
Game Design and Implementation of
Physics-Based Interactions between
Player and Environment Elements

Master’s Thesis in Computer Science and Engineering

ADRIÁN NAVARRO PÉREZ

SAMUEL SOUTULLO SOBRAL

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Game Design and Implementation of
Physics-Based Interactions between
Player and Environment Elements

ADRIÁN NAVARRO PÉREZ
SAMUEL SOUTULLO SOBRAL

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Game Design and Implementation of Physics-Based Interactions between Player and
Environment Elements
ADRIÁN NAVARRO PÉREZ
SAMUEL SOUTULLO SOBRAL

© ADRIÁN NAVARRO PÉREZ, 2020.
© SAMUEL SOUTULLO SOBRAL, 2020.

Supervisor: Marco Fratarcangeli, Department of Computer Science and Engineering
Examiner: Staffan Björk, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Game Design and Implementation of Physics-Based Interactions between Player and
Environment Elements
ADRIÁN NAVARRO PÉREZ
SAMUEL SOUTULLO SOBRAL
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This master thesis presents the PEP framework, a formal method that guides the
design and analysis of physics-based games, and Under Surveillance, a 2.5D physics-
based puzzle adventure video game for PC.

The PEP framework provides a set of defined steps along with a common vocabulary
all game designers can refer to when designing and analyzing physics-based games.
The framework strives to ensure their consistency while simultaneously making more
intuitive to the player the emerging behaviors consequence of these games’ laws of
physics.

In Under Surveillance, designed by applying the PEP framework and developed in
Unity, players take control of a mysterious robot who can manipulate and make
use of electricity and water to solve a set of puzzles as they progress further in a
dystopian world.

Keywords: Game Design, Game Research, Game Development, Physics-Based Games,
Philosophy, Psychology.

v

Acknowledgements
This master thesis was developed under the supervision and support of Marco Fratar-
cangeli. Adrián acknowledges the financial backing from Fundación Margit y Folke
Pehrzon, Svensk-Spanska Stiftelsen / The Swedish-Spanish Foundation and Adler-
bertska Foreign Student Hospitality Foundation. Samuel acknowledges the financial
backing from Fundación Barrié.

Adrián Navarro Pérez and Samuel Soutullo Sobral, Gothenburg, June 2020

vii

Contents

List of Figures xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Research Question . 1
1.3 Stakeholders . 2

1.3.1 Internal Stakeholders . 2
1.3.2 External Stakeholders . 2

1.4 Aim . 3

2 Background 5
2.1 Game Design . 5

2.1.1 MDA: A Formal Approach to Game Design and Game Research 5
2.1.2 Other Methods . 6

2.2 Influential works . 6
2.2.1 Lemmings . 7
2.2.2 Limbo . 8
2.2.3 Inside . 8
2.2.4 Nineteen Eighty-Four (1984) 10
2.2.5 Blade Runner . 10

3 Theory 13
3.1 Philosophy . 13

3.1.1 The Allegory of the Cave . 13
3.1.2 Critique of Pure Reason . 14

3.2 Psychology . 15
3.2.1 Mental Model and Double-Loop Learning 15

4 Methodology 17
4.1 Agile Development Methodology . 17

4.1.1 Applied Principles, Practices and Methods 18
4.1.2 Version Control Methodology: GitFlow 24

4.2 Prototyping . 25
4.2.1 Brainstorming . 25
4.2.2 Paper Prototype . 26

4.3 Play-First Game Design . 26

ix

Contents

4.4 A. Cooper Principles . 27
4.4.1 Pliancy and Hinting . 27
4.4.2 Modeless Feedback . 27
4.4.3 Internal Coherence . 28

5 Planning 29
5.1 Initial Planning . 29

5.1.1 Planned Result . 29
5.1.2 Time Plan . 30

5.1.2.1 Initiation . 30
5.1.2.2 Development . 30
5.1.2.3 Finalization . 31

5.2 Final Planning . 31
5.2.1 Planned Result . 31
5.2.2 Time Plan . 31

5.2.2.1 Initiation . 32
5.2.2.2 Development . 32
5.2.2.3 Finalization . 33

5.2.3 External Resources . 33
5.2.3.1 Software Tools . 33
5.2.3.2 Assets . 34
5.2.3.3 Other Resources . 34

6 Execution 35
6.1 Phase 1: Prototyping . 35

6.1.1 Game Design . 35
6.1.2 Narrative Design . 37
6.1.3 Level Design . 42
6.1.4 Post-Mortem . 42

6.2 Phase 2: The PEP Framework development 44
6.2.1 The PEP Framework in Detail 45

6.2.1.1 Physics . 45
6.2.1.2 Environment . 46
6.2.1.3 Player . 46
6.2.1.4 Mechanics . 47
6.2.1.5 Phenomena . 47
6.2.1.6 Deductions . 47

6.2.2 Applying The PEP Framework 48
6.2.2.1 Design . 48
6.2.2.2 Analysis . 49

6.3 Phase 3: Design of Under Surveillance 50
6.3.1 Design Phenomena . 50
6.3.2 Design Environment . 50
6.3.3 Formalize Physics . 51
6.3.4 Design Mechanics . 51
6.3.5 Design Deductions . 51

6.4 Phase 4: First Version of Under Surveillance 51

x

Contents

6.4.1 Character . 51
6.4.2 Level Design . 53
6.4.3 Post-Processing . 55

6.4.3.1 Bloom . 55
6.4.3.2 Color Grading . 56

6.4.4 Menus and UI . 56
6.4.5 Post-Mortem . 58

6.5 Phase 5: Second Version of Under Surveillance 58
6.5.1 Level Design . 58

6.5.1.1 Area 1: The Prison 59
6.5.1.2 Area 2: The Storage Room 60

6.5.2 Post-Mortem . 62
6.6 Phase 6: Final Version of Under Surveillance 63

6.6.1 Narrative Design . 63
6.6.2 Software Architecture . 64
6.6.3 Character Design . 64

6.6.3.1 Animations . 65
6.6.3.2 Scripting . 66

6.6.4 Physics . 68
6.6.4.1 Electricity . 69
6.6.4.2 Water . 71
6.6.4.3 Fire . 72

6.6.5 Level Design . 72
6.6.5.1 Area 1: Escaping the Jail Cell 72
6.6.5.2 Area 2: Corridor . 73
6.6.5.3 Area 3: Elevators . 74
6.6.5.4 Area 4: Swimming Pools 75

6.6.6 Lighting . 75
6.6.7 Post-Processing . 77

6.6.7.1 Ambient Occlusion 77
6.6.7.2 Bloom . 77
6.6.7.3 Color Grading . 78

6.6.8 Menus and UI . 80
6.6.8.1 Cursor . 81

6.6.9 Sound Design . 81
6.6.9.1 Background Music 82
6.6.9.2 Sound Effects . 84
6.6.9.3 Dialogues and Voice Lines 86

6.7 Phase 7: Analysis . 86
6.7.1 Angry Birds . 86

6.7.1.1 Identify the Phenomena, the Environment and the
Mechanics . 86

6.7.1.2 Validate the Phenomena and the Environment 87
6.7.1.3 Validate the Mechanics 87
6.7.1.4 Evaluate the Deductions 88

6.7.2 Under Surveillance . 89

xi

Contents

6.7.2.1 Identify the Phenomena, the Environment and the
Mechanics . 89

6.7.2.2 Validate the Phenomena and the Environment 89
6.7.2.3 Validate the Mechanics 90
6.7.2.4 Evaluate the Deductions 90

7 Results 93
7.1 The PEP Framework . 93

7.1.1 Applying the framework . 94
7.2 Under Surveillance . 95

7.2.1 Gameplay . 96
7.2.2 Distribution . 96
7.2.3 Social Media . 97

8 Limitations, Discussion and Ethical Considerations 99
8.1 Limitations and Challenges . 99

8.1.1 The PEP Framework . 99
8.1.2 Under Surveillance . 99

8.2 Discussion . 100
8.3 Ethical Considerations . 101

8.3.1 Gender Equality . 101
8.3.2 Quality Education . 101
8.3.3 Reduced Inequalities . 102

9 Conclusion and Further Work 105
9.1 Conclusion . 105
9.2 Further Work . 106

9.2.1 The PEP Framework . 106
9.2.2 Under Surveillance . 106

Bibliography 107

A The PEP Framework: A Formal Method to Design Consistent and
Intuitive Physics-Based Games I

xii

List of Figures

2.1 Formalization of the production and consumption of game artifacts . 6
2.2 Lemmings first level in-game screenshot: A lemming is excavating

a path towards the exit with its own bare hands after the player
commanded it . 7

2.3 Limbo in-game screenshot: The boy is fleeing away from a giant spider. 8
2.4 Inside in-game screenshot: The boy is looking at a box located close

to the ceiling. 9
2.5 Inside in-game screenshot: The boy is looking at a group of people

walking over the street. 9
2.6 Shot from 1984 (Nineteen Eighty-Four), the movie adaption of Nine-

teen Eighty-Four: A Novel . 10
2.7 Skyscrapers from Los Angeles during the night. 11
2.8 Streets from Los Angeles during the night. 11
2.9 Syd Mead’s Blade Runner concept art. 11

3.1 Conceptual representation of the Allegory of the Cave. 14
3.2 Conceptual representation of the relevant concepts from the Critique

of Pure Reason. 14
3.3 Conceptual representation of double-loop learning. 16

4.1 Scrum workflow. 18
4.2 Project’s backlog. 19
4.3 One of the tasks present in the project’s ZenHub. 21
4.4 First page out of thirty-eight of the master thesis’ project diary. . . . 22

5.1 Initial Gantt chart. 30
5.2 Final Gantt chart. 31

6.1 Paper prototype of the natural elements and the interactions between
them. 36

6.2 Paper prototype of the categories of the natural elements. 36
6.3 Settings and names to support the game design. 37
6.4 Medieval and Nordic short narratives. 38
6.5 Cyberpunk short narrative. 38
6.6 Natural elements in Medieval, Nordic and Cyberpunk narratives. . . . 39
6.7 Cyberpunk narrative developed further in detail. 39
6.8 Game characters and most relevant game narrative elements explained. 40

xiii

List of Figures

6.9 Cinematic prologue script. 41
6.10 The player takes control of the game and helps the robot to escape

from the jail they are confided to by throwing electricity to the control
panel of the cell. 42

6.11 The player helps the robot to escape from the jail they are confined to. 43
6.12 Drafts regarding the main and secondary components of the PEP

framework. 43
6.13 The PEP framework architecture. 44
6.14 The PEP framework architecture in detail. Related Plato’s (*), Kant’s

(†) and mental model and double-loop learning (‡) concepts are shown. 45
6.15 The main character of the first version of Under Surveillance. 52
6.16 The NavMesh is represented as a blue carpet on the floor. 52
6.17 Level Design of the first version of Under Surveillance overview. . . . 53
6.18 Jail cell area. 54
6.19 Prisoner observed by a camera inside of a jail cell. 54
6.20 Corridor area. 54
6.21 Corridor intersection area. 55
6.22 Influence of the bloom post-processing effect. 55
6.23 Values of the bloom post-processing effect. 56
6.24 Influence of the color grading post-processing effect. 56
6.25 Values of the color grading post-processing effect. 57
6.26 Early version of the dialogue system. 58
6.27 Area 1: The Prison. 59
6.28 First part of the prison. 60
6.29 Main character moving downstairs. 60
6.30 Area 2: The Storage Room. 61
6.31 Crane and metallic boxes puzzle. 62
6.32 Class diagram of Under Surveillance. 64
6.33 The new main character of the last version of Under Surveillance. . . 65
6.34 Main character’s animator controller. 66
6.35 Initial cutscene at the beginning of Under Surveillance. 67
6.36 Appearances of the main character depending on its state. 68
6.37 Main character’s electricity throw animation. 69
6.38 Possible reactions when an electric ball hits any object. 70
6.39 Electrical panel turned on. 70
6.40 Water conducting electricity. 71
6.41 Main character’s water throw animation. 71
6.42 Pool area. 72
6.43 Screenshots of the first area of the level. 73
6.44 Screenshots of the second area of the level. 74
6.45 Screenshots of the third area of the level. 74
6.46 Screenshots of the fourth area of the level. 76
6.47 The main character enlightening the floor. 76
6.48 Scattered lighting comparison. 77
6.49 Influence of the ambient occlusion post-processing effect. 77
6.50 Values of the ambient occlusion post-processing effect. 78

xiv

List of Figures

6.51 Influence of the bloom post-processing effect. 78
6.52 Values of the bloom post-processing effect. 78
6.53 Influence of the grading curves from the color grading post-processing

effect. 79
6.54 Values of the grading curves inside of the color grading post-

processing effect. 79
6.55 Menu prototype in Adobe XD. 80
6.56 Menus of Under Surveillance. 80
6.57 Five different in-game cursors. 81
6.58 A radio placed on a desk next to a puzzle. 82
6.59 Values of the radio’s background music. 83
6.60 Breeze sound effect placed at the top of the pipe marking the end of

a puzzle. 84
6.61 Values of the breeze sound effect. 85
6.62 Angry Birds in-game screenshot: A bird has just been shot to a fortress. 86

7.1 The PEP framework architecture. 93
7.2 Final version of Under Surveillance. 95
7.3 Itch.io web page of Under Surveillance. 96
7.4 Example of one of the multiple content used to promoteUnder Surveil-

lance. 97
7.5 Posts published on the social media accounts of Under Surveillance. . 97

8.1 Main character visualized with different color blindness filters. 103

xv

List of Figures

xvi

1
Introduction

1.1 Problem Description

Games are artifacts which support a voluntary interaction carried out, within a
formal independent transmedial system, between one or more users and the system
itself, performing a finite number of different types of actions without expecting a
productive outcome [1–13].

Physics-based games are those in which purposeful gameplay is achieved by subject-
ing player’s interactions or their consequences to a consistent set of laws of physics.
All the occurrences, which rise as a consequence of gameplay, are ruled by these
laws. Therefore, solid consistency in the emerging behaviors must be ensured.

Ensuring the consistency of these behaviors only adds more difficulties to the com-
plex work of game design. Players need to comprehend how the laws of physics rule
the environment from the game they are playing to make progress. Nevertheless, di-
rectly letting the player know about these laws and all their consequences is neither
convenient nor practical.

1.2 Research Question

All the inconveniences presented in Sec. 1.1, naturally inherent to physics-based
games, can be faced by making use of a common vocabulary and a formal method.
By formalizing procedures to coordinate all working game designers during a project,
it is ensured that a game is designed according to an established process in which
a justifiable reason is found behind every single design decision. Thus, a more solid
and consistent game design work is carried out, ultimately leading to the production
of more successful products.

Hence, the research question this thesis pursues to answer is:

“What should be considered when designing physics-based interactions between
player and environment elements to achieve more engaging experiences in

physics-based games?”

1

1. Introduction

1.3 Stakeholders
The needs of all the following involved stakeholders were taken into account.

1.3.1 Internal Stakeholders
The only internal stakeholders are the master thesis authors (Adrián Navarro
Pérez and Samuel Soutullo Sobral). Both authors have a common interest in video
game development. Thus, their personal and professional needs consisted of taking
advantage of this project to improve their game development skills while breaking
the bounds of their creativity. Their final goal was to create a new way to design
more consistent and intuitive to the player physics-based games while developing a
physics-based video game that matched their vision and expectations.

1.3.2 External Stakeholders
Since a stakeholder is any entity, including individuals and companies, that can
affect or get affected by the project in any way, the following external stakeholders
have been identified:

• Game designers: Game designers are in a permanent need of newer, easier
and better ways to design games of every kind. Thus, one of the types of
games they might design is physics-based games. Physics-based games do not
rely on the same amount of resources and supportive tools to be designed like
other types of games.

• Players: Players want a game that makes them feel in a very specific way.
The game needed to be designed so it instantiated the proper aesthetics the
master thesis authors wanted them to experience.

• University of Gothenburg: The university defined the formal requirements
the thesis must fulfill. Moreover, it defines a set of deadlines and deliverables
at the different stages of the master thesis development which had to be met
by the master thesis authors so the thesis is academically successful.

• Examiner (Staffan Björk): The role of the examiners is to ensure that the
master thesis meets all the requirements previously set by the university to
decide its final grade in the end.

• Thesis supervisor (Marco Fratarcangeli): The role of the supervisor is
to guide the students during their master thesis, to make sure that their work
meets all the formal requirements given by the university and checked by the
examiners. Therefore, he added limits to the project in certain situations,
reducing its scope so the thesis could be academically successful.

• Government and law: The developed product had to be compliant with
the pertinent legislation. This included, but it was not limited to copyright
considerations, licensing and publishing.

2

1. Introduction

1.4 Aim
The thesis aims to develop a formal process that guides the design and analysis of
physics-based games, alleviating the challenges described in Sec. 1.1, faced by game
designers when endeavoring for this task.

The work, far from setting a new standard in the game development industry, aspires
to be seen as a new support tool that can be applied by game designers to facilitate
their job in addition to already existing design methods [14,15].

To verify the validity of the previous outcome, the formal process will be applied
to design and analyze a physics-based game. The game will be fully developed to
ensure the quality of the design.

3

1. Introduction

4

2
Background

2.1 Game Design
Before developing any work related to the creation of the formal process to design
and analyze physics-based games, research was conducted on other formal methods
from the game design discipline to study the current state of the art.

2.1.1 MDA: A Formal Approach to Game Design and Game
Research

The MDA framework defined in [15], which stands for Mechanics, Dynamics and
Aesthetics, describes a formal approach to help designers, researchers and scholars
to decompose, understand and create games.

As shown in Sec. 2.1, the MDA framework formalizes the consumption of games and
its unpredictability by breaking them into the following three parts: Rules, Systems
and “Fun”.

Analogously, their three design counterparts are then established:

• Mechanics describes the particular components of the game, at the level of
data representation and algorithms.

• Dynamics describes the run-time behavior of the mechanics acting on player
inputs and each others’ outputs over time.

• Aesthetics describes the desirable emotional responses evoked in the player,
when she interacts with the game system, i.e., what makes a game “fun”.

When developing games, both perspectives can be taken into consideration, both
the player’s and the designer’s. This way of understanding games aims to help to
comprehend how changes in one of the layers can affect the others.

However, the MDA framework does not take into account a deeper level of detail on
the learning process of the player. Furthermore, this formal process does not ensure
the consistency between the interactions that are held within the game environment
and the events occurring during gameplay.

These two issues are important when designing physics-based games and proper
relative gameplay experience. Thus, the need for a new formal process which would

5

2. Background

Figure 2.1: Formalization of the production and consumption of game artifacts.
Source: [15].

take them into account and answer to the research question stated in Sec. 1.2 was
emerging.

2.1.2 Other Methods
Other formal methods, such as [14], were studied but it was concluded that they were
not sufficiently relevant to answer the research question. Therefore, the need for a
new formal process that would take into account the consistency of physics-based
games and how intuitive they should be for the player ultimately emerged.

2.2 Influential works
Video games are continuously influencing one another. They all take inspiration
regarding what made a good game possible as they learn from what it did not quite
work on them too.

Moreover, games are not the only source that they take inspiration from. Movies,
books, music and even the mundane daily life from the world itself are set to study
and observation. All this helps to better understand the surrounding world as well
as the human behavior, helping game designers to better express and transmit their
intentions towards each new game they design and develop.

To achieve a specific set of aesthetics to accomplish what the authors of the thesis
envisioned, other video games, as well as a fair amount of books and movies, were
taken into consideration. These are further explained below.

6

2. Background

2.2.1 Lemmings

Lemmings [16] is a 2D puzzle-solving video game originally developed by DMA
Design for the Amiga in 1991.

In each Lemmings level, the player must lead a group of lemmings from a starting
point towards an exit gate while facing a sort of obstacles within a closed and
manipulable environment. To avoid lemmings perishing from these obstacles or the
environment itself, the player has access to a limited set of tools and actions which
help lemmings to safely reach their goal. A couple of examples of these tools and
actions are an umbrella which you can equip to lemmings, so they can safely land
after a high fall, and making use of their own bare hands to excavate tunnels.

Figure 2.2: Lemmings first level in-game screenshot: A lemming is excavating a
path towards the exit with its own bare hands after the player commanded it.

Source: [17].

An interesting characteristic from Lemmings is that it belongs to the puzzle-solving
genre while presenting 2D graphics. The authors of the thesis found this of interest,
as according to their vision games that mix physics-based interactions with puzzle-
solving mechanics have great potential to produce meaningful gameplay.

Furthermore, Lemmings effectively showcases all the information that must be avail-
able to the player at all times. This way, the challenge of solving each puzzle is the
puzzle itself rather than other secondary factors such as relying on the player’s
memory. This was also in line with the vision of the authors.

Finally, in Lemmings, the animals always move automatically in two possible direc-
tions: left or right. Authors also found value in this feature, because it allows the
player to focus on the puzzle-solving mechanics.

7

2. Background

2.2.2 Limbo
Limbo [18] is a 2D puzzle-solving platformer video game developed by Playdead and
first released for Xbox Live Arcade in July 2010.

In Limbo, the player takes control of a mysterious boy who progresses through an
unsafe, dark and horrific environment full of dangerous and hazardous elements to
search for his sister. The boy faces an unnumbered amount of deathly situations
often given when solving incorrectly one of the game’s puzzles.

One of the best points of Limbo is its unique visual style and its eerie atmosphere
complemented by a sound design commonly found only in horror and thriller movies.
This was precisely the set of strong points that inspired the master thesis authors
to design the aesthetics of their game.

Figure 2.3: Limbo in-game screenshot: The boy is fleeing away from a giant
spider. Source: [19].

2.2.3 Inside
Inside [20] is a 2.5D puzzle-solving platformer adventure video game brought first
to Xbox One in June 2016 by the same developers of Limbo, Playdead.

In Inside, the player takes control of a boy who lives in a dystopian world. Along
the way, the boy solves puzzles while avoiding death.

Following the steps of its predecessor, the art direction of Inside is magnificent to
recreate the dystopian world where the game takes place. Unlike Limbo, Inside
makes use of 3D models but restricting the movement of the character to only one
plane, which leads to the development of a 2.5D side-scrolling game.

The master thesis authors found particularly interesting Inside’s approach of pre-
senting 2.5D graphics. It was concluded that this style provides a good balance
between development effort and design possibilities.

8

2. Background

Figure 2.4: Inside in-game screenshot: The boy is looking at a box located close
to the ceiling. Source: [19].

Figure 2.5: Inside in-game screenshot: The boy is looking at a group of people
walking over the street. Source: [19].

9

2. Background

2.2.4 Nineteen Eighty-Four (1984)
Nineteen Eighty-Four: A Novel, generally published as 1984 is an English novel writ-
ten by Eric Arthur Blair, better known by his pen name, George Orwell, published
in 1949.

Nineteen Eighty-Four: A Novel follows the story of Winston Smith, a skeptic middle-
age man living under a totalitarian government based on the mass surveillance of the
entire population. The figurehead and leader of the party who rules the government
is represented as a person with a mustache known as Big Brother.

Figure 2.6: Shot from 1984 (Nineteen Eighty-Four), the movie adaption of
Nineteen Eighty-Four: A Novel. Source: [21].

The narrative George Orwell builds around a mass surveillance state in a dystopian
world was found of great interest.

2.2.5 Blade Runner
Blade Runner is the science fiction film released in 1982 based on the book Do
Androids Dream of Electric Sheep? written by Philip Kindred Dick.

Blade Runner narrates the story of a retired cop from Los Angeles called Rick
Deckard. In 2019, Los Angeles hosts a cyberpunk and dystopian society where
replicants, human-like androids produced by the Tyrell Corporation to colonize dan-
gerous off-world locations, coexist with the humankind. Rick Deckard was a blade
runner entrusted to track down and eliminate rogue replicants. Suddenly, he needs
to get back to his job to stop a group of replicants who have escaped and headed to
Earth, assassinating many humans on their way.

