CHALMERS |) UNIVERSITY OF GOTHENBURG

Physically-Based Animation of Fire for
Android

Bachelor's thesis in Computer Science and Engineering

FREDRIK ALBERS, KARL ANDERSSON, ANTON FORSBERG
LOVISA GRAHN, DANIEL OLSSON, AXEL SVENSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Géteborg, Sweden 2020

BACHELOR’S THESIS IN COMPUTER SCIENCE AND ENGINEERING

Physically-Based Animation of Fire for Android

FREDRIK ALBERS, KARL ANDERSSON, ANTON FORSBERG
LOVISA GRAHN, DANIEL OLSSON, AXEL SVENSSON

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Goteborg, Sweden 2020

Physically-Based Animation of Fire for Android
FREDRIK ALBERS, KARL ANDERSSON, ANTON FORSBERG
LOVISA GRAHN, DANIEL OLSSON, AXEL SVENSSON

© FREDRIK ALBERS, KARL ANDERSSON, ANTON FORSBERG , LOVISA GRAHN, DANIEL OLSSON,
AXEL SVENSSON, 2020

ISSN 1654-4676

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone: 446 (0)31-772 1000

Cover:
Screenshots of the resulting fire of this project. The fire uses an pyramid as emitter, and has the grid resolution
of 102x402x102

Chalmers Reproservice
Goteborg, Sweden 2020

Physically-Based Animation of Fire for Android

FREDRIK ALBERS, KARL ANDERSSON, ANTON FORSBERG
LOVISA GRAHN, DANIEL OLSSON, AXEL SVENSSON
Department of Computer Science and Engineering

Chalmers University of Technology

University of Gothenburg

ABSTRACT

Animation of fire and fluids has been around for at least 20 years in the field of computer graphics. These
animations have over the years progressed into real-time simulations running on the GPU and further refined,
thanks to modifications such as vorticity and wavelet turbulence, adding higher visual detail. With the
improving performance and capability of mobile phones, our issue was how well an animation of fire can be
achieved and under which limitations, when developed for a modern mobile device.

For our application, we used Java, C++ and GLSL. The simulation was built upon three layers: simulation
overview, simulation operations and slab operation. In order to simulate the behavior of a fluid, we chose to
use and compare the Euler equation and the Navier-Stokes equations. To optimize the performance of the fire
while still maintaining a high level of detail, we used wavelet turbulence.

The application was able to achieve our initial goal of reaching 30 frames per second with relatively good re-
sulting flame on a modern mobile device. However, older devices might not be able to achieve this performance
at all.

Keywords: Fire simulation, Fire simulation Android, Fluid dynamics Android, Wavelet Turbulence, Simulation
GPU, Fire simulation 3D

SAMMANDRAG

Animering av eld och fluider har funnits i minst 20 ar inom datorgrafik. Dessa har genom &aren utvecklats till
realtids-simulationer som kors pa GPU, samt ytterligare modifierats med vorticitet och Wavelet turbulence som
lett till en visuellt hogre detaljrikedom. Med den 6kande férméagan och prestandan hos moderna mobiltelefoner
ar var fragestdllning foljande: Hur vél kan en animation av eld skapas och vilka begrénsningar finns?

For att skriva applikationen anvéndes Java, C++ samt GLSL. Simuleringen bestar av tre lager: 6versikt av
simuleringen, simulerings-operationer och slab operation. For att simulera en fluids beteende, anvinde vi oss
av Eulers ekvationer, da dessa resulterade i snabbare rendering dn det andra valet: Navier-Stokes ekvationer.
For att optimera prestandan anvindes Wavelet turbulence.

Applikationen kunde na det ursrungliga malet av 30 bildrutor per sekund med en relativt bra resulterande
flamma pa en moden mobil enhet. Dessvérre, dldre enheter kan eventuellt inte n&d denna prestanda.

ii

PREFACE

This thesis is a depiction of our process of developing an application for Android handheld devices, that
simulates a three-dimensional fire that utilizes the GPU of the device. We hope that our thesis will be useful
for other students interested in computer graphics and physically-based rendering.

ACKNOWLEDGEMENTS

We want to thank our supervisor Marco Fratarcangeli for his continuous support and feedback throughout
the project. We also want to thank Qualcomm Technologies for providing us with the Snapdragon Profiler
software.

iii

iv

CONTENTS

1 Introduction 1
1.1 Background 1
1.1.1 Areaof Usage o o o 0 i 1

1.1.2 The Expensiveness of 3D Fluid Simulation. 1

1.1.3 Mobile Device Versus Desktop o 2

1.2 Purpose and Goals L 2
1.3 Problem Statements e e e 2
1.4 Scope of Project 2
1.5 Related Work o Lo 3
2 Method 4
2.1 ToolS e e 4
2.1.1 Android Studio e 4
2.1.2 Android Virtual Device e 4
2.1.3 Android NDK e 4
2.1.4 CMake e e e 4
2.1.5 Gradle e e e 4
2.1.6 Gitand GitHub e 5
2.1.7 OpenGL Mathematics e 5
2.1.8 Mobile Devices oL e)

2.2 Simulation L e 6
2.3 Performance e e e 6
2.4 Visuals and Correctness 6
2.5 Imtended Outcome L 6
3 Theory 7
3.1 Physical Modelling L 7
3.2 Velocity Step - Momentum of the Flame o000 7
3.2.1 Navier-Stokes Equations vs Euler Equation 7
3.2.2 Solving the Behaviour Equations 8
3.2.3 Advection e e e 8
3.24 Diffusion 9
3.2.5 Solving the Poisson Equations o o o 9
3.2.6 Vorticity Confinement L L 10

3.3 Wavelet Turbulence e 10
3.3.1 Turbulence Noise e e 10
3.3.2 Kolmogorov Theory e 11
3.3.3 Scattering e 12
3.3.4 Calculating the Eigenvalues 12
3.3.5 Texture Distortion L e 13
3.3.6 Fluid Synthesis e 13

3.4 Adding External Forces e 13
3.4.1 Buoyancy Force 14

3.5 Simulation Step for Substances L Lo 14
3.5.1 Density Step e e 14
3.5.2 Temperature Step e e 14

3.6 Boundary Condition e e 15
3.7 Calculating the Color of the Fire 15
3.7.1 Black-body Radiation 16
3.7.2 Converting Radiance to CIE XYZ Color-space 16
3.7.3 Chromatic Adaptation L 17
3.7.4 sRGB Conversion and Gamma Correction 18

3.8 Using the Fire as a Light Source

3.8.1 Phong Reflectance Model
3.9 Volumetric Rendering L
3.9.1 Volume Ray Casting
4 Implementation
4.1 Android . ..o
4.2 Modelling the Simulation L
4.3 OpenGL ES e
4.4 Utilizing the GPU o . L 0 e
4.4.1 GPUs Impact on Complexity
5 Process
5.1 Start of Project o e
5.2 Previous Results L
5.2.1 First Visual Results
5.2.2 Vorticity o e
5.2.3 Wavelet Turbulence e
5.2.4 Black-body Radiation
5.3 Added Features e
5.3.1 Touch Interaction. e
5.3.2 Light Reflective Walls
54 Workflow
6 Results
6.1 Overview of our Application L
6.2 Performance and Visuals oL
6.2.1 Resolution e
6.2.2 Navier-Stokes vs Euler e
6.2.3 Emitters e
6.2.4 Wavelet Turbulence
7 Discussion
7.1 Interpreting the Result L
7.2 Limitations of the Workflow L
7.2.1 The Field of Fluid Dynamics
7.2.2 Accessibility e
7.2.3 Faulty Approaches
7.2.4 Unfinished Features e
7.2.5 Ongoing Pandemic L e
7.3 Future Work L
7.4 Ethical Aspects oL
7.5 Learning Outcomes L e e e
8 Conclusion
References

A Performance and Visuals of Difference Grid Sizes

B Navier-Stokes Performance and Visuals

C Performance of Wavelet Turbulence and the Visual Result

vi

IX

XII1

List of Figures

3.1 The first four slices of 3D turbulence noise with resolution 60% 11
3.2 The first four slices of the final vector noise 3D with resolution 603. The grayscale represents
the length of the vector. 11
3.3 Normalized responsivity spectra for L, M and S cone cell. From [38]. CC BY-SA 3.0 17
3.4 Example result of volume ray-casting L Lo 20
5.1 UML diagram showing an estimated set of classes that would be used in development of the
simulation. L L e e e e e 24
5.2 Four different versions that were used as a foundation for the development of the simulation. . 25
5.3 Appearance of the fire after vorticity was added. o Lo 25
5.4 The first basic implementation of wavelet turbulence. L. 26
5.5 Wavelet turbulence combined with better coloring and vorticity. 26
5.6 Wavelet turbulence, same as Figure 5.5 but with added smoke. 27
5.7 Tlluminated effect of the smoke after implementing black-body radiation for an early basic version
of the simulation. L 27
5.8 Posterior version of blackbody radiation with later features added. 28
5.9 Visual response after adding touch interaction to the fire simulation. The small dot in the
picture resembles the touch interaction.o Lo o 28
5.10 Fire simulation with light reflective walls. oL 29
6.1 An UML-diagram showcasing the most important parts of the resulting application 30
6.2 Graphing how grid resolution affects the time required to render a frame of the simulation. The
total grid size is achieved by multiplying resolution scale with grid size ratio 32
6.3 Graphing how grid resolution affects the memory usage of the simulation. The total grid size is
achieved by multiplying resolution scale with grid size ratio 32
6.4 Graphing the performance of the Euler simulation approach and Navier-Stokes simulation ap-
proach in regards of time per frame when using a grid scale ratio of 1x4x1 33
6.5 Graphing the performance of the Euler simulation approach and Navier-Stokes simulation ap-
proach in regards of memory usage when using a grid scale ratio of 1x4x1 33
6.6 Cube rotating 22,5 degrees with every picture L. 34
6.7 Sphere rotating 22,5 degrees with every pictureo L oL 34
6.8 Pyramid rotating 22,5 degrees with every picture L Lo 34
6.9 Cylinder rotating 22,5 degrees with every picture oL 35
6.10 Graphing the performance of the Wavelet Turbulence optimization in comparison to the original
simulation approach in regards of time per frame L. 35
6.11 Graphing the performance of the Wavelet Turbulence optimization in comparison to the original
simulation approach in regards of memory usage L 36
6.12 Graphing the performance of the Wavelet Turbulence optimization in comparison to the original
simulation approach in regards of CPU utilization 36
A.1 Visuals of the fire with a grid size of 12x22x12 oL 1
A.2 Android Profiler graph with a grid size of 12x22x12, measuring CPU utilization and memory
usage in MB L I
A.3 Snapdragon Profiler graph with a grid size of 12x22x12, measuring CPU utilization, time per
frame, frames per second and mMemory USAgeo e e e I
A.4 Visuals of the fire with a grid size of 32x62x32 11
A.5 Android Profiler graph with a grid size of 32x62x32, measuring CPU utilization and memory
usage in MB L Lo 11
A.6 Snapdragon Profiler graph with a grid size of 32x62x32, measuring CPU utilization, time per
frame, frames per second and MemoOTry USAZE v . v i e e e e 11
A.7 Visuals of the fire with a grid size of 52x102x52 111
A.8 Android Profiler graph with a grid size of 52x102x52, measuring CPU utilization and memory
usage in MB L L 111
A.9 Snapdragon Profiler graph with a grid size of 52x102x52, measuring CPU utilization, time per
frame, frames per second and memory usage e e e e 111
A.10 Visuals of the fire with a grid size of 72x142x72 oo I\Y

vii

A.11 Android Profiler graph with a grid size of 72x142x72, measuring CPU utilization and memory
usage in MB Lo L
A.12 Snapdragon Profiler graph with a grid size of 72x142x72, measuring CPU utilization, time per
frame, frames per second and MemMOTy USAZE v v v vt e e e
A.13 Visuals of the fire with a grid size of 12x42x12 oo
A.14 Android Profiler graph with a grid size of 12x42x12, measuring CPU utilization and memory
usage in MB L L
A.15 Snapdragon Profiler graph with a grid size of 12x42x12, measuring CPU utilization, time per
frame, frames per second and memory usage e e e e e
A.16 Visuals of the fire with a grid size of 32x122x32o
A.17 Android Profiler graph with a grid size of 32x122x32, measuring CPU utilization and memory
usage in MB L
A.18 Snapdragon Profiler graph with a grid size of 32x122x32, measuring CPU utilization, time per
frame, frames per second and memory usage e e e e e e e
A.19 Visuals of the fire with a grid size of 52x202x52
A.20 Android Profiler graph with a grid size of 52x202x52, measuring CPU utilization and memory
usage in MB L L
A .21 Snapdragon Profiler graph with a grid size of 52x202x52, measuring CPU utilization, time per
frame, frames per second and memory usage
A.22 Visuals of the fire with a grid size of 72x282x72 oL
A.23 Android Profiler graph with a grid size of 72x282x72, measuring CPU utilization and memory
usage in MB Lo
A.24 Snapdragon Profiler graph with a grid size of 72x282x72, measuring CPU utilization, time per
frame, frames per second and memory usageo e e e e
B.1 Visuals of the Navier-Stokes approach using a grid size of 12x42x12
B.2 Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler e
B.3 Graphs of CPU utilization, time per frame, frames per second and memory usage with the
Navier-Stokes approach in Snapdragon Profiler
B.4 Visuals of the Navier-Stokes approach using a grid size of 32x122x32
B.5 Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler e
B.6 Graphs of CPU utilization, time per frame, frames per second and memory usage with the
Navier-Stokes approach in Snapdragon Profiler
B.7 Visuals of the Navier-Stokes approach using a grid size of 52x202x52
B.8 Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler
B.9 Graphs of CPU utilization, time per frame, frames per second and memory usage with the
Navier-Stokes approach in Snapdragon Profiler
B.10 Visuals of the Navier-Stokes approach using a grid size of 72x282x72
B.11 Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler e
B.12 Graphs of CPU utilization, time per frame, frames per second and memory usage with the
Navier-Stokes approach in Snapdragon Profiler
C.1 Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid
size of 12x42x12 for the temperature and density
C.2 Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence
in Android Profiler L
C.3 Graphs of CPU utilization, time per frame, frames per second and memory usage with the
simulation with Wavelet Turbulence in Snapdragon Profiler
C.4 Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid
size of 32x122x32 for the temperature and density o L.
C.5 Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence
in Android Profiler L
C.6 Graphs of CPU utilization, time per frame, frames per second and memory usage with the
simulation with Wavelet Turbulence in Snapdragon Profiler

viii

C.7 Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid

size of 52x202x52 for the temperature and density Lo XV
C.8 Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence

in Android Profiler oL XV
C.9 Graphs of CPU utilization, time per frame, frames per second and memory usage with the

simulation with Wavelet Turbulence in Snapdragon Profiler XV
C.10 Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid

size of 72x282x72 for the temperature and density Lo XVI
C.11 Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence

in Android Profiler oL XVI
C.12 Graphs of CPU utilization, time per frame, frames per second and memory usage with the

simulation with Wavelet Turbulence in Snapdragon Profiler XVI

List of Tables

2.1 OmnePlus 7specs 5

ix

Glossary

advection The act of moving something along a velocity field. 7-10, 12-14, 21, 31
Android An operating system for mobile devices. 2, 4, 6, 21, 30, 40

API Application programming interface, an interface that defines how other applications communicate with
a specific software. 2, 4, 21, 22

AVD An emulator that is used to run a simulated Android device. 4

black-body radiation Thermal radiation, the conversion of heat to light, emitted from a black body. 3, 7,
14, 16, 27

buoyancy An upward force exerted by a fluid that opposes the weight of a partially or fully immersed object.
8, 14

C++4 A popular object-oriented programming language with low-level capabilities. 2, 4, 5, 21, 30, 31, 38, 40
chromatic adaptation The ability of the human visual system to adjust to changes in illumination. 17, 18
CMake A software tool for managing the build process of software. 4

CPU Central Processing Unit, a computer component that executes instructions. 2, 6, 22, 31, 33, 36, 37

diffusion Resistance to movement in a fluid. 8, 9, 14

dissipation Reduction of an attribute, for example velocity. 3, 10, 14, 15
eddy The swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. 12

FPS Frames Per Second, the number of frames that a machine is outputting to a monitor each second. 2, 6,
37, 41

Git A version control tool to track changes and manage differing versions of text-based projects. 5
GitHub A web service that publicly or privately hosts git projects. 5

GLM A mathematics library written for C4++ that is intended for graphics software and based on specifica-
tions in GLSL. 5

