
Baa!
A procedural game based on real-time flocking behaviour

Bachelor’s thesis DATX02-19-37

OSKAR GRÖNQVIST, ERIK MAGNUSSON,
IBRAHIM NABOULSI, LUCAS NORMAN,
MATILDA SJÖBLOM, MY SUNDQVIST

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Bachelor’s thesis DATX02-19-37

Baa!
A procedural game based on
real-time flocking behaviour

OSKAR GRÖNQVIST
ERIK MAGNUSSON
IBRAHIM NABOULSI
LUCAS NORMAN

MATILDA SJÖBLOM
MY SUNDQVIST

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Baa! - A procedural game based on real-time flocking behaviour

©
OSKAR GRÖNQVIST,
ERIK MAGNUSSON,
IBRAHIM NABOULSI,
LUCAS NORMAN,
MATILDA SJÖBLOM,
MY SUNDQVIST,
May 2019.

Supervisor: Marco Fratarcangeli, Department of Computer Science and Engineer-
ing, Chalmers University of Technology

Examiner: Staffan Björk, Department of Computer Science and Engineering, Uni-
versity of Gothenburg

Bachelor Thesis DATX02-19-37
Department of computer science and engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

iii

Abstract
Simulating the natural movement of large groups of flocking animals has been a
growing field of research within computer science since the 1980’s, largely because
of its potential in performance optimisation. The purpose of this bachelor’s thesis
is to combine this existing research in flocking behaviour with gameplay design
and optimisation to create a procedural game with flocking as its main feature. To
accomplish this, Unreal Engine 4 and C++ has been used as a working environment.
The result is an optimised game where roughly 700 sheep in a flock can be present
without a significant performance loss. The actual number of sheep used in the
game, however, is significantly lower to make the game more playable.

Sammanfattning
Att simulera rörelsemönster hos stora grupper av flockdjur har varit ett växande
forskningsområde inom datavetenskap och datorgrafik sedan 1980-talet, mycket på
grund av dess stora potential för prestandaoptimering. Syftet med det här kandi-
datarbetet är att kombinera den befintliga forskningen inom flockningsbeteende med
speldesign och optimering för att skapa ett procedurellt spel med flockningsbeteende
som utmärkande egenskap. För att åstadkomma detta har Unreal Engine 4 samt
C++ använts som utvecklingsmiljö. Resultatet är ett optimerat spel där omkring
700 får i en flock kan simuleras utan signifikant påverkan på spelets prestanda. Det
faktiska antalet får som används är dock betydligt lägre för att göra spelet mer
spelbart.

Keywords: flocking behaviour, ai, video-game, unreal engine, sheep.

iv

Acknowledgements

We would like to thank our supervisor Marco Fratarcangeli for his support and
willingness to help us when we found ourselves lost in difficult tasks.

Group DATX02-19-37, Gothenburg, May 2019

Contents

List of Figures ix

List of Tables x

Glossary xi

1 Introduction 1
1.1 Work by Craig Reynolds . 1
1.2 Boids . 1
1.3 The flocking behaviour . 2
1.4 Practical Applications . 2
1.5 Purpose . 3
1.6 Scope . 3

2 Theory 5
2.1 Game Engines . 5
2.2 Game Design . 6

2.2.1 The Game World . 6
2.2.2 Score . 7
2.2.3 Resources . 7
2.2.4 End Condition . 7

2.3 Flocking Simulation . 7
2.3.1 Reynolds’ Three Flocking Rules 7
2.3.2 Modifications in Previous Work 8
2.3.3 Collision Avoidance . 9
2.3.4 Perception and Visual Fields 9
2.3.5 Sheep Behaviour . 10

2.4 Performance Optimisation . 10
2.4.1 Optimising with Spatial Data Structures 11
2.4.2 Optimising with Parallelisation 11

3 Methods 13
3.1 Tools . 13
3.2 Creating a Simulation . 13
3.3 Creating the Game . 14

3.3.1 Graphic design . 14

vii

Contents

3.3.2 Parallelisation . 16
3.3.3 Uniform Grid . 16

3.4 Game Design . 18
3.4.1 Gate Functionality . 19
3.4.2 Balancing the Game . 20

3.5 Flocking Implementation . 20
3.5.1 Perception and Visual Fields 21
3.5.2 Collision Avoidance . 21

3.6 Testing . 23

4 Results 24
4.1 Gameplay . 24
4.2 Sheep flocking algorithm . 27
4.3 Performance . 28

5 Discussion 30
5.1 Flocking Implementation . 30
5.2 Gameplay . 31
5.3 Parallelisation . 32
5.4 Uniform Grid . 32
5.5 Ethical aspects . 33

5.5.1 Military units . 33
5.5.2 Robotic bees . 33

5.6 Further Development . 34

6 Conclusion 36

7 References 38

viii

List of Figures

3.1 This project’s first simulation of a flock of boids. 14
3.2 A scene comparison between a) default materials and b) with cel

shading. The cel shading gives the scene a cartoon look with blocks
of colour. 15

3.3 A 5x5 uniform grid where s1, s2, ..., s6 are sheep 17
3.4 Highlighted nearby cells for a sheep 18
3.5 The whole game world from a top down view. 19
3.6 A sheep using linetracing to detect objects in its environment 22
3.7 Velocity vectors before and after the collision avoidance algorithm is

executed . 23

4.1 The game’s start screen and the cursor icon. 24
4.2 The view when the player has pressed play. 25
4.3 One sheep is herded over to level two. 26
4.4 Overview of level two. 26

ix

List of Tables

3.1 Tuneable parameters for the flocking behaviour 21

4.1 Table of average values from profile testing on the development build 28
4.2 Table listing the amount of sheep used in a game session on a shipping

build, followed by the amount of frames, minimum, maximum and
average FPS . 29

x

Glossary

actor An object that can be placed in the game world according to Unreal Engine
4. xi, 18, 32

Autodesk Maya A 3D computer graphics application commonly used for inter-
active 3D applications, including video games, animated film, TV series, or
visual effects. 14

boid A bird like object, coined by Craig Reynolds and is used to describe members
of a flock. ix, 1, 2, 3, 9, 11, 13, 16

C++ A programming language based on C but with object oriented properties,
commonly used in game development. 13, 32

mesh A collection of vertices, edges and faces that defines the shape of a polyhedral
object in 3D computer graphics and solid modelling. 18, 32

pawn An actor that can be controlled by a player according to Unreal Engine 4.
18

pointer A variable that stores the address of a value in the memory so that it can
be accessed directly in the memory. 16

thread A sequence of instructions for the CPU to execute successively. xi, 11, 16,
27, 32

thread pool A collection of threads that are assigned tasks to do in parallel.. 16

triggerbox A box shaped object in the game used to trigger events when over-
lapped with actors. 19

UE4 Unreal Engine 4 . 3, 13, 14, 15, 27, 28, 32

xi

1
Introduction

This project explores game development using procedural flocking behaviour through
the creation of a sheep herding game based on existing theory on flocking behaviour
algorithms, game design, and sheep behaviour. Various technical tools and methods
are used and discussed, the main ones being Unreal Engine 4, spatial data struc-
tures, and parallelisation.

Humans have long studied the behaviour and movement patterns of large groups of
animals and organisms. The complexity of hundreds, maybe thousands, of birds,
sheep or even bacteria that move together in unison has been something that many
researchers have aimed to describe. Although one might think this is solely a sub-
ject of study for biologists and other nature-oriented researchers, this phenomenon
has caught the interest of researchers and professionals in computer graphics as well.

Due to the complexity of visualising large amounts of birds flying together in a
flock, animators devoted their attention to research in flocking behaviour. Using a
mathematical model to simulate flocking behaviour resulted in animations of flock-
ing to both look more realistic and be easier to produce.

1.1 Work by Craig Reynolds
Few people have been so influential to a field of research as Craig Reynolds has been
to flocking behaviour. After having practically invented the research field when
publishing his 1987 article Flocks, Herds, and Schools: A Distributed Behavioural
Model [1], his name has appeared in most articles related to flocking behaviour
ever since. This report is no exception as most flocking in this game is built upon
Reynolds’ work that was published more than three decades ago.

1.2 Boids
Flocking behaviour does not only apply to birds, sheep, and bacteria. The simula-
tion of flocking described in this report can be applied to many different kinds of
animals, microorganisms and objects. To avoid naming a specific type of member
when discussing flocking behaviour, Reynolds coined the term Boid, stemming from
bird-like object, to refer to any type of member in a flock [1].

1

1. Introduction

In the English language, there is a myriad of different words referring to groups
of all types of animals. For that reason the remainder of this report is using the
word flock to refer to any group of animals, including boids, just as Reynolds did in
his article [1].

1.3 The flocking behaviour
Although a flock of birds can seem big, complex and incomprehensible it can, ac-
cording to Reynolds, be simulated using three simple rules [1].

• Collision Avoidance: the separation of the flock members to avoid collision.
• Velocity Matching: attempt to match velocity with nearby flockmates.
• Flock Centring: attempt to stay close to nearby flockmates.

These are the rules that each individual boid in a flock needs to follow in order to
collectively achieve a flock-like behaviour. Each rule, along with its usefulness and
difficulties, is described in more detail in section 2.3.

1.4 Practical Applications
A simulated flocking behaviour can be applied in many scientific and non-scientific
areas. The animators of the movie Batman Returns, which premiered in 1992 [2],
wanted to simulate a colony of black bats that swarmed as a group down the streets
of Gotham City. To achieve this behaviour, they created one bat that looked as they
wanted it to and then copied this bat until they had a colony that was big enough.
After this, they made all the individual bats have an average velocity of nearby bats,
go in the average direction and not get too far away from their neighbours. The
result was a relatively realistic colony of bats.

