

The Evolution of Role-Stereotypes and

Related Design (Anti)Patterns

Bachelor of Science Thesis in Software Engineering and Management

DUY NGUYEN NGOC
FABIAN FRÖDING

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

The Evolution of Role-Stereotypes and Related Design (Anti)Patterns

© DUY NGUYEN NGOC, June 2020 .
© FABIAN FRÖDING, June 2020.

Supervisor: MICHEL R. V. CHAUDRON
Examiner: Richard Berntsson Svensson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

The Evolution of Role-Stereotypes and Related
Design (Anti)Patterns

Fabian Fröding
University of Gothenburg

Gothenburg, Sweden
gusfrodfa@student.gu.se

Duy Nguyen Ngoc
University of Gothenburg

Gothenburg, Sweden
gusngudu@student.gu.se

Abstract—This paper presents a study on how classes based on
the role-stereotypes defined by Wirfs-Brock, change over time in
software systems, and how the occurrence of anti-patterns change
over time in relation to these roles. The aim of the study is to gain
an understanding on how role-stereotypes change as software-
systems evolve, and if these changes have possible correlations
to certain anti-patterns.

With an exploratory approach, we performed studies on the
evolution of role-stereotypes and anti-patterns in three open
source projects: Bitcoin Wallet, K9 Mail and Sweet Home
3D. By using descriptive graphs and through observation, we
demonstrate how the distribution of role-stereotypes and the
distribution of anti-patterns evolve over a selected number of
versions of the three projects. Furthermore, we also analyzed
the changes in role-stereotypes in relation to the the occurrence
of anti-patterns in these roles. Additionally, we analyzed if there
are certain roles that are more prone to switch to other roles.

We found that some changes in the occurrence of anti-patterns
seems to be reflective to the changes in the distribution of
role-stereotypes, and that the occurrence of anti-patterns in
specific role-stereotypes seems to have more in common with the
occurrence of anti-patterns in different roles in the same project,
rather than with the occurrence of anti-patterns in the same roles
in different projects. We also found that certain role-stereotypes
are more prone to change role to other certain roles.

Therefore this study brings new insight to software developers
and designers on the behaviour and nature of role-stereotypes
and anti-patterns, when using classes designed based on role-
stereotypes.
Keywords-Role-stereotypes, anti-patterns, software design, soft-
ware evolution.

I. INTRODUCTION

Responsibility-driven design is a technique introduced by
Wirfs-Brock et al. [1] used to enact certain responsibilities
and procedures to OO-classes (object-oriented) in software
systems to improve aspects such as reusability, maintenance
and expansion.

Role-stereotypes are roles that are generalized into prede-
fined responsibilities in software design. Wirfs-Brock et al.
[2] defined six roles for OO-classes (see Section II) as an
approach for responsibility-driven design. This approach aids
in the understanding of what work objects do [3], thus enhance
coherence in the architectural facet of a software project. Role-
stereotypes also play a significant part in the understanding of
UML-diagrams (Unified modeling language), as discovered by
Kuzniarz et al. [4].

Software design patterns are descriptions of objects and
classes that attempt to solve common design problems in
specific contexts, and aids in aspects such as code reusability,
documentation and software maintenance [5]. On the contrary,
anti-patterns are problematic structures in code design and im-
pede software systems from being understandable, maintained
and evolved [6], [7]. Preventing anti-patterns is important
when developing and making changes to high-quality software
systems [5]. Thus, neglecting the presence of anti-patterns can
make software systems incomprehensible and is not a good
long-term approach.

A practical approach that prevents anti-patterns from emerg-
ing in a system is to investigate the correlation between design
(anti)-patterns and role-stereotypes. The study conducted by
Chaudron et al. [8] was able to confirm such correlation, thus
further benefit designers in paying extra attention to classes
assigned with certain responsibilities. However, as a software
system evolves, it is difficult for designers to predict on which
degree the numbers of certain roles, along with patterns, in-
crease when adding more classes or making changes to classes.
Furthermore, some classes might change responsibilities after
several development updates. For example, with the roles
defined by Wirfs-Brock et al. [2], a class might switch from
the role Structurer, Interfacer, Coordinator, or Controller to
either Information Holder or Service Provider. As proved
by Chaudron et al. [8], the formerly mentioned roles are
less prone to contain anti-patterns than the latter ones. Such
changes in roles are not able to explain whether correlating
patterns will appear in the adjusted classes.

The purpose of our study is to provide insight to software
designers and developers of how role-stereotypes and related
anti-patterns evolve over time. Moreover, our study in com-
bination with the results presented by Chaudron et al. [8],
can present new results that will allow software designers
and developers to become aware of the potential emergence
of anti-patterns in related role-stereotypes when developing
and making changes to software systems. Moreover, a survey-
based study conducted by Yamashita et al. [9] found that
the majority of software developers (68%), are aware and
cautious of the consequences of anti-patterns. Therefore our
study is primarily aimed to help the mentioned designers and
developers.

The remainder of this paper is structured as follows. Section

II describes the cases on which the study is conducted. Section
III defines the research methodology of the study, including
the introduction of the research questions, the data collection
methods and how the collected data is analyzed. Section IV
illustrates the results and accordingly Section V discusses the
implications and the impacts of the results with relation to
the research questions. Section VI describes threats to the
validity of our study. Section VII presents related work. Lastly,
Section VIII states the conclusion to the study and proposes
prospective work.

II. CASE DESCRIPTION

The study was conducted on three open-source software
projects, and analyzed the classes of those projects. Since the
study is conducted on three different project, it is a multi-case
study, and since it evaluates multiple versions of each projects
over the course of several years, it is also longitudinal.

The specific projects that the study will be conducted on
are (1) Bitcoin Wallet1, an Andriod-application for bitcoin
paymenys, (2) K9 Mail2, an open-source client for emails on
Android-systems, and (3) Sweet Home 3D3, an application for
interior-design that allows preview of the final design in 3D.
These projects are the same systems that were analyzed by
Chaudron et al. [8]. We chose to analyze the same systems
because they have a validated ground truth established for the
role-stereotypes.

All of the projects are written in Java, but the results are
applicable to other programming languages as well (more on
this in section IV and VI).

The six most common role-stereotypes are Information
Holder, Structurer, Service Provider, Controller, Coordinator,
and Interfacer [2], and are the ones that will are used in
our study. The responsibilities of the role-stereotypes are as
follows; Information Holder stores and provides information,
Structurer manages relationships between objects and infor-
mation related to these relationships, Service Provider com-
putes different task and performs work, Coordinator delegates
work to other artefacts by reacting to events, Controller is
responsible for making decisions and directs the actions of
other artefacts, Interfacer handles and transforms requests and
information between different parts of a system.

III. METHODOLOGY

The study uses an exploratory and descriptive approach to
observe and describe the gathered data. The aim of the study is
to observe how role-stereotypes and anti-patterns evolve over
time. To observe this phenomenon we formulated the research
questions as follows:

• RQ1a: How does the distribution of role-stereotypes
change over time?

• RQ1b: How does the distribution of anti-patterns change
over time?

1https://github.com/bitcoin-wallet/bitcoin-wallet
2https://github.com/k9mail/k-9
3https://sourceforge.net/projects/sweethome3d/

TABLE I
CONFUSION MATRIX OF CLASSIFIER PREDICTIONS

Predicted stereotype

A
ct

ua
l

st
er

eo
ty

pe IH ST SP CT CO IT
IH 463 13 47 2 2 14
ST 21 24 41 1 0 13
SP 35 10 448 2 6 38
CT 5 1 19 29 1 8
CO 17 2 38 4 27 14
IT 10 3 42 1 2 144

• RQ2: How does the occurrence of anti-patterns in spe-
cific role-stereotypes change over time?

• RQ3: Which role-stereotypes are more prone to change
roles over time, and to which roles do they change?

The following steps describes the process of answering the
stated research questions.

A. Selecting a relevant number of versions for each of the
three projects

Firstly, data was gathered from multiple versions of each
of the projects. For each project, we used the version that
had the ground truth established by Chaudron et al. [8] as a
pivot and selected all versions after that and several versions
before, each with an average interval of 3 months in between.
The interval might slightly vary depending on if commits were
available in the version-control system of the projects on the
exact date based on the interval. We ended up with 36 versions
for BitcoinWallet, since it had not existed long enough to
provide additional versions based on the interval. To keep
things comparable, we selected 37 versions for K9Mail and
SweetHome3D.

Based on this selection strategy, the time period for the
selected versions spans from the beginning of 2011 to the
beginning of 2020. Specifically, it includes versions of Bitcoin
Wallet starting from March 2011 to January 2020, K9 Mail
starting from February 2011 to February 2020, and Sweet
Home 3D starting from January 2011 to January 2020.

