
Trees that Grow in the Paragon
Compiler
A Step Towards Modularity

Bachelor of Science Thesis in Computer Science and Engineering

John Andersson, Anders Berggren Sjöblom,
Anders Bäckelie, Johannes Ljung Ekeroth,
Lukas Skystedt, Lina Terner

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2020

Bachelor of Science Thesis DATX02-20-30

Trees that Grow in the Paragon Compiler

A Step Towards Modularity

John Andersson
Anders Berggren Sjöblom

Anders Bäckelie
Johannes Ljung Ekeroth

Lukas Skystedt
Lina Terner

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Trees that Grow in the Paragon Compiler
A Step Towards Modularity
John Andersson, Anders Berggren Sjöblom,
Anders Bäckelie, Johannes Ljung Ekeroth,
Lukas Skystedt, Lina Terner

© John Andersson, Anders Berggren Sjöblom,
Anders Bäckelie, Johannes Ljung Ekeroth,
Lukas Skystedt, Lina Terner, 2020.

Supervisor: Niklas Broberg, Department of Computer Science and Engineering
Examiner: David Sands, Department of Computer Science and Engineering

Bachelor of Science Thesis DATX02-20-30
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iii

Abstract

Paragon is a programming language that extends Java with statically checked
information flow control policies. Paragon’s compiler, which is written in Haskell,
has a large type checker. Its current implementation is monolithic, making the
compiler challenging to develop. Paragon’s authors, Broberg et al., have proposed
to partition the type checker into five phases, and this project is a step towards
such an implementation.

We identify the representation of Paragon’s abstract syntax tree as an essential
design aspect and emphasize extensibility to conform to the phases’ varying re-
quirements. Based on a programming idiom, Trees that Grow, by Najd and Jones,
we implement an extensible abstract syntax tree in Paragon’s compiler. We ob-
serve that our implementation introduces a substantial amount of boilerplate code.
To alleviate the issue, we employ several methods for generic programming. We
conclude that our AST implementation is extensible but complex.

iv

Sammandrag

Paragon är ett programmeringsspråk som utökar Java med statiskt verifierade
regler för informationsflöden. Således har Paragons kompilator, som är skriven i
Haskell, en stor komponent som utför typkontroll. Den komponenten är monolitisk
vilket gör det svårt att utveckla kompilatorn. Paragon’s utvecklare, Broberg m.fl.
har föreslagit att typkontrollen kan delas upp i fem faser, och det här projektet är
ett steg mot en sådan implementation.

Vi identifierar att representationen av Paragons abstrakta syntaxträd är en viktig
designaspekt och betonar utökningsbarhet för att kunna anpassa det efter fasernas
varierande krav. Baserat på ett programmeringsidiom, Trees that Grow, av Najd
och Jones, implementerar vi ett utökningsbart abstrakt syntaxträd i Paragons
kompilator. Vi observerar att vår implementation medför en omfattande mängd
repetativ kod. För att minska problemets omfattning tillämpar vi flera metoder för
generisk programmering. Vi konstaterar att vår implementation är utökningsbar
men komplex.

v

We would like to thank our supervisor, Niklas Broberg, for his frequent and con-
structive feedback, and for his constant encouragement.

vi

Contents

1 Introduction 1
1.1 The Original Paragon Compiler . 2
1.2 Purpose and Scope . 3
1.3 Structure of the Report . 3

2 Modularization 5
2.1 Phases . 5

2.1.1 Type Checking . 6
2.1.2 Policy Type Evaluation . 7
2.1.3 Lock State Evaluation . 7
2.1.4 Policy Constraint Generation 8
2.1.5 Policy Constraint Solving 9
2.1.6 Storing Phase-Specific Information 10

2.2 Language Constructs to Prioritize 10
2.3 Internal Dependencies . 11

2.3.1 An Attempt at Resolving Circular Dependencies 12

3 Representing the Abstract Syntax Tree 13
3.1 The Expression Problem . 13
3.2 The Expression Problem in the Paragon Compiler 14
3.3 Adopting Trees that Grow . 16

3.3.1 Converting Existing Code to Use TTG 19
3.3.2 Converting the Parser . 20

3.4 Reducing Boilerplate . 22
3.4.1 Type Family Instances . 23
3.4.2 Type Class Instances . 24
3.4.3 Pattern Synonyms . 25
3.4.4 Preservation and Simple Transformations 27
3.4.5 Alternative Methods for Generic Programming 30

3.5 Readability Issues . 30

vii

Contents

4 Final Thoughts 33
4.1 Is TTG Suitable for the Paragon Compiler? 33
4.2 Modularity . 34

Appendix A — Dependencies 38

Appendix B — Transform Code 39

Appendix C — Pattern Synonym Macro 41

viii

1
Introduction

Software systems frequently need to deal with security concerns, including infor-
mation flows. These concerns can often be expressed as policies that describe
under what circumstances information may flow between different parts of a sys-
tem. Some examples of possible policies include:

• Only users who are friends may see each other’s pictures on a social media
platform.

• Documents should not leave an organization without being approved by a
manager.

• Text from an input form on a website may not end up in a database without
first being sanitized (e.g., to prevent XSS attacks and SQL injection).

An approach to ensure that a particular software implementation adheres to a
specified set of information flow policies is to use a programming language in
which these policies may be expressed and thus checked by a compiler or runtime
system. One such language is the Java-based language Paragon, developed by
Broberg et al. [1], the compiler of which is the topic of this project.

Paragon is not the first programming language that can express information flow
concerns. The language authors describe Paragon as a third-generation infor-
mation flow language, distinguishing it from earlier languages based on simpler
models. First-generation information flow control is based on military-style clas-
sification. Information is classified in a strict hierarchy of security levels where
information may flow up in the hierarchy but never down. This kind of policy is
sometimes called “Denning style confidentiality policies”, and FlowCAML [2] is an
example of a language that implements this idea. Second-generation information

1

1. Introduction

flow control extends the strict Denning-style policies with the concept of declassifi-
cation. Some scenarios require deliberate leaking of information to lower clearance
levels under certain conditions. The programming language Jif extends Java with
information flow control that supports this notion [3].

Second-generation languages provide declassification as an explicit feature.
Paragon, however, offers more expressive policies which can, for example, express
fine-grained declassification. Paragon builds on earlier work on Paralocks [4], a
language which, in turn, builds on Flow Locks [5] by the same authors. At the
heart of Paragon’s type system are actors, locks, and policies. Actors are object
references that represent entities with information-flow concerns. Locks are predi-
cates used to model the state of the system with regards to information flow during
runtime. Finally, policies are labels on fields and variables which express how in-
formation is allowed to flow within the program. Paragon primarily enforces its
policies using static analysis at compile-time. However, the state of locks, policies,
and actors cannot be known until runtime, and consequently, Paragon includes a
library encoding some of its constructs as plain Java objects.

1.1 The Original Paragon Compiler

The original implementation of the Paragon compiler was written in Haskell. An
important dependency was the Flow Locks framework, also developed by Broberg
[6]. The framework is an implementation of Flow Locks [5], a language for infor-
mation flow policies. Paragon instantiates the framework to model its information
flow control mechanisms.

Prior to this project, the compiler was last updated in November of 2014 [7]. It
was not very modular and, in particular, performed type checking monolithically,
making it hard to update and add features. Furthermore, the compiler suffered
from other problems:

• Parts of it had outdated documentation or lacked it completely.

• Internally, it had circular dependencies.

• The associated test suites did not work with modern versions of Cabal.1

Finally, Haskell and The Glasgow Haskell Compiler (GHC) had been updated in
non-backward-compatible ways. Therefore, modern versions of GHC were unable

1Cabal is the build tool used for Paragon’s compiler [8].

2

1. Introduction

to compile the Paragon compiler, making it difficult to continue its development.

1.2 Purpose and Scope

Initially, the purpose of this project was to rework the Paragon compiler so that
it would become easier to add features and make changes to it in the future. We
aimed to do so by updating, restructuring, and modularizing it. Broberg et al.
have suggested that the compiler’s type checker can be partitioned into five phases
[1], which was our intended method for increasing modularity.

Early in the process, we identified the representation of the abstract syntax tree
(AST) as a fundamental design aspect, both in preparation for the modularization
and the resulting compiler’s extensibility. Therefore, we shifted our focus to the
data structure that represents the AST, and in particular, to an implementation
using a programming paradigm called Trees that Grow [9].

Although we compare our AST implementation based on Trees that Grow to
other possible implementations, we have not implemented any other approach
in Paragon’s compiler.

There are several resources on the Paragon language available on Paragon’s re-
search page2; hence, we do not provide any in-depth explanation of the language
or its type system.

1.3 Structure of the Report

This report covers a sequence of problems and possible solutions that build on
each other. Therefore, we have organized the report by topic and continuously
introduce relevant theory, present methods, and discuss results relevant to each
topic.