Flocking has been used in other areas besides animating a flock of animals for
films and other media. A more serious usage is in the military, where a swarm
of autonomous drones can be instructed to attack a group of people [2]. Another
military area the US army has considered using flocking for is its military satellites.
The idea is that if a satellite is divided into several small mobile units, it is harder
to target and take down by foreign opponents [2].

Other areas where flocking algorithms have been tested include pathfinding for
real-time strategy games, such as StarCraft. One study applied flocking for mi-
cromanagement in StarCraft, where micromanagement means placing small units
at strategic places in the game world [3]. Unfortunately however, it was not consid-
ered significantly better than what had previously been used and was deemed too
ineffective to be used [3]. Another study applied Reynolds’ flocking behaviour on
bacteria and interestingly found that, even if bacteria lack a central nervous system

2

1. Introduction

as for example birds, the simulation behaved almost like real bacteria when the three
flocking rules were applied [4].

1.5 Purpose
The ambition for the project is to develop an entertaining procedural game with
flocking behaviour as the central feature. During the development, it is also inves-
tigated whether a flocking algorithm can be the central feature of a game designed
using existing gameplay design theory.

The objective is to design a game based on flocking behaviour where the main
focus is its gameplay and player experience while maintaining a behaviour that re-
sembles flocking in nature as closely as possible. Different ways of optimising the
flocking algorithm is explored in order to achieve a group of up to 1000 boids being
run simultaneously without experiencing any severe performance issues.

1.6 Scope
As a requirement of the project is procedurality, it was decided that the random-
ness of flocking behaviour would fulfil this condition but that other applications of
procedurality such as level generation is not included in the scope. The reason for
this is that the focus mainly lies in making a well developed flocking behaviour that
behaves as intended. Another reason is the limitation of time and resources. Mak-
ing the flock procedural increases its realism making it easier to see if the individual
actors perform as they should.

The visual part is created with Unreal Engine 4 (UE4) as this game engine gives a
lot of assistance when constructing the graphics. Using a graphics library such as
OpenGL would allow for greater optimisation but the extra effort is not constructive
towards the goals of the project. The result should be a demo of a game concept, as
developing a full game in the given time-span does not seem plausible. The optimi-
sation for large flocks is secondary to the gameplay, both because making a fun and
realistic game is more important to our purpose, and making the flocks too large
would affect the playability of the game.

3

2
Theory

This chapter aims to give the reader an overview of the theory behind simulating
flocking behaviours, as well as an introduction to concepts and tools commonly
used in game development. In addition to this the chapter introduces sheep specific
behaviours which should be taken into consideration when adjusting the simulated
flocking behaviour specifically for a herd of sheep.

2.1 Game Engines
A game engine works as an abstracting layer between the computer and the game
creator. By providing facilitating features, it makes the process of developing the
game easier. These are the features that game engines usually facilitate [5]:

• Render graphics. The first impression a player gets from a game is how it
looks. With modern game engines, rendering powerful graphics is one of its
many benefits. One can import assets from different platforms as the game
engine makes the importing fast and accurate.

• Physics. To have realistic physical objects is important in order to create a
good game experience for a player. A game engine helps with creating objects
that have physical restrictions and are able to move in a world without having
to code every step.

• GUI. Graphical user interfaces are sometimes crucial to make the game more
understandable for a player. Game engines support making a graphical user
interface with different kinds of editors designed for that specific purpose.

• Scripting. Many game engines have pre-made scripts that for example handles
camera movement.

• Networking. If a game is going to have multiple players over a network, it will
need server power. Some game engines provide workflows to make it easier to
have stable network functionality.

• Sounds. Most games are going to have some sound effects, these are easy to
integrate and assign to specific events by using a game engine.

5

2. Theory

2.2 Game Design
Game design is about the creators’ process of decision making when constructing a
game. In order to get the user to understand how the game should be played and
which rules that make the game, the designer needs to ensure that the game shows
clearly the way to play it [6].

Initial research into the area of game design highlighted the importance of bal-
ancing the game experience. In the book The Art of Game Design: a book of lenses
by Jesse Schell, he compares creating a balanced game with creating a recipe [6,
pp. 175-205]. When creating a recipe, all the ingredients are decided, but not how
much of each in order to get an appetising meal. The same process is important
when balancing games, all the elements may be there but their appropriate ratios
have to be determined in order to get a fun and entertaining game. In this section,
the game patterns and elements that this game consists of is described.

2.2.1 The Game World
The game world is where the game takes place. It describes the spatial relationship
between the game elements, such as restricting where the player can and cannot
move. There are two kinds of game worlds, discrete and continuous. Continuous
is when the player appears to move seamlessly without obvious restrictions, such
as in open world games. Discrete is when the player moves in distinctly defined
levels, where the player has to complete a level to access further areas of the game
world. A game world can be constructed in many ways; 2D, 3D, linear, non-linear,
et cetera. For this game, a 3D approach has been taken, meaning that the player
and the game elements are placed and can be moved in three dimensions.

Another part of the game world is levels, in which player needs to fulfil certain
criteria for or in order to get to the next one. Levels can use certain closure points,
which is forcing the player to do irreversible actions [7, pp. 55-107]. By crossing clo-
sure points, the player cannot undo their choice, thus making the action irreversible.

A game world can also take usage of inaccessible areas. Inaccessible areas are areas
that the player can not currently enter. Even if the player is not able to currently
access the area, they may be able to affect and view it [7, pp. 55-107]. Inaccessible
areas are commonly used in cases where the level or world is of a limited size, and
the creators want it to appear bigger. An area of this kind is often blocked by some-
thing that makes the player unable to access it, this can be another game element
like a high fence, stones, doors, and so forth. However, sometimes other actors in
the game can reach the area; for example, if there is a river blocking the way and
the player is unable to swim but other actors are. In some cases, what is blocking
the area is not visible. For example, if a certain goal has to be reached in order to
be able to move through.

6

2. Theory

2.2.2 Score
A score is an element in games that motivates the player to investigate what can be
done in the game by changing it, and by that, explore the game itself more. The
game designer needs to define what will generate a higher or lower score, and by
how much, as the score is somewhat representing success in the game. If the player
gets enough information, they can calculate her own tactics in order to get a certain
amount of points in the fastest way or get an as high or low score as possible [6], [7].

2.2.3 Resources
Resources in games are used to represent some kind of commodity the player has
to manage [7, pp. 107-122]. It has to be clear to the user what the resources are
there for and which actions the player can perform by utilising them. The need to
manage the resources can encourage the player to think strategically, hence it is a
common element in games to make the resources both limited and renewable.

2.2.4 End Condition
In many arcade games, the level of success is measured by how long the player man-
ages to survive. In other words, the game will always end based on some condition
[7]. In order to add value to the game experience, an end condition needs to be set
that gets increasingly tougher for the player to handle. This creates tension between
the player and the game. If the player discovers that there is a way of losing, the
tension rises, the challenge increases and value to the game is created [6]. This is
a way of balancing a game; if it is too easy to play a game forever without losing,
there is no challenge. On the other hand, if the player keeps losing at an early point
in a game, it can be frustrating to play.

2.3 Flocking Simulation
A flocking behaviour emerges when many separate agents group together to form
a larger entity despite all decisions being made individually. In computers, such
a distributed model allows for easier parallelisation and does not require a higher
performance computer as a more centralised model would. The following section
will describe Reynolds’ three rules [1] as well as a few other rules which create a
more realistic behaviour, such as collision avoidance and visual fields.

2.3.1 Reynolds’ Three Flocking Rules
As previously mentioned in section 1.1, the research field of flocking behaviour sim-
ulations was largely created when Craig Reynolds published his 1987 article [1],
making his work and accomplishments popular to recreate. This includes Reynolds’
three rules for flocking behaviour, collision avoidance (from now on referred to as
separation of members), velocity matching and flock centring [1]. What Reynolds
discovered was that while flocking in real animals is a very complex process that

7

2. Theory

has been developed over millions of years, it can be simulated by calculating and
summing-up acceleration vectors for each of the three rules. The following descrip-
tions of the rules are largely based on Reynolds’ article.

Separation is a boid’s desire to stay at a safe distance away from its fellow flock
mates to avoid colliding with each other [1]. This is often implemented by applying
a force opposite the direction of another boid that is inversely proportional to the
distance between the boids. In other words, the closer a boid is to another boid, the
stronger is its desire to move away from that boid.

Velocity matching, or alignment is the desire to move in the direction of the rest of
the flock [1]. This is often implemented by finding the average of the other boids’
velocity vectors within its visual field. This rule makes it possible for smaller flocks
or individual boids to merge with larger flocks.

Flock centring, or cohesion, is a boid’s desire to stay close to its flock mates and
form an actual flock [1]. While this may sound contradictory to the first rule, using
only one of them would result in a desire to either get closer to its flock mates or
move away from them. A combination of these two rules create a desire to stay
within a certain distance or distance interval from its flock mates. This rule is often
implemented by creating an acceleration vector in the direction of the nearby boids
which is proportional to the distance between them.

2.3.2 Modifications in Previous Work
Ever since Reynolds’ original flocking algorithm from the 1980s there have been
many modifications both to the original three rules and by introducing additional
rules. One such modified flocking algorithm is the one introduced in Extending
Reynolds’ flocking model to a simulation of sheep in the presence of a predator,
which presents an algorithm modified to work with sheep and a predator [8].