GLSL OpenGL Shading Language, the programming language that is used for shaders in OpenGL. 5, 30, 31

GPU Graphics Processing Unit, a hardware component dedicated for processing graphics. 1, 2, 5, 6, 19, 21,
22, 39-41

Gradle A build tool that incrementally builds the project. 4, 5

graphics pipeline A conceptual model that describes what steps a graphics system needs to perform to
render a 3D scene to a 2D screen. 21, 22

homogeneous A property that something is uniform in composition or character. 7, 11

IDE Integrated Development Environment, a software tool dedicated assist and encapsulate development of
a program. 4, 38

incompressible The property of constant material density. 7, 21, 32

IntelliJ IDEA An IDE designed for Java development. 4

inviscid A property for a fluid with no viscosity. 7

Java An object-oriented programming language, that for example is used in Android development. 3, 4, 21,
30

kinematic viscosity Ratio of the viscosity to the density of a fluid. 7, 9
MIT-license A permissive free software license. 2, 39

NDK Native Development Kit, which provides tools for developing with C and C++ in android applications.
4, 21, 40

noise function A signal that is seemingly random. 10, 11, 13

OpenGL A graphics programming api. 2, 5, 21, 22, 30, 31, 38
OpenGL ES A subset of OpenGL versions designed for mobile and other embedded devices. 2, 21-23

parallelization The act of designing a computer program or system to process data in parallel. 22
ray casting Method for visualising volumetric data. 15, 20

Scrum Agile framework for software development. 29

SDK Software Development Kit, a set of tools for developing software for a specific platform. 21

shader A program that runs on the GPU. 5, 21, 22, 30, 40

SIMD Single Instruction Multiple Data, when the same operation is performed on multiple sets of data. 22
spectral radiance Radiance of an object for a given wavelength. 16, 17

sprite A two-dimensional image that is drawn directly to a screen. 1

subceed The opposite of exceed. 12

trichromatic Colors are derived from three separate channels. 16
tristimulus values The specific values for the three channels in the given color-space. 18, 19

turbulence noise Summed up perlin noise function with different frequencies by taking the absolute value.
The noise take the shape similar to that of turbulence . 10-12

viscosity Resistance to deformation. 7-10
vorticity Measure of rotation in a fluid. 10, 25

vorticity confinement Technique to generate the swirling effects in smoke. 7, 25, 37

wavelet turbulence Optimization technique for fluid simulations that involves scaling up a velocity field
using noise. 2, 7, 10, 26, 31, 35-37, 41

xi

1 Introduction

The first chapter introduces the purpose of the project, the scope, and the challenges that has to be dealt
with. It also provides the reader with some light background knowledge about the subject prior to the later
chapters.

1.1 Background

To simulate a fire in the field of computer graphics is not trivial and comes with its own set of challenges.
Especially if one wants the behavior of the fire to be as accurate and realistic as possible [1]. One common
way to solve this problem has been to use 2D sprites. These sprites were independent components that
were not easily affected by other components on the screen, and could be based on filmed footage or artistic
reconstruction [2]. The technique is efficient and has been used a lot in the gaming industry [3], but is lacking
in realism due to the repetition of the same footage. If the simulation of fire were to be based on a model
with larger physical accuracy, parts of the lost realism could be added back into the simulation, and there
would be no need for repeated footage. A physically-based model provides the developers with an opportunity
to simulate a fire in a higher resolution, and also add responsiveness to any external forces [3]. One model
suitable and commonly used for simulating a gaseous-like phenomena like fire is the Navier-Stokes equations.
These equations describe the mathematical model of flow in fluids [4].

1.1.1 Area of Usage

The uses of physically simulated fire are mostly used in the movie industry as Computer-generated imagery
(CGI) visual effects where practical effects are not viable or wanted at all, as in animated films. If the simulation
is done in real-time then the method can be applied in the game industry as well. In that context the physical
properties can be used to give an interesting interactive environment.

There is also a potential use in the act of firefighting and fire prevention. Fire-fighters could perhaps use the
simulation in training environment to know what to expect when out in the field, possibly using VR. There
could also be a use (if the simulation is accurate enough) to apply the method when designing buildings. Tt
could be used to predict the fire spread and design the buildings to minimize the spread as well as facilitate
when developing efficient evacuation plans. These uses may not be of great financial interest but if they are
possible to implement, they are a large improvement in safety in everyday life.

1.1.2 The Expensiveness of 3D Fluid Simulation

When simulating a flow of fluids, a discretization of the fluid domain is usually done, transferring continuous
values to discrete ones. There are two ways to discretize the area that contains the fluid, Eulerian discretization
and Lagrangian schemes. Eulerian discretization divides the area into fixed cubical cells, also known as voxels
in computer graphics. Each cell consists of one velocity vector and scalar quantities (such as pressure or
density). In the case of fire simulation, the temperature and the implicit surface of the reaction zone, are also
stored in the cell centers [1]. Lagrangian schemes on the other hand, do not have a fixed position in space
for the computational elements. This makes them difficult to implement efficiently on the GPU [2]. Since we
want to be able to utilize the GPU, we will look further into performance of fluid simulation with Eulerian
discretization.

In 3D, velocity vectors A x B x C' are stored in memory. The scalar pressure field has a larger impact on
the perceived realism by the viewer and therefore a higher resolution grid should be used for it [5]. This will
lead to the memory consumption of fluid simulation being O(N), where N is the number of cells in the scalar
pressure field. The complexity of the fluid simulation algorithm is of order O(N) as well [4].

Due to these reasons, 3D simulations are extremely demanding compared to 2D simulations. The extra
dimension that 3D requires, in comparison with 2D, will make the complexity and memory consumption
O(n3) as compared to O(n?), where n is the number of cells per dimension. Another reason 3D simulations
are computationally heavier, is because sampling has to be done from six neighbors for every cell, as compared
to four samples in a 2D simulation [6].

The expensiveness of 3D simulation is one reason why no widespread three-dimensional fluid simulation exists
on handheld devices, which will be described in the following section.

1.1.3 Mobile Device Versus Desktop

The main difference between simulations on a mobile device and a desktop machine, is the amount of compu-
tation power available on the CPU and GPU. Performance on mobile devices are limited due to constraints
to both size and power usage, and also because of different architecture design [7]. Hence, a GPU running on
a handheld device will not have the same performance conditions as a desktop GPU. Further limitations are
then consequently integrated in application programming interfaces (APIs) for the mobile GPUs. An example
is OpenGL ES, a specification for communicating with embedded system GPUs, that is a subset of its original
version OpenGL but with less functionality. Recent OpenGL ES versions however have come closer to the
functionality of OpenGL[8].

1.2 Purpose and Goals

Due to the advantages with physically-based animation of fire, it would be preferable to use in most scenarios
where the fire needs to be responsive to external forces. One would wonder how well suited this technique
would be for less powerful devices, such as mobile devices. Hence, the purpose of this thesis is to explore the
possibilities and limitations of simulating and rendering a physically based fire on handheld devices.

The goal of the software that we are going to develop is to achieve a physically-based simulation of fire done
in real-time, that is 30 FPS (frames per second) and above (games usually run best at 30 or 60 FPS) [9].
The simulation will make use of a sophisticated rendering system to approach a realistic image from a 3D
environment. To increase the performance, the simulation should be done on the GPU to exploit the vast
amount of threads it can spawn to efficiently parallelize the calculations. Part of the project goal is to have
a demonstration of the final product such that others could take part of our solution and further improve if
needed. This will be achieved by having our code to be open source under the MIT-license, which makes it
possible for other practitioners to use our program freely when referencing the creators of the application. As
a special optimization technique for the simulation we will take advantage of the method wavelet turbulence
for better graphical effects and faster calculations. This enables the possibility to port the software to slower
systems, such as handheld devices.

1.3 Problem Statements

o Is it possible to simulate and render a physically-based fire in three dimensions on a handheld device
running Android?

e Which frame rates are achievable when rendering the fire?
o Which resolution on the volumetric grid is feasible?
o Is there any significant increase of performance by using wavelet turbulence?

¢ Is the simulation interactive?

1.4 Scope of Project

Due to the area of fluid simulation being quite vast, we put up some restrictions for the thesis. This thesis will
only cover the simulation of a flame being ignited by some shape, and not how a fire spreads or how materials
are affected by this. Even though our approach of simulating the phenomena could be used to simulate different
kinds of viscous fluids, this thesis will only focus on simulating a flame within a limited volume. The expected
results of the simulation should also be a fire with physically plausible appearance; hence this thesis will only
cover the performance of three-dimensional simulations of a flame. To do this computational heavy task on
a mobile phone, we take advantage of the GPU multi-threading capabilities when rendering to alleviate real
time rendering with high computational speed. To utilize the GPU, the computer graphics rendering API
OpenGL ES will be used. In addition to the OpenGL ES, we will utilize the programming language C++ to

achieve better computation time as it is closer to hardware than other popular programming languages such
as Java [10].

The approach we have chosen to simulate a fire is primarily based on three papers. The first paper is “Stable
Fluids” by Jos Stam [4], which is used to simulate and render a viscous fluid in real-time. The second paper
we will use in our approach to simulate a fire is the paper “Physically Based Modeling and Animation of Fire”
written by Duc Quang Nguyen, Ronald Fedkiw, Henrik Wann Jensen [1]. Finally the third paper we will
use an optimization method called wavelet turbulence to achieve a high resolution as desribed in "Wavelet
Turbulence for Fluid Simulation” by Theodore Kim, Nils Thiirey, Doug James, Markus Gross [11]. This paper
demonstrates how to render the colors of the fire with a technique based on the black-body radiation model. By
choosing these papers as our primary approach, we will enforce the usage of a limited volume when simulating
the fire.

1.5 Related Work

The Navier-Stokes equations were written down in the 19th century. They are universal laws of physics
that describe the behavior of fluids. Thus far no general analytical solution exists for the Navier-Stokes
equations. However, computers allowed researchers to develop algorithms for numerical solutions to the Navier-
Stokes equations. This revolutionized the field of fluid dynamics and branched off in a new discipline called
computational fluid dynamics (CFD). For instance, CFD lead to the development of fluid solvers used in
aerodynamics and weather simulations. Numerical solutions for transient flow rely on time-discretization of
finite time steps. Applications with emphasis on physical accuracy required to be stable and hence, in general,
very small time steps had to be used. This resolved in complex and computational heavy algorithms, which
in general require a significant amount of time to terminate.

Jos Stam’s fluid solver from the paper “Stable Fluids” [4] focused instead on a simple and fast solution suited
for the use in real-time computer graphics. Physical accuracy was secondary to the shape and behavior of
the fluid. At the time this approach to fluid solvers could not be found in the CFD literature. This paper
presented for the first time an unconditionally stable physical based fluid model. The stability allowed the use
of arbitrary large time steps without the possibility to “blow-up”. Thus, the algorithm could run on slower
hardware in real-time.

One shortcoming of the stable fluids algorithm Jos Stam mentions is the tendency of the flow to dampen too
rapidly compared to actual experiments. This “numerical dissipation” comes from the linear interpolation only
achieving first order accuracy and thus results in a large error. Higher order interpolation could improve the
accuracy but would significantly increase the complexity and computational cost of the algorithm.

The paper “FlowFixer: using BFECC for fluid simulation” [12] presented a simple solution to this problem
that could be implemented directly on top of the first order semi-Lagrangian integration. Similarly, the paper
“An Unconditionally Stable MacCormack Method” [13] presented a method that also achieves second order
accuracy but at a reduced computational cost compared to the BFECC method.

The second order accuracy allows fluid features near the Nyquist limit to be robustly resolved. However,
the paper “Wavelet Turbulence for Fluid Simulation” [11] focused instead on efficiently resolving frequencies
greater than the Nyquist limit. This resulted in a method that allows for the possibility of fluid simulations
at spatial resolutions to still achieve high levels of detail at a minimum cost.

In the paper "Physically Based Modeling and Animation of Fire” [1] a proper model for simulating fire is
presented. There they present two steps of simulating the fire as the blue core and the hot gaseous products,
that differs slightly. To render the fire, they calculate the black-body radiation, to get a more accurate and
realistic looking fire. This is the paper that we are basing our thesis on as it is in many ways similar to our
scope.

2 Method

This chapter will present the general methods and software tools used for development, as well as specifying
the intended outcome for the project.

2.1 Tools

The following section will describe the tools that were used during the project. In this context, tools could be
IDE, API, etc.

2.1.1 Android Studio

Android Studio is the official IDE for developing Android applications. The IDE itself is based on another
popular IDE for Java development called IntelliJ IDEA, thus having similar looks and functionality. The
added functionality in Android Studio includes a Gradle build system for Android environments, an Android
Virtual Device (AVD) manager and support for native development kit (NDK) when developing in native code,
to name a few. Android Studio offers common features such as inline debugging to run code line by line,
profilers to keep track of CPU and memory usage, and syntax highlighting to assist in writing compilable code
and correct syntax errors. Furthermore, Android Studio is available for the most common desktop operating
systems [14].

2.1.2 Android Virtual Device

The emulator makes it possible to run a simulated version of an Android device on a desktop machine by using
an instance of an AVD. AVDs are handled by the AVD manager, where the specs and other properties can be
tailored to aim for a specific set of phones [15]. However simulating android with an application performing
heavy calculations, significantly slows the Android simulation down in comparison to a mobile device running
Android natively. Therefore it is of great concern to accelerate the android simulation using the CPU with
virtualization technology, such as VT-z for Intel processors or AMD-V for AMD processors [16].

2.1.3 Android NDK

The Android Native Development Kit (NDK) provides set of tools that enables to use C and C++ code for
Android development. Which is especially useful when developing an application where performance is critical.
The improvement to performance makes it suitable for the project of animating a fire as physically correct as
possible. The NDK also enables the inclusion of libraries written in C or C++ [17].

The way that the NDK works is that it has a shared library that is compiled using C or C++ where the native
part of the application lies. It is also possible to define static libraries. These libraries are built depending on
the Application Binary Interface (ABI) which corresponds to different processor architectures. Since android
uses Java as standard programming language with the android API, there needs to be a way to communicate
between the different languages. Fortunately the Java Native Interface (JNI) is an interface that is used to
have components from Java and C++ communicate with each other [18].

2.1.4 CMake

CMake is a build system to manage executable files, source code and libraries in a native build environment
[19]. The system uses configuration files to specify commands such as linking libraries or to create executables.
The CMake build system is used in the project within the NDK. It manages the native C++ files and links the
libraries used in the code. CMake and Gradle are used together as the application’s build systems, to manage
the C++ and Java files respectively in order to build the entire application.

2.1.5 Gradle

Gradle is an open source build tool that incrementally builds the project, based on Groovy or Kotlin DSL [20].
The project will make use of Gradle to handle the part of the application that is written in Java. Gradle uses

a directed acyclic graph (DAG) to determine which files need to be rebuilt [21]. Because of this evaluation,
unnecessary compilations are avoided. Between builds, Gradle checks if any data has been changed (input,
output or implementation). If nothing has changed, the task will not be rebuilt. If another computer has
already compiled a task, there is no need for the task to be recompiled locally. Instead, Gradle will load the
output from the build cache. If any changes have been made to the file, it will be executed once more. Since
Gradle only build files that have been changed, the whole application will not necessarily have to be rebuilt
[22].

2.1.6 Git and GitHub

Git, in combination with GitHub, is used as the version control system (VCS) for the project. A VCS is used
to manage multiple versions of a software, add new features through branches and restore previous changes
committed to a file. Git in particular is a distributed VCS, meaning that it is located at multiple places and
servers [23]. Git can be used locally but also over the internet, by for example pushing commits to a repository
at GitHub. The benefit of using a distributed system such as Git with GitHub is that every group member
can clone changes from the repository and add individual changes to a new branch. These changes can then
be reintegrated into the repository while other members can work on another feature branch simultaneously.
To summarize, Git enhances the project workflow and increases reliability of the software by keeping older
commits logged in its history.

2.1.7 OpenGL Mathematics

OpenGL Mathematics, or GLM for short, is a mathematics library for the C+4 programming language. It
is intended for use with graphics software and OpenGL applications, since it is based on specifications for
the OpenGL Shading Language (GLSL). GLM is directly usable in code by importing a single header file,
no other compilation is needed. The library comes with built-in functions and classes for random number
generation, matrix transformations, vector operations, noise functions etc. [24]. Its similarity with GLSL
makes it compatible to use the functionality available by the library and pass it on to different shaders
executed by the GPU with ease.

