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Abstract

In this thesis I complement the results from Bates (1996) wherein a Stochastic Volatility

Jump-Diffusion model for pricing foreign currency options is introduced and evaluated against

USD/DM foreign exchange options. I complement Bates results with two different calibration

methodologies, nonlinear least-squares and the built-in MATLAB function fmincon, using the

same dataset that was used in Bates (1996). The results shows that the nonlinear least-squares

calibration exhibit parameter values closely related to that of Bates (1996) and performs well

when testing the pricing performance across moneyness, thus confirming Bates results. For the

fmincon calibration, certain implicit parameter values are improbable given the model spec-

ification. This also corresponds to a comparatively worse pricing performance than that of

lsqnonlin and an overall inconsistent pricing with respect to theoretical interpretation.
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1 Introduction

In this thesis, the focus is on pricing options on foreign currencies using Bates (1996) stochastic

volatility jump-diffusion model. For foreign currencies, a number of typical distributional proper-

ties has been documented. Firstly, volatility is time-varying as has been evidenced by numerous

ARCH/GARCH studies (Bollerslev et al. 1992) or in for example Taylor (1995) where a survey of

the exchange rate economics is provided for the 1980s and 1990s. Volatility clustering, the notion

that periods of high volatility are contrasted with periods of low volatility, are observed for exchange

rate returns (Cheung and Miu 2009). It has also been shown that options on foreign currencies, as is

the focus of this thesis, exhibit volatility smile-properties (Beneder and Elkenbracht-Huizing 2003).

Figure 1: Log-differenced daily returns of USD/DM for Jan 1984-Jun 1991.

Secondly, the unconditional distribution of exchange rate returns exhibits excess kurtosis, i.e. a

leptokurtic distribution. This has been shown for example in de Vries and Leuven (1992), Tucker

and Pond (1988), and Friedman and Vandersteel (1982). There are however empirical results sug-

gesting that there is an inverse relationship between the length of the holding period and the excess

kurtosis, meaning that the return distribution tends towards the normal distribution as the holding

period increases. Boothe and Glassman (1987) look at 4 major currencies and find that daily, weekly

and monthly data exhibit non-normal distributions while quarterly data seems to be normally dis-

tributed.

Thirdly, as discussed in de Vries and Leuven (1992), the distribution of exchange rate returns may

become skewed if, for example, there are dissimilar monetary policies between the countries in ques-

tion. This has been shown in Akgiray et al. (1988) where they observe skewness for exchange-rate

return distributions of minor trading currencies.
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The seminal paper Black and Scholes (1973) introducing the Black-Scholes model changed the land-

scape for pricing and modelling options by providing a closed-form analytic pricing formula for

European options. The Black-Scholes model however relies on some assumptions, one heavily dis-

cussed being the assumptions of a flat term structure of volatilities. This volatility-assumption has

been widely challenged and several models have been developed to combat this.

Merton (1976) developed a constant-volatility model which includes a jump-component for the un-

derlying asset. The need for including jumps is motivated by the presence of jumps observed in

market prices as well as for risk management purposes (Tankov and Voltchkova 2009). In Dupire

(1994) a local volatility model was developed where the volatility is a deterministic function of

time and the underlying. Furthermore, there are numerous stochastic volatility models wherein the

volatility follows a separate diffusion process and thus allows the volatility to develop stochastically

over time. Examples are the Stein and Stein model where the volatility component follows a mean-

reverting process (Stein and Stein 1991), the Heston model where the volatility component follows a

mean-reverting square root process (Heston 1993), the SABR model which relates a forward under

stochastic volatility (Hagan et al. 2002), the Constant Elasticity of Variance model (CEV model)

which is based on a relationship between volatility and the underlying using a parameter measuring

the leverage effect Cox (1975), and Bates model wherein stochastic volatility and jump-diffusion is

combined (Bates 1996).

There are models that combine the local volatility with stochastic volatility and/or jumps, such as

the model proposed by Jex et al. (1999) where the Heston model is modelled together with a local

volatility correction component, or the JLSV model (Lipton and McGhee 2002) which adds jumps

to the model proposed by Jex et al. (1999). Beyond local volatility and stochastic volatility, the

model introduced in Hull and White (1990) has a stochastic interest rate-component in order to

price interest-rate derivatives, where Amin and Ng (1993) expands this by proposing a model that

combine stochastic interest-rate with a stochastic volatility-component.

For pricing options on foreign currencies, an extension of the Black-Scholes model was developed in

Garman and Kohlhagen (1983) which incorporates the two interest rates related to currency pairs.

Tucker et al. (1988) tests the Garman-Kohlhagen model against the CEV model for prediction pur-

poses looking at options on five major currencies. They find that the CEV model provides better

prediction pricing accuracy than the Garman-Kohlhagen model for intervals lower than five days

but beyond that, the models’ performances is not statistically distinguishable. Shastri and Wethya-

vivorn (1987) perform empirical tests of the Garman-Kohlhagen model, CEV model, Merton’s jump-

diffusion model and a pure jump-model on currency options for implied-volatility patterns. They

find that the pure jump-model and Merton’s jump-diffusion model outperform Garman-Kohlhagen

and the CEV. Melino and Turnbull (1990) compare the Garman-Kohlhagen model to a stochastic
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volatility model for pricing foreign currency options and find that the stochastic volatility model

provides a better fit for the USD/CAD exchange rate and in pricing ability. Bates model (Bates

1996) previously mentioned was developed for pricing foreign currency options. In the article the

model was tested on USD/DM currency options from 1984 to 1991. The model was contrasted

to the Garman-Kohlhagen model, a deterministic volatility/jump-diffusion model and a stochastic

volatility model. The pricing results show that allowing for leptokurtic distributions through the

non-constant volatility specifications improved the pricing ability, especially on in- and out-of-the-

money options with a maturity less than 3 months. Furthermore, it is noted in the article that the

stochastic volatility jump-diffusion model presented suffers from parameter instability through two

tests that are developed in the article.

Building on this framework, the aim of this thesis is to complement the results in Bates (1996). This

is done by implementing two different calibration methodologies, nonlinear ordinary least squares

and the built-in MATLAB function fmincon, using the same market data. As such, the results can

be directly contrasted to that of Bates, where inferences are made for consequences of using different

calibration methodologies. The parameters implicit in the option data are also evaluated with respect

to the interpretation from the analytical specification of the model, where I attempt to shed some

light as to the potential problem of having an analytically pleasing model and whether empirical

misspecification might occur as a consequence. This is an issue which has been raised in Bakshi et al.

(1997), Bates (2003), and Mills and Patterson (2009) with regards to stochastic volatility models

(with or without jump-diffusion) calibrated in empirical settings which pricing performance is better

than constant-volatility models but whose resulting parameter values are implausible. Furthermore,

an evaluation of the pricing performance under the different calibration methodologies is done for

the framework in which Bates model was developed, that of pricing foreign currency option, using

the Garman-Kohlhagen model as a benchmark.

The results show that the implicit parameter values of the nonlinear-least squares calibration are

largely consistent with those presented in Bates (1996). For fmincon, the calibrated parameter val-

ues deviate to a greater extent from the Bates (1996) values, most notably the volatility of variance-

and correlation-parameters. The pricing performance of the lsqnonlin specification is compara-

tively better than both the fmincon specification as well as the Garman-Kohlhagen model. The

fmincon pricing performance is on an aggregate level the worst, but beats the Garman-Kohlhagen

for in-the-money puts and out-of-the-money calls.

The structure of the thesis is the following: Chapter 2 provides a light informal theoretical framework

for mathematical concepts used in the thesis. Chapter 3 presents the option pricing models for cur-

rency options that are used throughout, namely the Garman-Kohlhagen Model and Bates Stochastic

Volatility Jump-Diffusion Model. Chapter 4 presents the calibration and pricing methodology used.

Testing of the methodology is done in a theoretical setting using Monte Carlo simulation. The chap-
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ter is concluded with a discussion of numerical issues. Chapter 5 presents the foreign currency option

transactions data from the Philadelphia Stock Exchange that is used. Chapter 6 presents the results

from calibrated parameters implicit in the option prices for the different calibration methodologies

as well as pricing evaluation which is contrasted with that of Bates (1996). Chapter 7 concludes the

thesis.
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2 Theoretical Framework

This chapter is an informal introduction to some of the theoretical framework for this thesis. Firstly,

throughout this chapter we will work on a probability space (Ω,F ,P) where Ω denotes the set of all

possible outcomes, F denotes the collection of all subsets and P denotes the probability measure, i.e.

function mapping F to [0, 1]. If we denote X as a random variable, then X is a mapping from Ω to

the real numbers R. Together with the probability measure P on Ω, X determines the probability

distribution on R (Shreve 2004). More than one probability measure is used in this thesis, changing

from actual probability measure to risk-neutral probability measure, which is expanded upon in later

chapters.

2.1 Stochastic Processes

Definition of Stochastic Process: A stochastic process X is a family of random variables on a

common probability space (Ω,F ,P) indexed by some set T such that

{Xt ; t ∈ T} (1)

From a financial perspective, we usually work with a finite final time T and then have a filtration

F which is indexed by the time variable t, {Ft; 0 ≤ t ≤ T}. We can interpret Ft as the information

available at time t. Information increases over time such that the information contained in Fs is

contained within Ft if 0 ≤ s ≤ t ≤ T . For our purposes, the stochastic process Xt can be thought

of as the price of an asset at time t which thus is Ft-measurable, i.e. that the information known at

time t incorporates all the past prices of the asset up until time t for 0 ≤ t ≤ T .

Two important features of stochastic processes are martingales and Markov processes. A Markov

process says that the estimate of a future value of a stochastic process X only depends on the cur-

rent value Xs and not its past history. More formally, when we are given a function f and another

function g and 0 ≤ s ≤ t ≤ T , then

E[f(Xt)|Fs] = g(Xs) (2)

Martingales suggests that

E[Xt|Fs] = Xs, for all 0 ≤ s ≤ t ≤ T (3)

i.e. that the best guess of a future value is the current value.