B. Answering RQ1a: How does the distribution of role-
stereotypes change over time?

To gain data on the distribution of role-stereotypes in the
different projects we used CRI (Class-role identifier), a tool
that uses machine learning to classify role-stereotypes [10],
[11], [12]. This tool has undergone several improvements and
offers 74%-98% classification accuracy [10] (see Table I for
stereotype-prediction results). Since these mentioned studies
are highly relevant to the work in our study, and has gone
through several iterations of improvements, we find it suited
for use for our case. The tool was executed on all selected
versions of the projects, resulting in 110 individual executions.
CRI has a number of different classifier-models, and we used
the ”rf-smote-three-cases-model-0202.sav” model to classify
the data, which was trained on all three of the selected projects,
and contains the largest training set of all the models.

2

TABLE II
ANTI-PATTERNS DETECTED BY PTIDEJ

Anti-pattern
AntiSingleton
BaseClassKnowsDerivedClass
BaseClassShouldBeAbstract
Blob
ClassDataShouldBePrivate
ComplexClass
FunctionalDecomposition
LargeClass
LazyClass
LongMethod
LongParameterList
ManyFieldAttributesButNotComplex
MessageChains
RefusedParentBequest
SpaghettiCode
SpeculativeGenerality
SwissArmyKnife
TraditionBreaker

The raw data produced by the CRI-tool was parsed using
APCRM4 (anti-pattern class-role mapper), which was devel-
oped to automate various tasks specifically for the purposes in
our study. Based on the parsed data, we produced graphs that
illustrates the frequency of the different roles over the time
period of the selected versions of each project (see Figures 1,
2 and 3).

C. Answering RQ1b: How does the distribution of anti-
patterns change over time?

To gain data of the anti-patterns in the systems, we used
Ptidej [13]. Ptidej is a software tool that performs detection of
design patterns and anti-patterns by using detection algorithms
and source-code metrics. The tool offers up to 80% accuracy
on average and a recall rate of 100% [14], [15]. Ptidej is
executed from the Eclipse IDE, and requires that the target
project is built as an Eclipse project with generated Java class
files. Each selected version of the three projects underwent this
procedure. Ptidej detects 18 different anti-patterns, as shown
by Table II.

Similarly to RQ1a, the raw data produced by Ptidej was
parsed using APCRM, and allowed us to produce graphs to
illustrate the frequency of the anti-patterns over the time period
of the selected versions of each project (see Figures 7, 8 and
9).

D. Answering RQ2: How does the occurrence of anti-patterns
in specific role-stereotypes change over time?

To answer RQ2, we used the APCRM tool to map which
roles are involved in which anti-patterns. We developed an
algorithm in APCRM that iterates through each class in a
project, assigns a role-stereotype to that class based on the
same data used in RQ1a, then assigns the related anti-patterns
to that class based on the data from RQ1b. Finally, it loops
through the classes and counts the anti-patterns assigned to
the role of that class. 18 graphs were produced as a result,

4https://github.com/fabianfroding/apcrm

each illustrating the frequency of anti-patterns for a specific
role-stereotype in each project (see Figures 10 - 27). These
graphs can be studied to observe how anti-patterns occur in
specific role-stereotypes throughout the evolution of the three
projects.

E. Answering RQ3: Which role-stereotypes are more prone to
change roles over time, and to which roles do they change?

Since the CRI tool can assign a role to specific classes in a
Java project, we were able to compare two versions of a project
to check for changes in roles in each Java class. We developed
an algorithm in the APCRM tool to iterate through all selected
versions and automate the process of counting number of
changes in roles in each class. Furthermore, APCRM also
specifies which role a class changed from and to. As a result,
the data produced by APCRM allowed us to create bubble
charts (see Figures 28, 29 and 30) to highlight which role-
stereotypes are more prone to change and be changed to
over time, hence answer RQ3. The data, which consists of
mappings between role-stereotypes and classes, generated by
the CRI tool also allows us to produce timeline graphs of
how each individual class changes roles throughout the whole
time period (see Appendix B). These graphs may help us
traces whether certain roles are falsely assigned to classes
due to misclassification of the role-stereotypes detection tool.
For example, some classes might transition between a pair of
roles multiple times throughout the time period, thus causes
suspicion toward the detection tool. The timeline graphs also
provides information on how many roles a class has changed
to, and how many role changes a class has gone through, as
illustrated in Tables III, IV and V.

F. Cleaning the data

Roles and anti-patterns that were non-existent throughout
the entirety of the selected periods were removed from the
figures. As such, figures belonging to the same research
question may have different roles and anti-patterns present.

Test classes such as JUnit-classes were removed. We
choose to remove test classes since they could create a false
representation of the projects’ total roles and anti-patterns and
their relation to other roles and anti-patterns. We manually
identified and removed those classes from each individual
version of the three projects. This removal was done on the
CSV-files produced by the classification of the CRI-tool,
by using the ”Find & Select”-functionality in Microsoft
Excel. We manually confirmed that each row containing the
”test”-keyword actually belonged in a test-directory.

One of the selected versions of Bitcoin Wallet, specifically
the version from 2011-10-03, was removed. This version
included some sub-directories in the source-code in
”src\com\google\bitcoin” called ”bouncycastle”, ”core”,
”discovery”, and ”store”. These directories contained a large
number of added Java-classes, and were not included in any
of the other selected versions of Bitcoin Wallet. This caused
a massive spike at that time-point in the graphs related to

3

Bitcoin Wallet and increased the scale of the graphs to the
degree that the rest of the data became insignificant. We
choose to remove the data from this version for the sake of
readability. The removal does not affect the overall picture
of the history of the Bitcoin Wallet project. This concerns
Figures 1, 7, 10, 13, 16, 19, 22 and 25 in section IV, as
can be seen by the missing dots in the third ”column” in
beginning of those figures. The high frequency of Information
Holders and Service Providers in the beginning (2012-01-01
to 2012-10-02) of Figure 1, and the high frequency of various
anti-patterns in the beginning (2012-01-01 to 2012-10-02) of
Figures 7, 10, 16, are likely to be remnants of the removed
version, and should be interpreted as such. For the original
graphs including the data in the version from 2011-10-03, see
Figures 31, 33, 34, 35, 36, 37, and 38 in the Appendix.

SweetHome3D had a separate sub-project included
in the project directory. This separate project is called
FurnitureLibraryEditor and was removed from our
data collection, since we choose to focus on the main
application. In addition, another separate sub-project called
TextureLibraryEditor was introduced in the later versions
of the selected versions, and was also removed for the
same reason as the FurnitureLibraryEditor, but also because it
would not have made any sense to suddenly include a separate
sub-project halfway trough the selection of the versions.

All the raw data extracted from the tools can be found in
the Github repository5 of the APCRM tool.

IV. RESULTS

RQ1a: How does the distribution of role-stereotypes change
over time?

1) Bitcoin Wallet: In Bitcoin Wallet, the most common
role is Service Provider (see Figure 1). Information Holder
and Interfacer are also very common, both growing steadily
throughout the time-period. The number of Information Hold-
ers increase drastically at the beginning of 2018 (2018-04-
01), and causes the distribution of roles to make a noticeable
change, making Information Holder the most common role
instead of Service Provider.

2) K9 Mail: In K9 Mail, the most common role is Service
Provider (see Figure 2). Information Holder is also very
common. All roles except for Controller make a noticeable
increase in the beginning of 2013 (2013-02-02) and then
decreases again halfway through 2014 (2014-05-02).

3) Sweet Home 3D: In Sweet Home 3D, Information
Holder is the most common role (see Figure 3). Service
Provider is also very common. The distribution of the roles
in Sweet Home 3D remain mostly unchanged throughout the
time-period.

The three projects share some characteristics but also have
some significant differences in terms of the distribution of
roles over time. Bitcoin Wallet and K9Mail both have Service

5https://github.com/fabianfroding/apcrm/tree/master/Resources/raw-data

Provider as the most common role (Figures 1, 2), while Sweet
Home 3D has Information Holder as the most common role
(Figure 3). In K9 Mail and Sweet Home 3D the distribution of
roles is mostly unchanging throughout the entire time period,
while the roles in Bitcoin Wallet seems to fluctuate a bit.
Bitcoin Wallet has an unusual high amount of Interfacers in
relation to the other roles compared to K9 Mail and Sweet
Home 3D.

All three projects have a somewhat low amount of
Structurers, Controllers and Coordinators in relation to the
other roles. In Sweet Home 3D, the Coordinator is the least
common role, which is not the case in Bitcoin Wallet and K9
Mail that instead has the Controller as the least common role.

RQ1b: How does the distribution of anti-patterns change
over time?