The modified algorithm has minor changes to the three original rules. Reynold’s
cohesion implementation performs calculations on a limited number of boids [1],
while the modified algorithm performs the calculation on all boids or sheep in or-
der to ensure that the sheep come to a stop. The result of the separation rule is
normalised in order to get just the direction and not the strength. The only change
made to the alignment rule is that it is given very small importance when weighted
in order to avoid constant motion [8].

When the sheep enter the flight zone, which is a radius around the predator, the
escape rule based on formula 2.1 is activated. In order to avoid the activation being
too sudden, it uses an inverse square function.

8

2. Theory

esc(s) = sp − pp

|sp − pp|
inv(|sp − pp|, 10) [8] (2.1)

Where:

sp: is the position of the sheep
pp: is the position of the predator

inv(x, s) = (x
s

+ ε)−2

ε: a small value in order to avoid division by 0

In addition to these modifications the weights of the original rules are different
whenever a predator is close to a sheep, as can be seen in formula 2.2. The weights
are shifted using a sigmoid function p(x) where x is the the distance to the predator
in order to get a smooth transition between the different weights.

v =mc(1 + p(x)mcp)coh(s)+ (2.2)
+ms(1 + p(x)msp)sep(s)+
+ma(1 + p(x)map)ali(s)+
+meesc(s)[8]

Where: mf : is a weight for the force f
mfp: is a weight for the force f used when a predator is near

After the formula 2.2 the velocity is capped to a maximum velocity which increases
when the predator comes closer.

2.3.3 Collision Avoidance
An important aspect of achieving realistic flocking behaviour is the boids’ ability
to detect and interact with their environment. Collision avoidance is an example
of that. Collision avoidance is not to be confused with collision detection, however,
as the latter is merely what triggers the algorithm of the former. When the boid is
approaching an object which it is going to collide with, the boid’s behaviour needs
to change depending on its distance to that object.

The algorithm’s first response should be to give it a desire to move away from
the object by applying an acceleration inversely proportional to the distance paral-
lel to the impact normal (the vector perpendicular to the point of future impact).
Since there are many forces from many different sheep in play however, it is neces-
sary to eliminate all movement towards the object as some point making a collision
impossible.

2.3.4 Perception and Visual Fields
An aspect touched upon by Reynolds in his 1987 article is the use of different kinds
and shapes of visual fields to change a boid’s perception [1]. The most simple
implementation of this would be making a boid aware of everything within a certain

9

2. Theory

radius of itself, including other boids and objects. This approach can, along with well
tuned flocking rules, produce a satisfying result but is not often the most realistic
representation of an animal’s vision. When taking inspiration from nature, one
can see that many prey animals have their eyes placed on the sides of their heads
meaning they have a wider visual range, sometimes as wide as 360 degrees, while
predators often have eyes placed on the front to improve depth perception while
decreasing their field of view [9]. What makes more complex visual fields harder to
implement is largely a problem with performance. Since a circular visual field is the
easiest and fastest possible implementation, any deviation from that shape creates
additional calculations and performance drops.

2.3.5 Sheep Behaviour
As this project aims to create a game based on herding sheep, tuning of the flocking
behaviour has been made. Sheep are different from the standard boid in that the
simulation of their behaviour does not require three dimensions. They also have a
very wide range of vision, the only blind spot they have is right behind them [10].
Their binocular vision; the vision using two eyes to focus and see depth, is narrow.
On the other hand, their peripheral vision is very wide as their eyes are on the sides
of their head.

When sheep are herded, studies show that they tend to move closer to the cen-
tre of the flock compared to when they flock without external influence [11]. The
closer a predator appears to be, the closer the sheep seek the centre. This study
also meant that if the flock was very scattered, they all tended to seek the middle,
creating a more tight cluster of sheep. Besides these findings, it appears that if a
sheep leaves the flock when the group is standing still, the other members of the
flock are going to follow the departing sheep [12]. Researchers also observed that
if many sheep have left the flock, the remaining sheep in that flock will be more
inclined to separate from the group and depart at an increased frequency.

2.4 Performance Optimisation
Simulating a large herd of sheep is an expensive task for a computer to handle. When
calculating the next position for each sheep, the separation, cohesion, and alignment
forces must be calculated for each sheep. Furthermore, each sheep needs to look for
its adjacent sheep to calculate these forces. This would mean going through a list
of all sheep and comparing the distance between them with the sheep’s field of view
to determine whether the adjacent sheep are to be considered when calculating the
forces. These are expensive calculations for a single sheep in the herd and would
yield performance issues when expanding the herd.

Many different techniques can be used to optimise the flocking algorithm for the
herd of sheep. This section will describe two critical methods. The first is optimis-
ing with spatial data structures in order to make access to adjacent sheep cheaper.

10

2. Theory

Second is introducing parallelism in order to perform the calculations for Reynolds’
three rules in parallel for all sheep in the herd.

2.4.1 Optimising with Spatial Data Structures
The high complexity of the algorithm executing the flocking behaviour can be largely
decreased using a spatial data structure. Spatial data structures subdivides the space
into pieces where only information about the boids that are currently inside that
subdivision is saved.

Since the boids are spatial data and a lot of operations want to find boids close
to another boid, an algorithm that does not use spatial data structures will have
a quadratic complexity (O(N2)) [13]. This method is a so-called brute force algo-
rithm, that compares every pair of boids in nested for loops. By using a spatial
data structure, this operation will be much faster. A spatial data structure, such as
Uniform Grid or k-d trees (k-dimensional trees), partitions the space into smaller
sections [14]. This makes it so that each boid only has to consider other boids that
are located in subdivisions close to it. With an efficient spatial data structure it is
possible to reach close to a constant complexity.

2.4.2 Optimising with Parallelisation
Collision detection is usually a slow operation. As every boid in the flock has to
be compared with every other boid, it has a complexity of O(N2) when doing it in
a single thread [15]. Moreover, it is not just the collision detection that has to be
calculated for every boid, it is all the other rules that the flocking behaviour consists
of as well. Since these calculations have to be done for every boid and the calculations
are independent from each other, the problem is very suitable for parallelisation.
When parallelising, the problem is subdivided into separate threads of the CPU,
central processing unit, or the GPU, graphics processing unit. This means that
an amount of boids are put on separate threads. By this, the calculation of each
boid can be done asynchronously, meaning that the computer does not wait until
a calculation of boid n is done before starting with the next boid [16]. A purely
computational problem such as flocking can be called an embarrassingly parallel
problem, meaning it can be parallelised relatively easily. There could, however,
potentially be problems with other parts of the program, such as the game engine
which may result in the parallelisation not being as effective as it theoretically could
be.

11

3
Methods

This chapter presents all the tools and methodology used for creating this project.
This includes everything from how the division of the project has been made, to
which algorithms and tools that were used during the implementation.

3.1 Tools
To render all of the boids on screen, a graphics library or a game engine is needed.
There are plenty of options to choose from like the graphics libraries OpenGL and
libGDX, or the game engines Unity and Unreal Engine 4. In order to put more fo-
cus on gameplay rather than rendering, a game engine was used. As the group was
interested in learning to program in C++, UE4 was chosen over other game engines.

Unreal Engine 4 is a game engine developed by Epic Games. It is free to use for
everyone unless one uses it for commercial use, then five per cent of the income has
to be paid to Epic Games [17]. UE4 provides rendering, physics and garbage col-
lection for the developers [18]. Besides writing pure C++ code, UE4 gives the user
the option to utilise visual scripting through Blueprints. In this project, Blueprints
are used mainly for user interfaces and variables that need to be set in the editor.

3.2 Creating a Simulation
Even though the final task is to create a game, a simulation was first made as a
proof of concept. When making the calculations for each of the three rules that the
flocking behaviour mainly consists of, the results will be three different, often con-
flicting, behaviours. One of the problems is to balance the forces of these conflicting
behaviours to simulate a realistic flock. For example, if a boid’s desire to stay with
the flock is correctly balanced with its desire to stay away from nearby individuals
such that the boids of the flock maintain a reasonable distance between each other.

The three rules defined by Reynolds is a solid base for a realistic looking flock
but there is room for improvement. Other implementations have made changes by
for example introducing additional rules in order to make the flock mimic a certain
unique behaviour. The first implementation of flocking can be seen in figure 3.1,
where a set of boids are flying in the air together and creating a flocking behaviour.

13

3. Methods

Figure 3.1: This project’s first simulation of a flock of boids.

3.3 Creating the Game
When the simulation was proven to work the next task was to make a game where
flocking plays a large role. This comes with a few problems that are not directly
linked with flocking, such as designing a fun and interesting game and making it run
alongside the flocking behaviour. In order to achieve this, certain tools were used
to help with designing, optimising and building.

3.3.1 Graphic design
The graphical components of the game follow a consistently stylised design, chosen
for practical reasons as well as its aesthetic appeal. The game features relatively
low polygon models, particle systems for ambient visual effects, vector graphics and
an easy to read sans serif font.

The character models chosen for the game have a relatively low poly count at ~280
triangles. The pre-animated models were purchased from the Unity store as part of
a farm animal pack [19] containing sheep, goats, chickens and other animals that
would be found at a farm. The pack did ,however, not include a dog model, so one
had to be created by making adjustments to one of the existing animal models using
Autodesk Maya. Environment models such as the fences [20], trees and rocks [21]
were downloaded as part of free model packs sourced from the indie game market-
place itch.io and Blend Swap. Some adjustments were made to reduce the number
of polygons and re-export the models with their positions at origin to make it easier
to place the models in the UE4 level editor.

