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Sweden
Telephone +46 31 772 1000

Cover: Image of truck and track used for training a neural network.



Abstract

Due to inattention and not complying with traffic regulations, human error accounts for
roughly 94% of all traffic accidents. To counter this, the need to develop systems that can
identify traffic rule violations and calculate the risk of collisions. The information reported
can then be used to implement preventive measures. Modern vehicles are equipped with
sensors and cameras thus making this possible, but it comes with the complication of not
violating the privacy of individuals when gathering information.

This project presents a prototype system comprised of three subsystems with the intention
of reducing traffic accidents. The first two revolve around the detection of traffic violations
with the use of real-time object detection and intention aware risk estimation. The
purpose of the third subsystem is to detach personal information from the data gathered
by the previously mentioned subsystems. This makes it possible to use the data to
pinpoint problematic areas in a traffic environment.

Evaluation of the system was performed in both a simulation environment and with
analysis of video feeds from a lab environment. The results of the evaluation show
that the prototype system developed in the project is sufficiently accurate to be further
developed and implemented for use in real vehicles.

Keywords: Traffic rule violations, Risk estimation, Privacy preservation, Computer vi-
sion, Deep learning neural net
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Sammandrag

Mänskliga misstag st̊ar för ungefär 94% av alla trafikolyckor. Detta p̊a grund av b̊ade
ouppmärksamhet och brott mot trafikregler. För att motverka detta problem finns det
ett behov att utveckla system som kan identifiera trafikbrott och riskabla situationer
och rapportera in detta till myndigheter. Den rapporterade informationen kan sedan
användas i förebyggande arbete mot trafikolyckor. Moderna fordon är utrustade med
sensorer och kameror som möjligör insamling av s̊adan information, men insamlingen
riskerar att äventyra individers integritet.

Detta projekt har utvecklat ett prototypsystem med avsikten att minska mängden trafikoly-
ckor. Systemet best̊ar av tre delsystem. De tv̊a första syftar till att upptäcka trafikbrott
och riskabla situationer med hjälp av realtids objektdetektering och avsiktsmedveten
riskestimering. Syftet med det tredje delsystemet är att ta bort personlig information
fr̊an den data som samlats in av de tidigare nämnda delsystemen. Detta gör det möjligt
att använda informationen för att kartlägga problematiska omr̊aden i trafiken.

Utvärdering av systemet utfördes i en simuleringsmiljö och med analys av videoflöden fr̊an
en labbmiljö. Resultaten av utvärderingen visar att prototypsystemet är tillräckligt effek-
tivt för att motivera vidareutveckling och senare implementering i riktiga fordon.

Nyckelord: Trafikbrott, Riskestimering, Integritetsskydd, Datorseende, Djupinlärnings-
nevronnät
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Nomenclature

AMT (Automatic Marking Tool) - Automated tool that uses the trained Neural Net to
mark up further training and validation data that can be manually reviewed and then used
for training.
ANN (Artificial Neural Network) - Series of algorithms used to recognize patterns in sets
of data. The process mimics that of the human brain.
CNN (Convolution Neural Net) - Specific type of Neural Net used in Deep Learning with
supervised training, mainly in processing visual imagery data.
DL (Deep Learning) - Subset of machine learning utilizing Neural Networks on large di-
verse data sets to solve complex problems.
CPU (Central Processing Unit)
GPU (Graphics Processing Unit)
GPS (Global Positioning System) - A satellite-based positioning system
IARE (Intention-Aware Risk Estimation) - An algorithm for calculating risk in crossings
MOT (Marking Object Tool) - Cloud hosted web-app used to mark bounding boxes on
test and validation data to be used in Neural Net training.
MSSM (Markov State Space Model) - A state based model that uses dependencies be-
tween states to predict future states.
NN (Neural Network) - Used interchangeably with ANN. Referring to an Artificial Neural
Network, unless clearly specified not.
Randomized response - A survey technique for eliminating evasive answer bias
ROS (Robot Operating System) - A middleware for robot software development
RTT (Remote Training Tool) - Web interface for running Neural Net training on a re-
mote server.
R-CNN (Regions with CNN features) - CNN strategy for firstly identifying areas of in-
terest by selective search and thereafter processing these areas.
TVD (Traffic Violation Detection) - Algorithm for detecting traffic violation scenarios.
YOLO (You Only Look Once) - Object Detection Algorithm
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1 Introduction

Vehicle safety has been increasing steadily over the last 50 years [1], to the point where
driver error is the cause for 94% of all traffic accidents [2]. The overwhelming majority of
traffic accidents, close to 75%, fall into the two categories driver inattention and driver
decisions not complying with traffic rules and/or conditions [2]. To decrease the risk of
human errors’ impact on traffic safety these two issues stand out as prime candidates to
address. Automated systems aiding the driver could prove crucial in improving traffic
safety. First off, it could be beneficial to develop systems that identify traffic rule viola-
tions by drivers to combat decision errors. This, in tandem with systems that calculate
the risk of collision with nearby vehicles and the surrounding environment, to assist in
cases of inattention. These solutions could be implemented at no increased production
cost, as new vehicles come equipped with the required sensor capabilities from the factory.

In recent years great advances have been made in vehicle automation and automated
safety systems [3]. A product of this has been a rapid increase in proximity and camera
sensor density of newly produced motor vehicles. With this comes a greater ability for
data collection of factors that may affect traffic safety [4]. This data can be used to
identify and track the frequency and severity of traffic rule violations in a particular area.
Thereby indicating if further actions or resources may be beneficial in order to improve
traffic safety.

Modern vehicles collect a vast amount of information about the driver and the surround-
ing environment [4]. With all information collected, it is important not to violate the
privacy of individuals in such a way that they can be individualized. Information needs
to be sanitized by the system so that it does not conflict with EU:s (European Union)
law about GDPR (General Data Protection Regulation) [5]. GDPR restricts the storage
of information about an individual (e.g., an individual’s name, location, ethnic origin,
and medical condition) should be unknown when a report is filed. A violation of GDPR
can lead to fines up to 20 million Euro or 4% of the annual turnover [6].

1.1 Purpose and task description

The purpose of this project is to create technology for increased traffic safety and thereby
decrease the number and severity of road-related accidents. To accomplish this, our goal
is to implement a system prototype for detecting traffic rule violations and related road
risks. Without exposing identities of the individuals involved, the system analyzes the
data and compiles it into a report which then can be used to identify critical sections in
a road network.

Three different tasks to achieve the described system have been identified as:

• Detection of traffic rule violations using computer vision This task con-
sists of developing and evaluate a system that can via computer vision technology
identify objects (e.g., vehicles and infrastructure) and scenario markers (e.g., road
markings). This system runs locally utilizing vehicle sensor array to produce real-
time object velocity and geo-temporal estimation data as well as the presence of a
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scenario marker. This combined data is used to determine the occurrence of traffic
rule violations in close proximity to the test vehicle. The data used to develop this
system will be gathered using model trucks in a lab experiment set-up. Initially we
limit traffic rule violations scenarios to vehicles crossing a solid line. This will be
expanded upon should project timeline allow.

• Detection of risky traffic situations in vehicular systems

Recognizing risks in traffic could be crucial to prevent an actual accident from
happening. Therefore a state of the art risk estimation technology [7] will be imple-
mented so that we can detect when a car approaches a dangerous traffic situation.
The risk will be determined by estimating the probability that an opposing car’s
intended maneuver will decline from its expected maneuver. This prototype sys-
tem will be developed and tested in a simulation environment where the risk is
known. Furthermore the prototype system will focus on detecting risky situations
in a simulated intersection.