4) Bitcoin Wallet: In Bitcoin Wallet, the most common anti-
patterns are Complex Class and Long Parameter List (Figure
7). At 2018-07-06, there is an observable increase of Complex
Class and Class Data Shield Be Private, and a decrease of
Long Parameter List. The high peak of Complex Class and
Long Method from 2012-01-01 to 2012-10-02, as mentioned in
section III, are likely remnants of the removed divergence that
occurred on 2011-10-03, and should be interpreted as such.

5) K9 Mail: In K9 Mail, Complex Class is the most
common anti-pattern, and has a steady increase during the
entire time-period (Figure 8). Long Method starts occurring
at 2014-08-06 and continues to increase until 2018-11-03,
where is starts decreasing again. Long Parameter List has a
significant high peak from 2015-05-02 to 2016-02-02. Lazy
Class has an observable decrease at 2017-11-22 to 2018-02-
01, suddenly going from around 50 occurrences to only 4 for
those two time-points.

6) Sweet Home 3D: In Sweet Home 3D, the most common
anti-pattern is Blob (Figure 9). Complex Class and Long
Method are the second two most common anti-patterns, and
Long Parameter List being fourth most common and Lazy
Class being fifth most common. None of the occurring anti-
patterns in Sweet Home 3D make any drastic changes or has
unusual abnormalities.

The three projects are observed to have significant differ-
ences in terms of the distribution of anti-patterns and how
they change over time. Bitcoin Wallet and K9Mail both have
Complex Class as the most common anti-pattern (Figures 7, 8),
whereas Sweet Home 3D has Blob as the most common anti-
pattern (Figure 9). Compared to Bitcoin Wallet and K9Mail,
Sweet Home 3D has an unusually high amount of Blob in
relation to the other anti-patterns. In Sweet Home 3D the
distribution of anti-patterns remains stable within the time
period, with only some minor changes. Specifically, the anti-
pattern Long Method begins to surpass Complex Class as of
2014-04-01, but the degrees of change of the two anti-patterns
throughout the whole time period are inconsiderable. The
only notable change in Sweet Home 3D is the sharp increase
of the Blob at 2013-04-01, which greatly contributes to the
distribution shift towards the end of the time period.

4

In contrast, Bitcoin Wallet and K9Mail have more dramatic
degrees of change in certain anti-patterns. Respectively, the
number of Long Parameter List in Bitcoin Wallet decreases
drastically as of 2018-07-06, while more Complex Class
begins to emerge, becoming the most occurring anti-pattern
in the system. At the same time, a considerable amount of
Class Data Should Be Private also starts to appear.

In K9Mail, however, Complex Class is consistently the
leading anti-pattern, which is observed to also have the most
rapid growth. Other remarkable increases are seen in Long
Method, Lazy Class and Long Parameter List. There are
sudden appearances and disappearances in large amounts of
certain anti-patterns, namely the rise in the Long Parameter
List at 2015-05-02 and the drop in the Lazy Class at 2017-
11-22. This could be an issue of inaccurate classification in
the anti-patterns detection tool, which is discussed further in
section VI.

RQ2: How does the occurrence of anti-patterns in specific
role-stereotypes change over time?

The Information Holder, Service Provider, and Controller-
roles in Bitcoin Wallet has peaks of several anti-patterns in
the period from January 2012 to October 2012. These are very
likely remnants of the removed divergence from 2011-10-03
mentioned in section III, and should be interpreted as such.

A. Anti-patterns in Information Holder
1) Bitcoin Wallet: The Information Holder-role in Bitcoin

Wallet has 10 occurring anti-patterns, with Complex Class and
Long Parameter List being more common than the others (Fig-
ure 10). The Class Data Should Be Private has an observable
increase at 2018-07-06 and 2019-01-18.

2) K9Mail: The Information Holder-role in K9Mail has a
total of 13 occurring anti-patterns, with Class Data Should Be
Private, Complex Class, Long Method, and Long Parameter
List being more common than the others and also grows
quite significantly as time passes (Figure 11). Furthermore,
the mentioned anti-patterns has a noticeable fluctuation. The
Long Method also drop from 15 down to just one occurrence
at 2015-08-03 and 2015-11-06, and then back up again.

3) Sweet Home 3D: In SweetHome3D, the Information
Holder has seven occurring anti-patterns. Blob is the most
common, and has a high fluctuation, peaking at 8 occurrences
at 2018-04-02 and 2019-01-08, and 0 occurrences at 2016-10-
01 (see Figure 12). Long Parameter List and Lazy Class are
also relatively high compared to the rest of the anti-patterns.

There are several anti-patterns that occurs in the Information
Holder role in all three projects; Base Class Should Be Ab-
stract, Blob, Complex Class, Long Parameter List, and Refused
Parent Bequest. In all three projects, the Information Holder
has high occurrences of Complex Class and Long Parameter
List. The Information Holder in K9 Mail seems to have more
anti-patterns both in frequency and types compared to Bitcoin
Wallet and Sweet Home 3D.

B. Anti-patterns in Structurer
1) Bitcoin Wallet: The Structurer-role in Bitcoin Wallet

only has two occurring anti-patterns; Complex Class, and Long

Parameter List (Figure 13). Both anti-patterns start occurring
around the mid of 2013 and continue to grow as time passes.

2) K9Mail: The Structurer-role in K9Mail has 11 occurring
anti-patterns, with Complex Class, Speculative Generality, and
Long Method being the most common (Figure 14). Complex
Class has a quite fluctuating growth as time passes, and Long
Method start occurring at 2014-08-06 and grows rapidly from
there. Speculative Generality remains steady but increases
greatly at 2013-08-01 and then back down at 2014-02-08,
along with most of the other present anti-patterns.

3) Sweet Home 3D: The Structurer role in Sweet Home
3D has nine occurring anti-patterns, with Complex Class and
Long Method being the most common (see Figure 15). Base
Class Should Be Abstract and Blob is also quite common. The
Blob is fluctuating greatly, varying from 5 to 0 occurrences,
similarly to the behaviour of Blob in Information Holder in
Sweet Home 3D.

The Structurer has two anti-patterns that occur in all of the
projects; Complex Class and Long Parameter List. Complex
Class grows moderately as time passes in Bitcoin Wallet,
grows significantly and in a fluctuating manner in K9 Mail,
while remaining quite the same in Sweet Home 3d. The
Long Parameter List also behaves differently depending on the
project; in Bitcoin Wallet, it moderately grows as time goes
on, in K9 Mail it stays relatively low, and in Sweet Home 3D
it increases in the beginning and stays the same for the rest
of the time.

C. Anti-patterns in Service Provider

1) Bitcoin Wallet: The Service Provider-role in Bitcoin
Wallet has 11 occurring anti-patterns, with Long Parameter
List being significantly more common than the others (Figure
16). Complex Class is also quite more common the than
other anti-patterns. From 2018-07-06, the Long Parameter List
decreases significantly to the same frequency as the other anti-
patterns.

2) K9Mail: The Service Provider-role in K9Mail has 12
occurring anti-patterns, with Lazy Class and Complex Class
being significantly more common than the others (Figure 17).
Lazy Class starts fluctuating greatly in the second half of the
figure, ranging from 40 to just one occurrence. At 2017-02-03
and 2018-05-01, the Lazy Class has a sudden dip of more than
40 but quickly goes back up. Complex Class and Lazy Class
start growing more notably in the second half of the figure.

3) Sweet Home 3D: Service Provider in Sweet Home 3D
has eight occurring anti-patterns, with Class Data Should Be
Private, Complex Class, Lazy Class and Long Parameter List
being more common the the rest of the anti-patterns (see
Figure 18). Blob is also present, having similar fluctuation
as in the previous roles in Sweet Home 3D.

The Service Provider role has a number of anti-patterns
that occurs in all three of the projects; Base Class Should Be
Abstract, Blob, Class Data Should Be Private, Complex Class,
Lazy Class, Long Method, Long Parameter List, and Refused
Parent Bequest.

5

Blob stays relatively uncommon in Bitcoin Wallet and K9
Mail, while fluctuating greatly in Sweet Home 3D. Also, Class
Data Should Be Private have low frequencies in Bitcoin Wallet
and K9 Mail, while having a moderate frequency in Sweet
Home 3D. Complex Class grows notably in K9 Mail as time
passes, stays moderately high in Sweet Home 3D, and very
low in Bitcoin Wallet. Lazy Class is the most common anti-
pattern in the Service Provider in Sweet Home 3D. Lazy Class
also rapidly increases in frequency about halfway through
the versions in K9, and stays high except for a few massive
individual drops (these are described in section IV.