The intention of rendering many actors at the same time made low poly models
an easy choice. Not only is it an appealing visual style but it is practical from a

14

3. Methods

performance perspective as it will require less GPU processing power to render the
individual actors. The models used in the project have a sufficiently low poly count
for the purpose of game. If the game was to be optimised to allow actors in the
numbers of several tens of thousands, models with significantly lower poly counts
would have been needed. It is, however, likely that this would have prompted a
change of the viewing angle to an orthogonal top down view rendering 2D sprites a
better option for the representation of the sheep.

(a) Without cel shading (b) With cel shading

Figure 3.2: A scene comparison between a) default materials and b) with cel
shading. The cel shading gives the scene a cartoon look with blocks of colour.

Cel shaders, also known as toon shaders, mimic the visual style of cartoons. This
effect is achieved by computing lighting per pixel and quantizing to a discrete num-
ber of colours which has the effect that the objects shadows and highlights appear
as blocks of colours [22, Ch. 15.1], as seen in figure 3.2. The game implements
cel shading through a UE4 post processing material. The material contains a light
buffer which contains information about how lit a surface is based on colour values
collected from the post process input and diffuse colour buffers. These values are
then clamped to a range between zero and one, and compared to a look up table
in the shape of a greyscale gradient texture that determines the brightness of the
diffuse colour.

Many implementations of cel shaders include a black outline which helps to en-
hance the cartoon look [22, Ch. 15.1]. To maintain the softer impression achieved
by cel shading without outlines, they were not included in the final implementation.

While the aim was to achieve a stylised look with the cel shader, the flat shad-
ing made it more difficult to visually separate the sheep in the flock. In order to

15

3. Methods

better represent the 3D objects, and make them pop in the world, dynamic ambient
occlusion was activated in the details of the UE4 camera actors.

Dynamic ambient occlusion is a real-time approximation of how occluded the points
of a surface is from ambient light [22, Ch. 11.3.5]. The more occluded a surface area
is, the darker the lighting will be, resulting in softer, more realistic looking shadows.
The dynamic ambient occlusion offered as a feature in Unreal Engine 4 is an imple-
mentation of screen-space ambient occlusion [23]. Screen-space ambient occlusion
can be implemented in a few different ways, but in their simplest form it performs
an effective approximation of the occlusion per pixel by repeatedly sampling the
depth buffer for nearby pixels to form a simple representation of a models occlusion
[22, Ch. 11.3.6].

The intensity of the ambient occlusion in the game level was set to a high level
to achieve dark but soft shadows which helps the models to stand out against the
rest of the scene. This intensity level would likely be exaggerated in another setting,
but with out stylised visuals it serves well as a tool to increase the visual readability.

3.3.2 Parallelisation
There are two ways of implementing thread management in Unreal Engine 4, by
using FRunnable and FAsyncTask which are built in thread management classes in
UE4. The optimal choice for our simulation is to use FAsyncTask since these types
of tasks are non blocking and will not interrupt the main game thread which would
otherwise stop our game logic and cause performance issues. Additionally, assigning
a task to a thread pool can be done faster with FAsyncTask compared to FRunnable
which has more delays and overhead.

In order to perform the flocking algorithm for each boid, an array of pointers to
all boids is sent to a class which purpose is to assign threads in a thread pool with
tasks to perform the flocking algorithm for every boid.

3.3.3 Uniform Grid
Searching for sheep that are close to another sheep is an expensive task as it requires
sifting through an array of all sheep that are present on the map. This is an im-
portant task as it is required when performing collision avoidance and flocking rules
calculations for each individual sheep. The task can be completed more efficiently
by using a uniform grid where 2D space can be divided into cells of equal width
and height where each cell may contain one or more sheep from the herd (See figure
3.3) [14]. This means that e.g sheep s4 only has to look for other sheep that are in
its own cell and in adjacent cells (s1,s2,s3). The sheep that are further away from
s1 (s5,s6) can be ignored as they will not have an impact on the calculated forces
that will be acting on s1. It is also safe to ignore them when considering collision
avoidance as they are too far away from the sheep to collide with them.

16

3. Methods

0 1 2 3 4

0

1

2

3

4

Yn

Xn

s3

s1
s4s2

s5

s6

L

L
(Xmax,Ymax)

(Xmin,Ymin)

Figure 3.3: A 5x5 uniform grid where s1, s2, ..., s6 are sheep

The grid will be located in an arbitrary position on the map, therefore calculating
which cell a sheep belongs to can be done in the following way:

xn =
⌊
xs − xmin

L

⌋
, yn =

⌊
ys − ymin

L

⌋
Where (xmin, ymin) is the grid’s coordinates, (xs, ys) are the sheep’s coordinates rel-
ative to the map’s coordinate system in game and L is the width and length of each
cell. (xn, yn) are the cell’s coordinates relative to the grid itself as seen on figure 3.3.

The reason the adjacent cells need to be checked is because one sheep could be
positioned on the edge of its own cell and its direction is heading towards another
cell. If the adjacent cells are not considered in this case, the sampling pool would
be too small for the flocking behaviour and collision avoidance algorithms to work
properly. The adjacent cells that are checked for each sheep are highlighted in figure
3.4 where sheep s1 is the point of reference.

17

3. Methods

y

s3

s1
s4s2

s5

s6

x

(a) All neighbours available,
s1, s2, ..., s6 are sheep

y

s4s2

s5

s6

x

s1

(b) On the bottom edge,
s1, s2, ..., s6 are sheep

y

s4s2

s5

s6

x

s1

(c) On the bottom right edge,
s1, s2, ..., s6 are sheep

Figure 3.4: Highlighted nearby cells for a sheep

3.4 Game Design
Objects and non-controllable characters that can be placed in the game world are
called Actors within Unreal Engine 4. In this game, all sheep and all stationary 3D
models, like the fence and trees, are actors [24]. Objects that can be controlled by
a user are called Pawns, and in this game, the dog is a pawn [25].

The game world is implemented by a landscape object as a base, that can be placed
in a 3D world using Unreal Engine’s editor. Every level in the world is distinguished
by placed actors with fence meshes as paddocks and fixed cameras to get a satisfying
overview of the level-areas, this can be seen in figure 3.5 where all the yellow dots
are cameras. To make it clear to the player when the level is changing, the camera
view changes to one that belongs to the level that the player is currently entering.
By distinguishing the levels like this, the game world becomes discrete.

18

3. Methods

Figure 3.5: The whole game world from a top down view.

The score is what defines the player’s success in the game. When the player herds
sheep into a new level, they initially gets ten points for each sheep. To encourage
the player to play for as long as possible and thus making it to an as high level as
possible, the score that the player gets is multiplied by the current level number.

The initialisation of the first level starts a timer which remains active for the dura-
tion of the game. If the player has not advanced to the next level before the time has
run out, the game ends. On the other hand, if the player manages to the next level
in time, the time left increases in order to reward the player and make it possible
to play the game for a longer time.

3.4.1 Gate Functionality
The gates in the game manage many different gameplay elements, they make sure
neither the flock nor the dog can move to levels they are not supposed to, switch
camera, and count sheep crossings. The gates function by three different parts,
two triggerboxes per gate for detecting crossings as well as crossing direction, an
animated gate to block access for sheep and the dog, and an invisible wall to block
premature access for the dog. Two triggerboxes are used in order to tell which
direction the crossing actor is heading, upon contact with one of the triggerboxes
the game tries to add the actor to a list belonging to the gate. When an actor is
already in the list, the game knows that the actor has previously made contact with

19

3. Methods

one of the triggerboxes in the gate pair, meaning the actor is leaving that area and
is now entering the area belonging to the now activated triggerbox. The invisible
wall which hinders the dog from entering the next level is necessary because the dog
should not be able to transition before enough sheep have been herded, when the
requirement is fulfilled the invisible wall is deleted. This is the game’s inaccessible
areas, as described in the section 2.2.1. They are used in order to make the world
appear bigger as well as showing the player where to go next.

3.4.2 Balancing the Game
As described in section 2.2 it is important to have a game that is well balanced. The
concept of resources in games are described in section 2.2.3 and such game elements
can be used to balance games. In this game, the resources are the stamina which
enables the dog to sprint for a short time, the deployable fence-barricades that can
be placed in the world by the player , and the timer. All of these resources are
limited and renewable; the stamina for the dog decreases and when it is not used
it is regenerated and the barricades can only be placed five at a time. The timer is
started in the beginning of the game and is increased when the player advances to
the next level.

The barricades can be placed in the world by the player in order to control the
sheep remotely which allows for crowd control, hence helping with herding as many
sheep as possible through the gates. The dog-sprint resource helps the player to
manoeuvre the dog around the herd of sheep as the dog is moving faster when
sprinting. When herding a higher amount of sheep it is advantageous to use the
barricade resource combined with the dog sprint. Thus, the player can make up
different strategies in order to achieve as a high score as possible before the time
run out. If these resources were not limited, it would have been too straightfor-
ward to herd a high amount of sheep. This would have made the game unbalanced,
and therefore these resources are limited but still renewable. On the other hand, if
the resources were not renewable, the game could have been too difficult and thus
making it unbalanced.

3.5 Flocking Implementation
The flocking behaviour in the game is based on Reynolds’ three rules as well as
some modifications from Barksten and Rydberg’s bachelor essay [8] as described in
section 2.3.2, which introduces different behaviour for sheep close to predators such
as, but not limited to, escaping.