We begin, in chapter 2, by discussing modularization of the Paragon compiler
through an increase in the number of compilation phases. Then, we suggest what
language constructs future developers should prioritize, and we also examine cir-
cular internal dependencies in the original compiler, together with an attempt at
removing them. The chapter is primarily aimed at future developers of the com-
piler, but it also motivates the need for an extensible AST, which is the topic of
chapter 3. In chapter 3, we demonstrate the problems of AST representation in

2http://www.cse.chalmers.se/research/group/paragon/

3

http://www.cse.chalmers.se/research/group/paragon/

1. Introduction

Haskell and its relation to the expression problem. We then describe how we use
the programming idiom Trees that Grow to implement an extensible AST in the
compiler. Our adoption of the idiom increased the amount of boilerplate code,
and we, therefore, explore methods for reducing it. We conclude with a summary
of the project’s results and some final thoughts in chapter 4.

4

2
Modularization

As described in section 1.2, the initial goal was to modularize the compiler. We
have done some work towards this goal, and in this chapter, we present central
information that could be useful for future work on modularizing the compiler.
Primarily, modularization would consist of dividing the type checker into five
phases, outlined in section 2.1. We aimed only to implement a limited subset
of the Paragon language, further discussed in section 2.2. The original compiler
contained circular dependencies, which we explore in section 2.3.

2.1 Phases

The main task in modularizing the compiler is to separate different aspects of
compilation by increasing the number of compilation phases. The original compiler
consisted of six phases: lexing, parsing, name resolution, type checking, translating
to Java-compatible AST, and Java source-file generation.

Broberg et al. propose to divide the type-checking phase into five distinct phases,
each handling different tasks related to type checking or information-flow analysis
[1]. Each phase would perform different operations, depending on information
computed in previous phases. We dedicate chapter 3 to how to store the computed
information in the AST. Sections 2.1.1–2.1.5 summarize the five phases and give
examples of what kind of operations and checks they perform. Our description
should be viewed as an example-focused complement to the descriptions given by
Broberg et al. [10].

5

2. Modularization

2.1.1 Type Checking

The first phase performs type checking that corresponds to that of Java. It includes
checking that types are compatible in assignments and method calls,3 that argu-
ments to if statements are of type boolean, and that thrown exceptions match
method signatures. The Paragon-specific information-flow analysis requires type
information; therefore, we cannot wait for Java’s compiler to perform type check-
ing after Paragon’s compiler has generated the Java files. The Paragon-specific
checks that should be performed in this phase are:

• The types of arguments to locks must be consistent with the lock’s declara-
tion. In the open expression in the example below, we need to check that
the type of variable is compatible with MyType and that MyLock is indeed
a lock (as declared on the line above).

lock MyLock(MyType);
open MyLock(variable);

• Policy expressions must be of type policy. In the code below, variable
must be a policy and not some other type. Note that policy expressions
are not limited to previously declared policies, but also include policy-literals
declared on-the-fly (e.g. {:}), meet and join of policy expressions (* and +),
and methods generating policies.

public ?variable void myMethod (){}

• Runtime exceptions must be properly handled. In the code below, the pa-
rameter, s, could be null, which would cause a NullPointerException
to be thrown at runtime. Thrown exceptions can cause information flows
since they can reveal information about variables, possibly violating policies.
Thus, the compiler should reject the code unless uncaught runtime excep-
tions are declared in the method signature.4

int myLength(String s) {
return s.length ()

}

3We write “compatible” to include subtype relations and automatic type conversions like
promotions of numeric types and auto-boxing.

4Note however that the original compiler, incorrectly, accepts this code snippet.

6

2. Modularization

2.1.2 Policy Type Evaluation

After the first phase, Java-like type checking is completed, and Paragon-specific
information-flow analysis remains. The second phase should translate syntactic
representations of policies, locks, and actors (object references) to semantic values.

• In finding semantic representations for actors, aliases must be identified.
That is, object references can sometimes be known to refer to the same ob-
ject, in which case they have the same actor identity, such as a and b in the
following example.

final Object a = new Object ();
final Object b = a;

• Sometimes the value of a field containing a policy cannot be determined until
runtime; in such cases, lower and upper bounds should be calculated. An
example of this is when a policy is assigned within an if-else block, shown
below. The policy denoted by C then has a semantic representation expressed
as bounds obtained from the values of A and B.

policy A...
policy B...
policy C = A + B
if(myBool)

C=A;
else

C=B;

2.1.3 Lock State Evaluation

At each program point, the locks that can statically be known to be open should
be calculated. There are four main ways we can know that a lock is open at a
certain point, and should be contained in the set of open locks:

• The method Open is called with a lock as a parameter. The lock is open after
that point until it might be closed by a method or statement.

• After method calls to methods declared with +MyLock,5 the declared locks
are open.

• Locks can be queried by using them as Boolean values. In flow-control struc-
tures such as if-statements, we know that a queried lock is either open or

5Note that + is an overloaded operator since it also denotes the meet of two policy expressions.

7

2. Modularization

closed in the associated branches, giving more precise approximations of the
lock state at the respective program points. For example:

if(MyLock) {
// In this branch the lock is open

} else {
// In this branch the lock is closed

}

The lock state is modeled as the set of locks guaranteed to be open. Thus,
the information that a lock is closed in a branch is superfluous.

Propagation of query information must also happen for loops (for, while,
do-while), and ternary expressions.6

for(; MyLock; /*lock is open here */){
//lock is open here

}

• Using ∼MyLock when declaring a method. By using this syntax, the method
demands that MyLock is open when calling the method.

Wherever a direct flow takes place, that program point is, to be able to generate
policy constraints, annotated with the current lock state, i.e., the set of open locks.
The language constructs in which direct flows can take place are assignments,
return statements, and method invocations.

2.1.4 Policy Constraint Generation

The second to last phase generates constraints, relating policies to each other, given
the lock state calculated, and annotated at relevant program points in the previous
phase. Constraints can be represented as p vLS q, where p and q are policies and
LS is the lock state, which means that policy p has to be less restrictive than
policy q.

More generally, when assigning an expression to some variable, the policy of the
expression needs to be less restrictive than that of the variable. Therefore, in the
following assignment, the constraint pol1 vLS pol2 should be generated.

?pol1 int x;
?pol2 int y = x;

6Note that for for-loops, the information needs to be distributed to both the loop body and
the third field in the loop head.

8

2. Modularization

Constraint generation occurs not only for policies in direct assignments, but also
for policies as write effect on methods, and indirect flows such as if-statements:

• When an assignment to a variable occurs inside a method with write effects,
the method policy needs to be less restrictive than the variable’s policy. In
the following example, the constraint pol4 vLS pol3, should, therefore, be
generated.

?pol3 int x;

!pol4 void m() {
x = 3;

}

• When assignments occur inside a branch of an if-statement whose condition
depends on some variable with a policy, that policy must be less restrictive
than the policy in the assignment. The example below generates the con-
straint pol5 vLS pol6

?pol5 boolean x;
?pol6 boolean y;

public void m() {
if (x) {

y = true;
}

}

Note that variables without explicitly declared policies have inferred policies that
also generate constraints.

2.1.5 Policy Constraint Solving

The last phase tries to find a solution to the constraints generated in the previous
phase. Solving the constraints means finding an assignment of policies satisfy-
ing all the constraints. It is sufficient to determine that there exists a possible
valid assignment of policies, rather than finding that set of policies, to satisfy the
constraints.

An example of an assignment which would generate a constraint that is not solvable
is:

?{:} int x;
?{ Object x:} int y = x;

9

2. Modularization

Here x has the policy top, which is the most restrictive policy, while y has the least
restrictive policy, bottom. The generated constraint would state that the policy of
x has to be less restrictive than y, which it is not.

The Flow Locks framework handles the solving of the constraints and provides a
function, solve, that the Paragon compiler can, after instantiating the framework,
use.

2.1.6 Storing Phase-Specific Information

As previously mentioned, we can notice from the phase descriptions that phases
carry out computations based on information from previous phases. Some of this
information is tightly coupled with specific AST nodes. For example, lock states
vary between program points and are therefore well suited to be stored in the
AST. The variation in what information needs to be stored is the primary reason
why the AST needs to look different in different phases, something we return to
in chapter 3.

2.2 Language Constructs to Prioritize

The essential features that Paragon offers, beyond Java, pertain to information flow
control. Considering the phases specified in sections 2.1.1–2.1.5, there are certain
language constructs which are of more interest than others, in terms of how they
utilize Paragon’s policy system. Many of these occur in assignments, which we
recommend as the first construct to implement. Assignments incorporate policies,
actors, and locks, and checking them involves all the compiler phases. When
assignments are implemented, most of the core infrastructure should be in place
to implement, e.g., methods. We want to point out that conditionals such as if-else
statements require special logic for the propagation of lock states and is, therefore,
a key feature to implement. Lastly, exceptions, and “pseudo-exceptions” (break
and continue), also require special logic.