• Privacy preserving online reporting of geo-temporal information Map-
ping incidents of traffic rule violations as well as high-risk situations. This should
be done with personal confidentiality in mind so that no private information is
leaked during the process. The outcome of this challenge aids the advancement of
cost-effective casualty-prevention policies and traffic engineering strategies.
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1.2 Our contribution

This project created a prototype system which identifies some traffic violations and traffic
risks in some traffic situations. The system then compiles into statistical data that
can help with improving road safety, all without compromising personal privacy. This
was achieved using state of the art algorithms and can potentially be implemented on
modern vehicles using on-board technology. This is the first time that a system allows
both the detection of traffic violations and traffic risks, which also offers a safe and
GDPR compliant reporting method. The techniques and testing methods used in the
development of this prototype system can be used for further development and research
on risk and violation reporting systems.

Using machine-learning techniques such as YOLO the system is able to detect traffic
violations in some traffic situations using image streams from existing car cameras. Fur-
thermore, the system can determine dangerous traffic situations in intersections using
Intention-aware risk estimation. The system can report traffic violations and dangerous
traffic situations using a software-based randomized response implementation, without
violating personal privacy.

Tests were performed on all subsystems. The tests were conducted with the following
tools and methods: The traffic rule violation detection system was tested using the lab
environment equipment and computer vision with YOLO; The risk detection subsystem
and the project system was tested using ROS and Gazebo; The privacy preserving report-
ing subsystem was tested using simulated data. Testing showed that the system achieved
the capabilities described in the task description.

Traffic Rule violation detection was done with computing current positions and previous
positions of vehicles in correlation to the surrounding environment, such as solid lines.
The Risk detection subsystem successfully detected all risky situations in the 96 test
cases performed. This was done with a margin that makes it possible to use automatic
braking systems to mitigate traffic accidents. Furthermore, the testing of the randomized
response reporting showed that it was successfully implemented.

With these results the project concluded that these technologies has potential to be useful
in future systems.

The code and documentation can be found on the projects’ GitHub repository following
this URL https://github.com/JesperNaarttijarvi/DATX02-Vehicle-Automation.
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2 Theory

The purpose of this chapter is to present and explain the theory that the project is built
upon. To get a better understanding of the system architecture (chapter 4), this section
gives a rundown of methods and techniques that are used to implement said system
architecture.

2.1 Image processing techniques

In order to detect traffic rule violations, we utilize Computer Vision [8] working on the
data stream coming from Visible Light Cameras on vehicles. This allows us to identify
objects, of our own choosing, trained in our Deep Learning Artificial Neural Network (DL-
ANN). This Artificial Neural Network (ANN/NN) [9] is used both for object detection
and object tracking. Determining if objects that may be used to propose traffic situations
are present and their spatial relation to each other. In order to process video in real-
time with limited compute capability using the right algorithm as well as the purposeful
strategy in objects to detect had to be considered. As this is paramount to achieve in
high-speed vehicle traffic.

An Artificial Neural Network combined with an algorithm analyzes the image frames
of the video stream represented as matrices of RGB color values. Throughout stages
convolutions are applied on the neighboring pixels, in most cases by a 3x3 grid, around
said image pixel. The product of these equations is used to identify edges, shapes, and
eventually higher-order representations. It outputs what objects are present in the image
and with what certainty as well as their position in the image.

Depending on what algorithm is used this is done differently and there have been many
improvements in this area starting in 2012 when Computer Vision transitioned over to
Deep Learning. Earlier strategies such as Convolution Neural Net (CNN) [10] apply
convolutions with full coverage of pixels in multiple steps for all nodes in the NN. Later
advancements in Regions with CNN features (R-CNN) [11] utilize randomly positioned
fields and try to detect similar color, texture or pattern within these, highly probable to
compose an object. After this, it only performs the taxing CNN in these areas. Leading
up to the current state-of-the-art strategy You Only Look Once (YOLO) [12] which also
first produces a class probability map and focuses on those areas with multiple cycling
of convolutions and pooling. YOLO is also integrated in an open source neural network
framework, Darknet [13]. The performance of YOLO in conjunction with this ready to
use framework with ample documentation makes it the prime candidate for use by our
Image Processing subsystem.

These Neural Networks have to be trained with training data in order to later be utilized
for detection. Training data is produced by taking large sets of image data of the classes
and manually defining the region where they are present. This combined data of image
and region therein a named class is located is fed to the Neural Network for training
and improves the weights used for better accuracy in detection. Weights are adjusted so
that the ones in accordance with proof positive are rewarded and ones in opposing are
punished. Incrementally strengthening the weights ability to correctly detect the trained
classes even if in high variance from the training data.
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YOLO (You Only Look Once) is based on a single neural network constructed from
the ground up for object detection. This enabled high-performance detection which in
turn makes it highly suitable for real-time video processing. Another benefit of YOLO
is that it learns very generalized representations of objects and can, therefore, identify
objects with some certainty even if conditions vary greatly from the conditions it was
trained under. The object classifiers of YOLO also work in a more global and contextual
way than previous techniques making it much more adept in understanding what part of
a marked object in training is the part of interest. Making it much less likely to produce
false positives by not misjudging ‘dead space’ or background as part of the classifier.

YOLO processes images in a single pass, hence the name, You Only Look Once. The first
step in this process is dividing the image up into a S x S grid cells, in YOLO9000 this
was changed to 13 x 13 as it proved to improve detection of small objects over fewer cells.
Within these cells, multiple bounding boxes of possible objects and confidence scores that
these match classes trained to be detected by the model are produced. The confidence
score is a combination of how probable the model predicts that an object class is present
within and how accurately the bounding box is to contain the entire object.

Figure 1: YOLO Process

YOLO [14] was first introduced in 2016. It was later iterated upon that same year with
YOLOv2 [15] also known as “YOLO9000: Better, Stronger, Faster” when it was combined
with a purpose-built CNN framework named Darknet [13]. In 2018 the current version
YOLOv3 [12] was released with improvements in both accuracy and performance.
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2.2 Intention-aware risk estimation

The Intention-Aware Risk Estimation (IARE) is used in the Risk detection subsystem
to reason about traffic situations and collision risk [7]. In this section, the theory behind
Intention-Aware Risk Estimation for General Traffic Situations will be explained.

There are many approaches on how to tackle the problem with risk estimation [7]. The
conventional solution relies on trajectory prediction, meaning that a trajectory is assessed
based on the speed and position of vehicles [16] [17]. The predicted trajectory is then
compared between all vehicles to detect potential collisions. This method is very resource
intensive which prevents real time safety systems. A less resource intensive alternative
is Intention-Aware Risk Estimation. IARE which is the approach taken in this solution,
reasons at a semantic level [7]. Risk calculation is based on the intentions and expectations
of drivers. More precisely, high-risk traffic situations are determined by comparing the
intentions of drivers with what they are expected to do.

The IARE algorithm has been shown to be capable of detecting dangerous situations
early [7]. For instance in simulations of 240 dangerous traffic situations every collision
predicted at least 0.6 s before collision and in 80 of the cases the collision was predicted
2 s before collision. Furthermore the IARE algorithm has been shown to comply with
real-time constraints. In field trials the 20 non-dangerous tests caused no false alarms
and in all of the 90 dangerous tests the system warned the driver early enough so that
the collision could be avoided by braking. Therefore, the IARE algorithm is suitable to
use in the Risk detection subsystem.

2.2.1 Markov State Space Model

As mentioned before, the approach is to estimate the intention of drivers and then com-
pare that to what is expected of them. In the IARE algorithm, a Markov State Space
Model (MSSM) is used to predict the traffic situation semantically [7]. A MSSM is a
state-based model that uses dependencies between states to predict future states. The
MSSM used can be seen in Fig 2 below.