The flocking implementation introduces a set of tuneable variables that alter the
flocks behaviour. In order to achieve a satisfactory flocking behaviour these vari-
ables had to be adjusted manually, to make this process simpler they were made
editable in the Unreal Engine 4 editor as well as in runtime, see table 3.1 for all the
parameters.

20

3. Methods

Table 3.1: Tuneable parameters for the flocking behaviour

Parameter name Description
maxForce Maximum limit on the forces acting on the sheep
minSpeed Minimum speed of the sheep
maxSpeed Maximum speed of the sheep
searchRadius Radius of the sheep’s field of view
mc Weight of the collision rule
mcp Weight of the collision rule in presence of dog
ms Weight of the separation rule
msp Weight of the separation rule in presence of dog
ma Weight of the alignment rule
map Weight of the alignment rule in presence of dog
me Weight of the escape rule
mAvoid Weight of the avoid rule
escapeRadius Radius around dog where sheep are affected by it
escSoft Softness of escape rule
sepSoft Softness of separation rule

3.5.1 Perception and Visual Fields
Creating a more realistic visual field was given a low priority since there was no
time to implement it and as declared in section 2.3.5 sheep have close to a complete
360 degree field of vision. This means that the game is using a circular, or spherical
visual field where the distance between the boids is compared with a certain radius.
The method used for this is called SphereOverlapActor and uses overlapping between
an invisible sphere around a boid and another boid to determine whether the latter
is within the visual field of the former [26].

3.5.2 Collision Avoidance
Predicting potential collisions for the boids is achieved by line tracing. This is done
by giving all the boids invisible vectors in front of them and on the sides (see figure
3.6). If the vector overlaps any other object except the neighbouring boids, a collision
avoidance algorithm will be run. The reason that the line tracing ignores the other
boids is that collision avoidance with them is already handled by the separation
flocking rule.

21

3. Methods

Figure 3.6: A sheep using linetracing to detect objects in its environment

When line tracing detects a potential collision, the boids will try to avoid collision
with the object that the line trace hit. This is done by taking all the forces which are
acting on the boid and removing the component of the acceleration that is parallel
to the normal vector of the object on which a future collision is detected. This is
often enough for the boid to move in another direction, but when a boid has a large
flock behind it, its desire to follow the flock into the wall was still too high and
further measures had to be taken. This was fixed by removing the same component
as earlier but from the velocity vector instead. This made it so, at some point,
the boid is unable to move into the wall even if it wanted to. These new vectors
are calculated by taking the sum of all forces on the boid, as well as its velocity,
and removing the component that is parallel to the normal vector from the object
detected by the collision detection algorithm. The formula for removing the normal
vector is the following:

vt = v −m(v ·m)

Where vt is the final force of the boid, v is the starting sum of forces, m is the normal
vector of the object and · denotes the dot product (scalar product) operation. This
function is visualised in Figure 3.7.

22

3. Methods

Figure 3.7: Velocity vectors before and after the collision avoidance algorithm is
executed

3.6 Testing
The game was continuously tested by the members of the project group as part
of the version control submission process. Additional testing in the form of simple
scripted and unscripted user test has been performed ad hoc with users represented
by peers at the university, family members, and acquaintances with an interest in
games. The user tests allowed other people outside of the project to try the game
and provide their feedback on it.

23

4
Results

4.1 Gameplay
When starting the game, the player’s first view is a start screen containing a main
menu with three options: play, controls and quit. This can be seen below in figure
4.1.

Figure 4.1: The game’s start screen and the cursor icon.

When the player has pressed play, an overview of level one appears. This is the
first time the player sees the actual world and the game interface, as seen in fig-
ure 4.2. The game interface contains the current score, the dog’s stamina bar, the
timer, the barricade controls, and the number of sheep needed in order to be able
to advance to the next level.

24

4. Results

Figure 4.2: The view when the player has pressed play.

In the top left, the user interface shows the number of points the player has scored
as well as the number of sheep that have been herded into the next pasture. The top
right shows instructions for how to place the barricades. In the bottom there is a
meter for the dog sprint that goes down as you sprint and replenishes while the dog
is walking or standing still. In the top there is a timer that shows the player how
much time they have left before they will have had to move on to the next pasture.
By pressing the Escape-key you can access the menu where you can restart the game.

In the world, the player can see a number of sheep that has spawned, the dog
which the player controls, the fences surrounding level one, and some of the inac-
cessible areas as described in section 2.2.1. This can be seen in figure 4.3. Now,
the player’s task is to herd as many sheep as possible through the open gate, which
leads to the next level. Before the player has herded enough sheep to the next level,
only the sheep are able to enter through the gate. If the player tries to enter, the
dog will be hindered by an invisible wall. Once the player has herded enough sheep,
they can decide to go to the next level. If the time runs out before that, the end
condition as described in section 2.2.4 is triggered, and thus the game is over.

25

4. Results

Figure 4.3: One sheep is herded over to level two.

When the player decides to move over to level two, the camera switches to a camera
for the new level as shown in figure 4.4 and the player is awarded additional time
to complete the task. After the player has passed the gate, an animated gate closes
off the area behind, making it impossible to go back.

Figure 4.4: Overview of level two.

26

4. Results

Upon entering the new level, the herded sheep will join up with the flock already
present in the new pasture. With the increased number of sheep in the level, the
number of sheep needed for the next level in order to advance is raised as well. This
happens for every new level that the player enters. With a higher level, the amount
of points earned by herding sheep is increased.

4.2 Sheep flocking algorithm
The final flocking algorithm of this project consists of five different aspects, or rules,
to make a realistic flocking simulation. Three originate from Reynolds’ three rules,
we refer to them as cohesion, separation and alignment described in further detail
in section 2.3. The fourth rule allows the sheep to run away from the dog, which is
highly influenced by another group’s work explained in section 2.3.2 [8]. The last
rule allows the sheep to realistically avoid obstacles. This algorithm is run on every
sheep every game tick.

The final algorithm can be seen in listing 4.1, it works by first applying formula
2.2 which is line 1-9 in the listing, then on line 11-12 the velocity is updated and
limited to an amplified max speed depending on the distance to the dog, as well
as setting the velocity to zero if it is too low or directed behind the sheep. This
first part is very much based on Reynolds algorithm and the modifications made
in Barksten and Rydbergs thesis[8] as described in section 2.3.2. One difference
from Barksten and Rydbergs algorithm is that cohesion follows the Reynolds way
of only being applied on the nearby sheep instead of all sheep. Then the final rule
of obstacle avoidance is applied using the updated velocity as can be seen on line 14
in listing 4.1. It is then added to the results of the first four rules and the velocity
is limited in the same way as before on line 15.
Listing 4.1: Final flocking algorithm used in the game, sheep being the current
sheep, the parameters are explained in table 3.1

1 combinedForces = ZeroVector
2 alignment = Align(sheep , nearbySheep)
3 combinedForces += ma * (1 + Sigmoid (distToDog , escapeRadius) * map)

* alignment
4 cohesion = Cohesion (sheep , nearbySheep)
5 combinedForces += mc * (1 + Sigmoid (distToDog , escapeRadius) * mcp)

* cohesion
6 separation = Separation (sheep , nearbySheep)
7 combinedForces += ms * (1 + Sigmoid (distToDog , escapeRadius) * msp)

* separation
8 escape = Escape (sheep , dog)
9 combinedForces += me * escape

10 ampedMaxSpeed = maxSpeed * (1 + Sigmoid (distToDog , escapeRadius) *
1.5)

11 velocity = LimitVelocity (sheep , combinedForces , ampedMaxSpeed)
12 avoid = AvoidObstacles (sheep)
13 velocity = LimitVelocity (sheep , velocity + mAvoid * avoid ,

ampedMaxSpeed)

27

4. Results

4.3 Performance
In the first iteration of creating the flocking simulation, the calculations for each
individual boid was done on a single thread which is an inefficient way of simulating
a flock, as the whole workload would be put onto one thread. This was necessary to
do in the beginning in order to confirm that the flocking algorithm worked properly
without having to worry about multithreading issues.

Stress testing was performed to see how many sheep the game could handle before
the frame rate dropped under 30FPS. The number of sheep that could be simulated
in the single threaded implementation at that time before adding much in terms of
graphics was around 400 and when applying multithreading around 800 sheep in
the development environment was possible. However, the improvement is throttled
because using draw calls in external threads is not supported in UE4. Therefore, all
the draw calls have to be done sequentially in the main game thread.

Table 4.1: Table of average values from profile testing on the development build

Amount
of sheep avg GPU avg RT avg GT avg Mesh draw calls avg FPS

100 16.87ms 11.86ms 11.06ms 2909.37 59.28
200 20.15ms 15.63ms 18.62ms 5102.03 49.62
300 30.36ms 27.24ms 27.76ms 7561.2 32.92
400 41.22ms 33.77ms 39.73ms 11944 24.27
500 54.56 ms 43.15 ms 51.83 ms 12392.78 18.32
600 64.44ms 49.74ms 62.99ms 14061.45 15.51

Table 4.1 displays various performance numbers from UE4 achieved in the final game
when running the game in development mode on a Windows 10 machine running
on an i5-6400 CPU @ 2.70GHz and a NVIDIA GeForce GTX 960. Avg GPU is the
average time per frame on the GPU thread, Avg RT is the average time per frame
on the CPU render thread, Avg GT is the average time per frame on the CPU game
thread [27]. These are threads that are built into UE4 and where most of the game
calculations take place. When optimising for performance, the largest of these three
should be targeted since it will hold back the total performance and determine the
FPS. Avg mesh draw calls are the amount of mesh draw calls per frame, this number
is very high in this game even with low amount of sheep and there is probably space
for a lot of optimising here. When further breaking down the GPU thread profiling
it could be seen that a lot of time is spent on lightning and post processing which
could be optimised but was not prioritised.

