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Abstract
The target of the project "A Decentralized Voting System" is to investigate whether
recent developments in distributed systems can make a decentralized voting system
capable of replacing the current systems in place. The current voting systems that
are taken into account are primarily democratic electoral voting systems, such as
the Swedish national electoral voting system. To remove the single central author-
ity conducting the vote, distributing the responsibility is the primary goal of the
project. The voting system developed relies on several trusted entities where the
system tolerates conflict of interest to a specified degree. It is built using a software
framework for building blockchain applications. The system is capable of manag-
ing all aspects of voting except the distribution of a digital voter card. A frontend
presents the voting stages of the application but does not offer an interface for elec-
tion administrators. The system is verified by several criteria that apply to any
voting system, but it is not capable of replacing a large scale election in its current
state.

Ethical aspects of digitizing and decentralizing are discussed, with particular consid-
eration to societal and environmental impact. Voter turnout change with respect to
age, privacy concerns and logistical solutions for the transition to a digitized voting
system are also discussed.

Finally, a theoretical replacement of the current Swedish electoral system with a
decentralized voting system could initially exclude a social group but would reduce
cost and environmental impact.

Keywords: Decentralized, Voting, Election, Blockchain, Hyperledger, Sawtooth,
Consensus, Transaction Processor, Distributed Systems
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Sammandrag
Syftet med projektet "A Decentralized Voting System" är att undersöka om det
gångna decenniets utveckling av distribuerade system kan möjliggöra ersättandet
av nuvarande röstsystem med ett decentraliserat sådant. De nuvarande röstsys-
tem projektet kommer jämföras med är huvudsakligen demokratiska, allmänna val,
som till exempel det svenska nationella röstsystemet. Projektets främsta mål är att
bygga ett system som kan förflytta makten över röstningsprocessen från en central
auktoritet ut till flera betrodda aktörer från vilka systemet tolererar intressekon-
flikter till en viss grad. Systemet är byggt med ett mjukvaruramverk som används
till konstruktion av blockkedjebaserade applikationer. Systemet kan hantera alla
aspekter av röstningsprocessen, med undantag för distribuering av digitala röstkort.
Ett grafiskt gränssnitt hanterar alla steg i röstningsprocessen, men systemet saknar
ett gränssnitt för valadministration. Systemet har verifierats enligt generella kri-
terier som krävs för alla röstsystem, för vilka systemet uppfyller samtliga. I dess
nuvarande tillstånd är det däremot inte kapabelt att ersätta befintliga röstsystem.

Vidare diskuteras vilka etiska frågeställningar digitalisering och decentralisering
medför med avseende på samhälleliga och miljömässiga aspekter. Valdeltagandet
med hänsyn till ålder och demografi, integritetsfrågor och logistiska lösningar för
övergången till ett digitalt röstsystem diskuteras också.

Slutligen dras slutsatsen att ett teoretiskt ersättande av Sveriges nationella valsys-
tem med ett decentraliserat röstsystem inledningsvis skulle kunna exkludera vissa
samhällsgrupper, men också reducera kostnader och miljöpåverkan.
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1
Introduction

General elections, referendums and annual general meetings are three examples of
election settings where a given set of votes is summarized into a decision or advice.
Today, it is common that voting during these meetings is arranged by a central
authority, such as a company or a government. These types of elections can at times
seem dated. To use pen and paper to cast votes at geographically bound polling
stations gives elections shortcomings such as exposure to human errors. Another
aspect of physical polling stations is the danger of attacks on locations in countries
with heavily polarized elections [1]. Furthermore, the Swedish election authority
calculated that the total cost of administration and ballot printing surpassed 348
million SEK for the 2018 election [2]. The Swedish government has previously
recommended that future elections might be done over the internet, to make voting
easier and lower administrative costs [3].

Electronic voting systems have been tried as a means to thwart these shortcomings
in other countries (most notably in Estonia), and successfully so, but have also in-
troduced shortcomings of their own such as an administrative centralization wherein
one organizing authority with the proper access can change the outcome of an entire
election [4].

1.1 Objective
The main purpose of this project is to develop a decentralized voting system using
distributed ledger technologies, i.e frameworks that use geographically spread out
records to store information. The system will be constructed with a focus on secu-
rity and robustness to ensure reliability. Additionally, the system should maintain
transparency and anonymity. Lastly, the system should, ideally, offer an alternative
to conventional voting systems.

The focus of the research is on how to use an already existing blockchain platform
and adapt it to the purpose of democratic voting. Upon this blockchain platform,
a voting application will be built featuring enforced logic by leveraging transaction
processors. Furthermore, the applicability of the system to elections on a national
level will be evaluated, and future improvements will be proposed. Finally, the user
experience in the aspect of usability across the complete spectrum of end-users will
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1. Introduction

be examined.

1.2 Scope
The project will mainly be limited by two sets of factors: those sprung from the
limitations of blockchain technology, and those that follow the nature of voting and
trust.

Blockchain Limitations
This project will not delve into the realm of blockchain construction or, in any way,
implement a blockchain. It will instead build upon already existing technologies,
and with that, adopt its strengths and liabilities. The project does not aim towards
building a fully operational, ready-to-use system, but will still implement a func-
tional user interface that serves the purpose of demonstrating the system as a proof
of concept.

On the subject of trust, the main delimitation will be the fact that the chosen
blockchain technology will not allow the voting process to be fully decentralized.
A system such as bitcoin in which any party is free to join the mining process is
more decentralized, but also more susceptible to attacks as described in Section 4.2.
By leveraging a blockchain platform and implementing a consensus algorithm, the
system will allow the trust to be decentralized to a predetermined set of validators
such as political parties or shareholders. Thus, rendering the system decentralized,
although not at the scale of traditional blockchains such as Bitcoin.

Administrative Limitations
The voting system will be specifically tailored to meet the requirements of the voting
scenarios in which each entity eligible to vote has a single vote that can only be
used once and has the same value as all the other votes. Much similar to a political
electoral voting system or any other democratic process. The developed product
will not target a specific country or organization.

Even though the system itself will be implemented in such a way that it is both
anonymous and transparent, no consideration will be taken towards the potential
real-world administration complications that, for example, an election or a share-
holder meeting might entail. This might include tasks such as distributing private
keys in an anonymous manner, whilst still guaranteeing that each eligible voter gets
only one. The system in place for key management will also have to ensure that no
two voters get the same key and that no key can be connected to the identity of a
voter.
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2
Technical Concepts

This chapter introduces several cryptographic concepts that serve as background for
the rest of the thesis. At the end of the chapter, a simple overview of the blockchain
concept is explained.