2.2 Brownian Motion

A Brownian motion, also called Wiener process, is a stochastic process which essentially is the

continuous-time version of a random walk. Starting with a symmetric random walk, where for each
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step, the path takes either one step up or one step down, with equal size, then it can be modelled as

the process of tossing a fair coin a number of times. If we denote p to be the probability of tossing

heads (H) and (1− p) to be the probability of tossing tails (T ), assume its equal probability of each

outcome, and define each outcome ωj , we have the following

Xi =

1 if ωj = H

−1 if ωj = T
(4)

We can construct the symmetric random walk as the successive outcomes of the tosses

Yk =

k∑
i=1

Xi , k = 1, 2, ... and Y0 = 0 (5)

Figure 2: Sample Symmetric Random Walk path.

In order to obtain the Brownian motion we decrease the step sizes and increase the time of the

symmetric random walk. We fix a positive integer n and define the scaled symmetric random walk

as

W (n)(t) =
1√
n
Ynt, (6)

provided nt is an integer. We obtain the Brownian motion as n → ∞. A more formal definiton

found in Shreve (2004):
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Definition of Brownian Motion: Let (Ω,F ,P) be a probability space. For each ω ∈ Ω, suppose

there is a continuous function Wt of t ≥ 0 that satisfies W0 = 0 and that depends on ω. Then Wt,

t ≥ 0, is a Brownian motion if for all 0 = t0 < t1 < · · · < tm the increments

Wt1 = Wt1 −Wt0 ,Wt2 −Wt1 , · · · ,Wtm −Wtm−1 (7)

are independent and each of these increments is normally distributed with

E[Wti+1 −Wti ] = 0, (8)

V ar[Wti+1
−Wti ] = ti+1 − ti (9)

The Brownian motion is both a martingale and a Markov process.

Figure 3: Sample Brownian motion paths.

2.3 Stochastic Differential Equations

In order to introduce stochastic differential equations, lets first consider an ordinary differential

equation. The idea is that we are given a functional relationship:

f(t, x(t), x′(t), x′′(t), ...) = 0, 0 ≤ t ≤ T (10)

which involves the unknown function x(t), time t and its derivatives (x′(t), x′′(t), ..) The solution of

the differential equation (10) is to find the function x(t) which describe the dynamics of the process

over a given period of time. The simplest version is an ordinary differential equation of order 1:

dx(t) = a(t, x(t))dt, x(0) = x0 (11)
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A stochastic differential equation is an extension of the ordinary one, introducing randomness into

the equation. This could simply be done by introducing randomness into the initial condition x(0)

but for our purposes, this is introduced also via an additional term:

dXt = a(t,Xt)dt+ b(t,Xt)dWt, X0(ω) = Y (ω) (12)

Wt here denote a Brownian motion, which have the properties explained above. a(t,Xt) and b(t,Xt)

are in this example deterministic functions, and the solution, X, is (if it exists) a stochastic process.

A popular framework for pricing financial derivatives, where Xt denotes the price of a stock at time

t, is one which follows the stochastic differential equation

dXt = µXtdt+ σXtdWt (13)

which is called a Itô drift-diffusion process, where µXtdt denotes the drift-term and σXtdWt denotes

the diffusion-term. (Klebaner 2005)

2.4 Itô Stochastic Integral and Itô Lemma

Equation (12) can be stated in integral form:

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs, 0 ≤ t ≤ T (14)

where the first integral
∫ t
0
a(s,Xs)ds is a Riemann integral, which can be approximated using the

Fundamental Theorem of Calculus. The second integral
∫ t
0
b(s,Xs)dWs is however an Itô stochastic

integral, which thus makes Equation (14) into a Itô stochastic differential equation. The Itô stochastc

integral is a generalization of the Riemann integral when the integrands and integrators are stochastic

processes. The result of the integration is a random variable which is defined as the limit of a sequence

of random variables, in general:∫ b

a

g(s)dWs =

n−1∑
k=0

g(tk)[W (tk+1)−W (tk)] (15)

(Björk 2009)

Itô lemma is a method for finding the differential of a time-dependent stochastic process, which can

be interpreted as the stochastic calculus version of the chain rule from regular calculus. Using the

stochastic differential equation:

dXt = µdt+ σdWt (16)
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and a twice-differentiable function f(t, x), Itô’s Lemma gives:

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2 + ...

df =
∂f

∂t
dt+

∂f

∂x
(µdt+ σdWt) +

1

2

∂2f

∂x2
(µdt+ σdWt)

2 + ...

df =
[∂f
∂t

+
∂f

∂x
µ+

1

2

∂2f

∂x2
σ
]
dt+

∂f

∂x
σdWt

(17)

where in the limit as dt → 0: dt2 ≈ 0, dtdWt ≈ 0, dW 2
t ≈ dt. The partial derivatives beyond ∂2f

∂x2

are thus negligible.

For a popular application to option pricing, let f(x) = ln(x) and consider the following stochastic

differential equation:

dXt = µXtdt+ σXtdWt (18)

Itô’s Lemma:

d(ln(Xt)) =
∂f(Xt)

∂t
dt+

∂f(Xt)

∂x
dx+

1

2

∂2f(Xt)

∂x2
dx2 + ...

d(ln(Xt)) =
∂f(Xt)

∂t
dt+

∂f(Xt)

∂x
(µXtdt+ σXtdWt) +

1

2

∂2f(Xt)

∂x2
(µXtdt+ σXtdWt)

2 + ...

d(ln(Xt)) =
1

Xt
(µXtdt+ σXtdWt)−

1

2

1

X2
t

(µXtdt+ σXtdWt)
2

d(ln(Xt)) =
[
µ− 1

2
σ2
]
dt+ σdWt∫ t

0

d(ln(Xt)) =

∫ t

0

[
µ− 1

2
σ2
]
dt+

∫ t

0

σdWt

Xt = X0e
(µ− 1

2σ
2)t+σWt

(19)

The last equation is called a Geometric Brownian Motion (GBM), which is a stochastic process

solution to the stochastic differential equation in Equation (17). The GBM is used to model the

underlying asset price in the Black-Scholes model. (Klebaner 2005)
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2.5 Poisson Process

The Poisson process is used to model the number of occurrences of certain event in a certain time

frame. This could for example be the number of phone calls in a day or the number of visitors in

a store in a day. For financial derivatives, the Poisson process is used to model jumps in the asset

prices. More formally:

Definition of Poisson process: A Poisson process, Nt, is a stochastic process with intensity λ > 0

such that:

1. The process starts at N0 = 0.

2. Nt −Ns for t > s are independent, i.e. the increments are independent.

3. The increments Nt −Ns, t > s has a Poisson distribution with parameter λ(t− s):

P (Nt −Ns = k) = e−λ(t−s)
λk(t− s)k

k!
(20)

(Calin 2015)

In Figure 4, a sample path of the Poisson process is shown where the number of jumps is 15, exactly

equal to the expected value λ = 15.

Figure 4: Sample Poisson process.

10



3 Models for Currency Options

3.1 The Garman-Kohlhagen Model

The Garman-Kohlhagen Model was introduced in 1983 as an application of the original Black-Scholes

model (Black and Scholes 1973) for pricing foreign currency options. The model follows a stochastic

differential equation (SDE) for the dynamics of the spot price:

dSt = µStdt+ σStdZt (21)

where St denotes the spot price of the deliverable currency, µ denotes the instantaneous expected

rate of appreciation of the foreign currency, σ denotes the volatility of the spot currency price and

Zt is a standard Brownian motion. Solving the SDE using Itô Calculus amounts to the following

analytic solution for St:

St = S0e
(µ− 1

2σ
2)t+σWt (22)

which means that St follows a GBM and is log-normally distributed. Utilizing Itô’s Lemma for

deriving the partial differential equation (PDE) for the value of an option and applying arbitrage

arguments1, Garman and Kohlhagen derives the following closed-form analytic formula for the price

of a European call option, CGK :

CGK = e−rf (T−t)StN(d1)− e−rd(T−t)KN(d2) (23)

where

d1 =
ln(St/K) + (rd − rf − σ2

2 )(T − t)
σ
√
T − t

d2 = d1 − σ
√
T − t

(24)

where K denotes the strike price of the option, (T − t) denotes time to maturity, N(·) denotes the

cumulative normal distribution function, and rd, rf denotes the domestic and foreign interest rate,

respectively.

The price of a European put option, PGK , is calculated as:

PGK = e−rd(T−t)KN(−d2)− e−rf (T−t)StN(−d1) (25)

with the same notational implications as above.

1For a full treatment of the derivation for obtaining the pricing formulas, see Garman and Kohlhagen (1983)
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3.2 Bates Model

Bates model was introduced in the paper which this thesis largely follow (Bates 1996). The model

incorporates both a stochastic volatility-component and a jump diffusion-component. Bates model

thus proposes that St, the underlying exchange rate, follows a geometric jump diffusion with the

variance, Vt, following a mean-reverting square root process:

dSt = (µ− λk̄)Stdt+
√
VtStdZt + kStdPt

dVt = κ(η − Vt)dt+ σv
√
VtdWt

E[dZtdWt] = ρdt

prob(dP ∗t = 1) = λdt, ln(1 + k) ∼ N(ln(1 + k̄)− 1

2
δ2, δ2)

(26)

where µ denotes the instantaneous expected rate of appreciation of the foreign currency, λ denotes

the annual frequency of jumps, k denotes the size of the random percentage jump conditional on

a jump occurring, Pt denotes a Poisson process with intensity λ, κ denotes the mean-reversion

speed for the variance, η denotes the long-term variance level, σv denotes the volatility of variance,

ρ denotes the correlation between the standard Brownian motions Zt and Wt, and δ denotes the

standard deviation of the random jump size.