The first layer corresponds to the expected behavior of the vehicle. It is implicitly encoded
in the multi-vehicle dependencies. For instance, the model assumes that a vehicle will stop
if it approaches an intersection where another vehicle has right-of-way. This expectation
is represented by the variable En

t . En
t is a conjunction of variables. Furthermore, En

t is
derived from the previous situational context. Each variable in the conjunction Int has a
corresponding variable in En

t .

The second layer corresponds to the maneuver performed by the vehicle. The variable
Int then represents vehicle n’s maneuver at time t. This layer is called the ”Intention” of
the driver and it is dependant on the variable En

t , as mentioned before, since the model
assumes vehicles will follow the traffic rules with a high probability.

The third layer corresponds to the physical state of the vehicle. For instance position,
speed, etc. The conjunction of the variables at this layer is represented by φn

t . Which
therefore represents the physical space.

The lowest layer corresponds to the available measurement. These measurements consist
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Figure 2: Markov State Space Model, bold arrows represent multi-vehicle dependencies.

of position, orientation and speed of each vehicle and are represented by the variable
Zn

t .

2.2.2 Intended maneuver

The intended maneuver tries to assess how a driver will operate a vehicle through a
crossing. As mentioned in the report [7], the operation is divided into two separate parts:
a lateral and longitudinal motion. The lateral motion represents the course of the vehicle.
More precisely, if the driver intends to drive straight through the crossing, turn right or
turn left. In this work, however, the focus lies in the longitudinal motion of a vehicle.
The longitudinal motion represents the drivers’ intention of stopping at a crossing. This
intention can be one of the following: go or stop. If a driver intends to stop at the
intersection it will be represented by Int = stop. If Int instead is set to go it shows that the
driver intends to drive through the intersection without the intention of stopping. The
intention is continuously calculated using the current expectation Esnt and the previous
intention Int−1 of the driver:

P(Isnt |Isnt−1Es
n
t ) (1)

The way Int is calculated, as mentioned in the previous report [7], is as follows:

The assumption made is that drivers have a high probability of following what is expected
of them and therefore Pcomply is set to Pcomply = 0.9
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Isnt−1 Esnt P (Isnt = go)
go
go
stop
stop

go
stop
go
stop

Pcomply

0.5
0.5
1.0− Pcomply

Table 1: Calculation of the intention of a driver

2.2.3 Expected maneuver

The expected maneuver models surrounding vehicle’s influence on the maneuver a vehicle
performs[7]. The expected maneuver can be divided into two parts: lateral and longitu-
dinal motion. However, the lateral motion is not necessary to model in an intersection.
Since the direction a vehicle will take in an intersection will not be affected by other ve-
hicles. The longitudinal motion for vehicle n at time t can defined as: Esnt ∈ {go, stop}.
Where stop means that the vehicle will adapt it’s speed so it can stop at the intersection
and go mean that this is not the case. The expected longitudinal maneuver is derived
from the previous intended course, pose and speed of all the vehicles in the traffic envi-
ronment:

P(Esnt |It−1φt−1) (2)

The expected behavior of a vehicle is defined both by law and driver judgment. Therefore
this model is based on expected driver behavior. For instance, the necessity for a vehicle to
stop in an give-away intersection is calculated a bit simplified in the following way:

1. Project forward the position of the vehicle n until it time tn where it reaches the
intersection using the previous state and a constant speed.

2. Project in the same way for all the vehicles V with right-of-way.

3. find the vehicle k ∈ V which is most likely to cause the vehicle to stop, by finding
the smallest time gap for the vehicle n execute it’s behaviour without collision

4. The necessity for vehicle n to stop at the intersection is calculated as the probability
that the time gap is not sufficient, using a probabilistic gap acceptance model.

This context-aware reasoning can be applied to other traffic situations and allows us to
detect unexpected i.e. risky behaviour.

2.3 Privacy preservation

When collecting and analyzing the data from the risk detection and image processing
subsystems, it is critical not to reveal any information about the individual(s) involved in
e.g. a traffic violation. If the collected data is to be reported to a federal organization, it
first needs to be processed. This section presents a technique using randomized response
[18] to achieve a privacy preserving reporting system. Randomized response is an ap-
proach that can be used in surveys to avoid evasive answer bias. Warner [18] argues that
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with this method, evasion bias is greatly reduced to the point that it is almost completely
removed.

An interviewee is prompted to only answer truthfully on a yes or no question based on
a probability. For example the interviewee could toss a coin (see Figure 3). If the coin
lands on ”heads”, then the interviewee must answer the truth. But if the coin lands on
”tails”, then the interviewee will toss the coin again. Supposing that the second coin toss
lands on ”heads” the interviewee will answer yes regardless of it being the truth and on
”tails” the interviewee answers no. This eliminates the possibility for even the interviewer
to know if the interviewee tells the truth. Due to the interviewee’s answer only having
a probability of being true or false, the interviewee can not be held accountable to the
result. Therefore any information gathered by using this method can be used without
the concern of jeopardizing individual’s privacy.

Figure 3: Algorithm flowchart

The use of the randomizing response method was conceived as a way to reduce evasive
answer bias for primarily surveys. But its effectiveness of giving accurate statistics and
simultaneously being able to detach the interviewee from their answers makes is suitable
in aiding the system to comply with the GDPR [6]. The privacy preserving reporting
system is automatic, requiring the method being able to be automated in software. The
randomizing response method is an excellent choice due to its systematic approach and
its capabilities to be adapted for different use cases.

An alternative to randomized response is k-anonymity [19]. This method is based on
removing attributes from a set of data, e.g. an individuals’ name, sex, or age. In the
case of an individuals’ age, the attribute can be replaced with a range. If the individuals’
age is 42, this can be replaced with e.g. 40 − 45. However, there is a possibility that
individuals’ information is revealed if an attacker has prior knowledge of the set of data.
This is not an issue with randomized response, since it only returns statistical information
completely void of any individuals’ information.

9



3 Software Engineering Process

This chapter of the report intends to elucidate the work methodology of the project, as
well as describe the different tools and software that were used throughout.

3.1 Software development methodology

The project group was divided into three separate teams of two people each. Each one
was assigned a subsystem to work on. The teams have worked incrementally on the
subsystems. The incremental process involved four steps which were cycled. In the
first step, the specifications for the current stage of the subsystem were established. For
instance, the project requirements were discussed and concertized in a meeting. The next
step was to design functions that meet the specifications set by the first step. This was
primarily done within the subgroups. The third step was to code the designed functions,
which were done in pairs or by one group member. The last step consisted of testing
the system to ensure that it satisfied all requirements. This process was then repeated
several times to acquire the finished product.

The work process also involved two weekly meetings. The meetings discussed objectives,
work progress, problems, design, and specifications. Each meeting was led by a different
chair who led the meeting and wrote a protocol. Furthermore, the group also held
meetings with the supervisor. During which the group got feedback.

3.2 Workflow and version control

During the entirety of the project, the software produced was continuously integrated
with the version control system Git [20]. The three subsystems were developed in one
unified repository under different branches. When working on new functions in said
subsystems, a new branch was created. After testing to assure the code was bug-free, the
branch for this particular function was then merged into the subsystem branch. After
the project was finished, the code was uploaded to BitBucket to be used by next year’s
bachelor project groups [21].

3.3 Software tools and libraries

To realize the project, a diverse set of software tools and libraries were used. The purpose
of this section is to present them and explain why they were suitable for this project.