D. Anti-patterns in Controller

1) Bitcoin Wallet: The Controller-role in Bitcoin Wallet has
five occurring anti-patterns with very low frequency, with Long
Parameter List being more common than the others (Figure
19).

2) K9Mail: The Controller-role in K9Mail has six occur-
ring anti-patterns, with Complex Class being more common
than the others (Figure 20). Complex Class grows until 2017-
08-05, where it starts to decrease, dropping to just one
occurrence at the last selected version.

3) Sweet Home 3D: The Controller role in Sweet Home 3D
has seven occurring anti-patterns. Complex Class, Blob, Long
Parameter list, andLong method are the most common (see
Figure 21). All anti-patterns has a somewhat steady frequency
compared to Blob, which, like the other Blob-occurrences in
the other roles in Sweet Home 3D, fluctuates greatly.

The Controller role has the following anti-patterns occurring
in all three projects; Class Data Should Be Private, Complex
Class, Long Method, and Long Parameter List. The Controller
in Bitcoin Wallet has very few anti-patterns in general (see
Figure 19), most likely due to the role’s low frequency of
anti-patterns (see Figure 1). The Complex Class has a high
frequency in K9 Mail and Sweet Home 3D, and seems to first
grow as time passes and then decrease in K9 Mail (see Figure
20), while remaining somewhat the same throughout Sweet
Home 3D (see Figure 21). The Blob and Long Parameter List
occurs frequently in both K9 Mail and Sweet Home 3D. The
Blob in Sweet Home 3D fluctuates greatly, ranging from 1
occurrence to up to 18 at other time-points.

E. Anti-patterns in Coordinator

1) Bitcoin Wallet: The Coordinator-role in Bitcoin Wallet
only has two occurring anti-patterns at a very low frequency;
Complex and Long Parameter List (Figure 22).

2) K9Mail: The Coordinator-role in K9Mail has nine oc-
curring anti-patterns, with Complex Class being more common
than the others and grows in a fluctuating manner (Figure 23).
Base Class Should Be Abstract is also quite common, and
starts growing more notably at 2015-11-06.

3) Sweet Home 3D: In Sweet Home 3D, the Coordinator
role has six occurring anti-patterns, with Blob and Long
Method being the most common (see Figure 24). Most of
the occurring anti-patterns seems to fluctuate between 0-2

occurrences, while only Blob going up to five at certain points.
None of them seem to have anything similar to a linear growth.

The Coordinator role only has two anti-patterns that occur
in all three projects, which is Complex Class and Long
Parameter List. However, the Coordinator in Bitcoin Wallet
has a very low number and frequencies of anti-patterns in
general and does not contain any noteworthy observations. The
Coordinator in K9Mail has a fluctuating increase of Complex
Class as time passes. The anti-patterns in the Coordinators in
Sweet Home 3D fluctuates greatly, especially Blob, which is
similar to the behaviour of Blob in the other roles in Sweet
Home 3D.

F. Anti-patterns in Interfacer

1) Bitcoin Wallet: The Interfacer-role in Bitcoin Wallet has
six occurring anti-patterns, with Complex Class and Long
Parameter List being significantly more common than the
others (Figure 25). At 2018-07-06 there is a drastic increase
of Complex Class and a drastic decrease of Long Parameter
List.

2) K9Mail: The Interfacer-role in K9Mail has 10 occurring
anti-patterns, with Complex Class and being significantly more
common than the others (Figure 26).

3) Sweet Home 3D: In Sweet Home 3D, the Interfacer role
has eight occurring anti-patterns. Long Method distinguishes
itself from the rest by having a much higher frequency (see
Figure 27). All of the anti-patterns seems to remain steady
with no notable changes or fluctuations.

The Interfacer role has the following anti-patterns in com-
mon in the three projects; Base Class Should Be Abstract,
Blob, Class Data Should Be Private, Complex Class, Long
Parameter List, and Refused Parent Bequest. Even though Blob
occurs in all three projects, it’s frequency is not particularly
high in any of them. Complex Class increases in Bitcoin Wallet
as time passes, has a steady frequency and than peaks and
then decreases again back to it’s previous frequency in K9
Mail, and stays somewhat the same in Sweet Home 3D. Long
Parameter List rapidly stats occurring close to the beginning
of Bitcoin Wallet, then becomes quite low towards the end,
while fluctuating in a low frequency in K9 Mail, and stays
very low in Sweet Home 3D.

RQ3: Which role-stereotypes are more prone to change
roles over time, and to which roles do they change?

In Bitcoin Wallet, there have been 85 instances of classes
changing roles throughout all selected versions (see Figure
28). Most changes are seen in Service Provider and Interfacer.
Specifically, there are a total of 29 instances of classes
switching from Service Provider to other roles and a total of
23 instances of classes switching from other roles to Service
Provider. Furthermore, 20 classes changed from Interfacer to
other roles, and conversely, 21 classes changed from other
roles to Interfacer.

K9Mail underwent substantially more changes in role-
stereotypes, concretely at 137 instances (see Figure 29). A
majority amount of changes are from Service Provider, Co-
ordinator and Interfacer to other roles, with 38, 22 and 36

6

instances respectively. Moreover, a majority of classes changes
from other roles to Service Provider and Interfacer, with 41
and 28 instances respectively.

Sweet Home 3D, however, has only 62 occurrences of
classes changing roles throughout the time period, with 14
instances derive from classes switching from Service Provider
to other roles (see Figure 30). Additionally, 20 classes changed
from other roles to Service Provider.

The number of classes that have changed role-stereotypes
more than once are 17, 19 and 7 in Bitcoin Wallet, K9 Mail
and Sweet Home 3D respectively (see Tables III, IV, V). The
largest number of role changes is four, which can be seen
in Bitcoin Wallet and K9 Mail. Sweet Home 3D, however,
only consists of classes that have changed roles at most twice
throughout the whole time period. Bitcoin Wallet contains
a single class that have been assigned four different role-
stereotypes, which is the largest number of roles a class was
assigned in all three projects.

7

Fig. 1. Distribution of the roles in each version of BitcoinWallet

Fig. 2. Distribution of the roles in each version of K9Mail

Fig. 3. Distribution of the roles in each version of SweetHome3D

8

Fig. 4. Distribution of the roles in each version of BitcoinWallet (Stacked)

Fig. 5. Distribution of the roles in each version of K9Mail (Stacked)

Fig. 6. Distribution of the roles in each version of SweetHome3D (Stacked)

9

Fig. 7. Distribution of the anti-patterns in each version of BitcoinWallet

Fig. 8. Distribution of the anti-patterns in each version of K9Mail

Fig. 9. Distribution of the anti-patterns in each version of SweetHome3D

10

Fig. 10. Anti-patterns of Information Holder in BitcoinWallet

Fig. 11. Anti-patterns of Information Holder in K9Mail

11

Fig. 12. Anti-patterns of Information Holder in SweetHome3D

Fig. 13. Anti-patterns of Structurer in BitcoinWallet

12

Fig. 14. Anti-patterns of Structurer in K9Mail

Fig. 15. Anti-patterns of Structurer in SweetHome3D

13

Fig. 16. Anti-patterns of Service Provider in BitcoinWallet

Fig. 17. Anti-patterns of Service Provider in K9Mail

14

Fig. 18. Anti-patterns of Service Provider in SweetHome3D

Fig. 19. Anti-patterns of Controller in BitcoinWallet

15

Fig. 20. Anti-patterns of Controller in K9Mail

Fig. 21. Anti-patterns of Controller in SweetHome3D

16

Fig. 22. Anti-patterns of Coordinator in BitcoinWallet

Fig. 23. Anti-patterns of Coordinator in K9Mail

17

Fig. 24. Anti-patterns of Coordinator in SweetHome3D

Fig. 25. Anti-patterns of Interfacer in BitcoinWallet

18

Fig. 26. Anti-patterns of Interfacer in K9Mail

Fig. 27. Anti-patterns of Interfacer in SweetHome3D

19

Fig. 28. Total changes in role-stereotypes in all selected versions of BitcoinWallet

20

Fig. 29. Total changes in role-stereotypes in all selected versions of K9Mail

21

Fig. 30. Total changes in role-stereotypes in all selected versions of SweetHome3D

22

TABLE III
CLASSES THAT HAVE CHANGED ROLES MORE THAN ONCE IN BITCOIN WALLET.

