479–483.

[17] M. Soliman, A. R. Salama, M. Galster, O. Zimmermann, and M. Riebisch,
“Improving the search for architecture knowledge in online developer commu-
nities”, 2018 IEEE International Conference on Software Architecture (ICSA),
2018. doi: 10.1109/icsa.2018.00028.

[18] M.-A. Storey, “Theories, methods and tools in program comprehension: Past,
present and future”, 13th International Workshop on Program Comprehension
(IWPC05), doi: 10.1109/wpc.2005.38.

96

https://doi.org/10.1016/j.scico.2015.10.014
http://dx.doi.org/10.1016/j.scico.2015.10.014
https://doi.org/10.1109/icsa.2018.00028
https://doi.org/10.1109/wpc.2005.38


A
Appendix A

This appendix shows the test for normality for tool time (figure A.1) and documen-
tation time(figure A.2). It also shows the F-test that checks whether the variances
between the two are equal (figure A.3).

I



A. Appendix A

Figure A.1: Check for normality, tool time

II



A. Appendix A

Figure A.2: Check for normality, documentation time

III



A. Appendix A

Figure A.3: F-test, check for equal variances between tool and documentation
time

IV



B
Appendix B

This appendix shows the raw time data (figure B.1) and score data (figure B.2). TQ
stands for Tool Question and DQ stands for Documentaition Question.

V



B. Appendix B

Figure B.1: Left side, labeled TQ1 to TQ6 are tool times. Right side, labeled
DQ1 to DQ6 are documentation times

VI



B. Appendix B

Figure B.2: Left side, labeled TQ1 to TQ6 are tool scores. Right side, labeled
DQ1 to DQ6 are documentation scores

VII



B. Appendix B

VIII



C
Appendix C

This appendix shows personal development experience (figure C.1), and UML model
familiarity (figure C.2) for each participant.

IX



C. Appendix C

Figure C.1: Personal experience for each participant

X



C. Appendix C

Figure C.2: How familiar participants were with UML models

XI



C. Appendix C

XII



D
Appendix D

This appendix shows the evaluation guide including the Personal experience ques-
tionnaire, Usability test and Semi-structured interviews.

D.1 Introduction
Good morning. Thank you for participating in this evaluation.

The purpose of this session is to evaluate our tool, called the System Knowledge
Composer, in terms of how well it helps comprehension of requirements, architec-
ture and rationale of a software system, in this case, an open source e-commerce
system.

The evaluation will take around 1.5 hours and consists of 3 main parts:

You will be given a few tasks to solve using the System Knowledge Composer. You
will solve similar tasks, but this time using the written documentation instead. We’ll
ask you for your opinions and feedback of the tool.

During the session, we will be of assistance for questions you have regarding navi-
gation on the kpage or just understanding what certain elements are. However, we
cannot answer the tasks for you.

Since we have a limited amount of time, we do not expect you to try to understand
the system in-depth. This means you can select several potential options for any
question if you’re not entirely sure of which one is correct.

We would also make it clear that it is the tool we are evaluating, this means what-
ever your answer is for the tasks, there is no right nor wrong answer, we only require
that you try to answer to the best of your ability using the given information. We
are mostly interested in how you find the answers and how you interpret the infor-
mation you find.

Lastly, note that the system is still just a proof of concept, so you will likely find
bugs and issues with the page navigation. Try not focus too much on that. The
main focus of the evaluation is on the graphs and the presentation of the information
you find.

XIII



D. Appendix D

D.2 Personal experience questionnaire
Question 1
Please indicate how many years of experience you have as a software developer?

Question 2
Please indicate your level of experience within web development?

• None
• Low
• Average
• High

Question 3
Please indicate which ones of the items below best describes your experience with
software architecture.

• Never worked with it
• Know about it but have never used it to perform development tasks
• I have used software architecture documents to perform development tasks
• I have designed software architecture

Question 4
Please indicate how familiar you are with the following UML diagrams.

Not at all Somewhat Very

Use case diagrams

Class diagrams

State machines

Sequence diagrams

Deployment diagrams

Package diagrams

Table D.1: Level of familiarity with UML diagrams

D.3 Usability test

D.3.1 Explore System Knowledge Composer
Spend 10 minutes exploring System Knowledge Composer. We will guide you
through some of the views.

XIV



D. Appendix D

D.4 Part 1 - Perform a task using System Knowl-
edge Composer

Considering the following user story and using the Software Knowledge Composer,
please answer the 6 questions on the following pages.
User story
Name: Add size filter
Description: As a customer
I want to be able to filter products based on available sizes So I can only see the
products that are available in my size

Question 1:
Looking at the functionalities that exist in the system

• Which feature is more relevant/suitable to include this new “Add size filter”
functionality?

• Explain briefly why you chose this feature.

Question 2:
Considering the feature Display Products

• Are there any additions or changes to use cases, requirements and/or user
stories related to this feature that you think should be made for the new “Add
size filter” functionality? If so, which are affected? Please elaborate briefly.

Question 3:
Considering the feature Display Products

• Can you find potential implementation classes you’ll have to make changes to,
to include the new “Add size filter” functionality? Please elaborate briefly.

Question 4:
Considering the feature Display Products

• Can you find the class diagram of the logical classes involved in the architecture
layer of this feature?

• In the architecture layer, can you name some of the development classes?
• Which development classes do think you you’ll have to modify to include the

new “Add size filter” functionality? Please elaborate briefly.

Question 5:
Considering the feature Purchase products

• Can you find the behavior of this feature? Can you see sequence diagrams or
state machine diagrams related to this feature?