Volatility, as in the case of the Garman-Kohlhagen model is modelled as constant, here follows

the mean-reverting process popularized by Cox-Ingersoll-Ross also known as the CIR-process (Cox

et al. 1985). For the stochastic volatility-component, high values of κ smoothes out the process as

any deviations from the long-term mean, η, are quickly removed. The kurtosis of the distribution is

driven by σv while ρ governs the skewness. For the jump diffusion-component, k̄ affects the skewness

with positive (negative) values implying a positively (negatively) skewed distribution. The standard

deviation of the random jump size, δ, affects the kurtosis of the distribution as an increase in δ leads

to an increase in kurtosis as the variance of the jumps increases. For λ, the annual frequency of

jumps or intensity parameter for the Poisson process Pt, higher values indicate more frequent jumps

in the process and as such a higher overall volatility which thus consequently increases the kurtosis

of the distribution. As such, Bates proposes that the model having multiple sources governing the

different distributional properties of the underlying process allows more channels through which to

more accurately fit the market data (Bates 1996).
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The risk-neutral measure for Bates model, the measure used for pricing purposes and the parameters

that will be referenced to throughout this thesis is defined by:

dSt = (b− λ∗k̄∗)Stdt+
√
VtStdZ

∗
t + k∗StdP

∗
t

dVt = κ∗(η∗ − Vt)dt+ σv
√
VtdW

∗
t

EQ[dZ∗t dW
∗
t ] = ρdt

prob(dPt = 1) = λ∗dt, ln(1 + k∗) ∼ N(ln(1 + k̄∗)− 1

2
δ2, δ2)

(27)

where b = rd − rf denotes the interest-rate differential between rd and rf , the domestic and foreign

interest rates, as the framework for this thesis is with the pricing of foreign currency options. For

stock options this corresponds to r − q, where r denote the continuous risk-free rate and q denote

the continuous dividend yield. The starred variables represent the risk-neutral versions of the true

variables presented in Equation (26). The difference as opposed to the parameters in Equation (26)

is that the risk-neutral versions take into account the risk premium inherent in the true parameters

from jump risk and volatility risk (Bates 1996). The risk-neutral measure will be more thoroughly

explained in Chapter 4.
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4 Calibration Methodology and Numerical Issues

One of the main motivations for the development of advanced option pricing models with or without

stochastic volatility and jump diffusion-components is to better fit market data. The process of

fitting theoretical models to market data, referred to as model calibration, entails using optimization

techniques for identifying the set of parameters in the model for which the estimated prices from the

model well fit the market prices. As such, the better the calibration, the more valuable the model is

as a tool for pricing and risk management-purposes. Denoting the set of parameters in a model as

θ, the calibration is often conducted by minimizing the value of a loss function conditional on the

parameters in the model, L(θ):

θ̂ = argmin
θ

L(θ) (28)

For Bates model, the set of parameters to be estimated are θ =< κ∗, η∗, σv, ρ, δ, λ
∗, k̄∗ > where the

first four parameters refer to the stochastic volatility-component and the latter three refer to the

jump diffusion-component as per the description in Chapter 3. As the purpose of this thesis is to

complement the results from Bates (1996), I use the methodology therein, where the option pricing

residual utilized is:

ei =
O

(M)
i

Si
− O

(E)
i

Si
(29)

where O
(M)
i denotes the market price of the i ’th American option, Si denotes the underlying ex-

change rate corresponding to the i ’th American option, and O
(E)
i denotes the estimated price of

the i ’th American option from the model given the contractual terms and the parameters. As such,

the estimated price of an option using Bates model is a function of < b, S, T,K, θ >. The method-

ology of using the ratio of option prices to the underlying is motivated by Bates for the problems

of cross-sectional heteroskedasticity inherent in using regular dollar and percentage option pricing

errors as a metric for in-sample fit. As such, Bates proposes that using a ratio of the option price to

the underlying provides a better framework for comparison across different datasets (Bates 2003).

In Bates (1996), the parameters implicit in the option prices are calibrated using a nonlinear gener-

alized least-squares methodology. This is motivated in Bates (1996) through which the methodology

is not putting equal weight on the heavily traded near-the-money options relative to the less heavily

traded in- and out-of-the-money options. In this thesis, the parameters implicit in the market data

are calibrated using two other methodologies: nonlinear least-squares and the built-in MATLAB

function fmincon.

14



4.1 lsqnonlin & fmincon

The first calibration methodology, nonlinear least-squares, is computed using the built-in MAT-

LAB function lsqnonlin which solves nonlinear least-squares problems subject to bounds on the

parameter inputs. Mathematically, the algorithm solves the problem:

min
x
||f(x)||22 = min

x
(f1(x)2 + f2(x)2 + · · ·+ fn(x)2) s.t. lb ≤ x ≤ ub (30)

where f(x) is provided as a vector, which for this thesis is a vector of the option pricing residuals

in Equation (29), and lb, ub denote the lower and upper bounds of the parameters, respectively.

lsqnonlin provides the possibility of using two different algorithms: Levenberg-Marquardt and

Trust-Region-Reflective, where in this thesis the latter algorithm is used. The Trust-Region-

Reflective-algorithm works by approximating the function f with a simpler function q which

resembles the behaviour of the function f in a neighbourhood N around the current point x. This

neighbourhood is what is called the trust-region and from there a trial step s is computed by

approximately minimizing the step over N which is the trust-region subproblem:

min
s
q(s), s ∈ N (31)

The current point, x, is updated to x+ s if f(x) > f(x+ s). If f(x) ≤ f(x+ s), the current point is

not updated and the trial step is repeated. These steps are continued until the algorithm converges,

which is evaluated through that the final change in the sum of squares relative to the initial value

is less than a set value for the function tolerance (MATLAB 2020b).

The second calibration methodology is computed using the built-in MATLAB function fmincon.

fmincon is a local minimum optimizer that works through a gradient-based method on nonlinear

multivariate functions:

min
x
f(x) s.t. lb ≤ x ≤ ub (32)

where x, lb, ub are passed as vectors and f(x) is a function that returns a scalar. Inequalities and

equalities can also be added as constraints but in this thesis only bounds for the parameter values

are set. For fmincon as compared to lsqnonlin, a specific loss function to minimize needs to be

provided as per the methodology of Equation (28). In this thesis, I opt to use Mean Absolute Error

(MAE):

MAE =
1

N

N∑
i=1

∣∣∣O(M)
i

Si
− O

(E)
i

Si

∣∣∣ (33)

as to complement the nonlinear least-squares calibration rather than using for example a Mean

Square Error2 (MSE) methodology (Brooks 2019).

2

MSE =
1

N

N∑
i=1

(O(M)
i

Si
−

O
(E)
i

Si

)2
(34)
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For fmincon, there are five different algorithms that can be used where in this thesis the interior-

point-algorithm is used. The algorithm works by solving a sequence of approximate minimization

problems by calculating the Hessian using a quasi-Newton approximation. For each iteration, the

algorithm takes a step in the parameters. If the iteration does not improve the approximation, the

step is rejected and a new step is attempted as to converge to a solution. Convergence is obtained

when the objective function is non-decreasing in feasible directions subject to a tolerance level. A

strong point for the interior-point-algorithm is that it can handle the function to minimize re-

turning infinite or NaN values (MATLAB 2020a).

The nonlinear least squares differs from the generalized version used in Bates (1996) in that it does

not include an account for variance-covariance matrix of the residuals. The fmincon-methodology

with MAE can be contrasted to that of Bates (1996) for penalizing all the pricing residuals equally

rather than the squaring of residuals, which consequently penalizes larger errors more heavily.

For both calibration methodologies, the same inputs are used. There are no prescribed constraints

but bounds for the parameters to be calibrated are set. In Bates (1996) several calibrations are

done, full calibrations for the whole dataset 1984-1991 as well as biyearly subsamples: 1984-1985,

1986-1987, 1988-1989, 1990-1991. In this thesis, the main focus will be on the full calibration over

the whole dataset. For the calibrations, the initial values for the parameters are those which were

reported in Bates (1996), with lower and upper bounds corresponding to reasonable theoretical

boundaries for the parameters in the model. The initial parameter values for the calibration with

bounds are shown in Table 1.

Variables η∗ κ∗ σv ρ k̄∗ δ λ∗

x0 0.024 0.78 0.343 0.078 -0.001 0.019 15.01

lb 0.01 0.01 0.01 -1.00 -1 0.01 0.01

ub 10 10 10 1 10 10 20

Table 1: Initial values for main calibration with upper and lower bounds.

Noteworthy is that the annual frequency of jumps, λ∗, is 15.01 while the average random percentage

jump, k̄∗, is −0.1% with a volatility of 1.9% so although the annual frequency of jumps is high,

the estimated average size of the jumps and its volatility are low. The long-term variance level of

0.024 corresponds to a long-term volatility level of 15.49% which contrasted to an average implied

volatility for all the options of 13.32% seems reasonable. The calibrated correlation coefficient ρ from

Bates (1996) depicts a slight positive relationship. For options on stocks, the relationship between

volatility and price has been extensively studied, termed leverage effect. The leverage effect occurs
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as ρ < 0 with the motivation that as the price of the underlying stock decreases, the debt-to-equity

ratio of the firm increases which thus makes the firm riskier and should increase the future expected

volatility (Yu 2005). For foreign currency options the same rationale with regards to the sign is not

as theoretically concluded but rather situational as discussed in Chapter 1.