28

4. Results

Table 4.2: Table listing the amount of sheep used in a game session on a shipping
build, followed by the amount of frames, minimum, maximum and average FPS

Amount of sheep Frames FPS Min FPS Max FPS Avg
300 3660 54 63 61
400 3123 49 56 52.05
500 2515 39 44 41.917
600 2100 31 37 35
700 1773 27 32 29.55
800 1541 23 28 25.683
900 1382 21 25 23.033
1000 1135 18 23 21.917
1100 1162 16 21 19.367
1200 1058 16 19 17.633

In order to know how well the game will perform outside of the development build
of the game, performance tests were done on the shipping build of the game. It is a
64-bit build of the game which will be the final build that will be released for the av-
erage consumer. These values are important to test in order to see the performance
of the game on the end users systems. Table 4.2 displays the frame rate results when
running the game on this build. The average frames per second are improved as the
amount of sheep increases compared to the development build as seen in table 4.1,
this is because the shipping build does not have any debugging tools running in the
background.These tests were done on an external program named FRAPS which is
a screen capture, recording and benchmarking software.

The performance goal of this project was to be able to have 1000 sheep in-game.
The average FPS when spawning 1000 sheep is 21.917 in the shipping-configuration
build as seen in table 4.2. The amount of FPS for a playable experience is usually
30 FPS, therefore the player might have a slightly unpleasant experience with 1000
sheep. It is worth mentioning that the levels were not enjoyable when having 1000
sheep as they covered most of the surface area of the entire level.

29

5
Discussion

Some things that were initially considered for the scope had to be abandoned due to
a lack of time and a higher than expected complexity of some tasks. Some features,
such as multiplayer capability and in-game power-ups, were too inessential to have
time to be implemented. Other features, such as parallelisation and spatial data
structures, were implemented but could not reach their full potential due to both a
lack of time and technical limitations with Unreal Engine 4. During the course of
this project many decisions amounted to one specific dilemma: Should the focus be
on the gameplay aspect or on the flocking optimisation aspect? While the subject
is interesting no matter which focus area you choose, it soon became clear that the
entire group would rather have a polished and fun game than a highly optimised
flocking algorithm. In the end, the result was a satisfying and fully playable game
demo.

5.1 Flocking Implementation
The three rules for flocking work well in this implementation, just as Craig Reynolds
showed it would in his 1987 article and many after him, but it requires you to
painstakingly balance and test different parameters by hand until you reach a sat-
isfying result. There has been work exploring the possibilities of optimising these
parameters with an algorithm instead of by hand, either by using a Genetic Al-
gorithm or Particle Swarm Optimisation [28]. They both work by setting up cost
functions judging the behaviour of the flock and trying to minimise the total cost
by changing the parameters. By using any of these methods the difficulty of balanc-
ing the parameters manually is removed but instead the difficulty is to create good
cost functions. Using parameter optimisation would likely have resulted in better
flocking behaviour and might even have saved time if only such a thing had been
implemented earlier and used from the beginning. However, by the time the group
identified this problem, too much time had already been invested into manually
tuning the parameters and that idea was scrapped.

When tuning the parameters it quickly became obvious that a well functioning set
of parameters one flock size, would not necessarily work for flocks of other sizes. In
other words, a larger flock tended to clump together and needed a higher separation
while the same separation would cause a smaller flock to be too spread out. So
while our implementation worked well, there are many ways to improve the flocking
itself. For example, creating a more realistic visual field that is more like that of

30

5. Discussion

a real sheep, i.e. they do not take sheep directly behind them into consideration.
Adding separate rules for specific tasks in this game, such as making the sheep run
through the gate more realistically, might have improved the flocking algorithm as
well as the general feel of the game. This specific example could be achieved by
implementing and placing an attractor in the adjacent pasture.

The first rendition of collision avoidance was done by adding two vectors in front of
each boid which could detect collision with walls and obstacles. When a collision
was detected, the distance to the obstacle was used to calculate which direction
an acceleration should be applied in order to achieve realistic avoidance behaviour.
This implementation resulted in an inconsistent behaviour however and to improve
it we ended up increasing the number of vectors to the point where it impacted the
game’s performance. It was obvious that this implementation needed a lot of rework
and after consulting our supervisor, a better solution was worked out that essentially
did the opposite of the previous implementation. Instead of adding an acceleration
away from the obstacle, the new solution opted for removing the acceleration and
velocity directed towards the obstacle. This version required only one vector and
gave promising results despite needing changes to the map and other parts of the
code.

5.2 Gameplay
The relationship between camera distance and flock size in combination with the
design decision of an overview static camera turned out to introduce an unexpected
problem. Introducing as many sheep as possible is desired both in order to utilise
the optimisation efforts and because the flocking behaviour is more apparent with
a larger flock. More sheep means that each pasture has to be larger in order to fit
them all, a larger pasture in turn means that the camera has to be further away
in order to fit it all into the frame. But as the camera moves further away and
everything becomes smaller the game becomes increasingly hard and more frustrat-
ing to play. This could of course be solved with a closer positioned camera that
actively follows the dog but this would likely worsen the flocking effect as well as
introduce other gameplay issues such as not easily being able to see which way to go.

As the game is now, there is not much that motivates the player to get a high
score instead of just get to an as high level as possible. To make it more motivating
for the player to get high scores, an option discussed is the possibility of awarding
assets or abilities to the player. Assets or abilities suitable in this game could be
more stamina for the dog or more time per level, which in turns would have made
it simpler to advance to the next level faster. To regulate the faster level advanc-
ing, the default time that the player gets could be decreased, the dog’s and sheep’s
speeds could be decreased or the number of sheep that need to be herded to the
next level could be increased.

As mentioned in section 2.2, the impression of a well-balanced game is important in
order to make the game entertaining to play. The game elements in this game that

31

5. Discussion

can be balanced against each other is the time, the dog’s stamina, the barricades
that can be placed in the world, the amount of sheep needed to be able to advance
to the next level and how fast the sheep and the dog is. The balancing of these
elements should have been tested through more formal user tests than occasional
tests on group members and peers in order to get the perfect balance. More time
could have been spent balancing the game, but unfortunately the focus had to be
to ensure a stable game experience without crashes.

5.3 Parallelisation
The parallelisation of the simulation was going to be one of the main methods of
optimising the flocking algorithm. However, due to limitations in Unreal Engine 4
it is not possible to perform draw calls in external threads. A proposed solution
for this was to merge all sheep meshes into one mesh in order to perform only one
draw call for all the sheep. However due to the fact that each sheep is derived from
an actor class, we cannot perform this operation. Merging actors is an operation
that can be done in Unreal Engine 4 but it can only be done inside the editor when
constructing maps for the game and is not something that can be done repeatedly
in C++ code.

Unlike Unity, which is an alternative game engine and competitor to Unreal En-
gine 4, Unreal Engine 4 has no draw call batching for actors. This means that there
is no easy way of drawing many actors simultaneously [29]. By being able to draw
many actors simultaneously, the GPU can be used more efficiently to achieve greater
performance. In order to achieve similar GPU efficiency in UE4 Instanced Static
Meshes can be used instead. This means that for the entire flock there can only be
one actor instead of an actor for each and every sheep.

Since most of the game has been built without the group knowing of this limi-
tation, much of the code would have had to be refactored in order to achieve the
greater performance of instanced meshes. Instanced static meshes are however static
which means that they cannot be vertex animated, they can only be scaled, trans-
lated and rotated in real time. By using actors for every sheep like in the current
implementation, skeletal meshes can be used which have detailed vertex animations
which allows for better presentation for the game.

5.4 Uniform Grid
The current implementation for getting nearby cells is not the most optimal. When
a sheep is on the edge of a cell and is heading to a nearby cell, taking into account
all of the surrounding cells is unnecessary as the cells that are behind the sheep
are most likely not going to affect the flocking forces and collision detection of the
sheep. The sampling pool can therefore possibly be reduced even more by only
looking for the nearby cells which the sheep’s velocity vector is pointing towards,
without possibly affecting the flocking and collision algorithms.

32

5. Discussion

5.5 Ethical aspects
With any engineering project one has to consider possible ethical implications. The
outcome of this project should not have any direct ethical implications and further
investigation into ethics was not included in the scope past this discussion section.
The wider research area of flocking behaviours could be applied in a vast range of
areas, spanning from graphics and games to drones designed to be deployed in war
zones. The following sections introduce the application of flocking behaviours in a
couple of areas which may have ethical implications.

5.5.1 Military units
Unmanned combat aerial vehicles known as UCAVs are becoming increasingly com-
mon in modern warfare, these drones are operated without a human pilot on board
and commonly carries missiles which are fired by a remote operator in so-called
drone strikes. The level of autonomy in these drones vary, but the area of artificial
intelligence as a military tool is under constant development and flocking behaviours
are being researched by both the Russian and the US army as a mean to increase
the efficiency of ground units and unmanned aircraft infantry in urban environments
[30], [31].

While unmanned military units may have a positive impact on soldiers who can
be kept out of the field, the group considers this application of flocking behaviours
to be problematic from an ethical perspective. The U.S emphasise the precision of
drone strikes and claim that extremely few civilians have been killed in the strikes,
but there is a large degree of uncertainty surrounding these claims as the U.S gov-
ernment resists openly disclosing official drone strike data [32].