2.1 Cryptographic Hash Functions
Since one can represent all types of data as an array of bytes, it is possible to
define a mathematical function H operating on an any kind of data in the form an
arbitrarily sized list of bytes, returning a fixed-size list of bytes. This result is called
the hash or message digest of the input data. Ideally, the hash function should
make it computationally difficult to derive the data from the message digest. It
should also be computationally difficult to derive another value that relates to the
same hash [5]. These requirements make hash functions a viable option to verify the
integrity of data. These integrity verifications are of great importance to blockchain
technology to confirm that data has not been changed.

2.2 Asymmetric Cryptography
Asymmetric cryptography is based around two keys, i.e a secret key ski, and a
public key pki for each person i, e.g skAlice, pkAlice. These keys are generated using
a generating function G → (sk, pk). With these keys one can define the functions
Enc(pki, m) → c and Dec(ski, c) → m, where m is a plain-text message and c is
that same message encrypted as ciphertext. Given the assumption that the functions
conform to m = Dec(ski, Enc(pki, m)), the algorithm is deemed to be correct. These
conditions give the algorithm the possibility to send encrypted messages to one
specific person without another person being able to eavesdrop the information, as
can be seen in Figure 2.1. Algorithms that implement these functions should make
it computationally infeasible to derive m from c without the secret key ski and to
derive the secret key ski from the public key pki to be deemed secure.

3



2. Technical Concepts

Bob Alice’s
public key

Alice’s
secret key

Alice

Figure 2.1: Bob uses Alice’s public key to encrypt a message. Alice uses her secret
key to decrypt the message.

Now assume that the algorithm conforms to a condition that any of the keys may be
used as secret and the other as public, the functions may be defined as Enc(ki, m) →
c, Dec(k̂i, c) → m, where ki is one of the keys and k̂i is the other. This gives the
algorithm the possibility to digitally prove that a specific person has produced or
verified the data, providing a digital signature together with the data. This works
by signing or encrypting the data with the secret key, and giving everybody the
possibility to decrypt the signature using the public key, to verify the equality of the
decrypted message and the original [5]. In blockchain systems, digital signatures are
used to provide a way of identification.

2.3 Blockchain
A blockchain is a technical implementation of a data structure that contains one or
more unchangeable records of information about transactions, votes, or other infor-
mation that one deems to be important. A different name for such an unchangeable
record log is an immutable ledger. Central in the implementation is the usage of
cryptographic hash functions to verify the integrity of the data.

Some of the key aspects that make blockchain technology important are that it
is decentralized, transparent, and immutable. Data is recorded in a network of
distributed nodes, thereby not having a single point of failure nor a central authority
taking control over the network. As a consequence of the distributed record log
across all nodes, the data is accessible to all the nodes involved in the network, and
each log is easily verifiable.

As different concrete blockchain implementations refer to internal constructs using
different names, this thesis will use the following names for clarity:

Account: A public key within the addressing scheme of the blockchain.

Block: A single atomic unit of change on the blockchain. A block contains one or
more transactions, a header and a signature for data integrity.

Block Header: Metadata for a block containing the signature of the previous block
and arbitrary information regarding the distributed agreement of the block.
It may also contain other information depending on the implementation.

4



2. Technical Concepts

Transaction: A transaction from one account to another. Transactions contain
metadata signed by the sender for authentication, a recipient, and an optional
payload representing the message data.

Transaction Processor: A program that processes transactions. Transaction pro-
cessors build up the business logic of a blockchain application.

Figure 2.2 describes the blockchain data structure. The signature field describes a
message digest of the transactions and the previous signature. Due to the depen-
dence on the previous signature in the current signature, the data structure enforces
immutability [6].

Block 0

Transactions

Signature

Block 1

Transactions

Previous signature

Signature

Block 2

Transactions

Previous signature

Signature

Block N

Transactions

Previous signature

Signature

Figure 2.2: Blockchain data structure visualization.
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3
Consensus

In any distributed system or database, there has to exist a set of rules by which
each participating node in the distributed network can determine the veracity of
each other nodes’ claims. This especially applies to systems managing sensitive
information such as monetary claims or electoral votes. For example, if one node
claims that a vote has been cast for the red party, and another claims the same vote
was cast for the blue party, how do the other nodes in the network know or choose
whom to trust?

3.1 The Byzantine Generals Problem
The Byzantine Generals Problem describes a situation in which several armies
are surrounding a city, who all need to attack at the same time to defeat it. The only
way to communicate between the armies is via messengers, who may be captured
and replaced with an impostor by the city. There is also a risk that an army may be
treacherous towards the others. When an army is misbehaving, it is called Byzantine
and creates a Byzantine fault in the situation.

For instance, army A is going to invade a castle together with army B. For this to
succeed, both armies need to perform their attack simultaneously. To synchronize
their attacks, they use messengers. Army A sends a messenger to army B proposing
an attack on Friday. However, when the messenger arrives at army B, army B
declines the request and proposes an attack on Saturday. The messenger returns to
army A to give the new proposal, but during the travel, the messenger gets replaced
with an impostor. This makes army A receive a false agreement of attacking on
Friday as can be seen in Figure 3.1. The outcome being that both armies attack on
different days and fail with their task.
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3. Consensus

Army A Army B

Messenger

Friday
Saturday

Friday?

Messenger

Friday
Impostor

Figure 3.1: A Byzantine situation

The Byzantine Generals Problem also represents a blockchain network in which any
one node may be fraudulent and, for example, claim to have more money than it has.
Solutions to the problem have been implemented in numerous different ways, and
the common denominator for all implementations is that they can handle fraudulent
nodes in the network and still reach consensus among the non-fraudulent ones [7].

Consensus is the agreement of an arbitrary value over several parties, one can ab-
stract the problem and use the Byzantine Generals Problem to inspect the properties
of a specific consensus process [7]. Drawn in parallel, the nodes of a decentralized
system could be seen as the armies, and the task of attacking the castle is the
nodes trying to reach consensus. To prevent that, a faulty node (the traitor) affects
the outcome of the consensus, the properties of the generalized Byzantine Gener-
als Problem are used by consensus algorithms to produce a fault-proof consensus
outcome.