We suggest that these language features should be implemented before, e.g., do-
while loops, since the latter add very little new compiler logic and also do not
contribute much to the expressiveness of the language.

Our recommendations are limited to the language constructs we have considered
and are, thus, incomplete. However, they may form a basis for future developers
to build on.

10

2. Modularization

2.3 Internal Dependencies
TypeCheck

TC.TcStmt

TC.TcExp

TC.M.Monad

TC.M.TcCodeM

TC.M.CodeEnvTC.M.CodeState

TC.M.TcDeclM

TC.Interpreter

TC.TypeMap

PolicyLang

PL.PolicyPL.Locks

PL.Actors

TC.Types

TC.NullAnalysis

Figure 2.1: Internal module
dependencies of the type
checker with abbreviated
names: TC for TypeCheck, PL
for PolicyLang, M for Monad.

A secondary problem of modularity, which may
be of interest to future developers, pertains to
the compiler’s internal module dependencies. An
advantage of modular design is that one module
can be changed or completely replaced with only
a small impact on other modules, presupposing a
clear separation between the modules. This section
analyzes the internal module dependencies of the
compiler.

In the original compiler, the modules dealing with
type checking depend on each other in such a way
that there is little separation or abstraction. We
show direct dependencies – imports – between the
type checker’s modules in figure 2.1 (with abbre-
viated names). An arrow from one module to an-
other indicates that the first module imports the
other module. For simplicity, we omit transitive
imports from the figure; specifically, if a module A
imports a module B and B imports a module C, no
arrow is drawn from A to C even if A imports C.
The same dependency graph without these simpli-
fications is given in appendix A.

The first thing to notice is that there are
circular dependencies. That is, some mod-
ules depend on themselves by transitivity,
e.g., PolicyLang → PL.Locks → PL.Actors →
TC.Types → PolicyLang (see the gray selection
in figure 2.1). Circular dependencies not only in-
dicate a lack of separation of concerns, but it is
also a technical issue because GHC (the Haskell compiler used in this project) is
unable to resolve these dependencies on its own and requires ‘.hs-boot’ files for
dependency resolution [11].

The second thing to notice is that the dependency hierarchy does not correspond
to the Haskell module structure (identified by the module names). For example,
TC.M.CodeEnv imports TC.TypeMap which is higher up in the module tree, which

11

2. Modularization

indicates a lack of abstraction layers. This is further confirmed by inspecting the
complete import graph (appendix A), which shows that there are imports from
every level in the dependency graph to almost every layer below it.

2.3.1 An Attempt at Resolving Circular Dependencies

To make the separation of modules clearer, one may desire to remove the circular
dependencies between modules of the type checker (e.g., TC.Types) and modules
involved in the instantiation of the Flow Locks framework (e.g., PolicyLang), or
equivalent modules in a modularized version of the compiler.

The issue is exemplified by the data types ActorSetRep from a sub-module of
PolicyLang and TcRefType from TC.Types. Naturally, the type checker depends
on types from PolicyLang (which instantiates the Flow Locks framework). How-
ever, ActorSetRep contains a field of type TcRefType (used as the type of actors),
creating a circular dependency. TcRefType is also mutually dependent on other
types in TC.Types and cannot be moved to a separate module without introducing
new circular dependencies.

Parameterizing ActorSetRep by the type of actors, removing TcRefType from its
definition, can remove the latter dependency. The data type can then be used
by monomorphizing it with TcRefType as the type argument, for example, by
declaring a type synonym outside of PolicyLang.

The problem with this solution is that the newly introduced type variable must be
propagated to every other data type referring to it, making it cumbersome. Also,
the type becomes polymorphic even though its semantics in the compiler is as a
concrete type. Furthermore, the purpose of PolicyLang is to instantiate the Flow
Locks framework, and by parameterizing its data types with the type of locks, we
move some of the framework instantiation to modules in the type checker.

After implementing the parametrization, we strongly doubt that it improves the
code, even when introducing type synonyms for the monomorphized type. We
suggest that the issue may, instead, be resolved by identifying another type for
actors on which both the type checker and framework instantiation can depend.
There are a few similar (and related) occurrences of circular dependencies, and we
believe these could be handled the same way.

12

3
Representing the

Abstract Syntax Tree

One of the harder technical challenges when implementing a compiler is how to
represent a program’s abstract syntax tree (AST) during compilation. As outlined
in section 2.1, we want the AST to contain different information in different com-
pilation phases. To deal with this, we explore extensible ASTs, a case of what
Philip Wadler calls the expression problem [12]. This chapter aims to explain why
AST representation is an issue, motivate how it relates to the Paragon compiler,
and show how we apply the Trees that Grow (TTG) idiom to solve it.

3.1 The Expression Problem

Research about extensible data types is an active topic in computer science. In
this domain, the expression problem is the problem of how to implement a data
type specified by cases such that new cases and functions over the data type can
be added in a way that preserves static type safety.

To understand the expression problem better, consider the data type for Boolean
expressions containing variables, negation, and conjunction, as well as a pretty-
printing function that operates on the data type.

data Expr = Var Char
| Neg Expr
| And Expr Expr

pretty :: Expr -> String
pretty (Var c) = c:""
pretty (Neg e@And {}) = "¬(" ++ pretty e ++ ")"
pretty (Neg e) = "¬" ++ pretty e
pretty (And e1 e2) = pretty e1 ++ " ∧ " ++ pretty e2

13

3. Representing the Abstract Syntax Tree

To add a new function that operates on Expr, for example, a function that retrieves
all the variables in an expression, we simply need to implement it by pattern
matching on the existing data constructors in the Expr data type.

variables :: Expr -> [Char]
variables (Var c) = [c]
variables (Neg e) = vars e
variables (And e1 e2) = vars e1 ++ vars e2

Rather effortlessly, we were able to add the variables function without affecting
the other function (pretty). But what happens if we change the data type itself?
Perhaps we would like to include a representation of Boolean values for use during
evaluation. We give a possible implementation in figure 3.1. When adding one
constructor, we had to alter pre-existing code by adding a case for the new con-
structor to every function, requiring it to be recompiled. This is the expression
problem as it pertains to Haskell: how can we add new cases to the data type,
without having to recompile existing code?

data Expr =
...
| Val Bool

pretty :: Expr -> String
...
pretty (Val b) = show b

variables :: Expr -> [Char]
...
variables (Val _) = []

Figure 3.1: Example of adding a constructor to the data type Expr.

3.2 The Expression Problem in the Paragon
Compiler

In the compiler, we need a representation of the AST, and we have different require-
ments for it in different compiler phases. Specifically, we want to add additional
information to the constructors (decoration fields) that vary between phases. Also,
we want to extend the data type with a different set of constructors for different

14

3. Representing the Abstract Syntax Tree

phases. This is where the expression problem comes in. We cannot cleanly express
such a data type in Haskell. Two workarounds which lie on opposite ends of the
spectrum of type specificity versus data type reuse are:

1. Define a new AST for every phase, which includes only the fields and con-
structors necessary for the specific phase.

2. Use a single set of data types that include all fields and constructors used in
at least one compiler phase.

Both approaches have significant shortcomings, namely tremendous code duplica-
tion and bloated code with poor type safety, respectively.

The original Paragon compiler used an approach that lies in between the two ex-
tremes. It used parameterized algebraic data types for each syntactic category,7
whose data constructors represent different productions. The parameter was used
to decorate the AST with different types in different phases. For example, the
parser produced an AST decorated with source positions (locations in the Paragon
source files where constructs were parsed) while the type checker decorated the
AST with type information. We provide an extract from the part of the AST that
represents expressions in figure 3.2.

data Exp a
= Lit a (Literal a)
| BinOp a (Exp a) (Op a) (Exp a)
| PolicyExp a (PolicyExp a)
...

Figure 3.2: Implementation of expressions in the AST, using parametric poly-
morphism.

We identify three major problems with using parametric polymorphism:

1. Every data constructor has to be decorated with the same type.

2. Data constructors cannot be added or removed between phases.
7Syntactic categories roughly correspond to language constructs.

15

3. Representing the Abstract Syntax Tree

3. It is only possible to have one decoration type (per type parameter).

The first and second problems both occur clearly in the Paragon compiler, and
the third relates to how easy it would be to update the compiler in the future.
Specifically:

1. After type checking, only some syntactic categories should be decorated with
type information, while the others should be decorated with source positions.

2. The compiler performs a null analysis (to find variables that might be null,
see section 2.1.1), and related information needs to be added as decorations
to the AST. However, the locations where the information is needed is not
in one-to-one correspondence with any set of constructors. Thus, new con-
structors are desirable.