The futuristic cyberpunk dystopian society is perfectly showcased by the magnificent
look of the film. High contrast between wealth and poverty derived from this kind
of world is found. This contrast is supported by the numerous skyscrapers full of
dotted lighting and the flying vehicles, spinners, navigating between them. On the

10

2. Background

other hand, the streets located at the bottom of the same skyscrapers are full of
humming and rumbling sounds and gloomy lighting as a result of all the neon lights
placed.

Figure 2.7: Skyscrapers from Los Angeles during the night. Source: [22].

Figure 2.8: Streets from Los Angeles during the night. Source: [22].

Figure 2.9: Syd Mead’s Blade Runner concept art. Source: [22].

The master thesis authors concluded that a combination of the aforementioned type
of atmospheres found in Limbo and Inside in combination with Blade Runner ’s
thematic design, could provide the resulting game with a unique visual style.

11

2. Background

12

3
Theory

3.1 Philosophy
As the starting point to develop the envisioned formal process to design and analyze
physics-based games, research was conducted in the field of philosophy, in particular
on the most relevant epistemological currents. From an epistemological perspective,
it was found a correlation between how the real world and physics-based games work.
They both host emerging events according to the laws of physics. Additionally,
the humankind learns through the observation of such events in both scenarios
indistinctly. For example, humans learned about gravity because they were able to
perceive its effects and impact on the surroundings.

The Allegory of the Cave by Plato, part of the Book VII from his Socratic dialogue,
The Republic [23], and the Critique of the Pure Reason by Kant [24] influenced the
thesis work.

3.1.1 The Allegory of the Cave
The Allegory of the Cave is one widely-known allegory which explains the pillars of
Platonism in a simple but profound way. It explains human perception concerning
true knowledge and how to gain it over philosophical reasoning.

In the Allegory of the Cave, Plato describes a cave inhabited by a group of people
who are prisoners since they were born and can only see the walls of the cave.
Behind them, another wall and a corridor they cannot see are located. The corridor
is populated by another group of people who are walking and carrying around a set of
objects. Behind, and hidden to the prisoners, there is also a bonfire enlightening the
corridor and illuminating the wall of the cave the prisoners see. Thus, the prisoners
observe the shadows projected on the wall by the objects the other group of people
carries around.

The projected shadows become the only possible truth for the prisoners. They are
not aware of what is happening out of their understanding. For them, the real world
is limited to those shadows, which in reality are just a small consequence of a greater
whole: a world where light interacts with opaque objects generating shadows.

Fig. 3.1 illustrates how the most important elements from the Allegory of the Cave
relate to one another. This diagram synthesizes the parable to what is relevant for

13

3. Theory

the thesis and its development. In Sec. 6.2.1 how the concepts are related to the
framework is explained.

Figure 3.1: Conceptual representation of the Allegory of the Cave.

3.1.2 Critique of Pure Reason
Critique of Pure Reason, first published in 1781, is the work in which Immanuel Kant
explores the boundaries of metaphysics. In this work, some of the most significant
developed concepts become of great influence in the thesis work. These concepts
and the relations between them are represented in Fig. 3.2.

Figure 3.2: Conceptual representation of the relevant concepts from the Critique
of Pure Reason.

Kant refers to a priori as everything transcendental, i.e., everything related to knowl-
edge previous to the experience, such as time, space and fundamentals of logic. This
kind of knowledge is inherent to the subject and it cannot be used to acquire new
knowledge just by itself.

On the other hand, the knowledge derived from the experience, often providing
novel knowledge to the subject, is known as a posteriori. This knowledge is acquired
and verified through empirical evidence via observations. Nevertheless, a posteriori
knowledge is not universal. It may be false in any case other than the observed.

14

3. Theory

Kant also argues that reality in itself is unknown to subjects. The thing-in-itself,
or noumenon, is inaccessible to them, hence it cannot be perceived by the subjects.
Consequently, the reality can only be perceived through phenomena, which is how
it subjectively appears to them. According to Kant, a better conception of reality
would not be how it is, but how it is perceived by a specific subject. Understanding
reality implies shaping it with the subject’s a priori knowledge.

3.2 Psychology
The research was also conducted in the field of psychology with a strong focus placed
on the foundations of cognition, the reason being that the thesis work intends to take
into consideration the player’s learning process during gameplay. Two close-related
psychological concepts, namely, mental model and double-loop learning, became in-
dispensable when developing the formal process to design and analyze physics-based
games.

3.2.1 Mental Model and Double-Loop Learning
A mental model is a user’s internal and structured representation of a system. It
is originated or modified from the interaction between the user and external events
which help to guide the user’s actions and to interpret the system’s behavior. [25–28].

When users address a specific goal, the mental model might need to be modified
to gain a reactive and deep understanding of their surroundings to accomplish such
goal. This modification relies upon the user’s individual experience (reflexive think-
ing). This cognitive process is known as double-loop learning [29].

In Fig. 3.3, double-loop learning is illustrated by representing a user observing
its surroundings while gathering information. This information is then used to
update their mental model, i.e., their interpretation of the real world. All the other
elements show all the information being processed by the user, ultimately used to
make decisions and accomplish goals that may have an impact on the world.

15

3. Theory

Figure 3.3: Conceptual representation of double-loop learning. Adapted
from [30].

16

4
Methodology

4.1 Agile Development Methodology

The development methodology employed to develop the work of the thesis was highly
based on Scrum, an agile software development framework.

Agile software development comprises a set of principles, practices and method-
ologies that guide software development processes. These are based on having an
iterative development process, in which there are no big upfront requirements nor
software architecture. Instead, a continuous evolution process is held. This kind of
development is performed in dedicated, small, cross-functional teams selecting work,
from one prioritized backlog, which gets tested regularly [31].

The compendium of ideas that Agile manifests is applied by several other method-
ologies, such as Scrum. In Scrum, every task is organized in a prioritized backlog
and completed during the Sprints. Sprints are time-boxed iterations in which a set
of tasks directly selected from the backlog are meant to be completed by the end of
each iteration. Fig. 4.1 illustrates the workflow on Scrum projects, such as the one
carried out in this thesis [31].

Before the beginning of each Sprint, estimation on the temporal cost of each task
must be performed. These estimations aid the planning of which tasks should be
included in each Sprint. Nonetheless, Sprints must be relatively short, usually no
more than a month, so the execution process does not deviate from the plan over
long periods.

Another key element from Scrum are the meetings. In particular, there are three
different types of meetings: daily Scrum meetings, Sprint reviews and Sprint retro-
spectives. The purpose of daily meetings is to coordinate the team for the next 24
hours and detect any potential problems that might compromise the Sprint. Sprint
reviews consist on discussing the results of each Sprint at the end of them. Sprint
retrospectives take place after the Sprint reviews and their objective is to analyze
what was correctly and incorrectly done during the duration of the Sprint and how
to improve the development process based on these observations.

17

4. Methodology

Figure 4.1: Scrum workflow. Source: [32].

4.1.1 Applied Principles, Practices and Methods

No Big Upfront Decisions

Having an iterative process with no big upfront requirements was the core of the
whole process. The initial requirements consisted solely on creating a physics-based
game in which a character could use electricity, water and fire. These requirements
would then be further refined in an iterative process in which intermediate prototypes
of the game were created, modified and polished until a satisfactory result was
achieved.

To compensate for the lack of an initially defined software architecture of the video
game, refactoring was essential in its development.

Meetings

Concerning the meetings carried out by the master thesis authors, these did not
take place according to a fixed regular schedule. The small team size was one of the
reasons behind this decision. This condition made possible the use of more informal
channels to continuously exchange information on the current status of the project
that ultimately made meetings less necessary. Nonetheless, when it was required to
have complex discussions or take intricate decisions, meetings took place.

In addition to the meetings between the master thesis authors, periodic meetings
were held between the two and the master thesis supervisor to discuss even more
complex decisions and set the scope of the master thesis.

18

4. Methodology

Prioritized Backlog

About team and tasks organization, a prioritized backlog was used. In particular,
ZenHub [33] was the tool used for this purpose. ZenHub is an agile project manage-
ment GitHub [34] plugin that provides a way to organize issues into tasks, sorted in
different categories. Fig. 4.2 shows one screenshot from the ZenHub backlog of the
project.

Figure 4.2: Project’s backlog.

As can be seen, there is a formal structure that helps to organize and keep track
of all the status of the tasks. In particular, all the tasks are organized in specific
categories and are defined according to a given structure.

The categories are:

• Icebox: This category contains tasks that are currently not part of the scope
of the project but might be in the future. If at any point given the team
considers that a task placed in this category is worth implementing, it is then
moved to the backlog category.

• Backlog: This category contains all the tasks that are currently part of the
scope of the project, meaning that it is planned that they are implemented.
These tasks are sorted by priority, i.e., the task in the top must be implemented
first, then one below it, and so forth. When a task from this category starts
to be developed by the team, it is moved to the in progress category.

• In Progress: This category contains all the tasks that the team has started
to develop but are not finished yet. When a task is finished, it is moved to the
Review/QA category.

• Review/QA: This category contains all the tasks that are finalized, but are
still pending from verification by both team members as well as deeper test-
ing. When both team members agree that the task has been accomplished as

19

4. Methodology

expected both in terms of functionality and quality, it is then moved to the
done category.

• Done: This category contains all the tasks that have been completely devel-
oped, including verification and testing.

The fields that form each task are:

• Name: A brief name that helps to quickly identify the task.

• Description: One or more paragraphs that provide detailed information on
what the task consists. This field may contain a list of subtasks that must be
completed in order to carry out the task in question.

• Assignees: A list of the members of the project that are responsible for
developing the task. To decide to whom each task is assigned, both members
of the project discuss and reach an agreement based on various factors, such
as their current workload, their level of specialization for the task, etc.

• Labels: A list of one or more specific tags that help to identify the nature
of the task. The tags are: animations, game design, level design, narrative
design, paper, programming, project management, report, social media and
sound design.

As an example, Fig. 4.3 shows one of the many tasks present in the project’s ZenHub
with all the previously explained fields filled.

Project Diary

As it is described in [35], it is very beneficial to write a brief diary or journal of
every project. The intention behind this document is not to write something worth
reading for, but rather to note every significant piece of information, event and all
the problems and solutions that are coming along the life cycle of the project. As
the diary keeps being filled with project specifications, meetings’ minutes and other
types of relevant information, this document becomes a valuable item both for the
present and the future of the project as it progresses.

Keeping diaries from previous projects can also help on how to approach upcoming
ones. Storing information about past mistakes and how the writer of the diary
tried to solve them, regardless of their success, is a very relevant lesson to take into
account when heading towards the development of new projects.

Nowadays, project diaries can be stored online so multiple project managers can have
immediate access to them to write new chunks of information or make modifications
on the go. This greatly improves the usage speed of this methodology overall.

In the case of this master thesis, a Google Docs document was created and shared
with all the master thesis authors and the supervisor in Google Drive at the be-
ginning of the project. Therefore, the diary was available to everyone at all times
during the whole life cycle of the master thesis.

20

4. Methodology

Figure 4.3: One of the tasks present in the project’s ZenHub.

21

4. Methodology

Figure 4.4: First page out of thirty-eight of the master thesis’ project diary.

22

4. Methodology

Embrace the Change

In the second principle1 in the Agile Manifesto [37], embracing all change is pro-
moted.

Embracing the change is indispensable within every project regardless of its nature.
Many developers might get personally attached to their work during the project.
An example of this applied to game development is found in level design. Level
designers often spend a lot of time designing new levels and new ways of playing
the game. Therefore, when a level needs to be discarded for any reason being, if
the level designer is not able to accept the change and embrace it, it can lead to a
situation where they start defending that the level is necessary when it might be
not. This kind of troubles often means a loss of resources either in terms of money
or time.

Continuous Refactoring

It is understood by refactoring [31] as the technical process which examines the
current design or implementation of units of the software to improve it without
altering its output.

The objective behind this practice is to improve the consistency of the units while
maintaining a clean design and adjusting the code to any applicable coding stan-
dards, further explained in Sec. 4.1.1.

In the game developed throughout the thesis, a lot of code was continuously added
to the game which was naturally and progressively growing messier. If the technical
process of refactoring was not periodically applied to such code, eventually it would
have meant a big loss of time given the situation.

Pair Programming

Pair programming [31] is a technical practice in which code is systematically devel-
oped by two programmers, often closely involved in the work, sharing and using only
one workstation. The first one of them takes control of the keyboard and mouse
while thinking aloud every single decision taken. On the other hand, the second
person stays next to the first one commenting, criticizing and making suggestions
on the work the first one is carrying out.

As this practice is a peer process, the co-workers should reverse roles regularly.

The goal behind this practice is to force the person using the workstation to explain
their thinking aloud to the second one, often both realizing right away about the
mistakes they might be making. This way, mistakes usually hindered by overlooking,
are easier to detect.

In the master thesis, the amount of time was very limited. Therefore pair program-
ming was a crucial practice to minimize the loss of time searching for small mistakes

1Welcome changing requirements, even late in development. Agile processes harness change for
the customer’s competitive advantage [36].

23

4. Methodology

and solving them.

Coding Standards

It is understood by coding standards [31] as the defined style rules that agile teams
should apply to all the code they produce to keep a general consistency over all the
units of the software.

Coding standards are defined and shared with all the development teams early in
the development of the project so the aforementioned consistency is kept from the
very early stages of the project’s development.

Although this master thesis was not a very large project in terms of software, defin-
ing early coding standards helped to quickly understand the different units of the
software regardless of who had developed them.

Shared Code Ownership

In many development groups, each of the units of the software usually belongs to
an individual, often their creator, meaning that they are the people in charge of the
units. In other words, they need to personally take part in every single decision
regarding such units, leading to slower decision making.

Agile methods are instead supporting shared code ownership [31]. In development
groups in which shared code ownership is supported, the whole development team is
responsible for all of the code. This way, the dependence on individuals is removed,
and team members grow a more personal approach towards the code. Moreover, this
all translates to the possibility of making new changes into the units of the software,
even if they will affect several parts of the system, without consulting every single
decision beforehand.

In this master thesis, the usage of GitFlow as described in Sec. 4.1.2 was of great
aid towards the implementation of shared code ownership within the project.

4.1.2 Version Control Methodology: GitFlow
Version control is a crucial aspect of software development. Version control tools,
such as Git [38], allow keeping an organized database of all the early, intermediate
and final versions of any software.

GitFlow [39] is a branching model that aims to organize software development and
coordinate teamwork.

In GitFlow, there are two main branches:

• master: The main branch into which any version committed must be ready
for production.

• develop: All the intermediate versions created between each production ver-
sions are committed to this branch.

24

4. Methodology

The workflow consists on working on the develop branch, committing intermedi-
ate versions until a production version is achieved. Then, develop is merged into
master, thus finalizing the process required to create a new production version.

Furthermore, there are also three different types of auxiliary branches:

• feature: This type of branches always originates from and is merged into
develop. They are used to develop new features of the software, that, when
finalized, are incorporated into develop.

• release: This type of branches originate from develop and are merged both
into develop and master. The purpose of these branches is to perform small
changes and adjustments required in a production version before releasing it.
It is after merging a branch of this type into master that the production
version is ready to be distributed.

• hotfix: This type of branches originate from master and are merged both
into master and develop. The purpose of these branches is to fix bugs in
production versions. They are created from a version present in master. Then,
the required fixes are committed to the hotfix branch. Finally, the changes
are incorporated both to master and develop. Thus, a new production version
with the problem fixed is immediately created, while also the fix is kept for
future versions.

In order to keep the repository organized and being able to quickly identify to which
category a particular branch belongs, it is important to follow a specific naming
convention that solves this issue. A commonly used approach is naming feature
branches starting with feature/, release branches starting with release/ and hotfix
branches starting with hotfix/.

In order to ensure that the GitFlow branching model was followed, the management
of the branches was not performed manually, but instead using a Git client with
integrated GitFlow functionality, namely GitKraken [40].

4.2 Prototyping

4.2.1 Brainstorming
Brainstorming [12] is a formalized ideation process carried out within focus groups2

to generate a great number of ideas early on the life-cycle of any project. This
process has several purposes such as propose solutions to solve problems or propose
new ways of working within the project.

Although brainstorming is a good technique to generate a big number of ideas, it
is important to keep in mind that many of these ideas are not strong enough to be
taken any further by themselves, as they have no more foundation other than the
one inherent to the person who proposed them,

2In the game industry, focus groups are formed by a group of people who gathers to generate
ideas for a game [12].

25

4. Methodology

Instead, these ideas work as the basis of more complex ideas that need to be devel-
oped further in posterior phases of the project so they can become relevant to its
success.

During the first days of the thesis development, rounds of brainstorming were always
being held by the master thesis authors to understand the possibilities it could offer.

4.2.2 Paper Prototype
A paper prototype [12] is a quick draft made by using two of the most simple, yet
powerful tools found when prototyping: pen and paper.

Unlike prototyping with other types of media, such as digital, paper prototypes are
faster to set up than creating digital projects on a computer.

Therefore, in a short amount of time, a materialization of a design is brought to life
from the head of the designer right to the surface of a paper which everyone can
comment, criticize and make suggestions on.

In the developed game, paper prototypes were drawn regarding the whole level
design, narrative design, but also, game design. This way, the master thesis authors
could put form to their thoughts to show each other the intentions behind each of
them in a simple and illustrative way.

4.3 Play-First Game Design
There are several valid ways to approach developing games from a design perspective.

A group of narrative designers can come up with a great story the development team
wants to make real. Maybe all the team wants to design a new game featuring a
specific aesthetic they want players to feel.

Far from these two examples, the play-first methodology is found [41].

The idea behind putting play first is to come up with a new, interesting way of
playing. When the development team is focusing on designing and developing the
core of the new game, this novel way of playing, everything else becomes irrelevant
at this early stage of the development. All the resources are then invested in the
creation of the perfect gameplay built around the aforementioned new way of playing.

Only once this new way of playing has been completely designed and developed
and it is perfect according to the team’s expectations, creativity and ambition, it
is time to take another step: design and develop all the other parts of the game.
However, the team needs to remember that everything else needs to be designed
and developed with the idea of supporting the new way of playing behind. This will
include, but it is not limited to, the game’s narrative design, level design and sound
design.

This whole method is underlined by the function principle, in which how all the
game looks like is determined by how does it work, and not the other way round.

26

4. Methodology

Nowadays, one of the companies that makes the most out of this methodology is
Nintendo [42]. They only do develop games once they find an interesting and unique
new way of playing, making a new video game around it.

In the developed game, every time new aspects of the games were about to be
designed, they were implemented within a sandbox environment first. Here, they
would be tested and polished until they met a specific set of quality standards. Only
after that, they would be included in the game.

4.4 A. Cooper Principles
About Face: The Essentials of Interaction Design by A. Cooper [43] is one of the
most recognized books in the field of interaction design. Game design is not so
distinct from interaction design in terms of concepts and methods that can be applied
in its development process. Therefore, some of the principles stated by Cooper can
be applied directly or with some variations when performing game and level design
tasks. The following subsections cover the most relevant of these principles used
throughout the thesis development.

4.4.1 Pliancy and Hinting
Cooper uses the term pliant to refer to objects or screen areas that react to input
that the user can manipulate. A common example of this is a button that can
be clicked. Cooper stresses the importance of visually communicating pliancy, or
equivalently, to provide pliancy hinting. The idea he defends is that those objects or
screen areas that react to input, should visually communicate that they do so and
how they do so. This communication can be performed in four different ways:

• Static hinting: When the object’s pliancy is communicated by the static
rendering of the object itself.

• Dynamic hinting: When the cursor passes over a pliant object, the object
temporarily changes its appearance.

• Pliant response hinting: When the mouse is clicked but not released, the
object shows that it is poised to undergo a state change.

• Cursor hinting: When the cursor’s appearance changes as it passes over the
object.

This principle greatly influenced the level design process. Authors applied it by
making the level’s elements visually communicate their purpose and whether they
are interactive. Furthermore, a more direct application of this principle was carried
out when designing the menus of the game.

4.4.2 Modeless Feedback
In the context of interaction and game design, feedback is referred to as the infor-
mation given by the system to the user in relation to its state. Modeless feedback

27

4. Methodology

is a sub-type of feedback characterized by being built-in into the structure of the
interface, not interrupting the flow of activities when presented.

This principle influenced both the game and level design process. In particular,
authors designed the game so that feedback is presented organically by the level
elements themselves, instead of through an HUD3 interface layered on top.

4.4.3 Internal Coherence
An interactive product is said to possess internal coherence if all its parts behave
consistently, providing the feeling of a unified whole. Designers must strive for
coherence both in terms of visual appearance as well as in the means of interaction
and its consequences. This means that not only the product should have a consistent
visual identity, but also its components should react to the user in a consistent,
predictable way.

This principle influenced the graphics and level design of the resulting video game. In
particular, the creation of a strong visual identity that could be displayed throughout
the whole game with no inconsistencies was one of the greatest challenges of the
master thesis. The elements placed throughout the levels, when interactive, always
look the same and react in the same way to the user’s input. Nonetheless, the
achievement of this consistency was not a trivial task. Ultimately, a framework and
a formal method to ensure this consistency became a primal need.

3Heads-up display

28

5
Planning

5.1 Initial Planning
At the beginning of the master thesis, a planning report was written to set the initial
scope of the project and elaborate an initial plan on how to develop it in the time
given. However, as the development process progressed, the initial plan suffered
many changes.

This section describes how was the initial planning as described in the aforemen-
tioned planning report.

5.1.1 Planned Result
In this subsection, a brief overview of the results expected to be obtained by the
end of the master thesis is given.

These are the expected results sorted by relevance and preference:

• Develop, or at least settle, the bases for a set of guidelines or an informative
wiki providing specific information on how to design and implement physics-
based interactions, as well as how these interactions affect to and behave with
their surroundings.

• Develop a physics-based video game:

– which helps to initiate an approach to the research problem described in
Sec. 1.1, aiming to provide an answer to the research question set out in
Sec. 1.2 via the scientific method.

– in which the master thesis authors can break the bounds of their creativ-
ity, applying all the knowledge acquired during the whole Game Design
& Technology Master’s Programme and honing their game development
skills while learning new of them.

– which helps to the master thesis authors to increase the extension and
quality of their professional portfolio. Therefore, it contributes to boost
their chances to get into the game industry or continue their education
following doctoral studies once they have completed the master’s pro-
gramme.

29

5. Planning

5.1.2 Time Plan
In order to elaborate an initial time plan supporting the planning of the master
thesis, a Gantt chart1 was created [44].

The Gantt chart in Fig. 5.1 represents the initial time plan for the master thesis.
Note that the chart was intentionally not detailed, since the scope of the video game
was not defined at that moment and, as such, it was impossible to predict which
low-level tasks would be necessary by that stage of the development. Also, note that
all the dates of the tasks were just early approximations as well.

Figure 5.1: Initial Gantt chart.

The process was divided into three stages: initiation, development and finalization.

5.1.2.1 Initiation

In the initiation stage, which lasts for three weeks, there is no development of the
final product per se. Instead, research is the primary focus. In particular, research
of relevant games, and also research related to the software and platforms that are
used, such as game engines.

5.1.2.2 Development

In the development stage, the development work is performed. This stage is the
longest one, starting right after the initiation stage is finished, and finishing ap-
proximately three weeks before the project ends. In this stage, the tasks that are
tackled are game design, level design, narrative design, implementation and testing.
As can be seen, most of the time these five tasks are performed in parallel, since
they provide constant feedback to each other.

Furthermore, this stage includes one section called potential extensions. As the
name of the section implies, it was created to contain tasks only tackled if there is
enough time to do so, such as settling the bases for the wiki.

The task settling the bases for the wiki means to define its structure and introduce
a list of elements it should contain, without elaborating each of them individually.