2.1.8 Mobile Devices

Various mobile devices will be used to run the application during the development. This is due to the different
devices the authors of this paper have available at hand, mainly their personal devices. This will lead to
possibly different results depending on the device, therefor it would be wise to have a predefined device as the
standard device when comparing the performance.

The results provided in this thesis are achieved with a OnePlus 7. The chosen device is used since it reaches
the current expectations of performance when used for gaming, and it is the best at hand for the authors of
this thesis. The important specifications of the device are shown in Table 2.1.[25]

OS: OxygenOS based on Android™ 10

CPU: | Qualcomm® Snapdragon™ 855 (Octa-core, 7Tnm, up to 2.84 GHz)
GPU: Adreno 640
RAM: 8GB LPDDR4X

Table 2.1: OnePlus 7 specs

To measure the performance, a program called Snapdragon Profiler is used. This tool is used to measure and
analyse the Qualcomm® Snapdragon™ processors, which in recent versions also includes the Adreno graphics
card [26]. It graphs several aspects, such as usage of CPU, GPU, memory and power to help developers get
an oversight of the program, and potentially find performance bottlenecks [27]. When obtaining the profiler,
one needs to submit a request to achieve a developer account at Qualcomms platforms, which they kindly did
for the cause of this thesis.

2.2 Simulation

The approach of simulating a fire on a handheld device consists of taking advantage and be inspired of already
existing solutions for fluid simulations in real-time. Firstly, the extensive work on approximating fluid dynamics
will be used. Secondly, there are multiple papers which covers the translation of these approximation to code,
most notably the paper “Stable Fluids” by Jos Stam [4]. This paper has also been getting some adaptations,
one of such are the an GPU version of the stable fluids solver, presented by Nvidia [6]. Another adaptations
is the paper “Physically Based Modeling and Animation of Fire” presented in the introductory chapter [1],
which uses the stable fluids solver to simulate a fire.

The unique task of this project is the translation of these works to a mobile device, while simulating in three
dimensions. The task is considered done when the resulting flame starts to resemble the previous works of
physically-based fluid simulation and fire simulation.

2.3 Performance

Certain types of simulations are naturally more demanding and resource-intensive in three dimensions than
counterparts in two dimensions, as the amount of data that is operated on goes to a higher magnitude under
the same resolution. While performing three-dimensional fluid simulation in real time is not anything new [2],
attempting to achieve this for mobile devices can prove to be difficult due to overall reduced available resources
and performance. For this reason, it is particularly important to put a great deal of focus on optimization
and prioritize optimization above other aspects of the animation. The optimization will however only be
considered during animation, and therefore not make any particular effort to optimize the initial loading
time of the application. The optimization will focus on performance by trying to maximize the FPS output
to achieve a smooth animation of the fire. The resulting FPS will be compared between before and after
optimization to confirm that performance has increased. Other aspects such as CPU utilization and memory
usage will also be investigated to evaluate if the simulation is too demanding on the device.

2.4 Visuals and Correctness

As the aim of this thesis is to achieve real-time fire animation, the focus will be on cheaper approximations
where it is considered reasonable and generally aim for convincing visuals rather than a physically accurate
simulation. This means that any method of achieving a more visually realistic flame is preferred over using a
method that follows the actual physics of a real fire but has a high impact on performance. As such, there is
little reason to make a comparison of the result to a real or otherwise more accurate flame beyond determining
if the result is visually similar to an accurate flame. However, the visuals should preferably resemble the results
from similar works.

2.5 Intended Outcome

The expected outcome is to produce an application that on a modern Android phone, works correctly in
displaying a fire simulation. The code for this application should also be well structured and commented
in order to make it easier to use as an example on how fire animation can be implemented under the given
circumstances. The visual appearance of the fire will be judged as a success if the authors of this thesis believe
that the animation visually behaves like a fire and is visually pleasing. The goal regarding performance is to
achieve 30 frames of animation per second (FPS) when running on a modern Android device. The specific
number of FPS is chosen as a possible target as this number, as well as 60 FPS, is a common target within
computer graphics. The performance should also have a stable level of performance, without any momentary
performance drops caused by the animation itself.

To measure the performance of the animation, Android Profiler and Snapdragon Profiler will be used to
measure the percentage of CPU utilization, number of megabytes being used and how long it takes to animate
one frame on average. This will be used to evaluate the performance of the application. The primary device
to run the simulation on is a OnePlus 7.

3 Theory

In this section, the mathematical models used to animate the gaseous-like phenomena will be presented, as
well as some manipulations, optimizations and the approach to rendering the fire in three dimensions. This
approach is heavily based on selected papers and will be described with sufficient amount of detail. For more
details, the reader is recommended to read the original papers.

The fire simulation is divided into three primary steps: velocity, temperature and density. These steps are the
fundamentals of the simulation. A substep, wavelet turbulence, is used at the end of the velocity step as an
additional optimization measure, but this does otherwise not affect the general simulation steps. In addition,
the utilization of other physical models such as black-body radiation and vorticity confinement are used to
achieve a more visually interesting result.

3.1 Physical Modelling

When animating the behavior of a fire, four three-dimensional fields are used to store the current state and
calculate the upcoming states at any time of the fluid [1], [4]. The first field stores the velocities over the grid
as a vector field u, the second field stores the pressure as a scalar field p [6], the third is a smoke density field
d and the fourth is a temperature field T [1], [4]. To be able to predict the next state, assumptions about the
nature of the fluid must be made. In this thesis, the fluid is considered as an incompressible and homogeneous
fluid [6].

An incompressible fluid has a constant volume over time, while a fluid being homogeneous implies that the fluid
has a constant density in space [6]. These properties together suggest that the density of the fluid constant
over time and space, which provides the possibility to use Navier-Stokes equations or the Euler equation to
calculate the states of the fluid.

3.2 Velocity Step - Momentum of the Flame

The velocity step calculates the state of the velocity grid, which will affect how the flame moves. This step
consists of three or four components, depending on which approach is used when simulating the flame. The
two approaches that are considered is to use either the Navier-Stokes equations or the Euler equation.

3.2.1 Navier-Stokes Equations vs Euler Equation

The Navier-Stokes equations and the Euler equation are used in different scenarios when simulating incom-
pressible fluids. The Euler equation is used for inviscid fluids, whilst the Navier-Stokes equations are used
when incorporating viscosity. The two equations (Equation 3.1 and 3.2) are rather similar, where ¢ resembles
the time in space, p is the overall density, v is the kinematic viscosity, f is the external forces and V denotes

0
the vector of spatial derivatives, (%, 3y g) [4], [6]

0 1
Euler equation: 8—1; =—(u-V)u—-Vp+f (3.1)
p
. . Ju 1 5
Navier-Stokes equations: i —(u-V)ju— -Vp+ovVu+ f (3.2)
p

Equation 3.1 and Equation 3.2 are both subject to the incompressibility-constraint V - u = 0, which ensures
that the velocity field is divergence free [6]. Both equations also share the Advection component, Pressure
component and the External Forces component. These three terms are also considered as three components
of the velocity step. To briefly explain what each term implies, the Advection term is generally applicable for
transporting objects, temperatures, densities, or in this case the velocity itself, along the flow of the velocity
field. The pressure term simulates the force that comes from a difference in pressure. Lastly, the force term

adds external forces to the velocity field. This includes any other types of forces that are applied on the fluid,
such as the buoyancy force or the forces from wind.

The difference between Equation 3.1 and Equation 3.2 is the ¥V2u term, which describes the diffusion of the
fluid. Diffusion can be thought of as the thickness of the fluid, and the term adds an inertia to the movement,
or the velocities over the grid, which will slow down the movement of the fire [6]. The important factor in
the diffusion, as mentioned earlier, is the viscosity constant, which controls the “thickness” of the fire. In the
Euler equation, the viscosity is assumed as zero, which nullifies the term. This assumption will decrease the
physically correctness of the simulation, which implies that the Euler equation is a more approximate approach
than the Navier-Stokes equations [28].

3.2.2 Solving the Behaviour Equations

A solution using numerical integration provides a straightforward approach that solves the equations incre-
mentally [6]. However, the equations need to be transformed to be more suitable for a numerical solution.

Firstly, the V - u = 0 condition must be ensured for the velocity field after applying each component in the
velocity step [4]. This can be achieved by projecting the resulting velocity field onto its divergence free part.
This introduces the operator P which performs this projection.

The projection utilizes a mathematical result known as The Helmholtz-Hodge Decomposition. The theorem
shows that a vector field v with non-zero divergence can be decomposed in the form of Equation 3.3, where u
has a zero divergence and p is a scalar field. In this context, p represents the pressure field [4].

v=u+Vp (3.3)

The projection simply subtracts the gradient of the scalar field of v, resulting in the divergence free vector
field u as shown in Equation 3.4 [4], [6].

Pv)=u=v-Vp (3.4)

The missing piece of Equation 3.4 is to calculate Vp, which is done by utilizing the Helmholtz-Hodge decom-
position again. When multiplying both sides of Equation 3.3 with V, Equation 3.5 is achieved since V - u = 0.
This equation is also known as a Poisson equation for the pressure field p [4], [6].

V-v=V% (3.5)

When the projection is applied to Equation 3.3, the observation that P(Vp) = 0 can be made, since P(u) = u
as u is divergence free, and P(v) = u according to Equation 3.4 [4], [6]. Using this observation, the projection

can be applied to the Navier-Stokes equation, resulting in Equation 3.6. The P(Vp) term equals zero, while
du Ou

P(E) =25 as a consequence of u being divergence free.
g—? =P(—(u-V)u+ovViu+ f) (3.6)

Equation 3.6 is the algorithm that Jos Stam uses in his paper Stable Fluids to simulate a fluid [4], [6].

3.2.3 Advection

Advection is the flow of a quantity along the velocity field of the fluid. The velocity field itself is also advected,
and this self-advection is represented in the Navier-Stokes equations with the advection term. Computing the
advection is done by moving along the velocity field for each element in the grid. One of the easiest methods
for doing this is using Euler’s method, which works by moving the position, r, of a particle the distance it
would travel in the velocity field during a short time interval §t, see Equation 3.7 [6].

r(t + 6t) = r(t) + u(t)ot (3.7)

However, Euler’s method suffers from a drawback that the method cannot be used for large time steps. This
is due to the fact that the method can become unstable and produce results inconvenient for the simulation, if
the time step is larger than the size of a grid cell. In 1999, Jos Stam came up with another solution using an
implicit method [4]. To solve the equation, the problem can instead be inverted by tracing the particle back
in time to its previous position and use the values at that position for the grid cell at the start. The formula
for updating a quantity, ¢, using this method is done using Equation 3.8. The x in the equation is the position
of the particle [6].

q(x,t + 6t) = q(x — u(x,t)dt, t) (3.8)

3.2.4 Diffusion

The diffusion of a fluid represents the resistance of movement, how the velocity of the fluid is affected and
dissipated by its viscosity. Viscous diffusion can be represented by a partial differential equation [6]:

OJu 9

— =vV-u 3.9

ey (3.9)
The partial differential equation is solved using an approach similar to the one used in advection. Likewise,
using the explicit Euler method will result in an unstable simulation, hence why Stam’s implicit solution is
used for this part as well [6]:

(I —v6tVHu(z,t + 0t) = u(z,t) (3.10)

The I in Equation 3.10 is the identity matrix. This equation is a Poisson equation for the velocity of the fluid
that is solvable using an iterative method, applying Equation 3.11 for each cell in the grid [6]. The kinematic
viscosity used in the simulation is 18 * 1075m? /s, which is the kinematic viscosity of air at 60°C [29].

3.2.5 Solving the Poisson Equations

A Poisson equation is commonly recognized as a matrix equation, Ax = b, where A is a matrix, x is the
resulting vector while b is a vector of constants [6]. In the context of where the Poisson equations are used in
this thesis, the matrices are represented as the Laplacian operators V2.

An trivial technique to use when solving a Poisson equation is called Jacobi iteration, which is an iterative
solver technique [6]. The solver starts with some initial values for the resulting vector x and produces an
improved result for every iteration. The Jacobi equation is given in Equation 3.11, where k indicates the
iteration number while o and S are constants.

k k k k k k
oy Xt X XX e X ey
Y,z B .

The values of X, b, a and g differ depending on which context they are used in. When solving the pressure
equation (Equation 3.5), X represents the pressure p, b represents V - v while a = —(dx)? and 8 = 6. In the

—(92)” and 8 = 6a. [6]

diffusion context (Equation 3.10), both X and b represent u, while o =

The specific value 6 is used since it represents the number of neighboring grids considered. In this case, a
three-dimensional grid is used [2].

The consequences of using this non-exact solution when solving for the pressure is that the incompressibility-
constraint is not satisfied and thus the volume will not be preserved [2]. The visual artifacts of this are not as
noticeable in fire simulation as they would be in a water simulation [2]. But it is a compromise that must be
made due to the performance constraints of real time simulations.

3.2.6 Vorticity Confinement

Low viscosity fluids, such as the simulated fire consisting of heated air, often contains rotational flows called
vorticity, also known as curl [6]. The curl of a point in a vector field is a mathematical way of expressing
the rotation at that point as a vector [30]. When simulating dissipation numerically, there is a tendency for
the curl to get minimized and have less impact on the simulation. Vorticity confinement is a way to add the
rotational flows back into the fluid to preserve this otherwise lost behavior.

First, the vorticity w is computed for the velocity field using the curl operator.

w=Vxu (3.12)

The vorticity is then computed into a normalized vorticity field ®.

o=L n=Vlwl (3.13)

In]

The last step is to calculate the vorticity force to be added to the velocity field in order to approximate the
vorticity lost from dissipation.

fvorticity = 5(‘1’ X OJ)(SJ? (314)

Here ¢ is a customizable scale parameter to adjust the amount of force added and dx refers to the distance
between two grid elements in the vector field [6].

3.3 Wavelet Turbulence

To achieve a higher level of detail for temperature and smoke without also increasing the resolution of the
simulated velocity, a method called wavelet turbulence is used. This method takes a lower resolution velocity
grid and scales it up while keeping a high level of detail. To achieve this high level of detail, a noise function
is used to fill in the gaps in detail as the velocity field is scaled up.

Subsequent simulation steps will use the scaled-up velocity field during the advection step. With this, the
velocity step will be calculated on the lower resolution while the temperature and smoke fields will be calculated
on the higher resolution. If successful, this will overall decrease calculations as it reduces the size of calculations
during the velocity step [11].

3.3.1 Turbulence Noise

The main functionality behind wavelet turbulence is the use of a turbulence noise function. Turbulence noise
is similar to other noise functions, with the difference of it taking the absolute value for each octave. The noise
is used to fill in the missing high frequencies of the velocity grid once it has been scaled [11].

The noise functions in question is based on Perlin’s turbulence function. The turbulence function makes use
of the noise function already supplied by Perlin and applies the property of turbulence as previously described.
This is shown in Equation 3.15. Here ¢ denotes the band, x denotes the position and p denotes the noise
function [31].

imaz) 1 i—imin
> p(2'%)5 (3.15)

1=tmin

10

Figure 3.1: The first four slices of 3D turbulence noise with resolution 603

Visual result from the turbulence function in Equation 3.15 is shown in Figure 3.1. The turbulence function
returns a scalar whereas a vector value is required. To solve this, the turbulence function is applied three times
to be able to generate a three-dimensional vector. This derivation is shown in Equation 3.16, where p;, p2, p3
denotes the different turbulence fields [11].

p(x):(apl_@m 9ps _ op1 81?2_3193> (3.16)

By substituting p(x) with p(x) in Equation 3.15 the final noise function y(x) can be derived, as can be seen
in Equation 3.17.

Tmax 1 T —tmin

Yo = Y px); (3.17)

1=lmin

Figure 3.2: The first four slices of the final vector noise 8D with resolution 603. The grayscale represents the
length of the vector.

The noise can be visualized by taking the length of the vectors as shown in Figure 3.2. This method generates
noise everywhere in the velocity field. For an accurate simulation, the noise has to be weighted depending on
the lower resolution velocity. Otherwise there will be flows in the simulation where there should be none [11].

3.3.2 Kolmogorov Theory

The turbulence noise can be weighted by the velocities’ energy density. The energy density can be calculated
by taking the kinetic energy of the velocity, which is described in Equation 3.18.

(3.18)

This follows the general kinetic energy equation, E = vaQ with the exception of the mass being substituted

by the constant 1. This substitution is possible due to the gas being incompressible, hence the mass can be
assumed to be homogeneous throughout the simulation.

