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Abstract—Background: Different test prioritization techniques
detect faults at earlier stages of test execution. To this end,
Diversity-based techniques (DBT) have been cost-effective by
prioritizing the most dissimilar test cases to maintain effectiveness
and coverage with lower resources at different stages of the
software development life cycle, called levels of testing (LoT).
Diversity is measured on static test specifications to convey how
different test cases are from one another. However, there is little
research on DBT applied to semantic similarities of words within
tests. Moreover, diversity has been extensively studied within
individual LoT (unit, integration and system), but the trade-offs
of such techniques across different levels are not well understood.

Objective and Methodology: This paper aims to reveal rela-
tionships between DBT and the LoT, as well as to compare and
evaluate the cost-effectiveness and coverage of different diversity
measures, namely Jaccard’s Index, Levenshtein, Normalized
Compression Distance (NCD), and Semantic Similarity (SS). We
perform an experiment on the test suites of 7 open source projects
on the unit level, 1 industrial project on the integration level, and
4 industry projects on the system level (where one project is used
on both system and integration levels).

Results: Our results show that SS increases test coverage for
system-level tests, and the differences in failure detection rate
of each diversity increase as more prioritised tests execute. In
terms of execution time, we report that Jaccard is the fastest,
whereas Levenshtein is the slowest and, in some cases, simply
infeasible to run. In contrast, Levenshtein detects more failures
on integration level, and Jaccard more on system level.

Conclusion: Future work can be done on SS to be implemented
on code artefacts, as well as including other DBT in the
comparison. Suspected test suite properties that seem to affect
DBT performance can be investigated in greater detail.

Index Terms—Diversity-based testing, Test Case Prioritization,
Natural Language Processing (NLP), Level of Testing (LoT).

I. INTRODUCTION

Testing is crucial in a software-intensive system to ensure
a satisfactory degree of quality. Ideally, the entire test suite is
executed on the System Under Test (SUT) to uncover failures,
but in reality the increasing system complexity along with
limited resources prohibit this. To achieve cost-effective test-
ing within such conditions, test prioritization approaches aid
testers to decide on what and how much to test. Several types
of test case prioritization exist depending on prioritization
criteria. Specifically, Similarity- or Diversity-Based Test case
Prioritization has shown promising results and advantages for
automated test optimization, being able to reduce test costs

while keeping a satisfactory test coverage of the system [1],
by measuring how different tests are from each other through
distance functions for each pair of tests.

Testers intuitively assume that diverse tests result in a higher
test coverage— the amount of functional requirements covered
by a test— consequently probing more varied behaviours of
the SUT. This in turn increases fault detection rate when
testing is prohibitive [2], [3]. Predominantly, diversity is
measured through distance functions that convey how different
two pieces of information are from one another. Consequently,
DBT require a concrete definition of the type of diverse
information that is being measured, which can range from
textual similarity [4], test input data [3] or test execution
log patterns [5], [6]. DBT have shown to expose a similar
amount of failures even without access to source code [5],
[7]. Instead, testing artefacts or information sources from test
cases executions are used.

Current research on diversity-based approaches present
many strategies to measure diversity, each with their own
contributions and limitations when it comes to applicability,
performance and domain suitability. Moreover, the level of
testing (unit, system and integration) should be considered
alongside resource restrictions when choosing DBT. Levels of
testing (LoT) are groupings of tests in different stages of the
software development lifecycle where testing is performed. For
instance, system-level tests are mostly written in natural lan-
guage, enabling testers to verify and validate system features
and user requirements, whereas unit tests are written in a pro-
gramming language to examine a component at a lower level.
In both cases, testers want to achieve diverse test coverage,
but current research does not show how diversity measures
perform on those different levels. Selecting a sub optimal DBT
may drastically impact test prioritization performance.

One main type of Diversity-based techniques (DBT) is
called Artefact-based diversity(a-div), which compares aspects
of test specifications such as requirements, test inputs, or
system output data to determine the similarity between tests.
A subgroup of a-div compares distance between strings to
illustrate how dissimilar two test cases are [4], [8]. The
meaning of a word may change depending on the context
and, currently, most of the existing string-based techniques
mainly observe lexical, rather than semantic differences of test
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cases regardless of the level of testing [4]. This may result in
inaccurate test suite prioritization [6], reducing effectiveness.
Therefore, Semantic Similarity (SS) is used in this experiment
as an approach to measure the semantic distances between
test cases. SS uses Natural Language Processing (NLP), a
branch of artificial intelligence, to compare words, paragraphs,
or documents to account for varying definitions of words.

In summary, we address two problems: (i) diversity mea-
sures are generic and applicable to any artefact [3], [5],
however little work has been done on comparing DBT across
several LoT in a holistic manner, and (ii) most string-based
diversity measures do not capture semantics of test artefacts
that are relevant for identifying relevant tests [2], [4].

In order to evaluate the trade offs of the four DBT, we need
to be able to make sure that the techniques are the root cause
of the observed differences. Thus, we perform a fractional
factorial experiment to observe how different DBT perform
on 7 open source projects and 4 projects from two industrial
companies on three levels of testing. We compare coverage,
failure detection rates and execution time of the techniques on
the integration and system level, but only time and failure
detection rates on the unit LoT. We measure coverage in
terms of test requirements, which is feasible for system-level
tests. However, we do not analyze coverage on the unit level
due the conceptual differences between requirement coverage
and code/conditional coverage, hence avoiding the analysis
of disparate constructs. Through this experiment, we expect
to contribute on both a technical and scientific perspective,
namely:
• An experimental study that investigates the applicability,

performance, and cost of several DBT on open source and
industry data, on three levels of testing. Our implemen-
tations to obtain data for coverage, failure detection rates
and execution times for Python Projects, Java projects
and the Defects4J framework can be reused for future
experimental studies for DBT.

• Our instrumented workflow can be adapted to be used for
practitioners to run test case prioritisation techniques in
their project’s test suite.

• An implementation of Semantic Similarity 1 which makes
use of Doc2Vec [9] and the Cosine Distance to rank a test
suite. This can benefit future studies related to semantic
string-based diversity or practitioners seeking to utilize
such a technique under optimal conditions.

• Analysis of DBT trade-offs in regards to coverage, failure
detection and execution time on three LoTs. An in-
depth comparison between system and integration levels
is presented. The results of SS are particularly novel.

• A list of recommendations of the optimal scenarios to use
certain techniques based on our analysis results.

Our thesis is structured as follows: Section II highlights
the research that are related to our experiment and explains
some of the crucial concepts we present. Section III describes
our experiment process and the steps we took to collect the

1Available at: https://github.com/ranimkhojah/Lemon-Ginger-Thesis

data for the experiment. Section IV presents the results and the
analysis of our experiment, and section V interprets the results
with respect to our research questions. Section VI explores and
discusses the different types of validity threats to our research
and VII includes final insights and possible future work.

II. BACKGROUND

A. Levels of Testing

Tests are usually grouped into specific “levels” to make tests
systematic and focus on a certain purpose and aspect of a
software while testing it. In this experiment, we focus on three
levels of testing: unit, integration, and system levels. Testing
on a unit level examines each component of a SUT indepen-
dently and ensures that it returns the expected outcome.

Unit testing focuses on checking if an isolated unit of a
system behaves as expected. The unit tests focused on in this
experiment are JUnit tests written in Java where unit that is
being tested is a method in a class. Listing 1 is an example of
class methods that are tested using the test suite in Listing 2.

Integration-level testing on the other hand concerns itself
with the dependencies between different parts of the software
and ensures that they are compatible together. We focus
on testing the dependencies between entries of the project’s
modules e.g. API endpoints and other classes of the project.
Example of an integration test of API endpoint is illustrated
in Listing 4.

Finally, the software as a whole is tested on a system
level to ensure that the software fulfills the user requirements
and system features. System tests can be written as code or
in natural language, where the latter will be used in this
experiment. As shown in Listing 3 and the documentation
part in Listing 4, system tests will be represented by test case
descriptions and/or test specifications.

Different companies do testing at different levels (unit,
integration and system), and comparing benefits across those
levels is particularly challenging since each explore a unique
test purpose. However, the diversity measures are, in theory,
applicable to any type of artefact [5]. Therefore, our goal is
to see whether diversity can also be captured and prioritised
across those different levels of testing.

B. Test Diversity - An Example

We illustrate the appeal of DBT with a toy example where
our SUT is the class MyFarm (Listing 1), along with the corre-
sponding unit (Listing 2) and system tests (Listing 3). Consider
the unit and system test suites, each containing 7 test cases. We
can see that testEggNum() and testIsEggEmpty() are similar.
Likewise, testMilkNum() is similar to testIsMilkEmpty(). On
the system level, one can easily see which scenarios are related
to eggs [”Number of Eggs”, ”Egg Status”] or milk [”Number
of Milk”, ”Milk Left in Farm”].