1A Gantt chart illustrates activities displayed against time.

30

5. Planning

5.1.2.3 Finalization

In the finalization stage, the report and the presentation are prepared. In these final
weeks, writing the report is the primary focus of the team. After it is finished, the
presentation is elaborated.

5.2 Final Planning
After approximately three weeks since the work started, the authors figured out
that to make the most out of the project, some of the planned results needed to be
changed. At this stage, this adjustment did not pose any major challenges, since
the first three weeks were spent on research that was still relevant.

5.2.1 Planned Result
These are the expected results to obtain at the end of the thesis, sorted by relevance
and preference:

• Develop a game design framework that aids the design and analysis of physics-
based games. Submit this work to a relevant conference to obtain objective
feedback from experts on the field and potentially have a published article.

• Develop a physics-based video game for the reasons explained in Sec. 5.1.1
and to apply the framework.

5.2.2 Time Plan
The Gantt chart in Fig. 5.2 represents the updated time plan for the thesis. This
chart is not detailed since it represents a plan developed on an early stage, right
after deciding to vary the planned result from Sec. 5.1.1. Consequently, the stated
dates are just approximations. Small divergences are to be expected when carrying
out each of the tasks.

Figure 5.2: Final Gantt chart.

31

5. Planning

Alike in Sec. 5.1.2, the process is divided into three main stages: initiation, devel-
opment and finalization. Due to the change in the planned result, the development
stage is significantly affected. However, the initiation and finalization stages remain
as they were.

5.2.2.1 Initiation

Research in the fields of game design, philosophy and psychology is conducted. The
outcome of the research is presented in Sec. 2, Sec. 3 and Sec. 4.

5.2.2.2 Development

As for the changes in the development stage, the most notable one is the creation
of two sections: framework and game.

The framework section covers all the tasks related to the development of the formal
process to design and analyze physics-based games, including the paper writing and
its submission to a suitable conference within the duration of the master thesis.

The game section covers all the tasks required to develop a game using the frame-
work. A new task, prototyping has been included. Its purpose its to cover all the
preliminary steps for the development of the game, such as paper prototyping.

It is relevant to point out that the game development does not start until the frame-
work is designed. This is intentional since the framework is applied when developing
the game. However, both the paper writing and game development will be carried
out in parallel, since at this stage no major changes in the framework are to be
expected.

Another difference with respect to the initial planning (Sec. 5.1), is the fact that
the time invested in developing the game has been considerably reduced from 65
days to 40 days. This decision was taken to obtain time to develop the framework,
consequently reducing the scope and importance of the game itself. In the new plan,
the game becomes an artifact to showcase the practical application of the framework
instead of the main outcome of the thesis.

To conclude, this development process is presented in great practical detail in Sec.
6 where the whole process is divided into 7 different phases:

• Phase 1: Prototyping: The first prototype of Under Surveillance is made.

• Phase 2: The PEP Framework development: The framework and its
correspondent paper are designed, written and submitted.

• Phase 3: Design of Under Surveillance: The framework is applied to
design the game.

• Phase 4: First version of Under Surveillance: The first version of the
game is developed.

• Phase 5: Second version of Under Surveillance: The second version of
the game is developed.

32

5. Planning

• Phase 6: Final version of Under Surveillance: The third and final version
of the game is developed.

• Phase 7: Analysis: The framework is applied to analyze Angry Birds and
the thesis game.

5.2.2.3 Finalization

All the results are collected from both the framework and the developed game in
Sec. 7. Next, the limitations, challenges and ethical considerations are explored and
discussed in Sec. 8. Lastly, the conclusion of the master thesis as well as further
work are presented in Sec. 9.

To finalize, the master thesis report is written the final presentation is prepared and
presented.

5.2.3 External Resources
To develop the thesis, many external resources not created by the authors were used.
These can be classified as software tools and assets.

5.2.3.1 Software Tools

The following tools have been used:

• Adobe XD: Adobe XD [45] is a user interface (UI) prototyping tool created
by Adobe Inc.. This software was used to create high-fidelity prototypes of the
menus of the video game. Among other similar alternatives, Adobe XD was
chosen due to the familiarity authors had with this tool.

• GitKraken: GitKraken [40] is a Git [38] client created by Axosoft. It provides
a user-friendly interface to operate the version control tool Git. GitKraken
helped the authors to make the most out of the features of Git without having
to learn its complex command-based interface. This tool was chosen because
authors were familiar with it.

• Microsoft Project: Microsoft Project [46] is a tool developed by Microsoft
that allows the creation of Gantt charts among other features. It was the
chosen tool to create Gantt charts because authors were familiar with it.

• Mixamo: Mixamo [47] is a web service created by Adobe Inc. that provides
downloads for rigged characters and animations. This tool was used because it
allows to download any of the animations they provide, baked for any custom
3D modeled rigged character that the user uploads. This means that the au-
thors can apply all the animations provided by this service to all the characters
they included in the game.

• Overleaf : Overleaf [48] is a web application that allows collaborative creation
and edition of LaTeX documents. Since both authors are involved in writing
all the documents required for the thesis, using a collaborative tool was re-
quired. Moreover, the authors decided that LaTeX was the most appropriate

33

5. Planning

underlying software to write these documents, because of its widespread us-
age in the scientific community. Overleaf was consequently chosen not only
because it meets all these conditions, but also because authors were familiar
with its usage.

• Unity: Unity [49] is a cross-platform game engine developed by Unity Tech-
nologies. In order to meet the deadlines of the thesis while keeping the quality
of the delivered work up to the authors’ standards, it was decided to use a
game engine to support the development of the game. After exploring alterna-
tives such as Unreal Engine [50] or Godot [51], Unity became the chosen tool.
The reason behind this decision is that it was determined that Unity provides
all the functionality required to develop the envisioned game, while also being
the game engine the authors were more familiar with.

5.2.3.2 Assets

Since the authors’ skill set does not include all the relevant areas from game devel-
opment, many external assets needed to be acquired. The assets, obtained via the
Unity Asset Store, are:

• Aura - Volumetric Lighting: It simulates the scattering of the light in the
environment and the illumination of micro-particles that are present in it but
invisible to the eye or camera. This effect is also called volumetric fog [52].

• Polygon Arsenal: A low-poly bundle of roughly 550 particle systems [53].

• Polygon - Sci-Fi City Pack: A low-poly asset pack of characters, props,
weapons, vehicles and environment assets to create Sci-Fi themed polygonal
style games [54].

• Polygon - Sci-Fi Space Pack: A low-poly asset pack of space ships, char-
acters, props, weapons, sound effects and environment assets to create Sci-Fi
themed polygonal style games [55].

• Retro Future Music Pack: It contains 20 high-quality music tracks in-
cluding loop versions of each track, suitable for retrowave, synthwave and
cyberpunk atmospheres [56].

• Sci-Fi Sound Pack: 720 high-quality sound effects for Sci-Fi projects [57].

• Water 2D Tool: A tool conferring the ability to animate water [58].

5.2.3.3 Other Resources

Besides all the aforementioned resources, authors also employed other small, royalty-
free assets they obtained. This was the case of theGood Times [59] font family, which
is used in the user interface of the game. Furthermore, when the authors needed to
have an icon, the FlatIcons [60] digital library was used since it provides royalty-free
icons.

34

6
Execution

6.1 Phase 1: Prototyping

6.1.1 Game Design

At the beginning of the execution process, the first sessions of brainstorming were
set up to find a new interesting way of playing worth developing for. As part of
these sessions, several discussions were held but only one stood among them all.

In video games, players always need to perform interactions with the game world
or the environment to progress further. They often perform many actions such as
opening doors, shooting enemies or carrying objects around. In fact, performing
these interactions and observing their outcomes is what makes video games special
compared to other kinds of media. Nevertheless, rare is the case in which players
can interact with every single element they might find in the environment. Usually,
only physics-based games let the player interact with all the game world.

Based on these reflections, it was decided to develop a physics-based video game
in which players would be able to interact with every single element placed in the
game world and getting appropriate feedback from such interactions.

Therefore, the idea of letting the player cast and manipulate several natural ele-
ments, such as fire and water, was born in the form of the paper prototype found in
Fig. 6.1.

In Fig. 6.1, in the first column, it is found the natural element the player would cast.
In the second column, the environment element in which the spell would be thrown.
From the third column onward, the result between the interaction of the natural
element casting and the environment on which it is cast is found. For example, if
fire is thrown onto ice, water would be produced. If more fire is thrown onto the
resultant water, wind or smoke would be produced until there is no trace from the
aforementioned ice.

Furthermore, as can be observed in Fig. 6.2, natural elements would be divided into
two different categories: spells the player could cast and natural elements restricted
only to the environment.

35

6. Execution

Figure 6.1: Paper prototype of the natural elements and the interactions between
them.

Figure 6.2: Paper prototype of the categories of the natural elements.

36

6. Execution

6.1.2 Narrative Design
Once the core of the upcoming video game was prototyped as described in the
previous section, a narrative was then built upon that.

After a new brainstorming session, many possible settings to host the aforementioned
design were proposed but only three thematics were pushed forward: Medieval,
Nordic, and Cyberpunk. Together with these three settings, a list of early possible
names was also given as it is shown in Fig. 6.3. However, none of these names would
make it to the end.

Figure 6.3: Settings and names to support the game design.

Right after this, the three thematics were developed a step further and three short
narratives were written. They are presented in Fig. 6.4 and Fig. 6.5.

Together with the short narratives, the names the natural elements would have
according to each narrative were listed in Fig. 6.6.

After careful consideration by the master thesis authors, it was decided to discard
the Medieval and Nordic narratives and develop more in detail the Cyberpunk one.
The reason behind this choice was made according to the fact that the authors
thought that there are quite more medieval and nordic video games than cyberpunk
ones. Moreover, they found more appealing the idea of making a cyberpunk video
game.

Once the discard was made, the Cyberpunk narrative was taken further, always
keeping in mind the new way of playing and how the narrative should support it.

37

6. Execution

Figure 6.4: Medieval and Nordic short narratives.

Figure 6.5: Cyberpunk short narrative.

38

6. Execution

Figure 6.6: Natural elements in Medieval, Nordic and Cyberpunk narratives.

From this moment on, research on several games, books and movies, as described in
Sec. 2.2, was performed before keep developing the Cyberpunk narrative. After the
research was over, the name of Under Surveillance was assigned to the video game
under development.

Fig. 6.7, Fig. 6.8 and Fig. 6.9 show how the narrative was evolving throughout
several iterations. However, it was always kept in mind the design from Sec. 6.1.1
and how to support it through this narrative.

Figure 6.7: Cyberpunk narrative developed further in detail.

39

6. Execution

(a) Game characters. (b) Most relevant game narrative
elements explained.

Figure 6.8: Game characters and most relevant game narrative elements
explained.

40

6. Execution

Figure 6.9: Cinematic prologue script.

41

6. Execution

6.1.3 Level Design
Once the narrative design of Under Surveillance was defined, the next step was to
initiate the level design.

Subsequently, developing Under Surveillance as a 2.5D physics-based puzzle adven-
ture video game was decided. It was chosen to make the game in 2.5D as it is easier
to develop than a fully 3D game. Furthermore, puzzle-solving video games rely
more than the usual on players’ interactions, consequently supporting the design
described in Sec. 6.1.1.

Therefore, a couple of paper prototypes regarding how the first level of Under
Surveillance should be were made. This is illustrated in Fig. 6.10 and Fig. 6.11.

Figure 6.10: The player takes control of the game and helps the robot to escape
from the jail they are confided to by throwing electricity to the control panel of the

cell.

6.1.4 Post-Mortem
Once the phase of prototyping was over, the master thesis authors realized that
the game design was far from perfect. Despite, the importance of the interactions
between the player and the environment and the resultant effects from those, they
were never taken into account in the design as they should have. This was a big
challenge yet to be confronted to answer the research question from Sec. 1.2.

At this point it was decided to freeze the development of Under Surveillance and
continue with the development of a formal process or framework aiming to ease the
task of designing a video game of these characteristics. The drafts from Fig. 6.12
were the first steps made in the urge of this need, which eventually became the PEP
Framework as defined in the next section.

42

6. Execution

Figure 6.11: The player helps the robot to escape from the jail they are confined
to.

(a) Main components. (b) Secondary components.

Figure 6.12: Drafts regarding the main and secondary components of the PEP
framework.

43

6. Execution

6.2 Phase 2: The PEP Framework development
The PEP framework (standing for Player, Environment and Physics) is a formal
method that guides the design and analysis of physics-based games1. It ensures
consistency while making intuitive to the player the emerging behaviors that are the
consequence of these game’s physics.

According to the PEP framework, physics-based games can be broken into three
main components and three secondary components born from the interactions be-
tween the former. In Fig. 6.13 it is illustrated how all these components relate to
each other.

Figure 6.13: The PEP framework architecture.

The three main components are:

• Physics: Set of rules governing the environment.

• Environment: Materialization of the current game state [10].

• Player: External user who interacts with the environment.

The three secondary components are:

• Mechanics: Methods invoked by the player, designed for interaction with the
environment [61].

• Phenomena: Observable events or occurrences manifested in the environ-
ment, consequence of the physics.

• Deductions: Player ’s knowledge gain regarding how the physics work derived
from observed phenomena.

1This includes, but it is not restricted to, board games and video games, i.e., games featuring
real physics or simulated physics.

44

6. Execution

6.2.1 The PEP Framework in Detail
Along this section, it is described each of the PEP framework main and secondary
components in further detail. At the same time, explicit relations between these
concepts and the ones previously described in Sec. 2.1 are established.

Figure 6.14: The PEP framework architecture in detail. Related Plato’s (*),
Kant’s (†) and mental model and double-loop learning (‡) concepts are shown.

6.2.1.1 Physics

Physics are the set of rules governing the environment of physics-based games. This
includes, but it is not limited to, Newton’s laws of motion, thermodynamics’ laws
and the electromagnetic force.

Nevertheless, there are video games featuring physics not present in the real world,
leading to unique behaviors existent only in these games. A clear example of this
is found in The Legend of Zelda: Breath of the Wild [62] and Link’s Stasis Rune.
Link can use it to temporarily freeze objects in time, storing potential energy while
the effect lasts. When the effect is over, all the corresponding kinetic energy is then
liberated.

In relation to the Allegory of the Cave, the bonfire is equivalent to the physics.
Given the fact that prisoners cannot see the bonfire, the interpretations they make
regarding how the shadows are originated are potentially wrong. Likewise, the
physics remain hidden to the player who can only interpret how they work by
observing the environment and the emerging phenomena. The physics are the reason
why phenomena emerge in the environment like the bonfire is the reason behind how
the shadows are projected on the wall.

In Kant’s philosophy, the noumenon, or thing-in-itself, is equivalent to the physics.
The noumenon cannot be perceived by the subject as the physics cannot be directly

45

6. Execution

observed by the player. In despite of this, the physics govern the environment, hence
they are the noumenon which instantiates the phenomena.

6.2.1.2 Environment

The environment is the materialization of the current game state. It is considered
as the whole game world including all the game objects, characters and even the
player ’s avatar2. Given the physics-based video game, Angry Birds [63] as an exam-
ple, later renamed as Angry Birds Classic, the environment includes all birds, pigs,
the slingshot, wooden planks, glass blocks, etc.

In the Allegory of the Cave, the walls correspond to the environment. In these
observable walls, the shadows remain visible to all the prisoners. Analogously, in
the PEP framework, the environment hosting emerging phenomena is observable by
the player during gameplay.

Furthermore, the real world of the double-loop learning model is equivalent to the
environment as they are both observable elements in which feedback and phenomena
emerge, respectively.

6.2.1.3 Player

The player is an external user to the game who interacts with it via the use of game
mechanics.

In the Allegory of the Cave, the prisoners and the player are correlative. The
prisoners can only perceive the projected shadows while the bonfire and the people
carrying the objects are not visible to them. Correspondingly, the player can only
perceive the emergent phenomena in the environment while the physics remain
hidden to them.

In relation to Kant’s philosophy, the subject is equivalent to the player, who per-
ceives phenomena and gathers empirical evidence. From this evidence, a posteriori
knowledge, in form of deductions on how the physics work, is built.

The player ’s a posteriori knowledge modifies and improves their mental model of the
physics and how they work. This mental model is supported by the player ’s a priori
knowledge too. From a Kantian perspective, a priori knowledge is not derived from
any experience in the real world. Similarly, from the PEP framework perspective,
the player ’s a priori knowledge is not derived from any experience within the game,
but it can be derived from any external experiences to the game itself, such as the
ones lived in the real world or while playing other games. How gravity works in the
real world is an example of player ’s a priori knowledge. The player makes good use
of this knowledge to shape an early mental model of how gravity might work in the
game. Eventually, the gameplay makes the player to compare how gravity works
both in the real world and in the game, leading to a posteriori knowledge and a
more accurate mental model of how it behaves in the latter.

2Player ’s representation in the environment.

46

6. Execution

6.2.1.4 Mechanics

The mechanics are methods invoked by the player to interact with the game. These
interactions can only be carried out within the environment. Moreover, the envi-
ronment and, equivalently, the game state may change by performing mechanics.

6.2.1.5 Phenomena

The phenomena are observable events or occurrences which manifest in the environ-
ment as a direct consequence of the game’s physics. These visible manifestations
are perceived by the player.

In physics-based games, falling objects due to gravity, burning objects due to fire and
the laws of thermodynamics and the propagation of electricity in conductive materi-
als due to the fundamental laws of electricity are common examples of phenomena.
Only the designers’ creativity set the limits of the different kinds of phenomena in
this type of games.

As it has already been stated, the physics remain hidden to the player while the
phenomena is the only visible manifestation of them. Therefore, the player can
only understand to some extent how the physics work by carefully observing these
phenomena in the game.

Regarding the Allegory of the Cave, the shadows projected on the wall are equivalent
to the phenomena. These shadows are a visible manifestation consequence of the
bonfire in conjunction with the group of people carrying objects around. When the
prisoners perceive these shadows, the only observable event they can interpret, they
try to understand the rules of the world they inhabit. Likewise, the physics governing
the environment can only be understood via the phenomena players observe.

Concerning Kant’s philosophy, the definition Kant gives about phenomena is anal-
ogous to how it is defined in the PEP framework. Kant’s phenomena emerge from
the noumenon or thing-in-itself constituting observable events in the same way the
PEP framework’s phenomena emerge as a consequence of the physics.

According to what the information feedback means in double-loop learning, a strong
connection between such information and the phenomena is present. Information
feedback is obtained when facing goals and challenges within the real world, letting
people learn from their ways to approach them and their results, hence updating
their mental models. The same procedure when the player learns about their sur-
rounding environment via phenomena is given and the player ’s mental model of the
physics is improved.

6.2.1.6 Deductions

Deductions are the player ’s knowledge gain regarding how the physics work accord-
ing to the observed phenomena. All this knowledge helps the player to form a
mental model on how the physics might work and which phenomena might emerge
from applying certain mechanics to the environment. However, the player will never
have the certainty of how close their mental model got to the actual game’s physics,

47

6. Execution

although a very close approximation is to be expected if the game is consistent and
intuitive to the player at all times.

As for Kant’s philosophy, a posteriori knowledge is considered as a set of deductions
by the PEP framework. According to all the phenomena, players observe and the
empirical evidence they gather, their physics’ mental model is updated. Alike a
posteriori knowledge, deductions are not universal. Deductions may explain the
observed phenomena but they are not enough to fully understand the underlying
nature of the physics.

To conclude, acquiring knowledge is an iterative process in which the player gets a
better understanding of the physics the more phenomena they observe and the more
deductions they make from them.

6.2.2 Applying The PEP Framework
This section provides a list of steps to follow when applying the PEP framework
from two different perspectives: design and analysis.

From the design point of view, the procedure starts by creating the phenomena
and then deriving the environment from them. These first two steps ensure con-
sistency between both of them, since every phenomenon is thereafter supported by
at least one element from the environment. Next, the physics and game mechan-
ics are created by taking into account the existing phenomena and environment.
This guarantees a set of physics covering all the possibilities of the phenomena and
environment, while at the same time every mechanic supports the emergence of phe-
nomena. As the final step, the deductions a player might make during gameplay are
designed to control how players learn about the game’s physics.

From the analysis perspective, the method explains how to make use of the frame-
work as a formal approach to analyze physics-based games to review their consis-
tency. It also helps game designers to detect problems and avoid repeating the same
mistakes. The analysis starts by identifying in no particular order the game me-
chanics, the phenomena and the environment elements. These elements are then
validated to check whether they are consistent with each other. Finally, the deduc-
tions a player can make are evaluated to check if the player might be overwhelmed
when learning how the game’s physics work during gameplay.

6.2.2.1 Design

This subsection explains the formal process on how to use the PEP framework
as part of the design and development of new physics-based games. This process
consists of the following steps:

1. Design phenomena: In this creative task, game designers propose phenom-
ena which will be present in their new physics-based game depending on what
type of game they want to create.

2. Design environment: Taking as a starting point the phenomena designed
in the previous step, an environment is derived from them. How designers

48

6. Execution

want the environment to be like has a considerable impact on how important
the player ’s a priori knowledge will be in the game. If the phenomena are
typically found in the real world or other games played by the player, then the
player will make use of a substantial amount of their a priori knowledge to
understand how the physics work. On the other hand, if the player has rarely
or never witnessed the phenomena emerging in this particular environment,
the player will not be able to apply any a priori knowledge. Thus, the player
will only rely on their a posteriori knowledge gained during gameplay through
deductions.

3. Formalize physics: Once the phenomena and the environment have been
defined, the phenomena behaviors in such environment are generalized by
defining laws of physics. These set of laws will rule all the environment and
all its emerging phenomena.

4. Design mechanics: This step is interchangeable with the previous one, since
having the phenomena and the environment defined suffices to start designing
gamemechanics. In order to design themechanics, how the player will interact
with the environment must be specified. These mechanics must support the
phenomena by allowing the player to directly or indirectly originate, alter or
bring to an end phenomena.

5. Design deductions: All the previous steps aim to improve consistency in
physics-based games by ensuring the phenomena, the environment and the
mechanics exist for a justifiable reason. However, besides consistency, the
framework also strives to take into account how the player can learn and
understand how the physics work in these games. In this regard, in order to
ensure a game in which its physics are intuitive to the player, the amount
of deductions the player needs to make must be limited during gameplay.
This can be achieved in two different ways. First, by designing more familiar
phenomena and environment to the player, so more a priori knowledge is used.
Secondly, by designing game levels where all phenomena and environment are
gradually introduced, to avoid overwhelming situations to the player in terms
of learning.

6.2.2.2 Analysis

This subsection describes the formal process on how to make use of the PEP frame-
work as part of the analysis to break an existing physics-based game down. It
consists of the following steps:

1. Identify the phenomena, the environment and the mechanics: All the
phenomena, the environment elements and the mechanics are listed. Since the
game is already designed, these can be identified in any particular order.

2. Validate the phenomena and the environment: The phenomena iden-
tified in the previous step must be validated by checking whether or not the
environment supports such phenomena. In any state of the game, given the
same environment elements, it must be checked if the same phenomena emerge.

49

6. Execution

If they do not, a lack of consistency is then detected.

3. Validate the mechanics: The mechanics identified in the first step must
be validated by checking if they directly or indirectly support the phenom-
ena. Mechanics which do not fulfill this condition, have no relevance to the
gameplay, hence they have no positive impact on the game’s consistency.