3.2 FLP Impossibility Proof
Another important discovery regarding consensus algorithms is that of the FLP
impossibility result. Fischer, Lynch and Paterson (FLP) [8] proved that no asyn-
chronous distributed system could guarantee that consensus would be reached with
one or more crashed processes. Since a public blockchain per definition is an asyn-
chronous distributed system, the proof applies in that context too. The proof in the
case of consensus algorithms for blockchains may be interpreted as a choice between
three properties: safety, liveness and fault-tolerance, where you may choose at
most two of these properties as visualized in Figure 3.2 [8] [9].

7



3. Consensus

Safety Liveness

Fault-tolerance

Possible combinations

Impossible combinations

Figure 3.2: Venn diagram over the possible combinations in accordance to FLP

The property safety implies that all results are valid and identical for all nodes. A
node should, therefore, not be able to send a malicious result to the client. Liveness
is the act of guaranteeing that nodes that do not fail always produce a result. Lastly,
fault-tolerance guarantees that a system can tolerate the failure of a node at any
point [10].

3.3 Double-spending Problem
The double-spending problem is a core problem that decentralized consensus
algorithms try to oppose in different ways. Double spending in blockchain terms
is the act of using the same digital currency twice. For instance, in Figure 3.3, a
user Bob wants to buy a fish from an online merchant. Bob places one transaction
X of 50 USD to himself, and then one transaction Y of 50 USD to the merchant.
The merchant does not wait for confirmation of transaction Y before releasing the
product to Bob. The system will later reject transaction Y due to insufficient balance
on Bob’s account, and the merchant receives nothing [11].

50 USD

50 USD

Veri�cation

Bob Merchant

Figure 3.3: Bob sending two transactions and only having funds for one. Merchant
sends the fish before verification of transaction.
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3. Consensus

For a centralized system, it is easier to detect and prevent double-spending since
a third party is available for verification. For a decentralized system, additional
algorithms are required to maintain a double-spending proof system. Most consensus
algorithms are devoted to solving this problem, as this is not an easy task for a
decentralized system to solve. There are different ways for consensus algorithms
to solve this problem. However, one key concept is that each transaction must
be verified and accepted by a set of validators before it is added to the ledger.
This prevents the confirmation of the latter transaction and instead marks it as
invalid [11]. For instance, the practical Byzantine Fault Tolerance algorithm (see
3.6) requires a fixed number of validators to verify a transaction before it is added
to the ledger [12].

3.4 Proof of Work
Proof of Work (PoW) is a consensus mechanism used by blockchains to confirm
transactions and produce blocks. PoW-based networks are mainly used for users
to transmit cryptocurrency in the form of transactions [13] [6]. Transactions are
collected in blocks and saved in a decentralized ledger, which every participating
node has access to. PoW uses miners, generally nodes run by users, for the creation
of blocks and confirmation of the validity of a block [14]. Miners achieve this by
solving and verifying mathematical problems related to the block. Generally, to
solve the mathematical problem should be difficult enough, in relation to the size of
the network, but easy to verify [13]. Hashcash is an example of a PoW algorithm,
which is used on the Bitcoin network. The algorithm used by the Bitcoin network
operates by guessing a value that, when fed through a hash function together with
the block header, should result in a value following specific properties. These are
the properties that determine the complexity of the problem [6].

In practice, PoW works as illustrated in Figure 3.4. In the illustrated example, Alice
is transmiting five cryptocurrency to Bob. For this transaction to be valid, it has
to be confirmed by a miner. Carol is running a mining node and happens to be
the one to solve the hash for the block. Carol is rewarded with a certain amount of
cryptocurrency for solving the hash.

9



3. Consensus

Block

Alice
5

Transaction

Bob

Carol
Hash: xxxxxxxxxxxxxxxxxxxxxxxxx

Reward:

Figure 3.4: A block mined by Carol in a PoW-based system.

As of today, there are both significant benefits and disadvantages of PoW. PoW is
beneficial in terms of security, as it limits many actions that could be performed
in the network. Most attacks on the network require a considerable amount of
computational power and time to do the necessary calculations. Another benefit of
PoW is that it does not matter how wealthy a miner is; instead it is about how much
computational power the miner can provide. Therefore, the miners with the most
amount of funds are not in charge of the decisions made in the network. However,
using computational power as the primary workforce in PoW, makes the amount
of electricity consumed for computation increase significantly. Not to mention, the
calculations done in the PoW networks are only applicable in guaranteeing the
security of the network, whilst it could be used somewhere else. For instance, the
computational power could be used to do calculations in the fields of science or
biochemistry [13].

PoW is today applied in many of the largest blockchain projects, the most distin-
guished being Bitcoin and Ethereum. Bitcoin was the first blockchain project to use
this type of consensus algorithm in their blockchain [13].

3.5 Proof of Stake
Proof of stake (PoS) is a consensus mechanism for confirming the validity of
new transactions on the chain. In the proof of stake system, nodes are chosen at
random to commit new blocks to attach to the end of the blockchain. Nodes are
said to be given the task of forging the block when committing to this task. The
aforementioned stake refers to what percentage of the chains total monetary capacity
any one node invests into a specific stake-wallet. That percentage directly reflects
the probability of that node being next in line to validate the next block on the
chain [15].

10



3. Consensus

When a node is given the task of forging the next block, it validates all transactions
in the block and then signs it. To incentivize this, the node is given all transaction
fees from the block it just signed. If the node is found to have included fraudulent
transactions or otherwise tampered with the block, it is penalized by not getting a
part of its stake back and will no longer be allowed to continue as a committer [16].

For instance, if Bob has a stake of 30 bitcoins whilst Alice has a stake of 5 bitcoins,
Bob’s node has a higher chance of becoming the next validator in comparison to
Alice’s node. In Figure 3.5, Bob is chosen as the next validator. He is now tasked
with forging the next block. Bob’s node then validates all the transactions in the
block and signs them, gaining all the transactions fees from the block. If, however,
Bob fails to forge the next block due to tampering or including fraudulent transac-
tions, he will lose a percentage of his stake and gets a lower possibility to becoming
a validator in the future.

Bob

30

Alice

5

Figure 3.5: Bob is chosen to be the validator and forges the next block.

Compared to PoW-based systems that rely on computers to do work that take the
form of solving equations, it has a fairer distribution of funds and rewards on the
blockchain. Proof of stake also consumes orders of magnitude less computational
power, i.e electricity.

As of today, PoS is not used in any major decentralized system as a standalone
consensus algorithm [17]. There are variations of PoS, most predominant being
Delegated Proof of Stake, which is an improved alternative to both PoS and PoW [18].
However, many PoW-based systems are planning to switch over to PoS mainly due
to the great benefits PoS has in terms of electricity efficiency. The cryptocurrency
Ethereum is planning to adopt PoS in the near future, and Bitcoin could most likely
do likewise [19].