Given that there is only enough resources to execute 3 of 6
tests on each level, our goal would be to still cover all features
with 3 tests for both levels. While there is no one right answer,
a valid answer could be to run [getChickens(), getMilkNum(),
isEggEmpty()] on the unit level, and [Get Number of Cows,
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Egg Status, Milk Left in Farm ]. These three test cases would
still maintain the breadth of coverage as all features would
be covered as much as possible. It should be noted that tests
of different LoTs are not ranked together. While this example
SUT has a system test for each unit method, in reality a system
test examines multiple code components together.

1 public class MyFarm {
2 private int chickens, eggNum, cows, milkNum;
3

4 public MyFarm (int chickens, int cows) {
5 this.chickens = chickens; this.cows = cows;
6 this.eggNum = 5; this.milkNum = 10;}
7

8 public int getChickens(){ return this.chickens;}
9 public int getCows() { return this.cows;}

10 public int getEggNum() { return this.eggNum;}
11 public int getMilkNum() { return this.milkNum;}
12 public boolean isEggEmpty() {return eggNum ==0;}
13 public boolean isMilkEmpty(){return milkNum==0;}}

Listing 1. Our class under test is a farm with animals.

1 public class MyFarmTest {
2 private static int CHICKENS, COWS = 5;
3 private static int EGGCOUNT = 5;
4 private static int MILKCOUNT = 10;
5 private MyFarm farm;
6

7 @Before public void setUp()
8 {farm = new MyFarm(CHICKENS, COWS);}
9 @Test public void testChickens()

10 { assertEquals(CHICKENS, farm.getChickens());}
11 @Test public void testCows()
12 { assertEquals(COWS, farm.getCows()); }
13 @Test public void testEggNum()
14 { assertEquals(EGGCOUNT, farm.getEggNum()); }
15 @Test public void testMilkNum()
16 { assertEquals(MILKCOUNT, farm.getMilkNum());}
17 @Test public void testIsEggEmpty()
18 { assertFalse(farm.isEggEmpty()); }
19 @Test public void testIsMilkEmpty()
20 { assertFalse(farm.isMilkEmpty()); }}

Listing 2. Example of unit tests to cover the class under test.

1 Scenario: Get Chicken Number
2 Given there are 5 chickens in the farm
3 When the user queries the chicken amount
4 Then the 5 chickens should appear in the coop
5 Scenario: Obtain Number of Cows
6 Given there are 5 cows in the farm
7 When I check the remaining cows in the farm
8 Then the 5 cows should appear in the farm
9 Scenario: Egg Quantity

10 Given there are 5 eggs left in the farm
11 When the farmer checks how many eggs are left
12 Then the farmer should see 5 eggs are left
13 Scenario: Number of Milk
14 Given there exists 10 milk
15 When I investigate how much milk is left
16 Then I should see 10 milk left in the farm
17 Scenario: Egg Status
18 Given the farm has no more eggs
19 When the farmer considers if the farm has eggs
20 Then the farm should show that no eggs exist
21 Scenario: Milk Left in Farm
22 Given there is more than 1 milk in the farm
23 If I check the status of the milk
24 Then I should see that milk exists in the farm

Listing 3. Example of system tests to cover the class under test.

Using a string-based diversity test prioritization technique
can automatically determine which tests to run under such
circumstances, but reality is often more complex. As string-
based techniques only look at the lexical aspect of individual
words, context is not taken into account. This could result in
incorrect test prioritization, such as having both [”Number of
Eggs”, ”Egg Status”] system level tests being chosen instead
of a combination between Eggs and Milk. Factors such as
different test authors, or synonyms in different tests can make
the string-based technique ”think” that ”Egg Status” was more
diverse than, e.g., ”Milk Left in Farm”. SS, on the other hand,
would likely spot such semantic differences and determine that
”Egg Status” and ”Number of Milk” should be prioritized first.

There may be a point of diminishing returns where it may
not be needed to run more expensive techniques to acquire a
more optimal prioritization. For instance, running [”Number of
Eggs”, ”Egg Status”] still covers a large majority of features,
and perhaps it is enough to simply use a faster, but less
effective DBT. This is especially true in this toy example, as
the features are similar in implementation (isEggEmpty() and
isMilkEmpty() are nearly identical). However, a realistic sys-
tem can contain much more important, nuanced, and complex
differences that SS may spot in contrast to lexical string-based
techniques. These are the trade-offs between techniques that
this experiment attempts to shed more light on.

C. Diversity-based Prioritization

Diversity-Based Test Case Prioritization has contributed to
automated test optimization by enhancing the coverage at a
low cost [1], and supporting data-driven decision making on
test maintenance [2]. Studies have also shown that diversity-
based selection performs better in detecting faults with fewer
test cases compared to, e.g., manual selection, especially if the
test suite has a medium or high amount of redundancy in test
cases [3], [10]–[13].

DBT require some definition of what type of diverse in-
formation is being measured, such as the diversity of system
requirements [1], [11], code statements, execution logs [5], [6],
or test steps [2]. There are a multitude of techniques which
have unique benefits and drawbacks that come from various
aspects. Diversity can be measured using textual similarity
[4] or general diversity between objects [5], for example. The
level of tests that are required can be different - tests covering
diverse requirements [1], [2], test input and output [5] or even
test scenarios [11] can be used. Normalized Compression Dis-
tance (NCD), for example, calculates diversity by measuring
how difficult it is to transform any 2 objects into each other,
but is generally more computationally expensive [3]. In our
experiment, we focus on evaluating techniques that capture
similarities by following the process defined in Fig. 1.

After mining test repositories, tests are encoded into vectors
(if the technique requires it) in order to measure pairwise dis-
tances between test cases. Next, the encoded test information
is given to a distance function, resulting in a distance value.
When the distance values are normalized, a pair of test cases
are considered to be identical if the distance between them
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Distance MatrixTest Repositories

Encode test 
cases

Calculate pairwise 
distances among 

test cases
Rank test cases

Evaluate the used 
technique

Fig. 1. The workflow of the experiment. This figure is partially based on de Oliveira Neto et al.’s [2] illustration of diversity-based test optimisation steps.

is 0, and totally dissimilar if the distance between them is 1.
These pairwise distance values are then arranged in a matrix,
which is used for other testing activities.

Considering T = t1, t2, ..., tn, a distance matrix D is
an nxn matrix, where n = |T |, that is, the length of the
test suite. D includes the pairwise distances between test
cases, for instance, the value of D(ti, tj) is the distance
between test case ti and test case tj . This experiment uses
different techniques that read and encode test information,
measure distances and create a distance matrix accordingly.
The techniques that were used, namely, Jaccard’s Index,
Levenshtein, NCD, and SS, are summarized in Table I. Next,
we detail our usage of each of the DBT.

1) Jaccard’s Index: Jaccard’s Index [14] is used to extract
the tests information and breaking them down into sequences
of n characters called n-grams. Subsequently, it measures
the lexical similarity based on how much test cases have
characters in common, in other words, how many n-grams
the test cases share. Accordingly, the Jaccard distance i.e.
dissimilarity between a pair of test cases ti and tj is measured
through Equation 1.

jaccardDistance(ti, tj) = 1− |ti ∩ tj |
|ti ∪ tj |

(1)

2) Levenshtein: Levenshtein defines the distance between
ti and tj as the minimal number of operations e.g. insertion,
deletion, replacement to change ti into tj . for instance, the
distance between ”tree” as S1 and ”bee” as S2 is 2, where S1
needs one deletion of letter ”t” and one replacement of letter
”r” with ”b” in order to transform to S2. Levenshtein can be
calculated using Equation 2 where ti and tj are the lengths
of ti and tj respectively.

Lev(ti, tj) =


max(ti, tj) ifmin(ti, tj) = 0,

min


Lev(ti− 1, tj) + 1 otherwise,

Lev(ti, tj − 1) + 1

Lev(ti− 1, tj − 1) + 1ti 6=tj

(2)
3) Normalized Compression Distance (NCD): NCD simi-

larity [15] between two documents x and y assumes that the if
the concatenation xy of x and y was passed to a compressor
C, then the compression ratio is the similarity between x and
y, hence 1- the similarity is the NCD distance between x and
y which can be calculated by Equation 3.