3. When adding new decorations, every occurrence of AST types needs a new
type parameter.

The original compiler used dummy default values to handle the first problem,
duplicated parts of the AST to deal with the second, and nested multiple pieces
of information into a single type to manage the third. We did not find these
solutions satisfactory since they sacrifice type safety, and duplicating the AST
is cumbersome, both to do and to maintain. Increasing the number of compiler
phases also amplifies the severity of the problems.

Najd and Jones [9] discuss the decoration problem in more detail and propose a
programming idiom called Trees that Grow (TTG), which aims to solve it. Our
new implementation of the AST uses a variation on their idiom. The remainder
of this chapter discusses two main topics: firstly, how we adapted the AST to use
the TTG idiom; secondly, some approaches for reducing the amount of boilerplate
caused by the adoption of the idiom.

3.3 Adopting Trees that Grow

This section outlines the conversion of the Paragon compiler’s AST from being
decorated using parametric polymorphism to using TTG. The point of TTG is to
allow the AST to be extended, both by adding fields to existing data construc-
tors and by adding new data constructors to existing types. It does so using type
families, available as a GHC language extension (TypeFamilies) [13]. As an ex-
ample, adopting the TTG idiom transforms the data type for expressions given in

16

3. Representing the Abstract Syntax Tree

figure 3.2 to the one given in figure 3.3.

data Exp ξ

= Lit (XLit ξ) (Literal ξ)

| BinOp (XBinOp ξ) (Exp ξ) (Op ξ) (Exp ξ)

| PolicyExp (XPolicyExp ξ) (PolicyExp ξ)
...
| ExpExt (XExpExt ξ)

type family XLit ξ

type family XBinOp ξ

type family XPolicyExp ξ

type family XExpExt ξ

Figure 3.3: The code in figure 3.2 transformed using the TTG idiom.

In TTG terminology:

• ξ is the extension descriptor — the index of the type families used for the
extensions. We use uninhabited (except for by bottom) types for the specific
extension descriptors, one for each phase (e.g., data TC for the type checking
extension descriptor). It is important to note that the extension descriptor
is not the type of the decoration as it would be when using parametric
polymorphism.

• XLit, XBinOp, et cetera, are type families used for the extension fields. We
prefix the name of the type families with "X" to make them easy to distin-
guish from other identifiers.

• ExpExt is an extension constructor.

By instantiating the type families to different types in different phases, we can
have different decorations for different data constructors and add data constructors
when needed.

In many cases, phases do not use some of the extension fields and constructors, in
which case we set them to the type synonyms NoFieldExt and NoConExt, respec-
tively.

17

3. Representing the Abstract Syntax Tree

type NoFieldExt = ()
type NoConExt = Data.Void.Void

data UD -- Extension descriptor for 'undecorated '
type instance XLit UD = NoFieldExt
type instance XExpExt UD = NoConExt

We use the unit type, (), for the field extensions since it always allows us to access
a value of the type, namely the type’s only value, also named (). By setting the
field in the extension constructor to void, it becomes impossible to build values
using it (other than by using undefined and related values), effectively disabling
it. These operations correspond to multiplying the algebraic data type by the
multiplicative unit and adding the additive unit to it, respectively. It is not strictly
necessary to give any type family instance at all for unused extension constructors
since omitting it would also give an empty type. However, it becomes a bit clearer
when written out explicitly. Also, it ensures that nobody gives it an instance
elsewhere [9].

Najd and Jones also describe the use of pattern synonyms to, for example, reduce
syntactic noise by hiding unused extension fields [9]. For example, a synonym
for the undecorated constructor Lit would be: pattern UdLit l = Lit () l.
Moreover, we can use pattern synonyms to give the appearance of constructors
having multiple extension fields when we actually decorate them with a single
product type. For example, we can use a pair (tuple) as product type:

pattern SynSomeConstr ext1 ext2 = SomeConstr (ext1 , ext2)

Similarly, we can extend the data type with multiple constructors by setting the
extension constructor’s type family to a sum type8 and declaring multiple pattern
synonyms that differentiate on that sum type. For example, to extend the data
type for expressions (figure 3.3) with two constructors, ExpI and ExpS, in a phase
with extension descriptor X:

data Extension = Ext1 Int | Ext2 String
type instance ExpExt X = Extension

pattern ExpI i = ExpExt (Ext1 i)
pattern ExpS s = ExpExt (Ext2 s)

8Sum types, also known as tagged unions, are types that represents a choice, represented in
Haskell by having multiple constructors for a single data type.

18

3. Representing the Abstract Syntax Tree

3.3.1 Converting Existing Code to Use TTG

This section outlines some problems that occurred when converting code that uses
parametric polymorphism for AST decorations to use the TTG idiom. Section 3.3.2
then demonstrates aspects of the AST conversion using the parser in the Paragon
compiler.

Quantity-wise, name changes are the dominant difference. After instantiating the
AST appropriately for the relevant phase, all occurrences of AST types need to
be changed, from having the decoration types as the parameter to having the
extension descriptor as the parameter. Furthermore, some data constructors may
need to be replaced with their corresponding pattern synonyms. In Haskell, it is
common to have types and data constructors with the same name. Our experience
is that automatic text substitution is, therefore, ill-suited for performing the name
conversions. However, it might be possible to use type-driven automatic refactoring
(such as the Haskell Language Server [14]).

Name changes are straightforward when the AST type constructors are applied
to form concrete types, but can become tricky for polymorphic functions. In
particular, we are often unable to interact with extension fields polymorphically,
which, in our experience, boil down to two kinds of functions.

The first kind of function transforms decorations, giving the type ast a -> ast
b when using parametric polymorphism. It is frequently captured by the use of
the method fmap from the Functor type class.

fmap :: (a -> b) -> ast a -> ast b

When ast is a Functor, the method is parametrically polymorphic in a and b.
Intuitively, it allows us to transform all occurrences of decorations of type a to
decorations of type b, preserving the structure of the AST. Our new AST cannot
be a Functor since the decoration types may differ between constructors and do
not match the type parameter (the extension descriptor). We discuss this issue
further in section 3.4.

The second kind of function previously had the signature ast a -> a, and ex-
tracted the decoration from an AST type. Originally, these functions were cap-
tured by a custom type class, and we have not examined possible replacements.

In the context of modularization, we believe that, compared to continuing using
parametric polymorphism, the required code changes are far more extensive under

19

3. Representing the Abstract Syntax Tree

the TTG idiom. With the increase in the number of compilation phases, we would
need to perform a greater number of AST traversals, likely increasing the need for
generic functions, as discussed in section 3.4.

3.3.2 Converting the Parser

When changing the AST to use the TTG idiom, it became incompatible with the
existing parser due to mismatching types. Originally, the polymorphic AST types
were applied to the type SourcePos, which was used for the decorations. For
example, the root of the AST was declared as follows:

data CompilationUnit a = CompilationUnit a . . .

The parser thus returned a value of type CompilationUnit SourcePos. However,
in the TTG implementation, the parameter is the extension descriptor, PA for the
parser phase. The declaration looks like this:

data CompilationUnit ξ
= CompilationUnit (XCompilationUnit ξ) . . .
| CompilationUnitExt (XCompilationUnitExt ξ) . . .

type family XCompilationUnit ξ
type family XCompilationUnitExt ξ

Accordingly, we had to update the parser to return a value of type
CompilationUnit PA. We still want the source positions to be present, which
we accomplish with the appropriate type family instances9:

data PA -- Extension descriptor
type instance XCompilationUnit PA = SourcePos

The result is that only the type signatures differ, not the values. For the type
CompilationUnit, no extension constructor is needed. Thus, we set the type
family instance to Void.10

type instance XCompilationUnitExt = Void

Because we use a single decoration type, we do not need pattern synonyms. One
might, however, always want to use pattern synonyms for consistency and to make
it clearer which instantiation of the AST is being used. The latter becomes more

9In reality, we use a macro to generate all type family instances at once. We discuss this, and
give the actual code for the parser, in section 3.4.1.

10Again, we actually use a macro to generate type family instances.

20

3. Representing the Abstract Syntax Tree

important for code that interacts with multiple instantiations because the con-
structor names would indicate whether the data has been processed by the phase
or not.

Previously, the AST decorated using parametric polymorphism had an associ-
ated type class, Annotated (we use the terms decoration and annotation synony-
mously), that defined two methods for common operations.

class Functor ast => Annotated ast where
amap :: (a -> a) -> ast a -> ast a
ann :: ast a -> a

The first method, amap, is a specialization of fmap. Since the class requires all
instances to also be Functors, amap can be implemented in terms of fmap. The
parser utilizes neither amap nor fmap,11 so we leave the discussion of these methods
to section 3.4.

