
DF

Flock O’ War
A Procedural Strategy Game Based on Real-Time Flocking
Behaviour

Bachelor’s thesis in Information Technology

Erik Jergéus
Maria Fornmark
Max Arfvidsson Nilsson
Sigbjørn Kjesbu Drøsshaug
Simon Olsson
Tobias Karlsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Bachelor Thesis 2020

Flock O’ War

A Procedural Strategy Game Based on Real-Time Flocking
Behaviour

Erik Jergéus
Maria Fornmark

Max Arfvidsson Nilsson
Sigbjørn Kjesbu Drøsshaug

Simon Olsson
Tobias Karlsson

DF

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2020

Flock O’ War
A Procedural Strategy Game Based on Real-Time Flocking Behaviour

©
ERIK JERGÉUS,
MARIA FORNMARK,
MAX ARFVIDSSON NILSSON,
SIGBJØRN KJESBU DRØSSHAUG,
SIMON OLSSON,
TOBIAS KARLSSON,
May 2020.

Supervisor: Mads Rønnow, Department of Computer Science and Engineering,
Chalmers University of Technology
Examiner: Michael Heron, Department of Computer Science and Engineering, Chalmers
University of Technology

Bachelor Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by David Frisk
Gothenburg, Sweden 2020

iv

Abstract
In nature, it is common for animals to move together in a cohesive pattern, but
without any apparent direction. This is referred to as flocking, herding or schooling
etcetera depending on the species. The purpose of this bachelor’s thesis is to inves-
tigate whether the basic rules of flocking can be utilised as a gameplay mechanic
to create a fun and realistic looking game. To accomplish this, a strategy game
with flocking as a key feature was created within the Unity and C# environment.
A large focus was put on gameplay elements, such as animations, sound, and visual
appearance, for the players to have a more enjoyable experience. The result is an
entertaining strategy game for two players where each player is in charge of their
own army of troops, that move according to the rules of flocking, battling against
each other on a procedurally generated landscape.

Sammandrag
I naturen är det vanligt att djur rör sig tillsammans i ett sammanhängande mönster,
dock utan någon uppenbar riktning. Detta fenomen bildar flockar, hjordar eller stim,
etcetera, beroende på arten. Syftet med det här kandidatarbetet är att undersöka
ifall de grundläggande reglerna för flockbeteende kan användas som en spelfunktion,
för att skapa ett spel som är roligt och ser realistiskt ut. För att uppnå detta
skapades ett strategispel, med flockbeteende som en huvudfunktion, inom Unity-
och C#-miljön. För att spelarna skulle ha en bättre upplevelse så lades ett stort
fokus på spelfunktioner, så som animationer, ljud, och utseende. Resultatet är ett
underhållande strategispel för två spelare där varje spelare är ledare över sin egen
armé, som rör sig enligt reglerna för flockbeteende och slåss mot varandra på ett
procedurellt genererat landskap.

Keywords: flocking behaviour, aggregations, video-game, strategy, procedural gen-
eration, human, simulation, unity.

v

Acknowledgements
We would like to thank our supervisor, Mads Rønnow, for his support during this
project. Your aid and encouragement allowed us to go further and explore more
possibilities. We would also like to thank Brackeys and Board To Bits Gaming for
helping us with their programming tutorials on YouTube. Without their help, we
would have not come as far as we did.

Group DATX02-20-88, Gothenburg, May 2020

vii

https://www.youtube.com/user/Brackeys
https://www.youtube.com/channel/UCifiUB82IZ6kCkjNXN8dwsQ

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Aim . 2
1.2 Scope . 2

2 Theory 3
2.1 Aggregations and Flocking . 3
2.2 Simulation of Flocking . 4

2.2.1 The Basic Rules of Flocking 4
2.2.2 Extending Flocking Rules . 6

2.3 Flocking Behaviour in Human Agents 6
2.4 Procedural Generation of Terrain . 7
2.5 Game Design . 8

2.5.1 Type and Genre . 8
2.5.2 Game World . 9
2.5.3 Player Interaction . 9
2.5.4 End Condition . 10
2.5.5 Resources . 10

3 Method 11
3.1 Tools . 11

3.1.1 Game Engine . 11
3.1.2 Unity Asset Store . 12
3.1.3 Visual Studio IDE . 12
3.1.4 Git Version Control . 12
3.1.5 GitHub . 12
3.1.6 Remote Communication . 13

3.2 Flock Behaviour Development . 13
3.2.1 Prototyping . 13
3.2.2 Composite Behaviours . 13
3.2.3 Additional Flocking Behaviours 15
3.2.4 Optimisation and the O(n2) Problem 16

3.3 Game Design . 17
3.3.1 Gameplay . 17

ix

Contents

3.3.2 World Generation . 17
3.3.3 Sound Effects . 18
3.3.4 Animations . 19
3.3.5 Camera . 20
3.3.6 Interface . 20
3.3.7 Game Balance . 21

3.4 User Testing . 22

4 Results 23
4.1 Gameplay . 23

4.1.1 Startup Scene . 23
4.1.2 Setup Scenes . 24
4.1.3 Unit Spawning . 25
4.1.4 Unit Types . 26
4.1.5 Simulation Scene . 27
4.1.6 End Scene . 28

4.2 Flocking Behaviour . 28
4.3 Optimisation . 29
4.4 Procedurally Generated Terrain . 30

5 Discussion 31
5.1 Gameplay . 31

5.1.1 Development Process . 31
5.1.2 Challenges . 32
5.1.3 Suggested Improvements . 33

5.2 Flocking Behaviour . 34
5.3 Optimisation . 35
5.4 Procedural Terrain . 36
5.5 Ethical Aspects . 37
5.6 Conclusion . 37

Bibliography 39

A Appendix 1: Assets I
A.1 Icons . I
A.2 Asset Packages . I
A.3 Animations . II
A.4 Sounds . II

B Appendix 2: Performance Test V
B.1 Computer Specifications for Performance Tests V

x

List of Figures

2.1 A visualisation of the three rules of flocking, separation, alignment
and cohesion . 5

2.2 Procedurally generated terrain using perlin noise. 7
2.3 Shows procedurally generated terrain using perlin noise and octaves. . 8

3.1 UML diagram showing the relation between the three base behaviours
and the CompositeBehaviour. The CompositeBehaviour can be ex-
tended with additional behaviours. 14

3.2 CompositeBehaviour for the scout-type unit in Unity showing be-
haviours and their associated weights. 14

3.3 Scenarios illustrating scouts increased field of vision and the fight or
flight behaviour. 15

3.4 The collider used to detect nearby units, which in this case results in
the targeted unit detecting seven neighbours. 16

3.5 The procedurally generated map, complete with walls, mountains,
valleys and plains . 18

3.6 Shows the four different movement animations used in the game. . . . 19
3.8 The difference in readability between the two renditions of the inter-

faces is significant. Further updates in regards to size and colour also
help. 21

4.1 The four stages of the game . 23
4.2 The menu scene of the game, with options to customise certain as-

pects before starting the simulation. The background image is taken
from the example scene provided in the Polygon Knights Pack (see
Appendix A.2 for references to assets used in the game). 24

4.3 The setup scene where the players can purchase and place their troops
and castles. See Appendix A.2 for references to assets used in the game. 24

4.4 The spawning indicators for each formation 25
4.5 The units for the first army (excluding castle), from left to right:

Infantry, Gunmen, Pikemen, Scout 26
4.6 The units for the second army (excluding castle), from left to right:

Infantry, Gunmen, Pikemen, Scout 26
4.7 The simulation scene, where the two castles are visible together with

fighting troops. 27

xi

List of Figures

4.8 The end scene of the game, which shows a summary of the game
that was just played. The background image is a screenshot from the
example scene provided in the Polygon Knight Package (see Appendix
A.2 for reference). 27

4.9 The resulting terrain when the number of mountains is set to high
and low, respectively . 30

xii

List of Tables

4.1 An overview of unit types and their properties. 26
4.2 An overview of behaviours and how they are weighted in the respec-

tive composite behaviours, default behaviour and scout behaviour. . . 28
4.3 An overview of the performance depending on the number of infantry

units and if they are battling. The tests were done on the same
computer (see Appendix B.1 for specifications) and they denote the
fps with a density corresponding to the natural one achieved while
flocking. 60+ frames are the max measured and everything above 30
fps was playable without significant disturbances in the experience. . 29

xiii

List of Tables

xiv

1
Introduction

Flocking is the phenomenon where many animals are moving together as a collective
unit and appears among many species in nature, such as schools of fish or flocks of
birds [1]. The interest in understanding the origins and simulating this behaviour
has resulted in findings that show the behaviour to be based on simple rules followed
by the individuals [1, 2]. Although the concept of simulating flocking was initially
developed in the field of computer graphics, there are also many applications within
various other research fields[1, 2].

Simulating flocks is interesting in the field of computer graphics because it is de-
sirable to create a realistic rendering of flocks for movies and games [2]. However,
flocking is also interesting in the field of evolutionary biology and behavioural ecol-
ogy, where simulations of flocking are used to observe how particular individual
behaviour facilitates the emergence of flock behaviour [3]. For example, the rules of
flocking have been used to simulate the emergence of new behaviours in the presence
of evolution. By extending the standard rules of flocking to include behaviours such
as the ability to give birth and the need for feeding, the behaviour of a multicellular
organism emerged [3]. These simulations can be useful as a complement to experi-
ments in nature, as simulations are less time consuming and easier to organise. They
are also easier to verify since it is possible to control all the parameters [2]. Other
situations could also be modelled as a flocking behaviour, for example, traffic flow
simulations could be modelled as a flocking situation with added constraints such
as lanes [2].

As mentioned above, flocking is normally a concept used to describe a collective be-
haviour among animals, such as birds or fish, and less often to describe the behaviour
of humans in groups. An interesting question is whether these rules of flocking can
be applied to humans moving in groups. Especially since the experiments on evo-
lution and flocking indicate that by adding additional rules to the flocking, it is
possible to create complex behaviour. This means that human flocking possibly
could be simulated by adding behaviours significant for humans. To do that it is
important to understand the rules of human flocking. Do humans ”flock” according
to the same rules as animals? If not, what is the difference? Can the basic rules of
flocking be extended to create a seemingly realistic human behaviour?

1

1. Introduction

1.1 Aim
The aim is to investigate whether the basic rules of flocking can be utilised as a
gameplay mechanic to create a fun and realistic looking game. A strategy game
is developed, where the flocking is used to simulate the behaviour of two opposing
forces. Further, it is investigated whether the use of flocking as a movement strategy
retains a human-like appearance when used to move armies. Lastly, it is investigated
how the standard algorithm can be extended to implement a fight or flight behaviour
and differentiate the behaviour of different kinds of troops.

1.2 Scope
The main focus of the project is to develop an entertaining game using flocking
behaviour. Particular emphasis is on creating good core gameplay elements and
extending the flocking algorithm in order to be a compelling part of the game. The
project’s focus is not on optimising the algorithm to allow for as large flocks as
possible, but some optimisation might still be needed to make the game enjoyable
on most computers. Neither is the project focusing on user interaction, although
some design work is required for improving the gameplay.