3.3.1 NodeJS

NodeJS is an asynchronous event-driven JavaScript engine, designed for scalable network
applications [22]. In this project, a small NodeJS application is used to host tools on
a public website to enable remote work with AI and synchronizes the projects’ work.
NodeJS was chosen for its simplicity and scalability.
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3.3.2 VueJS

VueJS is a framework for Javascript and HTML, used to create powerful websites that
are scalable and easy to work with [23]. The project used VueJS to create online tools,
such as Marking Object Tool for image processing (See chapter 4.3.1). VueJS was chosen
because project members previous knowledge with the framework and VueJS’s easiness
to create and iterate websites.

3.3.3 Python

The majority of the project is programmed using Python for three different reasons. First
off, most group members were to a certain degree already familiar with the language. The
second reason was that the previous bachelor projects that our project is built upon also
used Python as their primary language. Lastly, Python is highly compatible with ROS
which makes it easy to evaluate the code written in Python.

3.3.4 Firebase Hosting

Firebase Hosting is a web content hosting service written in NodeJS where a user can
quickly deploy web apps/websites [24]. Firebase Hosting was chosen because of the
member’s knowledge of the software and that it is free to use until a quota is met.

3.3.5 ROS

ROS is a middleware for robot software development [25]. One service ROS provides is
message-passing between processes. Separate processes are used in this project to ex-
ecute different subsystems. Therefore message-passing is used to connect the different
subsystems. The message-passing between the processes is presented in a graph architec-
ture where nodes may receive and post data. For instance, the Risk estimator needs the
positions and velocity of the vehicles to update the risk estimation which it receives from
other subsystems. ROS message-passing creates a way for subsystems to communicate
with each other.
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4 System Architecture

This chapter begins by describing the system architecture as a whole, followed by a
short reflection on a central part of the system and ethics. After that a more detailed
description of the three different subsystems and their implementation.

4.1 System overview

The developed system is a traffic hazard reporting system. This system detects dangerous
traffic situations as well as traffic violations and reports these to a third party without
jeopardizing personal integrity. To achieve this functionality three independent subsys-
tems have been developed and interlinked to form the complete system. The subsystems
have the following functionalities:

1. Detecting traffic rule violations. This subsystem is responsible for detecting when
a driver doesn’t follow the traffic regulations, using computer vision.

2. Detecting dangerous traffic situations. This subsystem is responsible for detecting
when a driver makes a dangerous maneuver in traffic, using vehicle position.

3. Privacy reporting of geo-temporal information. This subsystem collects and reports
driver’s geographical data without incriminating personal integrity.

The systems function could be fully realized by connecting it to a compatible vehicle and
an external database. This is however outside the scope of this project’s system and will
only be explained briefly in this section.

4.1.1 Data flow

The subsystems, the sensors, and the system outputs communicate through ROS. Each
subsystem uses a ROS node to publish data for other systems to read. First, the informa-
tion gathered and then posted by the sensors are read by the system. For instance, the
risk detection subsystem reads the input from the positioning system and the traffic vio-
lation detection subsystem reads the input of the camera. The risk detection subsystem
and the traffic violation detection system then operates on their respective input data.
These two subsystems then post their output data and the privacy reporting subsystem
reads it. Furthermore, the risk detection subsystems output can also be read by an ex-
ternal automatic braking system which then can act in case of a risky traffic situation.
Finally, the privacy preserving reporting subsystem can operate its data and then post
to a database or another party.

The system uses two sensors a camera and a positioning system. However, the system is
not dependent on a specific type of sensor but could be implemented with any sensors
that provide correct information. The camera is used to record an image stream for
the traffic violation detection subsystem. As an example, the camera sensor could be
a camera used in a self-driving car. The positioning system provides the risk detection
subsystem with positional data on surrounding cars. For instance, a sensors detecting
other vehicles used for self-driving and a GPS could be used.
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Figure 4: System overview of the complete system

As seen in Figure 4. when data has been processed the system gives two outputs. The
first output comes directly from the Risk Estimator and can be used for an automatic
braking system. E.g. when the Risk detection subsystem detects a dangerous traffic
situation it can not only be used to report the risk but also to activate an automatic
braking system to stop the car and prevent an accident. The second output, as seen in
Figure 4, goes through the Privacy reporting subsystem and is connected to an agency.
This means that the collected data can be sent to, for example, Trafikverket. They can
then analyze this data to detect hazardous sections in traffic and modify the road network
to eliminate these sections.

4.1.2 Ethical system architecture

The structure of the system architecture in this project was largely influenced by ethical
considerations. These ethical considerations concerned both traffic safety and privacy. In
this section, we will explain the ethical considerations of the system architecture.

As mentioned in the background human error is the cause of 94% of all traffic accidents
[2]. However, these accidents could also be viewed as a systemic problem instead of being
a problem of individual bad drivers. In some traffic environments, such as a country road,
it could be challenging to drive safely. The problem then is not the individual driver but
the system of roads. Therefore, the system architecture of this project works to create a
safer traffic environment by improving the traffic system. This is done both directly in
risky traffic situations and preventative. The risk detection subsystem could trigger an
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automatic braking system during risky situations. The reporting of risky traffic situations
and traffic violations by the system could aid the government agencies to improve traffic
environments. However, reporting to external parties creates ethical problems concerning
privacy. For instance, private information could be abused by a malicious actor. Therefore
the system architecture also contains a privacy preserving subsystem. This subsystem
gives the system the ability to report to other parties without compromising privacy.

4.2 Risk detection

The Risk detection subsystem calculates the risk of collisions with other vehicles. The
Risk detection subsystem communicates with other subsystems with ROS message-passing,
it calculates the risk using a previously developed Risk Estimator and feeds the Risk
Estimator with correctly formatted data in manageable intervals. The Risk Estimator
analyses surrounding cars to preemptively determine their intentions and detect poten-
tial collisions, which happens when drivers make unexpected maneuvers. This is done by
calculating the expected maneuver for a driver and continuously check that the driver
follows this maneuver. This section will go into detail of how this subsystem works and
how it has been implemented in our system.

Figure 5: Risk detection subsystem

4.2.1 Physical state and measurements

The Risk estimator tracks the physical state of the model [7]. This physical state is based
on the available measurements. The model continuously gains more measurements and
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to improve on the accuracy of the model. However, in real-world scenarios the sensors
measuring also registers noise. Therefore the model uses statistical analysis to predict the
best measurement. The physical model is used to calculate the expected maneuver.

4.2.2 Expected maneuver

The algorithm starts by calculating what the cars expected maneuver is, which can ei-
ther be ‘stop’ or ‘go’[7]. This is done by first checking if there are more than one vehicle
approaching the intersection. If there are multiple vehicles approaching, the Risk Esti-
mator uses priority lanes to decide which cars are expected to go and which are expected
to stop. The Risk Estimator also tries to assess the time it will take for the cars to
reach the intersection, using their speed and position. If the gap between the cars is big
enough multiple cars can be expected to go even though they approach from different
directions.

4.2.3 Intended maneuver

The algorithm uses the speed and position of the cars to calculate their intended ma-
neuver, which consists of either ‘go’ or ‘stop’ [7]. It also uses the previously intended
maneuver and the current expectation since drivers are inclined to follow the law and
rather unlikely to drastically change intention. The intention, alongside the expectation,
is then later used to assess risk.

4.2.4 Communication node

The communication node is built upon message-passing using ROS. This node collects the
physical state of each model in the simulation and reformats the data so that it correlates
with what the Risk Estimator is expecting. After the Risk Estimator has evaluated these
values a ROS message is sent back via the communication node. This message consists
of an integer that represents the severity of a traffic situation. I.e. a high number shows
that a driver, with high probability, will deviate from it’s expected course and potentially
cause a collision.