4. Evaluate the deductions: The previous steps examine the consistency of a
physics-based game by checking whether its proper phenomena emerge, sup-
ported by its mechanics, according to its environment. Nevertheless, how the
player ’s cognitive process on understanding how the physics work in these
games is also tackled in this analysis process. Therefore, the player ’s deduc-
tions must be evaluated too. To perform this task, it must be determined first
the a priori knowledge most of the players have available before playing the
game for the first time. Then, it must be studied at which points of the game
the phenomena emerge. Every phenomenon which cannot be explained by the
player ’s a priori knowledge will lead them to make deductions, establishing a
posteriori knowledge about how the game’s physics work. The more gradually
the player needs to make deductions, the less overwhelming the game becomes
when learning about it and its physics.

6.3 Phase 3: Design of Under Surveillance
To design the game that is part of the thesis, Under Surveillance, the PEP framework
has been applied, following the formal process described in Sec. 6.2.2.1:

6.3.1 Design Phenomena
Right from the beginning, the master thesis authors envisioned a game featuring
electricity, water and fire behaving as they do in the real world. Thus, the following
phenomena were proposed:

• Electricity: Propagation through conductive materials and interaction with
electrical devices.

• Water: Movement according to fluid dynamics, buoyancy of different objects,
vaporization due to hot temperatures and freezing due to cold temperatures.

• Fire: Propagation through burnable materials, smoke generation and extinc-
tion in contact with water.

6.3.2 Design Environment
The master thesis authors envisioned a game in which the challenge was not to figure
out how electricity, water and fire behave, but rather how to use these elements to
solve the puzzles present along the way. Therefore, letting the player make use of
their a priori knowledge as much as possible was a must. Consequently, elements
typically found in the real world interacting with the aforementioned phenomena

50

6. Execution

were designed as part of the environment. These environment elements, classified
by whether they typically interact with electricity, water or fire are:

• Electricity: Metallic and non-metallic objects which conduct and isolate elec-
tricity, respectively, and electrical devices that can be turned on or off.

• Water: Shapes allowing the fluid dynamics phenomena to emerge, such as
slopes or empty pools, and objects with different buoyancies which might float
or sink when put in water.

• Fire: Objects made of flammable materials, such as wood, and nonflammable
materials, such as steel.

6.3.3 Formalize Physics
According to the aforementioned designed phenomena and environment, the physics
were generalized. Since the electricity, water and fire emulate their behaviors in the
real world, simplifications of actual laws of physics were considered.

6.3.4 Design Mechanics
Given the need to support the phenomena with simple, yet powerful mechanics, the
player is provided with the possibility to interact with the environment by throwing
electricity, water or fire to any environment element.

6.3.5 Design Deductions
So far, the phenomena and the environment were designed so as much as possible
a priori knowledge is used by the player. Moreover, the player is not able to use
electricity, water and fire from the beginning of the game, but these are gradually
introduced as they progress. These two design decisions sort and limit the number of
deductions the player needs to make to gain a posteriori knowledge. Thus, the player
can now intuitively learn and understand how the formalized physics work as the
deductions they might make have been adjusted, avoiding overwhelming situations
in terms of learning.

6.4 Phase 4: First Version of Under Surveillance
Having the game designed after applying the PEP framework in the previous section,
the development of Under Surveillance was resumed. In this phase, an overview of
the different aspects of the first version of the game is provided.

6.4.1 Character
The main character of Under Surveillance is a cyberpunk-stylized woman robot,
included in the Polygon - Sci-Fi City Pack asset package, shown in Fig. 6.15. How-
ever, the player does not directly control this character. Instead, there is a virtual

51

6. Execution

entity representing the player, The Hacker, that can interact with the environment
to create new paths for the main character to advance automatically through them.

Figure 6.15: The main character of the first version of Under Surveillance.

To implement this behavior, Unity’s NavMesh [64] system was used. This system
requires the developers to define an agent that will move in through the game world,
as well as walkable areas. At runtime, the agent’s destinations in terms of world-
space coordinates are specified. The agent will then move automatically towards the
specified position using a valid path according to the previously defined walkable
areas. In Fig. 6.16 the NavMesh is illustrated.

Figure 6.16: The NavMesh is represented as a blue carpet on the floor.

Concerning the physics-based elements of the game, namely electricity, water and
fire, the idea was that the player could select these elements in the UI and then click
anywhere in the game world to make The Hacker use them. However, this version
ended up discarded before implementing these features.

52

6. Execution

6.4.2 Level Design
It is important to keep in mind that this first version of the game was discarded
when it was still a prototype. Thus, most of the interactions with the environ-
ment were not implemented. This section will describe how the designed level was
structured and what were the planned interactions. However, detailed aspects of
the implementation are omitted. In Fig. 6.17, an overview of the whole level is
provided.

(a) The jail cell of the main character. (b) Beginning of the corridor.

(c) Intersection of the corridor. (d) Ventilation shaft hidden behind a
pile of objects.

Figure 6.17: Level Design of the first version of Under Surveillance overview.

All the levels Under Surveillance and their contents were entirely built by making
use of all the assets included in Polygon - Sci-Fi City Pack and Polygon - Sci-Fi
Space Pack.

The game starts with the main character inside of a jail cell. The player is supposed
to help her escape by using electricity to hack the door of the jail cell. After this, the
character automatically moves to the right, leaving the jail cell behind and arriving
at one long corridor. This sequence is shown in Fig. 6.18.

Once in the corridor, the player can observe other prisoners that are also locked in
jail cells. This scenery aims to provide hints on the narrative of the game. The
prisoners are animated, using animations from Mixamo, displaying them with dif-
ferent moods. Furthermore, it is possible to observe throughout the whole level
several cameras located on the walls. These cameras are always pointing towards
the player’s position, conveying the feeling that the player is being observed at all
times. In Fig. 6.19, a prisoner and a camera from a jail cell are illustrated.

53

6. Execution

(a) The main character imprisoned in
the jail cell.

(b) The main character leaving the jail
cell.

Figure 6.18: Jail cell area.

Figure 6.19: Prisoner observed by a camera inside of a jail cell.

In order to proceed further in the level, the player must use electricity to disable
some electric barriers that are blocking the way. Once these barriers are disabled,
the main character reaches an intersection point. This sequence is shown in Fig.
6.20.

(a) Beginning of the corridor. (b) End of the corridor.

Figure 6.20: Corridor area.

Once in the intersection, the player must use fire to burn a pile of objects that
prevent the character from continuing her way. When this occurs, an alarm starts
to sound while emitting a red light. At the same time, a door in the background
opens revealing a set of guards. Therefore, it is hinted that the main character is
escaping a prison against her will of whoever has imprisoned her. The main character

54

6. Execution

will then make her way through a ventilation shaft, revealed after burning the pile
of objects. This sequence is shown in Fig. 6.21.

(a) Before burning the pile of objects. (b) After burning the pile of objects.

Figure 6.21: Corridor intersection area.

Finally, the level ends after the player reaches the end of the ventilation shaft.
There, an empty room is located as a placeholder where a new area was going to
be designed. However, this version of the game was discarded before this task was
accomplished.

6.4.3 Post-Processing
A series of post-processing effects were used to get the desired cyberpunk look-and-
feel.

6.4.3.1 Bloom

Bloom is a post-processing effect that aims to improve the look of bright areas and
light sources by simulating glow. This is achieved by making the color of these
bright zones bleed into neighboring pixels. Fig. 6.22 shows how this post-processing
effect influences the look of the game.

(a) Bloom disabled. (b) Bloom enabled.

Figure 6.22: Influence of the bloom post-processing effect.

The values of the parameters for the effect were estimated by trial and error until
the desired results were achieved. These values are shown in Fig. 6.23.

55

6. Execution

Figure 6.23: Values of the bloom post-processing effect.

6.4.3.2 Color Grading

In computer graphics, color grading is a post-processing effect that can be used
to improve the color balance of the rendered image, as well as its luminance and
contrast. It is often also used to implement a color correction filter that produces
an adequate and pleasant appearance of the rendered scene. Fig. 6.24 shows how
this post-processing effect influences the look of the game.

(a) Color grading disabled. (b) Color grading enabled.

Figure 6.24: Influence of the color grading post-processing effect.

To achieve an effect where the scene seemed under the influence of neon lighting, vari-
ous parameters such as tonemapping, hue, white balance, saturation, contrast,
lift, gamma and gain were adjusted to a set of specific values. However, the most
relevant among them all were the last three: lift, gamma and gain. These values
conferred the scene with the desired purple neon style supporting the cyberpunk
thematic. In Fig. 6.25, all these values are showcased.

6.4.4 Menus and UI
As mentioned earlier, this early version of the game was a prototype discarded before
finishing it. Therefore, a fully working menu was not implemented. However, since

56

6. Execution

Figure 6.25: Values of the color grading post-processing effect.

57

6. Execution

it was planned to have dialogues between the main character and The Hacker, an
early version of a dialogue system was implemented. This system is shown in Fig.
6.26.

Figure 6.26: Early version of the dialogue system.

6.4.5 Post-Mortem
After having implemented this prototype, it was time to take a critical perspective
and analyze whether it had valuable potential or not. Once this analysis was per-
formed, the master thesis authors realized that the game presented various flaws as
it was.

First, the game interaction was far from perfect. The only action that the player
could take was to click on designated areas and witness how the main character
automatically walks once the right action has been performed. Second, as a con-
sequence of the first problem, the game was not challenging. There were no losing
conditions nor incorrect choices.

Having identified these problems, the team decided that a substantial change in
the level design was required to fix them, following the agile principle “embrace the
change” explained in Sec. 4.1.1. The level designed on this version was discarded
and the team started to design a new level based on the discarded one, leading to a
second version of the game.

6.5 Phase 5: Second Version of Under Surveil-
lance

As explained in the previous section, in order to solve all the problems that the first
version of Under Surveillance presented, a new version was developed. This remake
does not present any substantial changes in terms of visual identity nor narrative.
The efforts were instead focused on improving the level design.

6.5.1 Level Design
Two ideas were generated to solve the problems the level design from the first version
of the game had.

58

6. Execution

First, increasing the complexity of the level design. The reason behind this idea was
to naturally reduce the repetitiveness of the gameplay.

Second, adding more challenge to the gameplay. To accomplish this while maintain-
ing the original core of the game in terms of interaction, it was decided to include
more complex puzzles. While these puzzles can be solved just by clicking on the
screen, they do require thinking to be completed.

Therefore, after implementing these two ideas into the game, the player needs to
actively engage in a significant challenge to complete the game.

6.5.1.1 Area 1: The Prison

In this reworked area, the major change is a notable increase in the complexity of
the environment. Not only it is populated with more game elements, but it also
resembles a more realistic prison. Screenshots of the whole area are shown in Fig.
6.27.

(a) Prison overview from above. (b) Prison overview from bellow.

(c) Last floor of the prison. (d) Jail cell.

Figure 6.27: Area 1: The Prison.

From a structural perspective, the game starts similarly as it did in the previous
version in this area. The main character is locked in a jail cell and The Hacker is
supposed to help her escape. When this happens, the path leads to a corridor full
of other jail cells and prisoners, as well as an electric barrier that the player must
disable to proceed further in the level. This sequence is illustrated in Fig. 6.28.

Another important change in this area is that both the alarm effect and the set of
guards appear when the player has disabled the electric barrier. When this happens,

59

6. Execution

(a) The main character imprisoned in
the jail cell.

(b) The main character waiting for The
Hacker to disable the electric barrier.

Figure 6.28: First part of the prison.

the main character takes an alternative route using the stairs located nearby. By
doing this, the character moves one floor below in the prison. This sequence is shown
in Fig. 6.29.

Figure 6.29: Main character moving downstairs.

Once in this new floor, the character moves towards a door located in the back-
ground, accessing to the second area of the level.

6.5.1.2 Area 2: The Storage Room

In this new area, the player is presented with a huge storage room. It is possible to
observe two cranes, a set of huge metallic boxes and few workers on their computers.
The cranes and the boxes form the puzzle that the player must solve to proceed
further in the game. The workers, animated using Mixamo animations, are not a
relevant part of the gameplay. Their presence fulfills the purpose of making the
environment look more realistic. Screenshots of this area are presented in Fig. 6.30.

About the puzzle itself, it consists of two independent parts. In each of them, the
player takes control of a crane that can push the metallic boxes. The goal of moving

60

6. Execution

(a) The control room. (b) Security guard working.

(c) The main character leaving the
control room.

(d) The main character approaching the
puzzle.

(e) Overview of the puzzle. (f) Exit of the storage room.

Figure 6.30: Area 2: The Storage Room.

61

6. Execution

the boxes by using the crane is to create a safe path for the main character. The
challenge lies in restricting the crane’s movement. First, the crane nor the boxes can
leave the small room in which they are located. Second, the crane cannot go through
the boxes without pushing them. Finally, boxes can push other boxes. Screenshots
of this puzzle are shown in Fig. 6.31.

(a) First part of the
puzzle.

(b) Solution to the first
part of the puzzle.

(c) Second and last part
of the puzzle.

Figure 6.31: Crane and metallic boxes puzzle.

The process of designing the puzzle in Unity is showcased in the following video:
https://youtu.be/PbOtRs00tYc [65].

The main challenge behind implementing this puzzle consists on coding the crane
movement behavior. The algorithms related to collisions and forces are automati-
cally handled by Unity’s physics engine. The PuzzleCraneMovement script, consti-
tutes the most important part of the crane movement behavior.

Once the player solves this puzzle, the main character can walk towards an elevator
that would lead to the next area. However, this version of the game was discarded
before further proceeding in the development.

6.5.2 Post-Mortem
After having developed a working game prototype in which the planned changes were
applied, it was again time to perform another critical analysis, checking whether or
not the problems were solved. The master thesis authors then realized that the
absence of challenge was indeed solved by including the puzzle. However, new
problems were detected.

First, in terms of interaction, the team did not detect any major improvements.
While the authors thought that with a more complex environment the interaction
possibilities would increase, this was not the case. Other than in the puzzle, the
player was still supposed to only click on designated areas, while observing how the
main character automatically moves. Therefore, while the new environment was
probably superior in terms of its visuals, the interaction with the environment did
not improve accordingly.

Second, another major issue was that the game did not truly provide a physics-
based experience. Even if electricity was used through the whole level, its usage just
consisted on interacting with specific devices. If the electricity was removed and
replaced with simple mouse clicks, there would be no difference in the gameplay.

62

https://youtu.be/PbOtRs00tYc

6. Execution

Finally, the master thesis authors concluded that the implemented visual identity
was not up to their quality standards. A cyberpunk atmosphere was achieved, but it
did not quite look as pleasant as the authors envisioned. A particularly problematic
aspect of these visuals was the lack of contrast. The whole scene was affected by the
purple color achieved due to the color grading post-processing effect, resulting in an
image that looked plain. Furthermore, given the big amount of game elements, no
elements could stand out from the environment, not even those that were interactive,
and even worse, neither the main character.

Once again, applying the “embrace the change” principle explained in Sec. 4.1.1, it
was decided to discard this version of the game and start again.

6.6 Phase 6: Final Version of Under Surveillance
With all the lessons learned from the previous two versions, a third and final version
of the game was developed. The core idea in this version was to focus on the
interaction and the gameplay, using a strong visual identity to support these two
while all the design and implementation overall was simplified.

The visuals were also simplified by reducing the environment elements to just those
that provided value to the gameplay. The color palette complexity was also reduced,
by having a gray-scale colored environment, with very sporadic use of color to sup-
port interaction and provide better feedback. This is achieved by utilizing color to
provide contrast, particularly to the main character and the most relevant elements
of the environment.

To increase the interaction possibilities, it was decided that every environment el-
ement should be responsive to the player’s actions. For this to work, the main
character’s automatic movement was discarded. The reason behind this was that
the master thesis authors considered that an interactive environment should be ex-
plored as freely as possible. The player must able to decide when and where to
interact with the environment so that these interactions feel real and not scripted.

6.6.1 Narrative Design
In addition to the simplification process followed throughout the final version of
Under Surveillance, the narrative was revisited for the first time since Sec. 6.1.2
and made easier to follow while keeping in mind the works that inspired Under
Surveillance, presented in Sec. 2.2, in the first place. This simplification meant to
remove from the development a lot of narrative elements such as the importance of
a powerful A.I. ruling the world and the personification of the player as The Hacker.

Therefore, Under Surveillance is a 2.5D physics-based puzzle adventure video game
in which the player follows a mysterious robot who can use and manipulate electricity
and water to solve a series of puzzles while progressing further in an unknown
dystopian world surrounded by a noir and eerie post-apocalyptic atmosphere. In
this world, a mass surveillance state is present. Players unveil this world as they

63

6. Execution

progress, collecting little pieces of information that are spread out everywhere in the
world.

Thanks to this new setting, the player is not overwhelmed by a complex story that
could have taken them away from the core of the game, its unique way of playing.

6.6.2 Software Architecture
In relation to the implementation, Fig. 6.32 presents some of the script classes and
the relationships between them. It is important to note that only the most relevant
classes are illustrated in this diagram, while many are omitted due to their relatively
small overall importance.

Figure 6.32: Class diagram of Under Surveillance.

The classes placed inside the Protagonist are those attached to the main character.
The ones placed inside Physics are related to the electricity and water behaviors.
Finally, those placed inside Level are behaviors attached to objects placed through-
out the level. All these scripts will be further explained in the following sections.

6.6.3 Character Design
First, the concept of The Hacker was removed. Moreover, unlike the other versions
in which the main character was a cyberpunk-stylized woman robot, in this version
it was replaced by a robot that every player can feel identified with, regardless of
their gender3. In Fig. 6.33, the new character is shown.

3More information behind this decision is discussed in Sec. 8.3.

64

6. Execution

Figure 6.33: The new main character of the last version of Under Surveillance.

The new main character is part of the Polygon - Sci-Fi City Pack asset package.
Since the mesh of the character was already available to the master thesis authors,
all the efforts went into animating and scripting the character.

6.6.3.1 Animations

All the animations were acquired from Mixamo. To achieve smooth and pleasant
animations on the main character in every possible situation present in the game,
many different animation clips have been included. All of these clips and the tran-
sitions between them are controlled by the character’s animator controller, shown
in Fig. 6.34.

Each of the nodes from Fig. 6.34 represents a character state and its corresponding
animation clip. Likewise, each of the edges connecting these nodes represents a
possible transition between these states. Each of these transitions can be configured
to either automatically happen after a given time, or happen when a particular
condition is met.

The Entry node represents the start point of the animator state machine. From
this point, the system automatically transitions to the adjacent state: SittingIdle.
Therefore, this is the first state displayed by the character when the game starts. The
transition to the next state, StandingUp, is configured so that it is only performed
when the player clicks on the character. The subsequent transitions are performed
automatically until the state Idle is reached.

From the gameplay perspective, this means that there is an initial cutscene. The
player will initially see a sat character. Then, when they click on this character it
will stand up and look around. Finally, when the character reaches the Idle state,
the cutscene is finished. The player is then allowed to move and use the character’s

65

6. Execution

Figure 6.34: Main character’s animator controller.

abilities. Screenshots of this cutscene are shown in Fig. 6.35.

From the Idle state, it is possible to reach many other states.

First, the Walking state is used when the character moves, displaying a visually
appropriate animation in which the character takes steps.

Second, the ElectricityAttack state is used when the character throws an electric-
ity ball, placing its hands near its chest and making a throw movement. Likewise, the
WaterAttackBegin, WaterAttackLoop, WaterAttackLoop 0 and WaterAttackEnd
states are used when the character throws water. More than one state is required
because water can be thrown for an infinite amount of time, requiring an animation
that can be looped.

Third, the ClimbingLadder state is used when the character is climbing a ladder.
The subsequent states Hang and Stand are used when the top of the ladder is reached.

Finally, the Electrocuted state becomes relevant when the character falls inside a
pool full of water. In this situation, the robot will suffer an electrical shock, which
is shown through the corresponding animation of the state.

6.6.3.2 Scripting

For the main character to behave appropriately in every situation of the game, sev-
eral scripts are attached to its game object. The main idea when these scripts were
written, was to have the code as organized and decoupled as possible. Therefore,
instead of writing a single script that implements all the main character’s function-
ality, multiple smaller scripts with specialized functionalities have been written. The

66

6. Execution

(a) The mysterious robot is sitting still. (b) The mysterious robot stands up.

(c) The mysterious robot looks around
perplexed.

(d) The mysterious robot stops looking
around.

Figure 6.35: Initial cutscene at the beginning of Under Surveillance.

most important scripts related to the main character are:

• ProtagonistController: This script is responsible for keeping state variables
shared by the other scripts as well as enabling or disabling them when it is
appropriate. Therefore, it acts more like a facade or a dispatcher that helps
to keep the code organized than implementing actual functionality.

• HeadFollowMouse: This script is responsible for making the main character
look at the mouse position by rotating its head. This feature was implemented
to help the player figure out that the mouse can be used to interact with the
game.

• ProtagonistMovementController: This script is responsible for making the
main character move left and right. It sets the horizontal velocity of the game
object according to the player’s input and rotates the character to face the
appropriate direction.

• ProtagonistLadderClimb: This script is responsible for making the main
character climb ladders. It sets the vertical velocity of the game object accord-
ing to the player’s input and controls the animations displayed when climbing
ladders.

There are also two additional scripts attached to the protagonist’s game object:
ProtagonistElectricityController and ProtagonistWaterController. These
will be explained in detail in Sec. 6.6.4, since they are related to the game’s physics-

67

6. Execution

based elements.

6.6.4 Physics
As mentioned earlier, the character has two physics-based special abilities: throwing
electricity and water. These abilities are not presented at the same time to the
player, because that might overwhelm them in terms of the number of interactions.
Instead, they are introduced in different parts of the level, so the player becomes
familiar with the first ability before introducing the second one. This is explained
in more detail in Sec. 6.6.5.

Since both abilities are available to the player at the same time, it is necessary to
let them choose which one to use. This problem has been solved by having two
different states on the character: electricity state and water state. The player can
swap between these two states by clicking on the main character. It was also crucial
to implement a way to provide feedback so that the player is aware of the current
character’s state. In this regard, it was decided not to have any HUD. Instead,
this information is provided by the character itself, as illustrated in Fig. 6.36, by
showing a different appearance depending on its state.

(a) The robot’s electricity
state.

(b) The robot’s water
state.

Figure 6.36: Appearances of the main character depending on its state.

In relation to the code written to implement the physics’ elements and their be-
haviors, both electricity and water share some basic behavior. For instance, both
abilities are activated when the player clicks anywhere in the game world. Also,
the projectile is always shot towards the position the player clicked, both if it is
electricity or water.

68

6. Execution

Consequently, this common behavior has been written in separate scripts, to allow
reuse both from the electricity and water behaviors. These scripts are:

• PhysicsCanon: This is script is responsible for instantiating the physics’ el-
ement projectile (electricity or water) and setting its direction and velocity
depending on the target position.

• ProtagonistPowerController: This script is a generalization of the scripts
ProtagonistElectricityController and ProtagonistWaterController, ex-
plained in Sec. 6.6.4.1 and Sec. 6.6.4.2, respectively. It provides both these
scripts with convenient methods to check whether the mouse has been clicked,
released or it is being held, as well as its position. Also, it encapsulates their
common fields and behaviors.

6.6.4.1 Electricity

The first special ability that the player is given is throwing electricity. By clicking
anywhere in the game world, the main character will shoot an electrical ball that
will move towards the clicked position. The Polygon Arsenal asset package was used
to achieve this effect. Once the ball hits an object, a reaction depending on this
object’s properties is triggered. In the following paragraphs it is going to be first
analyzed the electricity projectile and its behavior, and then the reactions of the
environment when the projectile collides with any object.

The script responsible for managing the creation of each electricity projectile is
ProtagonistElectricityController. When it detects that the click has been
performed, it starts the adequate main character’s animation, while also invokes the
electricity’s PhysicsCanon at the appropriate moment. This results in the main
character visually throwing an electrical ball, as shown in Fig. 6.37.

(a) Beginning of the animation. (b) End of the animation.

Figure 6.37: Main character’s electricity throw animation.