2

2
Theory

This chapter gives a theoretical background to introduce the key concepts relevant
to this report. First, the phenomenon of flocking in nature is presented, followed by
a review of the work that has been done on simulating flocking behaviour. Then,
flocking mechanisms among humans are discussed as well as methods for optimising
flocking algorithms. Finally, some game design concepts are introduced.

2.1 Aggregations and Flocking
Understanding the mechanisms of flocking in nature is fundamental when creating
simulations of flocks, which is a kind of aggregation. Aggregations in nature have
been researched by Parrish et al. [4] and are described as the formation of a whole
from many units. The resulting formation is coherent and cohesive, thus removing
the focus of the observer from the individual members to the group. Flocking is the
phenomenon of animals moving in groups, such as flocks of birds and schools of fish,
and emerges from the phenomenon of aggregation [1].

Biologists have researched mechanisms of aggregations, especially how the individual
benefits from the group [1]. There lies and self-evident advantage in being indis-
tinct within a group, for example when attacked by predators. However, there are
still many questions to answer on why this type of behaviour, where similarity and
conformity are enforced, has emerged in nature.

According to Parrish et al. [4], aggregations can be divided into two categories; pas-
sive and active aggregations. In passive aggregations, the members of the flock are
passively brought together by outside forces, while in active aggregations the group
is formed by active decisions from its members. An example of passive aggregation
could be jellyfish or algae gathered together by currents in the ocean. An active
aggregation could for example form around a food source that many individuals
gather around. To avoid a too dense aggregation, which can lead to depletion of for
example food or oxygen, repulsive forces develop to avoid the individuals ending up
too close to each other. The combination of attractive and repulsive forces lead to
group structures, much similar to the aggregations formed by atoms and molecules,
by reaching an equilibrium of attracting and repulsive forces.

A congregation is an aggregation resulting from attraction in the group itself re-
gardless of outside forces, such as flocks of birds and schools of fish [1, 4]. The

3

2. Theory

formation emerges from a combination of mutual attraction and repulsion between
the individuals. Although the type of interaction differs among different species,
there are some general features ascribed to congregations [1]. There are usually
distinct edges, the density is fairly uniform and often all units are facing the same
direction. Moreover, the individuals have the freedom to move and there are often
coordinated movement patterns.

Parrish et al. [4] summarise a few interesting topics to investigate regarding animal
congregation. They reflect on the importance of the individual member, how the
group is functioning and how the boids work together to form a group:

• What does the individual know about the whole group?
• What are the benefits and costs of being in the group?
• Is there an optimal group size?
• How are the boundaries determined and why are they distinct?
• Why are there patterns?
• What are the assembly rules?
• Can models of the whole predict individual behaviour?

2.2 Simulation of Flocking

When simulating flocking one can not simply simulate the thought process of the
animals involved. Instead one needs to create rules based on the behaviour observed
in nature. When this is done the rules can be converted into code which can run
on a computer. Here it is very important that the rules are simple enough that the
simulation can run while still managing to mimic reality.

2.2.1 The Basic Rules of Flocking
The first algorithm for simulating flocking behaviour was presented by Reynolds in
1987 [2]. This publication is now regarded as a fundamental piece within the field
and is widely cited in later works [1, 3]. In his pivotal piece, Reynolds introduced
the concept bird-like object, boid, and presented the boid model. A boid is a general
term for a member in a flock and the boid model presents how the boids interact
with each other to form a flock [2].

Reynolds viewed simulating flock behaviour as similar to simulations of particle sys-
tems, with the exception that instead of single point particles it is comprised of
boids with geometric shapes and physical attributes. As opposed to particles, boids
also have an orientation and can interact with each other. These interactions can be
summarised into three main rules: collision avoidance, velocity matching and flock
centring, also named separation, alignment and cohesion respectively. A visualisa-
tion of the rules is seen in Figure 2.1

4

2. Theory

(a) Separation Rule.
From [5], public domain.

(b) Alignment Rule.
From [6], public domain.

(c) Cohesion Rule. From
[7], public domain.

Figure 2.1: A visualisation of the three rules of flocking, separation, alignment
and cohesion.

Reynolds’ proposed algorithm represents the internal state of each boid as a vec-
tor representing the direction and the speed of that boid. The impact of the three
rules mentioned above is evaluated based on the distances to flock mates and their
directions. To obtain realistic flocking behaviour, the individual forces have to be
balanced through weights.

Reynolds’ ideas are more explicitly described by Spector et al. [3], where the velocity
vector ~V is composed of the sum of five different components each with a weight
ci. In addition to the original three flocking rules, two components were added to
further tailor the behaviour to the desired situation. The resulting behaviour is
shown in Equation 2.1:

~V = c1 ~V1 + c2 ~V2 + c3 ~V3 + c4 ~V4 + c5 ~V5 (2.1)

~V1 is the movement away from crowds, ~V2 is the movement towards the centre of
the world, ~V3 is the average neighbour velocity, ~V4 is moving towards the centre of
all agents and ~V5 is a random factor. Just like the centre of the world and the ran-
dom factor (~V2 & ~V5) behaviours that were added here, other additional behaviours
could be added and influence the behaviour of the boids, resulting in more complex
behaviour.

Another important aspect to consider is the boid’s perception of its surroundings.
Failing to provide the boid with a realistic amount of information gives an unnatu-
ral flocking behaviour [2]. An animal in the real world has a limited field of view,
and mathematical models need to reflect that aspect to produce a realistic result
[1]. Hence, Reynolds allowed the sensitivity of nearby neighbours to decrease by an
inverse exponential of the distance.

The complexity of simulating both perception and behaviour means that testing the
flocking model is difficult [1]. This is mainly due to the large number of parameters
and special conditions present, meaning that there is a vast amount of cases to be
tested. Verifying the behaviour against real-world data was done only relatively
recently [8].

5

2. Theory

2.2.2 Extending Flocking Rules
While the first simulation of flocking was presented by Reynolds in 1987, there were
also others trying to define mechanisms for flocking behaviour. In 1986, the math-
ematician Okubo [9] had theories on how flocking behaviour could be described
by mathematical models. In 1990, Heppner and Grenander [10] presented another
computer simulation which was based on differential equations but still involved
repelling and attracting forces.

Most of the work from the 1990s and onwards is based on Reynolds’ work, investi-
gating the effect of adding more behaviours, specific behaviours for different species,
and experimenting with changing the values of the weights. The lack of research
within this field, especially during the 1990s, might be due to the advanced math-
ematics and computational resources required, in combination with difficulties in
observing the resulting behaviour [1].

In 1993 and 1994 Reynolds [11, 12] published some work on the evolution of flock
behaviour and was followed by Spector in 2002 and 2003 [13, 3]. This was mainly
done by introducing new behaviours and evaluating the effect of prioritising these
behaviours. A few examples of new behaviours were fear of predators, avoiding ob-
stacles and introducing food sources.

After 2003 there has been plenty of work involving flocking simulations, most of
them based on extending or modifying behaviours in Reynolds’ model. For example
in 2006, Hartman [14] added behaviour for defining the leader of a flock based on
behaviours seen among birds. In 2007, Delgado-Mata [15] worked on introducing
behaviour responding to fear. Also, in 2010 Hildenbrandt [8] compared studies of
real bird flocks of starlings in Rome with their model for flocking, with satisfying
results. The model was based on Reynolds’ theories with added behaviours spe-
cific for starlings, such as aerodynamics, number of flock neighbours, and movement
around sleeping sites.

2.3 Flocking Behaviour in Human Agents
Human’s ability to efficiently communicate during the organisation of group move-
ment generally overshadows the use of non-communicative strategies, such as flock-
ing. Even so, spontaneous flocking has been recorded to occur in human agents when
they have limited perception radius, means of communication, and no externally set
goals. In other words, there exists an inherent desire for humans to spontaneously
act as a flock, without a requirement of external goals [16].

S. Frey & R. L. Goldstone describes in [17] that human flocking arises due to social
norms, which in turn originate from human’s ability to guess the reasoning of other
similar agents. They also pose the idea that human groups converge due to shared
priorities and resources, comparable to animal aggregations. Research on consensus

6

2. Theory

decision making in human groups confirms this behaviour by describing how groups
of human agents possessing conflicting priorities still facilitate efficient consensus
decisions in a flocking manner [18].

Reynold’s simulations used a model based on physics that determined the veloci-
ties based on an acceleration that was applied in accordance with the composite
behaviour in each time step. This worked properly for the simulation of agents that
moves fast in comparison to their acceleration since it resulted in smooth changes
of direction. Z. Shen and S. Zhou [19] describe how a position-based steering algo-
rithm simulated their human agents in military operations more efficiently, due to
these agents moving slowly and changing direction often. This algorithm, however,
is optimised for smaller groups moving in urbanised terrain, which creates a large
focus on the individual, ignoring some factors regarding group movement.

One way to tailor the flocking algorithm towards simulating large groups of humans
in combat is described in [20]. Reynold’s traditional flocking algorithm [2] is used
as the backbone of formation keeping, but it is expanded upon by introducing lead-
ers. These leaders have direct communication with their group of agents and issue
directional and combat commands to get the group to work towards some goal.
While it better accommodates the battle scenario, it does leave some important as-
pects of flocking behind; the decision making of individuals in the absence of direct
communication.

2.4 Procedural Generation of Terrain
Procedural generation is the process of creating data through an algorithm rather
than doing it manually [21]. This technique has been used to generate content for
games as early as the 1980s.

A common method to generate procedural terrain is through the use of Perlin noise.
Perlin noise is a form of generated data that can be distributed across a 2D plane
[22]. Instead of being completely random, the data tends to group up and be similar
to nearby points of data. If you display this data on a 3D graph, with the values
being the height, you get something reminiscent of hills and valleys , see Figure 2.2

Figure 2.2: Procedurally generated terrain using perlin noise.

7

2. Theory

To make the terrain more complex it is possible to stack several layers of Perlin noise
on top of each other [23]. This technique is called using octaves, where the number
of layers is referred to as the number of octaves used. When using octaves, it is
important to resize the layers over time, so that the different layers can represent
different levels of detail. This is done through the two variables lacunarity and
persistence. Lacunarity controls how much the size will decrease in the x and z-
axis for every new layer, which makes the groupings of data smaller and closer to
each other. Persistence instead changes how much the height decreases. If these
are adjusted correctly, the first octave will represent hills, while the third might
represent potholes and larger stones, see Figure 2.3.

Figure 2.3: Shows procedurally generated terrain using perlin noise and octaves.

2.5 Game Design
When designing a game the creator has to make several design choices, which will
impact the expectations and perception of the game. In the book The Art of Game
Design [24], Jesse Schell describes many aspects of game design with a focus on
the process the creators go through when making decisions. Furthermore J. Schell
discusses the benefits and dilemmas of common design decisions.