To inject the turbulence noise within the higher frequencies, the noise needs to be weighed with the energy
density in said frequency. This can be calculated by using the Kolmogorov theory, which states that the energy

11

spectrum of a turbulent fluid approaches a five-thirds power distribution [11]. This is shown by the recurrence
relation in Equation 3.19.

wlon
(SN

er(2k) = e (k)73, e(l)=Ce (3.19)
However, while this equation calculates the total energy density, a better approach would be to calculate the
energy density on a specific frequency cell. By having a function é(x,k) evaluate the energy density at a
certain frequency band and on a specific position, Equation 3.20 can be derived [11].

e(x,2k) = é(x, k)3, é(x,1)=Ce3 (3.20)

By using the energy to scale the turbulence, the noise can be expected to only be applied in the areas where
there is a higher velocity in a certain frequency band. This narrows down the noise from being globally applied
to only applied within energy dense grid cells [11].

3.3.3 Scattering

Since the turbulence noise is not recomputed, the noise will appear static when applied to the simulation.
Therefore, it would be of interest to use advection and advect the noise with the velocity flow. This could
easily be achieved by advecting the texture coordinates ¢ = (¢, ¢y, ¢,y) and then using these new coordinates
when accessing the noise [11].

The deviation of the new texture coordinate ultimately mirrors the physical phenomena called scattering.
Scattering occurs when a local eddy either breaks down to two smaller eddies known as front scattering, or
two local eddies combines to form a greater eddy called back scattering [11].

A problem with this arises when the new texture coordinates deviate too far from the original set of coordinates.
When deviation is too great, it has either front scattered or back scattered at which point the texture coordinate
should be regenerated. To detect when this is the case, a method to obtain the deviation has to be used [11].

To calculate the deviation, the deformation can be obtained by using the Jacobian of the texture coordinates.
The Jacobian represents the transformation of the texture coordinates as the partial derivation of the spatial
position. Once the Jacobian is obtained, the deviation can be quantified by its eigenvalues. If the eigenvalue
exceeds 2, the local eddy has front scattered and the texture coordinate should be regenerated. In the other
case if the eigenvalue subceed % then the local eddy back scattered and the texture coordinate should also
regenerate. The texture coordinate should otherwise stay the same [11].

3.3.4 Calculating the Eigenvalues

To calculate the eigenvalues of the Jacobian, an iterative method called the QR algorithm is used [32, p. 396].
The algorithm takes the advantage that a real matrix A with linearly independent columns can be decomposed
as an orthogonalized matrix @ and an upper triangular matrix R, which is known as the QR-decomposition
[32, p. 395]. By using the QR-decomposition, matrix A can be written as Ag = QoRp. The premise of the QR
algorithm is to iteratively multiply @ and R in the opposite order, resulting in a more orthogonalized version
of A after every iteration. This can be seen in Equation 3.21. After some iterations A converges, and the
eigenvalues of A are obtained by its diagonal.

Api1 = RiQp, (3.21)

The first step of using the QR algorithm on the Jacobian, is to assure that each column of the Jacobian is
linearly independent. This can be done by examining if the determinant of Jacobian is nonzero, which also
assures that the Jacobian is invertible [32, p. 94]. If the Jacobian is not invertible, it will be unusable in the
upcoming steps of Wavelet Turbulence. Hence, the Jacobian is provided with default eigenvalues outside the
span of % and 2, which regenerates the texture coordinates. Otherwise, if the Jacobian is invertible, the QR
algorithm may be used.

12

The decomposition of Jacobian is made by using the Gram—Schmidt orthogonalization, where @ and R can be
obtained as in Equation 3.22 and 3.23 respectively [32, p. 107]. Note, the Jacobian is rewritten as [j1, j2, j3]
to fit the approach.

Q =le1,e2,...,¢en]
e1 = a1/|j]
3.22
ea = fa/|fa], where fo = jo — (j2-e1)er (8:22)
en = f3/|fs], where f3 = a3 — (j3-e1)er — (43 - e3)es
R=QTQR=QTA (3.23)

The eigenvalues of Jacobian are obtained from the diagonal after iterating the QR-algorithm 20 times, which
is an arbitrary amount of iterations.

3.3.5 Texture Distortion

The advection of the texture coordinated distorts the noise by stretching and rotating. This has the possibility
of compressing the noise, which violates the incompressibility of the gas. To avoid this, the derivatives for the
Cartesian axes must be calculated. This is done by projecting the Cartesian axes to texture space and taking
the derivatives of the texture coordinates of the noise, as can be seen in Equation 3.24. Where J(c(x)) ™
denotes the inverse of the Jacobian of the coordinate textures [11].

9p 9p Op -1 _ |9pOpOp
[8cu Ocy 8cw] Jelx) ™ v vy val = Ox Oy 0z (3.24)

Applying this method with the noise function the function z(c) is derived that should be used to avoid texture
distortion [11].

3.3.6 Fluid Synthesis

Applying all the previous sections will forge a method for synthesizing the fluid from a lower resolution to a
higher resolution. This is the final step, which creates the high-resolution velocity as shown in Equation 3.25.
The method I(x,X) interpolates a value from the lower resolution field x to fit within the higher resolution.
U(X) is the resulting velocity in the higher resolution [11].

UX) = I(u,X) + 21 (é (x, g) ,X) 2 (I (¢, X)) (3.25)

The noise will be applied to frequencies between i,,;, = logan and i,,q0 = 1092%, where n is the length of the
smaller resolution and N is the length of the higher resolution. In the case of uneven dimensions, n can be
substituted with its minimum length and N substituted with its maximum length. The reason for this interval
is to fill in the detail between the lower and higher resolution frequencies [11].

3.4 Adding External Forces

The “force term” f is solved numerically same as the other terms (Equation 3.26).

q(z,t +) = q(x,t) + £AL (3.26)

In Equation 3.26 ¢ is the quantity being affected by the force.

13

3.4.1 Buoyancy Force

The temperature of a fluid is one of the depending factors affecting the density of it [33]. The basic principle
of density variations is that lower density substances "float” above higher density ones. This includes hot air
rising above cold air when heated by a fire. To model this type of behavior a force can be applied to the velocity
field. This is described as a buoyant force [2]. To implement buoyancy and keep track of the temperature state
of a fluid, a new scalar field T needs to be added.

fbuoyancy = U(T - TO)j (327)

The parameter o is a scaling factor for the buoyancy force, T is the temperature at a position and Tj is
the ambient temperature. The force is therefore applied to particles of the fluid where the temperature is
higher than the ambient temperature [6]. The vector j is determining the direction of the force applied. Since
the buoyancy force is meant to resist gravity, the vector has to point in the opposite direction, upwards,
perpendicular to the ground.

3.5 Simulation Step for Substances

Moving a general non-reactive substance, represented by a scalar value a, through a fluid adhere to a similar
process as the fluid who follows the Navier-Stokes equation [4]. The equation for the evolution of these scalar
values is depicted in Equation 3.28[4].

Oa

5= —(u-V)a+ k,V3a — aga+ S, (3.28)
Equation 3.28 shares the components of a advection term (—u - Va), diffusion term (k,V?) and a force term
(S,) with the Navier-Stokes equation [4]. But in addition, this equation contain a dissipation term —a,a where
oy is the dissipation rate and is solved numerically, as depicted in Equation 3.29[4].

a(zx,t)

(3.29)

If the fluid simulation is based on the Euler equations and not the Navier-Stokes equations, the diffusion term
(ko V?) would be discarded.

3.5.1 Density Step

The density of the smoke has no dissipation [1], this leads to Equation 3.30, describing a density moving
through a velocity field [34].

% _

i —(u-V)p+rVip+S (3.30)

To solve Equation 3.30, look at the following sections for more details: Section 3.2.3 for the advection term,
Section 3.2.4 for the diffusion and 3.4 for the “force term”.

3.5.2 Temperature Step

Temperature dissipates heat through the process of thermal radiation (black-body radiation in this case) giving

rise to the fires distinct color (see Section 3.7 for more detail). The dissipation term differs from the one depicted
T - Tair 4

—)t ¢er

. . . . Amaz — Tair

is the cooling constant, T is the temperature of the fire, T,;, is the temperature of the environment and T},qz

in Equation 3.28, this one is derived from the conservation of energy and is as follows —cr(

14

is the maximum temperature the fire can reach. The complete equation for the temperature step is portrayed
in Equation 3.31.

T— Tair

oT
= 7('& . V)T —+ K/VQT — CT(m

= = A+ S (3.31)

Solving for the dissipation term is done with analytical integration (Equation 3.32) [1].

T(l’, t) — Tair

T(x,t+dt) = —cp(T T

)t (3.32)

See the relevant Sections 3.2.4, 3.2.3 and 3.4 for solving the remaining terms.

3.6 Boundary Condition

Differential equations defined on a finite domain requires boundary conditions to be well posed [6]. A well-
posed differential equation is one that has a solution, the solution is uniquely defined and the equation’s
solution is not discontinuous [35]. For the simulation’s initial conditions, it is assumed that the velocity and
pressure are zero. As the fluid evolves with each time step the pure Neumann boundary condition is applied
to the pressure and the no-slip condition to the velocity.

The Poisson-pressure equation described in Section 3.2.5 requires pure Neumann boundary conditions for a
correct solution [6]. The definition of the condition is shown in Equation 3.33 and is interpreted as the rate of
change of pressure in the direction normal to the boundary is zero [6].

Ip
X0 3.33
o (3.33)
The no-slip condition for the velocity assumes that nothing can flow outside of the simulation grid, essentially
treating it as being inside a box. The no-slip condition is thus defined as that the velocity goes to zero at the
boundaries [6].

Because of the performance constraints in real time simulation, both conditions are approximated to be the
average of two cells adjacent to any edge satisfying the boundary condition [6].

Equation 3.34 shows these conditions applied to one side of a two-dimensional case.

no-slip: w =0 for j € [0, N],
(3.34)

Pure Neumann: w =0 for j € [0, N].
x

This approximation of the pure Neumann boundary condition is easily solved by setting the boundary value
to the one just inside the boundary. The same is done for the no-slip condition except the negative value of
the cell just inside the boundary is used.

3.7 Calculating the Color of the Fire

In this section, a physically based method for calculating the color of the fire simulation is being described.
This process is the one outlined by Nguyen et al. in the paper “Physically Based Modeling and Animation
of Fire” [1]. The methods described in Section 3.7.1 and 3.7.2 are performed during volume ray casting (see
Section 3.9), while the methods in Section 3.7.3 and 3.7.4 are performed as post-processing effects.

15

3.7.1 Black-body Radiation

A participating medium can be described by its properties to scatter, absorb and emit light. Fire is one example
of a participating medium that is also a black-body radiator, meaning that no scattering of light occurs [1].
While scattering do occur in the smoke produced by the fire, it is not included in the model described below.
For black-body radiation, light transport in a participating media is described by Equation 3.35 [1].

(& - V)La(z, @) = —04(2) L (2, @) + 0a(z) Lex(z),

Ot = 0gq.

(3.35)

Ly is the spectral radiance, o; is the extinction coefficient and o, the absorption coefficient. L. the emitted
spectral radiance in Equation 3.35 is Planck’s formula and \ is the wavelength of the light.

2C
Le,A(x) =)\5(6(}2/AT) -1

Cy ~ 3.7418 x 10~ 15Wm?
Cy ~ 1.4388 x 10 ?mK

(3.36)

Planck’s formula where T is the temperature at the position = [1].

The light transport function (Equation 3.35) is continuous and thus for the use case of real time simulation
estimated through discretization. A ray of light is seen as multiple short segments, where the terminating ray
segment is calculated in accordance to Equation 3.37 [1].

Ly(z) = e 7 L1y A (7 4+ Az) + 04 Le 5 (v) Az (3.37)

L(n—1), is the spectral radiance of the previous line segment and Ax is the length of the line segment.

This calculation needs to be done for multiple samples across the visible wavelength spectrum to approximate
the full spectral distribution of the emitted radiance coming from the fire.

3.7.2 Converting Radiance to CIE XYZ Color-space

The human vision is trichromatic because the eyes have three different types of cone cells, responsible for color
vision. The cones respond to radiant energy by sending out a certain nerve signal depending on the received
wavelength of the light. The three cones have different response curves allowing humans to detect different
colors. The Commission Internationale de 1'Eclairage (CIE). CIE have also standardized the conversion of
spectral radiance to the CIE XYZ color space seen in Equation 3.38 [36].

X = [LNZ(\)dA,

Y = [L(\)g(\)dA, (3.38)

7= /L()\)Z(A)dA.

In Equation 3.38 X is the wavelength, L(A) is the spectral radiance and Z()\), §(A),Z(\) are the spectra curves
known as standard observer or color matching functions.

The color matching functions are standardized as tabular values, but analytic approximations may also be
used. The analytic approximations in Equation 3.39 exhibit less error than the experimental measurements

16

used to generate the standardized curves [36], thus the physically accuracy is not compromised by relying on
these approximations.

1 A—595.8 1 A—446.8
731 (\) = 1. —5(F5533) 0. ~3(q9ax
Z51(A) = 1065 exp(— 5 (—5355—)") + 0.366 exp(— 5 (—77—)");
1, In(\) — In(556.3
G (V) = L0 exp(— & (1Y)~ In(556.3)) .

2 0.075

231 (V) = 1.839 exp(— L (MA) — In(449.8)

2
2 0.051))-

The conversion of spectral radiance to the CIE XYZ color space through Equation 3.38 involves integrals and
solving this analytically is too demanding in the use case of real time simulation. For this reason, the integral
approximations in Equation 3.40 is used instead.

X =Y LN)Z(N)AN,
Y =3 LGN)AN, (3.40)
Z =Y " L(\)Z\)AN

<

For L()\) in Equation 3.40, the spectral radiance approximation from Equation 3.37 is used.

3.7.3 Chromatic Adaptation

Human color vision comes from three types of cone cells. The cones respond to different wavelength to a varying
degree. One of the cones is responsive to most of the long-wavelengths, another for the middle-wavelengths
and the third for the short-wavelengths. The cones are therefore understandable referred to as LMS [37]. The
LMS color space is a mapping of the responses of the three cones to different wavelengths, where the maximum
response of a cone often is normalized to the value 1 while the value 0 corresponds to no response (See Figure
3.3).

1.0

0.8

0.6

0.4

0.2

0

400 450 500 350 o0k 650 700
Figure 3.3: Normalized responsivity spectra for L, M and S cone cell. From [38]. CC BY-SA 3.0

Chromatic adaptation is the cones ability to adapt to different colored illumination in order to approximately
preserve the appearance of object colors [37]. Fairchild also describes von Kries’ idea that lay the foundation
of modern chromatic adaptation models, that each of the cones adapt independently from one and another.

17

This idea is also described in Equation 3.41.

La = kLLa
M, = ks M, (3.41)
Se = kgS.

In Equation 3.41 L, M and S are the initial cone responses. kr, ks and kg are the separate scalar values for
each cone. L,,M, and S, are the post-adaptation cone signals [37]. For a fire simulation the eyes must adapt
to the color of the spectrum with the maximum temperature [1]. This corresponds to the following cone scalar
values depicted in Equation 3.42.

kL =]-/Lma:va
kM =]-/Mma:m (342)
kS = I/Smuw~

The chromatic adaptation transform (CAT) uses the LMS color space but the previous step described in
Section 3.7.2 uses the CIE XYZ color space. Therefore, a transform from XYZ to the LMS color space is done
using the MCATO02 matrix transformation (Equation 3.43).

0.4002 0.7076 —0.0808
Mcaro2 = |—0.2263 1.1653 0.0457 (3.43)
0.0 0.0 0.9182

This Matrix (Equation 3.43) is multiplied with XYZ tristimulus values to get the LMS cone responses. The
inverse of this matrix thus describes the conversation of LMS cone responses to XYZ tristimulus values. The
complete chromatic adaptation transform is described in Equation 3.44.

X, 1/Lomax 0 0 X,
Y, | =M1 0 1/Mpaz 0 MY, (3.44)
Za 0 0 1/Smaz ZT

X, Y, and Z, are the raw XYZ tristimulus values, X,, Y, and Z, are the post-adaptation tristimulus values,
M is the matrix depicted in Equation 3.43. Note that the LMS values are transformed back to the XYZ color
space due to its versatility to work with and the 3x3 matrix is equivalent to Equation 3.41 with the cone scalar
values depicted in Equation 3.42.

3.7.4 sRGB Conversion and Gamma Correction

The XYZ tristimulus values need to be converted to a format the screen can understand and display with
the expected colors. The sRGB color space is one example and the conversion is done through a matrix
multiplication (Equation 3.45) [39].

