CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Programming Arcade Games
using Natural Language

Utilizing inherent language skills as a gentler introduction to
Computational Thinking

Bachelor’s thesis in Computer Science

Madeleine Lexén, Erik Ljungdahl, Hanna Rydholm,
Henning Sato von Rosen

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2019

BACHELOR’S THESIS 2019

Programming Arcade Games using Natural
Language

Utilizing inherent language skills as a gentler introduction to
Computational Thinking

MADELEINE LEXEN
ERIK LJUNGDAHL

HANNA RYDHOLM
HENNING SATO VON ROSEN

4 UNIVERSITY OF
CHALMERS GOTHENBURG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Programming Arcade Games using Natural Language

Utilizing inherent language skills as a gentler introduction to Computational Think-
ing

MADELEINE LEXEN, ERIK LJUNGDAHL, HANNA RYDHOLM,

HENNING SATO VON ROSEN

© MADELEINE LEXEN, ERIK LJUNGDAHL, HANNA RYDHOLM,
HENNING SATO VON ROSEN, 2019.

Supervisor: Peter Ljunglof
Examiner: Wolfgang Ahrendt, Morten Fjeld, Sven Knutsson, Miquel Pericas

Bachelor’s Thesis 2019

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2019

v

Programming Arcade Games using Natural Language
Utilizing inherent language skills as a gentler introduction to Computational Think-
ing

MADELEINE LEXEN, ERIK LJUNGDAHL, HANNA RYDHOLM,
HENNING SATO VON ROSEN

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract

Due to the technological advances in society, the need for digital competences is
increasing. The purpose of this thesis is to develop a web application that introduces
children between ages 10 and 18 to basic programming concepts and train them in
Computational Thinking by using their existing knowledge of Natural Languages.
By using a restricted part of Natural Language instead of a programming language,
we take advantage of the users inherent language skills, with the aim of a gentler
introduction to Computational Thinking. Questions that are treated include, among
others, what contribution can be made to the education of children in Computational
Thinking, how to handle the input from the user, how to transform the input to
a playable game and how the system should handle errors in the input. These
questions were investigated by the development of an application which consists of
a parser, implemented using a third party parsing library (Nearly.js), an Evaluator,
which evaluates the result from parsing the input and organises it in a data structure
that represents the game. This data structure, the game representation, is then given
to a game engine that constructs a playable game according to the users intentions.
This game is then displayed in the User Interface, where the user can interact with
it. Possible strategies for evaluating our system are A-B testing, survey or user
analysis. Furthermore, extensions on the application include more extensive error
messages, support for multiple source languages and providing challenges to test
the user. We conclude that the result was a modular and extendable application.
Moreover, it is our conviction that our application does contribute to learning parts
of Computational thinking.

Keywords: Computational Thinking, Natural Language, education

Sammandrag

De teknologiska framstegen i samhéllet 6kar behovet for digital kompetens. Syftet
med arbetet ar att utveckla en webbapplikation som introducerar Computational
Thinking och grundlidggande programmeringskoncept for barn i aldrarna 10 till 18
ar, genom att uttnyttja deras redan existerande forméagor i naturligt sprak. Genom
att anvianda en begransad del av naturligt sprak drar vi nytta av anvindarens in-
neboende sprakkunskaper, med malsattningen att ge en mjukare introduktion till
Computational Thinking. Fragor som behandlats inkluderar vilket bidrag som kan
goras till att lara barn Computational Thinking, hur indatan fran anvindaren ska
hanteras, hur denna input ska omvandlas till ett spelbart spel och hur systemet ska
hantera fel i inputen, bland andra. Dessa fragor undersoktes genom utvecklandet
av en applikation som bestar av en Parser, implementerad med hjalp av ett pars-
ing bibliotek (Nearly.js), en Fvaluator, som evaluerar resultatet fran att lasa inputen
och organiserar det i en datastruktur som representerar spelet. Denna datastruktur,
spelrepresentationen, ges sedan till en Game Engine, som konstruerar ett spelbart
spel i enlighet med anvandarens avsikter. Detta spelet visas sedan for anvandaren
i anvandargranssnittet, dar anvandaren kan interagera med det. Mojliga strategier
for att utviardera vart system ar A-B testning, undersokning eller anviandaranalys.
Utokningar av applikationen inkluderar mer omfattande felmeddelanden, stod for
mer an ett kéllsprak och att tillhandahalla utmaningar for att testa anvandaren.
Vi drar slutsatsen att var applikation ar modular och utbyggbar. Vidare &r det
var overtygelse att var applikation bidrar till att lara ut delar av Computational
Thinking.

Nyckelord: Computational Thinking, Naturligt sprak, utbildning

vii

Acknowledgements

We would like to thank our supervisor, Peter Ljunglof. We are humbled and grate-
ful for you patience and support. Not only did you offer gentle guidance into a
fascinating subject matter, but you also helped us function together as a group.

Madeleine Lexén

Erik Ljungdahl

Hanna Rydholm
Henning Sato von Rosen

Gothenburg, May 2019

ix

“There need be no real danger of it [writing instruction tables| ever becoming a
drudge, for any processes that are quite mechanical may be turned over to the
machine itself.”

Alan Turing in the report "Proposed Electronic Calculator" (1946), written
before the first computer was completed. The expression “writing instruction
tables” was used for what we today call “programming”.

Introduction
1.1 Background
1.2 Purpose
1.3 Problem formulation
1.4 Related work
1.5 Delimitations
1.6 Overview.
Theory
2.1 Computational Thinking
2.2 Game Engine
2.3 Entity Component System
2.4 Grammar
Methods
3.1 Evaluation
3.1.1 User stories
3.1.2 Testcases
3.2 Implementation
Design and Implementation
4.1 Design overview
4.2 Core Structure
4.2.1 Declarative usage of CR-maps
4.2.2 Functions over CR-maps . .

4.3
4.4

4.5
4.6
4.7
4.8

Contents

4.2.3 Syntax for declaring CR-map types and function signatures . .

Decomposition of language processing functionality

Grammar /Evaluator Separation
4.4.1 Tagging the production rules

4.4.2 Defining the meaning of the tags
Supporting visual feedback for Natural Language

Supporting localised error indication
Ambiguity
Supporting domain vocabulary: The
4.8.1 Supported colour vocabulary
4.8.2 Colour modifiers

of the grammar
Colour Domain

11
11
12
13
13
13
14
15
15
16
16
18
19
19
19
20

X1

Contents

4.9 Gameengine
4.10 User interfaceo
4.11 Implementation status

5 Discussion

5.1 Product
5.2 Contribution to Computational Thinking
5.3 Future work
5.3.1 Error messages oo
5.3.2 Multiple source languages
5.3.3 Userinterfaceo
534 Challenges
5.4 Ewvaluating the application
541 Survey ...
54.2 A-Btesting
54.3 Useranalysis

6 Conclusion

Bibliography

xii

25
25
25
26
26
26
27
27
27
27
27
28

29

31

1

Introduction

This chapter goes through the background of the project and presents the purpose in
the context of the background. Additionally, the methods used and the delimitations
of the project are presented

1.1 Background

As technology advances and becomes prevalent in society, the need for digital com-
petences and understanding increases. Access to computers and knowledge and how
to use them is becoming increasingly more important in today’s information society,
and is a new source for inequality in society, which is referred to as the digital divide
[1]. A basic understanding of programming will make it easier for people to operate
in our highly technological society.