2.5.1 Type and Genre
In [25] L. Grace describes game types as critical aspects of a game which heavily
influence how the game is played and the skills required from the player. For exam-
ple, in action games, the main allure is the intensity of the action and good reflexes
often determine the skill of the player, while strategy games rely on problem-solving
and game knowledge. By choosing appropriate game types the designer can get an
understanding of their intended audience’s skills and reason for playing and as such
adapt the game to fit them.

L. Grace [25] continues with explaining ”Genre” as an aspect that influences the look
and feel of the game and often affects the structure of narrative elements. Since both
the genre and type influences the narrative style, a thought out connection between
the two creates a more cohesive experience. For example, the horror genre blends
well with the role-playing type, while a simulation type would have a hard time
amplifying horror aspects.

8

2. Theory

2.5.2 Game World
J. Schell [24] expresses that decisions regarding how the game world’s setup lets
the designers pick formats that works best with their theme, interactions, and the
experience they want to mediate. He defines the game world as the medium that
translates an idea into something tangible; a description of the game’s setting that
allows the player to understand the spatial relationship between objects. Some core
design decisions in regards to the game world are whether the world is an open-world
(continuous) or level-based (discrete), if the world is constructed in 2D, 3D or even
in text format, as well as if the game is linear (often seen in books) or continuous.

The decision to create an open-world scenario facilitates more freedom and cre-
ative possibilities at the expense of the designers’ ability to tailor the experience
towards the intention and theme of the game. Therefore many designers choose to
implement a mix of both. The most common way is by having certain parts of the
world be portioned off and more heavily scripted, often referred to as dungeons or
instances. Giving control to the players is another way to create the freedom that
is more tailored towards simulation games. This way the player can tailor the game
towards their preferences and create the perfect map, character, or game element
for them. However, J. Schell [24, p. 203] argues that while the player wants to have
an entertaining experience, they also want to make the game easier for themselves.
Therefore it is likely that they give themselves a lot of power, which in turn makes
the standard game less enjoyable since they now feel a lack of power.

Choosing a 2D world focuses the player on the gameplay as the world is usually
less complex in comparison with 3D, where the players can better relate to and
thereby appreciate what is happening in the world. Text-based-adventures were
common in the earlier days of game development since they were easier to make and
allowed the player to use their imagination to experience the world, however, they
had limitations in how descriptive they could be and required more effort from the
player [24, p. 143–144].

2.5.3 Player Interaction
K. D. Saunders and J. Novak [26] express the importance of the interface in regards
to interactivity in games. It is what makes it possible for a player to connect with
the game and immerse themselves within the world. To facilitate immersion, the
interface needs to be intuitive, give feedback and be easy to interact with. By sim-
plifying the interface and following standards in the industry it becomes easier for
the player to know how to perform the action they intend.

T. Fristoe describes [27] how important it is for the game to respond to the player’s
actions to establish that the player has an impact on the world. By the game’s units
behaving differently depending on what the player did, it becomes apparent that the
player affected the state of the game. Another common way of interacting is player-
to-player, where the game provides a framework for the players to come together and
create exciting challenges. Furthermore, Fristoe discusses how a designer needs to be

9

2. Theory

aware of too much interaction, which can result in an adverse effect of chaos and loss
of player control. Therefore it is most often better to have fewer and well-polished
interactions, rather than overwhelm the players.

2.5.4 End Condition
While a game is not required to have a clear goal or end condition to yield an en-
joyable experience, it is still an aspect that every game designer should discuss. By
introducing ways to win or lose the game designer gets a seamless tool to create ten-
sion, risks, and goals for the player. To accentuate the end condition’s importance,
it is critical for the player to be challenged by the game and realise that they need
to act in order to win. If the end condition is imbalanced the game becomes boring
and pointless since either the game is too easy and there are no risks for the player,
or the player gets frustrated from repeated losses [24].

2.5.5 Resources
For a player to be able to feel accomplished in a challenge a game must allow for
strategy, which in turn requires that a player has access to the strategic management
of resources. The resources themselves can be any sort of commodity that the
player can affect and use and the management of them is what encourages strategic
gameplay. Balancing these resources is important to make the game feel fair, allow
options for the player, and at the same time be scarce enough so that the player
wants to use them in the best way possible [24].

10

3
Method

This chapter outlines the methods used during the course of the project. It presents
the tools used during the game’s development, both for the game itself and for the
process surrounding it. It also describes the implementation details of the game,
the iterative process of developing the flocking behaviour used in the game, and the
game design decisions that were made. Lastly, it also describes how the game was
tested throughout the project.

3.1 Tools
During the course of the project, an array of tools were used. Many of these have
been crucial to the success of the project, as they have provided the most basic
functionalities for creating the game. Among these are tools specifically developed
for game development, but also other tools for software development in general.

3.1.1 Game Engine
When making a game, the use of a game engine is a great choice to help facilitate
the implementation, as it alleviates many of the commonly faced challenges during
development. Some of these challenges are how to render graphics on the screen cor-
rectly, adding audio and animations, as well as organising a large number of assets
and components needed, which many game engines can handle for the developer.
While there are many game engines available to choose from, after some initial dis-
cussion, the choice stood between Unity [28] and Unreal Engine [29].

The group felt more comfortable working in Unity’s C# environment as opposed to
the Unreal Engine’s C++ environment, since C# is syntactically similar to Java,
which the group was proficient in already. Additionally, the group’s supervisor rec-
ommended Unity, as it was considered to have a less steep learning curve. Taking
these things into consideration, the group decided to go with Unity.

Unity is a cross-platform game engine developed by Unity Technologies [28] and is
free to use for non-commercial use and smaller companies generating less than 100
000 US dollars annually [30]. Some of the benefits Unity provides are rendering,
garbage collection, a built-in physics system with collision detection out of the box,
terrain-generating tools, a What You See Is What You Get (WYSIWYG) editor
enabling quick prototyping, and an asset store [31].

11

3. Method

3.1.2 Unity Asset Store
The Unity asset store offers a variety of assets - either for free or for sale. Developers
get access to many different types of assets, ranging from 2-D and 3-D models, to
sound effects, visual effects, and more. Some of the assets available in the store
come in pre-packaged bundles, ready to use out of the box.

The group decided upon an asset pack containing many different assets for a medieval-
themed game such as knights and castles. These can be found in Appendix A.2.
Using game assets allowed the group to focus more on the implementation details
and game design of the project, as opposed to texturing and modelling custom assets
from the ground up.

3.1.3 Visual Studio IDE
Scripts in Unity are used to control the behaviour of objects in the game world [32].
All objects in Unity, which are called “Gameobjects” [33], can have scripts attached
to them, which allows for the implementation of complex behaviour. When installing
Unity, it comes with the option to also install Visual Studio [34], which is a popular
IDE developed by Microsoft. This led the group to use this IDE to implement the
scripts needed to model the behaviours used in the game.

3.1.4 Git Version Control
The Git version control system [35] was used to keep track of development efforts
across team members. Using git alleviates many of the most commonly faced chal-
lenges during development by allowing the developer to experiment and save code
state at different points in time, which can later be merged into a stable codebase,
or reversed in case of bugs. This enables a programmer to develop in safe, small
increments without fear of making irreversible errors.

3.1.5 GitHub
To synchronise the work done by team members, the group used GitHub [36], which
allows the group to work in parallel on the project, with the use of branches [37].
The master branch is conventionally the main branch of the project where a stable
version of the project lives. To ensure a working and stable master branch, the
group made use of code reviews before allowing members to merge their code into
the master branch.

When a member of the group finishes a task on their branch, they create a pull
request [38], asking to merge the work on their branch into the master branch. The
pull request signals for the rest of the team to review the changes before approving or
disapproving the merge. The practice of reviewing new features before adding them
to the main project is a commonly used technique for improving code quality while
increasing the likelihood of finding bugs and enforcing agreed-upon code practices.

12

3. Method

Pull requests also tend to become a focal point for discussion during meetings, which
in turn proliferates knowledge about the codebase across team members.

3.1.6 Remote Communication
During the project, weekly meetings and discussions were done in person, but as the
project progressed, it became necessary to do meetings and discussions remotely.
Slack [39] was chosen for group communication, as its support of threads [40] helped
organise lengthy discussions in one place. Slack was also used to coordinate remote
meetings that would later be done through Zoom [41]. A GitHub bot was added to
the Slack workspace [42] that would automatically post a notification to Slack when
a new pull request was pushed to the GitHub repository, allowing team members
to keep up with changes easier, and be notified when a pull request was awaiting
approval. Communication with the supervisor was done mainly through Signal [43].

3.2 Flock Behaviour Development
The beginning of the project was mostly spent on trying to convert the traditional
version of flocking into something resembling human behaviour. After this much
time was spent on extending the flocking behaviour adding components to make it
behave more like an army at war. Towards the end time was mostly spent on fine
tuning the behaviour to make it more versatile and reliable.

3.2.1 Prototyping
The project’s initial flocking behaviour implementations were based on a Unity tu-
torial series done by the YouTube channel Board to Bits Games [44], which laid the
foundation for the implementation chosen for the game. After some initial devel-
opment, where different unit types were added, the need arose for more complex
behaviour beyond what was provided in the basic implementation of the flocking al-
gorithms. The default flocking behaviour produces some interesting behaviour, but
left to itself, it is without direction and purpose. This seemingly random behaviour
might suffice for a flock of birds to appear realistic, but did not give the desired
outcome for army units moving around on a battlefield.

3.2.2 Composite Behaviours
Given that the game called for more sophisticated behaviour than randomly flock-
ing units, composite behaviours were implemented to allow for the combination of
the three base behaviours; separation, alignment and cohesion, with additional be-
haviours (see Figure 3.1). These composite behaviours were used to give units a
specific behaviour depending on its type. For instance, scout-types can detect units
further away and tries to steer flocks towards winnable battles, while infantry tries
to follow scouts and occupy the front line in battle.

13

3. Method

Figure 3.1: UML diagram showing the relation between the three base behaviours
and the CompositeBehaviour. The CompositeBehaviour can be extended with ad-
ditional behaviours.

By combining several behaviours into a composite behaviour and assigning weights
to each specific behaviour, the composite behaviour can be tailored to represent how
a specific type of unit should behave. This implementation allowed for a streamlined
process when adding new unit types, as it allowed for the combination of already
existing base behaviours, which every unit has in common, and the new behaviour
(see Figure 3.2).

Figure 3.2: CompositeBehaviour for the scout-type unit in Unity showing be-
haviours and their associated weights.

14

3. Method

3.2.3 Additional Flocking Behaviours
In a typical flocking scenario, agents run around and flock with each other depend-
ing on the weights of their specific behaviours. To have a more realistic behaviour
for the armies, units should only want to flock together with other units on the
same team, while trying to attack or avoid the other team’s units depending on the
immediate circumstances. If a smaller group of units is overwhelmed by a larger
one, they should fall back, but if they instead outnumber the enemy, they should
go on the offensive (see Figure 3.3). The decision making of each unit is based on
the given weights to its behaviours in the composite behaviour for that specific unit
type. The weights given to these behaviours determine how strongly it wants to
stay together with its own, and how aggressive it is, among other things.