4.2 Pricing Methodology

4.2.1 Numerical Integration

Firstly, as mentioned in Chapter 3, the risk-neutral measure3 is a probability measure, Q, as opposed

to the true probability measure, P. The risk-neutral measure stems from the fundamental theorem

of asset pricing which states that a financial market is free of arbitrage if and only if there exists a

risk-neutral probability measure Q. Using a risk-neutral measure makes it possible to discard risk-

preferences in the pricing framework and price to the fair value as all assets have the same expected

rate of return (Yor 2008). As such, the price of European call option can be computed by taking

the discounted expected value of the future payoff under the risk neutral measure:

V (St, T ) =e−r(T−t)EQ[(ST −K)+|Ft]

=e−r(T−t)
∫ ∞
0

(ST −K)+q(ST |Ft)dST

=e−r(T−t)
∫ ∞
K

(ST −K)q(ST |Ft)dST

(35)

where St denotes the underlying, K denotes the strike price, r denotes the risk-free discount rate,

(T − t) denotes time to maturity, Ft denotes the filtration at time t or information flow up to and in-

cluding t, and q(ST |Ft) denotes the risk neutral density function. If the probability density function

is known in closed form, the option price can be obtained by a single integration. For most exten-

sions of the Black-Scholes framework the closed-form density function is not known which makes

this methodology infeasible. Popular pricing methodologies for option pricing models without known

density function instead utilize the characteristic function (Schmelzle 2010).

The characteristic function of any random variable completely define its probability distribution as

there is a one to one relationship between the characteristic function and the probability density

function. More formally, the characteristic function fX(φ) = E[eiφX ] of a R4 random variable X is

defined for real numbers φ by taking the expectation of the complex transformation eiφX , where i

denotes the imaginary unit5. If gX(x) denote the probability density function of the random variable

3See for example Yor (2008) for reference on risk-neutral measure.
4R denotes real number.
5i =

√
−1
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then:

fX(φ) = E[eiφX ] =

∫ ∞
−∞

eiφxgX(x)dx (36)

is the integral which defines the expected value and is the Fourier transform of the density function

gX(x). Linking the characteristic function back to the probability distribution is done using an

inverse Fourier transform:

GX(x) =
1

2
− 1

2π

∫ ∞
−∞

e−iφxfX(φ)

iφ
dφ (37)

where GX(x) denotes the cumulative distribution function (Schmelzle 2010).

For option pricing, the methodology is then to evaluate an integral of the payoff function for an

option over the probability distribution obtained through the inversion methodology. For Bates

model the density function is not known but the characteristic functions is:

fBates(φ) = exp(C +DV0 + iφln(St))·

exp(λ∗(T − t)(1 + k̄∗)[(1 + k̄∗)iφeδ
2(− 1

2 iφ+
(iφ)2

2 ) − 1]− λ∗(T − t)k̄∗iφ)

C = (rd − rf )iφ(T − t) +
κ∗η∗

σ2
v

[
(κ∗ + λV olrisk − ρσviφ+ d)(T − t)− 2ln

(1− εed(T−t)

1− ε

)]
D =

κ∗ + λV olrisk − ρσviφ− d
σ2
v

( 1− e−d(T−t)

1− εe−d(T−t)
)

ε =
κ∗ + λV olRisk − ρσviφ− d
κ∗ + λV olrisk − ρσviφ+ d

d =
√

(κ∗ + λV olrisk − ρσviφ)2 + σ2
v(iφ+ φ2)

(38)

where St, λ
∗, k̄∗, δ, rd, rf , κ∗, η∗, σv, and ρ correspond to the parameters in Chapter 2. λV olrisk,

the volatility risk premium, is set to zero. The pricing methodology used in this thesis involves

pricing the options according to the framework developed in Heston (1993):

C = Ste
−rf (T−t)P1 −Ke−rd(T−t)P2

P = C +Ke−r(T−t)P2 − Ste−q(T−t)P1

Pj =
1

π

∫ ∞
0

R
[e−iφln(K)fj(φ)

iφ

]
dφ

(39)

where the characteristic function is inverted in order to get the probabilities in the pricing equations

C for the call option and P for the put option. The integration in Equation (39) is computed

numerically using global adaptive quadrature which is a methodology that works by adaptively

refining subintervals of the region that is integrated (Gander and Gautschi 2000). Fortunately for

this thesis, the methodology is implemented in the built-in MATLAB function optByBatesNI. In
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Table 2, the function is tested against the theoretical put option pricing that is provided in Bates

(1996):

Option Parameters Strike Bates (1996) European Price NI

θ = 0.0225 38 0.374 0.377

σv = 0.15 39 0.662 0.665

ρ = 0 40 1.074 1.077

λ∗ = k̄∗ = δ = 0 41 1.617 1.620

V0 = 0.0225 42 2.283 2.285

θ = 0.0225 38 0.575 0.579

σv = 0.15 39 0.902 0.906

ρ = 0 40 1.334 1.338

λ∗ = k̄∗ = δ = 0 41 1.874 1.878

V0 = 0.04 42 2.515 2.518

θ = 0.0225 38 0.369 0.372

σv = 0.30 39 0.648 0.652

ρ = 0 40 1.056 1.060

λ∗ = k̄∗ = δ = 0 41 1.601 1.605

V0 = 0.0225 42 2.274 2.276

θ = 0.0225 38 0.369 0.372

σv = 0.15 39 0.658 0.662

ρ = 0.1 40 1.074 1.078

λ∗ = k̄∗ = δ = 0 41 1.621 1.624

V0 = 0.0225 42 2.289 2.292

θ = 0.0125 38 0.356 0.360

σv = 0.15 39 0.619 0.626

ρ = 0 40 1.018 1.026

λ∗ = 2, k̄∗ = 0, δ = 0.07 41 1.567 1.574

V0 = 0.0125 42 2.252 2.256

Table 2: European put option estimation of theoretical option values, Bates (1996) values in parenthesis.

St = 40, (T − t) = 0.25, b = 0.02.

The average pricing error and average percentage error over the theoretical put options in Table 2

is −0.004 and −0.48%, respectively, so overall the pricing methodology employed seems to price the

theoretical options slightly above the methodology used in Bates (1996). The pricing methodology in

Bates (1996) is similar with regards to using numerical integration but the algorithm for numerically

computing the integration is different which could influence the consistent overpricing of 0.002-0.008.
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4.2.2 Early Exercise Premium Approximation

The options that are used in this thesis are American, that is, they can be exercised prior to expi-

ration. As both of the option pricing models considered in this thesis and the pricing methodology

used are derived for pricing European options, where the option can only be exercised at maturity,

the early exercise premium included in the American option price is not included in the pricing

methodology. In this thesis, the Quadratic Approximation Method from Barone-Adesi and Whaley

(1987) is implemented to approximate the early exercise premium. The following is the derivation for

the American call option value where the notation closely follow that of Barone-Adesi and Whaley

(1987).

The methodology is based in a framework of the Black-Scholes model wherein the PDE governing

the movement of the option value, V , is given by:

1

2
σ2S2VSS + bSVS − rV + Vt = 0 (40)

where VS , VSS denotes the first and second partial derivative of V with respect to S, respectively. b

denotes the cost of carry, which in the framework of currency options is the interest rate differential.

Barone-Adesi and Whaley (1987) use the fact that if Equation (40) applies to both American and

European call options, then it should also apply to the early exercise premium. As such, the early

exercise premium for a call, e(S, t) is defined by:

e(S, t) = C(S, t)− c(S, t) (41)

where C(S, t), c(S, t) denotes the American and European call option price, respectively. Equation

(40) is thus modified to:
1

2
σ2S2eSS + bSeS − re+ et = 0 (42)

At this point, a couple of simplifications are implemented:

1. Denote T as time to maturity in place of (T − t).

2. Equation (42) is multiplied by 2/σ2

3. Denote M = 2r/σ2 and N = 2b/σ2

The value of the early exercise premium of a call is assumed to follow e(S, h) = h(T )f(S, h), where

h(T ) is an arbitrary function of time to maturity and thus expressing the early exercise premium as

a function of time to maturity and the underlying asset price. As such, the corresponding partial

derivatives follows: eSS = hfSS , eS = hfS , eT = hT f + hhT fK which yields the PDE

S2fSS +NSfS −Mf [1 + (hT /rh)(1 + hfh/f)] = 0 (43)
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By choosing h = 1− e−rT and substituting into (43):

S2fSS +NSfS − (M/h)f − (1− h)Mfh = 0 (44)

Here an approximation is made, the (1 − h)Mfh-term is set equal to 0. This is motivated with

that for commodity options with very short (long) time to expiration (T approaches 0 (∞)), fh

approaches 0 (h approaches 1), and the (1− h)Mfh-term disappears. This yields:

S2fSS +NSfS − (M/h)f = 0 (45)

where it can be noted that Equation (45) is a second-order ordinary differential equation (ODE). The

ODE has two linearly independent solutions of the form aSq. Substituting f = aSq into Equation

(45) yields:

S2aq(q − 1)Sq−2 +NSaqSq−1 − (M/h)aSq = 0 (46)

as the partial derivatives fSS = aq(q − 1)Sq−2 and fS = aqSq−1. Rearranging yields:

aSq[q2 + q(N − 1)−M/h] = 0 (47)

which has the following two roots:

q1 = [−(N − 1)−
√

(N − 1)2 + 4M/h]/2

q2 = [−(N − 1) +
√

(N − 1)2 + 4M/h]/2

Note that q1 < 0 and q2 > 0 as M/h > 0 which follows because M/h is expressed as follows

M/h =
2r
σ2

1− e−rT
(48)

The general solution to the second-order ODE is

f(S) = a1S
q1 + a2S

q2 (49)

where a1 and a2 are left to be determined. Since this is the case for the call option, having q1 < 0 and

a1 6= 0 leads to the fact that f approaches∞ as S approaches 0. This is an undesirable property for

the value of the early exercise premium of an American call option. Therefore, the first constraint

to be set is that a1 = 0 for call options, which leads to the following approximate value for the

American call:

C(S, T ) = c(S, T ) + ha2S
q2 (50)

At this point, it is important to discuss the appropriate constraints to impose on a2. As S = 0,

C(S, T ) = 0 since both of the terms on the RHS in Equation (50) are equal to zero. As S increases,

the value of C(S, T ) increases because of both of the RHS terms, assuming a2 > 0. To represent the

value of the American call option the function should touch, but not intersect, the boundary imposed
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by the early exercise premium of the American Call, S −K. The critical value of S implied by the

point of tangency is denoted S∗, and the American call value should be represented by Equation

(50) when S < S∗. When S > S∗, the American call value should theoretically immediately be

exercised to the value S −K.