When the electric ball hits any object, there are two possibilities: either the object
can conduct electricity or it cannot. The triggered reaction in these two cases is
completely different. If the object can conduct electricity, then electrical arcs and
sparks will arise from every part of the object, eventually fading out. On the other

69

6. Execution

hand, if the object cannot conduct electricity a small electrical explosion is the only
visible effect. These two reactions are shown in Fig. 6.38.

(a) Reaction on conductive objects. (b) Reaction on non-conductive objects.

Figure 6.38: Possible reactions when an electric ball hits any object.

The script PhysicsMaterialBehaviour is responsible for instantiating the electrical
arcs and sparks if the object is made of a conductive material. This is achieved
by instantiating an object with the EletricityArcsBehaviour script attached to
it. The EletricityArcsBehaviour script generates the particle systems needed to
display the arcs and sparks. It does so by obtaining the hit object’s collider and
using it to determine the shape and size of the particle systems’ emitters.

Electricity can also be used to interact with some devices placed through the level,
such as elevators’ terminals. Code extensibility and re-usability was kept in mind
when implementing this feature. Therefore, an abstract class, namely AElectricityReact
was created. Any script extending this class needs to implement the OnElectricImpact()
method. If a game object has attached any script extending this class, when an elec-
tric projectile hits it, its OnElectricImpact() method will be automatically called.

Finally, electricity can be also used to turn on electrical panels, controlled by the
ElectricPanelReact script. These panels have wires attached, connecting them
to a number of devices. When an electrical panel is turned on, electricity will flow
through its wires, consequently enabling all the connected devices. This behavior is
shown in Fig. 6.39.

Figure 6.39: Electrical panel turned on.

Panels can also push electricity through cut wires if both ends are connected through

70

6. Execution

the water contained in a pool. This behavior is shown in Fig. 6.40.

Figure 6.40: Water conducting electricity.

6.6.4.2 Water

The second special ability that the player is given is throwing water. By holding
the mouse button anywhere in the game world, the main character will shoot a
stream of water made out of a number droplets, obtained from the Polygon Arsenal
asset package. These droplets will move towards the clicked position while being af-
fected by gravity, consequently describing a parabolic trajectory. Once each of these
droplets hits any object a splash effect is produced. Furthermore, if the splash is
produced inside a cavity the water will accumulate, forming a pool. In the following
paragraphs, it is going to be first analyzed the water stream and its behavior, and
then how water can interact with the environment.

The script responsible for managing the creation of each of the water droplets is
ProtagonistWaterController. When it detects that the mouse button is being
held, it starts the adequate main character’s animation, while also invokes the wa-
ter’s PhysicsCanon at the appropriate moment. This results in the main character
visually throwing a water stream, as shown in Fig. 6.41.

(a) Beginning of the animation. (b) Loop of the animation.

Figure 6.41: Main character’s water throw animation.

71

6. Execution

When each water droplet hits any object it is checked whether or not that happened
in a concavity. Concave areas hereinafter referred to as pool areas, are manually
defined by using trigger volumes. The script WaterProjectileBehaviour checks
whether each water droplet collided inside a pool area. If that condition is met,
then water is added to the pool area. Furthermore, a water ripple effect is generated
on the surface of the pool area.

The script WaterPoolBehaviour is responsible for managing the pool areas. It
provides the public method AddWater(), that raises the water level by an amount
that depends on the pool’s volume.

All these scripts allow the player to put water inside these pool areas, as shown in
Fig. 6.42. However, some technical aspects of the water have not been implemented
by the authors. Instead, the Water 2D Tool asset package has been used. This asset
already implements some sophisticated water physics, such as ripple generation and
buoyancy.

(a) Empty pool area. (b) Pool area with water.

Figure 6.42: Pool area.

6.6.4.3 Fire

Unfortunately, the design and implementation of the fire were discarded at this
phase of the development given the short remaining amount of time by this point.

6.6.5 Level Design
The main level of Under Surveillance is divided into four different areas: escaping
the jail cell, corridor, elevator and swimming pools.

6.6.5.1 Area 1: Escaping the Jail Cell

The game starts with the main character sat down inside a jail. As mentioned in
Sec. 6.6.3.1, when the player clicks on the main character a cutscene is played and
then the player can move and interact with the environment.

Since the main character is inside a jail cell, the interaction possibilities are quite
limited. This helps the player to get familiar with the game mechanics (move and
throw electricity) before having to perform any complex action or be overwhelmed

72

6. Execution

with a lot of environment elements. The only way to escape the jail is by throwing
electricity to its door’s lock and then walking out, which forces the player to use
both these mechanics in a simple scenario.

Furthermore, the jail itself contains objects that act in the three main possible
ways when hit by electricity. These possible reactions are: conducting electricity
(performed by the bars of the jail), not conducting electricity (performed by the
floor and ceiling of the jail) and having a special reaction to electricity (the lamp
that blinks when electricity it receives electricity, and the door lock that opens).
The player is not forced to perform most of these actions. However, their presence
feels gratifying for explorer players [66] that will try to interact with every element
and expect a consistent reaction.

Fig. 6.43 shows a few screenshots from this area.

(a) The jail door is locked. (b) The player has unlocked the jail
door.

Figure 6.43: Screenshots of the first area of the level.

In relation to the scripts related to this area, there is one behavior worth to be
mentioned.

Before the initial character’s cutscene is played, the light placed on the ceiling of
the jail blinks while emitting an electric sound effect. To have both the sound and
the light synchronized, it is the sound that drives the light’s intensity value. During
the light blink animations, the loudness of the sound effect is constantly checked,
and the light intensity is adjusted according to it. This behavior is implemented in
the LightBlink script.

6.6.5.2 Area 2: Corridor

After the player leaves the jail, a corridor is presented. It is assumed that the player
has learned how to interact with the character and the environment in the previous
area. Thus, this new area is more focused on quietly introducing the narrative to
the player. In this corridor it is possible to witness other prisoners in their jails,
therefore providing hints on the dystopian nature of the game world.

Another key element in this area is the presence of a radio outside these jails. This
radio is turned on, suggesting that beings other than the prisoners were populating
that area not a long time ago.

73

6. Execution

Fig. 6.44 shows a few screenshots from this area.

(a) Prisoners in the background. (b) Radio in the background.

Figure 6.44: Screenshots of the second area of the level.

Despite this, the main character can still use its throw electricity ability to interact
with the environment. Conductive and non-conductive elements are present in this
area. Furthermore, the radio generates noise audio when hit by electricity.

6.6.5.3 Area 3: Elevators

After the player is familiarized with the game mechanics as well as the game world,
the first puzzle is introduced. In this area, the player must use three elevators to
reach a platform placed in a high position.

The elevators can be interacted by the player by throwing electricity at their ter-
minals. These terminals have a yellow emissive color that matches the electricity
color. When the player throws electricity at a terminal, they will make the elevator
go either up or down one step. The player must take advantage of this behav-
ior to reach the aforementioned platform. This behavior is implemented in the
ElevatorPlatformBehaviour script. Furthermore, to gratify explorer players there
is a collectible secret that can be accessed by discovering an alternative route using
these elevators.

Finally, when the player reaches the platform located on the top, they must climb
a ladder that leads to a ventilation shaft, marking the end of this area.

Fig. 6.45 shows a few screenshots from the area.

(a) Bottom area. (b) Secret area. (c) Top area.

Figure 6.45: Screenshots of the third area of the level.

74

6. Execution

6.6.5.4 Area 4: Swimming Pools

After the player goes through the ventilation shaft, they reach the fourth and final
area. In this area, the main character is provided with the ability to throw water.
The puzzle presented in this area has to be solved by using both electricity and
water. To solve it, the player must fill all the pools with water, so they conduct
electricity from the panel located on the left part of the area, to the elevator panels
located in the right part. By doing this, the elevator can be used to leave the area
and complete the game.

The puzzle is designed so it can be completed by players with any skill level.

If the player walks to the right, the main character will eventually fall inside a pool
that contains a pallet with no obvious way to get out. Thus, the player will try to
interact with the environment in every possible way, and will eventually throw water.
When this happens, the water level inside the pool goes up, and so does the pallet,
consequently pushing the player upwards. With this design, it is guaranteed that
after the player leaves that pool, they will understand that water can fill concave
areas.

If the player walks to the left, they will see a pool filled with water as well as a
panel with a lightning symbol. This symbol will hint the player to throw electricity
at that item. By doing so, the panel starts to generate electricity that is conducted
through the pool’s water. This phenomenon is visually perceptible by the electric
sparks that indicate that electricity is flowing. Consequently, the player will learn
that water can conduct electricity.

With these two pieces of knowledge, and given the fact that it is possible to see an
electric wire that goes through all the pools, the player can infer that the objective
of the puzzle is to conduct electricity through the pools, thus reaching the solution
after some deductive thinking. However, to gratify more explorer players there is a
secret hidden in the left-most pool. To collect it, the player must also deduce that
pools can be emptied, using the terminals located at the center of the level, that
can be used to open the drains located in each pool.

Fig. 6.46 shows a few screenshots from the area.

6.6.6 Lighting
The main character has a light in the head that enlightens the area to which it
is looking at all times. Since this character is always looking in the direction of
the mouse cursor, this allows the player to illuminate any part of the environment
organically by moving the cursor over it. Fig. 6.47 shows this feature.

Furthermore, the Aura - Volumetric Lighting asset package was used to simulate
scattered lighting. This light source is placed in the ventilation shaft that the player
has to reach in order to complete the level. This is shown in Fig. 6.48. It is
important to note that the effect has been exaggerated so that it is visible in the
screenshot.

75

6. Execution

(a) The robot stands still at the
beginning of the area.

(b) The robot fills a pool with water.

(c) The robot stands still at the end of
the area.

(d) The robot stands still on an elevator
at the end of the area.

Figure 6.46: Screenshots of the fourth area of the level.

Figure 6.47: The main character enlightening the floor.

76

6. Execution

(a) Scattered lighting disabled. (b) Scattered lighting enabled.

Figure 6.48: Scattered lighting comparison.

6.6.7 Post-Processing
A series of post-processing effects were used to get the desired look-and-feel.

6.6.7.1 Ambient Occlusion

In the real world, some areas such as corners and other regions located between close
surfaces tend to block light and look darker. In the context of computer graphics,
ambient occlusion is an effect that simulates this phenomenon by occluding ambi-
ent light by some factor in specific areas of the screen. Ambient occlusion has been
used as a post-processing effect in Under Surveillance to create a look of realism in
lighting and emphasize the shapes of the different meshes. Fig. 6.49 shows how this
post-processing effect influences the look of the game.

(a) Ambient occlusion disabled. (b) Ambient occlusion enabled.

Figure 6.49: Influence of the ambient occlusion post-processing effect.

In order to achieve the desired result, several parameters need to be set to appro-
priate values. For this effect in particular, these values were found by following an
iterative process of trial and error, stopping when the output resulted appealing to
both authors. Fig. 6.50 shows the final values of these parameters.

6.6.7.2 Bloom

Fig. 6.51 shows how bloom influences the look of the game in this version.

77

6. Execution

Figure 6.50: Values of the ambient occlusion post-processing effect.

(a) Bloom disabled. (b) Bloom enabled.

Figure 6.51: Influence of the bloom post-processing effect.

The parameters values of the effect were estimated by trial and error until a satis-
factory result was achieved. These values are shown in Fig. 6.52.

Figure 6.52: Values of the bloom post-processing effect.

6.6.7.3 Color Grading

Although several options were modified to achieve the adequate color grading
post-processing effect for the game, such as its tonemapping, white balance, tone,
channel mixer and grading curves, only the latter are going to be discussed.
The reason behind this is because the modification of the grading curves has the
biggest impact on Under Surveillance’s color grading.

78

6. Execution

The grading curves within the color grading allowed to filter the hue of the
colors against their saturation shown in the game. Therefore, these curves were
modified in order to show only specific values from the color spectrum, including
a range of yellow, blue, and red colors. Thanks to this, only the electricity and
water and potentially fire are colored in the game, fomenting gameplay with higher
contrasts. This is shown in Fig. 6.54.

Fig. 6.53 shows the difference between enabling the grading curves and disabling
them.

It has to be noted that to make this effect have the desired impact, all the materials
from all the other elements had to be green so the grading curves could filter
them away, leaving them black and white. The reason behind making them green
and then filtering the colors away instead of making them black directly is that the
second option makes the elements lose their tonalities.

(a) Grading curves off. (b) Grading curves on.

Figure 6.53: Influence of the grading curves from the color grading
post-processing effect.

Figure 6.54: Values of the grading curves inside of the color grading
post-processing effect.

79

6. Execution

6.6.8 Menus and UI
As opposed to the previous versions, the final version of the game features almost
no user interface at all. The initially planned dialogue system was discarded, and
the authors tried to convey all the feedback and information by the environment
elements themselves. Nonetheless, menus were still required to have a complete
product. In particular, the main menu, a pause menu and an options menu were
implemented.

The menus were designed at a late stage of the development of the game since they
do not affect the gameplay. Nonetheless, its design also went through the basic
stages required when creating any interaction design-related artifact. In particular,
before implementing the menu in the game itself, it was prototyped using Adobe
XD. Fig. 6.55 shows the high fidelity prototype made using this software. The font
used for the menu is Good Times.

Figure 6.55: Menu prototype in Adobe XD.

Fig. 6.56 shows the previously prototyped menus implemented in the final game.
As can be seen, the high fidelity nature of the prototype makes it very similar to
the implemented version.

(a) Main menu. (b) Options menu. (c) Pause menu.

Figure 6.56: Menus of Under Surveillance.

In relation to the user interface design principles introduced in Sec. 4.4, pliancy has
been provided to all the buttons of this user interface. Static hinting is conveyed by

80

6. Execution

having the buttons designed so they are squared shaped with a flat-colored back-
ground. This is a fairly common way to design a button according to many design
guidelines, such as Material Design [67]. Dynamic hinting is achieved by making
the button background turn white when the mouse moves over it. Pliant response
hinting has also been implemented by making the button background change to a
darker color when the mouse is clicked but not released. Finally, cursor hinting
was not implemented because it was observed that in desktop applications regular
buttons do not have this type of behavior.

6.6.8.1 Cursor

Concerning the parts of the user interface that are not menus, it is important to
point out the mouse cursor behavior during gameplay. Since using the mouse is
an essential part Under Surveillance’s interaction, authors realized that having a
custom cursor icon would help the player understand that the game is actively
recognizing the presence of a cursor, and thus it is relevant for the gameplay.

Furthermore, it was also decided that the cursor icon could be also used to provide
feedback by implementing cursor hinting on the environment elements of the level.
Consequently, several cursor icons that convey the action that will occur when the
user performs a click, were included in the game. Fig. 6.57 shows five of these
cursors.

(a) Throw
electricity
cursor.

(b)
Interactive

device cursor.

(c) Throw
water cursor.

(d) Swap
ability cursor.

(e) No
possible

action cursor.

Figure 6.57: Five different in-game cursors.

The script ProtagonistCursorController controls which cursor should be dis-
played at any moment.

6.6.9 Sound Design
Supporting the visual style and narrative design from Under Surveillance with an
appropriate work of sound design was a must.

All the sounds are taken from the Retro Future Music Pack and Sci-Fi Sound Pack
purchased in the Unity Asset Store.

Before proceeding any further it is important to understand the most important
parameters which have been modified from each sound effect. These parameters
are:

81

6. Execution

• Play On Awake: If activated, the sound is reproduced when the game object
that holds the sound effect is instantiated.

• Loop: If enabled, the sound is reproduced an infinite number of times.

• Spatial Blend: Select if the sound is 2D or 3D. If 3D, the sound is affected
by the spatial position and spread. If 2D, all spatial attenuation is ignored.

• 3D Sound Settings:

– Doppler Level: How much the pitch of the sound is changed based on
the relative velocity between the AudioListener and the sound.

– Max Distance: The maximum distance the sound stops attenuating at.

To conclude, when 3D sounds are implemented, they are always listened from the
perspective of the AudioListener, which in this case, it was implemented into the
player’s avatar.

6.6.9.1 Background Music

Regarding the background music of the game, there is no continuous reproduction of
any song, unlike many video games. However, several electronic devices were placed
through the world in order to reproduce the background music more organically.

An example of these devices is radio cassettes. These radios are reproducing the
looped version of the song Other World, part of the Retro Future Music Pack when
players are in the middle of a puzzle. One of these radios is shown in Fig. 6.58.

Figure 6.58: A radio placed on a desk next to a puzzle.

To achieve the aforementioned effect so it would blend with Under Surveillance’s
atmosphere, the spatial blending of the sound was set to 3D, as well as its maximum
distance was set to 40 units, so the song is not heard from unintended places. More
information about the parameters is shown in Fig. 6.59.

82

6. Execution

Figure 6.59: Values of the radio’s background music.

83

6. Execution

Furthermore, if players throw electricity right to the radio, this one will suffer a
short circuit momentarily altering the functionality of the radio and deforming the
reproduction of the song.

6.6.9.2 Sound Effects

A great number of sound effects were added to complement the background music
and to support both atmosphere and gameplay.

Sound effects with the spatial blending assigned to 2D have been used for sounds
that are typically not heard within the environment of the game. This includes all
the sound effects from menus and HUD.

On the other hand, sound effects with the spatial blending assigned to 3D, do form
part of the environment, such as the noise electricity emits or the sound the water
makes when thrown.

Although not every single sound effect is listed, the most relevant one towards
supporting the atmosphere and gameplay is presented bellow.

Each puzzle ending is marked by a pipe emitting light particles and a font of light
the player needs to get in. This pipe is always located at the top-right of the screen.
In conjunction with this, a looped sound effect emulating the exterior by a gentle
breeze is heard.

The 3D sound is placed on top of the pipe as shown in Fig. 6.60. As for the
parameters in detail of this sound effect, achieving the desired effect, are shown in
Fig. 6.61.

Figure 6.60: Breeze sound effect placed at the top of the pipe marking the end of
a puzzle.

This is an example of how to drive the player to a specific position by the usage of
sound effects together with other game elements, such as lighting.

84

6. Execution

Figure 6.61: Values of the breeze sound effect.

85

6. Execution

6.6.9.3 Dialogues and Voice Lines

Given the time planned for Under Surveillance’s development, it was impossible to
hire voice actors to add dialogues and voice lines to the game.

6.7 Phase 7: Analysis
In this phase, the formal process described and explained in Sec. 6.2.2.2 was applied
to two different physics-based games. First, the analysis process was applied to
Angry Birds in order to ensure the effectiveness of the process. Secondly, the same
process is applied to Under Surveillance to analyze the results of the development
and check if they correspond to the initial design described in Sec. 6.3.

6.7.1 Angry Birds
Angry Birds is a 2D puzzle physics-based mobile video game created by Rovio En-
tertainment and originally published in 2009. In Angry Birds, the player makes use
of a slingshot to shoot different birds to multiple fortresses to make them collapse
while neutralizing the pigs located at them. A screenshot of the game is shown in
Fig. 6.62.

Figure 6.62: Angry Birds in-game screenshot: A bird has just been shot to a
fortress. Source: [68]

In order to analyze Angry Birds, the PEP framework analysis process has been
applied by following all the steps explained in Sec. 6.2.2.2:

6.7.1.1 Identify the Phenomena, the Environment and the Mechanics

A list with all the phenomena, the environment elements and the mechanics has
been tailored:

86

6. Execution

• Mechanics: Shoot birds, use the birds’ special abilities.

• Environment: Earth-like world, planks made of glass, wood and stone, TNT
boxes, pigs and birds.

• Phenomena: Parabolic trajectories, collisions, damage, destruction and ex-
plosions.

6.7.1.2 Validate the Phenomena and the Environment

All the aforementioned identified phenomena are then validated by checking whether
they are supported by the environment elements or not:

• Parabolic trajectories: All the objects present in the environment behave
consistently. They always describe trajectories governed by the same laws of
physics.

• Collisions: All the objects present in the environment collide with each other
in a consistent manner according to the game’s formalized physics.

• Damage and destruction: Planks consistently take damage when they re-
ceive an impact by other objects of the environment and they are destroyed
once they have received enough damage. Under the same conditions and given
the same impact, a plank always receives the same amount of damage. In or-
der to provide a bigger variety of this kind of phenomena, planks are made
of different materials, differing in the maximum amount of damage they can
take before they are destroyed.

• Explosions: TNT boxes explode when they receive an impact by a different
object with a force greater than a specific and constant threshold. The damage
of these explosions to the surrounding objects is always the same, according
to the distances to them.

6.7.1.3 Validate the Mechanics

All the previously identified mechanics are validated by checking whether they di-
rectly or indirectly support the phenomena:

• Shoot bird: Shooting birds is the main game mechanic. By shooting a
bird, the player can make all the aforementioned identified phenomena emerge
directly: parabolic trajectories, collisions, damage and destruction when birds
hit fortresses and explosions when birds hit a TNT box. Also, these phenomena
can emerge indirectly due to the chain reaction produced when fortresses break
and fall over other environment elements. Thus, this mechanic supports the
phenomena.

• Use bird’s special ability: All the birds’ special abilities are designed to
increase the potential amount of damage dealt to fortresses. Therefore, this
mechanic supports the phenomena.

87

6. Execution

6.7.1.4 Evaluate the Deductions

Angry Birds is designed to be an intuitive game. This is achieved both by making use
of as much a priori knowledge as possible and by designing levels so new phenomena,
environment elements, and game mechanics are steadily introduced.

The following design decisions to support the use of a priori knowledge have been
found out when performing this analysis:

• Earth-like world: Many phenomena simulated in the game behave as they
do in the real world. Daily, parabolic trajectories are witnessed in the real
world due to the action of gravity. By creating an environment reassembling
the Earth, the player expects to take into account the gravity force before
shooting a bird, even if they have never played Angry Birds before.

• Birds: Since Angry Birds is entirely built around the idea of shooting projec-
tiles following parabolic trajectories, these projectiles spend most of their time
in mid-air. Naturally, these projectiles became an element present on Earth’s
nature which is usually found flying around: birds.

• Slingshot: Having birds as the game’s projectiles to describe parabolic tra-
jectories is not intuitive enough to the player as birds do not fly like that.
However, when a slingshot is added as part of the environment when shooting
a bird, the player can then safely assume all birds shot with such slingshot
will follow a parabolic trajectory, even if they have never interacted with the
game’s slingshot before.

• Planks’ materials: Glass, wood and stone are familiar materials and so are
their general properties. Furthermore, they are easy to distinguish from each
other. This is part of Angry Birds’ environment design, with glass planks that
are easily destroyed, stone planks that are hard to break, and wood planks
which resilience is somewhere in between the other two.

• TNT boxes as explosion triggers: The relationship between TNT and
explosions is very common in games as well as it is in the real world. Thus,
when the player identifies a TNT box in the environment, they expect to be
able to destroy it and cause a big explosion phenomenon. Angry Birds is not
an exception to this.

On the other hand, there are also aspects of Angry Birds which the player needs
to learn by playing, as their a priori knowledge is not enough. Nonetheless, these
aspects are carefully and gradually introduced to the player. Thus, the amount of
deductions made during gameplay is limited, not overwhelming the player with a
burst of new concepts early in the game. Thanks to this design approach, a posteriori
knowledge can more easily be built by the player around these concepts.

One of the most relevant and illustrative examples of how these concepts are intro-
duced is how new birds are presented to the player. First, when a new type of bird
is introduced, it is always done once the player has completed a fair amount of levels
in which no new bird has appeared. Secondly, in the levels where a new type of bird
appears, it is always done by following a specific structure. This structure consists

88

6. Execution

on letting the player shoot several instances of the same new type of bird and none
of the others. This improves the quality of the deductions the player makes when
experimenting with a new element from the environment, such as the new bird, by
letting the player trigger more instances of the same phenomenon, leading to a more
accurate a posteriori knowledge.