Class Number of roles Number of role changes
\wallet\src\de\schildbach\wallet\ui\AbstractWalletActivity.java 4 4
\wallet\src\de\schildbach\wallet\camera\CameraManager.java 3 4
\wallet\src\de\schildbach\wallet\ui\PreferencesActivity.java 3 3
\wallet\src\de\schildbach\wallet\ui\WalletAddressesAdapter.java 2 3
\wallet\src\de\schildbach\wallet\WalletBalanceWidgetProvider.java 2 3
\wallet\src\de\schildbach\wallet\ui\AddressBookActivity.java 2 3
\wallet\src\de\schildbach\wallet\util\Formats.java 3 2
\wallet\src\de\schildbach\wallet\ui\MaybeMaintenanceFragment.java 3 2
\wallet\src\de\schildbach\wallet\util\WalletUtils.java 3 2
\wallet\src\de\schildbach\wallet\ui\CurrencyCalculatorLink.java 2 2
\wallet\src\de\schildbach\wallet\util\GenericUtils.java 2 2
\wallet\src\de\schildbach\wallet\service\BlockchainService.java 2 2
\wallet\src\de\schildbach\wallet\ui\BlockListFragment.BlockListAdapter.java 2 2
\wallet\src\de\schildbach\wallet\util\BitmapFragment.java 2 2
\wallet\src\de\schildbach\wallet\ui\RequestCoinsActivity.java 2 2
\wallet\src\de\schildbach\wallet\ui\send\RequestWalletBalanceTask.java 2 2
\wallet\src\de\schildbach\wallet\ui\PeerListFragment.ReverseDnsLoader.java 2 2

TABLE IV
CLASSES THAT HAVE CHANGED ROLES MORE THAN ONCE IN K9 MAIL.

Class Number of roles Number of role changes
\src\com\fsck\k9\activity\Accounts.java 3 4
\app\ui\src\main\java\com\fsck\k9\activity\FolderInfoHolder.java 3 4
\src\com\fsck\k9\activity\K9Activity.java 2 3
\app\ui\src\main\java\com\fsck\k9\activity\FolderList.FolderListAdapter.java 3 2
\src\com\fsck\k9\mail\store\WebDavStore.java 3 2
\src\com\fsck\k9\helper\Contacts.java 3 2
\k9mail\src\main\java\com\fsck\k9\activity\MessageReference.java 3 2
\src\com\fsck\k9\view\K9PullToRefreshListView.java 2 2
\src\com\fsck\k9\view\MessageTitleView.java 2 2
\k9mail-library\src\main\java\com\fsck\k9\mail\transport\WebDavTransport.java 2 2
\src\com\fsck\k9\mail\store\Pop3Store.Pop3Capabilities.java 2 2
\src\com\fsck\k9\mail\CertificateValidationException.java 2 2
\src\com\fsck\k9\activity\K9ListActivity.java 2 2
\src\com\fsck\k9\activity\FolderList.FolderListAdapter.java 2 2
\k9mail\src\main\java\com\fsck\k9\view\K9PullToRefreshListView.java 2 2
\k9mail\src\main\java\com\fsck\k9\ui\messageview\MessageCryptoPresenter.java 2 2
\k9mail\src\main\java\com\fsck\k9\activity\K9ActivityCommon.java 2 2
\src\com\fsck\k9\Account.java 2 2
\src\com\fsck\k9\EmailAddressAdapter.java 2 2

TABLE V
CLASSES THAT HAVE CHANGED ROLES MORE THAN ONCE IN SWEET HOME 3D.

Class Number
of roles

Number
of role

changes
\SweetHome3D\src\com\eteks\sweethome3d\tools\OperatingSystem.java 3 2
\SweetHome3D\src\com\eteks\sweethome3d\swing\ImportedFurnitureWizardStepsPanel.AbstractModelPreviewComponent.java 3 2
\SweetHome3D\src\com\eteks\sweethome3d\swing\ControllerAction.java 3 2
\SweetHome3D\src\com\eteks\sweethome3d\j3d\Ground3D.java 3 2
\SweetHome3D\src\com\eteks\sweethome3d\io\DefaultUserPreferences.java 3 2
\SweetHome3D\src\com\eteks\sweethome3d\io\DefaultHomeInputStream.HomeObjectInputStream.java 2 2
\SweetHome3D\src\com\eteks\sweethome3d\io\DefaultHomeOutputStream.HomeObjectOutputStream.java 2 2

23

V. DISCUSSION

RQ1a: How does the distribution of role-stereotypes change
over time?
In section IV we saw a high increase of Information Holders
at the beginning of 2018 (2018-04-01) in Bitcoin Wallet.
Since none of the other roles decreases at this time-point,
this indicates that the developers added a significant amount
of Information Holder-classes. We suspect that the developers
attempted to extend the application by adding domain models.
Domain models are OO classes that represents real-world ob-
jects or entities, and hold information related to these objects
[18]. Considering that the responsibility of the Information
Holder-role is to hold and provide information [2], it is likely
that new domain models were added to the project, ergo the
drastic increase of Information Holders in the beginning of
2018. However, inspection and evaluation of the source code
is necessary to confirm this suspicion.

We also saw an increase of several roles in K9 Mail between
2013-2014. Similarly to what happened in Bitcoin Wallet, this
increase did not occur in parallel with a decrease of any other
roles, indicating an extension of the application. However,
since this increase concerns all roles except the Controller, it
becomes difficult to speculate what the source of this increase
could have been. Perhaps the developers introduced third-
party libraries and then removed them, since the involved roles
decrease again in 2014.

In the results for Sweet Home 3D, we did not see any
significant changes in the distribution of the roles. We can see
a slow and steady increase of all roles respectively, indicating
a stable and professional evolution of the software design.

All three projects share high frequencies of Information
Holders and Service Providers. Based on the responsibilities
of the roles defined by Wirfs-Brock et al. [2], we suspect that
the demand for classes the hold and provide information, and
compute tasks and perform work are in demand for these types
of applications.

Based on Wirfs-Brock et al. [2] definition of the respon-
sibility of the Interfacer-role as ”handling and transforming
requests and information between different parts of a system”,
it seems likely that the variety and number of parts that a
system has might increase the occurrence of Interfacer-classes.
Based on this assumption, we can see that all three projects
have more or less the same frequency of Interfacers (see
Figures 7, 8, 9), averaging from 40 to 50 in frequency. This
is interesting, assuming that the three projects differs in size
and number of classes, that despite their difference in size,
still have the same demand of classes that perform the work
of the Interfacer-role.

To summarize, we saw one major change in the distribution
of role-stereotypes in Bitcoin Wallet, namely a notable
increase of Information Holders (RQ1a). Even though K9
Mail had a significant increase of several roles between
2013-2014, the distribution between the roles remained
mostly the same during that time. Except for these two
observations, and that we could not see any other major

changes in the distribution of the roles. However, more
research on a more broad variety of projects would help
to further discuss the distribution of role-stereotypes over time.

RQ1b: How does the distribution of anti-patterns change
over time? In section IV we observed some notable changes
in the distribution of anti-patterns in the three projects. This is
interesting since the distribution of roles generally did not have
the same number of fluctuations. On a visual level, this may be
interpreted as the changes in the distribution of anti-patterns
not being related to the changes in the distribution of the roles.
However, such claims would have to be statistically verified
before making any such conclusions. In addition, this may also
be explained by the anti-pattern detection being more sensitive
to changes in the source-code compared to the sensitivity of
the role-identification.

However, there are a few visual observations that strength-
ens the idea that the changes in the distribution of the anti-
patterns can be explained by the changes in the distribution of
roles.

For example, in section IV, we saw that Bitcoin Wallet had
a notable increase of Complex Class at 2018-07-06. Looking
at the increase of Information Holders in Bitcoin Wallet at
2018-04-01, these changes seem to occur close to each other.
Chaudron et al. [8], found the that Information Holder-role
was statistically associated with the Complex Class. This
information heavily indicates that the increase of Complex
Class in Bitcoin Wallet is related to the increase of Information
Holders in the same project.

Furthermore, in the distribution of roles in K9 Mail, we
saw an increase of several roles between 2013-2014. If we
look closely at the same time-period in the distribution of anti-
patterns in K9 Mail, we can see a small but notable increase
of the majority of anti-patterns, indicating the the increase of
the roles (or classes in general), increased the occurrences of
a wide variety of anti-patterns.

Lastly, the distribution of anti-patterns in Sweet Home 3D
remains most stable of all of the three projects. Comparing
this to the almost non-existent changes in the distribution of
roles in Sweet Home 3D, the two figures seem to match nicely
on a visual level.

Generally, we can see similarities on a visual level between
the changes in the distribution of anti-patterns and the changes
in the distribution of roles (RQ1b).

RQ2: How does the occurrence of anti-patterns in specific
role-stereotypes change over time?