11



3. Consensus

3.6 Practical Byzantine Fault Tolerance
The practical Byzantine Fault Tolerance (pBFT) algorithm is a way for a dis-
tributed computer system network to tackle byzantine faults. pBFT executes in
different rounds called views, which further are divided into four phases, demon-
strated in Figure 3.6. For each view, there is a primary node, also seen as the leader
node. The primary node is changed in a round-robin matter but could externally be
changed if the primary node times out or another node proposes a view change due
to the primary node being malicious. For the proposed view to occur, a superma-
jority is required. The next elected leader in a view change conventionally follows
the round-robin method of electing the leader node [20]. Once the leader has been
elected, the view performs the four phases.

Client
Primary node

Request

1

Backup nodes

2 Broadcast

Primary node
Receive result

4

3 Execute & send

Backup nodes

Client

Figure 3.6: A pBFT round executing the 4 different phases.

1. The primary node receives requests from a client.

2. The primary node broadcasts the request to all other nodes, also called backup
nodes.

3. All nodes execute the request and send a reply to the client.
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3. Consensus

4. the client receives the replies and waits for maximum faulty nodes + 1 replies
from different nodes with the same results

The final result is the majority of identical results received by the client [12].

pBFT assumes that there are independent node failures and therefore has a con-
straint that at most one third of the nodes are allowed to be faulty. In terms of
scalability, the more nodes the system has, the more unlikely it is that one third of
the nodes are faulty at the same time [20]. However, the algorithm is not scalable
in practice due to the number of messages sent between nodes. Besides tackling
byzantine faults, the system also provides liveness and safety if at most n−1

3 are
faulty at the same time.

The algorithm is currently used in the blockchains Zilliqa, Hyperledger Fabric and
Tendermint in combination with other consensus algorithms. Zilliqa uses pBFT
in combination with PoW, Tendermint uses pBFT in combination with Delegated
Proof-of-Stake (DPoS), whilst Hyperledger has adopted pBFT as a permissioned
version [21]. A permissioned version of a blockchain implicates that contributors to
the blockchain must be given access to it before being able to contribute to it [22].

3.7 Federated Byzantine Agreement
Federated Byzantine Agreement (FBA) operates much like the practical Byzan-
tine Fault Tolerance. It mainly focuses on solving the Byzantine Generals problem
but has a slightly different approach. FBA does not have a general leader node that
acts as the receiving endpoint for consensus network. For an FBA system to reach
consensus, the system uses quorum slices [23]. Quorum slices are a subset of nodes
that each node has predefined, as seen in Figure 3.7. Quorum slices can be seen
as unique lists of trusted nodes for each node. All participants in the quorum slice
work together to reach consensus regarding the transaction sent to the primary node
in the quorum slice. To synchronize and keep the nodes in the quorum slice up to
date, each node has a candidate set that holds the transactions they have received.
The candidate set is broadcasted to other participants in the quorum slice to keep
them updated. The result of having quorum slices is that FBA systems do not need
a predefined list of nodes; it is instead public for any node to join the system at any
point in time [23].
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Quorum slice 3

Quorum slice 1

Quorum slice 2

Figure 3.7: Three quorum slices with different nodes

There are two predominant solutions of the FBA system, Ripple and Stellar. The
latter solution is the most recent and up to date solution in terms of safety. Ripple
is, however, easier to implement. Ripple is broken down into four major phases and,
additionally, four stages for the voting phase [24].

1. Initializing phase, takes all new transactions and all failed transactions from
the previous round and adds them to the candidate set.

2. Merging phase, each node in the quorum slice merge their candidate sets
and make them ready for the voting phase.

3. Voting phase, each node in the quorum slice votes for the transactions in
their candidate set. The voting phase has four stages.

I. 50% voting stage, each stage holds a voting percentage threshold for a
transaction to proceed to the next stage.

II. 60% voting stage (Fig. 3.8)

III. 70% voting stage

IV. 80% voting stage, successfully voted transactions are moved to the final
phase. Each transaction that fails a voting stage is discarded or inserted
to the candidate set on the initializing phase.

4. Final phase, all nodes broadcast their successfully voted transactions to their
peers and commit it to the ledger. Once the ledger has been established, the
nodes return to the initializing phase.
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Node X
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Incoming Transactions
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Incoming votes
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Node 4
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Threshold: 60%

Figure 3.8: The 60% voting stage for an FBA system. Node 5 is committing its
votes to Node X.

The most significant advantage that FBA has over pBFT is that it is more decentral-
ized, less central authority is taking part in the selection of nodes. FBA also gives
freedom to both users and nodes, as both can choose which nodes they trust. This
is especially important for nodes that belong to a specific company, for instance, an
automobile finance company. The node could require confirmation from a trusted
banking node, a trusted credit agency node, and a department of motor vehicles
node. The quorum slice for the automobile finance node would then be built up by
these nodes and allow for a transaction to be verified by all authorities [23]. This
means that the automobile finance company can be entirely sure that their transac-
tions are getting verified by trusted authorities, and therefore do not need a central
authority to provide this degree of trust.

FBA is currently used in the form of Ripple in the payment network RippleNet [25].
RippleNet is in turned used by financial institutions around the world. The most
significant application of RippleNet being XRP, a fast and scalable digital asset for
payments around the world [26]. The other major adoption of FBA, Stellar, is an
open network for storing money and performing payments. The network’s services
are, for instance, used by the well known IT-company IBM. IBM’s usage of Stellar
provides the ability for financial institutions to internationally send payments of any
currency [27].
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4
Hyperledger Sawtooth

Back in the year 2015, a blockchain framework called Ethereum was released. The
goal was to create a blockchain that supported a scripting language that would
allow people to build applications on top of it. Since Ethereum was released, several
blockchain frameworks can be found on the market; one of them is Hyperledger
Sawtooth. Security, scalability, and modularity are mentioned as Sawtooth’s main
benefits in its white paper [28]. Modularity is most present in the choice of the
consensus protocol. Instead of a consensus, Sawtooth provides an interface allowing
several different protocols to be used. Aside from many other distributed ledgers,
cryptocurrency is not one of Sawtooth’s aims. Instead, it is an open-source ledger
aimed towards enterprise applications [29].