Pre-trained Doc2Vec 
model

Clean the input (text 
case document)

Tokenize document 
content

Lemmatize document 
content

Measure pairwise 
Cosine distances 

between documents
Vectorize document

Organize distance 
values into a distance 

matrix

Fig. 2. The steps to measure semantic similarities between test cases. The
grey boxes indicate the phases related to the NLP-approach.

NCDdistance(x, y) = 1− C(xy)−min(C(x), C(y))

max(C(x), C(y))
(3)

4) Semantic Similarity (SS): We made use of NLP in this
experiment to capture semantic similarities between docu-
ments by following the steps specified in Fig. 2.

We capture semantic similarities between test cases using
Doc2Vec or Paragraph Vector which is an unsupervised frame-
work introduced by Le and Mikolov [9] to capture features of
the document content in a vector with respect to the words’
semantics and ordering in a paragraph. More specifically, we
use a pre-trained Doc2Vec model on Wikipedia data2, which
we believe covers the knowledge required to get our SS model
to understand natural language.

The test case description documents are the main artefact
that SS extracts test information from, these documents come
from the system-level tests specifications that describe the
main purpose of a given test case along with the conditions,
steps and the expected outcome. So, when the test specifica-
tions (including several test case descriptions documents) are
passed to the SS pipeline, a cleaning process is performed on
the documents to remove non-Latin characters, non-English
words, URLs, punctuation and stop words, i.e., the most com-
mon words in a language such as pronouns or conjunctions.
Then, the content is tokenized into words in order to perform
lemmatization that converts each token to its root, e.g. verbs
”to be” are converted to ”be” and verbs in a specific tense are
lemmatized to the infinitive tense.

Finally, Doc2Vec uses the Paragraph Vector algorithm to
construct a vector representation of each document. Moreover,
Doc2Vec has a built-in function to compute the Cosine dis-
tance [16], [17] that we use to measure the pairwise distances

2https://github.com/RaRe-Technologies/gensim
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TABLE I
SUMMARY OF THE PRIORITIZATION TECHNIQUES USED IN THIS EXPERIMENT

Description Advantages Disadvantages

Jaccard’s Index Captures lexical similarity by checking the
commonalities between two strings based
on substrings of a string (q-grams).

1. Simple to interpret, fast to execute.
2. Gives positive results in large datasets and
usually used as a baseline in literature.

1. Limited to the intersection between
two strings when measuring distance.
2. Sensitive, erroneous in small datasets.

Levenshtein Defines distance between two strings as
the number of edit operations required to
transform the first string to the other.

1. Theory is simple to understand.
2. Efficient for short strings.

1. Computationally expensive.
2. Inefficient for long strings.

NCD Compares two compressed strings with the
compressed concatenation of these strings
to measure the distance between them.

1. Doesn’t need parameters and usable in any type
of data (e.g., files, strings).
2. Robust to errors in feature selection.

1. Computationally expensive.
2. Compressor selection might be crucial
to effectiveness.

Semantic Simi-
larity

NLP-approach to extract features from test
case specifications and creates vector rep-
resentations for each document then mea-
sures pairwise document similarity using
the cosine similarity function.

1. Captures semantic similarities with respect to
words’ order.
2. Cheap, vectors are learned from unlabeled data.
3. Flexible, can use any similarity function.

1. Training a model can be time consum-
ing.
2. Very sensitive to the used model and
the number of epochs during training.

among all test cases in a test suite, and then arrange them in
a distance matrix. The Cosine distance computes the distance
between two vectors A and B by measuring the cosine of the
angle between them using Equation 4, where A.B is the dot
product between the two vectors.

CosineDistance(A,B) = 1− A.B

||A|| × ||B||
(4)

D. Related Work

Different areas of optimization emerged to reduce testing
resources without hindering effectiveness, such as test case
selection, prioritization and minimization [18]. Test case min-
imization tries to remove redundant tests, test case selection
looks for test cases that are relevant to recent changes, and
prioritization orders or ranks test cases such that faults can be
detected earlier. While we focus on prioritization techniques,
note that test case prioritization can be combined with test
case selection and minimization to suit specific contexts.

Many studies have looked into test case prioritization. Yoo
and Harman [18] surveyed and analyzed trends in regres-
sion test case selection, minimization and prioritization. They
found out that these topics are closely related and reported
that the trends suggest test case prioritization had increasing
importance, and that researchers were moving towards the
assessment of complex trade-offs between different concerns
such as cost and value, or the availability of certain resources,
such as source code. To this end, Henard et al. [7] experi-
mentally compared white box and black box test prioritization
techniques, and found that diversity based techniques, along
with Combinatorial Interaction Testing, performed best in
black box testing. They also found a high amount of fault
overlap between white and black box techniques, indicating
that an acceptable amount of faults can still be uncovered even
without source code available.

While Henard et al. revealed that diversity based techniques
managed to find an acceptable amount of faults with restricted
resources [7], de Oliveira Neto et al. expanded on that and
found that the visualization of the same diversity information

helped practitioners in test maintenance and decision making
as well [2], indicating that the benefits of diversity based
techniques are multifaceted, depending on the context and the
usage.

Hemmati et al. [19], [20] conducted a case study as well
as a large scale simulation to look into how test suite proper-
ties of model-based testing affected diversity-based test case
selection, and found that such diversity techniques worked
best when test cases that detect distinct faults are dissimilar,
and not so well when many outliers exist in a test suite. In
response, Hemmati et al. introduced a rank scaling system,
which partially alleviated the problem.

In turn, Feldt et al. [5] presented a model for a family of
universal, practical test diversity metrics. One subset of tech-
niques compare string distances in order to measure diversity.
Strings are compared lexicographically and a string distance is
given to illustrate how dissimilar two test cases are. de Oliveira
Neto et al. used Jaccard’s Index, one of such techniques, to
visualize company test cases to trigger insightful discussions
[2]. However, most of the techniques are unable to capture
semantic similarities while comparing test cases regardless of
the level of testing. This may result in inaccurate test suite
prioritization since tests that semantically related features may
not be detected by simply comparing strings (e.g., braking and
acceleration features in automotive components) [1], [6].

Although rare, capturing semantic similarities in the com-
parison between test cases has been attempted. Tahvili et al.
[21] presented a NLP approach that revealed dependencies
between requirements specification, and performed a case
study on an industrial project. They suggested the dependency
information can be utilized for test case prioritization, and
found that using NLP on a integration level of testing is
feasible. Yet, the paper only compared NLP with Random pri-
oritization and did not include common string-based distances
such as Jaccard used in other diversity-based studies. This is
problematic as the comparison between NLP and Random is
unbalanced and rather partial towards NLP.
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TABLE II
SCOPE AND VARIABLES OF OUR EXPERIMENTAL STUDY.

Objective Explore

Experimental Design: Fractional Factorial Experiment
Experimental Units: Unit tests, integration tests and test specifications.
Experimental Subjects: 4 industrial test suites

7 open-source projects
Dependent Variables: Coverage, detected failures and execution time.
Factors: Technique (F1), Levels of testing (F2)
Levels for F1: Jaccard, Levenshtein, NCD, SS and Random
Levels for F2: System, integration and unit level
Parameters: Programming language, test suite size.

III. METHODOLOGY

The primary research method for this study is an experiment
that is designed to evaluate the trade-offs of diversity measures
on different LoT. We focus on three main test levels, i.e.
Unit, Integration and System LoTs. Unit-level test artefacts
considered here are tests written in a xUnit framework
(e.g. JUnit) that test a class. We use integration tests that
have function calls to entries of the SUT’s modules (e.g.,
API endpoints). System-level tests are written in natural
language and describe the user actions and expected systems
output. Regarding diversity measures, SS is only applied
to system-level artefacts, because it is not applicable to
programming languages. String distances however, are used
on all LoT. Since some of the treatments (i.e., combination
of levels between factors) are not be feasible, we use a
fractional factorial experimental design. We aim to answer
the following research questions:

RQ1: How do DBT perform in terms of coverage on the
system and integration levels?
RQ2: To what extent does each DBT uncover failures?
RQ3: How long does it take to execute each technique on
different level of testing?
RQ4: How do different levels of testing affect the diversity
of a test suite?

The experiment executes each technique on certain levels of
testing following the process defined in Fig. 1. The techniques
and LoTs are the independent variables, while we compare the
following dependent variables: coverage, execution time, and
failure detection rate. We also run a Random test prioritisation
as a baseline, which only looks at the names of the tests, then
shuffles them into a list as a prioritized test suite. Random is
executed on time, coverage and failures 100 times and then
their results are averaged. Table II summarises the components
of our experiment.