A. Information Holder

In section IV, we saw that the frequency of anti-patterns in
the Information Holder-role in K9 Mail increases significantly
as time goes on, while they remain mostly the same in
Bitcoin Wallet and Sweet Home 3D. Wirfs-Brock et al. [2]
defined the responsibility of the Information Holder-role to
hold and provide data or information. For such a low-complex
responsibility, it seems strange that the Information Holders in

24

K9 Mail has such high and increasing frequency of it’s anti-
patterns. And since the number of Information Holders in K9
Mail does make any drastic increases, as seen in Figure 2, the
increase of anti-patterns can not be explained by any increase
of the role’s frequency. Instead, we suspect that poor software
design for Information Holders in K9 Mail are the cause of
the increasing frequency of anti-patterns. We also noted that
Complex Class and Long Parameter List have high frequencies
in relation to other anti-patterns in the Information Holder-role
in all three projects. Chaudron et al. [8], found the Information
Holder role to be statistically associated with Class Data
Should Be Private, Complex Class and Long Parameter List,
which agrees with the results in our study, except for in Sweet
Home 3D, where Class Data Should Be Private is absent.

B. Structurer

In section IV, we saw that the Structurer in Bitcoin Wallet
had very few anti-patterns compared to the Structurer in K9
Mail and Sweet Home 3D. As defined by Wirfs-Brock et al.
[2], the responsibility of the Structurer-role is to ”manage
relationships between objects and information related to these
relationships”. Therefore, we believe that the Structurer-role
is likely to be involved with Information Holder-classes, since
the Information Holder can represent objects and provide
information about that object. As such, we can see that the
low number of Information Holders in Bitcoin Wallet (Figure
1), which range from 2 to 80 occurrences, is a possible reason
for the low number of anti-patterns involved in the Structurer
for Bitcoin Wallet, compared to the higher frequencies of the
Information Holder in K9 Mail and Sweet Home 3D (Figure
2, 3), which range from 79-243, and 162-234 occurrences
respectively. However, a more thorough investigation would
need to be done regarding our assumption that the Structurer-
role is heavily involved with dealing with Information Holders
to support this suspicion.

Another notable observation is that, in K9 Mail, we can
clearly see an increase of anti-patterns in the Structurer-role
during 2013-2014, similar to the increase of anti-patterns in
the Information Holder in K9 Mail during that time-period. On
a visual level, we can see that this increase of anti-patterns is
caused by the increase of several roles (or classes in general)
during 2013-2014 for K9 Mail in Figure 2.

Furthermore, Chaudron et al. [8], found that the Structurer
role had a statistically significant association to Complex
Class, which agrees with the results presented in our study.
Swiss Army Knife was also found to have an association to
Structurer. However, Swiss Army Knife is not present in the
Structurer of Bitcoin Wallet, and only occurs during the spike
mentioned in section IV in the Structurer of K9 Mail, and
generally has a low frequency in the Structurer of Sweet Home
3D. This may indicate that the statistical association between
the Structurer-role and Swiss Army Knife may need to be re-
evaluated on more broad sample-sizes.

C. Service Provider

Based on the results for Service Provider in section IV, we
can see that the role does not seem to make any changes in the
distribution of anti-patterns that are reflective to the changes
in the distribution of the role-stereotypes. Wirfs-Brock et al.
[2] describes the responsibility of the Service Provider-role to
perform computational tasks and work, which, according to
our interpretation, seems like a role that does not necessarily
need to have a wide range of associations to other classes.
Therefore, the changes in the distribution of anti-patterns in
the Service Provider-role is not necessarily affected and/or
reflected by the changes in the distribution of the roles.

One interesting observation is that the occurrences of Lazy
Class are quite high in both K9 Mail and Sweet Home 3D.
Chaudron el al. [8], found that Service Provider is associated
with Blob, Class Data Should Be Private and Complex Class
on a statistically significant level, but not Lazy Class. This
may indicate that there is an unexplored association between
Service Provider and Lazy Class, and that the statistical
significance between the two may need to be re-evaluated on
greater data samples.

D. Controller

In section IV, we observed a low amount of anti-patterns in
the Controller-role in Bitcoin Wallet, compared to the amount
of Controllers in K9 Mail and Sweet Home 3D. Wirfs-Brock
et al. [2] defines the responsibility of the Controller as being
responsible for making decisions and directing actions of other
artefacts. Perhaps the type of work done by the classes in K9
Mail and Sweet Home 3D is more based on the responsibility
of the Controller-role than the classes in Bitcoin Wallet, ergo
the scarce variety of anti-patterns and their low frequency
in Bitcoin Wallet. A far more likely explanation however, is
the extremely low amount of Controller-classes in Bitcoin in
general, as seen in Figure 7.

Chaudron et al. [8], found that the Controller role had
an association to Blob, Complex Class and Long Parameter
List, which matches well with the results for K9 Mail and
Sweet Home 3D, while being more difficult to confirm for
Bitcoin Wallet because of the generally low frequencies of
anti-patterns.

Furthermore, since the frequency of the Controller-role in all
three projects is very low and remains somewhat unchanging
throughout the entire time-period (Figures 7, 8, 9), it becomes
difficult to confirm if changes in the frequency of anti-patterns
are related to the changes in the distribution of roles.

E. Coordinator

In section IV we saw the the anti-patterns in the
Coordinator-role varies depending on the project. We only
found one notable observation in this role; if we look closely,
we can see an increase of Complex Class in the Coordinator in
K9 Mail between 2013-2014 (2013-08-01 to 2014-05-02) that
seems somewhat reflective to the changes in the distribution
of roles in K9 Mail between 2013-2014 (2013-02-02 to 2014-
05-02), where there is a slight increase in the number of

25

Coordinators (see Figures 23, 2). This may indicate that the
additional Coordinators caused a small increase of Complex
Class during that period. This also agrees well with the
findings of Chaudron et al. [8], who found that the Coordinator
is associated with Complex Class, which also matches well
with the occurrences of Complex Class in the three projects.
However, the increase of Complex class during the stated time-
period may as well be caused by the increase of the other
roles during that period, not necessarily the increase of the
Coordinators. Chaudron et al. [8] also found that Coordinator
is least involved in anti-patterns in general, which agrees with
the results for Bitcoin Wallet and somewhat also for Sweet
Home 3D, but not for K9 Mail (see Figures 1, 2, 3), which
has a quite high frequency and number of anti-patterns in
the Coordinator. But this can be explained by the quite high
frequency of Coordinators in K9 Mail in general, compared
to the low frequency of the role in Bitcoin Wallet and Sweet
Home 3D.

Wirfs-Brock et al. [2] describes that the responsibility of
the Coordinator is to ”delegate work to other artefacts by
reacting to events”. Considering that K9 Mail is an application
that handles mail and is likely to have many events related to
receiving and sending mail, it makes sense the the frequency
of Coordinators is higher in K9 Mail compared to Bitcoin
Wallet and Sweet Home 3D (as seen in Figures 7, 8, 9), and
thus having a higher frequency of anti-patterns in this role.

F. Interfacer

Similarly to the Service Provider-role, the Interfacer does
not seem have any notable changes in the frequency of anti-
patterns that are reflective to the changes in the distribution
of roles (compare Figures 7, 8, 9 to 25, 26, 27 respectively).
This indicates that the anti-patterns in Interfacer change in
frequency independently to the changes in the distribution of
roles.

In addition, it seems that the changes of anti-patterns in
the Interfacer-role for each project have more similarities to
the anti-patterns of other roles in the same project rather then
similarities to the same role in other projects, indicating the
the design of the project plays a greater role in determining
the occurrence of anti-patterns than depending on if a class is
an Interfacer or not.

Furthermore, Chaudron et al. [8], found that the Interfacer
role was associated with Blob and Complex Class, which
agrees with the high frequency of Complex Class in Bitcoin
Wallet and K9 Mail, and moderately high frequency in Sweet
Home 3D.

G. Summary

The most interesting finding, according to our subjective
opinion, is that the distribution of anti-patterns in specific roles
seems to have more in common with the distribution of anti-
patterns in other roles in the same project, rather than the
same roles in other projects. One clear example of this is
the Blob in the roles of Sweet Home 3D, which has a very

fluctuating frequency in all roles except in Interfacer, while
not having the same behaviour at all in any of the same roles
in the other two projects. This is interesting because it may
indicate that the design decisions of the developers may play
a greater role in the occurrence of certain anti-patterns than
which role-stereotype an OO class has.

Another interesting finding is that the changes in frequency
of anti-patterns in certain roles seem to be reflective to the
changes in the distribution of roles. For example, changes in
the distribution of roles in Bitcoin Wallet and K9 Mail seem
to influence the frequency of a variety of anti-patterns in
Information Holders and Structurers, or vice versa. However,
other roles such as Service Provider, Interfacer and Controller
seems to have changes in frequency of anti-patterns that are
unrelated to changes in the distribution of roles.