4.3 Image processing

Image processing consists of three subsystems. One system is used to preprocess and
convert videos and images for the YOLO Neural Network. One system is used to remotely
train and validate the YOLO Neural Network. The last system is fed the processed video-
stream of the YOLO Neural Network to determine if a traffic violation has occurred.
Training a reliable Object Detection Neural Network requires vast amounts of images
names in rectangular boxes (labels) with coordinates surrounding the objects the Neural
Network is trying to detect. For each new object the Neural Network is trying to detect,
the complexity increases. To train a reliable Neural Network it is required to have at
least 2000 images of each object [26]. To get the required amount of images a program
was needed to convert videos into images for labeling, hence Marking Objects Tool was
created.
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4.3.1 Marking Object Tool

The Marking Object Tool (MOT) is a program developed to convert videos into images
and to manually mark each image with object names in rectangular boxes (labels) for
the YOLO Neural Network to train upon. To enable work from remote locations and
also synchronizing the projects progress MOT is hosted on Google’s Firebase Hosting
(see section 3.3.4) hosting services and the program’s frontend is written in VueJS (see
section 3.3.2) and backend written in NodeJS (see section 3.3.1).

The program allows a user to create projects with images and videos of the objects the
user wants to detect. The system processes and converts the videos into images with a
variable delay between each frame and makes the project public, this makes it possible for
all users to interact and work with the project. Each image in the project is ready to have
its objects labeled manually, see Figure 6 for an example of marking the objects “truck”,
“inner road marking line” and “out road marking line”. After the users have labeled the
images in the project it is available for download. When downloading the project the
program converts all labels into text files for each corresponding image where each text
file contains the coordinates and size of each object on the corresponding image. The
downloaded project images and text files are ready to be used to train a YOLO Neural
Network.

Figure 6: Marking Object Tool, marking view

Marking Object Tool also contains another subsystem within, called Automatic Marking
Tool (AMT). AMT is written in VueJS and NodeJS. The program works similarly to
the Marking Object Tool and is hosted online together with the Marking object tool on
Google’s Firebase Hosting. However, instead of marking labels manually, AMT uses a
pre-trained YOLO-weight to create labels automatically with a YOLO Neural Network,
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the interface can be seen in Figure 7. AMT makes it much faster to increase the accuracy
of the YOLO Neural Network and makes it easier to adapt the Neural Network to new
environments since the heavy lifting is done by the pre-trained YOLO-weight and YOLO.
AMT can be enabled when creating a project and allows the user to upload a pre-trained
YOLO-weight. AMT converts the videos into images and applies YOLO Neural Network
Object Detection with the given weight to identify and create labels for each detected
object in each image. Afterward, the user can iterate through the images and manually
change the labels AMT created. After the program has completed its calculations the
user can download the project images and labels and feed it directly to train YOLO.

(a) (b)

Figure 7: Marking Object Tool, automatic marking

4.3.2 Remote Training Tool

Training and validation of a YOLO Neural Network require a powerful computer with
a modern expensive CUDA-based graphic card and a powerful multi-threaded CPU.
Training and validating require a lot of time to complete, basically locking the computer
until it finishes. To combat this and remove the user to have a powerful computer,
the remote training was created. Remote Training Tool (RTT) is a program written in
NodeJS, VueJS, and Python to enable training to be run on a remote server, controlled
with an interface on a website. RTT eliminates the need for a user to lock up their
computer for several hours and makes it easier to control the process via a web interface.
The web interface also enables the user to work from remote, the user can start a new
batch of training and validation of a YOLO Neural Network and then leave it working
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for hours at a time, without the need to constantly check in on the progress being made.
After the training is done the user can download the finished Neural Network.

All these three subsystems are used in symbiosis, to train and create a new Neural
Network that’s able to detect custom objects, like Road Markings and Trucks in this
case. Usually, the user uses MOT to mark a set of hundreds of images manually, then
trains a neural network to detect the set of objects. The newly trained neural network is
then used with AMT to run on thousands of images to mark them. The user will manually
go through all the automatically marked images and correct the few mistakes the AMT
made. Lastly, the user will train a new Neural Network with RTT and the thousands of
marked images. This process is repeated until a Neural Network with enough accuracy
is achieved, increasing the dataset each time.

4.3.3 Traffic Violation Detection

Traffic Violation Detection (TVD) is a program written in Python used to determine if a
traffic violation has occurred. The program uses a video-stream from the test vehicles (see
section 5.3.2), which in turn is fed to the TVD where it’s processed by the YOLO Neural
Network and the Neural Network identifies road lanes and vehicles. The identified objects
and their current position is used by the TVD to calculate if the vehicle has committed
any violations, like driving over a solid white line. To calculate if a vehicle has committed
a violation TVD calculates the position of the vehicle in correlation to the road lines and
compares it to previous frames. If TVD lost sight of a solid white line and sees that a
truck has taken its place, a violation has been detected.

4.4 Privacy preserving reporting

The reporting module receives data from the traffic violation and risk detection subsys-
tems to then compile the data into a coherent report. The data must in no way be traced
back to the individual or individuals that were involved in a violation or risky situation.
To ensure that the collected data does not violate personal privacy, the system utilizes
the randomized response [18] algorithm and omits all visual and sensitive information.
Therefore, it complies with GDPR [6] and can be used to locate problematic areas in a
road network. This section will go into detail how this subsystem is implemented.

4.4.1 Data parameters

The received data is a bit different depending on which subsystem is using the module.
The risk estimator uses coordinates to locate surrounding vehicles and is able to pass on
location data. On the other hand, the traffic violation detection system uses image detec-
tion and does not inherently collect any location data, therefore the location parameter
may be gathered elsewhere. It can be passed from the risk estimator’s coordinate system
or a GPS system common in most modern vehicles. There are 4 parameters that are
required by the reporting module. The first parameter is the violation type e.g. give way
or the scenario the risk estimator reports on. The second parameter is the location which
is based on the location name and/or a coordinate. The third parameter is a timestamp.
Forth and final parameter is an occurred marker, a value of ‘1’ means that the violation
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in the first parameter occurred and the value of ‘0’ means that the violation did not
occur. If the data is formatted correctly, then the reporting module will take the string
of data, split it into a list of tuples and then passes it to the randomized response [18]
implementation. An example string of data that the reporting subsystem would interpret
is:

violation:give way, location:korsvägen, pos:[330,051],

timestamp:2020-04-10 15.32, occurred: 1

No visual data of drivers or vehicles are stored in this system. Therefore, the stored
parameters shown above does not violate the GDPR [6], since the information can not be
associated with an individual. This is due to the omission of personal information that
could link a driver or vehicle to an event and due to passing the information through the
randomized response [18].

4.4.2 Randomized response implementation

The implementation of the randomized response [18] algorithm is a function consisting
of a few simple conditions. Firstly, a coin toss is performed. This is done using Python’s
module for generating pseudo-random numbers. The randomized response function uses
the coin toss function to generate a number between 1 and 100 and returns either true
if the number is greater or equal to 50 and false otherwise. If the first coin toss is true,
it just returns the data. If false, it tosses the coin again. The second coin toss decides
whether to report if the incident happened or not. If the toss is true, the occurred data
entry is set to 1 and if false it is set to 0. This is done without taking into account if
the occurred data entry was 0 or 1 to begin with. This realizes the randomized response
algorithm and returns the desired result.
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import math

import random

def coin_flip ():

r = random.randrange(1, 100 , 1)

if r <= 50:

return True

else:

return False

def random_response(data):

s = ""

flip1 = coin_flip ()

if flip1:

return data

else:

flip2 = coin_flip ()

data_list = data.split(",")

v = data_list[4].split(":")

if flip2:

v[1] = ":1"

else:

v[1] = ":0"

data_list[4] = v[0] + v[1]

for i in range(len(data_list)):

s += data_list[i] + ","

return s[:-1]

The code above includes a software-based implementation of the randomized response
[18], realizing the visualized version of the algorithm seen in Figure 3. The code also
includes some code for rewriting the occured parameter mentioned in the previous section
4.4.1 to update the information.