5.5.2 Robotic bees
With natural pollinators decreasing in numbers researchers are exploring the possi-
bilities of artificial pollinators, such as RoboBees. These airborne robots in the size
of bees are being developed by a research robotics team at Harvard University [33].
The ultimate goal of the RoboBees project is to develop colonies of autonomous
and wireless miniature robots, however, the microchips of today are too big to allow
the project to reach this goal (as of 2013). Once this hardware problem has been
overcome it is believed that large groups of RoboBees could be used as artificial
pollinators by utilising swarming intelligence.

The research field of artificial pollinators is fascinating and if pollinators could be
produced under economically and environmentally sound conditions it is tempting to
think that they could be of great benefit [34]. The question becomes more complex
when considering the pollinators long term effects on the biosphere. There is some
evidence that artificial pollinators could be detrimental to the ecosystem they act
within by disrupting local species network interactions and even if they would work,

33

5. Discussion

you have to question if we should not be focusing on preservation of biodiversity
rather than replace it.

5.6 Further Development
If the group would have had more time, some changes and extensions of the game
design would have been made. With the current implementation, herding a lot of
sheep into the next level at the same time is difficult. As shepherds in real life make
use of several dogs to get the flock of sheep where they want, turning this game into
a multiplayer game where every player have control over their own dog would have
been fun to try out.

Other things that were discussed regarding the gameplay at the beginning of the
project were having power-ups, objects that instantly benefit or add extra abilities
to the game character as a game mechanic, available for the player to pick up. These
power-ups could make the dog regain its stamina faster, award extra points or more
time. The implementation of attractors, invisible entities that the sheep want to
walk to, could have helped with getting sheep into areas that were especially diffi-
cult, such as gates.

As discussed in section 5.3 and 4.3, the parallelisation of this game did not go as well
as the group had hoped for. While using static meshes to represent the sheep would
have allowed for better optimisation with multithreading, static meshes do not allow
skeletal animations. A lot of problems with the optimisation could be boiled down
to issues and limitations with Unreal Engine 4 as the game engine. While it, on one
hand, makes graphics easy to handle and can render a beautiful game with very lit-
tle work it lacked some features that would have made other areas easier to handle,
such as spatial data structures and parallelisation, that other game engines include.
Unreal Engine 4 is not a bad game engine but had the group known about its limi-
tation earlier in the project, Unity would have been considered a stronger contender.

Part of the purpose was to develop an entertaining game, whether a game is fun
or not is very subjective. There should have been more user testing in order to be
able to discuss the fulfilment of that part of the purpose more and come to a solid
conclusion. A few user tests were performed during an exhibition of the project as
well as on peers of the group during development. While most of these testers found
the game fun and polished, the tests are not comprehensive or unbiased enough in
order to be used for a conclusion. More user testing would also have been helpful for
balancing parameters and implementing game features based on more input than
just the groups’ opinions and research.

34

6
Conclusion

Considering the purpose of this project was to "develop an entertaining procedural
game with flocking behaviour as the central feature” it can be difficult to evaluate
the success of the result. As mentioned in the discussion an entertaining game is sub-
jective and hard to determine, therefore we can not come to a definitive conclusion
about whether the game is fun or not. Building a game around flocking behaviour
as the central game mechanic was found to work well. The procedural nature of the
flocking behaviour results in a reactive AI, making for a unique player experience
every time. As mentioned in sections 1.5 and 5, the size of the flock had a lower
priority while the playability and realism of the behaviour had a higher focus. A
few dead-ends were encountered in the implementation of parallelisation and spatial
data-structures, leading to unexpected results. On the other hand, Unreal Engine 4
allowed for implementing a lot of smart functions into the game using the built-in
methods of the engine.

When going through the process of creating a simple but functioning game the
group have learned a lot about both flocking behaviour and game design. To con-
tinue on this work or create something similar, it may be beneficial to review what
has been done in this project. Some possible extensions to this implementation of
the game may be a multiplayer version where the players would play as one herding
dog each and teaming up to accomplish the goals of the game. Since herding in
real life usually is done by multiple dogs, this could make the game more enjoyable
and realistic. An additional feature could be power-ups that would give your dog
new abilities or boost his existing ones. These power-ups could be acquired either
temporarily by collecting them on the map or permanently by buying them between
the runs in a shop.

The members of the group had little to no experience working with either the pro-
gramming language or the game engine, as a result this project has been a great
learning opportunity and Baa! turned out to be a satisfying game.

36

7
References

[1] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”
SIGGRAPH Comput. Graph., aug 1987. doi: 10.1145/37402.37406, [Online].
Available: https://dl.acm.org/citation.cfm?id=37406, Accessed on: March
05, 2019.

[2] J. M. E. Gabbai, “Complexity and the aerospace industry: Understanding
emergence by relating structure to performance using multi- agent systems,”
Engineering Doctorate, Faculty of Engineering and Physical Sciences, School
of Electrical and Electronic Engineering, Manchester, England, 2005. pp.
66, doi: 10.1.1.141.2137, [Online]. Available: http://gabbai.com/academic/
complexity- and- the- aerospace- industry- understanding- emergence-
by-relating-structure-to-performance-using-multi-agent-systems,
Accessed on: 25 April, 2019.

[3] J. Hagelbäck, “Hybrid pathfinding in starcraft,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 8, pp. 319–324, Dec
2016. doi: 10.1109/TCIAIG.2015.2414447, [Online]. Available: https:
//ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4804728, Accessed
on: 20 April, 2019.

[4] H. P. Zhang, A. Be’er, E.-L. Florin, and H. L. Swinney, “Collective motion
and density fluctuations in bacterial colonies,” Proceedings of the National
Academy of Sciences, vol. 107, no. 31, pp. 13626–13630, 2010. doi: 10.1073/
pnas.1001651107, [Online]. Available: https://www.pnas.org/content/107/
31/13626, Accessed on: 22 April 2019.

[5] Unity, “Game engines—how do they work?.” [Online]. Available: https://
unity3d.com/what-is-a-game-engine, 2019. Accessed: 18 April, 2019.

[6] J. Schell, The art of game design: a book of lenses. Elsevier, 2010.
[7] B. Staffan and J. Holopainen, Patterns in game design. Charles River Media,

2006. Boston, United States.
[8] M. Barksten and D. Rydberg, “Extending reynolds’ flocking model to a simu-

lation of sheep in the presence of a predator,” 2013.
[9] P. Barbosa and I. Castellanos, Ecology of Predator-Prey Interactions, p. 109.

Oxford University Press, 2014.
[10] Agriculture Knowledge Centre, “Understanding sheep behaviour.”

[Online]. Available: https : / / www.sksheep.com / documents /
Ex_Understanding_Sheep_Behaviour.pdf, 2007. Accessed: 16 April,
2019.

38

10.1145/37402.37406
https://dl.acm.org/citation.cfm?id=37406
10.1.1.141.2137
http://gabbai.com/academic/complexity-and-the-aerospace-industry-understanding-emergence-by-relating-structure-to-performance-using-multi-agent-systems
http://gabbai.com/academic/complexity-and-the-aerospace-industry-understanding-emergence-by-relating-structure-to-performance-using-multi-agent-systems
http://gabbai.com/academic/complexity-and-the-aerospace-industry-understanding-emergence-by-relating-structure-to-performance-using-multi-agent-systems
10.1109/TCIAIG.2015.2414447
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4804728
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4804728
10.1073/pnas.1001651107
10.1073/pnas.1001651107
https://www.pnas.org/content/107/31/13626
https://www.pnas.org/content/107/31/13626
https://unity3d.com/what-is-a-game-engine
https://unity3d.com/what-is-a-game-engine
https://www.sksheep.com/documents/Ex_Understanding_Sheep_Behaviour.pdf
https://www.sksheep.com/documents/Ex_Understanding_Sheep_Behaviour.pdf

7. References

[11] A. J. King, A. M. Wilson, S. D. Wilshin, J. Lowe, H. Haddadi, S. Hailes, and
A. J. Morton, “Selfish-herd behaviour of sheep under threat,” Current Biology,
vol. 22, no. 14, pp. R561 – R562, 2012. doi: https://doi.org/10.1016/
j.cub.2012.05.008, [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0960982212005295, Accessed on: 04 April 2019.

[12] M. . Pillot, J. Gautrais, P. Arrufat, I. D. Couzin, R. Bon, and J. .
Deneubourg, “Scalable rules for coherent group motion in a gregarious ver-
tebrate,” PLoS ONE, vol. 6, no. 1, 2011. doi: https://doi.org/10.1371/
journal.pone.0014487, [Online]. Available: https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0014487, Accessed on: 10 April,
2019.

[13] Mark Joselli et al., “A flocking boids simulation and op-
timization structure for mobilemulticore architectures.” [On-
line]. Available: https : / / pdfs.semanticscholar.org / 4183 /
faeef708a56b988742b5572fce9174caec7b.pdf, 2012. Accessed: 15 February,
2019.

[14] S. Green, “Particle simulation using cuda.” [Online]. Available: http://
developer.download.nvidia.com/assets/cuda/files/particles.pdf, 2010.
Accessed: 15 February, 2019.

[15] R. Hidayat, D. Spataro, E. D. Giorgio, W. Spataro, and D. DAmbrosio, “Multi-
agent system with multiple group modelling for bird flocking on gpu,” in
2016 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), pp. 680–685, Feb 2016. doi: 10.1109/
PDP.2016.112, [Online]. Available: https://ieeexplore.ieee.org/document/
7445408, Accessed on: April 03, 2019.