In order to find the critical price S∗, the exercisable value of the American call option is set to the

value of C(S∗, T ):

S∗ −K = c(S∗, T ) + ha2S
∗q2 (51)

and the slope of the exercisable value of the call, that is the delta of the option equal to 1, is set

equal to the slope of C(S∗, T ):

1 = e(b−r)TN [d1(S∗)] + hq2a2S
∗q2−1 (52)

which follows from the partial derivative of Equation (51) with respect to S∗. d1(S∗) denotes:

d1(S∗) =
ln(S∗/K) + (b+ 0.5σ2)T

σ
√
T

As such, there are two unknown parameters, a2 and S∗, and two equations, Equation (51) and (52).

Rewriting Equation (52) in order to isolate a2 yields:

a2 =
1− e(b−r)TN [d1(S∗)]

hq2S∗q2−1
(53)

Substituting into Equation (51) and simplifying yields:

S∗ −K = c(S∗, T ) +
S∗

q2
[1− e(b−r)TN [d1(S∗)]] (54)

where finding S∗ needs to be solved iteratively. With S∗ known, a2 can be obtained in Equation

(51). Thus, the approximate price of the American call option is given by:

C(S, T ) = c(S, T ) +A2(S/S∗)q2 , when S < S∗

C(S, T ) = S −K, when S ≥ S∗
(55)

where A2 = S∗

q2
[1 − e(b−r)TN [d1(S∗)]]. Note that A2 > 0 because q2, S∗, 1 − e(b−r)TN [d1(S∗)] are

positive when b < r. When b ≥ r, the American call will theoretically never be exercised early, and

the Garman-Kohlhagen model can be used. For this thesis, r denotes the US interest rate and as

such b ≥ r only occurs when the foreign interest rate is equal to or below 0.

The approximate value of the American put option is derived with similar arguments, and the value

is computed as:

P (S, T ) = p(S, T ) +A1(S/S∗∗)q1 , when S > S∗

P (S, T ) = K − S, when S ≤ S∗
(56)
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where A1 = −(S∗∗/q1)[1 − e(b−r)TN [−d1(S∗∗]]. Note that A1 > 0 because S∗∗ > 0, q1 < 0 and

N [−d1(S∗∗)] < e−bT . The critical price S∗∗ for the put is determined by iteratively solving:

K − S∗∗ = p(S∗∗, T )− S∗∗

q1
{1− e(b−r)TN [−d1(S∗∗)]} (57)

To test the implemented analytic approximation I compared it to the theoretical computations in

Barone-Adesi and Whaley (1987) which is depicted in Table 3. The pricing error being zero for all

the approximations follows from the deterministic nature of the updating scheme for obtaining the

critical price (S∗, S∗∗) of the underlying6.

Option Parameters S American Call Approximation American Put Approximation

r = 0.08 80 0.05 (0.05) 20.00 (20.00)

σ = 0.20 90 0.85 (0.85) 10.18 (10.18)

T = 0.25 100 4.44 (4.44) 3.54 (3.54)

110 11.66 (11.66) 0.80 (0.80)

120 20.90 (20.90) 0.12 (0.12)

r = 0.12 80 0.05 (0.05) 20.00 (20.00)

σ = 0.20 90 0.84 (0.84) 10.16 (10.16)

T = 0.25 100 4.40 (4.40) 3.53 (3.53)

110 11.55 (11.55) 0.79 (0.79)

120 20.69 (20.69) 0.12 (0.12)

r = 0.08 80 1.29 (1.29) 20.53 (20.53)

σ = 0.40 90 3.82 (3.82) 12.93 (12.93)

T = 0.25 100 8.35 (8.35) 7.46 (7.46)

110 14.80 (14.80) 3.96 (3.96)

120 22.72 (22.72) 1.95 (1.95)

r = 0.08 80 0.41 (0.41) 20.00 (20.00)

σ = 0.20 90 2.18 (2.18) 10.71 (10.71)

T = 0.50 100 6.50 (6.50) 4.71 (4.71)

110 13.42 (13.42) 1.76 (1.76)

120 22.06 (22.06) 0.55 (0.55)

Table 3: American option estimation of theoretical options values using Barone-Adesi and Whaley (1987)

analytic approximation, Barone-Adesi and Whaley (1987) values in parenthesis. b = 0.04, K = 100.

6For the updating scheme, see Appendix of Barone-Adesi and Whaley (1987).
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4.3 Discretization, Monte Carlo Simulation

In order to test the stability of the pricing and calibration methodology used in this thesis, this

section will present the tests that was performed prior to working with the market data. Bates

model is discretized using an Euler-Maruyama approximation7, simulated paths for the underlying

and the stochastic volatility are computed where theoretical option prices are generated from the

simulated paths. Bates model is then calibrated using the theoretical option prices using both of

the methodologies described in Section 4.1.

The Euler-Maruyama discretization of Bates model used has the following form:

ln St+1 = ln St + (µ− λk̄ − 1

2
V +
t )∆t+

√
V +
t

√
∆tZ + ln(1 + k)dPt

Vt+1 = Vt + κ(η − Vt)∆t+ σv
√
Vt
√

∆tW

with the same notational implications as in Chapter 3 for Bates model. This discretization makes

it possible to sample paths from the model given parameter inputs.

In this discretization setting, the standard Brownian motions may give rise to negative values for

Vt, due to drawing from a standard normal distribution. To deal with this problem, one of two

approaches is typically applied. The first one called the reflecting assumption uses the absolute

value:

if Vt < 0 then Vt = −Vt

The other solution is using an absorbing assumption:

if Vt < 0 then Vt = 0

which is the methodology applied here as per the V +
t -notation8 (Gatheral 2006).

For simulating paths of the underlying as well as the volatility, the same parameter values were

used as in Table 1 in order to test the calibration methodology in a similar environment to the

purpose of the thesis. Furthermore, the length of the simulated paths corresponds to the time span

for the dataset that is used in this thesis, that is from the 4th of Jan 1984 to the 19th of June 1991,

corresponding to 2724 days. As such, the idea of the simulated paths is to resemble daily data for

the same duration. In Figure 2, a sample path for the two processes is shown:

7See Kloeden and Platen (1995) for reference on Euler-Maruyama approximation.
8V +

t = max(Vt, 0)
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Figure 5: Simulated paths for underlying and volatility, S0 = 30.

From the simulated path of the underlying, I generated theoretical option prices. This was done by

constructing strike prices for each integer within ±5% of the price of the underlying for each point

in the time-series corresponding to a Wednesday, as per the structure of the market data described

in Chapter 5. This means that for an asset price of 50, the highest and lowest strike price is 53 and

47 (as 5% ∗ Price is rounded up), respectively. From there, a put and a call option is generated

for each integer between 53 and 47, that is: 53,52,51,50,49,48,47. This resulted for the simulation

presented here in 3102 options (1551 calls, 1551 puts). In Figure 6 the max and min theoretical

strike prices for each ”Wednesday” are plotted together with the simulated path of the underlying:
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Figure 6: Simulated path for underlying with min and max of strike prices for each Wednesday.

In Figure 4, the theoretical option prices are plotted in histograms, separated into call and put

options. As can be observed, the call and put options have a somewhat deviating distribution

for the prices. The average price for the theoretical call and put options are 2.9078 and 2.4389,

respectively.

Figure 7: Histogram of theoretical option prices.

At this point, the calibration methodology explained in Chapter 4 is employed as to calibrate the

parameter implicit in the theoretical options from the simulated path. The correct answer for the
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calibration would be to obtain the parameter values used for the simulation, that is, Table 1. For

this calibration, I used arbitrary inputs for all the parameters as starting values in the calibration:

Variables η∗ κ∗ σv ρ k̄∗ δ λ∗

x0 0.09 1.2 0.3 -0.5 -0.04 0.1 2

lb 0.01 0.01 0.01 -1.00 -0.90 0.01 0.01

ub 10 10 10 1 10 10 20

Table 4: Starting values for the simulation calibration.

In Table 5 the resulting parameters calibrated from nonlinear least-squares and fmincon are pre-

sented together with the parameters used for the simulation. As can be observed, there is a quite

wide margin to the parameter values that was used for the simulation. Most notably, looking at

σv, the fmincon optimization volatility of variance-parameter has a value of 668.92%. This is one

of the main issues raised by Bates (1994) and Bakshi et al. (1997) in that an option pricing model

with a stochastic volatility-component might produce implicit parameter values for the volatility

of variance-parameter that are too high. Furthermore, the correlation coefficient for fmincon sug-

gests a very strong negative skew, which is contrasted by an expected percentage jump size of 12.55%.

Variables η∗ κ∗ σv ρ k̄∗ δ λ∗

x0 0.09 1.2 0.3 -0.5 -0.04 0.1 2

lsqnonlin 0.0288 2.4558 0.3094 -0.0984 0.0732 0.0640 1.9036

fmincon 0.2671 2.8938 6.6892 -0.7926 0.1255 0.0518 4.0024

Simulation Parameters 0.024 0.78 0.343 0.078 -0.001 0.019 15.01

Table 5: Calibrated parameter values from the theoretical options.

For the overall pricing performance of the two calibration methodologies, this is provided in Table

6. AAPPE denotes Absolute Average Percentage Pricing Error9, AAPE denotes Absolute Average

Pricing Error10, APPE denotes Average Percentage Pricing Error11, and APE denotes Average

Pricing Error12:

9AAPPE = 1
N

∑N
i=1
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lsqnonlin fmincon

AAPPE 1.9809 ·10−4% 3.3005·10−2%

AAPE 4.8374·10−6 7.1668·10−4

APPE 4.0031·10−6% -1.8602·10−2%

APE 1.5892·10−7 -3.5361·10−4

Table 6: Pricing errors for theoretical options.