There are several benefits of knowing how to program and developing what is called
Computational Thinking. It evolves analytical thinking, and broadens a person’s
ability to structure and develop solutions [2]. Teaching students Computational
Thinking is a challenge, which schools already have begun to undertake. A 2015
in-depth study on the integration of digital competence and coding in education in
European countries found that 16 out of the 21 countries surveyed had already added
coding skills in some form to their curriculum [3]. In 2017, the Swedish Ministry
of Education Research modified the education curriculum to reflect these changes
in society [4]. These changes in the curriculum introduce the need for tools that
educators can use to teach coding skills and logical thinking to children.

There is a widespread idea that programming is a skill that one needs to be taught,
and something that only a few have a predisposition for, neither of which is correct.
At its core, programming is recognising a problem and defining it, and then formu-
lating a solution as a series of instructions. This is something that everyone already
knows how to do, using Natural Language. This thesis takes a unconventional ap-
proach to teaching programming, by utilising the students inherent knowledge of
Natural Language, instead of teaching a specific programming language. By doing
this the focus is on the concepts, which helps the student develop their skills in
Computational Thinking, rather than a programming language.

Given a system that can interpret a controlled set of Natural Language in a logical

1. Introduction

and consistent way, it enables the user to quickly understand the environment and
develop a more formal and logical way of thinking. This is the thought behind
projects like GameChangineer [5], created by professor Michael Hsiao of Virginia
Tech. It supports creating a range of simple arcade games using typically between
20 and 30 lines in Natural Language. Our project takes GameChangineer as an
inspiration, and will center around the same concepts.

1.2 Purpose

The purpose of this thesis is to develop a web application that introduces children
between ages 10 and 18 to basic programming concepts and train them in Compu-
tational Thinking by using their existing knowledge of Natural Languages.

The intention is to restrict the range of accepted input in Natural Language, i.e.
the project will make use of a controlled Natural Language, with clear restrictions
on the kind of sentences and expressions the system will understand.

When viewed in a larger context, we strive to increase the digital competence in
society with our project, so as to both give the individual more freedom and to
lessen the digital divide.

1.3 Problem formulation

As mentioned in the previous section, part of the purpose is to develop a web appli-
cation that can be used as an educational tool when teaching children programming.
This application generates playable games given a description in Natural Language.
This is a proposal that raises a couple of interesting questions.

Since the purpose is to give an introduction to programming and teach Computa-
tional Thinking, a natural question to ask is how to teach this. Furthermore, what
skills can reasonably be expected to be learnt in this manner, and how can what the
user learnt be evaluated.

Another question is how to handle user input; what kind of input should the system
accept, and in what format. This also raises the question how errors in user input
should be handled. How lenient should the system be towards mistakes the user
might make, and how should these errors be communicated to the user. In addition,
how should the system compensate for these errors, if indeed it should compensate
for them.

A problem that is especially interesting from a programmers perspective is how to
create a game from the input. What data structures should be used to represent
the concepts identified in the users input, so that it is possible to generate a game
from that representation. This leads to another interesting question, which is how
you write code that can represent the users’ intentions, before knowing what those

1. Introduction

intentions are. How should the concepts identified in the user input be represented,
in order for them to be usable as a blueprint for the game representation? Granted,
there will be some restriction on what will be possible to generate. Still, the system
must be able to create game instances that the user then can interact with.

1.4 Related work

Since the 1970’s, attempts have been made to take advantage of the possibilities of
computers to make programming and formal thinking more accessible to people in
general, and beginners in particular. Five notable approaches are:

LOGO
Developed (1967-) by Seymour Papert et.al. — make a “turtle” move using
small composable actions [6].

SmallTalk
Developed (1971-) by Alan Kay et.al. — general purpose programming language
and environment with messaging and object orientation [7].

Scratch
Developed (2002-) by a group at MIT led by Mitchel Resnick. Lets the user cre-
ate animations and games by drag-and-drop manipulation of blocks of vividly
visualised programming language syntax [8].

GameChangineer
Created by professor Michael Hsiao of Virginia Tech. A web application that
lets the user program simple arcade games using English [5].

WordsEye
A web application that lets the uzer use Natural Language to describe a scene
which gets generated into a 3D picture [9].

What all these approaches have in common is the presence of an interactive graph-
ical environment that makes it possible for the user to see more or less immediate
results from programs or, in some cases, parts of programs. LOGO and SmallTalk
also utilise metaphor: In LOGO, the user can imagine him- or herself as the char-
acter whose moves is being programmed. In SmallTalk, the user sees the program
as made up of “small computers” called objects, that sends and receives messages
and perform actions, not unlike human beings in ordinary life. Scratch on the other
hand does not utilise metaphor directly but instead uses visual syntactic elements,
not unlike a puzzle game. The bits and pieces fit together if they are compatible,
to ease the user into correct grammatical usage of traditional computer program-
ming code. GameChangineer and WordsEye supports Natural Language input as
a primary input method but differs from our project in that they allow non-precise
interpretations of the user input. WordsEye differs from the other mentioned ap-
proaches in that its primary purpose is to let non-specialist users utilise advanced
3D scene generation techniques in a social media context.

1. Introduction

1.5 Delimitations

The project will not include user testing, instead user stories are employed to eval-
uate the application. This is due to time limits, as user testing would be useful to
measure the outcome of the project.

There is also some restriction on the input language; the application will only be
developed with support for English, and it will only be capable of interpreting
instructions in English as well.

The application will be a browser-only application, but with desktop browsers in
mind, and will thus not be adapted to work on mobile devices.

1.6 Overview

In the next chapter we will present theoretical background relevant for understanding
the result. This includes a more in depth look at what Computational Thinking
is and how it relates to our project Furthermore, we give a walk through of the
components used in the project.

The chapter that follows details the methods used when working with the thesis,
which consists of both methods of evaluation and for implementation. Then we give
a full description of our project, both the thoughts that lie behind and what the
outcome of the project was.

In the discussion chapter it is described what impressions and insights the project
resulted in. It also discusses what work this could lead to, and how the project could
be further developed in the future. The last chapter contains our conclusions based
on the result we reached.

2

Theory

This chapter gives a theoretical background to the concepts treated in our project.
It then continues to explain the tools and methods used to develop our product, and
the theory behind the grammar we created.

2.1 Computational Thinking

The idea that computer scientists benefit from learning to think, reason and recog-
nise patterns in a certain way has been around for a long time. In 1960, Alan Peril
argued for the usefulness of Computational Thinking as a skill not only useful for
computer scientists, but for other areas and problems as well [10]. In 1980, Sey-
mour Papert used the term ‘Computational Thinking’ for the first time in his book
Mindstorm, where he writes about computers and how thinking and learning may
change as they become an everyday tool [6].

The term has been around and discussed within the computer science community
ever since. In 2006, however, it was introduced to a larger audience after an article
about the subject was released by Wing [11]. Wing suggested that Computational
Thinking could be of value to a wider audience than just computer scientists, and
should be more widely taught. In a followup article four years later, Wing reference
a definition by Wing, Cuny and Snyder where they define Computational Thinking
as:

“Computational Thinking is the thought processes involved in formulat-
ing problems and their solutions so that the solutions are represented in
a form that can be effectively carried out by an information-processing
agent.” [12].

This definition is very broad and open to interpretation, which has lead to problems
when implementing the subject in teaching environments [13]. In recent years, the
focus has shifted slighly from trying to define the term to defining different com-
ponents that are necessary for understanding Computational Thinking [14]. In a
2012 paper that focused on bringing Computational Thinking into schools, Barr
and Stephons identified what they consider to be the foundation of Computational
Thinking: Data collection, data analysis, data representation, problem decomposi-
tion, automation, algorithms and procedures, parallelization, and abstraction [15].