[16] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“Gpu computing,” Proceedings of the IEEE, vol. 96, pp. 879–899, May 2008. doi:
10.1109/JPROC.2008.917757, [Online]. Available: https://ieeexplore-ieee-
org.proxy.lib.chalmers.se/document/4490127/citations#citations, Ac-
cessed on: April 04, 2019.

[17] Epic Games, “We succeed when you succeed.” [Online]. Available: https://
www.unrealengine.com/en-US/what-is-unreal-engine-4, 2019. Accessed:
15 April, 2019.

[18] M. Noland, “Unreal property system (reflection).” [Online]. Available: https://
www.unrealengine.com/en-US/blog/unreal-property-system-reflection,
2014. Accessed: 15 April, 2019.

[19] F. Silva, “Lowpoly farm animals.” [Online]. Available: https : / /
assetstore.unity.com/packages/3d/characters/animals/lowpoly-farm-
animals-81478. Accessed: 15 May, 2019.

[20] Kev92, “Low poly forest pack.” [Online]. Available: https : / /
www.blendswap.com/blends/view/76557. Accessed: 15 May, 2019.

[21] Jaks, “Low poly forest pack.” [Online]. Available: https://jaks.itch.io/
lowpolyforestpack. Accessed: 15 May, 2019.

[22] T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and
S. Hillaire, Real-Time Rendering 4th Edition. Boca Raton, FL, USA: A K
Peters/CRC Press, 2018.

39

https://doi.org/10.1016/j.cub.2012.05.008
https://doi.org/10.1016/j.cub.2012.05.008
http://www.sciencedirect.com/science/article/pii/S0960982212005295
http://www.sciencedirect.com/science/article/pii/S0960982212005295
 https://doi.org/10.1371/journal.pone.0014487
 https://doi.org/10.1371/journal.pone.0014487
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014487
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014487
https://pdfs.semanticscholar.org/4183/faeef708a56b988742b5572fce9174caec7b.pdf
https://pdfs.semanticscholar.org/4183/faeef708a56b988742b5572fce9174caec7b.pdf
http://developer.download.nvidia.com/assets/cuda/files/particles.pdf
http://developer.download.nvidia.com/assets/cuda/files/particles.pdf
10.1109/PDP.2016.112
10.1109/PDP.2016.112
https://ieeexplore.ieee.org/document/7445408
https://ieeexplore.ieee.org/document/7445408
10.1109/JPROC.2008.917757
https://ieeexplore-ieee-org.proxy.lib.chalmers.se/document/4490127/citations#citations
https://ieeexplore-ieee-org.proxy.lib.chalmers.se/document/4490127/citations#citations
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/blog/unreal-property-system-reflection
https://www.unrealengine.com/en-US/blog/unreal-property-system-reflection
https://assetstore.unity.com/packages/3d/characters/animals/lowpoly-farm-animals-81478
https://assetstore.unity.com/packages/3d/characters/animals/lowpoly-farm-animals-81478
https://assetstore.unity.com/packages/3d/characters/animals/lowpoly-farm-animals-81478
https://www.blendswap.com/blends/view/76557
https://www.blendswap.com/blends/view/76557
https://jaks.itch.io/lowpolyforestpack
https://jaks.itch.io/lowpolyforestpack

7. References

[23] Epic Games, “Ambient occlusion.” [Online]. Available: https :
//docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/
AmbientOcclusion. Accessed: 15 May, 2019.

[24] Epic Games, “Actors and geometry.” [Online]. Available: https : / /
docs.unrealengine.com/en-us/Engine/Actors, 2019. Accessed: 15 April,
2019.

[25] Epic Games, “Pawn.” [Online]. Available: https://docs.unrealengine.com/
en-US/Gameplay/Framework/Pawn, 2019. Accessed: 15 April, 2019.

[26] Epic Games, “Sphereoverlapactors.” [Online]. Available: http :
/ / api.unrealengine.com / INT / BlueprintAPI / Collision /
SphereOverlapActors/, 2018. Accessed: 15 May, 2019.

[27] Epic Games, “Performance and profiling overview.” [Online]. Available: https:
//docs.unrealengine.com/en-us/Engine/Performance/Overview. Accessed:
15 May, 2019.

[28] S. Alaliyat, H. Yndestad, and F. Sanfilippo, “Optimisation of boids swarm
model based on genetic algorithm and particle swarm optimisation algorithm
(comparative study),” Proceedings - 28th European Conference on Modelling
and Simulation, ECMS 2014, 05 2014. doi: 10.7148/2014-0643, [On-
line]. Available: https://www.researchgate.net/publication/268077894-
Optimisation- Of- Boids- Swarm- Model- Based_On- Genetic- Algorithm-
And-Particle-Swarm-Optimisation-Algorithm-Comparative-Study, Ac-
cessed on: 20 April, 2019.

[29] Unity, “Unity draw call batching.” [Online]. Available: https : / /
docs.unity3d.com/Manual/DrawCallBatching.html, 2019. Accessed: 16 April,
2019.

[30] Congressional Research Service, “Artificial intelligence and national security.”
[Online]. Available: https://fas.org/sgp/crs/natsec/R45178.pdf, 2019. Ac-
cessed: 10 February, 2019.

[31] Defense Advanced Research Projects Agency, “Offset envisions swarm ca-
pabilities for small urban ground units.” [Online]. Available: https://
www.darpa.mil/news-events/2016-12-07, 2016. Accessed: 10 February, 2019.

[32] Human Rights Clinic at Columbia Law School , “Counting drone strike
deaths,” 10 2012. [Online]. Available: https://www.law.columbia.edu/
sites / default / files / microsites / human - rights - institute / files /
COLUMBIACountingDronesFinal.pdf.

[33] R. Wood, R. Nagpal, and G.-Y. Wei, “Flight of the robobees.” [Online].
Available: https://ssr.seas.harvard.edu/publications/flight-robobees,
2013. Accessed: 10 February, 2019.

[34] S. G. Potts, P. Neumann, B. Vaissière, and N. J. Vereecken, “Robotic
bees for crop pollination: Why drones cannot replace biodiversity,” Science
of The Total Environment, vol. 642, pp. 665 – 667, 2018. doi: https:
//doi.org/10.1016/j.scitotenv.2018.06.114, [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0048969718321909, Ac-
cessed on: 25 April 2019.

40

https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Actors
https://docs.unrealengine.com/en-us/Engine/Actors
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn
http://api.unrealengine.com/INT/BlueprintAPI/Collision/SphereOverlapActors/
http://api.unrealengine.com/INT/BlueprintAPI/Collision/SphereOverlapActors/
http://api.unrealengine.com/INT/BlueprintAPI/Collision/SphereOverlapActors/
https://docs.unrealengine.com/en-us/Engine/Performance/Overview
https://docs.unrealengine.com/en-us/Engine/Performance/Overview
10.7148/2014-0643
https://www.researchgate.net/publication/268077894-Optimisation-Of-Boids-Swarm-Model-Based_On-Genetic-Algorithm-And-Particle-Swarm-Optimisation-Algorithm-Comparative-Study
https://www.researchgate.net/publication/268077894-Optimisation-Of-Boids-Swarm-Model-Based_On-Genetic-Algorithm-And-Particle-Swarm-Optimisation-Algorithm-Comparative-Study
https://www.researchgate.net/publication/268077894-Optimisation-Of-Boids-Swarm-Model-Based_On-Genetic-Algorithm-And-Particle-Swarm-Optimisation-Algorithm-Comparative-Study
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://fas.org/sgp/crs/natsec/R45178.pdf
https://www.darpa.mil/news-events/2016-12-07
https://www.darpa.mil/news-events/2016-12-07
https://www.law.columbia.edu/sites/default/files/microsites/human-rights-institute/files/COLUMBIACountingDronesFinal.pdf
https://www.law.columbia.edu/sites/default/files/microsites/human-rights-institute/files/COLUMBIACountingDronesFinal.pdf
https://www.law.columbia.edu/sites/default/files/microsites/human-rights-institute/files/COLUMBIACountingDronesFinal.pdf
https://ssr.seas.harvard.edu/publications/flight-robobees
https://doi.org/10.1016/j.scitotenv.2018.06.114
https://doi.org/10.1016/j.scitotenv.2018.06.114
http://www.sciencedirect.com/science/article/pii/S0048969718321909
http://www.sciencedirect.com/science/article/pii/S0048969718321909

	List of Figures
	List of Tables
	Glossary
	Introduction
	Work by Craig Reynolds
	Boids
	The flocking behaviour
	Practical Applications
	Purpose
	Scope

	Theory
	Game Engines
	Game Design
	The Game World
	Score
	Resources
	End Condition

	Flocking Simulation
	Reynolds' Three Flocking Rules
	Modifications in Previous Work
	Collision Avoidance
	Perception and Visual Fields
	Sheep Behaviour

	Performance Optimisation
	Optimising with Spatial Data Structures
	Optimising with Parallelisation

	Methods
	Tools
	Creating a Simulation
	Creating the Game
	Graphic design
	Parallelisation
	Uniform Grid

	Game Design
	Gate Functionality
	Balancing the Game

	Flocking Implementation
	Perception and Visual Fields
	Collision Avoidance

	Testing

	Results
	Gameplay
	Sheep flocking algorithm
	Performance

	Discussion
	Flocking Implementation
	Gameplay
	Parallelisation
	Uniform Grid
	Ethical aspects
	Military units
	Robotic bees

	Further Development

	Conclusion
	References