The second method, ann, was used to extract the decoration from AST nodes.
The implementations of the method were generated automatically. As with fmap,
we cannot implement this method for our new AST. Therefore, we do not go into
detail about how the instance generation worked. An example of where the ann
function was used is in a function for constructing names. Both Name and Ident
are AST types.

mkUniformName :: (a -> a -> a) -> NameType -> [Ident a] -> Name a
mkUniformName f nt ids = mkName ' (reverse ids)

where mkName ' [] = panic (syntaxModule ++ ".mkUniformName")
$ "Empty list of idents"

mkName ' [i] = Name (ann i) nt Nothing i
mkName ' (i:is) =

let pre = mkName ' is
a = f (ann pre) (ann i)

in Name a nt (Just pre) i

The method ann is applied to different types at different locations. Specifically, it
is applied to both Idents (the variable i) and Names (the variable pre). The old
signature for ann is no longer valid. Since we are dealing with only two types, we
get two different signatures, and we can quickly implement one function for each.

11More accurately, the parser does not use fmap over any AST types, but over other types.

21

3. Representing the Abstract Syntax Tree

annId :: Ident ξ -> XIdent ξ
annId (Ident d _) = d

annName :: Name ξ -> XName ξ
annName (Name d _ _ _) = d

If we were to simply substitute the occurrences of ann with our new functions, we
would run into an issue. For our use case in the parser, we know that both Ident
and Name are decorated with SourcePos. That is:

type instance XIdent PA = SourcePos
type instance XName PA = SourcePos

In general, however, XIdent and XName are not necessarily instantiated to the same
type. To get around this issue, we can constrain the function only to be applicable
when the type family instances are the same. The tilde syntax (from the type
family language extension) expresses type equality.

mkUniformName :: XName ξ ∼ XIdent ξ

=> (XName ξ -> XName ξ -> XName ξ)
-> NameType -> [Ident ξ] -> Name ξ

mkUniformName f nt ids = mkName ' (reverse ids)
where mkName ' [] = panic (syntaxModule ++ ".mkUniformName")

"Empty list of idents"
mkName ' [i] = Name (annId i) nt Nothing i
mkName ' (i:is) =

let pre = mkName ' is
a = f (annName pre) (annId i)

in Name a nt (Just pre) i

This solution is sufficient for the parser phase since only two types are involved.
However, the method scales poorly, both because one function has to be declared
for each type and because constraints can become large and cumbersome. We have
not looked into other possible solutions, but suggest that something similar to the
solution we present for replacing fmap, in section 3.4, may be applicable.

3.4 Reducing Boilerplate

The adoption of TTG resulted in repetitive code — boilerplate. This section
presents how, using libraries and language extensions for generic programming
and template programming, we were able to reduce this boilerplate.

22

3. Representing the Abstract Syntax Tree

3.4.1 Type Family Instances

For most extension descriptors (compiler phases), the majority of all of the AST’s
type families are instantiated to the same type. For instance, after the parsing
phase, every constructor but two are extended with a source position field, the
naive implementation of which would consist of hundreds of repetitive lines on the
form:

type instance SomeExtensionFamily PA = SourcePos

Instead of writing the instances manually, we generate them using a Template
Haskell macro [15]. Template Haskell is a GHC language extension and library
for metaprogramming. It allows us to inspect and manipulate Haskell’s abstract
syntax and, thus, generate code. We demonstrate how our macro is used for the
parsing phase in the code snippet below, where:

• makeTypeInsts is the Template Haskell macro.

• PA is the extension descriptor for the parsing phase.

• SourcePos is the type of source positions.

• The last argument is a list of type families, in this example specified as
all families except XTypeArgumentExp and XRefTypeArrayType,12 which are
removed by using the list-difference operator, \\.

$(makeTypeInsts ''PA ''SourcePos
(allFamilies \\ [''XTypeArgumentExp , ''XRefTypeArrayType]))

The macro implementation is straightforward. An auxiliary function generates a
single instance:

makeTypeInst :: Name -> Name -> Name -> Q [Dec]
makeTypeInst ind typ fam = return [TySynInstD fam $

TySynEqn
[ConT ind]
(ConT typ)

]

All the types occurring in this definition are part of Template Haskell’s represen-
12We exclude XTypeArgumentExp and XRefTypeArrayType because they are instantiated to

other types.

23

3. Representing the Abstract Syntax Tree

tation of Haskell AST. We do not take advantage of Template Haskell’s syntax
for declaration quotations, although we would like to since it would be more read-
able than our current implementation. The reason is that we have been unable to
handle the type family variable correctly, which appears to be due to a limitation
of Template Haskell related to splicing names into declarations [16]. We give an
implementation that almost works:

makeTypeInst ' ind typ fam = [d| type instance $fam $i = $t |]
where

i = conT ind
t = conT typ

We then use our auxiliary macro in the definition of the macro that works with a
list of type families. We apply makeTypeInst to each family in the list and join
the resulting quotation monads (Q) and lists of declarations to Q [Dec].

makeTypeInsts :: Name -> Name -> [Name] -> Q [Dec]
makeTypeInsts ind typ fams =

join <$> mapM (makeTypeInst ind typ) fams

3.4.2 Type Class Instances

Type families complicate the derivation of type class instances. We use open type
families for the extensions. Open, as opposed by closed, type families, allow in-
stances to be declared separately from the family itself, which is suitable for exten-
sible data types. Unfortunately, the open type families prevent us from automat-
ically deriving type instances by appending, e.g., deriving (Eq, Show) to data
type definitions. The reason is that GHC cannot deduce that all family instances
are instances of the respective classes. However, using standalone deriving, we can
add the constraint that all the types contained in the data types have to be mem-
bers of the type classes (requires the language extension StandaloneDeriving),
which enables the compiler to generate the instances.

The code for the deriving is very repetitive in two ways. Firstly, every deriving
instance declaration needs a long list of constraints containing every type family
that occurs somewhere (recursively) in the type for which to derive the instances.
Secondly, every pair of type class and data type needs a deriving instance
declaration.

The solution to the first problem is described by Najd and Jones [9] and uses
the ConstraintKinds language extension. We define a constraint synonym that,
given a type class and an extension descriptor, gives a constraint requiring all the

24

3. Representing the Abstract Syntax Tree

AST types (instantiated with the given extension descriptor) to be instances of
the given class.13,14

type ForallXFamilies (f :: * -> Constraint) ξ =
(f (XCompilationUnit ξ), f (XPackageDecl ξ), . . .)

We solve the second problem using Template Haskell. A macro produces the
desired deriving instance-declarations for each combination of type class and
data types, both given as lists to the macro. Like with the type family instances,
we use a separate macro to generate each instance. However, we are now able to
use quotation syntax.

deriveInstance :: Name -> Name -> Name -> Q [Dec]
deriveInstance constraint clazz typ =

[d| deriving instance $con $c x => $c ($t x) |]
where con = conT constraint

c = conT clazz
t = conT typ

We generate an instance for each pair of AST type and type class by using Haskell’s
list comprehensions. Like with the type family instance macro, the last operation
is to join all the generated declarations together into a single list contained in the
quotation monad.

deriveInstances :: Name -> [Name] -> [Name] -> Q [Dec]
deriveInstances constraint clazzes types

= fmap join $ sequence $
[deriveInstance constraint clazz typ | clazz <- clazzes

, typ <- types]

3.4.3 Pattern Synonyms

Like with the type family instances, it turns out that many pattern synonyms
are similar, and writing them out for each data constructor, for each phase, is
tiresome. Again, we employ Template Haskell to generate them en masse. In
contrast to class and type family instances that are highly uniform and thus simple
to generate, pattern synonyms are a bit more involved. The arities of the data

13GHC limits the size of constraint tuples to 62 elements [17], which is not enough to cover
all the type families in the AST. To get around the problem, the 62nd element of the tuple can
itself be a tuple of size 62, et cetera.

14The language extension UndecidableInstances is required for the compiler to accept this,
since we would otherwise have the constraint contain the very thing that should be derived
(something akin to deriving instance f a => f a).

25

3. Representing the Abstract Syntax Tree

constructors differ, and the macro must thus inspect their structure. Figure 3.4
gives a (made up) example of how to use the macro, complete with the declaration
of the extension descriptor, an AST type (Example), and a type instance.

--| Extension descriptor
data De
--| Example type
data Example ξ = Exam1 (XExam ξ)

| Exam2 (XExam ξ) Int
type family XExam ξ
--| Extension field type instance
type instance XExam De = (String, (Bool, Maybe Char))

--| Template Haskell macro usage
$(makePatternSyns "De" ['Exam1, 'Exam2] [p| (s, (b, Just c)) |])

-- At compilation, the above line generates:
-- pattern DeExam1 s b c = Exam1 (s, (b, Just c))
-- pattern DeExam2 s b c i = Exam2 (s, (b, Just c)) i

Figure 3.4: An example of generating pattern synonyms using Template Haskell.
For simplicity, we use the same type family for both constructors in this example.

The arguments to the Template Haskell macro, makePatternSyns, are:

1. A (String) prefix for the pattern synonym, we use the name of the extension
descriptor for clarity, but it is arbitrary.