5

2. Theory

Another similar definition was made by the Computer Science Teachers Association
(CSTA) and The International Society for Technology. Their definition is as follows
[16]:

o Formulating problems in a way that enables us to use a computer
and other tools to help solve them.

o Logically organizing and analyzing data

o Representing data through abstractions such as models and simu-
lations

o Automating solutions through algorithmic thinking (a series of or-
dered steps)

o Identifying, analyzing, and implementing possible solutions with
the goal of achieving the most efficient and effective combination of
steps and resources

o Generalizing and transferring this problem solving process to a wide
variety of problems

Some of these concepts can be hard to teach younger children. Research on how
this can be done is still ongoing. Projects like GameChangineer attempt to teach
some of these concepts in a simple and fun way.

The studies that exist on teaching Computational Thinking to children are often
small in sample size and give varying results. A 2016 study on teaching Com-
putational Thinking to preschoolers by using ScratchJr gave positive results and
enhanced the childrens’ ability to abstract and compartmentalise [17].

2.2 Game Engine

Many of the games developed today make use of a game engine, with the engine
being a core part of the game. To give an exact definition of game engines is non-
trivial, since there is no formal definition of the concept. However, a game engine
encapsulates the general components of a game that can be abstracted and reused.
It can be viewed as a set of rules, algorithms and forms, that are applicable to
an arbitrary game. Another way to describe it is as a “collection of modules of
simulation code that do not directly specify the game’s behaviour (game logic) or
game’s environment (level data)” [18, p.2].

Many games use physics for example, the rules of which are unlikely to change.
It is not necessary for every game developer to implement a new physics system,
but can instead reuse an already existing one. This saves both time and resources
as games are being developed, making the whole process less complicated. Game
content, which is specific to a game, is not included in the game engine. This is
where graphics and sound resides, things that depend on the specific game being
developed [19].

6

2. Theory

2.3 Entity Component System

In game development, entities with several features are generally initiated from
a class containing the relevant components of that entity. Creating such a class,
that can handle a mix of features, is often solved with Object Oriented Program-
ming (OOP), which is a programming architecture used to make code modular and
reusable [20]. In OOP, this is achieved using inheritance. Data and behaviour is
encapsulated in classes and objects, which inherit from each other to build repre-
sentations with the right data and behaviour [21]. This introduces dependencies,
which may result in difficulties when creating game objects, since these objects can
share features. This can result in an unintuitive inheritance hierarchy, or increase
the need for custom handling. As the complexity of the hierarchy increases, the
expandability of the code decreases [20)].

A very simple example of this can be seen in Figure 1, where a inheritance structure
doesn’t work for a new class, requiring re-factoring of the inheritance hierarchy. In
large code bases, this can be time consuming and confusing. As a solution to this
the Entity Component System (ECS) pattern was introduced, which is similar to
both the component and the strategy pattern from OOP [22]. The ECS pattern
uses composition to provide functionality instead of inheritance. Composition gives
objects a ‘has-a’ relationship, rather than an ‘is-a’ relationship. Objects are created
by adding certain components, making code reusable and objects easily modifiable
by removing or adding components [20]. An example of how components are used
to dynamically add behaviour to entities can bee seen in Figure 2.

Class
GameObject
¥ ¥
Class Class
StaticEntity MovingEntity
¥ ¥ ¥ ¥
Class Class Class Class
Tree BonusBerry Fallingliem Player
v

Class

FallingBonusBerry

Figure 1: Using OOP, the ‘FallingBonusBerry’ object cannot inherit both the
classes ‘BonusBerry’ and ‘Falling’, as it would need to inherit from both the "Stati-
cEntity" and "MovingEntity" classes.

2. Theory

Entity Entity Entity Entity
Tres BonusBerry FallingBonusBerry Flayer
% —
Component Component Component Component
Bonus Welocity Pos Input

Figure 2: In ECS the entity can have several components. In this case the entity
"BonusBerry’ is composed of ‘Bonus’ and ‘Pos’, while ‘FallingBonusBerry’ has the
components ‘Pos’, "Bonus" and "velocity".

The ECS pattern is organised in entities, components and systems, where an entity
is composed by several components. Entities are objects with unique ids connected
to them, which in game development translates to game objects. Different properties
of this entity are represented by the components. Lastly, systems are responsible
for a part of the simulation, contains the logic for manipulating or utilising the data
from the components. Examples of a system is a physics engine or a rendering
module. What differentiates this method from traditional OOP is that the ECS
pattern uses composition instead of inheritance, as previously mentioned, resulting
in highly flexible and extensible frameworks [20][22].

The benefits of ECS is that systems are modular and expandable. Given the isolated
nature of systems and components, adding new features becomes easy. This isolation
is also the drawbacks of the ECS pattern; cross system communication and shared
components are difficult since they go against the decoupled and isolated nature of
ESC [20].

2.4 Grammar

A context-free grammar (CFG) defines rules for a formal language. A CFG consists
of a finite set of symbols called terminals; these make up the strings of the language.
There are also a finite set of variables or non-terminals, where each variable repre-
sents a language. One of these symbols is called the start symbol, and represents
the language being defined. Furthermore, the recursive definition of a language is
represented by a finite set of production rules. Each rule contains a variable, called
the head, which is partially defined by the rule. Next, after the head, follows the
symbol —, which in turn is followed by the body of the production; a string of zero
or more terminals and variables [23].

Developing a Context Free Grammar that describes a Natural Language is not an
easy task. However, when looking at a small, controlled subset of English, it is
possible.

3

Methods

This chapter introduces the methods used in this project in order to evaluate the
results and to investigate the questions specified in the problem formulation. This
was done partly by implementing a Web application, and partly by studying existing
research in those areas.

3.1 Evaluation

In order to access the success of the project, two methods of evaluation were em-
ployed, which are described in more detail below.

3.1.1 User stories

User stories were used in order to evaluate the web application, but also as a tool
to plan and discuss the project. A user story is a description of functionality that
has value to either the systems user or its producer. We have used Mike Cohn’s
definition which is as follows [24]:

User stories are composed of three aspects:

e a written description of the story used for planning and as a re-
minder

e conversations about the story that server to flesh out the details of
the story

o tests that convey and document details and can be used to deter-
mine when a story is complete

3.1.2 Test cases

Another evaluation technique used was to define test cases that were run on the
application, the result of which were used to evaluate if the application behaves
as expected and if the given test case resulted in the expected translation, or the
expected game.

3. Methods

The first set of test cases we used were tests developed for our product to support
a simple version of the game “Brick Breaker”:

Brick Breaker

There is a paddle, 54 bricks, and a ball.

The paddle is positioned at the bottom of the screen.

The player controls the paddle.

The paddle can move sideways.

The ball is positioned at the middle of the screen.

The ball starts moving randomly.

The bricks are positioned in a block at the top of the screen.

When the ball hits the paddle, the ball bounces.

When the ball hits a brick, the brick explodes and the ball bounces.
When the ball hits a border, the ball bounces.

When the ball hits the bottom border, the ball explodes.

When the ball explodes, the game is over.
When all the bricks are gone, you win

3.2 Implementation

This section lists and explains the methods used in this project. Some frameworks
and libraries that were evaluated were Grammatical Framework (GF) [25] and Near-
ley [26], two different tools for parsing controlled Natural Languages, and different
JavaScript game engines.