XV



D. Appendix D

Question 6:
Which architectural patterns are followed in the system?

• Can you find descriptions for these patterns?
• Different packages play different roles in this architectural pattern you chose.

Can you name one of the packages and its role?
• Can you explain why the MVC pattern has been chosen?

D.4.1 Part 2 - Perform a task using software documentation
Considering the following user story, please use the software documentation to an-
swer the following questions.
User story
Name: Shipping address same as billing address
Description: As a customer
I want to be able to choose if I want the shipping address to be filled with my billing
address So that I don’t have to fill in my address twice if the shipping and billing
address are the same

Question 1:
Looking at the features/functionalities that exist in the system:

• Which existing feature/functionality is more relevant/suitable to include the
new “Shipping address same as billing address” functionality?

• Explain briefly why you chose this feature/functionality.

Question 2:
Considering the feature/functionality for account management (alternative terms:
user management or manage account):

• Are there any additions or changes to use cases, requirements and/or user
stories related to this feature/functionality that you think should be made for
the new “Shipping address same as billing address” functionality? If so, which
are affected? Please elaborate.

Question 3:
Considering the feature/functionality for account management (alternative terms:
user management or manage account)

• Can you find the class diagram of the conceptual classes involved in the archi-
tecture layer of this feature?

• Which potential conceptual classes do you think you’ll have to modify to in-
clude the new “Shipping address same as billing address” functionality? Please
elaborate.

XVI



D. Appendix D

Question 4:
Considering the feature/functionality for account management (alternative terms:
user management or manage account)

• Looking at the internal design of this feature/functionality, can you name the
classes in the server-side Model component that you think might need to be
modified to include the new “Shipping address same as billing address” func-
tionality?

Question 5:
Considering the feature/functionality for account management (alternative terms:
user management or manage account)

• What is the behavior of this feature/functionality? Can you see sequence di-
agrams or state machine diagrams related to it?

Question 6:
Which architectural patterns are followed in the system?

• Which architectural patterns are followed in the system?

• Can you find descriptions for these patterns?

• Can you name and explain the 3 main components MVC pattern is divided
into?

• Can you explain why a mix of thin-client and fat-client has been chosen for
the system architecture?

D.5 Interviews

D.5.1 Part 3 - Feedback survey
Fill in the blanks for each of the following topics. You are allowed to name multiple
items per topic. Note that the purpose of this evaluation is to learn the strengths
and weaknesses of our tool. As such, we are interested in your honest opinions and
welcome any opinions of the tool, whether they are positive or negative.

In comparison to using normal documentation, I like...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If I was to use this tool in practice, what if these features were available...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XVII



D. Appendix D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Without regard to resources, time or boundaries of current technology, I wish this
was possible...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aside from the topics above, here’s additional comments I’d like to make...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XVIII



E
Appendix E

This appendix shows the qualitative results from the evaluations. There are two
categories; categorization by the question that was asked (i.e I like, What if and
Other) and by the answer that was provided which we call grouping.

XIX



E. Appendix E

Figure E.1: What if, part 1

XX



E. Appendix E

Figure E.2: What if, part 2

XXI



E. Appendix E

Figure E.3: What if, part 3

Figure E.4: Other

XXII



E. Appendix E

Figure E.5: I like, part 1

XXIII



E. Appendix E

Figure E.6: I like, part 2

Figure E.7: I like, part 3

XXIV


	List of Figures
	List of Tables
	Introduction
	Current documentation and its issues
	Features current commonly used CASE tools lack
	Interrelating software artifacts and AK
	Statement of the problem
	Purpose of the study
	Scope
	A brief summary of the approach
	Where our study fits in the literature

	Background
	Current software documentation
	Document types for object-oriented software
	4+1 architectural view model
	Software structure and behavior
	Design rationale

	Related work
	Similar studies
	Whyline
	A knowledge-based software information system, LaSSiE
	The Knowledge Architect
	PAKME

	Work that contributes to the general vision
	The use of ontologies
	Developer documentation on demand
	Commonly asked questions during programming tasks
	Program comprehension


	Methods
	Research method
	Selecting case system
	Overall system design
	Ontology
	Designing the ontology
	Implementing the ontology
	Patterns and conventions
	Populating the ontology

	Explanation design phase
	Collecting questions
	Design of explanations

	Construction of SEC
	Evaluation
	Design of evaluation
	Data collection
	Quantitative data
	Qualitative data

	Participants
	Performing the evaluation


	Design and implementation
	Relating software artifacts using an ontology
	Structure and Behavior
	Rationale
	Relations between different sections of the ontology

	Design of explanations
	Demonstration of SEC
	DQ1: Which functionalities exist in the system?
	DQ2: Which architectural patterns exist in the system?
	DQ3: What is the role of this feature?
	DQ4: How is this feature mapped to its implementation?
	DQ5: What is the behavior of this feature?
	DQ6: What is the rationale behind the choice of this architectural pattern?
	DQ7: How is this architectural pattern implemented?


	Results
	Results from usability tests
	Task times
	Task scores

	Results from qualitative interviews


	Discussion
	Ontology design, its challenges, and implications
	The four sections of the ontology
	The 4+1 architectural view
	System behavior

	Presentation of SEC, challenges and implications
	Discussion of results from the usability test
	Discussion of results from the interviews
	Similarities and differences to related work
	Threats to validity
	Construct validity
	Internal validity
	External validity


	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Introduction
	Personal experience questionnaire
	Usability test
	Explore System Knowledge Composer

	Part 1 - Perform a task using System Knowledge Composer
	Part 2 - Perform a task using software documentation

	Interviews
	Part 3 - Feedback survey


	Appendix E