Diversity measures rely on the content of tests to determine
distance values. Note that different diversity measures eval-
uate different parts of the artefact, for instance, Levenshtein
preserves sequences of characters, whereas NCD is generic
to any type of file. Therefore, we aim to evaluate whether
those differences affect the diversity of 11 test suites in total

w1)  get Fl oat ( )
w1 w2 w3

w1 0 6 5

w2 6 0 1

w3 5 1 0

w2)  set Num( )

w3)  get Num( )

w1, w1 = 0
w1, w2 = 6
w1, w3 = 5
w2, w1 = 6
w2, w2 = 0

. . .

Fig. 3. An example of a distance matrix generated based on the pairwise
distances between the strings: getFloat(), getNum() and setNum(),
using Levenshtein distance function. Note how w2 and w3 are perceived as
very similar to each other.

and, consequently, our dependent variables. Therefore, we ran
diversity techniques on test artefacts that represent test content
differently, e.g., test steps via code statements (unit), function
calls (integration) and step descriptions (system). In detail, We
ran the string distances using the MultiDistances package3

which offers an implementation in Julia4 of various a-div
techniques and has been used in previous studies [2], [3], [6].
The package reads a test suite as a directory that contains test
cases files in different formats such as text documents (.txt),
JUnit (.java) or XML exported from life-cycle management
systems. Then, it creates a distance matrix as illustrated in the
example in Fig. 3. The MultiDistances package also ranks the
test suite with regards to the generated distance matrix using
the Maximum mean distance between tests, such that tests
that have the higher distance value are ranked higher than
very similar tests (i.e., low distance values). It then checks the
second highest distance value and performs the same actions,
until all test cases are ranked.

We also instrument a tool for Semantic Similarity (SS)
with an NLP-based approach using an off-the-shelf Doc2Vec
model. The implementation is done in Python5 and it follows
the steps defined in Fig. 2. SS can either read test specifications
as a directory that contains tests descriptions as individual
text documents, or it can extract test descriptions written as
documentation in a test function (Example in Listing 4). The
test specification artefacts used in this experiment describe a
test case in 3 levels of detail since it consists of the test name,
steps and expected outcome.

1 import requests
2 Tested_Requirement ="GetCows"
3 def test_get_cows_from_api():
4 """
5 Test: Get all cows from myfarm API
6 Expected Outcome: "200 OK" HTTP status code
7 Steps:
8 1. Send get cows request to cows endpoint
9 2. Verify that the HTTP status is OK

10 """
11 response = requests.get(’http://myfarm.se/cows’)
12 assert_true(response.ok)

Listing 4. The structure of an integration test that includes a system-level
test written as documentation

Semantic Similarity (SS) makes use of Doc2Vec to vectorize
documents [16], [22] by capturing string features of document

3https://github.com/robertfeldt/MultiDistances.jl
4https://julialang.org/
5https://www.python.org/
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TABLE III
THE SYSTEMS UNDER TEST USED IN THIS EXPERIMENT. A. = AVERAGE

NUMBER OF TEST CASES. M. = MEDIAN OF THE TEST CASES NUMBER.

SUT Description Source LoT

Project 1 2639 TCs (test specifications) CompanyA System
Project 2 875 TCs (test specifications) CompanyA System
Project 3 2691 TCs (test specifications) CompanyA System
Project 4 1605 TCs (test specifications

and integration tests)
CompanyB System/ In-

tegration
Cli A. 262, M. 248 TCs (39 faults) OpenSource Unit
Codec A. 440, M. 344.5 TCs (18 faults) OpenSource Unit
Gson A. 988, M. 994.5 TCs (18 faults) OpenSource Unit
JacksonCore A. 356, M. 344 TCs (26 faults) OpenSource Unit
JxPath A. 347, M. 342 TCs (22 faults) OpenSource Unit
Lang A. 1786, M. 1716.5 TCs (64

faults)
OpenSource Unit

Math A. 2513, M. 2319 TCs (106
faults)

OpenSource Unit

and represent these features by generating a vector that cor-
responds to a document (a test case in a test suite). Based
on a provided corpus (Wikipedia data), we use a pre-trained
Doc2Vec model to perform text-similarity tasks and to calcu-
late the pairwise distances between the generated vectors using
the Cosine Distance. Lastly, we arrange all pairwise distances
in a distance matrix. In order to ensure consistency, Maximum
mean is also performed using MultiDistances package to rank
the the test cases documents based on the distance matrix.

A. Data Collection

We collect data from two industry partners, and open source
projects in GitHub (Table III). The two partners (Company
A and B) vary in domain as the former is an IT sector of
a retail company and the latter is a surveillance company.
Company B provides test suites that contain integration and
system tests, whereas Company A only provides system tests.
In addition, we use open source data from Defects4J 6 [23],
which provides unit tests that detect isolated faults along with
specific information regarding tests that trigger such faults.

We measure coverage by using the traceability information
of each test on the integration and system LoT and its
corresponding requirement. As there are no requirements at
the unit level, Coverage is not measured at the unit level.
Failure detection rate is measured in terms of the Average
Percentage of Failures Detected (APFD) [24], i.e., how early
the prioritized test suite detect failures. Finally, as DBT
are usually inefficient when performing a large number of
pairwise comparisons [3], [13], [25], we considered the time
required to perform the prioritization–including the distance
matrices generation–to help addressing a bigger picture of
the trade-off that each technique presents. Although we need
to adjust data collection to each LoT, note that the same
metrics are used amongst the levels of testing (with a few
exceptions detailed below). This allows us to address RQ4
and compare those different levels based on the findings from

6https://github.com/rjust/defects4j

each technique’s assessment.

1) Unit-level Data: The D4J framework was selected due to
its large collection of real, reproducible faults, each with doc-
umented properties and triggering tests. A total of seven open
source projects were used as test subjects on the Defects4J
(D4J) framework. Although there is a total of 17 projects in
D4J at the time of writing, early technical issues and later
time constraints prevented us from using all 17. Despite these
issues, We still wanted a range of projects of varying sizes,
both in terms of number of tests and byte size. The seven
projects were thus selected due to convenience and differences
in size. For each D4J project fault, there are two unique project
versions - a ”faulty” (buggy) version that contains the isolated
fault, and a ”fixed” version that removes the fault. Note that
since the project’s faults are found across different releases of
the SUT, each faulty/fixed versions contain a different test suite
(as both the system and test suite evolved). This meant that
the size and contents of each version is different, and versions
from different faults could not be merged into a single version
with many faults. For consistency, only the fixed versions were
used in this experiment.

The steps to execute the experiment on the Unit LoT are
as follows: 1) Obtain all the fixed versions for all faults in
a project, 2) For each version’s test suite, extract each test
method and which triggers the fault, 3) Calculate time and
failures for prioritising each test suite version separately, and
aggregate (mean) the results for each project. We calculate the
failures revealed at different budget cutoffs (i.e., the APFD). In
other words, how many failures would be revealed by only ex-
ecuting a portion (e.g. 30%) of the tests. To be consistent with
other LoTs—which do not have fault information available—
we count the total of failures, instead of faults.

2) Integration-level Data: Data was gathered on
integration-level from Project 4 that included 1605 tests. Each
integration test could be traced to a single system-level test as
well as a single requirement (See Listing 4). Project 4 is also
supported by the failure information of the integration tests
over 669 builds. The artefact consisted of the test steps along
with the expected outcome that include detailed information
regarding the elements that the test case covers.

In this experiment, we focus on requirements coverage
which is satisfied when the test suite contains at least one
test that is mapped to at least one system requirement of the
SUT [26]. In Project 4, the integration tests were extracted
then linked to a requirement using Algorithm 1, that produced
a list of all integration tests with the corresponding system test
and requirement.

Then given a list of the linked tests, the ranking of the
prioritized test suites is used to determine how early the
respective test suite covers a new requirement by adding a
flag to each test case which tells whether the test case has
tested a new requirement or not in Algorithm 2.

On the other hand, the failure information available for
project 4 contained failures for different builds and test execu-
tions. We filtered the execution history to include only builds
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Algorithm 1: Extract test artefacts in Project 4

while there are functions to read do
if the function is an integration test then

read the integration test and test description;
create a link between the two artefacts;

end
end

Algorithm 2: Record Requirement Coverage

visitedReqs;
for each TC in the ranked test suite do

if the TC’s requirement not in visitedReqs then
report that the TC ”covers a new requirement”;
add the requirement to visitedReqs;

end
end

that contained at least one failure. Furthermore, 115 out of
669 builds were used in this project, and the relevant failure
information regarding the test cases’ names and result for the
respective builds were collected.