The pricing residuals from the calibration methodologies are small looking from an average perspec-

tive with well below 1% for both lsqnonlin and fmincon considering both regular and absolute

terms. Looking at all the pricing measurements used in this section, the lsqnonlin methodology

performs better than the fmincon specification. The maximum pricing error is 1.5261 · 10−5 for the

lsqnonlin specification and 0.0013 for fmincon. In Figure 5, scatterplots of the theoretical call

option prices against the estimated prices from lsqnonlin and fmincon are shown. As is visible,

the prices are indistinguishable from each other. See Appendix for corresponding graph for the puts.

Figure 8: Scatterplot of theoretical call options prices against lsqnonlin and fmincon estimated prices.

It is important to note the limitations of the testing which influence the performance of the calibration

methodology. Firstly, the same time to maturity and interest rate differential is used for all the

options. The time to maturity is set to 3 months and the interest rate differential used is the

average of the dataset presented in Chapter 5. Moreover, the moneyness does not exceed 5% as per

the design of the theoretical options. As such, a restricted theoretical setting such as this naturally

simplifies the model calibration to obtain parameter values that well fit the theoretical options.
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4.4 Limitations

One of the numerical issues with respect to the calibration methodology of this thesis is the sole

use of local optimization techniques. This is because there are usually numerous local optima in a

multivariate scenario. The motivation behind only using local optimization was partly due to the

extensive calibration time for the main calibrations as well as the fact that the purpose of the thesis

is to evaluate with respect to Bates (1996). However, not using a global optimization technique does

not ensure obtaining a global optima. As noted in Mikhailov and Nögel (2004), when only using a

local optimization technique, choosing the initial guess for the parameter vector is important. Thus,

for the purposes of testing with respect to Bates (1996) it was deemed reasonable to solely use local

optimization techniques with the calibrated values in Bates (1996) as starting point.

The analytic approximation of the early exercise premium that is used in Bates (1996) is the ap-

proximation developed in Bates (1991) which is an extension of the methodology by Barone-Adesi &

Whaley used in this thesis. The extension introduced in Bates (1991) is for Merton’s jump-diffusion

model and utilizes the same principles with deriving the early exercise premium from the PDE and

obtaining the critical value of the underlying above or below which the option is exercised immedi-

ately. I implemented the analytic approximation but due to computational issues, the methodology

was inconsistent when applied to real data. It should be noted that this naturally lessens the com-

parison of the results in this thesis to that of Bates (1996) but not to a substantial extent. From a

theoretical standpoint, both methodologies are proposed from the same principles. Furthermore, as

noted in Barone-Adesi (2005), the analytic approximation that is used in this thesis works very well

for maturities less than one year. This is no problem as all the option transactions in the dataset

have a maturity of less than 6 months.
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5 Market Data

The same market data that was used in Bates (1996) is used in this thesis. The dataset consists

of transaction data for Deutsche Mark (DM) foreign currency options from the Philadelphia Stock

Exchange (PHLX) for the period January 1984 to June 1991. The option transactions are all on

Wednesdays, yielding a weekly panel data set. The transactions were recorded in the morning,

between 9AM-12AM, and only includes options with a maturity of 6 months or less. The options

matured on the third Wednesday of March, June, September or December as per the standard of

PHLX during that period.

The dataset consists of 19,689 option transactions (11,952 calls, 7,737 puts) collected over 372

Wednesdays with an average of 53 trades per Wednesday. Other than option transactions, the

dataset includes the spot exchange rate obtained from the Chicago Mercantile Exchange (CME), a

risk-free rate which was obtained from daily 3-month Treasury bills, domestic/foreign interest rate

differential which was obtained from interpolating spot rates of 1- and 3-month forward rates of the

spot exchange rate using covered interest rate parity13.

Figure 9: Log-differenced daily returns of USD/DM and USD/DM exchange rate for Jan 1984-Jun 1991.

As was discussed in Chapter 1, one of the typical properties for exchange rate returns is a leptokurtic

distribution. This can be observed in Figure 9 where log-differenced daily returns for the exchange

13For a full treatment of the filtration of the dataset, see Bates (1996).
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rate underlying the options is shown for the period 1984-199114, depicting a more peaked center of

the distribution with fatter tails than the normal distribution. A two-sample Kolmogorov-Smirnov

test further supports this notion by rejecting the null hypothesis that the log-differenced returns are

normally distributed.

Looking at the first histogram in Figure 10 showing the price of the options, 67.65% of the options

have a price less than $1, 91.41% of the options have a price less than $2, and the largest option

price is $11.2. The second histogram in Figure 10 depicts the implied volatility calculated from the

Garman-Kohlhagen model for all the option transactions. Here, as with the option prices, it can

be observed that most of the implied volatilities are low, 95.78% of implied volatilities are less than

20%. This can be contrasted to the overall volatility of the USD/DM exchange rate in Figure 6

which is 10.58%.

Figure 10: Histogram of option prices and implied volatilities.

14Retrieved from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/series/EXGEUS, May 20,

2020.
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6 Results

6.1 Model Calibration

In Table 7 the calibrated parameters from the market data are depicted for lsqnonlin and fmincon.

η∗ κ∗ σv ρ k̄∗ δ λ∗

Bates (1996) 0.024 0.78 0.343 0.078 -0.001 0.019 15.01

lsqnonlin 0.010 1.600 0.364 -0.100 0.010 0.061 2.635

Error 0.014 -0.82 -0.021 0.178 -0.011 -0.042 12.375

% Error 58.30% -105.20% -6.10% 228.80% 1129.6% -218.90% 82.40%

fmincon 0.012 1.357 9.946 -0.998 -0.126 0.012 0.691

Error 0.012 -0.577 -9.603 1.076 0.125 0.007 14.319

% Error 50.31% -73.99% 2799.67% 1379.38% 12540.55% 37.56% 95.40%

Table 7: Calibrated parameters with error and percentage error compared to Bates (1996). Errors calculated

as Bates (1996) less the calibrated parameter.

Firstly, looking at the lsqnonlin parameter values overall, they correspond quite closely to the

calibrated parameters from Bates (1996). η∗, the long-term variance level, suggests a long-term

variance level of 0.010, corresponding to a long-term volatility level of 10%. κ∗, the mean-reversion

speed for the variance, is greater than Bates (1996) value, suggesting a faster smoothing of devi-

ations from the long-term mean. σv, the volatility of variance parameter also closely follows the

initial parameter inputs with a value of 36.40%. ρ on the other hand suggests a negative corre-

lation as opposed to Bates (1996). The negative correlation being modest, only suggests a slight

impact on the skewness. For the jump-diffusion parameters, the relationship mirrors that of Bates

(1996) with respect to low expected jump size (albeit a positive one), a low volatility of the ran-

dom jump size, but λ∗ depicts a lower expected annual frequency of jumps than that of Bates (1996).

For fmincon, the calibrated parameters deviate to a larger extent from the calibrated parameters in

Bates (1996) compared to lsqnonlin. η∗, the long-term variance level, and κ∗, the mean-reversion

speed for the variance, corresponds closely to the values in lsqnonlin by a long-term volatility of

10.95% and a mean-reversion speed which faster smoothes out deviations from the long-term mean

compared to Bates (1996). σv, the volatility of variance parameter, however has a value of 9.946, i.e.

a volatility of variance value of 994.6%. This is very close to the upper bound of 1000%. This fol-

lows the discussion in Section 3.3 regarding previous studies suggesting that the volatility of variance

parameter in stochastic volatility models might imply values that are very high compared to the
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analytical specification (Bates 2003). ρ has a value of -0.998, almost a perfect negative correlation,

suggesting a very strong negative skewness as opposed to Bates (1996) where a slight positive skew

is implied. The skewness is further impacted by k̄∗, the expected random percentage jump, with a

value of −0.126, meaning that the expected percentage jump size conditional on a jump occurring

is −12.6%. Looking at the jump-diffusion component altogether: k̄∗ together with δ and λ∗ depicts

an opposite relationship to that of Bates (1996). The jump-frequency in fmincon suggests 0.691

expected annual jumps with a comparatively larger expected jump size contrasted to the parameter

values in Bates (1996) where a higher frequency of jumps with smaller expected jump size is implied.

Which of the methodologies’ resulting implicit parameter values that are deviating the most from

Bates (1996) is not surprising. This is because the lsqnonlin specification much more closely

mirrors the NL-GLS-methodology in Bates (1996) and as such the initial parameter values for the

calibration, that is Table 1, should be a better fit for the lsqnonlin methodology. This was also

evident with respect to calibration times where the fmincon calibration exceeded lsqnonlin. For

fmincon, the behaviour of σv, ρ are improbable as to the specification of the model given that the

parameter values are close to the boundaries set. This behaviour was however also documented in

Section 4.3 wherein large parameter values were documented for σv and ρ.
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6.2 Pricing Performance

For the pricing performance, I recreated the pricing structure of Bates (1996) wherein the pricing

performance is filtered according to moneyness and time to maturity. Note that the column showing

the number of observations depicts a deviation between this thesis and those of Bates (1996), which

unfortunately has not been resolved. The difference could at least partially be attributed to spill

over between the closely defined moneyness categories.

In Table 7 and Table 8, the residuals from the lsqnonlin calibrated parameter call and put values

are shown, respectively.