6.7.2 Under Surveillance
With the final version of Under Surveillance already developed, it is necessary to
validate the result. In order to carry out this validation, an analysis using the PEP
framework methodology was performed.

As hinted previously, some of the elements that were originally part of the design of
the game, were not ultimately implemented due to time restrictions. In particular,
the fire phenomenon and its related environment elements and mechanics are not
part of the final product. In consequence, the subsequent sections provide an analysis
of the final version of the game as it is implemented, with electricity and water.

6.7.2.1 Identify the Phenomena, the Environment and the Mechanics

A list with all the phenomena, the environment elements and the mechanics present
in the final version of Under Surveillance has been tailored:

• Mechanics: Throw electricity, throw water.

• Phenomena: Electricity propagation through conductive materials, electric-
ity interaction with electrical devices, water movement according to fluid dy-
namics and water buoyancy.

• Environment: Metallic and non-metallic objects which conduct and isolate
electricity, respectively, electrical devices that can be interacted with electric-
ity, swimming pools, objects that float.

6.7.2.2 Validate the Phenomena and the Environment

All the aforementioned phenomena are then validated by checking whether they are
supported by the environment elements or not:

• Electricity propagation through conductive materials: All the objects
present in the environment fall in one category, either they are metallic or they
are non-metallic. Metallic materials always react by propagating electricity,
which is visually shown by generating electric sparks and arcs. Non-metallic
materials do not react to electricity.

• Electricity interaction with electrical devices: A series of visually identi-
fiable electrical devices are placed throughout the environment. These devices
consistently react to electricity when thrown by the player. The reaction can
be always witnessed in real-time by the player.

89

6. Execution

• Water movement according to fluid dynamics: All the concave areas
(swimming pools) present in the environment can be filled with water, which
will inside accumulate them.

• Water buoyancy: All the wooden-like objects present in the environment
float when they are on the water.

6.7.2.3 Validate the Mechanics

All the previously identified mechanics are validated by checking whether they di-
rectly or indirectly support the phenomena:

• Throw electricity: The player can throw electricity to any object present
in the environment. If the player throws electricity to a metallic object, the
phenomena “electricity propagation through conductive materials” emerges.
On the other hand, if the player throws it to to an electrical device, the phe-
nomena “electricity interaction with electrical devices” emerges. Therefore,
this mechanic supports the phenomena.

• Throw water: The player can throw water anywhere in the environment.
If the player throws the water inside a concave area, water will accumulate,
raising its level the more water the player throws. Therefore, by doing this
the phenomena “water movement according to fluid dynamics” emerges. At
the same time, if any wooden-like object is present in this area, it will float as
the water level rises, which implies the emergence of the phenomena “water
buoyancy”.

6.7.2.4 Evaluate the Deductions

When designing Under Surveillance, both authors agreed on having a strong focus
on making the game as intuitive as possible. To ease the learning curve of the game,
the design heavily relies on players’ a priori knowledge. On top of that, the main
two mechanics are not present since the beginning of the game. Instead, the player
can initially only throw electricity. When they make a fair amount of progress and
are usually familiar with this mechanic, the throw water mechanic is introduced.

The following design decisions to support the use of a priori knowledge can be
identified in the game:

• Real-world inspired objects: Most of the environment elements of the
game are representations of objects that exist in real life and which material
is identifiable. For instance, jails are known to be metallic. This helps the
player easily identify whether an object is metallic or not, and, consequently,
whether it will conduct electricity or not.

• Real-world inspired phenomena: The behaviors of both electricity and
water were not at all created from scratch by the designers. Instead, they
are representations of their behaviors in the real world. This helps the player
to predict how the environment will react to both electricity and water even
without having used it yet.

90

6. Execution

On the other hand, there are also aspects of Under Surveillance that the player
needs to learn by playing, as their a priori knowledge is not enough. For this reason,
authors have designed the game so that these concepts are gradually introduced, in
an attempt to not overwhelm the player with a large number of new ideas to be
learned in a short period.

The clearest example of this design philosophy is the fact that the main character’s
abilities are not presented simultaneously. Instead, the main character is provided
with electricity powers first. It is only after the player has made enough progress
through the game and is therefore familiar with this ability, that water is intro-
duced.

91

6. Execution

92

7
Results

7.1 The PEP Framework
The first major outcome of the thesis is the formal method created by the authors
to develop physics-based games, namely the PEP framework (standing for Player,
Environment and Physics). It is important to mention that the method has been
already thoroughly explained in Sec. 6.2 and applied in Sec. 6.3 and Sec. 6.7.
Consequently, this section provides only an overview of the framework.

Fig. 7.1 shows the architecture of the framework.

Figure 7.1: The PEP framework architecture.

According to the PEP framework, physics-based games can be broken down into
three main components and three secondary components that emerge from the in-
teractions among the former.

The three main components are:

• Physics: Set of rules governing the environment.

• Environment: Materialization of the current game state [10].

93

7. Results

• Player: External user who interacts with the environment.

The three secondary components are:

• Mechanics: Methods invoked by the player, designed for interaction with the
environment [61].

• Phenomena: Observable events or occurrences manifested in the environ-
ment, consequence of the physics.

• Deductions: Player ’s knowledge gain regarding how the physics work derived
from observed phenomena.

7.1.1 Applying the framework
The PEP framework can be applied both to design and analyze physics-based games.
This section provides an overview of both processes, of which the complete expla-
nation can be found in 6.2.2.

The design process consists of the following steps:

1. Design phenomena: Game designers propose phenomena which will be
present in their new physics-based game.

2. Design environment: Taking as a starting point the phenomena designed
in the previous step, an environment is derived from them.

3. Formalize physics: Once the phenomena and the environment have been
defined, the phenomena behaviors in such environment are generalized by
defining laws of physics. These set of laws will rule all the environment and
all its emerging phenomena.

4. Design mechanics: How the player will interact with the environment must
be specified. These mechanics must support the phenomena by allowing the
player to directly or indirectly originate, alter or bring to an end phenomena.

5. Design deductions: Designers must ensure the game’s physics are intuitive
to the player, by limiting the amount of deductions the player needs to make
during gameplay.

The analysis process consists of the following steps:

1. Identify the phenomena, the environment and the mechanics: All the
phenomena, the environment elements and the mechanics are listed.

2. Validate the phenomena and the environment: The phenomena iden-
tified in the previous step must be validated by checking whether or not the
environment supports such phenomena.

3. Validate the mechanics: The mechanics identified in the first step must be
validated by checking if they directly or indirectly support the phenomena.

4. Evaluate the deductions: The way the player learns about the game’s
physics must be analyzed. Every phenomenon which cannot be explained by

94

7. Results

the player ’s a priori knowledge will lead them to make deductions, establishing
a posteriori knowledge about how the game’s physics work. The more grad-
ually the player needs to make deductions, the less overwhelming the game
becomes when learning about it and its physics.

7.2 Under Surveillance
After developing Under Surveillance throughout all the phases explained in Sec. 6,
a finalized and playable version of the game was obtained. In Fig. 7.2 multiple
screenshots of the final version of Under Surveillance are shown.

(a) Main menu. (b) The robot is trapped in a jail cell.

(c) The robot throws electricity to open
the door of the jail cell.

(d) The robot encounters the first
puzzle room.

(e) The robot discovers a secret
collectible hidden in the first puzzle

room.

(f) The robot fills a pool area with
water in order to restore the electricity

of the second puzzle room.

Figure 7.2: Final version of Under Surveillance.

95

7. Results

The rest of this section presents an overview of this result, as well as how it was
distributed and promoted.

7.2.1 Gameplay
Since the developed product is a game, the best way to showcase all its features and
its potential is through a gameplay video. The following YouTube link contains a
complete gameplay of Under Surveillance: https://youtu.be/ix5ictxuMVQ [69].

7.2.2 Distribution
As stated in Sec. 5.1.1, the master thesis authors were interested in developing a
game, not only to answer the research question presented in Sec. 1.2, but also “to
increase the extension and quality of their portfolio”. Publishing and distributing
the game was essential to achieve this.

The platform chosen to publish the game, due to its popularity, its features and its
affordability was Itch.io [70]. Itch.io provides free storage for the compiled game as
well as any other resources related to the game. It also allows for the creation of a
personalized web site that potential players can visit to obtain information about
the game and download it. This feature allows to drastically increase the public
visibility of the game.

Fig. 7.3 shows the final look of the web page created for Under Surveillance using
Itch.io. The link to that page is: https://adriannp57.itch.io/under-surveillance
[71].

Figure 7.3: Itch.io web page of Under Surveillance.

96

https://youtu.be/ix5ictxuMVQ
https://adriannp57.itch.io/under-surveillance

7. Results

7.2.3 Social Media
In order to further increase the visibility of the game, reaching more potential play-
ers, social media accounts were created to promote Under Surveillance. In these
accounts, the authors posted relevant content related to the state of the develop-
ment of the game. The goal behind this was to build a small community before
releasing the game. This would help to increase its popularity during the first days
of its release, which are critical for a game to succeed.

Fig. 7.4 and Fig. 7.5 show examples of posts and promotional content published in
social media.

Figure 7.4: Example of one of the multiple content used to promote Under
Surveillance.

Figure 7.5: Posts published on the social media accounts of Under Surveillance.

97

7. Results

98

8
Limitations, Discussion and

Ethical Considerations

8.1 Limitations and Challenges
Some limitations must be taken into account when making use of the PEP frame-
work and when playing Under Surveillance. This section covers the most relevant
limitations of both.

8.1.1 The PEP Framework
First, as mentioned in Sec. 1.4, this work does not intend to become the only method
to apply when designing or analyzing physics-based games. The framework does not
aim to help to face all the challenges that need to be tackled when creating a game
or analyzing it. For example, the PEP framework does not take into consideration
the player ’s desirable emotional responses (aesthetics) during gameplay, which is
addressed by other formal approaches such as [15].

Secondly, extensive testing of the PEP framework has not been conducted. Conse-
quently, how well the framework performs at edge cases is yet to be demonstrated.

Lastly, as for the generation of deductions during gameplay, it has been assumed
the player has no previous experience with the game. This might not be the case
in some scenarios in which the player has watched other people playing the same
game or they have gathered information about the game in any other way.

8.1.2 Under Surveillance
As for Under Surveillance, it is important to recall that the initial scope was reduced
a few times. In the first paper prototypes shown in Sec. 6.1.1 the game was planned
to contain a considerable amount of natural elements and interactions. Most of
these were discarded before the first formal design of the game, presented in Sec.
6.3. Furthermore, during the implementation phases, presented in Sec. 6.4, Sec. 6.5
and Sec. 6.6, the scope was again reduced by eliminating the fire and all its related
interactions from the game.

To summarize, the authors had an initial scope that was too ambitious considering
the amount of time given to develop the master thesis. Nonetheless, since the agile

99

8. Limitations, Discussion and Ethical Considerations

practices explained in Sec. 4.1.1 were applied, it was possible to dynamically solve
this problem, by eliminating or modifying some of the requirements of the game
without creating a significant overhead in terms of workload.

8.2 Discussion
As mentioned in Sec. 5.2.1, the authors planned to submit the work related to the
PEP Framework to a relevant conference to obtain feedback from experts on the
field and potentially have a published article.

After considering several options, the work was ultimately submitted to the IEEE
Conference on Games (CoG) 2020. [72]. A scientific paper was written, collecting
all the relevant information regarding the PEP Framework. This paper is attached
in Sec. A.

In relation to the outcome of the submission, it is important to first understand
how the peer review process works. Each work is reviewed by four anonymous
experts on the field, each of whom grades the submission by giving it a numeric
score between -3 and 3. A negative score means that the paper is rejected, while
a positive score means that it is accepted. The greater is the absolute value of the
score, the strongest is the rejection or acceptance. A score of zero implies that the
paper is a borderline case.

After the PEP Framework paper was reviewed by four experts, the results were
emailed to the authors. The following paragraphs present the review results, sum-
marizing the most relevant parts from the comments provided by the reviewers.

Reviewer 1: -1 points.
Given the strong philosophical background, the paper seems more suitable to other
conferences than IEEE. Even if the PEP Framework has some value, game developers
usually design their games around what game engines offer. It is suggested to either
leave the paper as it is and submit to a different conference or that the philosophical
discussions are toned down to something more practical.

Reviewer 2: -2 points.
The grounding theories of Plato and Kant are somewhat out-of-context and detract
rather than add to the paper. The mental model is more relevant but has already
been explored extensively in the game studies literature. Therefore the paper feels
shaky in terms of novelty. It is also unclear how it specifically is best-fitted for
physics-based games, since the mental model, and player’s observations of (often
opaque) phenomena are a big part of all games.

Reviewer 3: 0 points.
Even though the paper proposes an interdisciplinary approach to physics-based
games, we already have tools to design even more complex scenarios, mechanics
and physics. Therefore, the added value is quite limited.

Reviewer 4: 2 points.
The psychology and philosophy backgrounds are adequately described. The authors

100

8. Limitations, Discussion and Ethical Considerations

present two examples in order to prove the validity of the proposal. My final evalu-
ation of the paper is good, and in my opinion, it can be accepted. Still, no “Related
Work” section and no references about physics-based games are provided. I would
suggest to review that.

Overall, even though the paper was rejected, one of the reviewers considered it was
a borderline case and another considered that it could be accepted. Also, one of
the reviewers that rejected the paper advised the authors to try to submit it to a
more appropriate conference. Hence, the developed framework and the paper have
at least some potential and they may have a strong value after some polishing.

8.3 Ethical Considerations
The video game industry is not free from ethical and societal problems that are
confronted every day. As part of the development of Under Surveillance, the master
thesis authors addressed three of the most relevant, and sometimes controversial,
according to their code of ethics, as described in the following subsections.

8.3.1 Gender Equality
From the very early days of the video game industry, it has always faced big ethical
and societal problems regarding gender inequality where women have been denied
their human rights, both inside and outside the video games themselves. Denying
women from full participation in leadership and decision-making roles within the
industry is just one of the uncountable obstacles women need to face every day
within the field to achieve the same as a man.

Although the industry is slowly advancing towards the end of the discrimination
against women and girls, this persists. Therefore, half of the population cannot
enjoy participating in the industry as they deserve and they cannot enjoy playing to
the games they produce at its fullest. Thus, as part of what the master thesis authors
believe, Gender Equality [73], as described in the Sustainable Development Goals
from the United Nations [74], was taken into account when designing the narrative
design of Under Surveillance. The main character is designed so every player can
feel identified with it, regardless of their gender, unlike many other video games
where their main protagonists are usually a white middle-aged man, fomenting the
aforementioned discrimination.

8.3.2 Quality Education
Video games are also a great opportunity to ensure inclusive and quality education
while they can be lifelong learning opportunities for all. Video games can make play-
ers liberate their intellect and unlock their imagination, which both are fundamental
pieces for self-respect.

Since Under Surveillance is a puzzle-solving game, a learning experience was care-
fully designed to hone and enhance the player problem-solving skills. This foments

101

8. Limitations, Discussion and Ethical Considerations

and supports the 4.4 target goal from the Quality Education [75] sustainable de-
velopment goal: Increase the Number of People with Relevant Skills for Financial
Success.

8.3.3 Reduced Inequalities
As game developers, the master thesis authors want Under Surveillance to be played
by the greatest possible number of people, reducing inequalities, as described in
Reduced Inequalities [76] from the Sustainable Development Goals. Taking into
account accessibility is crucial to achieving this since more people will play Under
Surveillance if they are physically able to enjoy it.

One of the main concerns the authors had during the development of Under Surveil-
lance is how relying on color to provide contrast and feedback could affect colorblind
players. This was particularly important for the main character, whose current en-
abled ability is displayed by rendering it with a specific color (yellow for electricity
and blue for water). Fig. 8.1 shows both states of the main character with filters
that display its colors as perceived by people with different types of color blindness.

As can be seen, whether the player has protanopia, deuteranopia or tritanopia,
blue and yellow can still be distinguished from one another. Therefore, in terms
of contrast and differentiation of character states, color blindness does not seem to
cause any major problems. Nonetheless, even if these players can distinguish these
two colors, it is still pending to study whether they can easily identify electricity as
electricity and water as water.

102

8. Limitations, Discussion and Ethical Considerations

(a) Original. (b) Protanopia. (c) Deuteranopia. (d) Tritanopia.

(e) Original. (f) Protanopia. (g) Deuteranopia. (h) Tritanopia.

Figure 8.1: Main character visualized with different color blindness filters.

103

8. Limitations, Discussion and Ethical Considerations

104

9
Conclusion and Further Work

9.1 Conclusion

This master thesis has introduced, explained and applied the PEP Framework, a
formal method to design consistent and intuitive physics-based games. Further-
more, the method was applied to develop Under Surveillance a 2.5D puzzle-solving
adventure video game. The relevant background, theory and methodologies were
described, along with a plan on how to tackle the work of the thesis. Then, how
the process was executed and its results were presented. Finally, the limitations,
challenges and ethical considerations of the developed work were pointed out.

The developed work aimed to answer the research question presented in Sec. 1.2,
which reads as follows:

“What should be considered when designing physics-based interactions between
player and environment elements to achieve more engaging experiences in

physics-based games?”

In the first phase of the execution presented in Sec. 6.1, the design of a physics-
based game without taking into consideration the physics-based interactions between
player and environment elements was performed. The master thesis authors realized
that they were just expressing different ideas on paper prototypes without following
any particular process. This resulted in a chaotic outcome rather than a useful game
design paper prototype.

Therefore, a formal process along with a vocabulary, namely the PEP framework,
were designed in Sec. 6.2. This process conducts the design of these interactions and
their emerging events consistently and intuitively to the player. As part of proving
the effectivity of such framework, Under Surveillance was re-designed in Sec. 6.3
and successfully implemented in Secs. 6.4–6.6. Finally, the PEP framework was
used to analyze Angry Birds and Under Surveillance in 6.7.

Consequently, answering to the question, the considerations that must be taken into
account when designing physics-based interactions are those included in the PEP
framework methodology, summarized in Sec. 7.1 and deeply explored in Sec. 6.2.

105

9. Conclusion and Further Work

9.2 Further Work
Both the PEP Framework and Under Surveillance can be further extended and
polished. This section presents possible further work for both of these parts of the
thesis.

9.2.1 The PEP Framework
While developing the framework, it was postulated that without changing its core
architecture, but only slightly modifying some of its components, it could also be
used to design and analyze games that are not necessary physics-based.

As stated by the summary by Reviewer 2 in Sec. 8.2, “The mental model, and
player’s observations of (often opaque) phenomena are a big part of all games”,
which gave more strength to the aforementioned postulation.

Although this aspect of the PEP framework has not thoroughly been explored, the
authors realized that most of its components are common to most games. Envi-
ronment, player and mechanics are present in every game by definition. As for the
physics, these could be generalized to all the rules governing a game. Hence, the
concept of phenomena would still be present in any game, not as the emergence of
observable occurrences as a consequence of the physics, but rather as a consequence
of the game rules. Conclusively, the deductions would be related to how these rules
work.

Nonetheless, games in which the aforementioned aspect of the PEP framework does
not apply do exist. When all the game rules are known by the player beforehand,
which is common in board games, deductions are not present since players are not
necessarily expected to learn the rules during gameplay.

9.2.2 Under Surveillance
One extension that can be applied to Under Surveillance is adding fire as the authors
envisioned in their original design. Due to time constraints, this element was dis-
carded. Adding it would provide a richer and longer experience. As a consequence,
more levels would need to be designed and implemented accordingly.

Furthermore, user testing was not carried out. By having different people to test
the game and provide feedback, the product could have been greatly improved.
Luckily, once the game was published to Itch.io, several users downloaded and played
the game. One of them even uploaded a gameplay video to YouTube in which it
was checked that indeed, some of the deductions designed by applying the PEP
framework to the game during its design phase, were successfully carried out. The
comment in which they post the gameplay video can be found in the Itch.io page of
Under Surveillance [71].

106

Bibliography

[1] O. Morgenstern and J. von Neumann, Theory of Games and Economic Behav-
ior. Princeton University Press, 1944.

[2] J. Huizinga, Homo Ludens: A Study of the Play-Element in Culture. Routledge
& Kegan Paul Ltd, 1949.

[3] R. Caillois, Man, Play, and Games. Thames & Hudson, 1961.

[4] C. C. Abt, Serious Games. Viking Press, 1970.

[5] E. M. Avedon and B. Sutton-Smith, The Study of Games. John Wiley & Sons,
1971.

[6] C. Crawford, The Art of Computer Game Design: Reflections of a Master Game
Designer. Osborne/McGraw-Hill, 1984.

[7] B. Suits, The Grasshopper: Games, Life and Utopia. David R. Godine, Pub-
lisher, 1990.

[8] D. Parlett, The Oxford History of Board Games. Oxford University Press,
1999.

[9] G. Costikyan, “I have no words & I must design: Toward a critical
vocabulary for games,” in Computer Games and Digital Cultures Conference
Proceedings. Tampere University Press, June 2002. [Online]. Available:
http://www.digra.org/wp-content/uploads/digital-library/05164.51146.pdf

[10] J. Juul, “The game, the player, the world: looking for a heart of gameness,”
in DiGRA - Proceedings of the 2003 DiGRA International Conference: Level
Up, 2003. [Online]. Available: http://www.digra.org/wp-content/uploads/
digital-library/05163.50560.pdf

[11] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals. The
MIT Press, 2003.

[12] T. Fullerton, C. Swain, and S. Hoffman, Game Design Workshop: Designing,
Prototyping and Playtesting Games. CMP Books, 2004.

[13] J. Juul, Half-real: Video games between real rules and fictional worlds. The
MIT Press, 2005.

107

http://www.digra.org/wp-content/uploads/digital-library/05164.51146.pdf
http://www.digra.org/wp-content/uploads/digital-library/05163.50560.pdf
http://www.digra.org/wp-content/uploads/digital-library/05163.50560.pdf

Bibliography

[14] S. Björk, S. Lundgren, and J. Holopainen, “Game design patterns,” in
DiGRA - Proceedings of the 2003 DiGRA International Conference: Level
Up, 2003. [Online]. Available: http://www.digra.org/wp-content/uploads/
digital-library/05163.15303.pdf

[15] R. Hunicke, M. Leblanc, and R. Zubek, “MDA: A formal approach to
game design and game research,” in In Proceedings of the Challenges
in Games AI Workshop, Nineteenth National Conference of Artificial
Intelligence. AAAI Press, 2004, pp. 1–5. [Online]. Available: http:
//www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-001.pdf

[16] “Lemmings,” Amiga, DMA Design, 1991.

[17] “Lemmings gameplay.” [Online]. Available: https://youtu.be/IN-Ob5phQ1M

[18] “Limbo,” Xbox Live Arcade, Playdead, 2010.

[19] “Limbo screenshots.” [Online]. Available: https://www.trueachievements.com/
game/LIMBO/screenshots

[20] “Inside,” Xbox One, Playdead, 2016.

[21] “The 35 most beautiful roger deakins shots.” [Online]. Available: https:
//filmschoolrejects.com/roger-deakins-most-beautiful-shots/

[22] D. Duprey, “Poster picks: Film versus marketing with
blade runner.” [Online]. Available: https://www.thatmomentin.com/
poster-picks-film-versus-marketing-blade-runner/

[23] Plato, The Republic, 375 BC.

[24] I. Kant, Critique of Pure Reason, 1781.

[25] K. Craik, The Nature of Explanation. Cambridge University Press, 1943.

[26] R. M. Young, “The machine inside the machine: Users’ models of pocket cal-
culators,” International Journal of Man-Machine Studies", vol. 15, pp. 51–85,
1981.

[27] ——, “Surrogates and mappings: Two kinds of conceptual models for interactive
devices,” in Mental Models, D. Gentner and A. L. Stevens, Eds. Lawrence
Erlbaum Associates, Inc., 1983, pp. 35–52.