Rsrep 3.2410 —1.5374 —-0.4986| (X
Gsrap| = |—0.9692 1.8760 0.0416 Y (3.45)
BsreB 0.0556 —0.2040 1.0570 Z

18

But the sRGB tristimulus values need to be transformed to nonlinear values. This is called gamma correction
and the reason behind this is that monitors display colors nonlinear and thus need to be compensated to get
the desired linear relationship.

If RsraB, GsraB, Bsrap < 0.00304 :
“rGB = 12.95 X ReraB,
Girap = 12.95 X GsraB,
B;RGB =12.95 X BsraB-

(3.46)
else if RiraB, GsRGB7 Bsrap > 0.00304 :

' nop = 1.055 x RMZL 0,055,

Gl pop = 1.055 x G20 — 0,055,

Blrap = 1.055 x Bljzh, — 0.055.

Equation 3.46 describe the algorithm for the gamma correction [39].

3.8 Using the Fire as a Light Source

Getting the correct color of the fire is important for physical realism. But one other important aspect for
physical realism is how the fire interact with its surrounding environment. Fire emits light in all directions
and thus affect the perceived color of nearby objects, because they reflect the light from the fire. Calculating
the color of the reflected light is done by firstly calculating color of the incoming light. This can be done by
treating every voxel in the fire simulation as a separate point light source [2]. The emitted light color coming
from a voxel is calculated as described in Section 3.7 and the color of the incoming light is the summation of
all the voxels emitted light color.

3.8.1 Phong Reflectance Model

The Phong reflectance model calculates the reflected color of an object, the model has historically been widely
used in computer graphics [40]. The phong model is designed based on empirical observations [40]. A physically
based model would have been preferred instead. Phong reflectance model is depicted in Equation 3.47, it is
an linear combination of ambient (I,), diffuse (I4), and specular (I5) light. Specular light never enters the
surface of an object and have instead been directly reflected by the object. On the contrast diffuse light have
first entered the surface of the object before being reflected [40].

I =ky+ kqlgmaz(N - L,0) + ksIs(maz(V - R,0))" (3.47)

ka, kq and ks in Equation 3.47 are scalar values for controlling the relative contribution of the ambient, diffuse,
and specular light. N is the surface normal, L is the direction of the incoming light and R the direction of
the reflected light. R can be calculated as R = 2N (N - L) — L [40]. n is the shininess of the object, a perfect
reflector would have a value of oo [40].

3.9 Volumetric Rendering

Conventionally GPU accelerated rendering of objects are done with meshes constructed out of triangle prim-
itives. However, the data generated for visualization by the fluid simulation consist out of three-dimensional
grids (the temperature and density grid). Techniques for producing two-dimensional images from these vol-
umetric data sets whiteout explicitly extracting geometric surfaces from the data is called direct volume
rendering [41].

19

3.9.1 Volume Ray Casting

Ray casting is a direct volume rendering method where a light ray is sent for every pixel and then traversed
through the volume, gathering a number of samples along its path. Each light ray is either absorbed, emitted
or scattered. The emission is generated from the black body generation that depends on the temperature,
which in turn gives the color. This process is described in Section 3.7.1 and 3.7.2.

The alpha value itself is obtained from the density value of each sample along the ray. The alpha value is
calculated for each sample throughout the volume by the over operation in Equation 3.48.

A=1- ﬁ(l—Aj) (3.48)

The number of samples depend on the occasion, but it should generally be close to the resolution of the
volumetric texture.

Figure 3.4: Ezample result of volume ray-casting

20

4 Implementation

This chapter is dedicated to describing how the application was built and how certain tools were used to
contribute to the development process. The implementation is primarily based on the physical models presented
in the theory chapter. These models were used to make a physically based approximation in accordance to
the goals of the project.

4.1 Android

The mobile operating system Android was chosen as the main development platform due to its widespread
availability on mobile devices, as well as possessing a wide variety of development tools and guides [42]. The
Android application was written in the Java programming language through the Android Software Development
Kit (SDK), which is the most common way of developing Android applications. The Android Studio IDE was
selected for the project because of its availability on multiple desktop operating systems and being the standard
development environment for Android development.

The application itself was built upon the standard fundamentals provided by the Android SDK tools [43]. One
of the main components used was a so-called activity, which represents a screen with a user interface [43]. The
activity component was required for creating an application entry point and initialize the renderer used by the
OpenGL ES graphics API. It was also responsible for loading the native libraries used in the project.

Android offered a Native Development Kit (NDK) toolset for developing applications through native code
such as C and C++, which was highly preferable when developing an application with a high-performance
demand [44]. The fact that Android is built upon Java also include the virtual machine that Java is built on
[45]. The choice of running a virtual machine impacts performance on Android [46], which was the primary
reason for why the NDK was used over the default Java-based SDK when programming the simulation. The
NDK was used in combination with the OpenGL ES graphics API in order to communicate with and perform
computations using the GPU.

To run the application, either an Android emulator or a physical Android device could be used. Because of
the emulator’s wide range of capabilities [15], it was a suitable tool for running and debugging the application.

4.2 Modelling the Simulation

The simulation was primarily based on the Navier-Stokes equations for incompressible flow; what parts they
consist of and how the differential equations were solved numerically. The problem-solving process had to be
modelled in a graphics programming context in order to use the GPU in the simulation process.

The fields that represent the state of fluid, such as the velocity vector field, had to be modelled into appropriate
data structures on the GPU. For this, 3D textures were used as they can both represent scalar and velocity
fields. Each texel, or texture element, consists of color values, a value for each red, green and blue channel,
and a value for the alpha channel. These channels were used to input values for a scalar or a vector. A texture
is then made up of multiple texels, where each texel is representing the state of a field at a specific position.
Multiple 3D textures, one for each field, were then used to represent the state of a three-dimensional fluid.

The simulation was performed through the graphics pipeline of OpenGL ES, which involved creating custom
vertex shaders and fragment shaders. The OpenGL ES 3.1 specification contains a number of programmable
stages that are customizable [47]. The ones most commonly used are vertex shaders, used for handling vertex
points and data associated with them, and fragment shaders that are run for each pixel of a primitive that has
been rasterized to the screen. Shaders can be summarized as programs running on the GPU and the different
shaders handle different areas of the graphics rendering. The various parts of the equations, such as the
advection, projection and external forces, were modeled into separate shaders that handled the corresponding
part of the simulation. Shader programs, i.e. a collection of shaders, can be enabled or disabled by calling
certain OpenGL functions and selecting between any compiled shader program. This explains how the different
pairs of shaders for the simulation steps were executed and combined into a full simulation.

21

4.3 OpenGL ES

OpenGL is a low-level graphics API. OpenGL ES (sometimes shortened as GLES) is a differing version of
OpenGL designed for embedded and mobile systems. While OpenGL and OpenGL ES have been equal for
the projects purposes for the most part, versioning and available features may vary between the two versions.
One such difference that became relevant for this project is which texture formats that can be counted as
color-renderable. If a texture format is classified as color-renderable, then that texture format may be used
for a texture that is rendered to through a framebuffer. As a framebuffer is used here in order to update fields
during simulation, the texture format used to define the fields need to be color-renderable in order to work
within the simulation. In the simulation, field values were stored as floats, which is not guaranteed to be color-
renderable in GLES 3.1. Instead, GLES could check for if the specific implementation includes the extension
"EXT__color_buffer_ float”, which if present, would guarantee that some floating-point texture formats would
be color-renderable. While this additional condition reduces the applicability of this implementation, it is a
fair trade to the alternative of creating a more complex implementation where units are transformed between
floating-point values and a different, color-renderable format.

4.4 Utilizing the GPU

Simulating a fire, and computer graphics in general, can benefit a lot from parallelism, and therefore it is
suitable to use the GPU in parts of the project. The reason behind this is that the GPU is better suited for
problems that include a lot of parallelism [6].

A GPU is designed and optimized for calculations regarding graphics. The main difference between a CPU and
a GPU is that a GPU usually runs at slower clock speeds but has a higher amount of threads and is intended
for SIMD calculations, i.e. the GPU executes the same instruction set for multiple sets of data [48], [49]. This
resembles the working principle of the simulation, where the same calculations are applied to multiple points
in a three-dimensional grid. Executing the calculations on the GPU, rather than the CPU, is therefore an
important factor when performance is critical.

4.4.1 GPUs Impact on Complexity

As described in Section 1.1.2 the complexity of a fluid simulation is O(n?®) [4]. This is the case when the
simulation is done on a three-dimensional grid with the size n of all the three the dimension. However, the
GPU reduces this complexity through parallelization, because of our implementation of using the graphics
pipeline, the three-dimensional textures storing the data is divided into slices of two-dimensional texture.
Each one of slices can be run fully in parallel (assuming the GPU have enough threads) and thus reduces the
complexity to linear time, O(n), where n is the number of slices.

This could be improved upon by moving to an implementation based on a General-purpose GPU (GPGPU)
pipeline over the GPU graphics pipeline. The General-purpose GPU pipeline is not limited to work one “slice”
at the time, but instead can theoretically work on all the grids voxels in parallel. For this implementation
in OpenGL ES, a compute shader would be used in replacement of the fragment and vertex shader. This
approach could theoretically bring down the complexity to constant time, O(1), assuming again there are
enough threads available.

22

5 Process

This chapter will cover the overall process of developing the simulation. Different iterations and added features
of the software are shown here, in addition to the group dynamic and experiences from the workflow.

5.1 Start of Project

The majority of the authors of this thesis had no prior experience with computer graphics, as a remedy, the
project started with each group member performing a couple of basic exercises in OpenGL ES to get a better
overall grasp of how to use some of the functionality it provides. The first such exercise was simply to render
a triangle or a quad primitive to the screen. This exercise covered the basics of entering vertex data and using
shaders. Another exercise performed further on was to calculate a new grid value for each grid element by
summing all neighbors’ values. The underlying reason for this exercise was to learn to access neighboring grid
elements, since this would be a common operation used in most shaders of the simulation.

In the beginning of the project, an UML diagram was created, see Figure 5.1, to get a visual overview of the
classes involved in the simulation. The diagram was created before any code had been written and the features
to be added had not been determined either. The purpose of the diagram was to act as an entry point for
designing the structure of the software.

23

. - zinterfaces
Activity GLSurfaceView GLSurfaceView.Renderer
&
FireRenderer
MainActivity FireView onDrawFrame(); void
fire; FireView renderer; FireRenderer onSurfaceCreated(); void
onCreate(Bundie); void » init(); void » onSurfaceChanged(int, int); void
Qutput As Label - update(); void
- init{int int); void
- getClock(); double
A 4 |
SettingsFragment i
*values E
- turnOn(); void i
- turnOffy); void |
v
FireRenderer
Simulation * MVP arrays
1--- | Step(); void < inftgint, int): void
update(); void
: volumetricRendering(); void
| v | ¥ |
«Vertex Shaders E | «Vertex Shaders E |
! simulation.glsl ! volumetric.glsl !
5 x i x 5
E i v)
o y| «Fragment Shader»@ «Fragment Shader»@ _____ 5| «Fragment Shader»@
fluid.glsl frontface.glsl backface.glsl
A
Screen

Figure 5.1: UML diagram showing an estimated set of classes that would be used in development of the
simulation.

The development advanced by converting theoretical knowledge from reading papers into usable code run in the
simulation. Since the implementation was based on approximated mathematical solutions to the differential
equations posed in the Navier-Stokes equations, it was difficult to perform unit tests and make sure that every
part of the simulation was working correctly. At this stage, the goal was to create a simple representation of
the fire in order to receive visual feedback from the simulation and have a foundation to further build upon.
After some time, visual results started to represent the looks and behavior of fire, which can be seen in Figure

24

5.2. These representations were used as the foundations for the rest of the project.

5.2 Previous Results

During development, screenshots were taken at multiple stages and for different versions of the fire simulation.
The major feature additions are shown here and their impact on the simulation.

5.2.1 First Visual Results

The first visual results, visible in Figure 5.2, were created by combining the mathematical translation of the
equations with some experimentation. The results are quite similar in appearance but with smaller differences
in color and shape of flames, mainly due to each version being built upon mostly the same mathematical
implementation.

;

Figure 5.2: Four different versions that were used as a foundation for the development of the simulation.

5.2.2 Vorticity

Before vorticity was added, the flames of the fire rose upwards in a constant stream. As mentioned in Chapter
3, the approach used when simulating the fire dissipates rotational flows that are lost when simulating. When
vorticity confinement was added the fire seemed more random and introduced a noticeable amount of turbulence
in the fluid, that is slightly visible in Figure 5.3.

Figure 5.3: Appearance of the fire after vorticity was added.

5.2.3 Wavelet Turbulence

Adding wavelet turbulence into the simulation made it possible to use a higher level of detail for the temperature
and density, resulting in a more detailed fire animation. Comparing the images for wavelet turbulence, from
Figure 5.4, 5.5 and 5.6, with the first visual results, makes it clearer to see the added detail to the simulation.

At

Figure 5.4: The first basic implementation of wavelet turbulence.

Figure 5.5: Wavelet turbulence combined with better coloring and vorticity.

26

>

Figure 5.6: Wawvelet turbulence, same as Figure 5.5 but with added smoke.

5.2.4 Black-body Radiation

Black-body radiation was introduced to mimic the visual property of a hot fluid illuminating the smoke of the

all

Figure 5.7: Illuminated effect of the smoke after implementing black-body radiation for an early basic version
of the simulation.

27

Figure 5.8: Posterior version of blackbody radiation with later features added.

5.3 Added Features

The following sections display features that were implemented as an addition to the project to increase the
interactivity and notion of realism of the fire.

5.3.1 Touch Interaction

The addition of touch interaction allowed for interacting with the fire by adding a directed force to it. The
force direction corresponds to the direction of the user’s swipe, dragging a finger across the touch screen. These
effects are visible in Figure 5.9, where the visual response can be seen to a user swiping in various directions.
This was simply done by adding the swipe as an external force to the velocity step mentioned in Section 3.2.1.

Figure 5.9: Visual response after adding touch interaction to the fire simulation. The small dot in the picture
resembles the touch interaction.

5.3.2 Light Reflective Walls

Light reflective walls were added to make the simulation more visually appealing and to make the fire look
more alive by having it interact with its environment. The result can be seen in Figure 5.10. Unfortunately,
due to time constraints the implementation is not complete, for example the incoming light is only calculated
for one wall, but all three of the walls in Figure 5.10 use this result for their reflection.

28

Figure 5.10: Fire simulation with light reflective walls.

5.4 Workflow

Approaching the task of simulating a fire on a handheld device, two internal groups were formed; one focusing
on the simulation aspect, and one focusing on rendering. Between these, the group was split under the ratio
4:2.

Meetings played a big role in communicating with other group members, distributing tasks and planning future
work. Supervisor meetings were held once at the beginning of every week, so that feedback could be received
based on the previous week’s work. Regular group meetings were held twice a week, where each meeting
followed a premade meeting template that contained sections for last meeting topics, what has been done,
what went well/bad, among other things. Each meeting protocol was documented and saved to simplify the
process of recalling earlier meeting decisions and discussions. A work session usually followed each meeting,
where the group members could continue working on parts decided during the meeting. This was also a chance
to collaborate with other group members more efficiently, as most of the time was spent working from home.

The workflow was inspired by agile methods such as Scrum. Before development had begun, weeks for each
sprint were planned in advance where each sprint duration was roughly two weeks. The agile iterative principles
were followed in meetings, going over what had been accomplished retrospectively and planning what should
be completed in the upcoming sprint. The tool Trello was used when creating tasks, putting them into either a
backlog or sprint task column. In Trello, tasks were assigned to various group members and moved to different
columns like "testing” or "done” depending on the progress of the task. Moreover, each task’s completion time
was estimated in order to approximate the workload.

Code for the software was managed using Git and GitHub. The master branch was intended for stable
versions with complete features most of the time. New features were developed on separate branches that were
branched out from the master branch. Completed features were then integrated by submitting a pull request
and assigning a reviewer to review and accept the change. In most cases, the reviewer was a group member
responsible for code submissions in either the internal simulation or rendering group.