Regarding programming methods, a divide and conquer strategy was adopted; the
problems were divided and a responsible team member was assigned to each task.
In addition, agile development [27] was used, with the team using an iterative ap-
proach to programming, meaning the solutions were revised and changed as the
development process progressed. A part of the agile process is testing, which was
done continuously during development. Another aspect was that the product was
developed in increments, meaning a simplified implementation was done initially,
and then became more complex as the project moved forward. As previously men-
tioned, one method of evaluation that was employed was user stories. These were
then continuously used to evaluate if the application fulfilled the requirements. Re-
garding code development, the version-control system git was employed in order to
share and sync each team member’s work.

10

4

Design and Implementation

In this chapter, the design and implementation of the different parts of our product
is described. This includes the Parser, the Evaluator, the Game Engine, and the
User Interface.

Some of the features presented in this chapter are designed and documented but
not implemented in the finalised product. This is documented in section 4.11 Im-
plementation status, at the end of this chapter.

4.1 Design overview

All the information processing done by the application is performed on the client.
Here are some advantages of this approach:

o The application remains responsive even on low bandwidth connections and
can be used off-line

o Less complex code-base (no need for a communication layer)
o The application can be hosted on any web hotel

In order to speed up the development, an external parser generator, Nearley.js', and
game engine, Crafty.js?.

In this thesis we will, when relevant, maintain two levels of description:

e The conceptual level, where we describe the essential design and its underlying
principles

e The actual implementation

This division will make the description clearer, we believe, since it gives us the
opportunity to present a clear and readily understandable conceptual model. Then,
with this model in mind, the actual implementation can be divided in two parts:
One that conforms to the design intention, and one that is the result of compromises
due to practical considerations.

thttp://nearley.js.org/
2http://craftyjs.com/

11

4. Design and Implementation

The application is implemented using JavaScript, and is intended to run in modern
web-browsers that support at least JavaScript ES2015 (often referred to as ES6).
The JavaScript language was initially designed for writing small scripts on web
pages, but as more and more of modern software is executed directly in the browser,
JavaScript has evolved into a language with many powerful features, such as a mod-
ule system, that makes large applications feasible. However, it remains the respon-
sibility of the developer to choose an appropriate model for the specific application
and then to obey the conventions chosen. Over the following we will describe the
conventions that we have chosen to use.

Our application treats Natural Language as a rich interface for specifying games. As
more and more features of the input language is supported, more grammar rules will
be added, with their accompanying semantic functions in the Evaluator. The game
engine will also grow as more game objects and possible interactions are added. Our
approach to supporting extendability is to let the core structure of the code follow
from the data structures used.

4.2 Core Structure

Our approach to keeping the code structured and modular depends on two deliberate
choices. The first one is to work with a data-structure that fits the domain well.
The second is locate all of the evaluator functions in a separate data structure.

The Natural Language processing performed by our application can be seen as a
chain of functions that takes pure text, builds a syntax tree, and evaluates the
tree into a game representation. The game representation is then interpreted as
initialisation code for a game, defining game objects, configurations and rules that
maps events to actions.

This could be called an “information processing chain” and in many cases it would
be enough to just apply the functions in turn. However, in our app there is a need
to accumulate and keep the different stages in order to:

e Produce and show a decorated version of the original Natural Language input.

e Let errors that occurred during processing blame the offending part of the
input.

Therefore we have chosen to reify the data of the information processing chain by
representing it as an explicit data structure, that we can call “L” for “Language”
or “Linguistic”. L itself is just a plain JavaScript object, used as a map, where the
key /value-pairs of the map represents stages in the processing chain. In order to
make L as useful as possible, we have followed some rules for our usage of L. The
rules that we describe is closely related to the principles for map types described in
the Clojure specification framework Clojure spec?.

Shttps://clojure.org/about/spec

12

https://clojure.org/about/spec

4. Design and Implementation

L is seen as a relation between components, where the components are the key /value-
pairs of the map. The components are separately defined so that they are reusable
in other relations The meaning of the relation is constant and does not depend on its
information completeness at any given time. (Information completeness means how
many components or key/value-pairs that are present. If a component of L is not
known, this must be represented by the total omission of the whole key/value-pair,
never by using null as a value of a key.

From now on, a map data type seen in this way and used in accordance with the
above restrictions will be referred to as a component-relation map (CR-map).

4.2.1 Declarative usage of CR-maps

“Declarative usage” refers to any usage that can take place without the passing of
conceptual time. Conceptual time is what needs to pass in order for change to occur
in any of the concepts that is of interest in a given level of description.

CR-map data types have interesting properties: They have the same conceptual
meaning, no matter how instantiated their arguments/components are. Also, they
can go from a less instantiated state (fewer components present) to a more instanti-
ated state (more components present) without the passing of conceptual time. This
means that instantiation is not considered to be “change”, or a side-effect, but a
natural part of a declarative program. Interestingly, under the discipline described
above, this still holds for our usage of CR-map types in JavaScript.

In practice this means that the whole of the language processing can be seen as
declarative. Only when the processing starts anew, and L is replaced with a new
empty L, does conceptual time pass.

4.2.2 Functions over CR-maps

It would be advantageous if the implementation of the functions of an information
processing chain, such as parse or evaluate, could stay the same when they are
adopted to work on components of CR-maps instead of the raw values. We have
chosen to support this by providing a driver that accepts information about the input
and output components and lifts the original functions into functions over their
corresponding CR-map. The lifted functions can be labelled “auto-asscoicative”
functions, since they take a partially instantiated relation and gives it back in a
more instantiated form.

4.2.3 Syntax for declaring CR-map types and function sig-
natures

In order to be able to mention the shape of CR-maps and functions over them
in comments and documentation, we have devised an informal notation for com-

13

4. Design and Implementation

ponent relations, “shapes” or information completeness signatures of relations and
auto-associative functions. The notion “shape” is used to specifically refer to what
components are demanded in a given context. Auto-associative refers to a function
that recreates a whole structure from a part of it. Language processing can be seen
this way and this is made explicit by the use of CR-maps in our implementation.

A relation with name “R” that can have the components a,b,c:
R :: (Ga @b Gc)

The shape (information needed in a given context):
[@b @c]

The shape expression [@b @c] means that the components @b and @c are needed as
arguments to a function that will need them.

A auto-associative function f that depends on the existence of the component a,
and contributes the component b is written as:

f :: [@a] (+ @b)

Assuming the components a and b have values with types A and B respectively, the
function type of the non-lifted function looks like this:

f° :: A ->B

4.3 Decomposition of language processing func-
tionality

The language processing of our application takes a text, parses it into a syntax tree
that is then evaluated into a representation of a game. This representation is then
simulated using a game engine.

L :: (@text @syntax @model @domain)

parse ;0 [L @text] (+ @syntax)
evaluate :: [L @syntax] (+ @model)
simulate :: [L @model] (+ @domain)

The (@model) component holds the game representation, which is a collection of
game objects, configurations, such as “The user controls the paddle” and a set of
rules that map events to actions.

Since we use an external game engine (Crafty.js), the game representation is inter-
preted as initialisation code for Crafty.js. This means that only parse and evaluate
are applicable to our actual code, and simulate is not part of our own implemen-
tation, just as there is no explicit @domain data-structure. The functionality is still
present, but the processing takes place inside the game engine.

14

4. Design and Implementation

The above corresponds to the following more familiar types, if we ignore the need
to keep the full context.

parse :: String -> Syntax
evaluate :: Syntax —-> Model

4.4 Grammar/Evaluator Separation

We use a third-party parser generator, Nearley.js, that takes a context-free grammar
and produces a general parser using the Earley algorithm|[28]. It uses a custom file-
format that is compiled into an executable JavaScript file, that can be included in
a given code-base. The custom file-format offers the advantage of a succinct and
familiar format for defining grammars. But this also means that the post-processing
of the recognised syntactic structures must be encoded into the special file-format
using a special syntax. This is potentially problematic since the grammar in itself
already consists of many rules, and adding a substantial amount of post-processing
code will typically reduce readability.