2. A list of constructors for which to generate the synonym.

3. A pattern used on the right-hand side of the pattern synonym for the first
field — the extension field.15

The macro extracts all variables from the given pattern and prepends them to the
argument list on the left-hand side of the pattern, in a flattened structure. Note
that the pattern synonym also captures all other fields (the Int in Exam2). The
macro is a bit involved; therefore, we refrain from presenting it here and refer the
interested reader to appendix C.

15Note that the extension field has to be the first field in each constructor.

26

3. Representing the Abstract Syntax Tree

3.4.4 Preservation and Simple Transformations

In most compiler phases, subtrees of the AST are either preserved or changed only
by a simple transformation on the extension fields. These cases are very easily
handled when using parametric polymorphism for the AST decorations, but they
become considerably more involved with the adoption of TTG.

An example of where we desire to preserve a subtree of the AST is with Paragon’s
import declarations (they correspond to Java’s import declarations), which are
unaffected by several of the compiler phases. When using parametric polymor-
phism for the AST decorations, this problem is trivial — the entire subtree can be
kept as is. After adopting the TTG idiom, however, the subtrees before and after
each phase are only conceptually equivalent but differ nominally in their extension
descriptors, as demonstrated in figure 3.5.

-- Extension descriptors
data A
data B

type family Fam ξ where
Fam A = Int
Fam B = Int

newtype W ξ = W (Fam ξ)

-- Type error: types A and B are not equal.
wAtoB :: W A -> W B
wAtoB x = x

Figure 3.5: Example of how types which are isomorphic, but not equal, result in
a type error.

The problem in figure 3.5 is solvable using coercions, shown below [18]. Coercing
one type to another relies on the types having the same runtime representation,
which is the case when using newtype. However, when using data declarations
instead of newtype, the types are merely isomorphic, and the solution will, there-
fore, not work.

wAtoB ' :: W A -> W B
wAtoB ' = coerce

Instead, we can define a type class using the MultiParamTypeClasses language
extension with a single method to describe the preservation function. All types of

27

3. Representing the Abstract Syntax Tree

the subtree of the AST we would like to preserve, need to implement this class.

class Preserve ast ξ ζ where
preserve :: ast ξ -> ast ζ

Using GHC Generics [19], we can generate these instances automatically in three
steps. First, we convert the data type to a generic representation. Second,
a function, analogous to the preservation function (called gPreserve) replaces
the extension descriptor. Third, we convert the generic representation back into
the AST type. The code below shows how the default implementation of the
Preserve class is defined in terms of gPreserve (Rep and Generic are classes
from GHC.Generics).16

class Preserve ast ξ ζ where
preserve :: ast ξ -> ast ζ

default preserve :: (GPreserve (Rep (ast ξ)) (Rep (ast ζ))
, Generic (ast ξ), Generic (ast ζ))

=> ast ξ -> ast ζ

preserve = to . gPreserve . from

To be able to use the preserve function, the following three requirements must
be met:

1. All involved data types must be members of the Generic class, accomplished
by adding deriving Generic to their declarations.

2. Instance declarations for the relevant AST types must be declared:

instance Preserve ast ξ ζ

where ξ and ζ are concrete extension descriptors, and ast is a type construc-
tor for an AST type with kind17 * -> *.

3. For every data constructor C with type family extension field XC of ast, it
must hold that XC ξ ∼ XC ζ, where ∼ is type equality [21].

The preservation problem is a special case of the more general problem of applying
transformations to the extension fields (preservation is something akin to applying
an identity transformation). A particularly simple example of where we use such a

16The default syntax allows default definitions of class methods with restricted signatures.
It requires the GHC language extension DefaultSignatures.

17Kinds are the types of type-level entities [20].

28

3. Representing the Abstract Syntax Tree

transformation in the compiler is in the code generation phase, which removes all
the extension fields (sets them to the unit value, ()). The original compiler lever-
aged the fact that the AST types were Functors to perform such transformations,
thus offloading most of the work on the automatically derived Functor instances
for the AST types.18

With the adoption of TTG, the AST is no longer a Functor. Indeed, a primary
reason for adopting TTG is that we are not limited to having the same type
of decoration on every node of the AST. It should be noted, though, that each
AST type must be handled explicitly, turning what previously was simple fmap
statements into hundreds of lines of code. In practice, however, most of the AST
types have the same extension fields in most phases. Thus, it would be desirable to
be able to use a blanket implementation for most AST nodes and only implement
the divergent cases manually.

Our solution to the preservation problem can be extended to support transforma-
tions. We add a type class with two parameters, one for the source type and one
for the target type.

class Conv a b where
conv :: a -> b

Most of the implementation closely follows the one for preservation. The primary
difference is in one of the instances for transforming the generic representation of
the data type, which allows us always to convert fields of the AST types as long
as they are members of the Conv class.

instance Conv a b => GTransform (K1 i a) (K1 j b) where
gTransform (K1 x) = K1 (conv x)

It is important to note that the conv instance is dispatched (selected) depending
on both the source and target types, meaning we can specify multiple conversions
from the same source type as long as they have different target types. Frequently,
conversions with the same source and target type are just identity functions. We
can readily implement all these cases at once with:

instance Conv a a where conv = id

We give a complete implementation of the transformation code in appendix B.
18Automatically deriving Functor instances requires a GHC language extension [22].

29

3. Representing the Abstract Syntax Tree

As a final note, a Conv must be declared for each phase pair that one wants to
convert between, to allow different transformations in different phases. It might
be possible to extend the Conv class with additional type parameters for the phase
descriptors, reducing all conversion classes to a single class with instances for
different phases.

3.4.5 Alternative Methods for Generic Programming

The methods and libraries for generic programming that we have presented are
not the only ones available in Haskell. For general surveys of generic programming
in Haskell, see [23] and [24].

We find the library Uniplate [25] and its extension Multiplate [26] to be particularly
interesting. These libraries provide mechanisms for generic traversals, primarily
by handling the recursive calls, allowing the user to focus on the transformations
themselves. Multiplate extends Uniplate to support mutually recursive data types
(which Paragon’s AST contains). Unfortunately, we have not been successful in
solving our boilerplate problems using these libraries due to the lack of uniformity
of our AST types.

It should be possible to replace GHC Generics with Template Haskell in the cases
where we have used it. However, we believe that the implementation would be
considerably more complex since we would need to traverse a large part of Haskell’s
AST. Nonetheless, Template Haskell is more flexible, and in combination with
Uniplate or Multiplate, it might be a better fit.

3.5 Readability Issues

We have found that the adoption of the TTG idiom comes with unwanted con-
sequences for readability. Partially, it is intrinsic to the idiom; partially, it is a
consequence of our methods for decreasing boilerplate.

Parametric polymorphism offers clarity. The types of decorations are readily avail-
able in functions’ type signatures, and the types of data constructors and their
fields are immediately visible in the data type’s definition. In contrast, TTG hides
the type of decorations in the type family instantiations for the relevant extension
descriptor, which is often located in separate files from the AST types themselves.
The same applies to the types of data constructors and their fields, including any
extension constructors. Also, pattern synonyms add another step when examining
the definitions.

30

3. Representing the Abstract Syntax Tree

Moreover, our Template Haskell macros are significant culprits in obfuscating code,
primarily when generating pattern synonyms. Because we generate names (pattern
synonyms) at compile-time, it can be hard to find the source of pattern synonyms
by inspecting source code. Likewise, but to a lesser extent, generating type class
instances can make their implementations hard to trace.

Of course, GHC is always able to deduce relevant information, so loading the
entire project into an interactive shell (GHCI) allows us to query for types and
other information via the :type and :info commands. Similar functionality is
available through many text editor integrations. However, it is our experience that
such integrations work poorly with the Paragon compiler codebase, at least under
recent versions of GHC (8.6.5). We speculate that the cause is one or multiple of
the many language extensions used in the project.

Finally, our solution to the decoration-transformation problem is somewhat opaque.
Although it is akin to other automatically derived type classes, it is somewhat
more complex since three different classes are involved. The relation between
these may not be obvious. In particular, it can be hard to identify when the
transform method calls the conv method (from the Conv class), and which in-
stance it dispatches. We do believe that proper organization of the code and clear
documentation mostly relieves this last issue.

To make the readability issues more concrete for the reader, we dedicate the re-
mainder of this section to a more extensive example that partially builds on code
from previous sections, shown in figure 3.6. The provided code is incomplete and
only showcases some of the previously described readability issues.

Imagine that we want to find the type of vs in the following line of code:

myFun :: Expr EV -> . . .
myFun (EvAnd sp vs e1 e2) = . . .