29

6 Results

6.1 Overview of our Application

com.pbf java

FireView
view . listener
FireActivity <>—1 4 FireView(Context) 1 FireListener
4% onCreate(Bundle): void T £ taskQueue: Queue<Runnable
\I. i lrenderey {#; onTouch(View, MotionEvent): Boolean
i FireRenderer

4} onClick{View): void
1 | ELtaskQueue: Queue<Runnable> -
\

-

=
| | @ onDrawFrame(GL10): void Pte
\ z -~
1 7 =
\l ¥, ’/’
fire C++ \ / el
v 7 -
1 ’ -
'} 4 e rendering
Fire =
@init)): Integer E— RayRenderer
{# resize(Integer, Integer): void - [l back_FBO: Framebutfer
4} update(): void ’—renda'er #init): Intager rayRenderer | = front_FBO: Framebuffer
resize(Integer, Integer): void
4 touch(Real, Real): vold il # (g. ' g.)_ 1| 4 init(): Integer
& onClick(): void 4 update(GLuint, GLuint, ivec3): vaid v ’ : d
: resize(Integer, Integer): voi
J 4 touch(Real, Real): void &, W, ger)

4 step(GLuint, GLuint, ivec3): void

&} touch(Real, Real): void
simulation

1 | simulator
Simulator SimulationOperations
El settings: Settings 4 init(SlabOperation, Settings): Integer
[l smokeDensity: DataTexturePair {#; changeSettings(Settings): Integer
5l temperature: DataTexturePair
=l lowerVelocity: DataTexturePair
1 higherVelocity: DataTexturePair

4

i {} buoyancy(DataTexturePair, DataTexturePair, Real, Real): void
operations
i {#; advect(DataTexturePair, DataTexturePair, Boolean, Real): void

1 4} heatDissipation(DataTexturePair, Real): void
Finit(Settings): Integer SlabOperation {ﬁ;addScurce[Da[aTex[ureF.‘alr‘ GLuint, Saur.ceMode‘ Real): void
{ changeSettings(Settings): Integer slab - {#; dissipate(DataTexturePair, Real, Real): void
3 update(GLuint, GLuint, ivec3): void 1 | ELFBQ: SimpleFramebutior 1 {# diffuse(DataTexturePair, Resolution, Integer, Real, Real): void

4 init(): void TO {#; project{DataTexturePair, Integer): void
1 Ywavme[;&. :rén:(;eur _\Lold i createVorticity(DataTexturePair, Real, Real): void
% finish(): voi
WaveletTurbulence

{3 addwind(DataTexturePair, Real, Real, Real): void
4 fullOperation(Shader, DataTexturePair): void

4} init(SlabOperation, Settings): Integer <>—l & interiorOperation(Shader, DataTexturePair, Integer): void
{f; changeSettings(Settings): Integer 4 copy(DataTexturePair, GLuint): void
{#; waveletStep(...): void

Figure 6.1: An UML-diagram showcasing the most important parts of the resulting application

Our finished application is written over three different languages; Java, C++ and GLSL. The Java portion
of the application acts as an intermediary step between the Android system and the animation application,
which primarily exists in the C++ portion. It is in the Java class FireActivity which the application is being

created and initialized, while FireListener and FireRenderer is forwarding processed user input and render
updates respectively to the C++ portion.

This C++ portion of the application is primarily divided among three packages; rendering, simulation and util.
Among the important classes in the util package are the data texture pair, framebuffer and shader. The data
texture pair is a construct consisting of a data texture, a result texture, together with some helper functions.
As nearly all operations consist of a texture being updated based on the previous data of the texture, the data
texture pair is used to provide an intermediary texture for the updated data from an operation that shares the
same texture settings as the original data. This, while also offering a simple and isolated way of switching out
the data texture with the result, is why this object is used for data fields such as velocity, temperature and so
on. As operations are written as GLSL shaders, we're using a shader class to both compile and load a shader
program based on the location of the shader files, but also as a container for the shader program reference.
The framebuffer class is a helper implementation of an OpenGL framebuffer, complete with a texture and a
renderbuffer, which used as part of the ray tracing of the rendering portion of the application.

30

The simulation is built upon three layers. The first layer, which is in the simulator class, holds the overview
of the simulation. It keeps track of the velocity, temperature, and density textures, and it defines which
operators that are used during the simulation of each of these fields. The second layer consists primarily
of the simulation operations class, but also the wavelet turbulence class. These classes define all individual
operations, and passes the data needed by these operations to OpenGL. The code for the operations themselves
is coded in GLSL and are stored separately from the C++ code. The third layer is the slab operation class,
which handles those parts that are common between operations. This consists of performing the actual render
operation, which has to be done for each texture layer individually. It also maintains the border of the fields
that need it. As for the rendering portion, it became small enough to be contained solely in the ray renderer
class.

In the simulation, three different types of sizes are defined. The first size type is called simulation size, which is
the physical size of the simulation space. While the simulation size is noted to be measured in meters, specific
units are used rather loosely throughout the simulation. The important part is that it is defined independently
from the resolution of the textures, such that both the simulation size and the resolution can be changed
without affecting the other. As for the two resolution sizes, the lower resolution is used for simulating the
velocity, with a higher resolution for most other fields. With this difference in resolutions, wavelet turbulence
could be used as a method to scale up the velocity to then be used during advection of the other substances.

6.2 Performance and Visuals

We performed different tests according to Section 2.5 to find out how the simulation performs, and how the
resulting fire looks when using different resolution sizes. The following sections describe the major performances
with the different approaches explained in Chapter 3. For each test, arbitrary samples are chosen to get an
overview how the grid resolution affects the different aspects of simulation.

6.2.1 Resolution

The resolution plays a big part of the performance, since the simulation perform its calculation per grid cell.
So, we performed two tests to see if the height of the grid did affect the overall performance of the simulation,
and how the result looked. The different resolutions and their visuals that we tested can be seen in Appendix
A.

The graphs in Figure 6.2 and Figure 6.3 shows how the resolution size correlates to aspects such as time per
frame and memory usage, and the data we gathered for the graphs can be found in Appendix A. Our results
from this test shows that the correlation between the time it takes to render a frame in the simulation, as
well as the memory usage is directly dependent on the resolution size. The result, which we can be seen in
Appendix A, also showed that the CPU utilization remained at 10% throughout all tested resolutions for both
grid size ratios, implying that the CPU is unaffected by the grid sizes. An interesting observation is that
the height scaling ratio of 1x2x1 and 1x4x1 perform fairly similar for low resolutions, and the ratio of 1x4x1
rendered frames faster than the ratio 1x2x1 initially.

31

== Grid Size Ratio 1x2x1 == Grid Size Ratio 1x4x1

125
& 100
E
@
5
ot 75
@
[=1
=l
= 50
=
[=2
@
o
E 25
E
0
10 20 30 40 50 60 70

Resolution Scale

Figure 6.2: Graphing how grid resolution affects the time required to render a frame of the simulation. The
total grid size is achieved by multiplying resolution scale with grid size ratio

== (Grid Size Ratio 1x2x1 == Grid Size Ratio 1x4x1

125
100
o
= 75
@
=]
]
o}
B 50
=]
1=
@
=
25
0
10 20 30 40 50 60 70

Resolution Scale

Figure 6.3: Graphing how grid resolution affects the memory usage of the simulation. The total grid size is
achieved by multiplying resolution scale with grid size ratio

From a visual aspect, the lower resolution had a lot of motion but became more fixed as the resolution increased.
This implies that the chaotic behavior decreased as the resolution became higher.

6.2.2 Navier-Stokes vs Euler

In Section 3.2.1, we presented two approaches for simulating the behavior of a fluid. The first approach
consisted of solving the Euler equation for an incompressible fluid, whilst the other approach consisted of
solving the Navier-Stokes equations. The performance of the two approaches can be seen in Figure 6.4 and
Figure 6.5, where the performance is plotted in comparison to each other. The data for each approach can be
found in Appendix A and Appendix B, where A presents the Euler approach and B represents the Navier-Stokes
approach.

32

== Mavier-Stokes == Euler

300

200

100

Time Required per Frame (ms)

10 20 30 40 50 60 70

Resolution Scale

Figure 6.4: Graphing the performance of the Fuler simulation approach and Navier-Stokes simulation approach
in regards of time per frame when using a grid scale ratio of 1x4x1

== [Mavier-Stokes == Euler

100

75

50

Memary usage (MB)

25

10 20 30 40 50 60 70

Resolution Scale

Figure 6.5: Graphing the performance of the Fuler simulation approach and Navier-Stokes simulation approach
in regards of memory usage when using a grid scale ratio of 1x4xl

Our results from this test shows that the Euler approach is rendering the frames quicker than the Navier-Stokes
approach, while both memory usage and CPU utilization are equal. The difference in the visual results from
each approach is minor in respect to the visuals displayed in Appendix A and Appendix B.

6.2.3 Emitters

We tested four different types of shapes to see if the shape of the source affected the overall performance
and/or the visualization of the simulation. When we tested on a grid resolution of 32x122x32, all shapes had
the same calculation time per frame and CPU utilization. The memory usage did differ by 1.5 MB, where
the sphere and the cylinder demanded more memory. Despite the memory difference, the shape of the emitter
did not affect the overall performance of the simulation. Figures 6.6, 6.7, 6.8, and 6.9 show the visuals of the
shapes we tested.

33

|

-5 - - -5 - - - - - -4 - - - |
Figure 6.6: Cube rotating 22,5 degrees with every picture

- -5 - - -5 - - - - - -/ - - - |
Figure 6.7: Sphere rotating 22,5 degrees with every picture

- - Jf$ - - - J - - - J - -5 - - |
Figure 6.8: Pyramid rotating 22,5 degrees with every picture

34

2R

/ L

-5 - - -5 - - - - - -4 - - - |
Figure 6.9: Cylinder rotating 22,5 degrees with every picture

6.2.4 Wavelet Turbulence

We used wavelet turbulence to optimize the performance for the fire while still maintaining high detail. In
Figure 6.10, 6.11 and 6.12, we see the difference in performance between the original simulation with a 1x4x1
ratio and wavelet with the same simulation with a 1x4x1. Whilst the simulation with wavelet turbulence had
the same texture size for density and temperature, it had a lower texture size of 12x42x12 throughout the test.
The data we used in the graphs may be seen in Appendix C, where visuals of wavelet turbulence also can be
seen.

== Wavelet Turbulence == MNormal

125
- 100
E
[
&
hd 75
g
-
£ 50
=
=
L4}
[
E 25
F ——

0

10 20 30 40 50 60 70

Resolution Scale

Figure 6.10: Graphing the performance of the Wavelet Turbulence optimization in comparison to the original
simulation approach in regards of time per frame

35

== \Wavelet Turbulence == MNormal

100

75

50

Memary Usage (MB)

25

10 20 30 40 50 60 70

Resolution Scale

Figure 6.11: Graphing the performance of the Wavelet Turbulence optimization in comparison to the original
simulation approach in regards of memory usage

== \Wavelet Turbulence == MNormal

10

CPUUutilization (%)

10 20 30 40 50 60 70

Resolution Scale

Figure 6.12: Graphing the performance of the Wavelet Turbulence optimization in comparison to the original
simulation approach in regards of CPU utilization

Our results from this test shows that wavelet turbulence improved the performance in respect to the time
required per frame, memory usage, and CPU utilization. The visuals of the fire improved as well, as the
notation of natural behavior was kept throughout all resolutions.

36

7 Discussion

The following sections will deeper discuss issues and aspects such as comparison between the Euler and Navier-
Stokes equations and their impact on the performance, wavelet turbulence and possibilities to further develop
the project. This chapter also deals with ethical aspects and the need of greater mathematical knowledge.

7.1 Interpreting the Result

The results gained from the test in Section 6.2.1 showed the limitation of using a mobile device to render a
simulation based on fluid dynamics. This test case showed that the memory consumption and CPU utilization
did not really matter. Nevertheless, the sought performance should consist of 30 to 60 FPS, implying that
a frame should be rendered in less than 33 ms. Only two of the samples would be able to accomplish the
sought goal, the grid resolutions of 12x22x12 and 12x42x12. Nonetheless, neither of the two grid resolutions
visuals showed the sought amount of detail, consequently showing that these samples was not accurate enough.
The resolution of 32x62x32 and 32x122x32 received 29 FPS and got more detail than the first two samples.
However, as stated in Section 6.2.1, the visual behavior of the flames in these approaches became more static
which did not meet the expectations of the authors. The reason of the static behavior is based on the grid
being too detailed for the velocity grid, resulting in the vorticity confinement getting less apparent.

As could be seen in Section 6.2.1 as well, the difference in performance of the two grid ratios was not apparent.
The grid ratio of 1x2x1 did however perform better in the long run when comparing the grid ratio of 1x4x1,
but the visual result of ratio 1x2x1 was unpleasing as the flame did not have as much room to move in the
y-axis of the grid. This resulted in choosing the grid ratio of 1x4x1 for the rest of the tests in Section 6.2, as
it would provide the flame to move more freely.

In Section 6.2.2, the result showed that the Euler approach performed better than the Navier-Stokes approach
in terms of time per screen. While this performance-wise difference was expected as the Euler approach skipped
one costly step in the simulation, the more interesting fact is how the approaches differ in appearance and
how accurate the simulation came across compared to previous works. The major difference in appearance
when running the two approaches side by side, was a notion of inertia in the movement could be seen in the
Navier-Stokes approach. Nonetheless, this difference did not improve the realism of the simulation. Thus, the
majority of the tests in Section 6.2 was done using the Euler approach. When comparing to previous works, the
resulting fire did not look as physically correct as one could hope for when the grid resolution was increased.

When wavelet turbulence was utilized, the performance of the simulation improved, as well as the CPU and
memory usage. However, the most important part was that the flame got high amount details while still
maintaining good performance. The largest resolution that still meet the expectations of 30 FPS was the grid
resolution of 52x202x52, which had sufficient amount of detail while still behaving like a fire. Throughout
every resolution that was tested, the flame preserved a unique and chaotic behavior. This was expected as
the velocity grid had a lower resolution than the grids representing the temperature density, resulting in one
velocity vector affecting more cells in the respective scalar grid. The vorticity confinement added the extra
fluttering motion in the flames behavior, resulting in the chaotic behavior. As the resolution for the scalar
grids became higher, the amount of detail in the smoke increased massively, and started looking like previous
work from researchers in the field.

Interestingly, the shape of the emitter did not affect the performance, CPU or memory utilization enough for
an thorough analyze throughout all grid sizes. However, as could be seen in Section 6.2.3, the visuals did vary.

When all of the results was examined, one could conclude that the CPU usage did not vary at all, except a
little bit when using wavelet turbulence, and the memory consumption did not come near the full capacity
of the device, which can be seen in Table 2.1. Hence, the limit of the mobile device might be how fast it
is able to compute all the operations. While the simulation was developed, a few factors did impact the
performance. The small amount of bandwidth in a handheld device turned out to be a consistent problem
throughout the development. This means that formats for storing values had to be chosen carefully. For
instance, when storing float values for the textures, the bigger format was able to store 32 bytes of information.
This however proved to lower the performance vastly, which forced the usage of a format that could store 16
bytes of information. Fortunately, this information loss did not drastically affect the visual result, and instead

37

increase the performance.

7.2 Limitations of the Workflow

The following subsection describe some hindrance encountered during the course of this project.

7.2.1 The Field of Fluid Dynamics

The field of fluid dynamic was relatively new to all of the authors in this thesis. This proved to be a challenge,
considering that the majority of the group only taken an introductory course in linear algebra. The papers and
other sources used in this thesis were often well written with a logical structure describing the idea of the paper,
but most of the sources expected the reader to have good prior knowledge. It became a challenge for most
group members to approach these papers and understand the important concepts, consequently rewarding the
group with knowledge in advanced linear algebra together with experience with these kinds of papers.

7.2.2 Accessibility

During development, making the application cross-compatible was considered. Not all group members had
the Android operating system running on their mobile devices, thus making the application cross-compatible
would have made it possible to run the application on mobile devices running other operating systems. Hence,
some investigation began to find features or potential cross-platform frameworks, resulting in finding Qt.
The framework Qt [50] is a cross-platform IDE with built-in tools for developing applications compatible
with multiple operating systems. A basic OpenGL project was setup with Qt to test its functionality and
development process. After deliberating within the group, it was decided that Qt was not to be used in further
development. The main reason for this decision was that the process of integrating the Qt tools into the
project was considered too time consuming. A large part of the time spent implementing other features would
have been impacted, hence the reason for sticking with developing for Android exclusively. Retrospectively,
developing with Qt from the start of the project would have been another alternative as the code would not
have to be migrated from one framework to another.