We solved this problem by factoring our all the post-processing code into a separate
data-structure. Here follows a description of the strategy used.

4.4.1 Tagging the production rules of the grammar

For every production rule in the grammar, we use a function called tag. This
function does exactly two things: It selects the components of the match result from
a clause and tags these components with a label or multiple labels. The following
is a simplified example:

definite noun phrase (NP)
Decl -> "there" "are" NP_Indef
{% tag({ template: 1 })("Assertion","Object") %}

NP_Def -> "the" Noun
{% tag({ noun: 1 })("NP","Definite") %}

NP _Indef -> "a" Noun
{% tag({ noun: 1 })("NP","Indefinite") %}

The numbers used in the role-object given to tag are indices into the array that
Nearley.js returns for each clause that matches. The result from running the gram-
mar with the tagging post-processors is an Abstract Syntax Tree: The tag-functions
have selected only the important information and tagged them with labels that
explain what they are.

15

4. Design and Implementation

It is worth noting that the resulting Abstract Syntax Tree is a data structure with
essentially the same recursive structure as the grammar itself.

4.4.2 Defining the meaning of the tags

We have chosen to put all the definitions of what the tags mean into one data struc-
ture, called Evaluator. This data structure is essentially the evaluator function,
but it is not executable JavaScript code. This is the work of the driver, evaluate.

The driver evaluate performs the job of traversing the AST, using the labels to look
up the applicable function body, and then applying it to the results of recursively
invoking itself on each argument. One way to see the work of evaluate, is that it
recreates the recursive call stack that is executed during parsing.

This is how Evaluate would look for the two rules above. The environment is given
to each function as an optional second argument, and the lexicon as an optional
third argument.

const Evaluator = {
NP:{
Definite: ({ noun }, env) =>
lookup(env, noun),
Indefinite: ({ noun }, env, lex) =>
lex[noun],
1,
Assertion: {
Object: ({ template } , env)
=> assert(env, template),
Rule:
1,

4.5 Supporting visual feedback for Natural Lan-
guage

Adequate visual feedback can enhance the user experience by communicating hints
to the user about how the system interprets the input text.

Syntax highlighting have become ubiquitous in editors for programming languages.
But in most systems that support Natural Language input, (e.g. GameChangineer
and WordsEye) it is not supported. This is arguably not ideal; very few programmers
can imagine programming with syntax highlighting switched off. It is reasonable
to assume that the following properties of visual feedback can contribute to its
popularity among programmers:

16

4. Design and Implementation

o Contributes to the programmers intuitive understanding of how the system
interprets the input text.

o Gives immediate feedback on whether the input is well-formed or not and
increases user confidence.

Given the advantages listed above, we have included support for a limited version of
visual feedback. We call it Code Decoration, since we have adopted it to the current
use case: Traditional syntax highlighting adds colour and style to the different parts
of the source code. This is reasonable since programming languages already have
plenty of tokens that are used to mark groupings: <...>, (...), [...], {...} etc.
Since they are uncommon in Natural Language, we have adopted them as part of
the text-decoration, with the intention of providing the user with readily accessible
information on the interpreted groupings and semantics of the text.

The implementation of text decoration in our application is straight-forward, due
to the fact that we already produce a fully tagged syntax tree. All that is needed is
to add an extra component @deco to the relation L. Since L is a CR-map type, no
existing code will be affected, since an additional component can never take away
information and never effect the shape declarations of code that do not use the
extra information. The content of the new component is computed inside the tag
function, due to the fact that the concrete part of the syntax otherwise is discarded
there.

Here follows an example of a decorated indefinite noun phrase. The decorated form
that appear as part of the visual feedback is:

<a ball>

Based on the tags and the concrete tokens of the syntax, a HTML-representation
of the code is computed. Here is a HTML fragment corresponding to the above
decorated code.

a ball

All the visual appearance of the decorated code, including added brackets, are de-
fined using CSS (Cascading Style Sheets)*. Here follows the CSS that completes the
example above, telling the browser to render an indefinite noun-phrase surrounded
by grey bold angle-brackets.

span.NP.Indefinite: :before {
content: "<";
color: #888;
font-weight: bold;

+

span.NP.Indefinite::after {
content: ">";
color: #888;

4https:/ /www.w3.org/Style/CSS/

17

4. Design and Implementation

font-weight: bold;

We have chosen to render all characters that are part of the syntax decoration in
bold, grey style in order to facilitate for the user to see what is decoration and what
is the actual characters of the input. Otherwise, we have chosen to colour and style
the Natural Language code in a way similar to traditional syntax highlighting.

Since code decoration for Natural Language is not wide-spread, the question of what
mark-up to use is open, and experience might lead in one or another direction. We
take the stance that it is likely that it can enhance the user experience, if done
tastefully; it is straightforward to support and easy to customise using CSS.

4.6 Supporting localised error indication

When trying to program a game, but something does not work, it is useful to get
precise information about what is wrong and where the error is located. Therefore
we have chosen to make localised error messages an integral and central part of the
design.

An error in code could be just a simple mistake, or it could be a sign of an inconsis-
tency between what the user thinks that the system means with an expression and
what the system actually means. What the system can do is to provide the user
with information about what is wrong and where the error is located.

The application has three subsystems that can detect errors: The Parser, the Eval-
uator and the Game Engine. For the parser and the game engine we use external
libraries, so the availability of error type and localisation information depends on
these libraries.

For the evaluator, we have designed error handling as part of our core data-type;
the CR map type.

When an error occurs, the component that was supposed to be produced is not
available. According to our rules for CR-map types, this component must be left
out entirely. What is available is instead the following information:

e The component we were trying to compute when the error occurred
e The error message
o The path in the AST to where the error was detected

The error information is encoded in the L relation as a component (@error). The
value of the error component is a CR-map:

(Gerror: (@goal @path O@message))

18

4. Design and Implementation

Since a relation tagged with an error takes precedence over non-error semantics, the
code handling errors is located in the evaluate function itself. This means that if
the result of evaluating an argument is tagged with @error, the current operation is
not performed. Instead, the error found is annotated with correct path information
to the level currently evaluated and then returned. When the error reaches the top
level the UI enters an error state, showing the user the error, with the error message
available for inspection.

4.7 Ambiguity

While disambiguation using statistic and/or semantic information is an interesting
topic in itself, it is a possible source of uncertainty: Even if the user is 100% sure of
the meaning of a syntactically ambiguous expression, they might not be sure about
how the system interprets it. Since the goal is to offer the user an opportunity
to develop Computational Thinking, it would be preferable to make the system as
transparent as possible.

To keep the grammar from being ambiguous, restrictions are used. For example,
preposition phrases that are applicable both to nouns and verbs are not used. This
approach will not be feasible if the application is extended to handle more games
and more varied input. A solution to this would be to give the user the ability to
format their input text, for example by using indentation, in a way that would make
attachment explicit. Such input is currently not supported.

4.8 Supporting domain vocabulary: The Colour
Domain

To master a Natural Language means, among other things, to have an ability to
refer to and describe anything in the world, by using general concepts that can be
refined if needed. An example of this principle is the colour domain: Using only
a handful of general color words and a few modifiers, a human user can refer to
any color in general terms, and if needed, refine descriptions to within a desired
precision.