3) System-level Data: The data gathered on a system-
level was obtained from Projects 1,2,3 and 4. Projects 1-3
are provided by Company A and include system-level test
specifications, the test specifications are written by testers that
have good knowledge about the SUT. In addition, most of
the test case specification consist of the test steps along with
the corresponding expected outcome from the SUT. However,
since the test specifications are written by human testers, there
are many test case specifications that either don’t follow a
standard (e.g., have missing expected outputs, or incomplete
actions) or are duplicates of other test case specification. In
contrast, Project 4 includes a test suite with system-level test
specifications (as in Listing 4) that are mined and extracted
by a tool that follows Algorithm 1.

Requirement coverage information was collected for
projects 1-4 using the same method explained under
Integration-level Data and shown in Algorithm 1. Then We
build maps between test cases and corresponding linked re-
quirements to record coverage using Algorithm 2.

Moreover, the failure information was provided by only
Company B. Therefore, failure detection rate was measured
only for Project 4.

4) Measuring time efficiency: Last but not least, the effi-
ciency of the DBT on all LoT is represented by the wall-
clock time taken for each technique to fully execute. The
techniques were timed by the Unix time utility when executed
in two virtual machines with 4GB RAM each, and using two
computers: a MacBook Pro, with 3 GHz Intel Core i7 and 16
GB RAM, along with a Lenovo Legion Y530, with a 2.2 Ghz
Intel Core i7 and 32 GB RAM.

All techniques on system and integration level were exe-
cuted 10 times per project to account for Maximum mean

randomness. The Maximum Mean algorithm implements some
random decisions when deciding which test case to prioritize
and which test case to deprioritize when two test cases have
the shortest distance between them, meaning that they are very
similar. On the unit level, techniques were executed once per
version due to high cost. For example, executing NCD on one
of the project’s versions (Lang) took an average of 12 minutes.
Multiplied by each version (64 faulty/fixed versions, see Table
III), the total execution time was 12 hours. Running the same
technique five times would take 2.5 days, which was too costly.
Nevertheless, Random was executed 100 times since it was
cheap to run.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Here, we present and describe data and results for each
of our RQ, along with summarized answers. In turn, we
discuss the reasons and insights drawn from our results in
Section V. All the statistical analyses below followed the
empirical guidelines on software engineering in research [27].

A. How do diversity-based techniques differ on system and
integration levels in terms of coverage?

We executed all techniques at system level on 4 projects and
then obtained coverage percentage for each project (presented
in Fig. 4). The plots illustrate the percentage of covered feature
requirements for a given number of test cases (Budget) using
different techniques on integration and system level.

For system-level coverage for the projects provided by
Company A (i.e. Project 1-3), all the techniques took a linear
shape which indicates the mediocre performance and feature
coverage. However, a different behaviour is revealed in the
project provided by Company B (i.e. Project 4) where SS
took the lead by covering most features across a-div tech-
niques. Surprisingly, Random was slightly better than NCD
and Levenshtein in Project4.

For Integration-Level Coverage, as SS was not executed
on integration level, Random showed the best performance
across all techniques. Jaccard, Levenshtein and NCD had close
performance until budget reaches ~30%. When the budget
exceeds 30% Jaccard separates and shows a lower coverage
than Levenshtein and NCD.

RQ1: SS performs best on system-level. On both LoTs,
NCD and Levenshtein’s coverage are similar. Jaccard
covers the least features in all projects.

B. How do diversity-based techniques differ in terms of failure
detection on different levels of testing?

We highlight visual differences between failure detection
rate of each technique in our charts, then we verify our
observations by performing a post hoc analysis that includes
a Friedman’s statistical test on all techniques to determine
whether a statistical significant difference (SSD) exists. We use
a Bonferroni correction for the pairwise post hoc test of our
data using Wilcoxon Signed Ranked test. We measure effect
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Technique ● Jaccard Levenshtein NCD Random SS

Fig. 4. The plots show the percentage of coverage for Projects 1-4. Budget values represent percentage of prioritized tests executed. Note that SS doesn’t
reach 100% coverage in Project1 since it ignored some empty files (test specifications) which were linked to some features.

size via Kendall’s W to judge the effect level of the statistical
differences between each pair of techniques (S- Small, M-
Moderate, L- Large) . For simplicity, we chose three budgets
to test SSD in the APFD in order to represent more prohibitive
(30% test suite size), reasonable (50%) or permissive (80%)
constrained testing scenarios.

1) Failures on Unit-level: On the unit level, all open source
projects’ results are presented in Fig. 5. Across all projects,
there is a general trend of all DBT revealing more faults than
Random, but a visual analysis does not show a clear pattern.
Furthermore, it is difficult to see which of the techniques fare
better than the rest.

According to the post hoc analysis presented in Table IV,
the statistical tests confirm that there is indeed a significant
difference, albeit small, for all pairs of techniques on the 30%
budget. At the 50% budget, the effect sizes of all random
pairs grow larger, as shown in the Kendall’s W values, but
there is a reduced difference between the DBT. This trend
continues in the 80% budget, with all techniques having
a large effect size compared with Random, but the a-div
techniques have a smaller effect size amongst themselves,
with Lev-Jaccard and Jaccard-NCD ceasing to have significant
differences, supported by the small effect size.

2) Failures on Integration-level: Based on Fig. 6, the
failure detection rate of the techniques is similar for small test
budgets. However, the differences between the techniques start
to be clearer after using 30% budget of the test suite. Finally,
with a higher budget than 60% Levenshtein and NCD perform
similarly the best whereas Jaccard falls to reach a failure
detection rate lower than Random. On the other hand, the
post hoc statistical analysis reported that Levenshtein on 30%
budget was significantly different all techniques with a moder-
ate effect size, whereas random/NCD and random/Levenshtein
comparisons were not significantly different. At 50% and 80%
budget, all pairwise comparisons are significantly different,
and their effect sizes increase in general. However, at 80%
budget, the statistical analysis reports that Levenshtein and
NCD are significantly different. Even though there was a SSD,
the effect size is small, which is also confirmed by the overlap
of the curves in Fig. 6.

3) Failures on System-level: On a system level, Project 4
was the only one with available failure data. Based on Fig.

TABLE IV
SUMMARY OF THE POST HOC ANALYSIS ON DETECTED FAILURES ON UNIT

LEVEL WHERE EACH ROW REPRESENTS A PAIRWISE COMPARISON.

30% Budget

comp. p value Adj.p val Kendall’s W Eff. Size SSD

Rand-Lev 0.0001 <0.001 0.0021 S Yes
Rand-NCD <0.001 <0.001 0.0446 S Yes
Rand-Jacc <0.001 <0.001 0.0885 S Yes
Lev-NCD 1.97E-08 <0.001 0.0471 S Yes
Lev-Jacc 1.07E-14 <0.001 0.0558 S Yes
NCD-Jacc 0.0343 0.034 0.0051 S Yes

50% Budget

Rand-Lev <0.001 <0.001 0.2146 S Yes
Rand-Jacc <0.001 <0.001 0.2296 S Yes
Rand-NCD <0.001 <0.001 0.3893 M Yes
Lev-Jacc 0.2101 >0.999 0.0042 S No
Lev-NCD 2.66E-08 1.60E-07 0.0402 S Yes
Jacc-NCD 1.64E-05 9.84E-05 0.0326 S Yes

80% Budget

Rand-Lev <0.001 <0.001 0.6964 L Yes
Rand-Jacc <0.001 <0.001 0.7635 L Yes
Rand-NCD <0.001 <0.001 0.8680 L Yes
Lev-Jacc 0.1061 0.6365 0.0167 S No
Lev-NCD 0.0203 0.1220 0.0062 S Yes
Jacc-NCD 0.4814 >0.999 0.0009 S No

6 (left), we can see that SS was the closest to Random’s
performance across all techniques, followed by Jaccard. Fur-
thermore, Levenhtein and NCD had a high and similar failure
detection rate.

On the other hand, the post hoc statistical analysis revealed
that at 30% budget SS is not significantly different from
Jaccard and Levenshtein, whereas all other comparisons are
significantly different but with a small effect size. At 50%
Jaccard and SS remain significantly different with a small
effect size whereas NCD’s effect size increase to ”Moderate”
when compared with Jaccard and SS. At 80%, all the compar-
isons that include Random are significantly different, unlike
SS which loses the SSD with other techniques. In addition,
Jaccard becomes clearly different than other string distances
(other than SS).
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Fig. 5. Percentage of Failures found for all open source projects studied. Budget values represent percentage of prioritized tests executed.

TABLE V
SUMMARY OF THE POST HOC ANALYSIS ON DETECTED FAILURES ON

INTEGRATION LEVEL.