7.2.3 Faulty Approaches

When deciding how to split the work within the group of this project, it was decided that two members were to
primarily work on the rendering, while the remaining four members were to primarily work on the simulation.
In hindsight, a ratio of 5:1 with five members working on the simulation might have been a more realistic
and better suited choice, as the simulation ended up taking larger focus than initially expected. It could also
have been wise to define areas of responsibility as opposed to defining sub-groups. This could likely have been
mitigated if the group had a better understanding of the scope of the program, to be able to more thoroughly
plan the project early on. More planning could also have been done in regards to the UML-diagram. As
the planning of the simulation step process was limited, the entirety of the C++ code specifically made for
the simulation was practically in one single class for the first half of the project. A code refactor was done
thereafter, where the simulation was refactored into three different abstraction layers, while adapted to adhere
to design principles such as Separation of concerns (SoC) and to some degree also Don’t repeat yourself (DRY).
In a project with multiple people working more or less in parallel, difficulties may arise when performing
a significant refactor in that manner, as differences and conflicting changes between various versions of the
project can grow to be rather difficult to handle.

7.2.4 Unfinished Features

Among the features that were implemented, some of them were not sufficiently finished at the time of the first
launch of the application. These include touch interaction, where the fire would react when swiping a finger
across the screen. Another feature is light reflective walls, where walls surrounding the fire would make the
simulation look more alive.

38

7.2.5 Ongoing Pandemic

Like the majority of other bachelor’s thesis groups at Chalmers (and people across the world) this project
has been affected by the Covid-19 pandemic as well. This resulted in no physical meetings or group work
sessions, which has negatively affected the workflow because of the difficulties that follow with working remotely,
especially when considering what was explained in Section 7.2.2. However, with the nature of the project, the
effects of the pandemic on the project had not gone beyond the limitation of these physical meetings.

7.3 Future Work

In this thesis, a handful of algorithms have been used to solve or approximate complicated equations. Most of
them were chosen in respect of their ease of implementation, as well as their simplicity. One of those are the
Jacobi iteration, which solves the Poisson equation for the pressure and the diffusion. Although providing great
result, it demands at least 20 iteration per cell of the grid. This is rather costly, especially considering that
each iteration has to update all grid cells before next iteration may start. Hence, a future problem statement
could be to improve this step, eventually trying another approach than the Jacobi iteration. Another iterative
method used in this project is the QR algorithm, which calculates the eigenvalues for the scattering in Wavelet
Turbulence. Despite not being as costly as the Jacobi iteration, as it is able to iterate inside the GPU and not
wait for all other cells to be done, it could still potentially slow down the performance. Furthermore, if the QR
algorithm does fully converge after its iterations, it may provide a minor numerical error for the solution of
the eigenvalues. Therefore, another problem statement for a future project could be to find a better algorithm
for calculating the eigenvalues.

The potential performance improvements of an implementation based on a GPGPU pipeline over a more
traditional GPU graphic pipeline (from linear to constant time complexity), discussed in Section 4.4.1, make
it an area worthy of future investigation. This potential performance improvement could allow for a focus on
greater physical realism, by using a higher resolution simulation or implement algorithms with higher order
accuracy on their approximations. The result of this thesis would suggest that substantial improvement in
these aspects is not feasible at the moment, due to the performance available on today’s mobile phones in
conjunction with the performance constrains set by targeting a minimum frame rate of 30.

One aspect that would be interesting to further investigate is how the fire simulation affects the battery on a
phone. Since the measuring tools used in this project, the profilers, did not show energy consumption there
was no straightforward way to measure this. Additionally, to run the application during the development
phase, the phones had to be connected to a computer, which led to them being charged throughout the testing
and therefore further complicated the measuring of the application’s power consumption.

The unfinished functionality to have walls that reflect the light from the fire, is another subject that, can make
use of future research in order to gain an understanding of the feasibility of running a completed implementation
on a mobile device in accordance with the performance constraints described in this thesis.

An interesting work in the future would be to make the same tests as done in Section 6.2 in some years after
the publication of this thesis, to see how the performance would differ. The GPU might be able to utilize more
threads, and have a larger bandwidth to work with, optimizing all of the calculations.

7.4 Ethical Aspects

Since the application neither stores personal or sensitive data, it is hard to predict distinct negative conse-
quences from an ethical point of view. The code of the simulation is under MIT-license and is open-source.
The reason is to make it possible for others to use the implemented code as a base for further development. The
fact that the code is open-source and available for anyone to read, would unfortunately also make it possible
for developers which do not have their users best interest in mind, to use the implemented code as a base for
applications that stores personal or sensitive data in an irresponsible manner. The authors expectation and
intention are that the code will be used in a responsible context with the users best interest in mind.

39

7.5 Learning Outcomes

During the course of this project, a vast amount of experience was gained by the group members. Aspects like
working with people with different academic background and agile work process proved to be rewarding and a
fun experience for all group members. These experiences will undoubtedly be used in the future by all group
members.

As Section 7.2.1 stated, the group encountered a lot of advanced linear algebra that nobody was familiar with.
Despite this being one of the biggest obstacles during the process of this project, the group members still feel
like this have been a great experience to reiterate the old knowledge of linear algebra, as well as gaining new
understanding in the field. A related experience has been to evaluate and understand field-specific papers
that contain information that is hard to comprehend. During the course of this project, all group members
improved upon reviewing academic texts and finding the needed information to progress in the project.

Another experience gained from this project comes from developing for Android, especially put together with
the NDK. The majority of the group were before this project not particularly familiar with development for
Android, or in the programming language C+-+. Although the programming language was not deemed as
a major hindrance when working on this project, it still required new ways of approaching certain problems
when addresses and pointers was introduced. However, this experience was appreciated by all group members.

The last learning outcome, and undoubtedly the biggest experience for all the group members, has been to
work with computer graphics. While a half of the group have taken the introductory course in computer
graphics, everyone learned new things through this project. The ability to use a shader to solve complicated
equations in parallel showed the advantages with an GPU.

40

8 Conclusion

The purpose of this thesis was to explore the possibilities and limitations of simulating and rendering a
physically based fire on handheld devices. This has been achieved by using known formulas of fluid behavior
and by adding features that make the simulation visually pleasing. The simulation was discretized with use
of voxels in different vector or scalar fields, in order to approximate solutions to the fluid equations and use
them in a visual representation.

The simulation has taken advantage of the computing power present in modern mobile GPUs to improve
performance. Rendering the simulation in 3D greatly impacted performance and frame rate. When the
simulation was run on the OnePlus 7, great visual result similar to previous works could be achieved while
still having the sought performance of 30 FPS. For a visual comparison one can look at the paper ”Physically
Based Modeling and Animation of Fire” [1]. The optimal grid size resulted to be around 550 000 voxels while
the grid ratio was 1x4x1 and using wavelet turbulence as an optimizing method. However, this resolution
would only be feasible for this device only. Older mobile devices, with less capable hardware might not be able
to reach the initial goal of 30 FPS. In addition, the simulation would not be very useful in a mobile game as
the frame rate would be heavily reduced rendering a single fire in its current state. Adding this in combination
with other game elements, the performance would be affected to the point where it is most likely unplayable.

wavelet turbulence proved to increase the performance greatly, resulting in a more physically plausible appear-
ance of the fire, as well as providing relatively good performance compared to the original approach.

Regarding the last problem statement stated in the introduction, if the simulation could be interactive; in
Section 5.3, a touch feature was introduced that made it possible to interact with the fire by adding force to
the velocity field in the direction of the user touch input.

41

References

[1]

D. Q. Nguyen, R. Fedkiw, and H. W. Jensen, Physically based modeling and animation of fire, Stanford
University, 2002. [Online]. Available: http://physbam.stanford.edu/~fedkiw/papers/stanford2002-
02.pdf (visited on 2020-02-13).

K. Crane, I. Llamas, and S. Tariq, GPU Gems 3. Addison-Wesley Professional, 2007, ch. 30, pp. 633-675,
ISBN: 978-0-321-51526-1. [Ounline]. Available: https://developer .nvidia . com/gpugems/gpugems3/
part-v-physics-simulation/chapter-30-real-time-simulation-and-rendering-3d-fluids
(visited on 2020-02-14).

S. Green and C. Horvath, Flame on: Real-time fire simulation for video games, 2012. [Online]. Available:
http://on-demand . gputechconf . com/gtc /2012 /presentations/S0102-Flame-on-RT-Fire-
Simulation-for-Video-Games.pdf (visited on 2020-02-13).

J. Stam, Stable fluids, 1999. [Online]. Available: http://movement.stanford.edu/courses/cs448-01-
spring/papers/stam.pdf (visited on 2020-02-13).

M. Wrenninge, H. Falt, C. Allen, and S. Marshall, Capturing thin features in smoke simulations, sony
pictures imagework, 2011. [Online]. Available: http://library . imageworks.com/pdfs/imageworks-
library-capturing-thin-features-in-smoke-simulation.pdf (visited on 2020-02-13).

M. J. Harris, GPU Gems, 5th ed. Addison-Wesley, 2007. [Online]. Available: https: //developer .
download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html (visited on 2020-02-13).

J. McCaffrey, “Exploring Mobile vs. Desktop OpenGL Performance”, OpenGL Insights, P. Cozzi and
C. Riccio, Eds., New York, USA: CRC Press, 2012, ch. 24, pp. 337-352, ISBN: 978-143989376-0. [Online].
Available: http://xeolabs.com/pdfs/OpenGLInsights.pdf (visited on 2020-02-13).

Khronos, OpenGL ES Overview. [Online]. Available: https://www.khronos.org/opengles/ (visited on
2020-04-29).

Qualcomm Technologies, Identify Application Bottlenecks. [Online]. Available: https://www.khronos.
org/opengles/ (visited on 2020-04-29).

L. Prechelt, Technical opinion: Comparing java vs. c¢/c++ efficiency differences to interpersonal dif-
ferences, University of Karlsruhe, 1999. [Ounline]. Available: https://dl . acm.org/doi/fullHtml/
10.1145/317665 . 3176837 casa_token=BV5Q2b5QAUsAAAAA : 5ZS5f JrFDOMg4Eg7GOkoKtAZ _wyvs9Cx _
n12iRMEoFVRiZda2TV3L0z94XPxduD88zhLS5vQwNGGCmo (visited on 2020-02-14).

T. Kim, N. Thiirey, D. James, and M. Gross, Wavelet turbulence for fluid simulation, Cornell University,
2008. [Online]. Available: https://www.cs.cornell.edu/~tedkim/WTURB/wavelet_turbulence.pdf
(visited on 2020-02-13).

B. Kim, Y. Liu, I. Llamas, and J. Rossignac, Flowfizer: Using bfecc for fluid simulation, 2005. DOTI:
10.2312/NPH/NPH05/051-056.

A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, An unconditionally stable maccormack method,
Stanford University, 2007. [Online]. Available: http: //physbam . stanford . edu/ ~fedkiw/papers/
stanford2006-09.pdf (visited on 2020-02-13).

Android Developers, Meet Android Studio. [Online]. Available: https: //developer . android . com/
studio/intro (visited on 2020-04-20).

Android Developers, Run apps on the Android Emulator. [Online]. Available: https://developer .
android.com/studio/run/emulator (visited on 2020-04-29).

Android Developers, Configure hardware acceleration for the Android Emulator. [Online]. Available:
https://developer.android. com/studio/run/emulator-acceleration (visited on 2020-04-29).
Android Developers, Getting Started with the NDK. [Online]. Available: https://developer.android.
com/ndk/guides (visited on 2020-04-28).

Android Developers, Concepts. [Online]. Available: https://developer . android. com/ndk/guides/
concepts (visited on 2020-04-29).

Kitware, About CMake. [Online]. Available: https://cmake.org/overview/pdf (visited on 2020-04-11).
Gradle Inc, Gradle User Manual. [Online]. Available: https://docs.gradle.org/current/userguide/
userguide.html (visited on 2020-04-15).

Gradle Inc, Build Lifecycle. [Online]. Available: https://docs . gradle . org/ current /userguide/
build_lifecycle.html (visited on 2020-04-15).

Gradle Inc, Gradle Features. [Online]. Available: https://gradle.org/features/ (visited on 2020-04-
15).

42

http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-30-real-time-simulation-and-rendering-3d-fluids
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-30-real-time-simulation-and-rendering-3d-fluids
http://on-demand.gputechconf.com/gtc/2012/presentations/S0102-Flame-on-RT-Fire-Simulation-for-Video-Games.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0102-Flame-on-RT-Fire-Simulation-for-Video-Games.pdf
http://movement.stanford.edu/courses/cs448-01-spring/papers/stam.pdf
http://movement.stanford.edu/courses/cs448-01-spring/papers/stam.pdf
http://library.imageworks.com/pdfs/imageworks-library-capturing-thin-features-in-smoke-simulation.pdf
http://library.imageworks.com/pdfs/imageworks-library-capturing-thin-features-in-smoke-simulation.pdf
https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html
https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html
http://xeolabs.com/pdfs/OpenGLInsights.pdf
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://dl.acm.org/doi/fullHtml/10.1145/317665.317683?casa_token=BV5Q2b5QAUsAAAAA:5ZS5fJrFDOMg4Eg7G9koKtAZ_wyvs9Cx_n12iRMEoFVRiZda2TV3LOz94XPxduD88zhLS5vQwNGGCmo
https://dl.acm.org/doi/fullHtml/10.1145/317665.317683?casa_token=BV5Q2b5QAUsAAAAA:5ZS5fJrFDOMg4Eg7G9koKtAZ_wyvs9Cx_n12iRMEoFVRiZda2TV3LOz94XPxduD88zhLS5vQwNGGCmo
https://dl.acm.org/doi/fullHtml/10.1145/317665.317683?casa_token=BV5Q2b5QAUsAAAAA:5ZS5fJrFDOMg4Eg7G9koKtAZ_wyvs9Cx_n12iRMEoFVRiZda2TV3LOz94XPxduD88zhLS5vQwNGGCmo
https://www.cs.cornell.edu/~tedkim/WTURB/wavelet_turbulence.pdf
https://doi.org/10.2312/NPH/NPH05/051-056
http://physbam.stanford.edu/~fedkiw/papers/stanford2006-09.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2006-09.pdf
https://developer.android.com/studio/intro
https://developer.android.com/studio/intro
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/ndk/guides
https://developer.android.com/ndk/guides
https://developer.android.com/ndk/guides/concepts
https://developer.android.com/ndk/guides/concepts
https://cmake.org/overview/pdf
https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/build_lifecycle.html
https://docs.gradle.org/current/userguide/build_lifecycle.html
https://gradle.org/features/

Nationalencyklopedin, Versionshantering. [Online]. Available: http://www.ne.se.proxy.lib.chalmers.
se/uppslagsverk/encyklopedi/1%C3%Abng/versionshantering (visited on 2020-04-12).

G-Truc, OpenGL Mathematics. [Online]. Available: https://glm.g-truc.net/0.9.9/index.html
(visited on 2020-04-18).

OnePlus, Tech Specs. [Online]. Available: https://www.oneplus.com/uk/7/specs (visited on 2020-04-
29).

Qualcomm Technologies, Snapdragon Developer Tools. [Online]. Available: https://developer.qualcomm.
com/solutions/snapdragon-developer-tools (visited on 2020-04-29).

Qualcomm Technologies, Use Snapdragon Profiler to Improve Your App’s Performance. [Online]. Avail-
able: https://developer.qualcomm. com/software/snapdragon-profiler/app-notes (visited on
2020-04-29).

W.-h. Shi, Y.-p. Wang, and C. Shen, Comparison of stability between navier-stokes and euler equations,
Shanghai University, Nanjing University of Information Science & Technology, and Yantai Normal Uni-
versity, 2006. [Online]. Available: https://link.springer.com/article/10.1007/s10483-006-0913-
y (visited on 2020-03-19).

Engineers Edge, Viscosity of Air, Dynamic and Kinematic. [Online]. Available: https://www.engineersedge.

com/physics/viscosity_of_air_dynamic_and_kinematic_14483.htm (Visited on 2020-04-29).
Nationalencyklopedin, Rotation. [Online]. Available: http://www.ne.se.proxy.lib.chalmers.se/
uppslagsverk/encyklopedi/1%C3%A5ng/rotation- (av-vektorf)C3%A41t) (visited on 2020-04-17).
K. Perlin, An image synthesizer, New York University, 1985. [Online]. Available: https://dl.acm.org/
doi/pdf/10.1145/325165.325247 (visited on 2020-04-21).

L. Rade and B. Westergren, Mathematics Handbook for Science and Engineering. Studentliteratur, 2018.
Nationalencyklopedin, Densitet. [Online]. Available: http://www.ne.se.proxy.lib.chalmers.se/
uppslagsverk/encyklopedi/1%C3%A5ng/densitet (visited on 2020-04-18).