[28] N. Staggers and A. F. Norcio, “Mental models: concepts for human-computer
interaction research,” International Journal of Man-Machine Studies, vol. 38,
pp. 587–605, 1993.

[29] C. Argyris, “Teaching smart people how to learn,” Harvard Business Review,
vol. 4, no. 2, 1991.

[30] D. L. Meadows, W. W. Behrens, D. H. Meadows, R. F. Naill, J. Randers, and
E. Zahn, Dynamics of growth in a finite world. Wright-Allen Press, 1974.

[31] B. Meyer, Agile! Springer, 2014.

108

http://www.digra.org/wp-content/uploads/digital-library/05163.15303.pdf
http://www.digra.org/wp-content/uploads/digital-library/05163.15303.pdf
http://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-001.pdf
http://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-001.pdf
https://youtu.be/IN-Ob5phQ1M
https://www.trueachievements.com/game/LIMBO/screenshots
https://www.trueachievements.com/game/LIMBO/screenshots
https://filmschoolrejects.com/roger-deakins-most-beautiful-shots/
https://filmschoolrejects.com/roger-deakins-most-beautiful-shots/
https://www.thatmomentin.com/poster-picks-film-versus-marketing-blade-runner/
https://www.thatmomentin.com/poster-picks-film-versus-marketing-blade-runner/

Bibliography

[32] “The scrum framework poster.” [Online]. Available: https://www.scrum.org/
resources/scrum-framework-poster

[33] ZenHub, “Zenhub homepage.” [Online]. Available: https://www.zenhub.com/

[34] GitHub, Inc., “Github homepage.” [Online]. Available: https://github.com/

[35] T. G. Flouris and D. Lock, Managing Aviation Projects from Concept to Com-
pletion. Ashgate Publishing, 2009.

[36] “Principles behind the agile manifesto.” [Online]. Available: https://
agilemanifesto.org/principles.html

[37] “Manifesto for agile software development.” [Online]. Available: https:
//agilemanifesto.org/

[38] “Git.” [Online]. Available: https://git-scm.com/

[39] V. Driessen, “A successful git branching model.” [Online]. Available:
https://nvie.com/posts/a-successful-git-branching-model/

[40] Axosoft, “Gitkraken homepage.” [Online]. Available: https://www.gitkraken.
com/

[41] G. M. Toolkit, “Nintendo - putting play first | game maker’s toolkit.” [Online].
Available: https://youtu.be/2u6HTG8LuXQ

[42] Nintendo, “Nintendo homepage.” [Online]. Available: https://www.nintendo.
com/

[43] A. Cooper, R. Reimann, D. Cronin, and C. Noessel, About Face: The Essentials
of Interaction Design. Wiley, 2014.

[44] H. L. Gantt, “Work, wages and profits,” The Engineering Magazine, 1910.

[45] Adobe Inc., “Adobe XD homepage.” [Online]. Available: https://www.adobe.
com/products/xd.html#

[46] Microsoft Corporation, “Microsoft project homepage.” [On-
line]. Available: https://www.microsoft.com/en-us/microsoft-365/project/
project-management-software

[47] Adobe Inc., “Mixamo homepage.” [Online]. Available: https://www.mixamo.
com/#/

[48] Overleaf, “Overleaf homepage.” [Online]. Available: https://www.overleaf.com

[49] Unity Technologies, “Unity homepage.” [Online]. Available: https://unity.com/

[50] Epic Games, Inc., “Unreal engine homepage.” [Online]. Available: https:
//www.unrealengine.com/en-US/

[51] J. Linietsky, A. Manzur, and contributors, “Godot homepage.” [Online].
Available: https://godotengine.org/

109

https://www.scrum.org/resources/scrum-framework-poster
https://www.scrum.org/resources/scrum-framework-poster
https://www.zenhub.com/
https://github.com/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/
https://agilemanifesto.org/
https://git-scm.com/
https://nvie.com/posts/a-successful-git-branching-model/
https://www.gitkraken.com/
https://www.gitkraken.com/
https://youtu.be/2u6HTG8LuXQ
https://www.nintendo.com/
https://www.nintendo.com/
https://www.adobe.com/products/xd.html#
https://www.adobe.com/products/xd.html#
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.mixamo.com/#/
https://www.mixamo.com/#/
https://www.overleaf.com
https://unity.com/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://godotengine.org/

Bibliography

[52] Raphael Ernaelsten, “Aura - volumetric lighting.” [Online].
Available: https://assetstore.unity.com/packages/tools/particles-effects/
aura-volumetric-lighting-111664

[53] Archanor VFX, “Polygon arsenal.” [Online]. Available: https://assetstore.
unity.com/packages/vfx/particles/polygon-arsenal-109286

[54] Synty Studios, “Polygon - sci-fi city pack.” [Online].
Available: https://assetstore.unity.com/packages/3d/environments/sci-fi/
polygon-sci-fi-city-pack-115950

[55] ——, “Polygon - sci-fi space pack.” [Online]. Available: https://assetstore.
unity.com/packages/3d/environments/sci-fi/polygon-sci-fi-space-pack-138857

[56] IMAscore, “Retro future music pack.” [Online]. Available: https://assetstore.
unity.com/packages/audio/music/electronic/retro-future-music-pack-150623

[57] Cafofo, “Sci-fi sound pack.” [Online]. Available: https://assetstore.unity.com/
packages/audio/sound-fx/sci-fi-sound-pack-154257

[58] Nicrom, “Water 2d tool.” [Online]. Available: https://assetstore.unity.com/
packages/vfx/shaders/substances/water-2d-tool-35521

[59] Typodermic Fonts Inc., “Good times.” [Online]. Available: http://
typodermicfonts.com/good-times/

[60] FlatIcons.net, “Flaticons.” [Online]. Available: https://flaticons.net/

[61] M. Sicart, “Defining game mechanics,” Game Studies, vol. 8, no. 2, 2008.
[Online]. Available: http://gamestudies.org/0802/articles/sicart

[62] “The Legend of Zelda: Breath of the Wild,” Nintendo Switch, Wii U, Nintendo,
2017.

[63] “Angry Birds,” iOS, Rovio Entertainment, 2009.

[64] Unity Technologies, “Navigation and pathfinding.” [Online]. Available:
https://docs.unity3d.com/Manual/Navigation.html

[65] A. Navarro Pérez and S. Soutullo Sobral, “Under surveillance - storage room
level design time-lapse.” [Online]. Available: https://youtu.be/PbOtRs00tYc

[66] R. Bartle, “Hearts, Clubs, Diamonds, Spades: Players Who Suit MUDs.”
[Online]. Available: http://mud.co.uk/richard/hcds.htm

[67] Google LLC, “Material Design.” [Online]. Available: https://material.io/
design/

[68] Birdman, “Angry birds (pc gameplay - 1080p).” [Online]. Available:
https://youtu.be/2BqfjGDsHUs

[69] A. Navarro Pérez and S. Soutullo Sobral, “Under surveillance - walkthrough.”
[Online]. Available: https://youtu.be/ix5ictxuMVQ

[70] Itch.io, “Itch.io homepage.” [Online]. Available: https://itch.io/

110

https://assetstore.unity.com/packages/tools/particles-effects/aura-volumetric-lighting-111664
https://assetstore.unity.com/packages/tools/particles-effects/aura-volumetric-lighting-111664
https://assetstore.unity.com/packages/vfx/particles/polygon-arsenal-109286
https://assetstore.unity.com/packages/vfx/particles/polygon-arsenal-109286
https://assetstore.unity.com/packages/3d/environments/sci-fi/polygon-sci-fi-city-pack-115950
https://assetstore.unity.com/packages/3d/environments/sci-fi/polygon-sci-fi-city-pack-115950
https://assetstore.unity.com/packages/3d/environments/sci-fi/polygon-sci-fi-space-pack-138857
https://assetstore.unity.com/packages/3d/environments/sci-fi/polygon-sci-fi-space-pack-138857
https://assetstore.unity.com/packages/audio/music/electronic/retro-future-music-pack-150623
https://assetstore.unity.com/packages/audio/music/electronic/retro-future-music-pack-150623
https://assetstore.unity.com/packages/audio/sound-fx/sci-fi-sound-pack-154257
https://assetstore.unity.com/packages/audio/sound-fx/sci-fi-sound-pack-154257
https://assetstore.unity.com/packages/vfx/shaders/substances/water-2d-tool-35521
https://assetstore.unity.com/packages/vfx/shaders/substances/water-2d-tool-35521
http://typodermicfonts.com/good-times/
http://typodermicfonts.com/good-times/
https://flaticons.net/
http://gamestudies.org/0802/articles/sicart
https://docs.unity3d.com/Manual/Navigation.html
https://youtu.be/PbOtRs00tYc
http://mud.co.uk/richard/hcds.htm
https://material.io/design/
https://material.io/design/
https://youtu.be/2BqfjGDsHUs
https://youtu.be/ix5ictxuMVQ
https://itch.io/

Bibliography

[71] A. Navarro Pérez and S. Soutullo Sobral, “Under Surveillance.” [Online].
Available: https://adriannp57.itch.io/under-surveillance

[72] IEEE, “IEEE Conference on Games (CoG) 2020 homepage.” [Online].
Available: http://ieee-cog.org/2020/

[73] “Goal 5: Gender equality.” [Online]. Available: https://www.globalgoals.org/
5-gender-equality

[74] “The global goals.” [Online]. Available: https://www.globalgoals.org/

[75] “Goal 4: Quality education.” [Online]. Available: https://www.globalgoals.
org/4-quality-education

[76] “Goal 10: Reduced inequalities.” [Online]. Available: https://www.globalgoals.
org/10-reduced-inequalities

111

https://adriannp57.itch.io/under-surveillance
http://ieee-cog.org/2020/
https://www.globalgoals.org/5-gender-equality
https://www.globalgoals.org/5-gender-equality
https://www.globalgoals.org/
https://www.globalgoals.org/4-quality-education
https://www.globalgoals.org/4-quality-education
https://www.globalgoals.org/10-reduced-inequalities
https://www.globalgoals.org/10-reduced-inequalities

Bibliography

112

A
The PEP Framework: A Formal
Method to Design Consistent and
Intuitive Physics-Based Games

I

The PEP Framework: A Formal Method to Design
Consistent and Intuitive Physics-Based Games

Adrián Navarro Pérez
Department of Computer Science and Engineering

University of Gothenburg
Göteborg, Sweden

gusnavad@student.gu.se

Samuel Soutullo Sobral
Department of Computer Science and Engineering

University of Gothenburg
Göterborg, Sweden

gussoutsa@student.gu.se

Abstract—This paper presents the PEP framework, a formal
method that guides the design and analysis of physics-based
games. The developed work endeavors to facilitate these tasks
by providing a set of defined steps, along with a common
vocabulary all game designers can refer to. The developed formal
process strives to ensure consistency in physics-based games,
while simultaneously making more intuitive to the player the
behaviors that emerge as a consequence of these games’ laws of
physics.

Index Terms—Game Design, Game Research, Physics-Based
Games, Philosophy, Psychology

I. INTRODUCTION

A game is an artifact which supports a voluntary interaction
carried out, within a formal independent transmedial system,
between one or more users and the system itself, performing
a finite number of different types of actions without expecting
a productive outcome [1]–[13].

Games strive to produce meaningful gameplay when played,
which can be achieved in vastly different ways. Physics-based
games endeavor to do so by subjecting players’ interactions
or their consequences to a specific set of consistent laws of
physics. This implies most, if not all, events emerging during
gameplay are governed by these laws. As a consequence, these
events must keep a solid level of consistency in their behaviors.

Maintaining consistency in these behaviors poses even more
challenges to an already arduous task: game design. This
demanding labor is further hindered by the fact that players
are typically required to understand how the laws of physics
make an impact in the game to be able to progress through it.
This challenge is aggravated because it is not convenient nor
practical to directly inform the player about these laws and
each of their consequences.

To mitigate these challenges, inherent to physics-based
games, it is necessary to have a common vocabulary and
a formal method when tackling them. Formalization does
not only provide a standard procedure to coordinate all the
designers working in a project, but it also ensures games are
designed according to an established process in which every
design decision has a clear, justifiable reason. Consequently,
the likelihood of solid, consistent game design and the prob-
abilities of creating a successful product, are increased.

In response to this need, the PEP framework has been
developed. The PEP framework, which stands for physics,

environment and player, provides a common vocabulary and
a formal method, both for designing and analyzing physics-
based games, facilitating the completion of these tasks.

Along this paper, it is first provided a brief and general
overview of the PEP framework architecture. Then, how the
framework is grounded on previously existing concepts from
the fields of philosophy and psychology is explained. Next,
a more detailed overview of the PEP framework is given
together with a specific set of instructions on how to apply
it to physics-based games, regardless of their current develop-
ment stage. Subsequently, real applications of the method are
presented and examined, demonstrating its utility. To conclude,
shortcomings and other future considerations regarding the
presented work are stated.

Nevertheless, the development of this new formal method
does not intend to set a new standard in the game industry. It
aspires to be seen as a new support tool which can be used
by game designers to ease their task in addition to already
existing design methods [14], [15].

II. THE PEP FRAMEWORK

The PEP framework is a formal method that guides the
design and analysis of physics-based games. It ensures con-
sistency while making intuitive to the player the behaviors that
emerge as a consequence of these games’ physics.

According to the PEP framework, physics-based games
can be broken down into three main components and three
secondary components born from the interactions between the
former. Fig. 1 illustrates how all these components relate to
each other.

The three main components are:
• Physics: Set of rules governing the environment.
• Environment: Materialization of the current game state

[10].
• Player: External user who interacts with the environment.
The three secondary components are:
• Mechanics: Methods invoked by the player, designed for

interaction with the environment [16].
• Phenomena: Observable events or occurrences mani-

fested in the environment, consequence of the physics.
• Deductions: Player’s knowledge gain regarding how the

physics work derived from observed phenomena.

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

II

Fig. 1. The PEP framework architecture.

III. BACKGROUND

Research in the fields of philosophy and psychology has
been performed to develop a framework that can be applied to
analyze and design physics-based games. Concerning philos-
ophy, the study has been focused on epistemological currents,
while in the field of psychology, efforts have been concentrated
in the foundations of cognition.

A strong correlation between the real world, from an epis-
temological perspective, and the main principles of physics-
based games was found. They share the same structure of
consistent events that emerge according to the laws of physics
in both scenarios. Moreover, humans learn in both cases how
these laws work primarily by observing such events, e.g., the
humankind learned about gravity because they were able to
perceive its effects and impact on the surroundings.

Simultaneously, the envisioned framework intended to take
into consideration not only the consistency of physics-based
games but also the player’s learning process during gameplay.
Thus, the terms cognition and reasoning became relevant to
the research process.

The Allegory of the Cave by Plato, part of the Book VII from
his Socratic dialogue, The Republic [17], and the Critique of
the Pure Reason by Kant [18], came out as profoundly influen-
tial philosophical theses to determine and specify the different
components of the PEP framework. At the same time, two
tightly related psychological concepts, namely, mental model
and double-loop learning, became essential when developing
the cognitional aspects of the framework.

A. Allegory of the Cave

The Allegory of the Cave is one of the most important and
widely-known allegories in the annals of philosophy. Part of
its acclaim comes from successfully explaining the pillars of
Platonism in a simple, yet profound way. It aims to explain
the situation of the human perception with respect to true
knowledge and how to acquire it over philosophical reasoning.

In this parable, Plato describes a cave inhabited by a group
of people, prisoners since they were born, who can only see
the walls of the cave. Right behind them, there is another wall
and a corridor they cannot see, which is populated by another
group of people who walk around carrying a set of objects.

Behind the prisoners, there is also a bonfire which enlightens
the corridor, illuminating the wall of the cave the prisoners can
see. Therefore, the prisoners observe on the walls the shadows
projected by the set of objects which the other group of people
is carrying around.

Prisoners consider as a legitimate truth the projected shad-
ows they see on the wall. For them, that is their genuine reality
since they are not aware of what is happening out of their
own reach and understanding. They do think the real world is
limited to those shadows, which are just a small consequence
of a greater whole: a world where light interacts with opaque
objects generating shadows.

The conceptual representation of the Allegory of the Cave
in Fig. 2 illustrates how the most important concepts of the
parable relate to one another. This diagram aims to synthesize
the allegory to only what is strictly relevant for the PEP
framework development. These concepts are related to the
framework in Sec. IV.

Fig. 2. Conceptual representation of the Allegory of the Cave.

B. Critique of Pure Reason

Critique of Pure Reason, originally published in 1781, is one
of the most relevant books written by the German philosopher
Immanuel Kant. In this work, Kant explores and determines
the boundaries of metaphysics, a fundamental branch of phi-
losophy that deals with the study of beings and their properties,
principles, causes and fundamentals of their existence.

Before Kant published his work, there were two main
epistemological currents: rationalism and empiricism. Kant
concluded that both currents were problematic. Pure rational-
ism ends up in dogmatism, i.e., use of the reason without
examining its limits. On the other hand, pure empiricism
denies all the knowledge which cannot be tested empirically,
leading to radical skepticism. To solve these limitations, Kant
developed his own thesis by examining pure reason, its limits
and incorporating empirical aspects to his work.

Some of the most significant concepts Kant developed
in Critique of Pure Reason are closely related to multiple
components of the PEP framework. These concepts and the
relations between them are conceptually represented in Fig.
3. Their influence on the PEP framework is explained in Sec.
IV.

Kant refers to transcendental as everything related to knowl-
edge previous to the experience, such as time, space and
fundamentals of logic. This knowledge, is often referenced as
a priori knowledge by the philosopher. A priori knowledge is

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

III

Fig. 3. Conceptual representation of the relevant concepts from the Critique
of Pure Reason.

inherent to the subject and, by itself, cannot be used to acquire
new knowledge.

On the other hand, a posteriori knowledge is derived from
the experience, often providing novel knowledge to the subject.
Furthermore, the only way to acquire and verify such knowl-
edge is through empirical evidence, obtained by observation.
However, a posteriori knowledge is not universal. It may be
false in any case other than the observed.

Kant also argues that reality in itself is unknown to subjects.
The thing-in-itself, or noumenon, cannot be perceived by
subjects as it is inaccessible to them. Consequently, they can
only perceive reality through phenomena, which is how it
subjectively appears to them. According to Kant, questions
such as wondering “the how” are irrelevant. A better con-
ception of reality would be asking how it is perceived by a
specific subject. Understanding reality implies shaping it with
the subject’s a priori knowledge.

C. Mental model and double-loop learning
A mental model is a user’s internal and structured repre-

sentation of a system. It is originated or modified from the
interaction between the user and external events which help to
guide the user’s actions and to interpret the system’s behavior.
[19]–[22].

When users address a specific goal, the mental model might
need to be modified to gain a reactive and deep understanding
of their surroundings to accomplish such goal. This modifi-
cation relies upon the user’s individual experience (reflexive
thinking). This cognitive process is known as double-loop
learning [23].

The most important part of double-loop learning for the
development of the PEP framework is the mental model.
The graph shown in Fig. 4 illustrates double-loop learning
by representing an individual observing its surroundings and
gathering information. This information is then used to update
their mental model, i.e., their interpretation of the real world.
The rest of the elements show all the information being
processed by the individual, ultimately used to make decisions
and accomplish goals that may change and have an impact on
the world.

IV. THE FRAMEWORK IN DETAIL

This section describes each of the PEP framework compo-
nents in detail while establishing explicit relations between

Fig. 4. Conceptual representation of double-loop learning adapted from [24].

these concepts and the ones previously explained in Sec. III.
Fig. 5 provides a summary of these relations, further explained
in the following subsections.

Fig. 5. The PEP framework architecture in detail. Related Plato’s (*), Kant’s
(†) and mental model and double-loop learning (‡) concepts are shown.

A. Physics

Physics are the set of rules governing the environment of
any physics-based game. This includes, but it is not limited
to, Newton’s laws of motion, thermodynamics’ laws and the
electromagnetic force.

However, there are video games featuring physics which are
not present in the real universe, nor do they work as one might
expect, leading to behaviors only present in these games. This
is the case of The Legend of Zelda: Breath of the Wild [25]
when Link uses the Stasis Rune to temporarily freeze an object
in time, storing potential energy while the effect lasts. Once it
is over, all the corresponding kinetic energy is then liberated.

In relation to the Allegory of the Cave, the bonfire is equiv-
alent to the physics. Since the prisoners cannot see the bonfire,
the interpretations they can make about the shadows’ origin
are potentially wrong. Similarly, the physics are hidden to the
player, who can only interpret how they work by observing

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

IV

the environment and the emerging phenomena. Physics are
the reason why phenomena emerge in the environment as the
bonfire is the reason why shadows are projected on the wall.

Regarding Kant’s philosophy, the noumenon, or thing-in-
itself, is equivalent to the physics. The noumenon cannot be
perceived by the subject, or in the case of games, the physics
cannot be directly observed by the player. But notwithstand-
ing this, the physics govern the environment. They are the
noumenon which instantiates the phenomena.

B. Environment

The environment is the materialization of the current game
state. It is the whole game world including every single game
object, characters and, when it is present, the player’s avatar,
which is the player’s representation in the environment. Given
Angry Birds [26], later renamed as Angry Birds Classic, as
an example of physics-based video game, the environment
includes all birds, pigs, the slingshot, wooden planks, glass
blocks, etc.

In the Allegory of the Cave, the walls of the cave correspond
to the environment. It is in these observable walls that the
shadows remain visible to the prisoners. Analogously, in the
PEP framework, the environment, observable by the player,
hosts emerging phenomena during gameplay.

Additionally, double-loop learning’s real world is equivalent
to the environment as they are both observable elements in
which feedback and phenomena emerge, respectively.

C. Player

The player is an external user to the game who interacts
with it via the use of game mechanics.

Regarding the Allegory of the Cave, the prisoners and the
player are correlative. The prisoners can only perceive the
shadows projected on the walls while the bonfire and the peo-
ple carrying the objects are not visible to them. Correspond-
ingly, the player can only perceive the emergent phenomena
in the environment while the physics remain hidden to them.

In connection with Kant’s philosophy, the subject is the
player, who can perceive phenomena, gathering empirical
evidence. From this evidence, a posteriori knowledge, in form
of deductions on how the physics work, is built.

All the player’s a posteriori knowledge modifies and im-
proves their mental model of the physics and how they work.
This mental model is also supported by the player’s a priori
knowledge. From a Kantian perspective, a priori knowledge is
not derived from any experience in the real world. Similarly,
from the PEP framework perspective, the player’s a priori
knowledge is not derived from any experience within the
game, but it can be derived from any external experiences to
the game itself, such as the ones lived in the real world or while
playing other games. How gravity works in the real world is an
example of a player’s a priori knowledge. The player makes
good use of this knowledge to shape an early mental model of
how gravity might work in the game. Eventually, the gameplay
makes the player to compare how gravity works both in the
real world and in the game, leading to a posteriori knowledge

and a more accurate mental model of how it behaves in the
latter.

D. Mechanics

The mechanics are methods invoked by the player to interact
with the game. Nevertheless, this interaction can be carried
out only with the environment. Performing mechanics can
potentially change the environment and, equivalently, the game
state.

E. Phenomena

The phenomena are observable events or occurrences which
manifest in the environment as a direct consequence of the
game’s physics. These visible manifestations are perceived by
the player.

Examples of phenomena in physics-based games are falling
objects due to gravity, burning objects due to fire and thermo-
dynamics’ laws and the propagation of electricity in conduc-
tive materials due to the fundamental laws of electricity. The
different types of phenomena present in these types of games
and the physics ruling them are only constrained by designers’
creativity.

Phenomena are the only observable part of a game related
to the physics. Thus, it is only by thoroughly observing these
phenomena and making their own deductions that the player
can understand to some extent how the physics work in the
game.