30% Budget

comp. p value Adj.p val Kendall’s W Eff. Size SSD

Rand-Jacc 0.1629 0.9774 0.0122 S No
Rand-NCD 0.2449 >0.999 0.0007 S No
Rand-Lev <0.001 <0.001 0.4793 M Yes
Jacc-NCD 0.0105 0.06313 0.013 S Yes
Jacc-Lev <0.001 <0.001 0.4066 M Yes
NCD-Lev <0.001 <0.001 0.4281 M Yes

50% Budget

Rand-Jacc 6.93E-11 4.16E-10 0.0003 S Yes
Rand-NCD <0.001 <0.001 0.477757 M Yes
Rand-Lev <0.001 <0.001 >0.999 L Yes
Jacc-NCD <0.001 <0.001 0.2845 S Yes
Jacc-Lev <0.001 <0.001 0.5994 L Yes
NCD-Lev <0.001 <0.001 0.2523 S Yes

80% Budget

Rand-Jacc <0.001 <0.001 0.0321 S Yes
Rand-NCD <0.001 <0.001 0.9024 L Yes
Rand-Lev <0.001 <0.001 0.9491 L Yes
Jacc-NCD <0.001 <0.001 0.3464 M Yes
Jacc-Lev <0.001 <0.001 0.4269 M Yes
NCD-Lev 0.0003 0.0015 0.1026 S Yes

RQ2: No technique consistently finds most faults on the
3 LoTs. However, there is a pattern where there is a
greater distinction between DBT and Random as budget
increases up until 80%. Statistically speaking, SS has
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Fig. 6. Percentages of Failure found for Projects 4 on integration- and system-
level. Budget values represent percentage of prioritized tests executed.

SSD with the DBT, except with Jaccard.

C. How long does it take to execute each technique on
different level of testing?

We investigated RQ3 by first collecting the values of 10
execution times per technique on the system level, and once
per project version on the unit level (See section III-A). We
analysed Central Tendency and Variability of time in Table X,
along with a post hoc statistical analysis in Table VII similar
to the one described in RQ2.

1) Unit-level Execution Time: Levenshtein had the high-
est average execution time, followed by NCD, Jaccard, and
Random. Random was faster than Jaccard by 48 sec, Jaccard
faster than NCD by 2.5 min, and NCD faster than Leven-
shtein by 59.7% (4.5 min). All differences were reported as
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TABLE VI
SUMMARY OF THE POST HOC STATISTICAL ANALYSIS ON DETECTED

FAILURES ON SYSTEM LEVEL.

30% Budget

comp. p value Adj.p val Kendall’s W Eff. Size SSD

Rand-SS 1.74E-13 1.74E-12 0.0059 S Yes
Rand-Lev <0.001 <0.001 0.0625 S Yes
Rand-Jacc <0.001 <0.001 0.1900 S Yes
Rand-NCD <0.001 <0.001 0.2373 S Yes
SS-Lev 0.1776 >0.999 0.000013 S No
SS-Jacc 1.44E-07 1.44E-06 0.0031 S No
SS-NCD <0.001 <0.001 0.2280 S Yes
Lev-Jacc 9.16E-05 0.0009 0.0139 S Yes
Lev-NCD <0.001 <0.001 0.1635 S Yes
Jacc-NCD 8.88E-16 8.88E-15 0.0603 S Yes

50% Budget

Rand-SS <0.001 <0.001 0.1239 S Yes
Rand-Lev <0.001 <0.001 0.2638 S Yes
Rand-Jacc <0.001 <0.001 0.0108 S Yes
Rand-NCD <0.001 <0.001 0.3392 M Yes
SS-Lev <0.001 <0.001 0.2874 S Yes
SS-Jacc 0.8347 >0.999 0.0120 S No
SS-NCD <0.001 <0.001 0.3243 M Yes
Lev-Jacc <0.001 <0.001 0.0584 S Yes
Lev-NCD 0.0108 0.1081 0.0275 S Yes
Jacc-NCD <0.001 <0.001 0.0928 S Yes

80% Budget

Rand-SS <0.001 <0.001 0.6155 L Yes
Rand-Jacc <0.001 <0.001 0.6298 L Yes
Rand-Lev <0.001 <0.001 0.7534 L Yes
Rand-NCD <0.001 <0.001 0.8125 L Yes
SS-Jacc 0.2203 >0.999 0.0107 S No
SS-Lev 1.67E-05 0.0002 0.0396 S No
SS-NCD 3.66E-08 3.66E-07 0.0603 S No
Lev-Jacc 0.0021 0.0207 0.0211 S Yes
Lev-NCD 0.2297 >0.999 0.0013 S No
Jacc-NCD 1.86E-05 0.0002 0.0843 S Yes

largely significant by the post hoc test. The general trend for
the standard deviation (SD) to increase as the average time
increases, suggesting a correlation between average time and
SD, possibly implying that techniques with a higher execution
time are less reliable. Note, however, that some projects used
had a large disparity in test suite size between versions, with
project Math containing versions ranging from 820 to 4378
test cases, while some others had a low range. This could
explain the varying SD.

2) Integration-level Execution Time: On integration level,
Levenshtein took the most average time and with a high
standard deviation that indicates a wide spread of the values.
However, Jaccard’ execution time was just ~49% (26 sec)
slower than Random’s. On the other hand, NCD had a mean
time ~84% (1.5 hours) shorter than Levenshtein and ~95% (18
min) longer than Jaccard.

Furthermore, the post hoc statistical analysis states that
these differences are significant with large/moderate effect
size, besides NCD with Jaccard and Levenshtein.

3) System-level Execution Time: At a glance, the results on
the system level follow a similar path to the unit level and a
similar trend of the standard deviation such that techniques
with higher execution times had higher SDs as well (except

TABLE VII
SUMMARY OF THE POST HOC ANALYSIS ON THE EXECUTION TIME FOR

ALL THREE LEVELS OF TESTING.

Unit-level

comp. p value Adj.p val Kendall’s W Eff. Size SSD

Rand-Jacc 2.59E-10 1.55E-09 >0.999 L Yes
Rand-NCD <0.001 <0.001 >0.999 L Yes
Rand-Lev <0.001 <0.001 >0.999 L Yes
Jacc-NCD 2.39E-08 1.44E-07 0.9329 L Yes
Jacc-Lev <0.001 <0.001 >0.999 L Yes
NCD-Lev 2.59E-10 1.55E-09 >0.999 L Yes

Integration-level

Rand-Jacc 0.0833 0.4996 0.8837 L No
Rand-NCD 0.0005 0.0032 0.9984 L Yes
Rand-Lev 2.04E-07 1.22E-06 0.8851 L Yes
Jacc-NCD 0.0833 0.4996 0.8438 L No
Jacc-Lev 0.0005 0.0032 0.8844 L Yes
NCD-Lev 0.0833 0.4996 0.9985 L No

System-level

Rand-Jacc 0.0796 0.7962 0.4096 M No
Rand-SS 5.55E-10 5.55E-09 >0.999 L Yes
Rand-NCD 7.24E-14 7.24E-13 >0.999 L Yes
Rand-Lev 4.44E-16 4.44E-15 0.3492 M Yes
Jacc-SS 8.60E-06 8.60E-05 0.9216 L Yes
Jacc-NCD 1.00E-08 1.00E-07 >0.999 L Yes
Jacc-Lev 1.50E-10 1.50E-09 0.4050 M Yes
SS-NCD 0.2002 >0.999 0.2304 M No
SS-Lev 0.0506 0.5056 0.2975 M No
NCD-Lev 0.5002 >0.999 0.2975 M No

SS). Jaccard was ~87% (~10 min) faster than SS, SS ~55%
(~15 min) faster than NCD, and NCD ~80% (~2 hours) faster
than Levenshtein.

The post hoc statistical tests reflected the differences be-
tween the techniques found. Random had no SSD with Jac-
card, NCD had no SSD with Levenshtein and SS didn’t have
a SSD with neither NCD nor Levenshtein, despite being more
rapid than both.

RQ3: A clear trend is seen where the SD increases as the
avg. time increases, except for SS. Generally, Jaccard is
the fastest to execute and Levenshtein is the slowest.