4.4.3 Report formatting

The reporting system formats the report into an Excel (.xlsx) document using the Python
library openpyxl [27]. If it is the first time an offense is being filed, there should exist no
document and the program creates one. When an offense is to be reported, the program
adds this row into the Excel document. With the new row added, the program takes the
data and creates a chart in the Excel document which gives an overview of the offense’s
occurrence.
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5 Evaluation Environment and Plan

To evaluate and test the presented solutions, different evaluation environments were used.
This section of the report describes how the environments were implemented and inte-
grated.

5.1 Gazebo

Gazebo is a 3d robotics simulator [28]. Gazebo features physics simulation, visualization,
and integration with ROS. This project uses Gazebo and ROS to simulate a test envi-
ronment for testing and presenting the system. The gazebo simulation node constantly
posts information like the position of a vehicle which can be read by other subsystems
like the Risk estimator. Gazebo, therefore, makes it possible to execute the system in a
virtual environment.

5.2 Simulation environment

During the project, a test environment was developed for testing and demonstrating the
risk detection subsystem and the system with ROS message passing as input. The system
was developed using python and Gazebo. It includes both a test course, tools to create
traffic scenarios in a four-way intersection and an interface.

The test course consists of a four-way intersection. With tools included in the environ-
ment, a traffic scenario can be scripted. These scenarios can include multiple vehicles
driving at different speeds and acting in different ways in the environment. For instance,
stopping before the intersection and then turning left. Furthermore, the simulation en-
vironment can be scripted to carry out multiple scenarios after each other to enable
automatic testing. The results of these tests will then be automatically analyzed for
relevant factors. For instance, when testing the risk estimator the collision horizon is of
interest and that time delta is detected automatically.

5.3 Lab environment

For testing and demonstration purposes a physical lab environment was used. This
environment includes a test track (Figure 8) and several Volvo trucks (Volvo Tamiya FH
with a trailer, Figure 9) equipped with both a camera (Figure 10) and a Raspberry PI3
computer. The lab environment was used to collect videos of pre-planned traffic violation
scenarios with two trucks driving simultaneously. This section will describe the different
parts of the environment and illustrate how it was used.

5.3.1 Physical test track

The test track (Figure 8) is placed on a flat surface consisting of a small road network
with turns, intersections, and a roundabout. Unlike in a real-life scenario, there are no
external factors in this system such as pedestrians or animals. The road markings in the
track include:
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• Broken white lines - indicates that it is change lane to overtake a vehicle ahead,
but with caution

• Solid white lines - separates the road from the rest of the test area

• Stop line - is drawn perpendicular to the road and implies that the driver should
stop before continuing

• Give way - triangular road markings perpendicular to the road that implies that
the driver should give way for other drivers before continuing

The test track is used for collecting videos of pre-planned traffic violation scenarios, to
then be used for training the neural network in the image processing subsystem (see
section 4.3).

Figure 8: Physical test environment

We note that the testbed that we used was based on Gulliver testbed, which is de-
scribed in [29]–[31]. The Gulliver initiative has lead to a number of developments in the
area of vehicular positioning [32], cooperative driving [33]–[42] and communications [43]–
[46].
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5.3.2 Test vehicles

The vehicles used for testing and demonstrating are Volvo Tamiya FH trucks (Figure 9).
Since the trucks are equipped with a trailer they will be more restricted in maneuverabil-
ity, similar to full-size trucks.

The trucks are equipped with a Raspberry Pi 3, which is a 64-bit Single-Board Computer
(SBC) with an ARM processor. This particular Raspberry Pi 3 is running the Linux based
operating system Raspberry Jessie. The SBC is used to send signals for controlling the
truck’s engine and servo to then communicate to a laptop via ROS. Simple controllers are
used to navigate the vehicles when collecting footage, demonstrating, and testing.

Figure 9: Volvo Tamiya FH truck

The camera used for collecting video footage is a Raspberry Pi-Camera V2 (Figure 10),
which is capable of capturing videos in the resolution 1920x1080 with 30 frames per second
(FPS) as well as 1280x720 with 60 FPS. The lower resolution but higher FPS setting were
used to capture footage that was then to be processed in the image processing subsystem.
Different scenarios were reenacted, e.g. crossing a solid white line.
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Figure 10: Raspberry PI-camera V2

5.4 Experiment plan

Evaluation is a crucial part of the development of a system. The following sections
will walk through the thought-out plan to test each subsystem and the integrated sys-
tem.

5.4.1 Image processing

The image processing subsystem will be tested in stages. Firstly we will test the efficiency
and accuracy of object detection by our computer vision neural net. This is a necessary
precondition for and used in conjunction with our traffic rule violation algorithm. When
these results are acceptable we will move on to testing the traffic rule violation scenario
detection algorithms. We will test both quantitative metrics such as confidence in object
detection as well as system reliability in accurately detecting traffic rule violation scenarios
without false positives.

1. Object Detection - We will perform thorough testing of the performance and ac-
curacy of our trained computer vision neural net. Its ability to correctly identify
the trained classes in recorded data not part of the training set. Our main focus is
detection with high confidence and the ability to detect multiple object classes in
close proximity correctly. Class objects that are obscured or in sub-optimal angles
will also be analyzed as this is crucial in a high-density traffic situation. The sys-
tems’ computing performance will also be considered as a supplementary metric as
this affects the systems used in real-time detection.

2. Traffic Violation Detection - The ability of our algorithm to detect scenarios will
be tested by presenting the system with test footage. This test footage will contain
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segments where we perform traffic rule violations and segments with lawful driving.
Evaluation will be done on both a pass/fail basis as well as reliability to produce
these results consistently.

Multiple passes will be made with each set of test footage. Ensuring that adequate
confidence in object detection and proper identification of traffic rule violation scenarios
are met. Should the system perform lower than a preferred threshold with these metrics
issues will be documented. Should we deem it necessary further improvements to the
system will then be made depending on the issue, additional neural net training, or
reworking scenario detection algorithms.

5.4.2 Risk detection

The risk detection subsystem will be tested with simulated traffic scenarios. The test is
based on methods used previously to test the risk estimator [7]. However, unlike previous
testing the traffic scenarios will be simulated in Gazebo which communicates with The
risk detection subsystem via ROS and therefore emulates the real system. The tests will
be run in a four-way give way intersection using two cars. One car has priority and the
other one needs to give way. The following four scenarios will be evaluated:

1. The other vehicle drives in the give-way lane and then merges right in to the lane
of the priority vehicle.

2. The other vehicle drives in the give-way lane and then merges left in to the opposing
lane of the priority vehicle.

3. The other vehicle drives in the give-way lane and then crosses the lane of the priority
vehicle.

4. The other vehicle drives in the opposing lane of the priority vehicle and then crosses
the priority vehicle lane by turning left.

Each scenario is run in 12 test cases. In half the cases traffic rules are followed and in the
other half they are not, which causes a collision. In each test case the speed and start
position of each vehicle varies. Each test case is run two times to average out deviation
so a total of 96 tests are performed. The scenarios have been used previously to evaluate
the risk estimator. However, in theses test the risk estimator will be evaluated as a
part of the risk detection system. The scenarios were chosen because they are the most
common causes of traffic accidents on a four-way give way intersection. The scenarios are
illustrated in Figure 11. The risk detection subsystem will be evaluated in the following
ways.