We have chosen to offer basic support for colour vocabulary with a sufficient degree
of cognitive realism for the vocabulary to be useful in practice. In the sections that
follow we describe the principles used.

4.8.1 Supported colour vocabulary

We have chosen to provide coverage for the following vocabulary:

19

4. Design and Implementation

Basic colour words
black, grey, white, red, orange, yellow, green, blue, violet

Basic colour modifiers
lzght, dark, strong, weak

Basic modifiers of modifier
very, somewhat

With these 14 words we offer basic coverage of the colour domain. Here is our model:

We use the hue — saturation — lightness (HSL) encoding, since it offers a decent
mapping to Natural Language concepts such light and dark, strong and weak. This
is an advantage compared to other representations such as the RGB colour model,
where no such straight-forward mapping is available.

When a colour word is used in English, the word class is far from obvious[29]. We
support only two possible cases: adjective usage and proper noun usage (see example
below). We also communicate to the user which grammatical class the system has
attributed to a color word, by decorating the proper noun form with title case. E.g.

(1) a green ball
(2) a ball with colour Green

Where (1) is an adjective usage and (2) is a proper noun usage.

Here is an example of the concrete representation of representation of the color
green:

Q@key: "color",
@value:
Q@hue: 125,
@saturation: 65,
@lightness: 50,
Oweight:1,

When used as an adjective, the colour information refines an already existing colour
component of an entity model. When used as a proper noun, only the @value
component is used, and the @key component is provided separately as a noun phrase
(2) above, and only the @value is used from the colour word.

4.8.2 Colour modifiers

We have chosen a weighted average model of modification that is straight-forward to
implement, and gives a decent distribution of colour models as a result of combining
colour adjectives with modifiers. A tentatively more realistic model that we consid-
ered was to support intervals, and then use strategies such as “typical” or “random”
when a coloured object is instantiated and there is need for a concrete colour.

20

4. Design and Implementation

The model is implemented as follows: A colour modifier such as light has an internal
ideal value, an attractor and a weight. When applied to a entity model in the colour
domain, the corresponding property of the entity model is attracted in the direction
of the attractor. Here is the model for light in usages such as “light green”:

Q@key: "color",

@value:
@lightness: O,

Oweight:1,

Now modifier-modifiers such as very and somewhat can be supported by letting
them modify the @weight component of a modifier.

The result of evaluating an utterance such as “very light green” would then be:

Q@key: "color",
@value:

@hue: 125,

@saturation: 65,

@lightness: (50%1 + 100%2)/(1+2),
Qweight:1,

4.9 Game engine

The mapping from the game representation to objects in the game engine is fairly
simple. If parsing and evaluation succeeds, the Evaluator will return a JavaScript
object containing two lists of objects: One of entities to be created, and one of rules.
Each entity object contains a key-value map of values that indicates the type, look
and behaviour of the entity. The entities are initiated empty, and components are
then added iterative based on the content in the entity object. The game engine used
in this project, CraftyJS, uses the ECS pattern, as discussed in section 2.3 Entity
Component System. This makes it trivial to create a game object and dynamically
adding behaviour this way.

In the second list of rules, each rule object contains an event, an action triggered
by the event, and a subject of the event.The rules are added locally to each object
affected by a rule. For example, if a rules says a ball should explode when hitting
a wall, each ball entity in the game representation will get the rule added to them.
Another solution to this would to have the rules available globally, and not connected
directly to an entity. This could have made the rules more flexible to change and
sped up the instantiation of the game representation. However, it would require the
development of a module to handle rules and events, which was too time consuming
for the scope of this project.

Collision detection was handled for us by CraftyJS, however what happens after
a collision had to be programmed by ourselves. CraftyJS uses Separating Axis

21

4. Design and Implementation

Theorem (SAT) [30] to detect collisions which returns a minimum translation vector
(MTV) [31], that is the shortest distance the object has to be moved in a certain
direction for the objects to no longer intersect. For the instance of bouncing objects,
this vector was used as a reflection line, so that the object’s old velocity vector was
mirrored in relation to the line, giving us the object’s new velocity vector. This was
the formula used:

Vnew = Vold — 2(‘/0ld : ﬁ)ﬁ

where n is normal vector of the MTV

4.10 User interface

Designing and developing a well thought out and responsive User Interface (UI) is an
important part of making the application an attractive and effective programming
education tool. The UI for this application was built using React, a JavaScript
framework. Since this application is aimed at children aged 10-18 that are new to
programming the idea was to make the UI as self explanatory as possible, so as to
lower the overhead of learning how it worked and instead enabling the user to start
testing directly.

We chose to make a simple Ul, see Figure 3. The focus on the main page is the input
field and game view, since we did not want users to have to see a long introduction
text every time they went to our application. As a new user you might want a
tutorial or examples. Therefore there are tabs for those easily available at the top
of the page.

Welcome to X, the place where you can create your own arcade games by writing simple sentences in the text box below. See what the prefilled line
does by pressing run game. If you need help, check out the tutorials page above

s, and a ball.
it the bottom of the screen.

a
When the ball explod
[When all the bricks are gone, y

EEES

Figure 3: A screenshot of what the UI looks like, featuring the Brick Breaker
example given in subsection 3.1.2 Test cases. The page is split in the middle with
the left side having the input field, once you click ‘Run Game’ it starts playing on
the right side.

22

4. Design and Implementation

Bootstrap, a framework for CSS, was used to provide styling for the components.
Bootstrap also enables the development of responsive application s with its grid
system. All the content is organised on a grid with 12 columns, which can be
grouped in any matter.

4.11 Implementation status

Due to time constraints, not all of the planned and designed functionality could be
implemented in the final version of the product. Below is the status of the different
parts of our product at the end of the project.

Grammar for the intended scope
The Grammar currently has coverage that is limited to the fundamental needs
of one arcade game, Brick Breaker.

Code Decoration
Supported — a decorated version of the input text is shown, but is not inte-
grated into the text input field.

Error Indication
Not supported, errors are not indicated as part of the decorated code.

Colour Domain Vocabulary
Colours can be referred to using basic colour words and modifiers as specified.
Only the adjective form and not the proper noun form of basic color words is
supported.

Progress Indication
Not supported

23

4. Design and Implementation

24

O

Discussion

This chapter will describe what impressions and insights the project resulted in. It
will also discuss what work this could lead to, and how the project could be further
developed in the future.

5.1 Product

As mentioned in section 4.11 Implementation status, we did not implement as much
of our design as planned. For example, error indication was a central concept of our
project, but was not be implemented. Several features that were designed but not
implemented are fairly straightforward and could potentially contribute positively
to the user experience of the app, see more under Future Work.

5.2 Contribution to Computational Thinking

Our conviction is that our application does contribute to learning Computational
Thinking, however perhaps not to the extent we initially thought. This could be
due to the fact that the coverage of what is possible to express is limited, i.e how
much Natural Language the parser can interpret as concepts that are supported by
the game engine.

o Formulating problems in a way that enables us to use a computer and other
tools to help solve them.

In order to use our product to create a game, the user will first have to formu-
late what the problem is. Once this is done the user can implement a solution,
which has to be structured in a way that a computer, or in this case the parser,
can interpret.

o Automating solutions through algorithmic thinking (a series of ordered steps)

Our product accepts a small subset of Natural Language, and the user will be
programming and writing small algorithms in that language. This promotes
algorithmic thinking.