Moneyness (K/S - 1) Number of Observations Average Errors Standard Deviations

Short-Term (0-3 month) calls

<-6% 445 (646) 0.053% (0.027%) 0.231% (0.048%)

[-6%,-4%] 697 (1140) -0.015% (0.016%) 0.322% (0.055%)

[-4%,-2%] 1715 (1051) 0.041% (0.011%) 0.363% (0.070%)

[-2%,-1%] 1179 (1151) 0.012% (0.011%) 0.307% (0.076%)

[-1%,0%] 1331 (1360) -0.039% (0.011%) 0.384% (0.085%)

[0%,1%] 1049 (1053) 0.141% (0.006%) 0.428% (0.100%)

[1%,2%] 495 (499) 0.038% (-0.030%) 0.340% (0.104%)

[2%,4%] 691 (334) 0.152% (-0.003%) 0.382% (0.113%)

[4%,6%] 313 (576) -0.029% (-0.039%) 0.244% (0.116%)

>6% 422 (534) -0.045% (-0.070%) 0.185% (0.115%)

Medium-Term (3-6 month) calls

<-6% 342 (492) 0.036% (-0.027%) 0.429% (0.076%)

[-6%,-4%] 358 (434) -0.039% (-0.009%) 0.540% (0.088%)

[-4%,-2%] 599 (333) 0.028% (-0.009%) 0.552% (0.083%)

[-2%,-1%] 414 (434) 0.104% (0.013%) 0.548% (0.086%)

[-1%,0%] 479 (476) -0.113% (-0.001%) 0.549% (0.094%)

[0%,1%] 419 (414) 0.010% (-0.009%) 0.580% (0.094%)

[1%,2%] 311 (322) 0.108% (-0.015%) 0.587% (0.116%)

[2%,4%] 293 (190) 0.056% (-0.046%) 0.504% (0.125%)

[4%,6%] 190 (237) -0.121% (-0.062%) 0.498% (0.125%)

>6% 210 (276) -0.130% (-0.125%) 0.339% (0.160%)

Table 8: Residuals from lsqnonlin calibration, call options. Bates values in parenthesis. Average Errors

calculated as in Equation (29).
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Moneyness (K/S - 1) Number of Observations Average Errors Standard Deviations

Short-Term (0-3 month) puts

<-6% 56 (93) -0.082% (-0.002%) 0.206% (0.135%)

[-6%,-4%] 96 (132) -0.053% (-0.001%) 0.222% (0.091%)

[-4%,-2%] 218 (151) -0.022% (0.023%) 0.327% (0.110%)

[-2%,-1%] 309 (283) -0.026% (0.003%) 0.259% (0.090%)

[-1%,0%] 566 (585) -0.093% (0.002%) 0.328% (0.097%)

[0%,1%] 933 (920) -0.007% (0.034%) 0.333% (0.093%)

[1%,2%] 905 (911) -0.032% (0.027%) 0.303% (0.080%)

[2%,4%] 1280 (788) -0.001% (0.022%) 0.292% (0.072%)

[4%,6%] 630 (939) -0.011% (0.024%) 0.220% (0.064%)

>6% 610 (828) 0.078% (0.033%) 0.193% (0.047%)

Medium-Term (3-6 month) puts

<-6% 24 (38) -0.149% (-0.095%) 0.464% (0.124%)

[-6%,-4%] 25 (29) -0.277% (-0.053%) 0.331% (0.100%)

[-4%,-2%] 63 (41) -0.268% (-0.097%) 0.496% (0.115%)

[-2%,-1%] 78 (76) -0.003% (-0.019%) 0.582% (0.132%)

[-1%,0%] 184 (175) -0.235% (-0.021%) 0.479% (0.120%)

[0%,1%] 209 (208) -0.169% (-0.009%) 0.523% (0.096%)

[1%,2%] 276 (271) 0.082% (0.001%) 0.647% (0.095%)

[2%,4%] 419 (197) -0.129% (0.000%) 0.447% (0.087%)

[4%,6%] 316 (410) -0.063% (-0.011%) 0.453% (0.066%)

>6% 540 (663) -0.063% (-0.003%) 0.274% (0.050%)

Table 9: Residuals from lsqnonlin calibration, put options. Bates values in parenthesis. Average Errors

calculated as in Equation (29).

Looking across moneyness, the pricing performance of lsqnonlin both under- and overprices the

short- and medium-term call options, thus depicting no apparent pricing bias. The average errors

for the calls never exceed 0.2%. For the put options, the lsqnonlin specification consistently over-

prices for both short-term and medium-term options, with the exception of short-term options with

moneyness of [> 6%] and medium-term options with moneyness of [1%, 2%]. The highest average

errors across call and put options can be observed for the medium-term puts where average error

exceeds 0.2% for three out of five negative moneyness categories, i.e. for out-of-the money puts.

The lsqnonlin fits the 0-3 month call and put options better than the 3-6 month options. This

can visually be observed in Figure 15 in the Appendix where the average errors for lsqnonlin are

plotted against moneyness.

The pricing performance of the lsqnonlin calibration fare quite well to the errors from Bates (1996).

The average errors for lsqnonlin are smaller than Bates (1996) for 27.5% of the pricing categories,

although sporadically throughout the tables so no pattern of overperformance can be observed. The

magnitude of the standard deviations are however quite large with respect to Bates (1996), depicting

a wider spread for the pricing errors.
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In Table 10 and Table 11, the corresponding pricing performance for fmincon is depicted.

Moneyness (K/S - 1) Number of Observations Average Errors Standard Deviations

Short-Term (0-3 month) calls

<-6% 445 (646) 0.398% (0.027%) 0.329% (0.048%)

[-6%,-4%] 697 (1140) 0.549% (0.016%) 0.404% (0.055%)

[-4%,-2%] 1715 (1051) 0.853% (0.011%) 0.590% (0.070%)

[-2%,-1%] 1179 (1151) 1.004% (0.011%) 0.497% (0.076%)

[-1%,0%] 1331 (1360) 0.748% (0.011%) 0.411% (0.085%)

[0%,1%] 1049 (1053) 0.558% (0.006%) 0.464% (0.100%)

[1%,2%] 495 (499) 0.159% (-0.030%) 0.373% (0.104%)

[2%,4%] 691 (334) 0.042% (-0.003%) 0.377% (0.113%)

[4%,6%] 313 (576) -0.275% (-0.039%) 0.250% (0.116%)

>6% 422 (534) -0.225% (-0.070%) 0.201% (0.115%)

Medium-Term (3-6 month) calls

<-6% 342 (492) 0.805% (-0.027%) 0.504% (0.076%)

[-6%,-4%] 358 (434) 1.319% (-0.009%) 0.588% (0.088%)

[-4%,-2%] 599 (333) 1.569% (-0.009%) 0.528% (0.083%)

[-2%,-1%] 414 (434) 1.221% (0.013%) 0.587% (0.086%)

[-1%,0%] 479 (476) 0.635% (-0.001%) 0.573% (0.094%)

[0%,1%] 419 (414) 0.442% (-0.009%) 0.578% (0.094%)

[1%,2%] 311 (322) 0.294% (-0.015%) 0.605% (0.116%)

[2%,4%] 293 (190) 0.018% (-0.046%) 0.512% (0.125%)

[4%,6%] 190 (237) -0.332% (-0.062%) 0.520% (0.125%)

>6% 210 (276) -0.261% (-0.125%) 0.357% (0.160%)

Table 10: Residuals from fmincon calibration, call options. Bates values in parenthesis. Average Errors

calculated as in Equation (9).
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Moneyness (K/S - 1) Number of Observations Average Errors Standard Deviations

Short-Term (0-3 month) puts

<-6% 56 (93) 0.188% (-0.002%) 0.260% (0.135%)

[-6%,-4%] 96 (132) 0.339% (-0.001%) 0.409% (0.091%)

[-4%,-2%] 218 (151) 0.626% (0.023%) 0.609% (0.110%)

[-2%,-1%] 309 (283) 0.878% (0.003%) 0.499% (0.090%)

[-1%,0%] 566 (585) 0.573% (0.002%) 0.364% (0.097%)

[0%,1%] 933 (920) 0.353% (0.034%) 0.353% (0.093%)

[1%,2%] 905 (911) 0.074% (0.027%) 0.296% (0.080%)

[2%,4%] 1280 (788) -0.100% (0.022%) 0.287% (0.072%)

[4%,6%] 630 (939) -0.271% (0.024%) 0.226% (0.064%)

>6% 610 (828) -0.183% (0.033%) 0.202% (0.047%)

Medium-Term (3-6 month) puts

<-6% 24 (38) 0.554% (-0.095%) 0.508% (0.124%)

[-6%,-4%] 25 (29) 0.998% (-0.053%) 0.253% (0.100%)

[-4%,-2%] 63 (41) 1.365% (-0.097%) 0.480% (0.115%)

[-2%,-1%] 78 (76) 1.077% (-0.019%) 0.644% (0.132%)

[-1%,0%] 184 (175) 0.529% (-0.021%) 0.515% (0.120%)

[0%,1%] 209 (208) 0.260% (-0.009%) 0.508% (0.096%)

[1%,2%] 276 (271) 0.265% (0.001%) 0.669% (0.095%)

[2%,4%] 419 (197) -0.191% (0.000%) 0.455% (0.087%)

[4%,6%] 316 (410) -0.256% (-0.011%) 0.453% (0.066%)

>6% 540 (663) -0.206% (-0.003%) 0.292% (0.050%)

Table 11: Residuals from fmincon calibration, put options. Bates values in parenthesis. Average Errors

calculated as in Equation (9).

For fmincon, the call option errors depicts an underpricing for the majority of moneyness categories

across both short- and medium-term. The exceptions are the out-of-the-money calls when money-

ness is greater than 4% where the call options are on average overvalued with respect to the market

price. For put options, the same pattern emerges wherein put options with negative moneyness, i.e.

the out-of-the-money puts, are consistenly undervalued. Both short- and medium-term put options

with a moneyness greater than 2%, i.e. the in-the-money puts, are overvalued.

As is evident, the performance of the fmincon calibration is inferior to that of Bates (1996) for all

moneyness categories except the 3-6 month calls with a moneyness of [2%, 4%]. The average errors

for the calls rarely exceed 1%, except for the in-the-money short-term calls with a moneyness of

[−2%,−1%] and in-the-money medium-term calls with a moneyness between −6% and −1%. For

the puts, nearly the same pattern emerges with exceeding 1% average pricing error for the 3-6 month

puts with moneyness [−4%,−2%] and [−2%,−1%]. Compared to the lsqnonlin calibration, the

fmincon calibration has a lower average pricing error for 2 of the pricing categories, thus performing

overall worse than the lsqnonlin calibration. As was the case for lsqnonlin, the magnitude of the

standard deviations for fmincon are also larger with respect to Bates (1996), thus suggesting wider
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spread among pricing errors.