RQ3: Which role-stereotypes are more prone to change
roles over time, and to which roles do they change?

From the interpretation of the presented data in Section IV,
it is evident that the majority of classes classified as Service
Provider are more prone to change roles over time in all of
the selected projects, and conversely, most classes also tend
to switch from other roles to Service Provider (RQ3).

An interesting finding is that there exists an interchanging
relationships between certain pairs of role-stereotypes. This
can be seen most evidently in Bitcoin Wallet, for exam-
ple, 8 classes changed from Interfacer to Coordinator, and
conversely, 9 classes changed from Coordinator to Intefacer.
Accordingly, 7 classes changed from Interfacer to Service
Provider, and 9 classes changed from Service Provider to
Interfacer (Figure 28). More examples can be seen with other
pairs of roles in all of the projects (Figures 28, 29 and 30).
This could be an issue of inaccurate classification in the CRI-
tool, as it may have classified a class as one role and the
same class as another role at a later point in time. To confirm
such speculation, we compare the confusion matrix table of
the CRI-tool (Table I) with Figures 28, 29 and 30. Table I
indicates that the classifier tends to misclassify Interfacer as
Service Provider and vice versa. This is also the case for the
roles Information Holder and Service Provider. Accordingly, in
all projects, most changes in roles involve Interfacer changing
from and to Service Provider as well as Information Holder
changing from and to Service Provider (Figures 28, 29 and 30).
We further investigate the interchanging relationship between
two roles by checking whether the relationship occurs in the
same class throughout the selected time period. Using the
data from the CRI-tool, of which consist of mappings of
Java classes and roles in different versions of all the selected
project, we created timeline graphs that illustrate how classes
change roles overtime in order to confirm the interchanging
relationship (see Appendix B). As seen in the figures, when
changing role-stereotypes, most classes tend to maintain their
new roles throughout the whole time period.

Although there are some correlations between the misclas-
sification of certain pairs of role-stereotypes and the number
of changes in those pairs, we are not able to confirm whether

26

there exist interchanging relationships between the pairs or the
relationships are caused by results of inaccurate classification
without performing thorough code inspections. For example,
if a class switch roles from Interfacer to Service Provider with
only a few changes in the source code, or with changes that are
insufficient to be labeled as Service Provider, we can suspect
that the interchanging relationships are derived from inaccurate
classification of role-stereotypes.

The same principle applies to classes that have changed
role-stereotypes multiple times throughout the time period
(Tables III, IV and V). We can see that the largest number
of roles a class has been assigned is four, and thus, we are
uncertain whether the changes come from the intention of
the developers, or from the accuracy error of the CRI-tool.
We only suspected that it is unlikely for a class to have
been assigned four different role-stereotypes. Further code
inspection is required to validate the suspicion.

Furthermore, we also suspect that if the CRI-tool had been
trained on a more broad range of projects, it may have reduced
the sensitivity of the classifier and consequently reduced the
number of role changes.

VI. THREATS TO VALIDITY

The Internal validity of our study concerns the non-existent
roles, as can be seen in the figures illustrating the changes in
specific classes in section B of the Appendix. This is because
those classes were likely removed or migrated to different
packages in the projects. Some anti-patterns in the projects,
and in specific role-stereotypes in the projects, were non-
existent. To resolve this, we removed those anti-patterns from
the analysis.

The External validity of our study concerns the generaliz-
ability of the results. The study was conducted on three open-
source software projects written in Java. Then, it would be nat-
ural to assume that the results only apply to software systems
written in Java. However, since most OO-software systems
share architectural characteristics and structures regardless of
programming language [12] the result of the study can be
generalized to benefit the majority of such systems.

The Reliability of the study concerns the accuracy of the
different tools used.

Since only the pivot versions mentioned in section III had
ground truths established for the role-stereotypes, it is un-
known if the roles classified using the CRI-tool were actually
accurate for the rest of the selected versions of each project.
Ho-Quang et al. [11], confirmed the accuracy by comparing
the ground truth to the results of the tool. The ground truth was
established by manually labeling all classes in the projects.
However, considering the amount of versions (110 in total)
in our study, it is not realistic to conduct the same manual
labelling for every class in each of the 110 versions of the
projects. Instead, we relied on the CRI-tool’s documented
accuracy [10], [11], [12].

As for the detection of anti-patterns by the Ptidej tool, it was
not possible to manually confirm that the detected anti-patterns
were correct, mainly because of the same reason as with the

CRI-tool, it was not feasible to perform manual checking of
each class in each version of the projects. Instead, we relied
on Ptidej’s documented precision as mentioned in section III,
which we deemed high enough to make the results trustworthy.

The APCRM tool used algorithms to produce data on roles,
anti-patterns and the mapping between these two. To validate
that the algorithms worked as intended, several executions
were manually compared to the raw input data. All such com-
parisons showed that the results produced by the algorithms
yielded the expected results.

VII. RELATED WORK

There are several studies conducted for the purpose of find-
ing code smells/design anti-patterns [14], [15]. For example,
Moha et al. [14] introduced a method, namely DECOR, in
order to establish a set of rules for the detection of anti-
patterns. These rules are then applied as an embodiment of the
DECOR method for the development of DETEX, a detection
tool for software systems. As an improvement to DECOR,
which was only able to identify a limited number of specific
code smells, Moha et al. [15] presented a new method to
automate the generation of newfound code smells by using de-
tection algorithms from specifications derived during domain
analysis.

There also exist multiple studies on the identification of
roles in classes. For example, Nurwidyantoro et al. [10], [11],
[12] used machine learning to automate the classification of
the six role-stereotypes introduced by Wirfs-Brock et al. [2].

A study by Khomh et al. [16] investigated the relation be-
tween anti-patterns and change-proneness. The authors found
that classes containing anti-patterns are more likely to require
changes and contain faults than classes that are not involved
in anti-patterns. However, they did not use the perspective
of role-stereotypes, and did not provide any categorization-
approach to indicate in what classes the anti-patterns are prone
to emerge. Our study aims to close this gap so that anti-
patterns can be predicted and prevented when making changes
to software systems.

Chaudron et al. [8] studied the occurrence of anti-patterns
in role-stereotypes found that there is a relationship between
the two on a statistical significant level, and that some roles
are more prone to anti-patterns than other roles. Thanks to the
results of the study, it becomes relevant to look at how role-
stereotypes evolve over time to understand the occurrence of
anti-patterns. The study was conducted on three open-source
software systems, namely Bitcoin Wallet, K9Mail and Sweet
Home 3D. The study also covered relationships to design
patterns, but our study only focus on anti-patterns. Our study
also distinguishes itself by performing the same methods, but
in a longitudinal approach.

Among the mentioned studies, only the study by Chaudron
et al. [8] was dedicated for the findings of relations between
design (anti)patterns and roles. However, the study did not
consider how the relations evolve over multiple successive
versions of a software system. Chatzigeorgiou et al. [17]
investigated the evolution of anti-patterns/code smells in OO

27

systems, but did not include a any way to correlate the
evolution of anti-patterns with role-stereotypes or specific
responsibilities in classes. We believe that our is the first study
to report on such matter.

VIII. CONCLUSION

In this study we saw, on a visual level, that the total
distribution of anti-patterns seem to have some changes that
can be explained by the changes in the distribution of roles (or
vice versa). In addition, we found that the distribution of anti-
patterns in specific roles also might be affected or reflective
to the changes in the distribution of the roles. For example,
the distribution of anti-patterns in Information Holder and
Structurer seem to make changes that can be associated with
the changes in the distribution of the roles, while the anti-
patterns in Service Provider, Controller and Interfacer seem to
make changes independently of the changes in the distribution
of roles.

We also found that it seems that the changes of anti-patterns
in specific roles have more in common with the changes in
anti-patterns of other roles in the same project rather than with
the same role in other projects, indicating that the design of
the project plays a greater role in determining the occurrence
of anti-patterns. For example, the frequency of anti-patterns
in the roles in Sweet Home 3D have more similarities with
each other than the frequency of anti-patterns in a specific
role in Sweet Home 3D has with the same role in the other
projects. One such similarity is the greatly varied frequency
of Blob in most of Sweet Home 3D’s roles, while it does not
vary as much, or even occur at all, in the same roles in the
other projects. We believe this may be related to the design
decisions of the developers of the projects. However, this was
based on visual observations of the charts, and would need
further analysis on source-code level to make any conclusions.

Furthermore, we suspect a possible explanation for notable
increases of Information Holders (as seen in Figure 1) in
an OO system might be related to introducing new domain
models, but this requires further investigation of the source
code to make any further claims.