The test evaluates the following variables:

1. How many false alarms are reported, namely a safe test case was classified as dan-
gerous by the risk estimator.

2. How many dangerous situations were missed, namely an unsafe test wasn’t classified
as dangeous.

3. How much time has passed since a situation was classified as dangerous until the
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collision occurs (The collision horizon). This collision horizon can be calculated by
subtracting the time of the first classification of a dangerous situation with the time
of collision.

Furthermore, the results will be compared by scenario and also results from previous
reports.

Figure 11: Simulated collision scenarios

5.4.3 Privacy preserving reporting

The testing of the privacy reporting subsystem is an important step in the development of
the whole system as it reports all the data produced by the Traffic Violation Detection and
Risk Estimator. Therefore, assessing the accuracy of the randomized response algorithm
is crucial. The goal of the randomized response algorithm is to return and document the
event occurrences without compromising individuals’ privacy. But it is also important
that the data is accurate as to be usable in determining if any action is needed to be
taken.

Testing the implementation of the randomized response algorithm is done by running a
test script. The script prompts the user to input the number of times the script should
run the algorithm and also a probability value that the coin toss will return the value
“True”. When running the script, it takes a predefined test string of data, with the
occurred variable set to 1, to run the randomized response algorithm with. The data
string is interpreted as a traffic violation or a risky situation. The script then simply
loops the algorithm with the test data for n amount of times and then prints out the
average of the occurred variable as well as the standard deviation.

To get an overview of how the algorithm behaves and to assure that it is correctly imple-
mented, the script should run a number of times with different values of n, i.e. 20, 50,
100, 500, 1000, 2000. The algorithm’s coin toss probability will also be tested with values
ranging from 0.5− 0.70. The test result when using a smaller sample size is expected to
differ from a larger sample size. As the sample size grows, the average of occurred should
be more consistent for each run.
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6 Results

In this section, the results of the tests performed on the different subsystems will be
demonstrated.

6.1 Image processing

As mentioned earlier, running real-time computer vision object detection in a resolution
and bit rate adequate for use in traffic situations proved to demand quite high compute
performance. The result of our research in image processing led us to understand that we
needed highly specialized weights in our Neural Net detection system. Limiting training
to only class objects absolutely necessary in deducing the traffic scenarios associated with
traffic rule violations, in order to minimize compute cost.

YOLO runs on both the GPU and CPU and it’s a heavy program to run. We eval-
uated different hardware and ran different stress tests on the CPU and GPU to check
which bitrate, resolution, and framerate were the most suitable for this project. In Table
2 the results of different bit rates, resolutions, and GPUs are shown. We realized that the
Jetson TX2 was too weak to realistically train and validate a Neural Network and had to
use a more powerful computer. We concluded that both an NVIDIA 2080ti and NVIDIA
1060 are sufficient for the scope of this project, reaching above 15 frames per second
(fps) in real-time object detection on 720p with 6326 kb/s bitrate which we deemed fast
enough to realistically detect live traffic violations.

Weight Encoding Res Jetson NVIDIA 2080ti NVIDIA NVIDIA
Bitrate Frames TX2 (CPU Bottleneck) 1060 1660 super

YOLOV3 h264 4329 kb/s 1080p 30fps 1.5fps 22fps 5.5fps x
YOLOV3 h264 12589 kb/s 1080p 60fps 1.5fps 22fps 5.3fps x
YOLOV3 h264 6326 kb/s 720p 60fps x 24fps 5.1fps x
YOLOV3 tiny h264 4329 kb/s 1080p 30fps 8fps 26fps 15.2fps x
YOLOV3 tiny h264 12589 kb/s 1080p 60fps 8fps 26fps 15.7fps x
YOLOV3 tiny h264 6326 kb/s 720p 60fps x 60fps 14fps x

Table 2: GPU hardware benchmarks for different bitrates running YOLO.

Different resolutions and bitrates were also tested to observe the CPU load, as shown
in Table 3. It was clear that higher bitrates and resolutions directly affected the CPU
load, and had less effect on the GPU. The stress tests clearly showed that the NVIDIA
2080ti was bottlenecked by the CPU since it never reached full load during the stress
tests. The NVIDIA 2080ti load while using the less accurate Neural Network weight
“YOLOV3 tiny” only used 16-27% of its computing power while the CPU load ranged
from 82.9%-98.3%. This is because YOLO converts images into a pre-set resolution before
running its Object Detection Algorithms.
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Weight Encoding Res Frames NVIDIA 2080ti CPU
Bitrate Frames

YOLOV3 h264 4329 kb/s 1080p 30fps 22fps 64% 187W 1243MB 93,7%
YOLOV3 h264 12589 kb/s 1080p 60fps 22fps 85% 185W 8095MB 92,6%
YOLOV3 h264 6326 kb/s 720p 60fps 24fps 73% 214W 8096MB 57,9%
YOLOV3 tiny h264 4329 kb/s 1080p 30fps 26fps 16% 69W 1253MB 82,9%
YOLOV3 tiny h264 12589 kb/s 1080p 60fps 26fps 17% 59W 1253MiB 98,3%
YOLOV3 tiny h264 6326 kb/s 720p 60fps 60fps 27% 63W 1243MB 80,6%

Table 3: CPU hardware benchmarks for different bitrates running YOLO.

The results of the final Neural Network was overall good. We noticed that the camera
on-board the test vehicles were sometimes unstable, resulting in a distorted frame. Fig-
ure 12 shows a print screen of a frozen frame during one of the tests runs. The Neural
Network accurately detected Inner Road Markings (depicted I), Outer Solid Road Mark-
ings (depicted O), and Trucks (depicted T). The Neural Network worked well in videos
from angles not previously trained on as well, but not as reliable as the angles the Neural
Network was trained in.

Figure 12: The Neural Network Detecting road markings

The final Neural Network was able to determine if a Truck had crossed over an outer
solid line, as shown in the difference between Figure 13 a, b and c.

(a) (b) (c)

Figure 13: The Neural Network Detecting traffic violation
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6.2 Risk detection

During the 48 non-dangerous traffic scenarios there were 16 false alarms, which is not
ideal. However, there were no missed detect collisions during the 48 dangerous traffic
scenarios. In the 15 the remaining test cases of undetected collisions as a function of the
time until collision can be viewed.

The graph shows that the first detection occurred 7.3 s before collision. The average
collision prediction horizon was 1.2 s, 0.5 s before collision 80 % of collisions were detected
and 0.3 s all collisions were detected. This is comparable with results from a previous
report in which the average prediction horizon was 2.5 s, The time of 80 % detection
was 2 s and all collisions were detected at 0.5 [7]. As previous reports have stated this
time span opens up to danger mitigation which requires 2-3s. For instance, an automatic
braking system as proposed by this project [7].

The collision prediction horizon varied greatly depending on the traffic scenario as can be
seen in Figure 14. Since the collision horizon is dependant on the performed maneuver,
the results for the four different maneuvers are presented and compared in Figure 14.
As seen in the graph, 100% of the collisions where detected at least 0.4 seconds before
they occurred for all maneuvers except for crossing the path. For this maneuver, the
average collision horizon was 0.58 seconds as opposed to 1.2 seconds for all scenarios
combined. These results show that crossing the path is the most difficult to predict for
the algorithm.

With these results, it can be concluded that the risk estimator was successfully integrated
into the risk detection subsystem.
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Figure 14: Percent of dangerous situations identified, Split by scenario
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6.3 Privacy preserving reporting

Whether the module is used by the image processing or the risk detection subsystem, the
randomized response implementation functions as intended. The test script as described
in section 5.4.4, gives the average value of the occurred variable (which is set to 1 in
the sample string) with respect to a given sample size n and coin toss probability P .
Results of the test with different sample sizes vary as shown in table 4. With a growing
n, the occurred average converges to roughly 0.75 with P = 0.50. Increasing the coin toss
probability results in a smaller deviation and thereby a more compact distribution of the
occurred average.