(a) A scenario where the scouts leads
a group of units towards the enemy,
while the group without scouts are
clueless.

(b) A scenario where the blue team is
outnumbering the red team, which is
fleeing.

Figure 3.3: Scenarios illustrating scouts increased field of vision and the fight or
flight behaviour.

To ensure that the game finishes in a reasonable amount of time, behaviour to make
the armies converge on a common destination was added. Different solutions were
considered, such as making every unit have a preference for walking towards the
centre of the map to battle it out, or having a natural focal point such as each
team having a castle they need to defend. The castle gives the player incentive to
spawn units near it to survive or attack the other team’s castle to win. After some
playtesting, castles were chosen as they felt like the most intuitive way of achieving
the goal while also adding a new gameplay element.

15

3. Method

3.2.4 Optimisation and the O(n2) Problem
There is a common problem in flocking scenarios which comes from how an agent
calculates its movements from other agents in its surroundings, and the scaling prob-
lem that naturally comes with this. In a straightforward implementation, each agent
checks every other agents position and makes calculations for its movements based
on that position, giving O(n2) every frame update.

One solution to this problem is to divide the playing field into equal parts, by using
a grid pattern, then when the movement calculation is run, only the agents within
the same cell or neighbouring cells are checked, to reduce the number of iterations
needed. This solution runs into the same problem if a lot of agents happen to be
within the same cell. The group looked into potential solutions to this problem, such
as using quadtrees [45] for subdividing cells containing some amount of agents that
is above some predefined threshold, but instead decided to use an already existing
functionality within Unity. The solution was to use Unity’s built-in physics system
through utilising colliders to detect nearby units that happen to be within a given
range. The OverlapSphere method [46] in the physics class of Unity’s scripting API
is often used for range detection and was thus a suitable solution to this problem,
see Figure 3.4.

Figure 3.4: The collider used to detect nearby units, which in this case results in
the targeted unit detecting seven neighbours.

16

3. Method

3.3 Game Design

During the course of the project, game design focus went through several phases.
Initially, focus was on prototyping and brainstorming game mechanics to make an
entertaining game. The middle parts of the project were instead spent on refining
game mechanics and adding content. During the last weeks of the games develop-
ment, focus shifted more towards finishing up features, fixing bugs and improving
the game experience.

3.3.1 Gameplay

During the development of the game, a decision was made early on to focus on the
gameplay aspects of the game, rather than the technicalities of the flock simulation.
A major motivator was to have fun during development and while playing the game,
and the group consensus steered towards focusing on the fun factor of the game and
its gameplay, over optimising for a maximum number of agents simulated at once.
This gameplay driven development focus laid the foundation for the decision making
detailed in later parts of this section.

3.3.2 World Generation

This game is done in a 3D environment to increase the complexity of the game’s
visual aspect, which is important for a simulation-based game without continuous
interaction. Furthermore, it is implemented in the form of procedurally generated
terrain with mountains and valleys that form and blend seamlessly. Players can
control the size of the map and the frequency of mountains at the beginning of the
game, see Figure 4.2. The map is then generated with the use of perlin noise and
octaves as described in 2.4, and finally, surrounding walls are added to restrict the
playing field, see Figure 3.5.

As this project aims to get the player to experience and play with the flocking
behaviour, it was decided that a certain amount of freedom was required to achieve
a player experience that facilitated creativity. By suggesting restrictions of world
elements and resources, as seen in 2.5.5, the players will start by experiencing the
game in the way that was intended and balanced for, while still allowing the player
to experiment with the environment if they would like to. To enforce the restrictions
on the players, a linear gameplay style could be used to unlock options to change the
world, but this was decided against to accommodate the audience of players that
plays solely for experimentation.

17

3. Method

Figure 3.5: The procedurally generated map, complete with walls, mountains,
valleys and plains

3.3.3 Sound Effects
To make the game more interactive it was decided that sound effects would be used
to entice immersion in the battles. Unity has great support for sound effects through
the AudioListener [47] and AudioSource [48] components that can be added to game
objects. The AudioListener component is often attached to the player’s camera,
which is also something that was done for this project. By attaching the listener to
the camera, the sounds heard in the game world feel more realistic e.g. they fade
when they are further away from the camera, and is heard from the correct direction
relative to the player’s view. The AudioSource component was added to all of the
unit prefabs, such that when a unit want to play a sound effect, Unity can play the
sound effect from the location of that unit in the game world.

While playtesting it quickly became apparent that having hundreds of units clash
together in battle, without any restriction on the number of concurrent sound effects
playing, the noise was deafening. To tackle this problem, a custom AudioManager
class was created, to route all playback requests through, such that it can keep track
of the number of sound effects currently being played. To ensure coordinated access
to the audio resources, the AudioManager class was implemented as a singleton [49].

When a unit wants to play a sound effect, it sends a request to the AudioManager
class, and with it, a reference to its AudioSource component. The AudioManager
first checks if the AudioSource is already playing a sound effect, and if it is, the re-
quest will be denied. If however, the AudioSource is ready, the AudioManager plays
a sound effect, using the given AudioSource, and increments a counter, keeping track
of the currently playing sound effects. As the counter is incremented, a coroutine
[50] is started that waits for the duration of the sound effect, before decrementing
the counter.

18

3. Method

As some of the sound effects used in the game were quite short (less than a second),
an offset was added to the coroutine waiting duration to have a minimum waiting
period between playbacks on the same AudioSource. This allowed for more audio
sources to be allowed to play a sound effect, resulting in spread out sound effect
playback on the battlefield, making it feel more realistic as more units get to play
their sound effects. By restricting the concurrent sound effects playing at once, and
limiting the playback rate on the same AudioSource, battles felt more in line with
the desired user experience.

3.3.4 Animations
Animations were implemented using unity compatible animations from Mixamo, see
Appendix A.3. These animations were placed into an animations controller and in-
tegrated to work with the assets already used in the game. The base of the torso
is used as an anchor point to the physics representation meaning that if the upper
body is moving in the animation, it is instead the legs that will be moving in-game
which would look unnatural. Because of this animations with not to much upper
body movement where selected.

Furthermore, four different movement animations were selected to fit four different
movement speeds: walking, jogging, running, and fast running, as can be seen in
Figure 3.6. This was to ensure that the movement of the feet of the unit was
travelling at the same speed as the ground beneath them. To make this even more
precise new variations of the different movement animations were created with the
speeds slightly altered to enable even greater speed matching. After observing that
some units would switch between different animations very frequently causing them
to stutter, a new system for delaying transitions was added. This system made it so
that the units have to exceed the speed needed to transition to the next animations
by a certain percentage. The same was added for when a unit is decreasing in speed
needing them to reach a certain percentage lower than the threshold.

(a) Walking (b) Jogging (c) Running (d) Fast running

Figure 3.6: Shows the four different movement animations used in the game.

Other animations for fighting and idling were also added, see Figure 3.7. Different
fighting animations for archers and melee units were used and a system was imple-

19

3. Method

mented that created a cooldown for the attack animations so that they were not
triggered too often. The idle animation was added and set to trigger under a very
low speed so that soldiers barely moving had a natural resting pose. Smooth tran-
sitions between animations were also added to make switches of animations during
runtime unnoticeable.

(a) Idle (b) Melee attack (c) Range attack

Figure 3.7: Animations for idle, melee attack and range attack.

3.3.5 Camera
When starting development, proper camera controls were deemed essential. A static
camera overlooking the battlefield would look stale and the players would not feel
as involved in the game. It would also have lessened the effects that the animations
would have as the player would barely be able to see the units, especially if the
players would choose a larger playing area.

The main idea with the camera controls was to have a focal point that the camera is
always pointing at that the player controls instead of controlling the camera directly.
This approach makes the controls feel much more natural, especially when zooming
and rotating. To speed up the development process the camera started of in an
orthographic perspective as the features that were chosen to be implemented were
much easier to implement with those settings and it would not have taken long to
convert everything for the perspective camera. The features that were implemented
were; zooming, rotating, movement in a 2D plane, and simple speed adjustment.
All but the speed adjustment functionality were later added as mouse controls as
well.

3.3.6 Interface
When implementing the interface, a stylised simplistic design was preferred, with
buttons having pictures of available unit formations, and unit types, instead of text
and sliders where possible. Unit costs and available money are displayed by a text
that updates as the player places units on the battlefield. The focus of the design is
to require as little effort as possible from the player for them to do what they want.

20

3. Method

This includes minimum amounts of button presses, reducing the switching needed
between mouse and keyboard, and is also a reason why buttons opted to use images.
An additional aim with the use of images on the buttons is to give an intuitive idea
of what the buttons do at a glance, while simultaneously reducing the amount of
text that needs to be processed by the user.

(a) Old (b) Updated

Figure 3.8: The difference in readability between the two renditions of the inter-
faces is significant. Further updates in regards to size and colour also help.

During the simulation phase, the interface displays how many units are alive in each
army, and how many have been killed, see Figure 4.7. The user interface is kept
simple to avoid cluttering the screen with superfluous information, so the user can
stay focused on watching the battle unfold. When the game ends, and the end screen
is shown, additional information is displayed as there is no concern that it will take
away from the focus of the player.

3.3.7 Game Balance
During game development, the question of game balance comes up naturally: Who
gets to go first? How much should a unit cost? How much damage does a pikeman
do? Some initial numbers were tested, with units given different costs based on
their perceived usefulness. After playtesting the numbers would be tweaked further.
Some of the values looked at were amount of health points, and damage dealt. The
goal was to make sure that combat did not feel unfair e.g. no unit-type greatly
outshines any other, and that units lived for a certain amount of time, such that
battles did not end too quickly, or last for too long. This iterative process was
repeated until the group felt the values gave the intended game experience.

21

3. Method

3.4 User Testing
The game was tested continuously throughout the development process by the group
members. An approval review was required from at least one other group member,
before allowing a new feature to be merged into the master branch, as described in
3.1.5. The reviews included both code review, functionality and appearance, as well
as design work tested on many different screen sizes.

Testing with external users was initially planned, but could not be done properly
due to unforeseen external circumstances. Since user testing is a time-consuming
process, the original plan was to conduct only a simple version where friends of
the group would try out the game before giving feedback. The increased difficulty
of conducting the tests in a satisfying manner led the group to settle with mainly
internal testing for this project.

22

4
Results

This section contains the results of the project. First, the gameplay is described
and after that, the specifications for the flocking behaviour is presented. The last
sections describe the work done on optimising the game and show the procedurally
generated terrain.

4.1 Gameplay
The gameplay consists of four different scenes, which can be seen in Figure 4.1.
The game starts at the startup scene, which leads to setup scenes for each player.
The players set up their side of the playing field one at a time, where player 1 goes
first followed by player 2. When both players are done, the game moves on to the
simulation scene where the battle is simulated. If there is a winner within a certain
time, the game moves on to the end scene. From the end scene, the player can choose
to start a new game. If the game did not end within the time limit, a new turn is
started and the game returns to the setup scenes, keeping all resources and troops.
In the consecutive turns the players get money in accordance with the number of
enemies killed as well as a hefty default amount and has the option to spawn new
troops. Spawning troops is limited to a short range around their castle or through
the built-in spawning queue within the castle.