We need to find what EvAnd is. However, a simple text search fails to find its
definition because it is generated at compile time from the Template Haskell macro
on line 20 in figure 3.6. Now, we do not have access to the pattern synonym’s type
signature, but we can see that it corresponds to the second element in the pair
used for the decoration. The decoration type is specified on line 19, once again
by a Template Haskell macro. Finally, line 17 informs us that the sought type
is [Variable]. Consider that we also want to know the type of e1. As before,
we have to go through the pattern synonym to find that it is an alias for the And
constructor (in reality, we are probably able to guess this immediately).

31

3. Representing the Abstract Syntax Tree

1 -- File containing declaration of the extensible data type
2

3 type Variable = Char
4 data Expr ξ = Var (XVar ξ) Variable
5 | Neg (XNeg ξ) Expr
6 | And (XAnd ξ) Expr Expr
7 | ExprExt (XExprExt ξ)
8

9 type family XVar ξ
10 type family XNeg ξ
11 type family XAnd ξ
12

13 -- File containing instantiation for a specific phase
14

15 data EV -- Extension descriptor
16 type SourcePos = Int
17 type Dec = (SourcePos, [Variable]) -- The decoration type
18

19 $(makeTypeInsts ''EV ''Dec [''XLit, ''XNeg, ''XAnd])
20 $(makePatternSyns "Ev" [p | (sp, vs)] [''Lit, ''Neg, ''And])
21

22 -- Extension constructor
23 type instance XExprExt X = Bool
24 pattern EvVal :: Bool -> Expr X
25 pattern EvVal b = ExprExt b

Figure 3.6: Example of a declaration of a data type, instances and pattern
synonyms.

Another line of the declaration of myFun may be:

myFun (EvVal b) = . . .

From the function signature, we can deduce that EvVal is a data constructor for
Expr, and, following the previous pattern, we incorrectly guess that it is an alias for
a constructor Val. In reality, it is an alias for the extension constructor ExprExt,
but the mistake is easy to make.

32

4
Final Thoughts

A significant amount of work remains to produce a modular Paragon compiler.
We have primarily focused on AST representation but also conducted some work
on other aspects of modularization (our code is available on GitHub [27]). We end
this report with a discussion of our results.

4.1 Is TTG Suitable for the Paragon Compiler?

We have converted the AST in the Paragon compiler to use the TTG idiom. We
found that the AST became more extensible than before and that the precision in
its types increased. However, the switch entailed problems with incompatibility
with existing code (see 3.3), large amounts of boilerplate code (see 3.4), and a
decline in readability. Our solutions to the first and second problems increased
the severity of the third problem.19 Moreover, we use a multitude of GHC exten-
sions, making the project less accessible and possibly less likely to be compatible
with future versions of Haskell and GHC. Also, the project’s compilation time has
increased substantially.

We cannot say for certain whether TTG, or our boilerplate reduction methods,
are suitable for the Paragon compiler, or not. However, we believe that the TTG
implementation is sufficiently extensible and makes many illegal states unrepre-
sentable but that it is substantially more complex than decoration by parametric
polymorphism.

It is also worth reiterating that there are other alternatives to AST representation
than those explored in this report, and a better solution may be attainable. The
same is true for our boilerplate reduction methods. Although we were unsuccessful

19It is, however, easy to replace our Template Haskell macros with the code they generate,
which can be obtained by passing the -ddump-splices flag to GHC.

33

4. Final Thoughts

in leveraging Uniplate or Multiplate for the specific cases we discussed, it is possible
they, or other libraries, can solve the problems in a superior way. Hopefully, the
description of our methods can be of utility for others who intend to apply the
TTG idiom.

4.2 Modularity

Finding a representation for the AST is an important step towards a modular
compiler for Paragon. In addition to the AST data type itself, we have also worked
on other aspects of the compiler. Specifically, we have:

• updated the parser, name resolver, and code generator (and parts of the
monolithic type checker) to work with the new AST,

• updated various functions and data types that were incompatible with the
new AST,

• constructed a new test bench driver that uses Cabal,

• implemented the first of the five phases (the type checker) for field declara-
tions,

• begun implementation of the second phase, policy type evaluation.

We hope that our work, including this report, will aid future efforts to modularize
the compiler. This includes both our discussions regarding the AST, but also
compiler phase descriptions and other discussed issues.

34

Bibliography

[1] N. Broberg, B. van Delft, and D. Sands, “Paragon for Practical
Programming with Information-Flow Control,” Asian Symposium on
Programming Languages and Systems (APLAS), 2013.

[2] V. Simonet, Flowcaml. [Online]. Available:
https://www.normalesup.org/~simonet/soft/flowcaml/.

[3] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom, Jif 3.0:
Java information flow, Jul. 2006. [Online]. Available:
http://www.cs.cornell.edu/jif.

[4] N. Broberg and D. Sands, “Paralocks — Role-Based Information Flow
Control and Beyond,” POPL’10, Proceedings of the 37th Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
2010.

[5] ——, “Flow locks: Towards a core calculus for dynamic flow policies,” in
Programming Languages and Systems, P. Sestoft, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 180–196, isbn: 978-3-540-33096-7.

[6] N. Broberg, Flowlocks-framework: Generalized flow locks framework, Apr.
2019. [Online]. Available:
https://hackage.haskell.org/package/flowlocks-framework.

[7] ——, Paragon’s github repository. [Online]. Available:
https://github.com/niklasbroberg/paragon2, Accessed February 14,
2020.

[8] Cabal Development Team, The haskell cabal. [Online]. Available:
https://www.haskell.org/cabal/, Accessed April 29, 2020.

[9] S. Najd and S. P. Jones, “Trees that grow,” Journal of Universal Computer
Science, vol. 23, pp. 42–62, Jan. 2017. [Online]. Available:
http://www.jucs.org/jucs_23_1/trees_that_grow/jucs_23_01_0042_
0062_najd.pdf.

35

https://www.normalesup.org/~simonet/soft/flowcaml/
http://www.cs.cornell.edu/jif
https://hackage.haskell.org/package/flowlocks-framework
https://github.com/niklasbroberg/paragon2
https://www.haskell.org/cabal/
http://www.jucs.org/jucs_23_1/trees_that_grow/jucs_23_01_0042_0062_najd.pdf
http://www.jucs.org/jucs_23_1/trees_that_grow/jucs_23_01_0042_0062_najd.pdf

Bibliography

[10] N. Broberg, B. van Delft, and D. Sands, “Paragon for Practical
Programming with Information-Flow Control – Technical Report,” 2013.
[Online]. Available: http://www.cse.chalmers.se/research/group/
paragon/publications/BDS13-TR.pdf.

[11] GHC Team, How to compile mutually recursive modules, Apr. 2020.
[Online]. Available:
https://downloads.haskell.org/~ghc/latest/docs/html/users_
guide/separate_compilation.html#mutual-recursion.

[12] M. Torgersen, “The expression problem revisited,” vol. 3086, Jun. 2004,
pp. 123–143. doi: 10.1007/978-3-540-24851-4_6.

[13] GHC Team, Ghc typefamilies extension, Apr. 2020. [Online]. Available:
https://downloads.haskell.org/~ghc/latest/docs/html/users_
guide/glasgow_exts.html#type-families.

[14] haskell-language-server developers, Haskell-language-server. [Online].
Available: https://github.com/haskell/haskell-language-server.

[15] T. Sheard and S. Peyton Jones, “Template meta-programming for haskell,”
in Proceedings of the 2002 Haskell Workshop, Pittsburgh, Oct. 2002,
pp. 1–16. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/template-meta-programming-for-haskell/.

[16] N. Collins, Support spliced function names in type signatures in th
declaration quotes. [Online]. Available:
https://gitlab.haskell.org/ghc/ghc/issues/15298, Accessed June 3,
2020.

[17] GHC Team, Github: Ghc tuples, Apr. 2020. [Online]. Available:
https://github.com/ghc/ghc/blob/master/libraries/ghc-
prim/GHC/Tuple.hs.

[18] J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich, “Safe
zero-cost coercions for haskell,” SIGPLAN Not., vol. 49, no. 9, pp. 189–202,
Aug. 2014, issn: 0362-1340. doi: 10.1145/2692915.2628141. [Online].
Available: https://dl.acm.org/doi/10.1145/2692915.2628141.

[19] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh, “A generic deriving
mechanism for haskell,” SIGPLAN Not., vol. 45, no. 11, pp. 37–48, Sep.
2010, issn: 0362-1340. doi: 10.1145/2088456.1863529. [Online].
Available: https://dl.acm.org/doi/10.1145/2088456.1863529.

[20] S. P. J. et al., The haskell 98 report, Dec. 2002. [Online]. Available:
https://www.haskell.org/onlinereport/decls.html#sect4.1.1.