Processing transactions in the right order is ensured through strict ordering by
Sawtooth. Transactions are placed in a block by a client, which then signs the block
and sends it to a validator. When the consensus engine verifies it, the block is
committed to the blockchain [29].

Sawtooth comes with a set of transaction processors which represent core functional-
ity. This includes a settings transaction processor that, as the name suggests, stores
and handles on-chain settings. Another one is the identity transaction processor,
which is responsible for the permissioning and a validator registry for registering
validators. Aside from these, Sawtooth provides some transaction processors for de-
velopment and testing. To control state-changes on Sawtooth, one can make a set of
transactions with specified operations, called a transaction family. Sawtooth allows
a developer to write additional transaction families in several different languages. It
also supports the use of Solidity together with Hyperledger Burrow EVM [28].

4.1 Peer-to-Peer Communication
Nodes on the Sawtooth network use TCP to send messages about peers and blocks.
To communicate these messages, Sawtooth uses the ZeroMQ (ØMQ) library, con-
taining objects serialized using Google’s protocol buffer library. Sawtooth itself does
not ensure that each message is shared with each node. Instead, Sawtooth relies
on a protocol that relies on each neighboring node, forwarding the message to its
neighbor, a gossip protocol. The Sawtooth network can control who gets to join it,
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send consensus messages, and who can submit transactions by assigning permissions
to the nodes it wants to control.

4.2 Security & Privacy
When it comes to security with regards to Sawtooth, there are multiple ways the
level of security can be tweaked to fit the needs of the end-user, such as the internal
settings and the type of consensus algorithm that is used. Privacy is an essential
factor to consider when developing an application on top of Sawtooth, which makes
it crucial to employ encryption wherever suitable.

Threats to Security
The Sawtooth nodes are separated by physical distance, and they use networks to
communicate with each other, which in turn introduces vulnerabilities. Mitigat-
ing vulnerabilities that are based on the structure of the communication between
the nodes is challenging. Sawtooth’s use of the ØMQ protocol, which supports en-
cryption and is backed by a large open-source community, lays the groundwork for
security. Even so, more action is required to guard against DDoS attacks since the
main objective is to disrupt rather than to gain unauthorized access. Furthermore,
if the attackers manage to compromise the registry that holds the IP-Addresses
to other nodes, which is called Domain Name System (DNS) Hijacking, then they
would be able to route traffic through the attacker’s system. From there, they can
choose to either re-route the traffic to an attacker’s node or listen in on the sent
information.

Distributed Denial of Service Attack (DDoS)
Any service that uses a network connection for communication is vulnerable to
DDoS attacks. They are primarily targeting the availability of a system and does
not directly threaten the stored information or the user’s privacy and security in
any way. Often they are performed by an attacker that has access to a large number
of devices with an internet connection. If the attacker knows the IP-Address of any
nodes or node in the system, then they can send requests of various types to one or
several nodes, which can be seen in Figure 4.1. Doing this will cause congestion in
the network traffic, and as a result, stalling or even halting the voting process [30].
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DDoS attack Normal request

Node

Malicious clients

Client
DDoS attack

DDoS attack

Figure 4.1: Malicious users overfloding the node with a DDoS attack. The normal
user’s request gets interrupted and delayed.

Domain Name System (DNS) Hijacking
When a new node joins the network, it will need to know the IP-addresses to the
other nodes. This allows an attacker the opportunity to tamper with the registry
that holds these addresses so that the new node will communicate with the attacker’s
system [30]. They can then proceed to feed the node with a false state of the network
or keep that node from taking part in the voting process. Another, more dangerous
activity the attacker could do is to steal the information the node is sending. To
achieve this, the attackers can route the network traffic through the attacker’s system
and analyze the transmitted data.

Client Application Security
The application developer has the responsibility of making sure the client takes the
necessary safety precautions and appropriately handles data. The private key needs
to be stored in a secure place so that any vulnerabilities that may give attackers
access to it are minimized.

Network Security
The Sawtooth network is vulnerable to DDoS attacks when it is not running on
properly configured hosts [31]. There are several ways to mitigate this vulnerability.
Either by configuring both the machine Sawtooth runs on or by configuring the
Sawtooth network itself, to make sure that no unauthorized entities can access the
system.

Transaction Processor Security
Different public keys in a Sawtooth application can have individually set permissions
called roles [32]. Those can dictate if a particular public key has permission to
post transactions, which is checked by the transaction processor when it receives a
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transaction. It can then choose to either Challenge or Trust depending on the roles
of the signing public key [32].
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5
Implementation Strategy

The development of a decentralized voting system without the use of a previously
existing public blockchain is a task that may be split into several subprojects. To
ease the development of the application, the Hyperledger Sawtooth framework is
used due to its modular nature.

The different subprojects are the consensus engine, the transaction processor, the
application programming interface, and the frontend. These subprojects together
make up the voting application, from end-user to the blockchain and distributed
consensus as shown in Figure 5.1. This chapter will explain, in further detail, the
methods and technologies used within each subproject, which are then used together
to create the voting application.

TP API Frontend
Cl

ie
nt

Voting framework

Bl
oc

kc
ha

in

Figure 5.1: Application flow

5.1 Consensus Engine
The consensus engine is responsible for the distributed agreement in the system, and
is therefore of high importance in the application. Since the Hyperledger Sawtooth
framework is modular and supports custom consensus algorithms by making use of
software abstractions, the implementation of a consensus engine is an isolated task.
The Hyperledger Sawtooth framework provides supporting services for implementing
a consensus engine in several languages; however none exists for Java [33], which is
the language of choice for this subproject. Therefore these supporting services are
developed first, followed by an iterative approach when developing the consensus
engine.
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Supporting Services
The development of supporting services is inspired by the implementation in other
languages to mimic the expected behavior. The primary responsibility of these sup-
porting services will be to abstract over the communication layer with the validator.
Moreover, this will make the implementation of the concrete consensus engine more
focused on the task of achieving distributed consensus instead of communication.

Iterative Approach
Building the consensus engine using an iterative approach makes the learning curve
of distributed consensus less steep. Another positive result of doing so is that the
supporting services will be verified in an early phase, mitigating complexity when
debugging later phases. The implementation begins by implementing what the
Hyperledger Sawtooth calls a devmode consensus. This type of consensus is simple
and features an algorithm selecting a random leader and committing blocks as fast
as possible. Further on, a consensus engine implementing the pBFT algorithm will
be developed to ensure the distributed aspect of the system works correctly. Moving
forward from the pBFT algorithm, the implementation of a consensus engine using
the FBA algorithm will be examined.