Figure 4.1: The four stages of the game

4.1.1 Startup Scene
Initially, players are presented with a startup scene, as shown in Figure 4.2. On
the left, there are options to adjust map size, mountain density, input-seed for
terrain generation, and amount of starting money. When the players have made
their choices, they can press Start to move on to the next scene, the setup scene for
player 1.

23

4. Results

Figure 4.2: The menu scene of the game, with options to customise certain aspects
before starting the simulation. The background image is taken from the example
scene provided in the Polygon Knights Pack (see Appendix A.2 for references to
assets used in the game).

4.1.2 Setup Scenes

The setup scene for player 1 (Blue team) is shown in Figure 4.3 and the setup scene
for player 2 (Red team) looks the same. As can be seen, the battlefield is divided
into two areas, with red and green ground. The blue team can only place its units
in the green area and the red team can only place in the red area. The first time
the setup scene is loaded, the terrain is also generated based on the seed provided
in the menu scene. More details on that can be found in Section 4.4.

Figure 4.3: The setup scene where the players can purchase and place their troops
and castles. See Appendix A.2 for references to assets used in the game.

24

4. Results

4.1.3 Unit Spawning

During the setup stage, the players can use the provided money to purchase differ-
ent types of units, by selecting the corresponding button located at the top right of
the screen. To adjust the number of units purchased at a time, the slider can be
used, and the formation in which the units are placed is chosen using the formation
buttons.

When this stage is initialised, a green indicator area that follows the cursor will ap-
pear, see Figure 4.4, with its size and form depending on the number of troops and
formation chosen, respectively. This area is used to visualise to the player approxi-
mately where the troops will be spawned if the player chooses to do so. The purchase
is then done by left-clicking on the playable battlefield at the desired spawn location,
which is calculated using Unity’s Raycast feature [51]. It is also possible to hold left
click and drag to continuously place units. If the player tries to place a unit outside
their playing area or the wall, the unit will not be placed, an error message will be
shown, and the player will not be deducted money for it. Similarly, if a player tries to
spawn a troop on a location that already has a troop, the spawning will be cancelled.

If, for some reason, a player regrets a troop placement, holding right-click will enable
a deletion indicator area, which can be resized by using the mouse scroll wheel. This
area follows the mouse cursor and can be used to delete troops that are inside of it.
This will also refund the proper amount of money to the player. A unit re-position
functionality was also considered, but ultimately not implemented, since the dele-
tion mechanic was considered more straightforward.

Figure 4.4: The spawning indicators for each formation

25

4. Results

4.1.4 Unit Types
The different types of units and their properties are shown in Table 4.1. There are
five types of units in the game, each with different specifications, and it is up to
the player to choose how many of each unit to purchase and how to place them to
win the game. The units also have a behaviour, determining how they move in the
game. The composition of the behaviours is further explained in Section 4.2.

The basic units are Infantry, Pikemen, and Gunmen, which all have similar be-
haviour, but different values for health, damage, cost and reach. The scout is a
more special unit with the purpose to scout the battlefield and find where the en-
emy army and castle are located. See Figure 4.5 and 4.6 for the visual appearance
of these units. The castle also has its specific purpose, being the base camp of the
army. It can not move or attack, but if it is destroyed the other team wins. All
teams are required to place at least one castle, which is why the first castle has a
cost of 0 (otherwise 3000).

Table 4.1: An overview of unit types and their properties.

Unit Health Damage Cost Reach Behaviour
Infantry 200 40 100 1.5 Default
Pikemen 250 30 150 2.5 Default
Gunmen 100 20 300 8 Default
Scouts 50 1 300 1 Scout
Castle 1000 0 0/3000 0 Nothing

Figure 4.5: The units for the first army (excluding castle), from left to right:
Infantry, Gunmen, Pikemen, Scout

Figure 4.6: The units for the second army (excluding castle), from left to right:
Infantry, Gunmen, Pikemen, Scout

26

4. Results

4.1.5 Simulation Scene

When both players are satisfied with the placements of their troops, they are brought
to the simulation scene, shown in Figure 4.7. During this stage, the player armies will
be moving around the battlefield according to their behaviours, flocking, attacking,
and fleeing based on the immediate situation. The status for each team is shown
in the upper corners, where the number of living and dead units of each unit type
is visible. The simulation continues until there is a winner or the time limit has
passed. If the time limit has passed, a new turn starts and the players can choose to
place more units. To win, one of the teams has to eliminate all of the enemy units
or destroy all enemy castles.

Figure 4.7: The simulation scene, where the two castles are visible together with
fighting troops.

Figure 4.8: The end scene of the game, which shows a summary of the game that
was just played. The background image is a screenshot from the example scene
provided in the Polygon Knight Package (see Appendix A.2 for reference).

27

4. Results

4.1.6 End Scene
When a player has won the game it is brought to the last scene, shown in Figure
4.8. Here, the winner is announced, along with the kill count of both teams. The
players are then given the option to either return to the main menu or to quit the
game.

4.2 Flocking Behaviour
The movement of each unit in the simulation is determined by its assigned behaviour.
The behaviour is a composition of many components responding to different situa-
tions. The composition behaviour is based on the theory described in Section 2.2.1
and the components are summarised together similarly as in Equation 2.1, where
different components are summarised with weights and then normalised.

Table 4.2 shows the behaviours created for the simulation and how they are weighed
in the composite behaviours. Currently, there are two composite behaviours, Default
behaviour which is implemented by Infantry, Pikemen, and Gunmen, and Scout
behaviour which is implemented by the Scout. Both composite behaviours consist
of the same components, the only difference is how they are weighted when they are
summarised. In particular, it can be observed that the scout is not motivated to
avoid the enemy or tend to its own group which allows it to move more freely and
discover new grounds.

Table 4.2: An overview of behaviours and how they are weighted in the respective
composite behaviours, default behaviour and scout behaviour.

Component Filter Default behaviour
weight

Scout behaviour
weight

Alignment Same flock 15 3
Attack Other flock - -
Avoid obstacles Obstacle 1000 9
Avoid other flock Other flock 2 0
Avoidance Same flock 90 3
Fight or flight - 20 4
Cohesion Same flock 10 8

Among the behaviours listed in Table 4.2, Alignment, Avoidance, and Steered cohe-
sion are the three rules for flocking described by Reynolds (see Section 2.2). These
components create basic flocking behaviour, resulting in the army moving together
cohesively. However, when there is an enemy army present, additional components
are required so that the troops are attracted to their allies and run away from the
enemy. Furthermore, the units have to decide when it is a good idea to attack and
when they should run away. This is handled by the fight or flight behaviour.

The fight or flight behaviour can decide, depending on the number of enemies, allies
and where they are, to attack or retreat. This is done by creating a strength value

28

4. Results

for all allies and comparing that to the corresponding value for all enemies. When
the units attack, they run towards the centre of the enemies. When they instead
decide to run away, they run in a direction which is a combination of the vector
directed away from the enemy and the vector directed towards the centre of their
allies. Finally, since the battlefield is finite and enclosed by walls, the units need
to know how to behave when they are close to a wall. This is regulated in the
component Avoid Obstacles.

4.3 Optimisation
To keep the game running smoothly it was continually tested to make sure that no
changes would break the game’s performance. The minimum requirement is that
the game stays above 30 frames per second (fps) in any feasible scenario when there
is a significant amount of troops on the playing field. When each player has 100
or more troops, their flock is large enough to require strategy and planning, while
smaller stray groups are still significant enough to have to be taken into account.
Therefore a requirement of 30 fps when each player has 100 troops was decided to
be the limit for when added complexity was too costly. For example, scouts had to
be tweaked to only have increased range in the Fight or flight behaviour.

Table 4.3: An overview of the performance depending on the number of infantry
units and if they are battling. The tests were done on the same computer (see
Appendix B.1 for specifications) and they denote the fps with a density correspond-
ing to the natural one achieved while flocking. 60+ frames are the max measured
and everything above 30 fps was playable without significant disturbances in the
experience.

Number of units
(infantry only)

fps while flocking fps while flocking
& battling

600 20 10
400 30 15
300 45 20
200 60+ 40
150 60+ 50
100 60+ 60+

The game is sufficiently optimised for the intended purpose. As shown in Table 4.3,
200 units can battle in a high-density scenario while staying above our fps limit.
When playing the game with the default settings of 10000 starting money, it is in-
feasible to reach more than 400 units, despite the money awarded between rounds
and the type of unit spawned. Furthermore, when spawning through consecutive
turns, it is less likely that the flock is able to stay perfectly cohesive, and as such
the density and the number of attacking troops is generally much lower than the
testing scenario, resulting in even higher frame rates.

29

4. Results

As mentioned in the method section 3.2.4, the flocking algorithm avoids quadratic
computations, in regards to the number of units. Instead, the computations are
linearly dependent on the number units and density, which yields significant im-
provements. However, the behaviours’ complexity is large in the implementation
and as such, the units’ field of vision has been decreased, until the density is suffi-
ciently small to make the algorithm computable in a reasonable time frame. This
change results in flocks more commonly breaking apart, as smaller fluctuations in
cohesiveness results in split up when their field of vision is limited to a few time
their body lengths.

This also creates problems for ranged units, as they need to see the unit they are
going to shoot at. Ranged units lose their purpose if an enemy can not be shot before
it is a few body lengths away, as they will engage with enemies within melee range.
Fortunately, the field of view is still significant enough that melee units consistently
form a front line that protects their ranged units.

4.4 Procedurally Generated Terrain
The terrain in the game is generated procedurally using the seed given in the start
scene of the game. This terrain is represented through a mesh with the height levels
for the mesh being procedurally generated through Perlin noise to form mountains
and valleys. Several octaves of Perlin noise are used in balance to form a more com-
plex and natural-looking appearance. The colour of the mesh depends on the height
level, where the deepest valleys are sand coloured, the upper parts of the mountains
are white, while the lower parts of the mountains are dark grey. The ground level
above the sand is green or red, which is used to clearly indicate to the players which
team’s side it is.

The height of the mountains can be regulated using the slider on the settings panel
on the starting page. Figure 4.9 shows the difference in the terrain generated when
the settings are at maximum and minimum mountain height, respectively. As can be
seen, the change in the appearance of the terrain is dramatic, allowing for different
styles of gameplay with different kinds of strategies.

Figure 4.9: The resulting terrain when the number of mountains is set to high and
low, respectively

30

5
Discussion

This chapter examines how entertaining the game is and how well the implemented
flocking behaviour and procedural terrain contributes to that experience. Further-
more, possible improvement ideas are discussed in regards to the project’s final
state. It also contains a description of the project’s contents in regards to ethics and
conclusions of our thoughts regarding the results of the project.