D. How do different levels of testing affect the prioritization
of a test suite?

Due to limitations in artefact availability, we could only
compare integration and system levels. In addition, since SS
was not as meaningful to execute on code, we exclude SS
from the comparison across integration and system levels. The
collected coverage data from RQ1 is used to interpreted from a
different perspective. The failure and time data from RQ2 and
RQ3 are then used in a Wilcoxon signed rank test to compare
failure and time between integration and system level tests.
The non-parametric paired test was used to identify if an SSD
existed and measure the effectiveness given a Z–score z [28],
[29] and the total number of datapoints N using the formula
EffectSize(z,N) = z

N2 .
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Based on Project4’s coverage in Fig. 4, we see similar
curves on both levels, where Random records a higher cov-
erage given a certain budget across all techniques (beside
SS), followed by NCD, then Jaccard and Levenshtein with
the lowest coverage.

In terms of detected failures, Fig. 6 reveals differences in
techniques’ effectiveness. This contrast between techniques are
similar on both LoTs with Levenshtein having the highest rate
and Random the lowest. However, the distinctions are clearer
on integration level as the lines that represent the techniques
are further apart. As such, Levenshtein’s rate becomes higher
and Jaccard’s becomes worse. To verify the observations, a
Wilcoxon signed rank test was performed on failure percent-
ages over 115 builds and supported the results by showing an
SSD between the two LoTs with a small effect size.

Finally, to complement the trade-offs of both LoTs, we
describe the differences of techniques’ execution times present
in Table X which shows that techniques are generally faster
to execute on system-level than integration level.

Through a Wilcoxon signed rank test, the difference be-
tween both levels is confirmed and reported to be significant
with a large effect size as shown in Tables VIII and IX.

TABLE VIII
WILCOXON SIGNED RANKS TEST WITH TWO RELATED SAMPLES

(INTEGRATION- AND SYSTEM-LEVEL FAILURE DETECTION RATE).

p value Test
statistics (W)

[Neg, Pos]
Ranks

Z/N2 Effect
Size

SSD

0.000005 -372708 [1648994 ,
-2021702]

-0.0458 S Yes

TABLE IX
WILCOXON SIGNED RANKS TEST WITH TWO RELATED SAMPLES

(INTEGRATION- AND SYSTEM-LEVEL EXECUTION TIMES).

p value Test
statistics (W)

[Neg, Pos]
Ranks

Z/N2 Effect
Size

SSD

6.58E-07 -740 [-780, 40] -0.55603 L Yes

RQ4: Coverage is similar on both LoTs. However Lev-
enshtein’s Failure detection rate is higher on integration
level and Jaccard’s is higher on system level. Also, all
techniques but Levenshtein are faster on system level.

V. DISCUSSION

In this section, we discuss the results of each metric to have
a better image of the techniques’ attributes and behaviour on
each of the three LoTs. Then we will interpret and further
discuss the results of the comparison between integration-
and system-levels of testing. Finally, we will provide some
recommendations related to the usage of each technique based
on the trade-off each technique presents.

TABLE X
TECHNIQUES’ AVERAGE EXECUTION TIME (MINUTES), MEDIAN, AND

STANDARD DEVIATION(SD) ON ALL THREE LEVELS, ROUNDED UP

Cli

Jaccard Lev NCD SS Random

Avg. 0.324 0.875 0.562 — 0.004
Median 0.3190 0.673 0.472 — 0.004
SD 0.027 0.513 0.255 — 0.002

Codec

Avg. 0.763 4.214 1.188 — 0.006
Median 0.713 3.391 0.903 — 0.005
SD 0.087 2.093 0.563 — 0.002

Gson

Avg. 0.49 3.603 3.194 — 0.012
Median 0.489 3.633 3.236 — 0.012
SD 0.024 0.453 0.408 — 0.0008

JacksonCore

Avg. 0.413 2.205 0.865 — 0.005
Median 0.404 2.657 0.793 — 0.005
SD 0.0395 0.75 0.345 — 0.0014

JxPath

Avg. 0.396 1.651 0.753 — 0.0048
Median 0.397 1.713 0.770 — 0.005
SD 0.008 0.257 0.064 — 0.0003

Lang

Avg. 1.033 33.575 11.996 — 0.022
Median 0.931 30.7346 10.603 — 0.021
SD 0.23 10.016 3.737 — 0.003

Math

Avg. 2.231 — 30.485 — 0.03
Median 1.979 — 25.5242 — 0.028
SD 1.287 — 20.619 — 0.011

Project 4 — Integration Level

Avg. 0.906 118.7004 19.342 — 0.464
Median 0.88 103.923 19.106 — 0.455
SD 0.09 45.05 0.753 — 0.079

Project 1

Avg. 1.473 31.921 15.615 13.364 0.26
Median 1.556 31.962 16.748 13.483 0.268
SD 0.328 0.648 3.491 3.455 0.051

Project 2

Avg. 0.507 36.640 14.043 7.653 0.169
Median 0.51 37.527 14.294 7.712 0.155
SD 0.041 3.687 4.537 1.015 0.033

Project 3

Avg. 3.556 481.948 64.676 20.531 0.627
Median 3.412 473.631 63.803 19.619 0.618
SD 0.292 22.775 1.924 7.07 0.049

Project 4

Avg. 0.768 31.898 14.29 7.852 0.204
Median 0.681 31.134 12.594 7.879 0.200
SD 0.195 3.491 3.609 1.988 0.031
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A. Coverage

To begin with, SS outperformed all techniques on a system
level and showed a high requirement coverage on all relevant
experimental subjects. This suggests that SS –specifically
Doc2Vec-based approaches– are just as effective in test pri-
oritization, in comparison to other fields and areas within
software engineering where such SS approaches have been
explored by researchers [21], [30], [31].

Moreover, we found that the coverage of a prioritized test
suite was influenced by the distribution of the features. Projects
1-3 that were provided by CompanyA had respectively 31%,
8% and 33% of the total test cases linked to at least one
requirement. Thus, the coverage graphs for projects provided
by company A shown in Fig. 4 cover only a small portion of
requirements, assuming that the rest of the tests (that miss a
linked requirement) do not cover any requirement. Hence, the
techniques in the Projects1-3 take a linear shape.

In contrast, Project4’s test cases—provided by
CompanyB—were all linked to exactly one requirement. In
other words, coverage information was available for all the
test cases. Therefore, a curve was clear in Project4’s graphs
in Fig. 4 on integration- and system-levels.

However, Random surprisingly outperformed Jaccard, Lev-
enshtein and NCD. We traced the cause of this performance to
some possible factors. Firstly, the Maximum mean algorithm
used by the MultiDistances Package makes some decisions
randomly on which string to prioritize when two strings are
extremely similar. Consequently, the resulting ranking could
be unrepresentative of the techniques. Ideally, each technique
should be executed many times to control for randomness.
However, we execute each technique (except Random) exactly
once on each LoT.

Secondly, Project4 tests are not close in content to the
requirements since the textual requirements are very short (2-
4 words), and the tests are much longer (5-12 lines). This
implies that finding the requirements words inside the test
cases is harder, and hence, diverse tests, may not necessarily
translate to diverse requirements coverage on both system and
integration LoTs.

Finally yet importantly, we believe that due to the inde-
pendent (non-hierarchical) treatment of requirements and sub-
requirements, most of the them end up being covered by few
test cases as shown by the histogram in Fig. 7. Therefore, DBT
would consider a requirement and its sub-requirements as ”not
diverse” and avoid selecting both, whereas Random (x100) can
randomly prioritize any requirement and its sub-requirements,
hence covering more of them.

In short, the coverage data was skewed towards specific tests
hindering conclusive results for diversity-based approaches.
Moreover, the general curves produced by Project4 on both
LoTs indicate that coverage is not influenced by altering the
LoT rather than the prioritization techniques.

B. Failure-Detection Rate

We found that DBT were more effective than Random
across all levels, with the exception of Jaccard on the integra-

Fig. 7. Features/ Requirements distribution among 1605 test cases in Project4.
Note that the features are just representations of 196 features in total.

tion level. This is in line with Henard et al.’s findings regarding
the acceptable amount of faults even with restricted resources
[7]. However, although DBT has an increasing effectiveness
over Random, a closer look at the failure detection rate on
the unit level (Fig. 5) reveals that there is not such a large
difference between the DBT themselves. Furthermore, while
all projects had a linear curve for Random, DBT had two
distinct curves (See Section IV-B).

Thus, this suggests that there are more complex properties
at play in which some DBT are more sensitive than others,
such as the low amount of textual information in each unit
and system test method. For example, studies have indicated
that NCD is not as effective when there is little information
available [1], [5].

Diversity-based techniques’ effectiveness vary depending on
the content of the test, and the amount of inherited unit tests
a project influence the performance described above since
similarities between the tests (e.g., inherited members) are
not found in the test file. Projects Cli and Math (Fig. 5), for
example, had a number of triggering tests that were inherited
in several versions, which could contribute to obtaining a more
parabolic curve. Executing one inherited test essentially runs
the rest of the identical tests as well, possibly explaining the
distinct curve all three DBT have at Lang from the 0-5%
budget mark (Fig. 5).