Technologies Used
The library JeroMQ is used be able to communicate with the Hyperledger Sawtooth
validator. JeroMQ is a Java implementation of the ZeroMQ communication library
[34]. To be able to test the solution, a combination of JUnit, Mockito, and Docker
is used. JUnit is a testing library for Java, which in conjunction with the mocking
library Mockito, brings a way to perform unit tests of small components [35].

Docker is a thin virtualization layer, giving possibilities to create integration tests
for the consensus engines and verify the functionality in multi-node clusters on a
single computer [36]. Within Docker, you can spin up several environments and
specify a network that they are able to communicate over, giving a simulation of a
real-world environment.

5.2 Transaction Processor
To give the voting application the ability to handle and enforce business logic, a
transaction processor is implemented. The transaction processor is implemented
using the Hyperledger Sawtooth Java SDK. Using the Sawtooth SDK simplifies the
development of a transaction processor by making use of abstractions to minimize
complexity. A transaction processor contains two top-level components; a processor
and a handler. The Sawtooth Java SDK provides a general-purpose implementation
of the processor class [33].

The voting transaction processor is implemented by first instantiating the general-
purpose transaction processor. Upon instantiation, the address of the validator is
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provided to connect the voting transaction processor with the validator. The second
step is to register the voting handler class to the voting transaction processor.

On the other hand, the voting handler class is implemented to define the business
logic of the system in the apply method and its helper methods and classes. The
voting transaction processor relies on a data model to ensure deterministic behavior.
The data model is developed to separate the details of state encoding and decoding,
transaction payload processing, validation logic, and addressing from updating the
state on the blockchain.

Technologies Used
The transaction processor makes use of the aforementioned Hyperledger Sawtooth
Java SDK and the Jackson library for serialization and deserialization purposes.

The Jackson library provides data-binding assistance to serialize a Java object to
Javascript Object Notation (JSON). In the words of the developers, Jackson is the
best JSON parser for Java [37].

5.3 Application Programming Interface
To support the end-user clients, an Application Programming Interface (API) is
needed to communicate between the client and the validator node. The purpose of
the API is to form an abstraction layer over the API interface supplied by Hyper-
ledger Sawtooth. With the use of the same data model as the transaction processor,
one gets consistency of terminology and data format across the system.

Communicating with the API from the client is performed over the Hypertext Trans-
fer Protocol (HTTP) using data in the format of JSON.

Technologies Used
The library Rapidoid in combination with Jackson is used to create the HTTP server
for the API. Since the API is a small and quite simple component of the system,
the choice of tech stack is tailored to minimize size, complexity and development
velocity.

Rapidoid is branded as a fast, simple and powerful Java web framework which sup-
ports the goals of minimized complexity within the application perfectly [38].

The Jackson library is used to support the serialization and deserialization needs of
the API. For more information regarding Jackson, see section 5.2.
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5.4 Frontend
As the application should be presented by an interface, a frontend is developed. As
most of the project scope and focus is the development of the consensus algorithm
and transaction processor, the frontend only represents the most necessary features
for finding an election and placing a vote.

Requirements
A set of requirements and use cases is set up to define the end goal of the frontend.
The use cases defined for the frontend are:

• Sign in with a private key to view elections one has access to

• View list of elections connected to a key

• Show details of one election

• Vote on a candidate

• View feedback from placing a vote

• Show election state

The initial plan is to meet these requirements following a mock-up developed in
Adobe XD. Adobe XD is a tool for building interactive interfaces without any code.
This is used primarily for simplifying the decision process in what has to be included
in the interface.

Technologies Used
To quickly accomplish a working frontend, the web application is developed in Re-
act. React is a JavaScript library for building user interfaces but is often compared
to frameworks like VueJS and Angular. This application is developed in React as it
is the most popular JavaScript framework among developers [39]. One advantage of
using a popular framework is that documentation is easy to find, which eases trou-
bleshooting. Another reason is that many other libraries are built to be compatible
with it. One example of this is React Bootstrap. React Bootstrap is a component
and CSS library developed from the already existing library Bootstrap, but adapted
to React [40]. React Bootstrap is used as the main component library in the appli-
cation to achieve a coherent design throughout the application. Furthermore, the
communication between the frontend and API is achieved using Axios. Axios is a
promise-based HTTP client that makes it easy to use with JavaScript async and
await [41].
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5.5 Testing the System
For the solution to be complete and usable, a few properties of the system have to
be tested. The four properties that the system must pass are the following:

1. Correctness - The test for the correctness aspect of the voting system will
verify that every cast vote in the blockchain follows all specified rules for the
voting system. It will also check that the blockchain does not allow multiple
votes to be cast from the same user. The blockchain should also allow every
user with a key to cast their vote and have their cast vote correctly inserted
to the blockchain.

2. Security - In regards to the security aspect of the voting system, the test will
primarily check that an already cast vote block cannot be tampered with. The
possibility of a third party casting one or more unwanted votes will also be
analyzed.

3. Transparency - The transparency of the system will be examined as the
possibility of a voter or third party to inspect and verify the result and that
the predetermined rules of a vote are followed.

4. Anonymity - The anonymity aspect of the system will be inspected by exam-
ining how the system ensures anonymity and what properties could be used
to determine the identity of a cast vote. Such a test includes not being able
to trace back the voter by using their key. The test case will check if a vote
can be deanonymized and be paired with a voter in the case of a private key
being leaked.

Tests for the properties will be conducted based on logical reasoning and proofs
deducted from the properties of a public blockchain and the consensus algorithm.
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This chapter describes the system and the different modules that make up the sys-
tem. It is organized as follows: Section 6.1 presents the web application, Section
6.2 gives an overview of the voting process, and Section 6.3 describes the differ-
ent network components. The source code of the system is available at https:
//github.com/DATX02-87/DecentralizedVoting under the MIT license.

6.1 Frontend
Showing the underlying logic and functionality that has been built is an important
part of the goal application. That said, only previously mentioned requirements
have been fulfilled in the interface through three main pages:

1. The purpose of the Sign in page is for the voter to enter a private key, and
then get access to the elections for which that voter is eligible. This is achieved
through a simple input text area with a sign-in button, shown in 6.1. When
entered, the key is stored in a state which is supported by a functional state
management system in React [42]. Other than storing the key, there is a
validation process making sure the key entered is valid. Upon validation, the
user is routed to the votations page.