25

5. Discussion

o Identifying, analysing, and implementing possible solutions with the goal of
achieving the most efficient and effective combination of steps and resources

We believe our product could contribute to this skill if a concept discussed in
future work is implemented: challenges. By implementing different challenges
for the user to solve a task - such as producing a game in as few lines as possible
- our product could teach a user how to analyse and implement solutions that
are more effective and efficient.

o (Generalising and transferring this problem solving process to a wide variety
of problems

Since our product should be versatile and able to produce a wide array of
games, the users should be able to use and learn from their past solutions to
solve future challenges.

5.3 Future work

In the following section we will discuss how the application could be extended.

5.3.1 Error messages

The use of an external parsing library proved to be time-saving, but lead to imprecise
error messages for grammatical errors. Currently only a position in the text is shown.
A natural goal would be to support partial parsing, where everything that is correct
is still parsed and visualised with normal code decoration, and what is not correct
is highlighted. A way to support this would be to build a custom dual strategy
parser, or alternatively, to access the parse forest of the existing third-party parser
generator. An advantage of a fully integrated parser would be that it would be
possible to mention it at the Natural Language level itself, making it possible to say
things like the result of parsing the string "a big read ball". Giving the
user the ability to express everything within the system with a clear meaning this
way could arguably have some pedagogical value.

5.3.2 Multiple source languages

In it’s current version, the application only supports one input language: English.
An interesting extension would be to support several source languages. This could
open up the possibility of more people using the application, and in the language
they are most comfortable with. Allowing the user to write in their first language
will strengthen the benefits of using Natural Language in the first place.

26

5. Discussion

5.3.3 User interface

One of the things that could be done to make the Ul more communicative is to
indicate how far in the process the user has come when an error occurs. The different
steps could be syntactic, indicating that the input is well formed according to the
rules, another could be semantically meaning that the users intention is properly
expressed. This could be done using a progress bar, which shows if the which steps
of the processing that was completed.

Another thing that could be done to improve the Ul so that it better supports the
user’s learning is more extensive examples and tutorials. While learning by doing is
encouraged, some explanation on how our controlled Natural Language is structured
would make the application easier to use.

5.3.4 Challenges

Adding challenges to the product could be a good way to help users improve their
skills. Examples of challenges are how to write a game in as few lines as possible,
or how to write a game first in a very forgiving controlled Natural Language, and
then a more constrained version.

5.4 Evaluating the application

There are several possible strategies for evaluating an application. The following
sections will discuss such evaluation strategies that would have been appropriate for
our project.

5.4.1 Survey

A potential user group of the end product will be students. There are several meth-
ods of evaluating how well the product achieves its purpose involving the students.
One of these is to survey the students before and after using the application.

Teachers are another group of users that it would be interesting to survey what their
opinion of the application themselves and the assess their opinions. This can be done
by allowing the teachers to use the application for themselves or in their teachings,
and then survey the teacher on how well it worked in a education environment.

5.4.2 A-B testing

Using a test in logical thinking, which would asses how proficient the students are
in logical thinking before and after spending time with the application, on could
preform what is called A-B testing [32]. This is done by letting one group of students

27

5. Discussion

use the application, but not the other, then allowing both groups to take the test.
The results of the two groups are then compared and studied. In the event that
there are no students available, one could imagine using university students in this
course.

5.4.3 User analysis

Another possible way to measure the results of the application is to track the user,
and analyse the data. For instance, it would be interesting to see how often the
user commits a mistake, and if this is changes over time. Furthermore, one could
analyse the games the user creates, and see if they become more complex, and how
this relates to the other aspects analysed, especially over time.

28

O

Conclusion

In conclusion, the application is modular; it is possible to change the implementation
of all the parts, as long as the interfaces between them are followed. The application
is also extendable; the current implementation does not need to be changed in order
to add more functionality.

We conclude that, according to the description of Computational Thinking given in

section 2.1, our project contribute to the following aspects of teaching Computational
Thinking:

o Formulating problems in a way that enables us to use a computer and other
tools to help solve them.

o Automating solutions through algorithmic thinking (a series of ordered steps)

o Identifying, analysing, and implementing possible solutions with the goal of
achieving the most efficient and effective combination of steps and resources

o Generalising and transferring this problem solving process to a wide variety of
problems

29

6. Conclusion

30

Bibliography

J. A. Van Dijk, The deepening divide: Inequality in the information society.
Sage Publications, 2005.

Y. B. Kafai and Q. Burke, “Computer programming goes back to school”, Phi
Delta Kappan, vol. 95, no. 1, pp. 61-65, 2013.

A. Balanskat and K. Engelhardt, “Computing our future: Computer program-
ming and coding - priorities, school curricula and initiatives across europe”,
Tech. Rep., Oct. 2015. [Online]. Available: https://www.researchgate.net/
publication/284139559 Computing our_future_Computer programming
and_coding - _Priorities_school_curricula_and_initiatives_across_
Europe.

M. LLC. (). Férandringar och digital kompetens i styrdokument, [Online].
Available: https : //www . skolverket . se / temasidor /digitalisering/
digital-kompetens (visited on 02/06/2019).

(2017). Gamechangineering: Logic, language, game design | ece | virginia tech,
[Online]. Available: https://ece.vt.edu/news/article/gamechangineer
(visited on 02/13/2019).

S. Papert, Mindstorms: Children, computers, and powerful ideas. New York,
NY, USA: Basic Books, Inc., 1980, 1SBN: 0-465-04627-4. [Online|. Available:
http://worrydream. com/refs/Papert’20-%20Mindstorms?201st’%20ed.
pdf.

A. Goldberg and D. Robson, Smalltalk-80: The language and its implementa-
tion. Addison-Wesley Longman Publishing Co., Inc., 1983.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment”, ACM Transactions on Com-
puting Education (TOCE), vol. 10, no. 4, p. 16, 2010.

B. Coyne and R. Sproat, “Wordseye: An automatic text-to-scene conversion
system”, in Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, ser. SIGGRAPH 01, New York, NY, USA: ACM,
2001, pp. 487-496, 1SBN: 1-58113-374-X. DOI: 10.1145/383259.383316. [On-
line]. Available: http://doi.acm.org/10.1145/383259.383316.

31

https://www.researchgate.net/publication/284139559_Computing_our_future_Computer_programming_and_coding_-_Priorities_school_curricula_and_initiatives_across_Europe
https://www.researchgate.net/publication/284139559_Computing_our_future_Computer_programming_and_coding_-_Priorities_school_curricula_and_initiatives_across_Europe
https://www.researchgate.net/publication/284139559_Computing_our_future_Computer_programming_and_coding_-_Priorities_school_curricula_and_initiatives_across_Europe
https://www.researchgate.net/publication/284139559_Computing_our_future_Computer_programming_and_coding_-_Priorities_school_curricula_and_initiatives_across_Europe
https://www.skolverket.se/temasidor/digitalisering/digital-kompetens
https://www.skolverket.se/temasidor/digitalisering/digital-kompetens
https://ece.vt.edu/news/article/gamechangineer
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
http://dx.doi.org/10.1145/383259.383316
http://doi.acm.org/10.1145/383259.383316

Bibliography

[10]

[11]

[12]

[13]

[14]

[18]

[19]
[20]

[21]
[22]

32

M. Tedre and P. J. Denning, “The long quest for computational thinking”,
in Proceedings of the 16th Koli Calling International Conference on Com-
puting Education Research, ser. Koli Calling '16, Koli, Finland: ACM, 2016,
pp. 120-129, 1SBN: 978-1-4503-4770-9. DOT: 10.1145/2999541.2999542. [On-
line]. Available: http://doi.acm.org/10.1145/2999541.2999542.

J. Wing, “Computational thinking”, Communications of the ACM, vol. 49,
pp- 33-35, Mar. 2006. bor: 10.1145/1118178.1118215.