While the integration and system level failure information
are difficult to compare equally due to the scarcity of projects,
the individual DBT techniques have some visual differences.
On top of that, according to the histogram in Fig. 8, failure
detection rate and requirement/feature coverage are correlated
in Project4 on integration and system-levels. Given that each
test case covers exactly one requirement, the histogram shows
that a few certain requirements trigger up to 550 failures
each, indicating skewed failure data. Note that test suites with
higher requirement coverage does not necessarily mean they
cover the triggering tests (since they would have to cover
specific features). Consequently, the technique that performs
best with regard to coverage, does not necessarily have high
detection rate and vice versa. Moreover, Hemmati et al.’s
results concluded that the best case scenario for Diversity-
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Fig. 8. The total number of failures and trigger tests related to each feature in
Project4 over 669 builds. Most of the triggering tests are connected to Feature
1. Note that the features are just representations of 196 features in total

based test selection in terms of effectiveness is when the
triggers that detect discrete faults are diverse [19]. As such,
DBT can obtain both a high coverage and failure detection
rate if different failures are triggered by tests that cover diverse
requirements.

C. Execution Time

According to the results in Tables X and with respect to
the projects’ sizes in Table III, we can see that although
two projects are of similar sizes, DBT take longer time to
execute on one than the other. For instance, Project1 and 3
have respectively 2639 and 2691 test cases. However, DBT
are much slower in general on project3. In fact, Levenshtein
is x15 slower on project3 than project1. Another example is
Gson that have more than twice as many test cases as Codec
but has even a slightly lower execution time. The reason is
most likely the length of the individual test cases. Regardless
the number of test cases, the number of words or line of codes
(LoC) influence the number of operations performed on the
test and thus the speed of the technique. A similar pattern is
seen in the results of Henard et al.’s study, where SUTs with
a smaller number of test cases, but with more lines of code
take longer to execute on black box techniques in general [7].

D. Recommendations

Below, we condense the outcomes of this experiment into
bulleted recommendations for users of these techniques. We
also present some recommendations in Table XI regarding the
application of specific diversity measures for different LoT.
• If the number of test cases to prioritize are below 20%

or over 90% of the test suite, Random is recommended
as it doesn’t differ in terms of effectiveness from other
techniques on these budgets, yet, it’s significantly faster.

• If requirements coverage is the priority of the practitioner,
the distribution of the requirements among test cases
should be checked before executing test prioritization. If
the coverage is skewed towards specific features (as in
Fig. 7), then we recommend an approach which executes
a cheaper technique such as Jaccard on tests covering the
subset of features that have similarly distributed coverage.
For instance, from Feature 1 to Feature 161 in Fig. 7.

Another effective technique on the current LoT can then
be executed on the rest of the tests, e.g. Feature 169 to
Feature 193. A few prioritized tests can be executed from
the skewed features, and the majority of prioritized tests
can be executed from the normally distributed features.
This would reduce the total execution time and increase
coverage, especially for DBT which scale expensively.
However, if splitting the prioritization is not possible, then
we strongly recommend SS, as it provides the highest
coverage over all system-level projects.

• If failure detection rate is the priority of the practitioner,
a history of previous failures is suggested to be studied
beforehand to understand the nature of the failures dis-
tribution among test cases or requirements as in Fig. 8.
This can be used as a guideline to choose the budget of
the test suite to prioritize. Similar recommendations are
used when performing history-based approaches [32].

• Before deciding the prioritization technique, check the
number of total test cases as well as the size of the
test suite in bytes. Although projects may have the same
number of tests, the content of each test can be larger, thus
the size of the test suite is larger and may significantly
increase the execution time. On all levels, it is generally
not recommended to use Levenshtein due to its expensive
execution time and high unreliability.

• We suggest cleaning the system-level tests from unsound
data, such as invalid strings, for a better performance of
the prioritization techniques based on textual analysis.

VI. VALIDITY THREATS

In a fractional factorial experiment, several inherent lim-
itations exist. As SS was not executed on integration level,
it was not possible to include SS in the comparison between
integration and system level. The power of statistical tests may
be relatively weak as well, since some samples on the unit
level were quite small compared to industrial software.

The companies that we studied originated in a close ge-
ographical area. As companies have internal policies on the
creation and maintenance of artifacts, these findings are con-
text specific, further lowering our external validity. However,
the two companies that we studied had distinct industrial
focuses, and have expanded globally to become international
companies, reducing the effect of this weakness.

Our experiment was impacted by several aspects. First,
by our execution, which had to be altered due to time and
resource limitations. Time constraints further prevented us
from executing Levenshtein on projects with large test suites,
namely Math. This issue was caused by the project size
compounded by number of versions. Since each version had
a unique test suite, executing only a section of the versions
would skew the average if only half, for example, of the
versions were executed. However, there is still a significant
amount of projects with Levenshtein executed on unit level.

Time constraints limited the control of randomness too when
using Maximum Mean algorithm provided by the MultiDis-
tances package. Therefore, each technique should ideally be
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TABLE XI
RECOMMENDATIONS OF LOTS TO USE GIVEN AN A-DIV TECHNIQUE AND ITS TRADE-OFF.

Technique Trade-off Recommended LoT

Jaccard Fast to execute on all LoTs. Bad coverage on system level. Good Failure detection on unit level but
bad on system and integration levels. Unit level

Levenshtein Fast on unit level. Bad coverage on system level. Best Failure detection on integration level, worst
Failure detection on unit level Integration level

NCD Slowest on Integration level. Bad coverage on system level. Good Failure detection on all LoTs. Unit/ System level
SS Relatively Fast. Good coverage, Moderate Failure detection rate. Can only be applied on system level. System level
Random Fast to execute on all LoTs. Good coverage. Bad failure detection. When 6 30% or > 90% budget

executed an equal number of times on every level of testing.
Yet, for failure detection, while Random was executed 100
times per project version, the other techniques were only
executed once per version on the unit level and 10 times on
the integration and system level.

Furthermore, the number of versions for each project ranged
from 18 to 106, decreasing internal validity. This was mitigated
by using projects of differing sizes and versions, increasing
generalizability. Ultimately, Jaccard and NCD were executed
293 times, and Levenshtein 123 times across all projects on
the unit level, which is still a substantial amount. Similarly,
for coverage, Random was executed 100 times but only once
for other techniques on the system and integration level.

These constraints also required us to use different machines
on Unit, Integration and System level. Since each host machine
could have different background applications running, the
execution time could have been unstable. This was mitigated
by sequentially running the techniques on a Virtual Machine.

Due to the unavailability of suitable projects on integration
LoT, only one project was used, reducing the representative-
ness and reliability of the results on the integration level,
leading to a high variability. Nevertheless, the project used
was an active project from an industry partner, increasing the
external validity of this particular level of testing.

Being an experiment first and foremost, this study may have
a relatively low external validity, with Defects4J providing a
controlled environment on the unit level. However, several
decisions were made to the experimental design to mitigate
this. Active projects from industry partners were used on both
the system and integration LoT, providing realistic test objects.

Our choice of instrumentation could also impact our inter-
nal validity. MultiDistances’ technique implementation could
possibly be faulty, providing incorrect rankings. However, we,
along with our supervisor, have reviewed the implementation
and have not found obvious faults.

VII. CONCLUSION

This paper set out to compare 4 Diversity-based prioriti-
zation techniques (DBT) namely Jaccard, Levenshtein, NCD,
and Semantic Similarity on three levels of testing (i.e. unit-,
integration-, and system-level) in terms of coverage, failure
rate detection and execution time. Through an experiment,
we have found that some techniques perform better on a
specific level of testing given a certain budget. We have also
uncovered possible test suite properties that affect diversity

based techniques, such as the spread of tests on system
features that affect the execution of a-div techniques. While
we have specifically focused on prioritization using Artefact-
based diversity (a-div) techniques as DBT, the relation between
an uneven spread of tests on features and a-div techniques
implies that our findings are likely to be of importance to
other diversity based techniques such as behavioural-based
diversity. In terms of future research, we particularly suggest
implementing Semantic Similarity on unit and integration
levels, comparing a wider range of diversity-based techniques
including behaviour-based against a-div techniques, and using
more test subjects on the integration level. Furthermore, the
effects of system test structure, such as the inclusion of
unsound strings, on a-div techniques can be studied in more
detail. Investigating the effects of the number of tests versus
the size of tests on different LoT would be interesting as well.
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