Figure 6.1: Sign in page

2. The Votations page renders all elections for the key stored in the state. The
elections are fetched from the API and shown in a list component, where each
item is designed as a card with simple election information shown in Figure
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6.2. The button redirects to the detailed view of that votation.

Figure 6.2: Votations page

3. The Votation Detail page consists of a card showing detailed information of
one election, visualized in Figure 6.3. Upon choosing a candidate and cast-
ing a vote, the vote is converted into a transaction, including the candidate
and election. The transaction is then sent together with the signature of the
payload onto the blockchain. After casting a vote, the view is updated to a
verification showing that the vote has been counted before routing back the
votations page.

Figure 6.3: Votation detail page

6.2 Overview of the Voting Protocol
There are two types of clients interacting with the system, voters and administrators.
As mentioned in Section 1.2, the network of validators maintaining the blockchain
has no role in the registration of voters or the distribution of public and private keys.
As a result, each election is initialized with a file containing the keys of eligible voters
and the administrators. Given that different people may be eligible for different
elections, initializing each election with a list of the voters that can participate in a
particular election ensures that no voter can take part in an election they are not
eligible for, under the assumption that the distribution of keys is accurate and free
from errors.

Voters interact with the voting system through the web-based application described
in the previous section (Section 6.1). When a voter signs in with his or her private
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key, information about currently available elections is fetched from the blockchain
through the API. The voter can then choose one of the active elections they are
eligible for, followed by casting the ballot. A voter casts the ballot by selecting one
of the available options from the list of candidates for the election in question. This
ballot is signed by the voter with their private key. See Figure 6.4.

The signed ballot is submitted to a validator node in the network for processing
through the API. A valid ballot must correspond to an active election, include the
signature of an eligible voter and include one of the listed options. If the validators
reach consensus and the transaction is found to be valid, the vote is recorded in the
global state and stored in the blockchain. This ensures consistent data across the
distributed nodes in the network. At the end of the election, the voter can use the
same private key to view the results.

User Application

Private key

Choose election

Cast ballot

Private key

Sign ballot

Validator

Submit to
blockchain

Check vote

Web-page application

Backend

Figure 6.4: A flow chart over the voting process.

6.3 Node Components
The network is built on the Hyperledger Sawtooth platform. As Figure 6.5 shows,
each node in the network includes a consensus engine, an API, a set of transaction
processors, and runs a validator.
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Validator
All validators in the network verify the validity of a ballot that has been cast using
the same set of transaction processors. This ensures the consistency, accuracy and
reliability of the system across multiple and independent nodes. In addition, val-
idators verify that each voter can cast a vote exactly once in any given election by
checking that the voter public key does not match a ballot already included in the
blockchain.

The validators on the same network establish initial connectivity and peer discovery
using gossip ØMQ protocol over TCP on port 8800. External clients communicate
with validators using the API through HTTP port 8008. The components connected
to the validator, such as the transaction processors and API, are installed in Docker
containers and connected to the validator through TCP on port 4004.

API Validator

Consensus 
engine

Transaction
Processors

Client

Figure 6.5: The network components for a node in the Sawtooth platform.

Transaction Processor
The main transaction processors are the Voting Transaction Processor and the Set-
tings Transaction Processor. The settings transaction processor handles the network
settings and stores on-chain configuration settings. The Voting Transaction Proces-
sor handles the submission of ballots to existing elections and relies on the data
model to validate a transaction.

The data model is responsible for the addressing scheme, serialization and deserial-
ization of data, and handling the enforced logic. The client and voting transaction
processor must share the same data model. This is important because the client
encodes the data in a payload, which is decoded by the transaction processor. Ad-
ditionally, the transaction processor encodes data to be stored in the state, which
the client needs to know how to decode.
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Furthermore, the data model defines the methods that validate the transaction,
enforce permissions of different requests by different clients, and apply the transac-
tion. Applying a transaction includes the verification of the eligibility of the voters,
adding candidates to an existing election, and making sure that a voter is eligible
and can cast the ballot only once for each available, and active election.

The data model includes various classes that facilitate transaction processing. Some
of these classes are Action, TransactionPayload, Transaction, and the Reducer
class. The Action class represents the different actions that a transaction pay-
load may contain. There are five actions defined by the system: ADD_ELECTION,
ADD_CANDIDATE, CAST_VOTE, END_ELECTION, and INIT. The ApplyTransaction method
defined in the Reducer class takes the following steps to apply the transaction:

• Get the Action from the transaction payload

• Deserialize the transaction data from the payload by instantiating a Java Ob-
ject from the transaction data encoded in a JSON string for each action men-
tioned above.

• Call the appropriate handler method for each action.

• Return an object of type GlobalState, which represents the new state.

The handler methods are action-specific and perform the necessary tests to validate
the transaction. For example, the handleCastVoteAction method performs five
tests by checking:

1. that the supplied election exists

2. that the election is active

3. that the candidate exists

4. if the voter is eligible for this election

5. whether or not the transaction submitter has voted before.

The other handler methods perform similar tests, however, the transaction submitter
must be an administrator.

The voting transaction processor decodes the transaction payload, gets the current
state from the context, calls the ApplyTransaction method, which returns an up-
dated state from the data model, as seen in Figure 6.6. Finally, it stores updated
state back to the context. Both updating and getting the current state through the
context requires making the address at which the state information is stored. The
length of the address is 70 characters. The first six characters are obtained from the
SHA-512 hash of the UTF-8 encoding of the FAMILY_NAME. The remaining 64 char-
acters are the hash of the public key that is passed as a parameter to the constructor
of the voting handler class. The transaction processor turns the GlobalState object
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into bytes and stores it into the Radix-Merkle Tree of the validator based on this
address.

State

Action

Reducer State

Figure 6.6: A state and an action reduced to a state.

Consensus Engine
All nodes in the network include a process running the consensus engine, which is
responsible for the progression of the blockchain. This requires the consensus engine
to be able to handle messages received by peers and the validator. The backbone for
handling received operations is the consensus algorithm that the engine implements
[43]. The algorithm implemented in the system is the practical Byzantine Fault
Tolerance algorithm and uses pBFT specific protobuf messages to communicate
with the engine’s peers. The following pBFT messages are used for communication
[44]:

PbftMessageInfo holds information about the message type, the current view
number, the block sequence number, and the id of the node that signed the
message.

PbftMessage is a generic pBFT message that is used to communicate with other
peers regarding the current phase the node is in.

PbftNewView is a message sent by the new primary node to signify that a new
view should be started.

PbftSignedVote is a committed vote sent from a node to the leader node.