The average and the standard deviation of occurred shown in the table is itself an average
of 20 runs for each combination of sample size and coin toss probability.

n
P = 0.50 P = 0.60 P = 0.70
average/deviation average/deviation average/deviation

20 0.760 / 0.395 0.832 / 0.351 0.913 / 0.244
50 0.762 / 0.421 0.865 / 0.334 0.916 / 0.267
100 0.767 / 0.419 0.846 / 0.357 0.916 / 0.272
500 0.754 / 0.431 0.847 / 0.359 0.912 / 0.282
1000 0.759 / 0.428 0.844 / 0.363 0.915 / 0.279
2000 0.755 / 0.430 0.847 / 0.360 0.915 / 0.278

Table 4: Results from testing the randomized response implementation with different
sample sizes (n) and coin toss probabilities (P).

These results show (see table 4) that the randomized response implementation gains
accuracy in the average value of occurred and precision as the standard deviation is
reduced when the probability of P is increased. Furthermore, there is less variability
in the average value over the range of sample sizes tested for when P = 0.70. For all
probabilities tested, the results converged when the sample size increased. Though the
probability of P = 0.70 converged the fastest making it the optimal choice for use, it
is possible that all scenarios will not necessarily reach such large sample sizes in actual
traffic environments.
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7 Discussion

This chapter will analyze and discuss the gathered results to evaluate the functionality
of the system.

7.1 Image processing

Some work had to be put into sourcing the computer hardware needed to perform the
highly taxing, in both computing power and time allotted, training of our Neural Network.
We got approval for a purchase order for an NVIDIA 1660 Super graphics card. This
was to be installed on a campus computer and thereafter be at our disposal during
the project. These plans were however unfortunately stunted by the outbreak of the
COVID-19 pandemic. Following this, the project group transitioned to remote work
and relied solely on personal hardware, including an excessive NVIDIA 2080ti which is
the GPU used in the remote training tool server. This situation led to some set-backs
and challenges in completing the training of our Neural Network. It also led to some
innovative development of Cloud-based remote work tools (see section 4.3.1) that can be
used in the many tasks involved in the Neural Network training.

COVID-19 also limited the access to the lab environment at Chalmers, which in turn
made it harder for us to collect images and video footage. The lack of footage made it
harder to train and validate the Neural Network for different traffic rule violations, like
stoplights and intersections give-way. Given the situation, we were able to produce a
good product and the YOLO Neural Network was able to accurately detect several core
traffic objects, like center lines and solid lines. Given different circumstances, we feel that
the final product would have included more violations to detect.

We did not consider an exact technological solution to implement our prototype system
in real-world vehicles. This could be done by developing a custom-built system or using
ready purpose-built systems such as NVIDIA’s DRIVE AGX line of products [47].

7.2 Risk detection

The results show that the risk estimator has a high success rate of predicting collisions
early enough to deter from the crash. As seen in the results, 80% of the collisions were
predicted at a minimum of 0.5 seconds before the crash. This time span could be enough
to activate an autonomous braking system which would decrease the severity of, if not
completely prevent, these collisions. Additionally the test results demonstrate that IARE
can be used effectively with ROS. Something that has to be taken into account however,
is the fact that we had a fairly high percentage of false alarms. This is potentially because
of the inadequate accuracy of the tests in representing a real traffic situation. If the tests
were created using data from real traffic situations the false positives could be fewer.
Another way to decrease the number of false alarms would be to increase the threshold
for collision detection. This would however, with a high probability, lead to a decrease
in time between collision and predicted collision.

As mentioned before, the collision threshold could be adjusted to get less false alarms, at
the cost of prediction time. How high the threshold should be depend on what we want to
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get out of the system. If the sole purpose of the system is to detect and report collisions
the threshold would be set very high since it doesn’t matter how long before the collision
we detect the risk. However, if the system is also to be used to notify drivers that they
are approaching a dangerous situation the threshold needs to be lower so the driver has
time to act on the warning. In this project we wanted the latter so we prioritized time
between detection and collision, resulting in more false alarms.

7.3 Privacy preserving reporting

As the results show, it is evident that the randomized response algorithm is a reliable
approach to detach an individual from a given set of data entries. From a software
development standpoint, it is also clear that said algorithm is efficient yet fairly straight-
forward to implement in software and to test. Further optimizations could be made on
the probability of the coin toss returning true or not. These optimizations would allow
the randomized response algorithm to return more precise results, meaning that variation
would be reduced. Thus an area in a traffic environment would require fewer violations to
occur for the result becoming conclusive of the problems that might be prevalent.

7.4 Social and ethical aspects

The purpose of this project is to create methods and techniques that provide important
traffic violation information to government agencies and a risk detection system without
comprising civil liberties or privacy. In this section, we will reflect on the social and
ethical considerations of this project.

7.4.1 Traffic safety

In 2019 there were 223 persons who died in a traffic accident in Sweden [48]. The Swedish
Transport Agency has a vision that no person should be killed or seriously hurt in the
traffic. A reduction in traffic accidents would not only save lives but would also save so-
ciety money. According to the Swedish Civil Contingencies Agency, road traffic accidents
cost Sweden 21 billion SEK in direct and indirect costs in 2005 [49]. The techniques
developed in this project could help the Swedish transport agency or other government
agencies gathering information about dangerous and illegal activities on the road. This
information could then help agencies in precautionary measures, like speed cameras or
lower speed limits, to make traffic safer. Furthermore, the risk detection system could
be integrated with an automatic braking system to prevent accidents. For instance, it
has been shown that low-speed automatic emergency braking technology led to a 38%
reduction in real-world rear-end crashes [50].

7.4.2 Privacy and surveillance

Privacy is a hard concept to clearly define. Some believe it is a collective name for the
results of multiple rights. Others believe that it is a unified right in itself. Several benefits
of privacy have been highlighted. One of them being that privacy gives the individual
space where they have a greater degree of behavioral freedom. What is clear is that
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people value privacy. In a 2015 poll 74% of US adults said that controlling their private
information was very important to them [51].

A new threat to privacy is the increased surveillance caused by digitization. According to
a 2019 poll 46% of swedes felt concerned about large corporations like Google or Facebook
threatening their privacy [51]. Surveillance could have multiple negative consequences.
For instance, when large amounts of personal data are stored a data breach could give
private information to malicious actors who could cause harm. Up to 35% of known
identity thefts in the US are caused by corporate data breaches [52]. Another negative
consequence would be the loss of privacy which could have harmful psychological effects.
Increasingly connected vehicles will present a challenge to preserving privacy. However,
this development could be prevented by the randomized response reporting techniques
used in this project.
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8 Conclusions

The project has successfully implemented a system that reports traffic violations and re-
lated road risks, without compromising individual integrity. These different capabilities
were divided into three subsystems. The first subsystem detected traffic law violations
using image processing techniques such as YOLO. The second subsystem identified risky
situations in simulated intersections using Intention-aware risk estimation. The third
subsystem reported these risks and law violations without compromising integrity using
randomized response reporting. Furthermore the subsystems’ capabilities were proved to
work using an number of different tests. The project goal of creating a system proto-
type for improving traffic safety without compromising privacy was therefore successfully
met.

8.1 Further development

Further development could be to integrate the system into a vehicle. Furthermore, it
could increase the traffic environments the risk detection system would be compatible
with. An additional future development we identified while working on the project is
automated road signage improvement suggestions. As our system in its current form
both use computer vision to identify road signage currently in place as well as road
situations and ability to flag for dangerous traffic situations. We feel that a natural
progression could be to identify where the road situation could be improved by proper
road signage, should it not be present.
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