In the Allegory of the Cave, the projected shadows on
the wall are equivalent to the phenomena. These shadows
are a visible manifestation consequence of the bonfire in
conjunction with the group of people carrying objects. The
prisoners perceive the shadows, which are the only event
they can interpret to understand the rules of the world they
inhabit. Likewise, the player can only observe phenomena
which manifest in the environment to better understand the
physics governing it.

In relation to Kant’s philosophy, how Kant describes phe-
nomena is analogous to how it is defined in the PEP frame-
work. Kant’s phenomena emerge from the noumenon or thing-
in-itself constituting observable events in the same way PEP
framework’s phenomena emerge as a consequence of the
physics.

According to what the information feedback means in
double-loop learning, a strong connection between such infor-
mation and the phenomena is present. Information feedback
is obtained from facing goals and challenges within the real
world which lets people learn from their own ways to approach
them and their results, continuously updating their mental
models. The same goes for the phenomena which help the
player to learn about their surrounding environment, honing
their mental model of the physics of the game.

F. Deductions

Deductions are the player’s knowledge gain regarding how
the physics work according to the observed phenomena. All
this knowledge helps the player to form a mental model on

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

V

how the physics might work and which phenomena might
emerge from applying certain mechanics to the environment.
The player will never know for sure how close their mental
model got to the actual game’s physics. However, a very close
approximation is to be expected if the game is consistent and
intuitive to the player at all times.

As for Kant’s philosophy, a posteriori knowledge is con-
sidered as a set of deductions by the PEP framework. The
player’s mental model is updated according to the phenomena
they observe and the empirical evidence they gather. Alike a
posteriori knowledge, deductions are not universal, meaning
they may perfectly explain the observed phenomena but it is
not enough to fully understand the underlying nature of the
physics.

To conclude, the acquisition of knowledge is an iterative
process in which the player gets a better understanding of
the physics the more phenomena they observe, and the more
deductions they make from them.

V. THE FRAMEWORK METHODOLOGY

This section provides a list of steps to follow when applying
the PEP framework from two different perspectives: design
and analysis.

From the design point of view, the procedure starts by
creating the phenomena and then deriving the environment
from them. These first two steps ensure consistency between
both of them, since every phenomenon is thereafter supported
by at least one element from the environment. Next, the physics
and game mechanics are created by taking into account the
existing phenomena and environment. This guarantees a set
of physics covering all the possibilities of the phenomena and
environment, while at the same time every mechanic supports
the emergence of phenomena. As the final step, the deductions
a player might make during gameplay are designed to control
how players learn about the game’s physics.

From the analysis perspective, the method explains how
to make use of the framework as a formal approach to an-
alyze physics-based games to review their consistency. It also
helps game designers to detect problems and avoid repeating
the same mistakes. The analysis starts by identifying in no
particular order the game mechanics, the phenomena and the
environment elements. These elements are then validated to
check whether they are consistent with respect to each other.
Finally, the deductions a player can make are evaluated to
check if the player might be overwhelmed when learning how
the game’s physics work during gameplay.

A. Design

This subsection explains the formal process on how to use
the PEP framework as part of the design and development
of new physics-based games. This process consists of the
following steps:

1) Design phenomena: In this creative task, game design-
ers propose phenomena which will be present in their new
physics-based game depending on what type of game they
want to create.

2) Design environment: Taking as a starting point the
phenomena designed in the previous step, an environment is
derived from them. How designers want the environment to be
like has a considerable impact on how important the player’s
a priori knowledge will be in the game. If the phenomena
are typically found in the real world or other games played
by the player, then the player will make use of a substantial
amount of their a priori knowledge to understand how the
physics work. On the other hand, if the player has rarely or
never witnessed the phenomena emerging in this particular
environment, the player will not be able to apply any a priori
knowledge. Thus, the player will only rely on their a posteriori
knowledge gained during gameplay through deductions.

3) Formalize physics: Once the phenomena and the envi-
ronment have been defined, the phenomena behaviors in such
environment are generalized by defining laws of physics. These
set of laws will rule all the environment and all its emerging
phenomena.

4) Design mechanics: This step is interchangeable with the
previous one, since having the phenomena and the environment
defined suffices to start designing game mechanics. In order
to design the mechanics, how the player will interact with the
environment must be specified. These mechanics must support
the phenomena by allowing the player to directly or indirectly
originate, alter or bring to an end phenomena.

5) Design deductions: All the previous steps aim to im-
prove consistency in physics-based games by ensuring the
phenomena, the environment and the mechanics exist for a
justifiable reason. However, besides consistency, the frame-
work also strives to take into account how the player can
learn and understand how the physics work in these games. In
this regard, in order to ensure a game in which its physics are
intuitive to the player, the amount of deductions the player
needs to make must be limited during gameplay. This can
be achieved in two different ways. First, by designing more
familiar phenomena and environment to the player, so more
a priori knowledge is used. Secondly, by designing game
levels where all phenomena and environment are gradually
introduced, to avoid overwhelming situations to the player in
terms of learning.

B. Analysis

This subsection describes the formal process on how to
make use of the PEP framework as part of the analysis to
break an existing physics-based game down. It consists of the
following steps:

1) Identify the phenomena, the environment and the me-
chanics: All the phenomena, the environment elements and
the mechanics are listed. Since the game is already designed,
these can be identified in any particular order.

2) Validate the phenomena and the environment: The phe-
nomena identified in the previous step must be validated by
checking whether or not the environment supports such phe-
nomena. In any state of the game, given the same environment
elements, it must be checked if the same phenomena emerge.
If they do not, a lack of consistency is then detected.

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

VI

3) Validate the mechanics: The mechanics identified in the
first step must be validated by checking if they directly or
indirectly support the phenomena. Mechanics which do not
fulfill this condition, have no relevance to the gameplay, hence,
they have no positive impact on the game’s consistency.

4) Evaluate the deductions: The previous steps examine
the consistency of a physics-based game by checking whether
its proper phenomena emerge, supported by its mechanics,
according to its environment. Nevertheless, how the player’s
cognitive process on understanding how the physics work in
these games is also tackled in this analysis process. Therefore,
the player’s deductions must be evaluated too. To perform this
task, it must be determined first the a priori knowledge most
of the players have available before playing the game for the
first time. Then, it must be studied at which points of the game
the phenomena emerge. Every phenomenon which cannot be
explained by the player’s a priori knowledge will lead them
to make deductions, establishing a posteriori knowledge about
how the game’s physics work. The more gradually the player
needs to make deductions, the less overwhelming the game
becomes when learning about it and its physics.

VI. THE FRAMEWORK APPLIED

In this section, the methodology described and explained in
Sec. V is applied to two different physics-based games. First,
the design process is applied to Under Surveillance, a physics-
based computer video game currently under development by
the authors. Secondly, the analysis process is applied to Angry
Birds, a physics-based mobile video game released in 2009.

A. Design: Under Surveillance

Under Surveillance is a 2.5D physics-based puzzle adven-
ture video game. The player takes control of a mysterious
robot who is able to use and manipulate electricity, fire and
water in order to solve a series of puzzles while progressing
in a dystopian world.

To design Under Surveillance, the PEP framework has been
applied, following the formal process described in Sec. V-A:

1) Design phenomena: Right from the beginning, the au-
thors envisioned a game featuring electricity, fire and water
behaving as they do in the real world. Thus, the following
phenomena were proposed:

• Electricity: Propagation through conductive materials
and interaction with electrical devices.

• Fire: Propagation through burnable materials, smoke gen-
eration and extinction on contact with water.

• Water: Movement according to fluid dynamics, buoyancy
of different objects, vaporization due to hot temperatures
and freezing due to cold temperatures.

2) Design environment: The authors envisioned a game in
which the challenge was not to figure out how electricity, fire
and water behave, but rather how to use these elements to
solve the puzzles present along the way. Therefore, letting
the player make use of their a priori knowledge as much as
possible was a must. Consequently, elements typically found in
the real world interacting with the aforementioned phenomena

were designed as part of the environment. These environment
elements, classified by whether they typically interact with
electricity, fire or water are:

• Electricity: Metallic and non-metallic objects which con-
duct and isolate electricity, respectively, and electrical
devices that can be turned on or off.

• Fire: Objects made of flammable materials, such as
wood, and nonflammable materials, such as steel.

• Water: Shapes allowing the fluid dynamics phenomena to
emerge, such as slopes or empty pools, and objects with
different buoyancies which might float or sink when put
in water.

3) Formalize physics: According to the aforementioned
designed phenomena and environment, the physics were gen-
eralized. Since the electricity, fire and water emulate their own
behaviors in the real world, simplifications of actual laws of
physics were considered.

4) Design mechanics: Given the need to support the phe-
nomena with simple, yet powerful mechanics, the player is
provided with the possibility to interact with the environment
by throwing electricity, fire or water to any environment
element.

5) Design deductions: So far, the phenomena and the
environment were designed so as much as possible a priori
knowledge is used by the player. Moreover, the player is not
able to use electricity, fire and water from the beginning of
the game, but these are gradually introduced as they progress.
These two design decisions sort and limit the amount of
deductions the player needs to make in order to gain a
posteriori knowledge. Thus, the player can now intuitively
learn and understand how the formalized physics work as
the deductions they might make have been adjusted, avoiding
overwhelming situations in terms of learning.

B. Analysis: Angry Birds

Angry Birds is a 2D puzzle physics-based mobile video
game created by Rovio Entertainment and originally published
in 2009. In Angry Birds, the player makes use of a slingshot
to shoot different birds to multiple fortresses to make them
collapse while neutralizing the pigs located at them.

In order to analyze Angry Birds, the PEP framework analysis
process has been applied by following all the steps explained
in Sec. V-B:

1) Identify the phenomena, the environment and the me-
chanics: A list with all the phenomena, the environment
elements and the mechanics has been tailored:

• Mechanics: Shoot birds, use the birds’ special abilities.
• Environment: Earth-like world, planks made of glass,

wood and stone, TNT boxes, pigs and birds.
• Phenomena: Parabolic trajectories, collisions, damage,

destruction and explosions.
2) Validate the phenomena and the environment: All the

aforementioned identified phenomena are then validated by
checking whether they are supported by the environment
elements or not:

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

VII

• Parabolic trajectories: All the objects present in the
environment behave consistently. They always describe
trajectories governed by the same laws of physics.

• Collisions: All the objects present in the environment
collide with each other in a consistent manner according
to the game’s formalized physics.

• Damage and destruction: Planks consistently take dam-
age when they receive an impact by other objects of
the environment and they are destroyed once they have
received enough damage. Under the same conditions and
given the same impact, a plank always receives the same
amount of damage. In order to provide a bigger variety
of this kind of phenomena, planks are made of different
materials, differing in the maximum amount of damage
they can take before they are destroyed.

• Explosions: TNT boxes explode when they receive an
impact by a different object with a force greater than
a specific and constant threshold. The damage of these
explosions to the surrounding objects is always the same,
according to the distances to them.

3) Validate the mechanics: All the previously identified
mechanics are validated by checking whether they directly or
indirectly support the phenomena:

• Shoot bird: Shooting birds is the main game mechanic.
By shooting a bird, the player can make all the afore-
mentioned identified phenomena emerge in a direct way:
parabolic trajectories, collisions, damage and destruction
when birds hit fortresses and explosions when birds hit a
TNT box. Also, these phenomena can emerge indirectly
due to the chain reaction produced when fortresses break
and fall over other environment elements. Thus, this
mechanic supports the phenomena.

• Use bird’s special ability: All the birds’ special abilities
are designed to increase the potential amount of damage
dealt to fortresses. Therefore, this mechanic supports the
phenomena.

4) Evaluate the deductions: Angry Birds is designed to be
an intuitive game. This is achieved both by making use of as
much a priori knowledge as possible and by designing levels so
new phenomena, environment elements, and game mechanics
are steadily introduced.

The following design decisions to support the use of a priori
knowledge have been found out when performing this analysis:

• Earth-like world: Many phenomena simulated in the
game behave as they do in the real world. Daily, parabolic
trajectories are witnessed in the real world due to the ac-
tion of gravity. By creating an environment reassembling
the Earth, the player expects to take into account the
gravity force before shooting a bird, even if they have
never played Angry Birds before.

• Birds: Since Angry Birds is entirely built around the idea
of shooting projectiles following parabolic trajectories,
these projectiles spend most of their time in mid-air.
Naturally, these projectiles became an element present

on Earth’s nature which is usually found flying around:
birds.

• Slingshot: Having birds as the game’s projectiles to
describe parabolic trajectories is not intuitive enough to
the player as birds do not fly like that. However, when
a slingshot is added as part of the environment when
shooting a bird, the player can then safely assume all
birds shot with such slingshot will follow a parabolic
trajectory, even if they have never interacted with the
game’s slingshot before.

• Planks’ materials: Glass, wood and stone are familiar
materials and so are their general properties. Furthermore,
they are easy to distinguish from each other. This is part
of Angry Birds’ environment design, with glass planks
that are easily destroyed, stone planks which are hard to
break, and wood planks which resilience is somewhere
in between the other two.

• TNT boxes as explosion triggers: The relationship
between TNT and explosions is very common in games
as well as it is in the real world. Thus, when the player
identifies a TNT box in the environment, they expect to be
able to destroy it and cause a big explosion phenomenon.
Angry Birds is not an exception to this.

On the other hand, there are also aspects of Angry Birds
which the player needs to learn by playing, as their a priori
knowledge is not enough. Nonetheless, these aspects are
carefully and gradually introduced to the player. Thus, the
amount of deductions made during gameplay is limited, not
overwhelming the player with a burst of new concepts early
in the game. Thanks to this design approach, a posteriori
knowledge can more easily be built by the player around these
concepts.

One of the most relevant and illustrative examples of how
these concepts are introduced is how new birds are presented
to the player. First, when a new type of bird is introduced, it
is always done once the player has completed a fair amount
of levels in which no new bird has appeared. Secondly, in the
levels where a new type of bird appears, it is always done by
following a specific structure. This structure consists in letting
the player shoot several instances of the same new type of
bird and none of the others. This improves the quality of the
deductions the player makes when experimenting with a new
element from the environment, such as the new bird, by letting
the player trigger more instances of the same phenomenon,
leading to a more accurate a posteriori knowledge.

VII. LIMITATIONS AND CHALLENGES

Some limitations must be taken into account when making
use of the PEP framework.

First, as mentioned in Sec. I, this work does not intend to
become the only method to apply when designing or analyzing
physics-based games. The framework does not aim to help to
face all the challenges that need to be tackled when creating a
game or analyzing it. For example, the PEP framework does
not take into consideration the player’s desirable emotional

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

VIII

responses (aesthetics) during gameplay, which is addressed by
other formal approaches such as [15].

Secondly, extensive testing of the PEP framework has
not been conducted. Consequently, how well the framework
performs at edge cases is yet to be demonstrated.

Lastly, as for the generation of deductions during gameplay,
it has been assumed the player has no previous experience
with the game. This might not be the case in some scenarios
in which the player has watched other people playing the same
game or they have gathered information about the game in any
other way.

VIII. CONCLUSION AND FURTHER WORK

This paper has introduced, explained and applied the PEP
framework, a formal method to design consistent and intuitive
physics-based games. An overview, as well as a detailed
description of its architecture, have been presented along with
formal procedures that describe how to apply the framework
when designing and analyzing physics-based games. Finally,
the limitations and challenges of the developed work have been
pointed out.

While developing the framework, it was postulated that
without changing its core architecture, but only slightly modi-
fying some of its components, it could also be used to design
and analyze games that are not necessary physics-based.

Although this aspect of the PEP framework has not thor-
oughly been explored, the authors realized that most of its
components are common to most games. Environment, player
and mechanics are present in every game by definition. As for
the physics, these could be generalized to all the rules gov-
erning a game. Hence, the concept of phenomena would still
be present in any game, not as the emergence of observable
occurrences as a consequence of the physics, but rather as a
consequence of the game rules. Conclusively, the deductions
would be related to how these rules work.

Nonetheless, games in which the aforementioned aspect of
the PEP framework does not apply do exist. When all the game
rules are known by the player beforehand, which is common
in board games, deductions are not present since players are
not necessarily expected to learn the rules during gameplay.

ACKNOWLEDGMENT

This work was developed by Adrián Navarro Pérez and
Samuel Soutullo Sobral with the supervision of Marco Fratar-
cangeli. Adrián acknowledges the financial support from Fun-
dación Margit y Folke Pehrzon, Svensk-Spanska Stiftelsen /
The Swedish-Spanish Foundation and Adlerbertska Foreign
Student Hospitality Foundation and Samuel acknowledges the
financial support from Fundación Barrié.

REFERENCES

[1] O. Morgenstern and J. von Neumann, Theory of Games and Economic
Behavior. Princeton University Press, 1944.

[2] J. Huizinga, Homo Ludens: A Study of the Play-Element in Culture.
Routledge & Kegan Paul Ltd, 1949.

[3] R. Caillois, Man, Play, and Games. Thames & Hudson, 1961.
[4] C. C. Abt, Serious Games. Viking Press, 1970.

[5] E. M. Avedon and B. Sutton-Smith, The Study of Games. John Wiley
& Sons, 1971.

[6] C. Crawford, The Art of Computer Game Design: Reflections of a Master
Game Designer. Osborne/McGraw-Hill, 1984.

[7] B. Suits, The Grasshopper: Games, Life and Utopia. David R. Godine,
Publisher, 1990.

[8] D. Parlett, The Oxford History of Board Games. Oxford University
Press, 1999.

[9] G. Costikyan, “I have no words & I must design: Toward a critical
vocabulary for games,” in Computer Games and Digital Cultures
Conference Proceedings. Tampere University Press, June 2002.
[Online]. Available: http://www.digra.org/wp-content/uploads/digital-
library/05164.51146.pdf

[10] J. Juul, “The game, the player, the world: looking for
a heart of gameness,” in DiGRA - Proceedings of the
2003 DiGRA International Conference: Level Up, 2003.
[Online]. Available: http://www.digra.org/wp-content/uploads/digital-
library/05163.50560.pdf

[11] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-
tals. The MIT Press, 2003.

[12] T. Fullerton, C. Swain, and S. Hoffman, Game Design Workshop:
Designing, Prototyping and Playtesting Games. CMP Books, 2004.

[13] J. Juul, Half-real: Video games between real rules and fictional worlds.
The MIT Press, 2005.

[14] S. Björk, S. Lundgren, and J. Holopainen, “Game design patterns,” in
DiGRA - Proceedings of the 2003 DiGRA International Conference:
Level Up, 2003. [Online]. Available: http://www.digra.org/wp-
content/uploads/digital-library/05163.15303.pdf

[15] R. Hunicke, M. Leblanc, and R. Zubek, “MDA: A formal
approach to game design and game research,” in In Proceedings
of the Challenges in Games AI Workshop, Nineteenth National
Conference of Artificial Intelligence. AAAI Press, 2004, pp. 1–5.
[Online]. Available: http://www.aaai.org/Papers/Workshops/2004/WS-
04-04/WS04-04-001.pdf

[16] M. Sicart, “Defining game mechanics,” Game Studies, vol. 8, no. 2,
2008. [Online]. Available: http://gamestudies.org/0802/articles/sicart

[17] Plato, The Republic, 375 BC.
[18] I. Kant, Critique of Pure Reason, 1781.
[19] K. Craik, The Nature of Explanation. Cambridge University Press,

1943.
[20] R. M. Young, “The machine inside the machine: Users’ models of pocket

calculators,” International Journal of Man-Machine Studies”, vol. 15,
pp. 51–85, 1981.

[21] ——, “Surrogates and mappings: Two kinds of conceptual models for
interactive devices,” in Mental Models, D. Gentner and A. L. Stevens,
Eds. Lawrence Erlbaum Associates, Inc., 1983, pp. 35–52.

[22] N. Staggers and A. F. Norcio, “Mental models: concepts for human-
computer interaction research,” International Journal of Man-Machine
Studies, vol. 38, pp. 587–605, 1993.

[23] C. Argyris, “Teaching smart people how to learn,” Harvard Business
Review, vol. 4, no. 2, 1991.

[24] D. L. Meadows, W. W. Behrens, D. H. Meadows, R. F. Naill, J. Randers,
and E. Zahn, Dynamics of growth in a finite world. Wright-Allen Press,
1974.

[25] “The Legend of Zelda: Breath of the Wild,” Nintendo Switch, Wii U,
Nintendo, 2017.

[26] “Angry Birds,” iOS, Rovio Entertainment, 2009.

A. The PEP Framework: A Formal Method to Design Consistent and Intuitive
Physics-Based Games

IX

	List of Figures
	Introduction
	Problem Description
	Research Question
	Stakeholders
	Internal Stakeholders
	External Stakeholders

	Aim

	Background
	Game Design
	MDA: A Formal Approach to Game Design and Game Research
	Other Methods

	Influential works
	Lemmings
	Limbo
	Inside
	Nineteen Eighty-Four (1984)
	Blade Runner

	Theory
	Philosophy
	The Allegory of the Cave
	Critique of Pure Reason

	Psychology
	Mental Model and Double-Loop Learning

	Methodology
	Agile Development Methodology
	Applied Principles, Practices and Methods
	Version Control Methodology: GitFlow

	Prototyping
	Brainstorming
	Paper Prototype

	Play-First Game Design
	A. Cooper Principles
	Pliancy and Hinting
	Modeless Feedback
	Internal Coherence

	Planning
	Initial Planning
	Planned Result
	Time Plan
	Initiation
	Development
	Finalization

	Final Planning
	Planned Result
	Time Plan
	Initiation
	Development
	Finalization

	External Resources
	Software Tools
	Assets
	Other Resources

	Execution
	Phase 1: Prototyping
	Game Design
	Narrative Design
	Level Design
	Post-Mortem

	Phase 2: The PEP Framework development
	The PEP Framework in Detail
	Physics
	Environment
	Player
	Mechanics
	Phenomena
	Deductions

	Applying The PEP Framework
	Design
	Analysis

	Phase 3: Design of Under Surveillance
	Design Phenomena
	Design Environment
	Formalize Physics
	Design Mechanics
	Design Deductions

	Phase 4: First Version of Under Surveillance
	Character
	Level Design
	Post-Processing
	Bloom
	Color Grading

	Menus and UI
	Post-Mortem

	Phase 5: Second Version of Under Surveillance
	Level Design
	Area 1: The Prison
	Area 2: The Storage Room

	Post-Mortem

	Phase 6: Final Version of Under Surveillance
	Narrative Design
	Software Architecture
	Character Design
	Animations
	Scripting

	Physics
	Electricity
	Water
	Fire

	Level Design
	Area 1: Escaping the Jail Cell
	Area 2: Corridor
	Area 3: Elevators
	Area 4: Swimming Pools

	Lighting
	Post-Processing
	Ambient Occlusion
	Bloom
	Color Grading

	Menus and UI
	Cursor

	Sound Design
	Background Music
	Sound Effects
	Dialogues and Voice Lines

	Phase 7: Analysis
	Angry Birds
	Identify the Phenomena, the Environment and the Mechanics
	Validate the Phenomena and the Environment
	Validate the Mechanics
	Evaluate the Deductions

	Under Surveillance
	Identify the Phenomena, the Environment and the Mechanics
	Validate the Phenomena and the Environment
	Validate the Mechanics
	Evaluate the Deductions

	Results
	The PEP Framework
	Applying the framework

	Under Surveillance
	Gameplay
	Distribution
	Social Media

	Limitations, Discussion and Ethical Considerations
	Limitations and Challenges
	The PEP Framework
	Under Surveillance

	Discussion
	Ethical Considerations
	Gender Equality
	Quality Education
	Reduced Inequalities

	Conclusion and Further Work
	Conclusion
	Further Work
	The PEP Framework
	Under Surveillance

	Bibliography
	The PEP Framework: A Formal Method to Design Consistent and Intuitive Physics-Based Games