36

http://www.cse.chalmers.se/research/group/paragon/publications/BDS13-TR.pdf
http://www.cse.chalmers.se/research/group/paragon/publications/BDS13-TR.pdf
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#mutual-recursion
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#mutual-recursion
https://doi.org/10.1007/978-3-540-24851-4_6
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#type-families
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#type-families
https://github.com/haskell/haskell-language-server
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://gitlab.haskell.org/ghc/ghc/issues/15298
https://github.com/ghc/ghc/blob/master/libraries/ghc-prim/GHC/Tuple.hs
https://github.com/ghc/ghc/blob/master/libraries/ghc-prim/GHC/Tuple.hs
https://doi.org/10.1145/2692915.2628141
https://dl.acm.org/doi/10.1145/2692915.2628141
https://doi.org/10.1145/2088456.1863529
https://dl.acm.org/doi/10.1145/2088456.1863529
https://www.haskell.org/onlinereport/decls.html#sect4.1.1

Bibliography

[21] M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Donnelly,
“System f with type equality coercions,” in Proceedings of the 2007 ACM
SIGPLAN International Workshop on Types in Languages Design and
Implementation, ser. TLDI ’07, Nice, Nice, France: Association for
Computing Machinery, 2007, pp. 53–66, isbn: 159593393X. doi:
10.1145/1190315.1190324. [Online]. Available:
https://dl.acm.org/doi/10.1145/1190315.1190324.

[22] GHC, Derive functor instances. [Online]. Available:
https://gitlab.haskell.org/ghc/ghc/-
/wikis/commentary/compiler/derive-functor.

[23] R. Hinze and J. Jeuring, “Generic haskell: Practice and theory.,” Jan. 2003,
pp. 1–56. doi: 10.1007/b12027.

[24] J. Jeuring, S. Leather, J. P. Magalhães, and A. Yakushev, “Libraries for
generic programming in haskell,” May 2008, pp. 165–229. doi:
10.1007/978-3-642-04652-0_4.

[25] N. Mitchell and C. Runciman, “Uniform boilerplate and list processing or:
Scrap your scary types,” Jan. 2007, pp. 49–60. doi:
10.1145/1291201.1291208. [Online]. Available:
https://dl.acm.org/doi/10.1145/2692915.2628141.

[26] R. O’Connor, Multiplate: Lightweight generic library for mutually recursive
data types. [Online]. Available:
https://hackage.haskell.org/package/multiplate, Accessed May 13,
2020.

[27] J. A. et al, Our fork of paragon on github. [Online]. Available:
https://github.com/Lukas-Skystedt/paragon2.

[28] Ghc generics. [Online]. Available:
https://wiki.haskell.org/GHC.Generics.

37

https://doi.org/10.1145/1190315.1190324
https://dl.acm.org/doi/10.1145/1190315.1190324
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/derive-functor
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/derive-functor
https://doi.org/10.1007/b12027
https://doi.org/10.1007/978-3-642-04652-0_4
https://doi.org/10.1145/1291201.1291208
https://dl.acm.org/doi/10.1145/2692915.2628141
https://hackage.haskell.org/package/multiplate
https://github.com/Lukas-Skystedt/paragon2
https://wiki.haskell.org/GHC.Generics

Appendix A
Dependencies

TypeCheck

TC.TcStmt

TC.TcExp

TC.M.Monad

TC.M.TcCodeM

TC.M.CodeEnvTC.M.CodeState

TC.M.TcDeclM

TC.Interpreter

TC.TypeMap

PolicyLang

PL.PolicyPL.Locks

PL.Actors

TC.Types

TC.NullAnalysis

Figure A.1: Imports between different modules involved in type checking.

38

Appendix B
Transform Code

The part of the below code that uses GTransform is loosely based on an example
from the Haskell Wiki on GHC Generics [28].

-- | Captures conversions of decoration types
class Conv a b where

conv :: a -> b

-- Every type can be converted to itself
instance Conv a a where

conv = id

class Transform ast x y where
-- | The actual method that converts an AST type from one
-- extension descriptor to another.
transform :: ast x -> ast y
-- In most cases , we can create the instance automatically
-- using GHC generics. (However , it is still possible to
-- define custom instances .)
default transform :: (GTransform (Rep (ast x)) (Rep (ast y))

, Generic (ast x)
, Generic (ast y))

=> ast x -> ast y
transform = to . gTransform . from

-- | A class for the conversion of the generic representation of
-- the AST type(s) (for use with GHC Generics).
class GTransform f g where

gTransform :: f a -> g a

--
instance GTransform V1 V1 where

gTransform = id

39

B. Transform Code

-- Constructors without arguments are unchanged
instance GTransform U1 U1 where

gTransform = id

-- This is the interesting case. We can convert types when a
-- Conv instance exists.
instance Conv a b => GTransform (K1 i a) (K1 j b) where

gTransform (K1 x) = K1 (conv x)

-- We can transform an AST type with one extension descriptor
-- to the same type with another extension descriptor when the
-- conversion is specified by a Transform instance.
instance Transform ast x y

=> GTransform (K1 i (ast x)) (K1 j (ast y)) where
gTransform (K1 x) = K1 (transform x)

-- Meta -information. Simply transform the contained value.
instance GTransform f g

=> GTransform (M1 i c f) (M1 j d g) where
gTransform (M1 x) = M1 (gTransform x)

-- Sum types (constructor alternatives) are converted by
-- converting the contained value.
instance (GTransform f1 f2 , GTransform g1 g2)

=> GTransform (f1 :+: g1) (f2 :+: g2) where
gTransform (L1 l) = L1 (gTransform l)
gTransform (R1 r) = R1 (gTransform r)

-- Product types (multiple fields in a constructor) are
-- converted by converting all contained values.
instance (GTransform f1 f2 , GTransform g1 g2)

=> GTransform (f1 :*: g1) (f2 :*: g2) where
gTransform (l :*: r) = gTransform l :*: gTransform r

40

Appendix C
Pattern Synonym Macro

makePatternSyn :: String -> Name -> Q Pat -> DecsQ
makePatternSyn prefix conName rhPatQ = do

rhPat <- rhPatQ

let (_pre , suff) = takeUnqualified $ show conName
let newConName = mkName $ prefix ++ suff

-- The type given here is annoying to work with since it consists of
-- applications ..
(DataConI _nam _typ parNam) <- reify conName
let (VarP temp) = rhPat
-- .. Instead we extract its parent (the type it constructs),..
(DataConI name typ par) <- reify conName
-- ..get its declaration ..
(TyConI dec) <- reify par
-- ..and find the constructor again ,..
let [NormalC _ bangTypes] = case dec of

(DataD _ctx _name _binds _kind cons _deriv) ->
filter (\(NormalC n _) -> n == conName) cons

(NewtypeD _ctx _name _binds _kind con _deriv) -> [con]
-- now with the type given as a list. We throw away the first field ,
-- which should be the TTG extension field.
let (_extfield:conArgs) = map snd bangTypes :: [Type]

-- Extract all the names that are used in a pattern in the right hand
-- side.
let patNames = patternNames rhPat
-- Generate names for the remaining constructor fields.
bindingNames <- mapM (const (newName "a")) conArgs

let lhsPattern = PrefixPatSyn $ patNames ++ bindingNames
let rhsPattern = ConP conName $ rhPat : map VarP bindingNames

return [PatSynD newConName lhsPattern ImplBidir rhsPattern]

-- | Given a pattern , find all 'VarP ' recursively and extract their names.
-- That is , find all variable bindings in a pattern.
patternNames :: Pat -> [Name]
patternNames (LitP _) = []
patternNames (VarP name) = [name]
patternNames (TupP pats) = concatMap patternNames pats
patternNames (UnboxedTupP pats) = concatMap patternNames pats

41

C. Pattern Synonym Macro

patternNames (UnboxedSumP pat _ _) = patternNames pat
patternNames (ConP _ pats) = concatMap patternNames pats
patternNames (InfixP pat1 _ pat2) = patternNames pat1 ++ patternNames pat2
patternNames (UInfixP pat1 _ pat2) = patternNames pat1 ++ patternNames pat2
patternNames (ParensP pat) = patternNames pat
patternNames (TildeP pat) = patternNames pat
patternNames (BangP pat) = patternNames pat
patternNames (AsP _ pat) = patternNames pat
patternNames WildP = []
patternNames (RecP _ fpats) = concatMap (patternNames . snd) fpats
patternNames (ListP pats) = concatMap patternNames pats
patternNames (SigP pat _) = patternNames pat
patternNames (ViewP _ pat) = patternNames pat

-- | Split a qualified name to an unqualified name and the prefix. Eg.
-- "GHC.Maybe.Just" should return ("GHC.Maybe.", "Just ").
takeUnqualified :: String -> (String , String)
takeUnqualified name = let (suffR , preR) = break (=='.') $ reverse name

in (reverse preR , reverse suffR)

42

	Introduction
	Modularization
	Representing the Abstract Syntax Tree
	Final Thoughts
	Appendix A — Dependencies
	Appendix B — Transform Code
	Appendix C — Pattern Synonym Macro