——, “Research notebook: Computational thinking—what and why”, The
Link Magazine, pp. 20-23, 2011. [Online]. Available: http://people . cs.
vt.edu/~kafura/CS6604/Papers/CT-What-And-Why.pdf.

S. Grover and R. Pea, “Computational thinking in k—127, Fducational Re-
searcher, vol. 42, no. 1, pp. 3843, Jan. 2013. DOI: 10.3102/0013189x12463051.

J. Good, A. Yadav, and P. Mishra, “Computational thinking in computer
science classrooms: Viewpoints from cs educators”, in Proceedings of Society
for Information Technology & Teacher Education International Conference
2017, P. Resta and S. Smith, Eds., Austin, TX, United States: Association for
the Advancement of Computing in Education (AACE), Mar. 2017, pp. 51-59.
[Online]. Available: https://www.learntechlib.org/p/177274.

V. Barr and C. Stephenson, “Bringing computational thinking to k-12: What is
involved and what is the role of the computer science education community?”,
ACM Inroads, vol. 2, pp. 48-54, Mar. 2011. DOI: 10.1145/1929887 . 1929905.

I. S. for Technology in Education (ISTE) & Computer Science Teachers As-
sociation (CSTA), Operational definition of computational thinking for k—12
education, 2011. [Online]. Available: https://id . iste . org/docs/ct-
documents/computational -thinking-operational-definition-flyer.
pdf?sfvrsn=2.

S. Papadakis, M. Kalogiannakis, and N. Zaranis, “Developing fundamental
programming concepts and computational thinking with scratchjr in preschool
education: A case study”, International Journal of Mobile Learning and Or-
ganisation, vol. 10, pp. 187-202, Jul. 2016. DOT1: 10.1504/IJML0O.2016.077867.

E. F. Anderson, S. Engel, L. McLoughlin, and P. Comninos, “The case for
research in game engine architecture.”, 2008. [Online|. Available: http: //
eprints.bournemouth.ac.uk/24322/1/FP8GEA. pdf.

A. Thorn, Game engine design and implementation. Jones & Bartlett Pub-
lishers, 2011.

D. M. Hall, “Ecs game engine design”, 2014. [Online]. Available: https: //
digitalcommons.calpoly.edu/cpesp/135/.

B. J. Cox, “Object-oriented programming: An evolutionary approach”, 1986.

D. Wiebusch and M. E. Latoschik, “Decoupling the entity-component-system
pattern using semantic traits for reusable realtime interactive systems”, in
2015 IEEE 8th Workshop on Software Engineering and Architectures for Re-
altime Interactive Systems (SEARIS), IEEE, 2015, pp. 25-32.

http://dx.doi.org/10.1145/2999541.2999542
http://doi.acm.org/10.1145/2999541.2999542
http://dx.doi.org/10.1145/1118178.1118215
http://people.cs.vt.edu/~kafura/CS6604/Papers/CT-What-And-Why.pdf
http://people.cs.vt.edu/~kafura/CS6604/Papers/CT-What-And-Why.pdf
http://dx.doi.org/10.3102/0013189x12463051
https://www.learntechlib.org/p/177274
http://dx.doi.org/10.1145/1929887.1929905
https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn=2
https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn=2
https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn=2
http://dx.doi.org/10.1504/IJMLO.2016.077867
http://eprints.bournemouth.ac.uk/24322/1/FP8GEA.pdf
http://eprints.bournemouth.ac.uk/24322/1/FP8GEA.pdf
https://digitalcommons.calpoly.edu/cpesp/135/
https://digitalcommons.calpoly.edu/cpesp/135/

Bibliography

[25]
2]

[27]

[28]

[29]

[30]

J. E. Hopcroft, R. Motwani, and J. D. Ullman, Automata theory, languages,
and computation. Pearsn Education Limited, 2008, 1SBN: 1-292-03905-1.

M. Cohn, User stories applied: For agile software development, ser. Addison-
Wesley signature series. Addison-Wesley, 2004, 1SBN: 9780321205681 [Online].
Available: https://books.google.se/books?id=SvIwuX4SVigC.

Grammatical framework. [Online]. Available: https://www.grammaticalframework.

org/.

Kach, Kach/nearley, Feb. 2019. [Online]. Available: https://github. com/
kach/nearley.

M. Alexander, Agile project management: A comprehensive guide, Jun. 2018.
[Online]. Available: https://www . cio.com/article /3156998 /agile -
development/agile-project-management-a-beginners-guide.html.

J. Earley, “An efficient context-free parsing algorithm”, Commun. ACM, vol.
13, no. 2, pp. 94-102, Feb. 1970, 1ssN: 0001-0782. pO1: 10. 1145/ 362007 .
362035. [Online]. Available: http://doi.acm.org/10.1145/362007.362035.

R. Langacker and R. Langacker, “Cognitive grammar: A basic introduction”,
in. Oxford University Press, USA, 2008, p. 102, 1sBN: 9780195331950. [Online].
Available: https://books.google.pn/books?id=6QsSDAAAQBAJ.

K. S. Chong, Collision detection using the separating azis theorem, 2012. [On-
line]. Available: https : //gamedevelopment . tutsplus . com/ tutorials/
collision-detection-using-the-separating-axis-theorem—-gamedev-
169.

Crafty. (). Collision, [Online]. Available: http://craftyjs.com/api/Collision.

html.

J. Gregory and L. Crispin, More agile testing: Learning journeys for the whole
team, ser. Addison-Wesley Signature Series (Cohn). Pearson Education, 2014,
pp. 203-204, 1SBN: 9780133749564. [Online|. Available: https : / / books .
google.se/books?id=uq-pBAAAQBAJ.

33

https://books.google.se/books?id=SvIwuX4SVigC
https://www.grammaticalframework.org/
https://www.grammaticalframework.org/
https://github.com/kach/nearley
https://github.com/kach/nearley
https://www.cio.com/article/3156998/agile-development/agile-project-management-a-beginners-guide.html
https://www.cio.com/article/3156998/agile-development/agile-project-management-a-beginners-guide.html
http://dx.doi.org/10.1145/362007.362035
http://dx.doi.org/10.1145/362007.362035
http://doi.acm.org/10.1145/362007.362035
https://books.google.pn/books?id=6QsSDAAAQBAJ
https://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169
https://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169
https://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169
http://craftyjs.com/api/Collision.html
http://craftyjs.com/api/Collision.html
https://books.google.se/books?id=uq-pBAAAQBAJ
https://books.google.se/books?id=uq-pBAAAQBAJ

	Introduction
	Background
	Purpose
	Problem formulation
	Related work
	Delimitations
	Overview

	Theory
	Computational Thinking
	Game Engine
	Entity Component System
	Grammar

	Methods
	Evaluation
	User stories
	Test cases

	Implementation

	Design and Implementation
	Design overview
	Core Structure
	Declarative usage of CR-maps
	Functions over CR-maps
	Syntax for declaring CR-map types and function signatures

	Decomposition of language processing functionality
	Grammar/Evaluator Separation
	Tagging the production rules of the grammar
	Defining the meaning of the tags

	Supporting visual feedback for Natural Language
	Supporting localised error indication
	Ambiguity
	Supporting domain vocabulary: The Colour Domain
	Supported colour vocabulary
	Colour modifiers

	Game engine
	User interface
	Implementation status

	Discussion
	Product
	Contribution to Computational Thinking
	Future work
	Error messages
	Multiple source languages
	User interface
	Challenges

	Evaluating the application
	Survey
	A-B testing
	User analysis

	Conclusion
	Bibliography