5.1 Gameplay
The aim of the project was to create a game based on flocking behaviour and to see
if Reynold’s flocking rules could be used and extended to simulate the movement
of two armies battling. The resulting product is a strategy game where the players
choose among the available units to compose an army that can defeat the other
player. When evaluating the game, an important criterion is whether the game is
good or not. However, that is a subjective question and comes with many aspects
such as: Is the game fun to play? Is the game fair and balanced in a proper way?
Is it intuitive? Is it based on skill? Is it easy to understand?

5.1.1 Development Process
As the development of the game proceeded, it became obvious that implementing
flocking behaviour was only a minor part of the development of a proper game that
would be enjoyable and challenging to play. The flocking itself was not entertaining
enough, and additional features would have to be added to create a playable game.
Adding different unit types such as gunmen and pikemen created the possibility for
the player to outline a strategy on how to compose their army. This created the
need for a money system to have a boundary for the number of troops that could be
created. However, the pacing was still an issue as the units kept wandering around
aimlessly on the battlefield with no intention to find or kill the other army. This
was, as is explained in Section 5.3, mostly due to the units having a very short field
of vision, only reaching as far as a few body lengths away from them. This has par-
tially been countered through optimising the flocking behaviour and introducing the
scout and castle units. The castle provides an extra winning condition and a clear
goal of where to go, while the scouts help to gather the army and bring them to the
castle. To further increase the interactivity of the game, rounds were introduced,
allowing the player to place defensive units against attackers.

31

5. Discussion

What all these new features have in common is that they aim to make the game
more entertaining and challenging. During the course of the project, it has become
apparent that flocking by itself does not make a good game. Flocking is but a small
detail which has to be combined with other features for a game to be fun to play.
The rules, the winning conditions and the pacing are all crucial to keeping the player
entertained.

Another important aspect is the user interaction and user experience. Although the
design has not been the main priority of the project, it quickly became apparent
that the feel and experience of the game was a large part of what makes the game
entertaining. In the very beginning, the design was non-existent with no harmonised
colour scheme, and the units were floating in a t-pose because there were no ani-
mations. To remedy this a simple design was created with a colour palette and
background images matching the assets from the Polygon Packages (see Appendix
A.2). In addition, animations and sounds were added to make the troops feel more
alive. Although this was outside our main scope, it turned out to be a vital part in
improving the precise interactivity and polish of the game.

5.1.2 Challenges
Balancing, as in deciding reasonable values for costs, health, damage, and all other
parameters of the game has proven to be quite challenging. Since there are many
possibilities when the player is placing their army it is difficult to test all possible
combinations. This means that it is difficult to completely understand the impact
of changing a value. To fully evaluate whether or not the game is balanced, exten-
sive and thorough testing would be required. Also, it would have been beneficial to
have a more clear design process of the game from the beginning to have a better
understanding within the group on what parameters the game has and how they
affect each other, especially when adding new features and units. For example, one
interesting consequence of the design decisions was that the exposure of the castle
was very dependent on how many mountains there are around the castle. Since the
playing area is not symmetrical, it is often unfair with one side having a much better
castle placement. In rare occasions, there would even exist a placement completely
surrounded by mountains where no unit would ever reach.

Another challenge has been the navigation abilities of the units. One of the first
issues which were discovered was the units not being able to leave lower parts of the
map. This was partly because the units were too weak to overcome the incline of the
terrain, but also because the units had no strong enough reason to move against the
terrain. The first partial solution was the use of a stronger aerodynamic coefficient
coupled with stronger acceleration. This made it so that the units could change
speed quicker while still having a similar top speed. This essentially made the slope
of the map less of a factor when it comes to the total acceleration of a unit, which
in turn made them more able to move up slopes. An unfortunate side effect of this

32

5. Discussion

was that it made the units more twitchy as they where now able to change direc-
tions very fast, giving them an unnatural appearance. This was solved by adding
a maximum change rate to the acceleration. This made the changes in a direction
less dramatic, while still allowing a high enough acceleration to resist the slope of
the map. Another solution that was added was the addition of angular drag. This
made it so that the units could not turn faster than a certain rate, making them
more determined when walking up slopes.

5.1.3 Suggested Improvements
A critical thing to add if we would like to distribute the game to other people would
be to add instructions and ways to inform the player how the game work. As it is
now, the game lacks instructions for the user. If a new player tries to play the game
it will be hard, since no information is given to the player on how to play the game.
There is no information about how the game works, what controls there are and the
specifications of the different units.

Another suggested improvement would be to add more units to allow for more com-
plex strategies and letting the player feel more in control. One suggestion is to add
a commander unit. This unit would always know where the enemy castle is, and
could thus lead the other units there even if it is beyond a mountain range. To de-
crease the impact on performance, the commander would be able to cycle through
a list of castles removing the need for a very large field of vision. A new behaviour
would have to be implemented to make units follow the commander more than other
units. If the commander were to die it would leave the units lost again. Thus the
commander would have to avoid enemy units, or at least have a very high number
of health points so that it is unlikely to die. Since the game is designed in such a
way that makes it easily extendable, adding new units would not require much effort.

It has also been discussed that the area where you may spawn units could dynami-
cally change. One way of doing this would be to divide the playing board into squares
and let a player spawn within a square if that player has the largest number of units
within that square. This means that the player firstly could choose to reinforce an
army heading for the enemy castle and secondly could redirect the army by making
the new troops face the desired direction. It would not be game-breaking, as the
enemy player would be able to counter by spawning soldiers in a nearby square. To
make it more strategic and realistic, a requirement could be added where a player
would need to control a line of connected squares to any place where he or she
wishes to spawn units. This would force the attacking player to balance the troops
properly to avoid a surrounding manoeuvre by the enemy. The turn duration would
probably also have to be shortened so that the formation on the battlefield does not
change too much between turns. This so that line breakthroughs and surrounding
manoeuvres do not happen to easily as they can be countered in time. Combining
this grid solution with the previous solution could also work to greater effect.

33

5. Discussion

5.2 Flocking Behaviour
Another part of the aim of this project was to see if the basic flocking rules could
be used as a foundation to simulate the movement of armies in a seemingly realistic
way. This turned out to also be a subjective question since quantitative testing
would require setting up studies of humans moving in groups, which is outside the
time frame and scope of this project. This means that the evaluation could mainly
be done qualitatively by discussing the look and feel of the flocking behaviour.

As mentioned previously in Section 5.1.1, the flocking behaviour itself needed to be
adjusted to improve the gameplay aspects and create a more interesting simulation.
In the end, components for avoiding the other flock, deciding whether to fight or
flee and attacking were fundamental parts of creating a suitable behaviour for the
game. In the end, our method follows the same idea as described in [20], where the
basic rules of flocking were used to simulate large combats by introducing leaders
(see Section 2.3). A notable difference is that the scouts do not directly communi-
cate strategies or goals with their allies, but instead only communicate their intent
through their alignment and velocity.

After the introduction of additional components in the behaviour as well as the
scout unit, a decent behaviour of the armies has been achieved. The resulting flock-
ing behaviour provides value to the game, in our opinion, and is not perceived as
particularly unnatural. However, there are a few issues. Firstly, the most notable
issue is that sometimes a smaller group breaks off from a larger group, which does
not make sense since they should want to stick to the group. This is due to the
field of view of each unit being too limited, meaning that they do not see the whole
group if it is large enough. This limitation is set due to performance reasons and is
further discussed in Section 5.3. Another issue is that scouts sometimes go in the
wrong direction when there exist multiple forces opposing each other, misleading
the whole army. This happens because the scouts have no mechanism for choosing
between two armies and thus instead runs in the average direction. There have
been a few suggested possible solutions, for example, the scout could be more drawn
towards the centre of the map or the castle, but we worry that this might influence
the flocking behaviour too much.

In conclusion, the resulting flocking behaviour works well for this game and con-
tributes to the experience. Initially, there were concerns that the flocking rules
could not be used on humans since, after all, humans are not particularly similar
to birds or fish. However, for this specific purpose, the method turned out to work
well and resulted in a behaviour that is well suited for the purpose.

34

5. Discussion

5.3 Optimisation
As the development of the game progressed, it became increasingly apparent that
optimisation could not be completely ignored. While measures were taken to im-
prove the flocking algorithm’s complexity, there were still a few unimplemented
ideas which were hypothesised to boost the performance. Unfortunately, they were
deemed too time-consuming and priority was instead placed on developing key game-
play features. It was argued that a fun but slightly worse-performing game is more
appropriate for the project’s aim than a boring but better-performing one. To ac-
commodate for the non-optimal performance, the slider for determining the number
of units spawned at a time was limited, as well as the default amount of money.
This resulted in the player spawning fewer troops and as such keeping the game
playable, while within our performance limit (stated in 4.3).

One idea to possibly improve the performance is to implement a dynamic field of
vision, through adjusting a unit’s field of vision to depend on the number of other
units nearby. This would mean that units who are at the edge of the flock would be
able to expand their fields of vision, making them better at spotting both enemies
and friends. Additionally, the units at the centre of the flocks would be able to
shrink their vision to only see their closest allies, resulting in fewer computations
for the flock.

Another solution, which could have been combined with the previously mentioned
one, is the introduction of skewed or angled fields of vision. If a unit is mostly look-
ing forward, then it can see further without having too many neighbouring units
within its field of vision. This would make the flock more sophisticated, as the front
units, which possess the most amount of information, would have a greater impact
on the group’s movement. If for example, a larger enemy flock appears in front of
the flock, the front units could decide to turn away, while ignoring the units behind
them who are still unknowingly heading towards the enemy force. Further justifica-
tion for this idea is that forward-oriented vision is more realistic, as it more closely
mimics human vision, which is relevant in regards to the project’s aim.

A notable problem with a forward-facing vision for the flock is the lack of other
senses. As soon as a unit turns away from the enemy, it has instantly forgotten
about it, as it has no memory. And since it also has no hearing, it has no way of
noticing if someone is sneaking up on it from behind. Not even if that someone is
an entire army. These issues were also observed when a simple version of this idea
was tested in the game. The units would turn around to run from the enemy, but as
soon as they faced away from the enemy they would stop turning away, believing the
enemy was gone. In the end, it was thought to be too complex to try to implement
a working version of the solution and the behaviour was ironically deemed more
realistic with circular vision.

35

5. Discussion

As it stands, the calculations for the game are still made in 3D space using three-
dimensional vectors, despite most of the movement primarily being in two dimen-
sions. Doing all the logic in 2D would provide a performance boost as all compu-
tation with the y-dimension would be removed. Though this would require some
changed logic as the slope of the map would still need to be accounted for in some
way. That is, it would look weird to simply project a 2D world on to a 3D world
since the units would be able to walk up mountains just as easily as they would
walk along flat ground. In the end, the change was deemed too time-consuming to
test, especially since it was not clear if the decrease in complexity would outweigh
the computations accounting for the terrain’s slope.