J. Stam, “Real-time fluid dynamics for games”, Proceedings of the game developer conference, vol. 18,
2003, p. 25.

E. of Mathematics, Well-posed problem, 2018. [Online]. Available: URL:%20http://www.encyclopediaofmath.

org/index.php?title=Well-posed_problem&oldid=42887 (visited on 2020-04-29).

C. Wyman, P.-P. Sloan, and P. Shirley, Simple analytic approximations to the cie xyz color matching
functions, Journal of Computer Graphics Techniques 2, no. 2 2013, 1-11, 2013.

M. D. Fairchild, Color appearance models. John Wiley & Sons, 2013.

Vanessaezekowitz at en.wikipedia, Normalized responsivity spectra of human cone cells, s, m, and [types,
2007. [Online]. Available: https://commons . wikimedia.org/w/index . php?curid=10514373 (visited
on 2020-05-11).

M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a standard default color space
for the internet—srgb”, Color and imaging conference, Society for Imaging Science and Technology,
vol. 1996, 1996, pp. 238-245.

P. Tan, “Phong reflectance model”, Computer Vision: A Reference Guide, K. Ikeuchi, Ed. Boston, MA:
Springer US, 2014, pp. 592-594, 1SBN: 978-0-387-31439-6. DOI: 10.1007/978-0-387-31439-6_536.
[Online]. Available: https://doi.org/10.1007/978-0-387-31439-6_536.

M. Ikits, J. Kniss, A. Lefohn, and C. Hansen, GPU Gems, 5th ed. Addison-Wesley, 2007. [Online].
Available: https://developer .download.nvidia. com/books/HTML/gpugems/gpugems _ch39.html
(visited on 2020-04-27).

Android Developers, Developer Guides. [Online]. Available: https://developer.android.com/guide
(visited on 2020-02-25).

Android Developers, Application Fundamentals. [Online]. Available: https://developer.android.com/
guide/components/fundamentals (visited on 2020-02-26).

Android Developers, Getting started with the NDK. [Online]. Available: https://developer.android.
com/ndk/guides (visited on 2020-02-25).

T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, Java Virtual Machine Specification, Java SE 7
Edition. Addison-Wesley, 2013, ch. 1.

S. Lee and J. W. Jeon, Evaluating performance of Android platform using native C for embedded systems,
2010. [Online]. Available: https://ieeexplore. ieee.org/abstract/document /5669738 (visited on
2020-02-26).

Khronos Group, OpenGL ES Version 8.1, 2016. [Online]. Available: https : / /www . khronos . org/
registry/OpenGL/specs/es/3.1/es_spec_3.1.pdf (visited on 2020-03-22).

43

http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/versionshantering
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/versionshantering
https://glm.g-truc.net/0.9.9/index.html
https://www.oneplus.com/uk/7/specs
https://developer.qualcomm.com/solutions/snapdragon-developer-tools
https://developer.qualcomm.com/solutions/snapdragon-developer-tools
https://developer.qualcomm.com/software/snapdragon-profiler/app-notes
https://link.springer.com/article/10.1007/s10483-006-0913-y
https://link.springer.com/article/10.1007/s10483-006-0913-y
https://www.engineersedge.com/physics/viscosity_of_air_dynamic_and_kinematic_14483.htm
https://www.engineersedge.com/physics/viscosity_of_air_dynamic_and_kinematic_14483.htm
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/rotation-(av-vektorf%C3%A4lt)
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/rotation-(av-vektorf%C3%A4lt)
https://dl.acm.org/doi/pdf/10.1145/325165.325247
https://dl.acm.org/doi/pdf/10.1145/325165.325247
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/densitet
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/densitet
URL:%20http://www.encyclopediaofmath.org/index.php?title=Well-posed_problem&oldid=42887
URL:%20http://www.encyclopediaofmath.org/index.php?title=Well-posed_problem&oldid=42887
https://commons.wikimedia.org/w/index.php?curid=10514373
https://doi.org/10.1007/978-0-387-31439-6_536
https://doi.org/10.1007/978-0-387-31439-6_536
https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch39.html
https://developer.android.com/guide
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/ndk/guides
https://developer.android.com/ndk/guides
https://ieeexplore.ieee.org/abstract/document/5669738
https://www.khronos.org/registry/OpenGL/specs/es/3.1/es_spec_3.1.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.1/es_spec_3.1.pdf

[48]
[49]

[50]

Nationalencyklopedin, GPU. [Online]. Available: http: //www . ne . se . proxy . 1ib . chalmers . se/
uppslagsverk/encyklopedi/1%C3%A5ng/gpu (visited on 2020-04-12).

Nationalencyklopedin, Datorarkitektur. [Online]. Available: http://www.ne.se.proxy.lib.chalmers.
se/uppslagsverk/encyklopedi/1%C3%A5ng/datorarkitektur (visited on 2020-04-14).

The Qt Company, Qt Features. [Online]. Available: https://www.qt.io/product/features (visited on
2020-05-13).

44

http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/gpu
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/gpu
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/datorarkitektur
http://www.ne.se.proxy.lib.chalmers.se/uppslagsverk/encyklopedi/l%C3%A5ng/datorarkitektur
https://www.qt.io/product/features

A Performance and Visuals of Difference Grid Sizes

In this Appendix, the tested resolutions in Section 6.2 and the visual results of every resolution are displayed.
The approach used when simulating is the Euler approach presented in Chapter 3.

12x22x12

afifidods

. - - . - - - - - - ;N - - - |
Figure A.1: Visuals of the fire with a grid size of 12122112

MEMORY
128 MB

Figure A.2: Android Profiler graph with a grid size of 12x22x12, measuring CPU utilization and memory usage
in MB

» com.example.datx02_20_21

CPU Utilization % © W 1463

Avg Frame Tim...

19.74m

FPS[537171498... w s

49.805

Memory Usage

Figure A.3: Snapdragon Profiler graph with a grid size of 12222x12, measuring CPU utilization, time per frame,
frames per second and memory usage

32x62x32

A
’ﬂ\ /ﬂ’\ ’ﬂ\ /(\ /1

! » '

. - - . - - - - N - - |
Figure A.4: Visuals of the fire with a grid size of 32162132

MEMORY
28 MB

Figure A.5: Android Profiler graph with a grid size of 82162132, measuring CPU utilization and memory usage
in MB

» com.example.datx02_20_21
C CPU Utilization % © W 1282

X 4.545
© @ AvgFrameTim.. @ W 570

g

2
© @ FPSIS37246704...

Memory Usage

Figure A.6: Snapdragon Profiler graph with a grid size of 32262x32, measuring CPU utilization, time per frame,
frames per second and memory usage

II

52x102x52

AARARR

. - - . - - - - N - - |
Figure A.7: Visuals of the fire with a grid size of 52x102x52

Figure A.8: Android Profiler graph with a grid size of 52x102x52, measuring CPU utilization and memory
usage in MB

13.900

Memory Usage & W 1216

1.20G

Figure A.9: Snapdragon Profiler graph with a grid size of 52x102x52, measuring CPU utilization, time per
frame, frames per second and memory usage

11

72x142x72

mAARRA

. - - . - - - - N - - |
Figure A.10: Visuals of the fire with a grid size of 72x142x72

Figure A.11: Android Profiler graph with a grid size of 72x142x72, measuring CPU utilization and memory
usage in MB

com.example.datx02_20_21
CPU Utilization % © W 1353

2.083

Avg Frame Tim... 108104m

79m

FPS[537246704...

Memory Usage

Figure A.12: Snapdragon Profiler graph with a grid size of 72x142x72, measuring CPU utilization, time per
frame, frames per second and memory usage

v

12x42x12

. - - . - - - - N - - |
Figure A.13: Visuals of the fire with a grid size of 12x42x12

Figure A.14: Android Profiler graph with a grid size of 12x42x12, measuring CPU utilization and memory
usage in MB

com.example.datx02_20_21
CPU Utilization % & W 14634

852
Avg Frame Tim... fez/sm

FPS[537246704...

Memory Usage

Figure A.15: Snapdragon Profiler graph with a grid size of 12x42x12, measuring CPU utilization, time per
frame, frames per second and memory usage

32x122x32

(l /) \ ‘
|

] | ([]

. - - . - - - - N - - |
Figure A.16: Visuals of the fire with a grid size of 32x122132

Figure A.17: Android Profiler graph with a grid size of 32x122x32, measuring CPU wutilization and memory
usage in MB

12s
Iﬁl
= com.example.datx02_20_21

@ CPUUilizaton% © 14i634

Avg Frame Tim... @ ®

FPS[537246704... © W 2

Memory Usage © W

Figure A.18: Snapdragon Profiler graph with a grid size of 322122232, measuring CPU utilization, time per
frame, frames per second and memory usage

VI

52x202x52

. - - . - - - - N - - |
Figure A.19: Visuals of the fire with a grid size of 52202152

Figure A.20: Android Profiler graph with o grid size of 52x202x52, measuring CPU wutilization and memory
usage in MB

g @ CPu Uiization% © W 19589

com.example.datx02_20_21

Avg Frame Tim...

70.83m

FPS[537171499... 14147

Memory Usage

Figure A.21: Snapdragon Profiler graph with a grid size of 52x202x52, measuring CPU utilization, time per
frame, frames per second and memory usage

VII

T2x282x72

il

. - - . - - - - N - - |
Figure A.22: Visuals of the fire with a grid size of 72x282x72

101,3 MB

Figure A.23: Android Profiler graph with a grid size of 72x282x72, measuring CPU utilization and memory
usage in MB

» com.example.datx02_20_21
CPU Utilization % & W 17:949

2.381

Avg Frame Tim... ©@ W 12584m

121.34m

FPS[537171492... © W 8242

Memory Usage © W

Figure A.24: Snapdragon Profiler graph with a grid size of 72x282x72, measuring CPU utilization, time per
frame, frames per second and memory usage

VIII

B Navier-Stokes Performance and Visuals

In this Appendix, the tested resolutions of the Navier-Stokes approach in Section 6.2.2 and the visual results
of every resolution are displayed. The scaling ratio used when simulating is 1x4x1.

12x42x12

. - - . - - - - - - ;N - - - |
Figure B.1: Visuals of the Navier-Stokes approach using a grid size of 12x42x12

MEMORY
128 MB

Figure B.2: Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler

Avg Frame Tim...

FPS[537246704...

Memory Usage

Figure B.3: Graphs of CPU utilization, time per frame, frames per second and memory usage with the Navier-
Stokes approach in Snapdragon Profiler

X

32x122x32

. - - . - - - - N - - |
Figure B.4: Visuals of the Navier-Stokes approach using a grid size of 32x122x32

MEMORY
128 MB

Figure B.5: Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler

» com.example.datx02_20_21

CPU Utilization % © W 14854
Avg Frame Tim...

FPS[537171498...

x
- |
x'
i
%l

Memory Usage

X

Figure B.6: Graphs of CPU utilization, time per frame, frames per second and memory usage with the Navier-
Stokes approach in Snapdragon Profiler

52x202x52

ﬁ \
fo— oy

. - - . - - - - N - - |
Figure B.7: Visuals of the Navier-Stokes approach using a grid size of 52x202x52

Figure B.8: Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler

Figure B.9: Graphs of CPU utilization, time per frame, frames per second and memory usage with the Navier-
Stokes approach in Snapdragon Profiler

XI

T2x282x72

. - - . - - - - N - - |
Figure B.10: Visuals of the Navier-Stokes approach using a grid size of 72x282x72

Figure B.11: Graphs of CPU utilization and memory usage (MB) with the Navier-Stokes approach in Android
Profiler

» com.example.datx02_20_21
CPU Utilization % & W |

4248
Avg Frame Tim... ©@ W 25744

246.85m

FPS[537246704... @ W 4051

3.884
Memory Usage & W 139

Figure B.12: Graphs of CPU utilization, time per frame, frames per second and memory usage with the
Navier-Stokes approach in Snapdragon Profiler

XII

C Performance of Wavelet Turbulence and the Visual
Result

In this Appendix, the tested resolutions when using the Wavelet Turbulence in Section 6.2.4 is displayed, as
well as the visual results of every resolution. The scaling ratio used when simulating is 1x4x1.

12x42x12

AL

Figure C.1: Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid
size of 12x42x12 for the temperature and density

com.pbf FireActivity

CPU

MEMORY
128 MB

Figure C.2: Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence in
Android Profiler

- ® com.example.datx02_20_21
N @ CPU Utilization % @ W 5T

x]
Avg Frame Tim... @ o !

FPS[537246704... @ W

MemoryUsage © W !

1.17G

Figure C.3: Graphs of CPU utilization, time per frame, frames per second and memory usage with the simulation
with Wavelet Turbulence in Snapdragon Profiler

XIII

32x122x32

AR

Figure C.4: Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid
size of 32x122x32 for the temperature and density

MEMORY
128 MB

Figure C.5: Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence in
Android Profiler

- ® com.example.datx02_20_21

> CPU Utilization % & W
X
Avg Frame Tim... & ®

FPS[53717149%... @ W

Memory Usage © W

Figure C.6: Graphs of CPU utilization, time per frame, frames per second and memory usage with the simulation
with Wavelet Turbulence in Snapdragon Profiler

XIV

52x202x52

Figure C.7: Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid
size of 52x202x52 for the temperature and density

com.pbf FireActivity

CPU

Figure C.8: Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence in
Android Profiler

- W com.example.datx02_20_21
i CPU Utilization % © W 1215

X

Avg Frame Tim... @ ®

FPS[537171499... @ W

Memory Usage © W

Figure C.9: Graphs of CPU utilization, time per frame, frames per second and memory usage with the simulation
with Wavelet Turbulence in Snapdragon Profiler

XV

T2x282x72

Figure C.10: Visuals when using Wavelet Turbulence with a grid size of 12x42x12 for the velocity, and a grid
size of T2x282x72 for the temperature and density

Figure C.11: Graphs of CPU utilization and memory usage (MB) of the simulation with Wavelet Turbulence
in Android Profiler

» com.example.datx02_20_21

CPU Utilizaton % © W [Z19

2.439
Avg Frame Tim... @ W 45:26m

44
FPS[537246704... & W 22

22.097

Memory Usage © W 1366

35G

Figure C.12: Graphs of CPU utilization, time per frame, frames per second and memory usage with the
simulation with Wavelet Turbulence in Snapdragon Profiler

XVI

	Introduction
	Background
	Area of Usage
	The Expensiveness of 3D Fluid Simulation
	Mobile Device Versus Desktop

	Purpose and Goals
	Problem Statements
	Scope of Project
	Related Work

	Method
	Tools
	Android Studio
	Android Virtual Device
	Android NDK
	CMake
	Gradle
	Git and GitHub
	OpenGL Mathematics
	Mobile Devices

	Simulation
	Performance
	Visuals and Correctness
	Intended Outcome

	Theory
	Physical Modelling
	Velocity Step - Momentum of the Flame
	Navier-Stokes Equations vs Euler Equation
	Solving the Behaviour Equations
	Advection
	Diffusion
	Solving the Poisson Equations
	Vorticity Confinement

	Wavelet Turbulence
	Turbulence Noise
	Kolmogorov Theory
	Scattering
	Calculating the Eigenvalues
	Texture Distortion
	Fluid Synthesis

	Adding External Forces
	Buoyancy Force

	Simulation Step for Substances
	Density Step
	Temperature Step

	Boundary Condition
	Calculating the Color of the Fire
	Black-body Radiation
	Converting Radiance to CIE XYZ Color-space
	Chromatic Adaptation
	sRGB Conversion and Gamma Correction

	Using the Fire as a Light Source
	Phong Reflectance Model

	Volumetric Rendering
	Volume Ray Casting

	Implementation
	Android
	Modelling the Simulation
	OpenGL ES
	Utilizing the GPU
	GPUs Impact on Complexity

	Process
	Start of Project
	Previous Results
	First Visual Results
	Vorticity
	Wavelet Turbulence
	Black-body Radiation

	Added Features
	Touch Interaction
	Light Reflective Walls

	Workflow

	Results
	Overview of our Application
	Performance and Visuals
	Resolution
	Navier-Stokes vs Euler
	Emitters
	Wavelet Turbulence

	Discussion
	Interpreting the Result
	Limitations of the Workflow
	The Field of Fluid Dynamics
	Accessibility
	Faulty Approaches
	Unfinished Features
	Ongoing Pandemic

	Future Work
	Ethical Aspects
	Learning Outcomes

	Conclusion
	References
	Performance and Visuals of Difference Grid Sizes
	Navier-Stokes Performance and Visuals
	Performance of Wavelet Turbulence and the Visual Result