PbftSeal is a seal to verify that a specific block should be committed to the ledger.
It holds both a list of PbftSignedVotes and a PbftMessageInfo.

The consensus engine uses Sawtooth specific protobuf messages to communicate
with the validator. Sawtooth messages are primarily used to signal the engine about
blocks and peer connectivity. When the consensus engine receives a block-related
Sawtooth message, the algorithm tries to reach consensus. This is done by going
through the different pBFT phases and communicating with peers through pBFT
messages until the final result is sent to the validator through a Sawtooth message
[44]. The blockchain has then progressed.
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Discussion

This chapter discusses how well the final system meets the requirements, as well
as the social, economic and environmental impact such a system might have if
implemented in a real-life situation.

7.1 Conformance to Requirements
The system conforms to the requirements stated in 5.5, which were conditions re-
quired for any general democratic voting system.

After a vote has been cast, one can get the state of the blockchain and confirm that
the transaction indeed has taken place, fulfilling the requirement for transparency.
As for anonymity, there is no way to connect a cast vote or a private key to a
participating voter from within the system. However, as mentioned in section 1.2,
no concern is taken for the possibility to track private keys back to a voter outside
of the system.

After a vote has been added through a block that has been committed to the chain
(given that the block was not tampered with and rejected), that vote is unchangeable.
This, of course, only applies to the extent to which one accepts that the blockchain
is immutable. Together with the highly secure nature of the blockchain, the risk
that anyone without the proper private key could commit a fraudulent transaction
as if made with that key is non-existent.

Regarding correctness, the system has firstly met all previous specifications and
further meets all specifications of a voting system as specified in 1.2. It allows
everyone with a key to vote, but does not allow multiple votes to be cast from a
single private key. All nodes in the network have a copy of the number of votes on
each candidate, facilitating the process of verifying election results.

The voting application built upon the blockchain fulfills all requirements for inter-
actions as a voter. However, it does lack an interface for administrating an election.
The administrative part includes setting up candidates, distributing keys, creating–
and closing the election. Administrating the elections can, of course, be done, but
not in an easy to use interface. This currently limits the application from being used
without interaction from the creators, which makes it unsuitable for distribution.
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On the other hand, the pBFT consensus algorithm allows high transaction through-
put and negligible power consumption. However, it scales poorly when the network
becomes too large due to the communication overhead introduced by the nodes com-
municating with every other node. It also limits the decentralization aspect since
only a predetermined list of nodes can act as validators. Some of these problems
can be mitigated by a successful implementation of the FBA consensus algorithm.
For example, FBA allows more decentralization since there is no recommended list
of validators chosen by a central authority.

7.2 Ethics & Sustainability
The possible implications of implementing a system such as the one proposed in
this report in a national election with regards to ethics and sustainability manifest
themselves most clearly in three categories: social, economic, and environmental.

Social Implications
There is a vast potential for considerable democratization of the election process
through the usage of decentralized e-voting. Partially because of the trust distri-
bution through blockchain technology, and partially because of the potential for a
higher voter turnout due to the logistical simplicity of digital voting [45]. In countries
that struggle with corruption and dishonest governments, a voting system controlled
by all participating candidates or parties would be an unprecedented improvement
to the democratic process. Other problems such as lost vote-ballots, uncertain ballot
counts, or invalid votes due to misspelled party names would as well be eliminated.
However, such a system also introduces potential vulnerabilities of its own to the
process.

As with any effort to digitize and streamline an old system, the transition ought to
be gradual in order not to leave subscribers to the old system behind. Even though
electronic voting has not been tried in enough countries to conduct a quantitative
study, there are studies on the Estonian electronic voting system. Implemented
in 2005, it shows, among other things, that even though the e-voting alternative
initially was used mainly by Estonian-speaking people of narrow age groups that
were computer literate. The usage group after four elections was diversified enough
to weaken, or invalidate, the previous conclusions [46]. Extrapolating from this,
it would be reasonable to assume that parties with young, computer-literate, na-
tive voters would initially be favored through a higher voter turnout but that this
advantage would eventually die off.

Furthermore, there are other, more direct, threats to democracy posed to such a
system if not implemented correctly, such as the potential to track private keys back
to voters, which might enable the selling of votes or even threats to vote for a specific
party.
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7. Discussion

Economic & Environmental Implications
Arranging an election is a costly matter in terms of both money and resources.
According to the Swedish election authority, Valmyndigheten, the Swedish general
election of 2010 cost 258 million SEK, of which 148 million SEK was dedicated
to printing ballots and other peripheral costs [47]. In 2018 the total cost even
surpassed 348 million SEK [2]. A voting system like the one proposed in this paper
would eliminate those costs, but would, of course, introduce new costs for servers
and management.

With our proposed system used in parallel with- or as a substitute for the cur-
rent election system, the environmental impact of the millions of ballots that are
printed for each election, the transportation of said cards and transportation of
voters themselves could be mitigated or even completely removed. Due to the na-
ture of our proposed consensus algorithm, the energy consumption of processing the
blockchain is nearly negligible.
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8
Conclusion

The process of digitizing conventional paper and pen election schemes offers the po-
tential to make a voting process more accessible, faster, and cheaper. This project
developed a blockchain-based decentralized voting system that is built on the Hy-
perledger Sawtooth framework. The primary purpose of developing a decentralized
voting system upon an already existing distributed ledger technology has therefore
been achieved.

Its core attributes stated in the objective in Section 1.1, security and, robustness have
been realized through the development of a consensus algorithm and transaction
processor. These ensure that trusted parties validate each vote and, when cast,
cannot be tampered with. As the system is aimed to be transparent and anonymous,
it is made sure that a vote is counted upon placement while it is not possible to
connect a vote or key to a voter. The confirmation of a vote is by showing the state
of an election after casting a vote.

On the other hand, as a result of the administrative limitations described in Section
7.1, there is no way of making sure that the distribution of keys is accurate as there is
a central authority involved in that state. Although the blockchain technology does
not allow any committed ledger to be tampered with, there is no guarantee that a key
cannot be traced back to a voter. The system could be developed further to include
the registration of voters using some form of government-issued identification, such
as a driver’s license. In addition, different cryptographic techniques can be used to
ensure anonymity. Some techniques that might be considered are zero-knowledge
proof, blind signature, homomorphic encryption, or ring signature.

The current state of the system cannot be used in a large-scale or a national election,
particularly in countries with a large population due to the limitations presented
above. However, it could be used in smaller voting schemes.
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