The last optimisation that was considered was the storing of several computations
that were repeated over multiple behaviours. Currently, the different behaviours do
all of their calculations separately despite many of them being the same. Examples of
these calculations include filtering of the neighbours’ team and the distance to units.
This could be optimised by instead doing the computations ahead of time and then
sending the values on to the behaviours. It would require infrastructural changes to
the code and make it less neat but would provide a considerable performance boost.

5.4 Procedural Terrain

The use of procedural terrain in the project has been a heavily discussed topic. At
the beginning of the project it was adopted as a way of giving the game more replay
value, but it has later on been questioned as ineffective use of time more needed
for other parts of the project. As it stands the generation does provide some replay
value as it enables for every game to be unique. On top of this, the ability to ad-
just allows for different kinds of gameplay depending on the roughness of the terrain.

Where it is lacking though is in the aesthetics. There were plans to add textures
to the generated mesh to provide a more realistic appearance, but this was not
prioritised as other parts of the project were deemed more important. The same
reasoning was used for the plans to add trees and rocks. As the implementation is
now it would have been more time-efficient to manually create a few better-looking
maps. This would have had the additional benefit of freeing up time, which could
have been used to make the game run better or to implement more units.

As it stands the current implementation of the procedural terrain does provide a
good platform for future development and would, if the time necessary was avail-
able, probably have been extended to include textures, forests, and other structures.
Within the given timeframe though, there is a strong argument for using premade
maps instead.

36

5. Discussion

5.5 Ethical Aspects
The use of flocking in a war scenario can be seen as a way of relating war to natural
behaviour and thus arguing that human conflict is a natural phenomenon. But as
the implementation used differs in the scenario to that of war, it would be far fetched
to argue that it would be possible to do a proper adaptation. An important aspect
of war is good communication and formations, while the flocking application is all
about the lack of communication and the resulting behaviour that comes from this.

One might instead argue that the technology used could be reused to wage real
wars. While this could be done to an extent, implementing the games´ flocking and
adjusting it to be the behaviour for modern drones, it would not be better than
an already existing implementation. The tactics used by the units in the game are
simply too primitive. Additionally, a more centralised form of command is likely
more effective than flocking, implying that even a highly advanced version of the
game’s implementation would be unsuitable for any military application.

Lastly, we have the issue that games containing violence might inspire similar actions
in impressionable groups such as children. This has been an ongoing discussion for
many years. This game is less gruesome than many similar games on the market and
does not contain any blood. Neither does the player perform the actions of violence,
as the gameplay is centred around building your army, not actual participation in
the battles. Despite this, there is still violence in the game, which could have been
avoided by for example displaying the soldiers as blobs of slime or children running
around with toy swords and water-guns. But this could, in turn, have been seen as
a way of promoting war as something fun. In the end, war is not used in the game
for the sake of war, rather, it is used because it provides a good story basis for the
typical player vs player strategy game.

5.6 Conclusion
Considering all aspects discussed above, it is clear that there are many things left
to develop until the game is perfect. However, the group is still satisfied with how
far we have come in the development process. Although some more work would
be required for perfection, especially regarding optimisation, there are many fea-
tures implemented in the game that contributes to an enjoyable experience, such
as money, turns and castles. In addition, there are several types of units and it is
possible to see the differences between them and use them in different combinations
to obtain different results. Furthermore, the design and animations also look good
in the group’s opinion and contribute to creating the right feel of the game.

37

5. Discussion

As it stands, the flocking behaviour also has some issues, but works well for this
particular purpose and its extendable design means that it could easily be modified.
Overall, the opinion of the group is that the game satisfies the scope of the project,
which was to be entertaining. The game is re-playable enough that it could keep
players occupied and entertained for a significant amount of time.

38

Bibliography

[1] I. L. Bajec, N. Zimic, and M. Mraz, “Simulating flocks on the wing: the
fuzzy approach,” Journal of Theoretical Biology, vol. 233, no. 2, pp. 199 –
220, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0022519304004746

[2] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”
SIGGRAPH Comput. Graph., vol. 21, no. 4, p. 25–34, Aug. 1987. [Online].
Available: https://doi.org/10.1145/37402.37406

[3] L. Spector, J. Klein, C. Perry, and M. Feinstein, “Emergence of collective behav-
ior in evolving populations of flying agents,” Genetic Programming and Evolv-
able Machines, vol. 6, pp. 111–125, 03 2005.

[4] J. K. Parrish, W. M. Hamner, and C. T. Prewitt, “Introduction – from indi-
viduals to aggregations: Unifying properties, global framework, and the holy
grails of congregation,” in Animal Groups in Three Dimensions: How Species
Aggregate, J. K. Parrish and W. M. Hamner, Eds. Cambridge University Press,
1997, p. 1–14.

[5] C. Reynolds, “Rule separation,” 1995, [Online; Accessed May 14,
2020], Public domain, via Wikimedia Commons. [Online]. Available:
http://www.red3d.com/cwr/boids/

[6] ——, “Rule alignment,” 1995, [Online; Accessed May 14, 2020],Public domain,
via Wikimedia Commons. [Online]. Available: http://www.red3d.com/cwr/
boids/

[7] ——, “Rule cohesion,” 1995, [Online; Accessed May 14, 2020], Public domain,
via Wikimedia Commons. [Online]. Available: http://www.red3d.com/cwr/
boids/

[8] H. Hildenbrandt, C. Carere, and C. Hemelrijk, “Self-organized aerial displays of
thousands of starlings: A model,” Behavioral Ecology, vol. 21, no. 6, pp. 1349–
1359, 10 2010. [Online]. Available: https://doi.org/10.1093/beheco/arq149

[9] A. Okubo, “Dynamical aspects of animal grouping: Swarms, schools, flocks,
and herds,” Advances in Biophysics, vol. 22, pp. 1 – 94, 1986. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0065227X86900031

[10] F. Heppner and U. Grenander, “A stochastic nonlinear model for coordinate
bird flocks,” The Ubiquity of Chaos, AAAS publication, vol. 89, pp. 233–238,
01 1990.

[11] C. W. Reynolds, “An evolved, vision-based behavioral model of coordinated
group motion,” in From Animals to Animats 2: Proceedings of the Second In-
ternational Conference on Simulation of Adaptive Behavior (SAB92). Cam-
bridge, MA: MIT Press, 1993, pp. 384–392.

39

http://www.sciencedirect.com/science/article/pii/S0022519304004746
http://www.sciencedirect.com/science/article/pii/S0022519304004746
https://doi.org/10.1145/37402.37406
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/
https://doi.org/10.1093/beheco/arq149
http://www.sciencedirect.com/science/article/pii/0065227X86900031

Bibliography

[12] ——, “Evolution of obstacle avoidance behavior: Using noise to promote robust
solutions,” in Advances in Genetic Programming. Cambridge, MA, USA: MIT
Press, 1994, p. 221–241.

[13] L. Spector and J. Klein, “Evolutionary dynamics discovered via visualization in
the breve simulation environment,” in Workshop Proc. of ALife VIII. Sydney:
UNSW Press, 2002, pp. 163–170.

[14] C. Hartman and B. Benes, “Autonomous boids,” Computer Animation and
Virtual Worlds, vol. 17, no. 3-4, pp. 199–206, 2006. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.123

[15] C. Delgado-Mata, J. Ibáñez-Martínez, S. Bee, R. Ruiz-Rodarte, and R. Aylett,
“On the use of virtual animals with artificial fear in virtual environments,”
New Generation Comput., vol. 25, pp. 145–169, 2007. [Online]. Available:
https://doi.org/10.1007/s00354-007-0009-5

[16] M. Belz, L. W. Pyritz, and M. Boos, “Spontaneous flocking in human
groups,” Behavioural Processes, vol. 92, pp. 6 – 14, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0376635712001921

[17] S. Frey and R. L. Goldstone, “Cognitive mechanisms for human flocking
dynamics,” Journal of Computational Social Science, vol. 1, no. 2, pp. 349–375,
2018. [Online]. Available: https://doi.org/10.1007/s42001-018-0017-x

[18] J. R. Dyer, C. C. Ioannou, L. J. Morrell, D. P. Croft, I. D. Couzin, D. A.
Waters, and J. Krause, “Consensus decision making in human crowds,”
Animal Behaviour, vol. 75, no. 2, pp. 461 – 470, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0003347207003764

[19] Z. Shen and S. Zhou, “Behavior representation and simulation for military
operations on urbanized terrain,” Simulation, vol. 82, pp. 593–607, 09 2006.

[20] A. Boccardo, R. De Chiara, and V. Scarano, “Massive battle: Coordinated
movement of autonomous agents,” 3D Advanced Media In Gaming And Simu-
lation (3AMIGAS), pp. 35–42, 2009.

[21] G. Smith, “An analog history of procedural content generation,” FDG, 06 2015.
[Online]. Available: http://www.fdg2015.org/papers/fdg2015_paper_19.pdf

[22] S. Gustavson, “Simplex noise demystified,” 03 2005. [Online]. Available:
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

[23] Y. Scher, “Playing with perlin noise: Generating realistic archipelagos,”
Medium, 11 2017. [Online]. Available: https://medium.com/@yvanscher/
playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401

[24] J. Schell, The Art of Game Design: A Book of Lenses. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2008.

[25] G. Lindsay, “Game type and game genre,” Google Scholar, vol. 22, p. 2009, 01
2005.

[26] E. Adams, Fundamentals of Game Design, 3rd ed. USA: New Riders Publish-
ing, 2014.

[27] F. Teale, “Game elements: Interaction,” League of Gamemakers, 07 2016.
[28] Unity real-time development platform. (Accessed: 30.03.2020). [Online].

Available: https://unity.com/
[29] Unreal engine. (Accessed: 07.02.2020). [Online]. Available: https://www.

unrealengine.com/en-US/

40

https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.123
https://doi.org/10.1007/s00354-007-0009-5
http://www.sciencedirect.com/science/article/pii/S0376635712001921
https://doi.org/10.1007/s42001-018-0017-x
http://www.sciencedirect.com/science/article/pii/S0003347207003764
http://www.fdg2015.org/papers/fdg2015_paper_19.pdf
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401
https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401
https://unity.com/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/

Bibliography

[30] Unity - plans and pricing. (Accessed: 05.05.2020). [Online]. Available:
https://store.unity.com/#plans-individual

[31] Unity asset store. (Accessed: 05.05.2020). [Online]. Available: https:
//assetstore.unity.com/

[32] Unity - manual: Scripting. (Accessed: 05.05.2020). [Online]. Available:
https://docs.unity3d.com/Manual/ScriptingSection.html

[33] Unity - scripting api: Gameobject. (Accessed: 05.05.2020). [Online]. Available:
https://docs.unity3d.com/ScriptReference/GameObject.html

[34] Visual studio ide. (Accessed: 05.05.2020). [Online]. Available: https:
//visualstudio.microsoft.com/

[35] git - version control system. (Accessed: 05.05.2020). [Online]. Available:
https://git-scm.com/

[36] Github. (Accessed: 05.05.2020). [Online]. Available: https://github.com/
[37] Github - branches. (Accessed: 05.05.2020). [Online]. Available: https:

//help.github.com/en/github/collaborating-with-issues-and-pull-requests/
about-branches

[38] Github - pull requests. (Accessed: 05.05.2020). [Online]. Available: https:
//help.github.com/en/github/collaborating-with-issues-and-pull-requests/
about-pull-requests

[39] Where work happens | slack. (Accessed: 05.05.2020). [Online]. Available:
https://slack.com/intl/en-se/

[40] Slack - threads. (Accessed: 05.05.2020). [Online]. Available: https://slack.com/
intl/en-se/help/articles/115000769927-Use-threads-to-organize-discussions-

[41] Zoom. (Accessed: 05.05.2020). [Online]. Available: https://zoom.us/
[42] Slack - workspace. (Accessed: 05.05.2020). [Online]. Available: https:

//slack.com/intl/en-se/help/articles/212675257-Join-a-Slack-workspace
[43] Signal » home. (Accessed: 05.05.2020). [Online]. Available: https://signal.org/
[44] Board to bits games. playlist: Flocking algorithm in unity. (Ac-

cessed: 07.02.2020). [Online]. Available: https://www.youtube.com/watch?v=
mjKINQigAE4&list=PL5KbKbJ6Gf99UlyIqzV1UpOzseyRn5H1d

[45] R. Finkel and J. Bentley, “Quad trees: A data structure for retrieval on com-
posite keys.” Acta Inf., vol. 4, pp. 1–9, 03 1974.