We discovered that classes assigned as Service Provider
tend to change to other role-stereotypes, and vice versa, most
classes are also likely to change from other roles to Service
Provider. Furthermore, while analysing the total number of
changes in each role, we uncovered that there seems to
exist interchanging relationships when classes switch between
certain pair of roles. Specifically, in most cases, the number of
changes from role A to role B is almost equal to the number
of changes from role B to role A. We suspected that the cause
of this interchanging relationship comes from the accuracy
error of the CRI tool. To confirm the suspicion, thorough code
inspection is required.

Future Work

For future work, it would be interesting to investigate if
the design decisions of developers play a greater role in
determining the occurrence of certain anti-patterns than which

role-stereotype an OO-class has, based on our findings in
section V for RQ2. Chaudron et al. [8] found statistical
correlations between certain role-stereotypes and anti-patterns,
but our findings suggest that if a correlation exist between
design-decisions of developers and certain anti-patterns, that
correlation might be greater.

Another study is to investigate classes that change multiple
role-stereotypes over time, since interesting elements can be
found in the source code that can be analysed to determine
whether to improve the CRI tool as the changes might be
incorrect classification, or to examine why the classes go
through so many changes. Thus, these elements can also
answer the question to how the anatomy of features in classes
relate to certain role-stereotypes.

It would also be interesting to look at how role-stereotypes
change in the beginning of additional projects, considering that
our study was only done on Bitcoin Wallet from the very start
of the project, which was not the case for K9 Mail and Sweet
Home 3D.

REFERENCES

[1] R. Wirfs-Brock, B. Wilkerson. ”Object-Oriented Design: A
Responsibility-Driven Approach”, OOPSLA 1989, 1989.

[2] R. J. Wirfs-Brock, A. McKean, “Object Design: Roles Responsibilities
and Collaborations”, Pearson Education, 2002.

[3] R. J. Wirfs-Brock, “Characterizing Classes”, IEEE Software Vol. 23 No.
2, April 2006, pp. 9-11.

[4] L. Kuzniarz, M. Staron, C. Wohlin, ”An empirical study on using
stereotypes to improve understanding of UML models,” Proceedings.
12th IEEE International Workshop on Program Comprehension, 2004,
pp. 14-23.

[5] E. Gamma, J. Vlissides, R. Johnson and R. Helm, “Design Patterns:
Elements of Reusable Object-oriented software”, 1994, pp. 14-16.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, E. Gamma,
“Refactoring: Improving the Design of Existing Code”, Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[7] U. A. Mannan, I. Ahmed, R. M. A. Almurshed, D. Dig, C. Jensen,
”Understanding Code Smells in Andriod Applications”, MOBILESoft
’16: Proceedings of the International Conference on Mobile Software
Engineering and Systems, 2016, pp. 1-12.

[8] M. R. V. Chaudron, “Studying the Occurrence of (Anti)Patterns through
the Lens of Role-Stereotypes in Software Designs”, Personal communi-
cation, 2020, pp. 1-10.

[9] A. Yamashita, L. Moonen, ”Do developers care about code smells? An
exploratory survey”, 20th Working Conference on Reverse Engineering
(WCRE), 2013, pp. 1-11.

[10] T. Ho-Quang, A. Nurwidyantoro, M. R. V. Chaudron, “Using Ma-
chine Learning for Automated Classification of Class Responsibility
Stereotypes in Software Design”, Department of Computer Science
& Engineering, Chalmers University of Technology and University of
Gothenburg, pp. 1-29.

[11] A. Nurwidyantoro, T. Ho-Quang, M. R. V. Chaudron, “Improving the
Automated Classification of Role-Stereotypes by Machine Learning”,
EASE 2019, pp. 1-10.

[12] A. Nurwidyantoro, T. Ho-Quang, M. R. V. Chaudron, “Automated
Classification of Class-Role Stereotypes via Machine Learning”, EASE
2019, pp. 1-10.

[13] Y.-G. Guéhéneuc, “Ptidej: Promoting Patterns With Patterns”, Proceed-
ings of the 1st ECOOP workshop on Building a System using Patterns.
Springer-Verlag, 2005, pp. 1-9.

[14] N. Moha, Y.-G. Guehénéuc, L. Duchien, A. Le Meur, “Decor: A Method
for the Specification and Detection of Code and Design Smells”, IEEE
Transactions On Software Engineering, vol. 36, no. 1, Jan 2010, pp.
20-36.

[15] N. Moha, Y.-G. Guehénéuc, L. Duchien, A. Le Meur, A. Tiberghien,
“From a Domain Analysis to the Specification and Detection of Code
and Design Smells”, Formal Aspects of Computing, vol. 22, no. 3, May
2010, pp. 345-361.

28

[16] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol, “An exploratory
study of the impact of antipatterns on class change- and fault-proneness”,
Empirical Software Engineering 17, 243–275 (2012), Springer Sci-
ence+Business Media, LLC 2011, pp. 1-33.

[17] A. Chatzigeorgiou and A. Manakos, ”Investigating the Evolution of Code
Smells in Object-Oriented Systems,” 2010 Seventh International Con-
ference on the Quality of Information and Communications Technology,
Porto, 2010, pp. 106-115.

[18] S. Millet, N. Tune, ”Patterns, Principles, and Practices of Domain-Driven
Design”, John Wiley Sons Inc, 2015, pp. 1-795.

29

APPENDIX

A. Bitcoin Wallet Graphs with Divergence Data

Fig. 31. Distribution of the roles in each version of Bitcoin Wallet (including version from 2011-10-03)

Fig. 32. Distribution of the anti-patterns in each version of Bitcoin Wallet (including version from 2011-10-03)

30

Fig. 33. Anti-patterns of Information Holder in Bitcoin Wallet (including version from 2011-10-03)

Fig. 34. Anti-patterns of Structurer in Bitcoin Wallet (including version from 2011-10-03)

Fig. 35. Anti-patterns of Service Provider in Bitcoin Wallet (including version from 2011-10-03)

31

Fig. 36. Anti-patterns of Controller in Bitcoin Wallet (including version from 2011-10-03)

Fig. 37. Anti-patterns of Coordinator in Bitcoin Wallet (including version from 2011-10-03)

Fig. 38. Anti-patterns of Interfacer in Bitcoin Wallet (including version from 2011-10-03)

32

B. Timeline graphs of how individual classes change roles over time

Fig. 39. How classes change role-stereotypes overtime in Bitcoin Wallet (First portion of classes)

33

Fig. 40. How classes change role-stereotypes overtime in Bitcoin Wallet (Second portion of classes)

34

Fig. 41. How classes change role-stereotypes overtime in Bitcoin Wallet (Third portion of classes)

35

Fig. 42. How classes change role-stereotypes overtime in Bitcoin Wallet (Last portion of classes)

36

Fig. 43. How classes change role-stereotypes overtime in K9Mail (First portion of classes)

37

Fig. 44. How classes change role-stereotypes overtime in K9Mail (Second portion of classes)

38

Fig. 45. How classes change role-stereotypes overtime in K9Mail (Third portion of classes)

39

Fig. 46. How classes change role-stereotypes overtime in K9Mail (Fourth portion of classes)

40

Fig. 47. How classes change role-stereotypes overtime in K9Mail (Fifth portion of classes)

41

Fig. 48. How classes change role-stereotypes overtime in K9Mail (Sixth portion of classes)

42

Fig. 49. How classes change role-stereotypes overtime in K9Mail (Seventh portion of classes)

43

Fig. 50. How classes change role-stereotypes overtime in K9Mail (Eighth portion of classes)

44

Fig. 51. How classes change role-stereotypes overtime in K9Mail (Ninth portion of classes)

45

Fig. 52. How classes change role-stereotypes overtime in K9Mail (Tenth portion of classes)

46

Fig. 53. How classes change role-stereotypes overtime in K9Mail (Eleventh portion of classes)

47

Fig. 54. How classes change role-stereotypes overtime in K9Mail (twelfth portion of classes)

48

Fig. 55. How classes change role-stereotypes overtime in K9Mail (thirteenth portion of classes)

49

Fig. 56. How classes change role-stereotypes overtime in K9Mail (fourteenth portion of classes)

50

Fig. 57. How classes change role-stereotypes overtime in K9Mail (fifteenth portion of classes)

51

Fig. 58. How classes change role-stereotypes overtime in K9Mail (Last portion of classes)

52

Fig. 59. How classes change role-stereotypes overtime in SweetHome3D (First portion of classes)

53

Fig. 60. How classes change role-stereotypes overtime in SweetHome3D (Second portion of classes)

54

Fig. 61. How classes change role-stereotypes overtime in SweetHome3D (Third portion of classes)

55

Fig. 62. How classes change role-stereotypes overtime in SweetHome3D (Last portion of classes)

56