The performance of the Garman-Kohlhagen model is found in Table 12 and 13 in the Appendix. It

is important to note that given that the analytic approximation is derived in the structure of the

Garman-Kohlhagen model, it should perform well in this setting as using the same volatility as was

done for approximating the early exercise premium would yield a pricing error equal to zero for all

options. To avoid this problem, the implicit volatility was used to estimate the early exercise pre-

mium and the overall volatility for the exchange rate in Figure 9 was used in the pricing performance

calculations.

The results over moneyness and maturity for the Garman-Kohlhagen model is quite consistent, valu-

ing the options on average below the market price across all categories. The lsqnonlin specification

performs comparatively better across all categories than the Garman-Kohlhagen model. The same is

not observed for the fmincon specification where the Garman-Kohlhagen model has a lower average

error for 70% of the moneyness-categories looking across both short- and medium-term maturities.

To compare the models at an aggregate level I calculated a modified version of Theil’s U-statistic

for the different specifications:

U =

√∑N
i=1

(
O

(M)
i −O(B)

i

O
(M)
i

)2
√∑N

i=1

(
O

(M)
i −O(GK)

i

O
(M)
i

)2 (58)

where as in Equation (29), O
(M)
i denotes the market option price, O

(B)
i denotes the estimated option

price from Bates model, and O
(GK)
i denotes the estimated option price from the Garman-Kohlhagen

model. Note the different specifications in the denominator as compared to the pricing residual in

Equation (29) and consequently the tables provided in this chapter. For interpretation of the U-

statistic a value of U = 1 implies that the models under consideration are equal performance-wise,

a value of U < 1 implies that the model in the numerator is superior, and a value of U > 1 implies

that the model in the denominator is superior (Brooks 2019).

For the different parameter specifications, the U-statistic for the lsqnonlin is 0.0015 and for fmincon

1.5017 using the Garman-Kohlhagen model as the benchmark model in the denominator. As such,

the parameter specification in lsqnonlin is comparatively better than the fmincon specifications

relative to the Garman-Kohlhagen model. This also means that the fmincon performs worse than

the Garman-Kohlhagen overall in this framework.

To visualize the performances over moneyness, Figure 11 depicts the average pricing errors for puts

over moneyness separated into 0-3 months and 3-6 months for lsqnonlin, fmincon, Bates (1996),

and the Garman-Kohlhagen model. The corresponding figure for call options can be found in Figure

14 in the Appendix.
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Figure 11: Pricing error over moneyness and maturity.

As can be observed, Bates (1996), lsqnonlin, and Garman-Kohlhagen show a less volatile pricing

error across moneyness than the fmincon specification. fmincon has the largest average errors for

moneyness less than 0, i.e. out-of-the-money puts by on average estimating below the market price.

This pattern can also be observed in Figure 14, but then for in-the-money calls where fmincon also

undervalues the market prices. Given the parameter values, there is a mixed relationship between σv

contributing heavily to the excess kurtosis and ρ to the skewness which could explain the inconsistent

theoretical interpretation of the pricing performance. For the pricing errors of the options with a

positive moneyness, the fmincon specifications however performs better. By limiting the pricing

to options with a positive moneyness, the U-statistic for fmincon is 0.0981, thus performing better

than the Garman-Kohlhagen model overall for that subsection for both calls and puts.
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7 Conclusion

The purpose of this thesis was to complement the results from Bates (1996) by performing calibra-

tion over the same dataset using two different methodologies. This was successfully implemented

using the nonlinear least squares methodogy and the built-in MATLAB function fmincon.

The calibration using lsqnonlin performs well over the pricing framework, surpassing both the

Garman-Kohlhagen model and the fmincon specification. The calibrated parameter values corre-

spond closely to those in Bates (1996) and given the market data exhibit reasonable values to the

analytical specification of the model.

For fmincon, the calibrated parameters are deviating widely, providing extreme parameters values

for certain variabels that are improbable given the analytical specification of Bates model. This

is an issue discussed in this thesis, that of having a stochastic volatility-model that is analytically

pleasing but might cause empirical misspecification with respect to the theoretical specification of

the model (Mills and Patterson 2009). This behaviour can be observed for the fmincon calibration,

most notably for the volatility of variance- and correlation-parameter. However, since the pric-

ing performance of fmincon exhibit inconsistent behaviour across moneyness as well as performing

overall worse than the Garman-Kohlhagen model, this is not an issue. Furthermore, for both the

calibration results in Section 4.3 and Section 6.1, the fmincon methodology exhibits extreme values

for both σv and ρ. The results from Section 6.1 could be attributed to the initial starting values

for the parameters which should favour the lsqnonlin methodology as it more closely follows that

of Bates (1996). However, given that the calibrated parameter values in Section 4.3 exhibit similar

behaviour with respect to σv and ρ, wherein arbitrary starting points where used as starting values,

it suggests that the fmincon calibration methodology with MAE tends towards extreme values for

σv and ρ.

For future research, it would be interesting to further carry out this methodology on other option

pricing models, replicating and extending with different calibration methodologies. Furthermore,

from the discussion of local optimization techniques, it would be useful to test several starting

points for the calibrations, or global optimization techniques. This was not done in this thesis due

to the already extensive calibration times. Lastly, as noted in the end of Chapter 4, it would be

interesting to test the impact of using different analytic approximation techniques.
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8 Appendix

8.1 Tables

Moneyness (K/S - 1) Number of Observations Average Errors Standard Deviations

Short-Term (0-3 month) calls

<-6% 445 (646) 0.315% (0.027%) 0.277% (0.048%)

[-6%,-4%] 697 (1140) 0.314% (0.016%) 0.336% (0.055%)

[-4%,-2%] 1715 (1051) 0.366% (0.011%) 0.400% (0.070%)

[-2%,-1%] 1179 (1151) 0.309% (0.011%) 0.331% (0.076%)

[-1%,0%] 1331 (1360) 0.227% (0.011%) 0.399% (0.085%)

[0%,1%] 1049 (1053) 0.410% (0.006%) 0.465% (0.100%)

[1%,2%] 495 (499) 0.268% (-0.030%) 0.376% (0.104%)

[2%,4%] 691 (334) 0.413% (-0.003%) 0.446% (0.113%)

[4%,6%] 313 (576) 0.187% (-0.039%) 0.288% (0.116%)

>6% 422 (534) 0.053% (-0.070%) 0.235% (0.115%)

Medium-Term (3-6 month) calls

<-6% 342 (492) 0.515% (-0.027%) 0.438% (0.076%)

[-6%,-4%] 358 (434) 0.568% (-0.009%) 0.537% (0.088%)

[-4%,-2%] 599 (333) 0.650% (-0.009%) 0.571% (0.083%)

[-2%,-1%] 414 (434) 0.710% (0.013%) 0.555% (0.086%)

[-1%,0%] 479 (476) 0.479% (-0.001%) 0.556% (0.094%)

[0%,1%] 419 (414) 0.593% (-0.009%) 0.583% (0.094%)

[1%,2%] 311 (322) 0.675% (-0.015%) 0.610% (0.116%)

[2%,4%] 293 (190) 0.597% (-0.046%) 0.513% (0.125%)

[4%,6%] 190 (237) 0.381% (-0.062%) 0.528% (0.125%)

>6% 210 (276) 0.213% (-0.125%) 0.412% (0.160%)

Table 12: Residuals from Garman-Kohlhagen model, call options. Bates values in parenthesis. Average

Errors calculated as in Equation (9).
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Moneyness (K/S - 1) Number of Observations Average Errors Standard Deviations

Short-Term (0-3 month) puts

<-6% 56 (93) 0.129% (-0.002%) 0.227% (0.135%)

[-6%,-4%] 96 (132) 0.189% (-0.001%) 0.293% (0.091%)

[-4%,-2%] 218 (151) 0.233% (0.023%) 0.370% (0.110%)

[-2%,-1%] 309 (283) 0.256% (0.003%) 0.292% (0.090%)

[-1%,0%] 566 (585) 0.122% (0.002%) 0.316% (0.097%)

[0%,1%] 933 (920) 0.223% (0.034%) 0.343% (0.093%)

[1%,2%] 905 (911) 0.186% (0.027%) 0.297% (0.080%)

[2%,4%] 1280 (788) 0.251% (0.022%) 0.318% (0.072%)

[4%,6%] 630 (939) 0.243% (0.024%) 0.236% (0.064%)

>6% 610 (828) 0.261% (0.033%) 0.234% (0.047%)

Medium-Term (3-6 month) puts

<-6% 24 (38) 0.317% (-0.095%) 0.480% (0.124%)

[-6%,-4%] 25 (29) 0.301% (-0.053%) 0.290% (0.100%)

[-4%,-2%] 63 (41) 0.335% (-0.097%) 0.511% (0.115%)

[-2%,-1%] 78 (76) 0.603% (-0.019%) 0.544% (0.132%)

[-1%,0%] 184 (175) 0.337% (-0.021%) 0.466% (0.120%)

[0%,1%] 209 (208) 0.386% (-0.009%) 0.538% (0.096%)

[1%,2%] 276 (271) 0.624% (0.001%) 0.634% (0.095%)

[2%,4%] 419 (197) 0.412% (0.000%) 0.444% (0.087%)

[4%,6%] 316 (410) 0.463% (-0.011%) 0.456% (0.066%)

>6% 540 (663) 0.324% (-0.003%) 0.291% (0.050%)

Table 13: Residuals from Garman-Kohlhagen model, put options. Bates values in parenthesis. Average

Errors calculated as in Equation (9).
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8.2 Figures

Figure 12: Chronological order of theoretical option prices separated into calls and puts.

Figure 13: Scatterplot of theoretical put options prices against lsqnonlin and fmincon estimated prices.
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Figure 14: Pricing error over moneyness and maturity.
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Figure 15: lsqnonlin average error over moneyness
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