[46] Unity - scripting api: Physics.overlapsphere. (Accessed: 30.03.2020). [Online].
Available: https://docs.unity3d.com/ScriptReference/Physics.OverlapSphere.
html

[47] Unity - scripting api: Audiolistener. (Accessed: 05.05.2020). [Online].
Available: https://docs.unity3d.com/ScriptReference/AudioListener.html

[48] Unity - scripting api: Audiosource. (Accessed: 05.05.2020). [Online]. Available:
https://docs.unity3d.com/ScriptReference/AudioSource.html

[49] Singleton design pattern. (Accessed: 05.05.2020). [Online]. Available:
https://sourcemaking.com/design_patterns/singleton

[50] Unity - manual: Coroutines. (Accessed: 05.05.2020). [Online]. Available:
https://docs.unity3d.com/Manual/Coroutines.html

[51] Unity - scripting api: Physics.raycast. (Accessed: 14.05.2020). [Online].
Available: https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

41

https://store.unity.com/#plans-individual
https://assetstore.unity.com/
https://assetstore.unity.com/
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://git-scm.com/
https://github.com/
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-branches
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-branches
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-branches
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://slack.com/intl/en-se/
https://slack.com/intl/en-se/help/articles/115000769927-Use-threads-to-organize-discussions-
https://slack.com/intl/en-se/help/articles/115000769927-Use-threads-to-organize-discussions-
https://zoom.us/
https://slack.com/intl/en-se/help/articles/212675257-Join-a-Slack-workspace
https://slack.com/intl/en-se/help/articles/212675257-Join-a-Slack-workspace
https://signal.org/
https://www.youtube.com/watch?v=mjKINQigAE4&list=PL5KbKbJ6Gf99UlyIqzV1UpOzseyRn5H1d
https://www.youtube.com/watch?v=mjKINQigAE4&list=PL5KbKbJ6Gf99UlyIqzV1UpOzseyRn5H1d
https://docs.unity3d.com/ScriptReference/Physics.OverlapSphere.html
https://docs.unity3d.com/ScriptReference/Physics.OverlapSphere.html
https://docs.unity3d.com/ScriptReference/AudioListener.html
https://docs.unity3d.com/ScriptReference/AudioSource.html
https://sourcemaking.com/design_patterns/singleton
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Bibliography

42

A
Appendix 1: Assets

In this appendix, all the assets used in the game are listed.

A.1 Icons

The icons used for buttons in the game come from The Noun Project. They are
licensed under the Creative Commons license and it is allowed to use them in any
way wanted as long as the creator is referenced.

• Sword icon: https://thenounproject.com/search/?q=sword&i=2444713,
ProSymbols US

• Spear icon: https://thenounproject.com/search/?q=spear&i=819835, Hamish
• Bow icon: https://thenounproject.com/search/?q=bow&i=2851797, Nick-

lasR, AT
• Flag icon: https://thenounproject.com/search/?q=flag&i=714884, Maxim

Kulikov
• Castle icon: https://thenounproject.com/search/?q=castle&i=28149,

Joel McKinney

A.2 Asset Packages

A bundle with licenses to several assets packages was purchased. All units and
their equipment were taken from these packages. The background images in the
game were taken from screenshots in the sample scenes that came with the Knights
package. The packages are listed below:

• Polygon Adventure Pack:
https://syntystore.com/products/polygon-adventure-pack

• Polygon Knights Pack:
https://syntystore.com/products/polygon-knights-pack

• Polygon Vikings Pack:
https://syntystore.com/products/polygon-vikings-pack

• Bundle
https://www.humblebundle.com/software/best-of-polygon-game-dev

I

https://thenounproject.com/search/?q=sword&i=2444713
https://thenounproject.com/search/?q=spear&i=819835
https://thenounproject.com/search/?q=bow&i=2851797
https://thenounproject.com/search/?q=flag&i=714884
https://thenounproject.com/search/?q=castle&i=28149
https://syntystore.com/products/polygon-adventure-pack
https://syntystore.com/products/polygon-knights-pack
https://syntystore.com/products/polygon-vikings-pack
https://www.humblebundle.com/software/best-of-polygon-game-dev

A. Appendix 1: Assets

A.3 Animations
Listed below are the animations used. The license covers the use of the animations
as in-game figures, free or commercial.

• walk:
https://www.mixamo.com/#/?page=1&query=walk

• run:
https://www.mixamo.com/#/?page=1&query=male+weighted+run

• fast run:
https://www.mixamo.com/#/?page=1&query=running+leaning+back+or+forth

• naruto run:
https://www.mixamo.com/#/?page=1&query=female+ninja+run

• idle:
https://www.mixamo.com/#/?page=1&query=weight+shift+idle

• melee attack:
https://www.mixamo.com/#/?page=1&query=right+to+left+attack+with+
axe

• range attack:
https://www.mixamo.com/#/?page=1&query=firing+a+gun

A.4 Sounds
Listed below are the sounds used. All the sounds are under the CC-BY lisence.

• Arrow (by EverHeat):
https://freesound.org/people/EverHeat/sounds/205563/

• Sword Slice 11 (by Black%20Snow)
https://freesound.org/people/Black%20Snow/sounds/109420/

• Sword 4 (by CpawsMusic)
https://freesound.org/people/CpawsMusic/sounds/437113/

• sword7 (by Streety)
https://freesound.org/people/Streety/sounds/30248/

• 06SWORD05 (by lostchocolatelab)
https://freesound.org/people/lostchocolatelab/sounds/1452/

• Sword Clash and Slide (by FunWithSound)
https://freesound.org/people/FunWithSound/sounds/361485/

• Epic Sword Clang 2 (by ethenchase7744)
https://freesound.org/people/ethanchase7744/sounds/439538/

• Metal Ping1 (by timgormly)
https://freesound.org/people/timgormly/sounds/170964/

• metal_rings_04 (by Department64)
https://freesound.org/people/Department64/sounds/95275/

• Hardcore Kick (by taylorevanmcalister)
https://freesound.org/people/taylorevanmcalister/sounds/223530/

• Metal hit with metal bar resonance (by jorickhoofd)
https://freesound.org/people/jorickhoofd/sounds/160045/

II

https://www.mixamo.com/#/?page=1&query=walk
https://www.mixamo.com/#/?page=1&query=male+weighted+run
https://www.mixamo.com/#/?page=1&query=running+leaning+back+or+forth
https://www.mixamo.com/#/?page=1&query=female+ninja+run
https://www.mixamo.com/#/?page=1&query=weight+shift+idle
https://www.mixamo.com/#/?page=1&query=right+to+left+attack+with+axe
https://www.mixamo.com/#/?page=1&query=right+to+left+attack+with+axe
https://www.mixamo.com/#/?page=1&query=firing+a+gun
https://freesound.org/people/EverHeat/sounds/205563/
https://freesound.org/people/Black%20Snow/sounds/109420/
https://freesound.org/people/CpawsMusic/sounds/437113/
https://freesound.org/people/Streety/sounds/30248/
https://freesound.org/people/lostchocolatelab/sounds/1452/
https://freesound.org/people/FunWithSound/sounds/361485/
https://freesound.org/people/ethanchase7744/sounds/439538/
https://freesound.org/people/timgormly/sounds/170964/
https://freesound.org/people/Department64/sounds/95275/
https://freesound.org/people/taylorevanmcalister/sounds/223530/
https://freesound.org/people/jorickhoofd/sounds/160045/

A. Appendix 1: Assets

• Stab, Metal Knife in Lettuce, D (by InspectorJ)
https://freesound.org/people/InspectorJ/sounds/413493/

• Death Pain (by AlineAudio)
https://freesound.org/people/AlineAudio/sounds/416838/

III

https://freesound.org/people/InspectorJ/sounds/413493/
https://freesound.org/people/AlineAudio/sounds/416838/

A. Appendix 1: Assets

IV

B
Appendix 2: Performance Test

B.1 Computer Specifications for Performance Tests
Listed here is the computer specifications for performance tests.

• Operating System - Windows 10.0.18362 Build 18362 x64
• Processor - Intel(R) Core(TM) i7-6700k CPU @ 4.00 GHz, 4001 Mhz, 4

Cores, 8 Logical Processors
• Physical Memory - 16.0 GB
• Graphics Card - NVIDIA GeForce GTX 970

V

	List of Figures
	List of Tables
	Introduction
	Aim
	Scope

	Theory
	Aggregations and Flocking
	Simulation of Flocking
	The Basic Rules of Flocking
	Extending Flocking Rules

	Flocking Behaviour in Human Agents
	Procedural Generation of Terrain
	Game Design
	Type and Genre
	Game World
	Player Interaction
	End Condition
	Resources

	Method
	Tools
	Game Engine
	Unity Asset Store
	Visual Studio IDE
	Git Version Control
	GitHub
	Remote Communication

	Flock Behaviour Development
	Prototyping
	Composite Behaviours
	Additional Flocking Behaviours
	Optimisation and the Problem

	Game Design
	Gameplay
	World Generation
	Sound Effects
	Animations
	Camera
	Interface
	Game Balance

	User Testing

	Results
	Gameplay
	Startup Scene
	Setup Scenes
	Unit Spawning
	Unit Types
	Simulation Scene
	End Scene

	Flocking Behaviour
	Optimisation
	Procedurally Generated Terrain

	Discussion
	Gameplay
	Development Process
	Challenges
	Suggested Improvements

	Flocking Behaviour
	Optimisation
	Procedural Terrain
	Ethical Aspects
	Conclusion

	Bibliography
	Appendix 1: Assets
	Icons
	Asset Packages
	Animations
	Sounds

	Appendix 2: Performance Test
	Computer Specifications for Performance Tests

