
 

SAHLGRENSKA ACADEMY 

 
 
 
 
Immune Checkpoint Receptor Expression in NK Cells 
 
 
Degree Project in Medicine 
 
Andreas Erlandsson 
 
Programme in Medicine 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gothenburg, Sweden 2018 
 
 

Supervisor: Fredrik Bergh Thorén 
 

Department of Infectious Diseases 
Institute of Biomedicine 

Sahlgrenska Academy at University of Gothenburg 
 



 2 

 

Table of Contents 

Table of Contents ....................................................................................................................... 2 

Abstract ...................................................................................................................................... 5 

Introduction ................................................................................................................................ 7 

The Immune System ............................................................................................................... 7 

Innate Immune System ....................................................................................................... 9 

Adaptive Immune System ................................................................................................... 9 

Natural Killer Cells ........................................................................................................... 10 

Cancer Immunotherapy ........................................................................................................ 13 

PD-1 .................................................................................................................................. 14 

CTLA-4 ............................................................................................................................. 15 

TIM-3 ................................................................................................................................ 15 

LAG-3 ............................................................................................................................... 16 

Aim ........................................................................................................................................... 16 

Material and Methods ............................................................................................................... 17 

Instrumentation ..................................................................................................................... 17 

qPCR Assay Design .............................................................................................................. 17 

FACS Panel .......................................................................................................................... 19 



 3 

Laboratory Measurements .................................................................................................... 20 

Cell Preparation ................................................................................................................ 21 

Sorting of Cells ................................................................................................................. 21 

Reverse Transcription ....................................................................................................... 23 

Quantitative Polymerase Chain Reaction ......................................................................... 23 

Ethics ........................................................................................................................................ 24 

Data Collection Procedures ...................................................................................................... 24 

Missing and Extreme Data Values ....................................................................................... 24 

Results ...................................................................................................................................... 25 

qPCR Assay Design .............................................................................................................. 25 

CTLA-4 ............................................................................................................................. 27 

PD-1 .................................................................................................................................. 28 

TIM-3 ................................................................................................................................ 29 

LAG-3 ............................................................................................................................... 30 

NKG2A ............................................................................................................................. 31 

Analysis of immune checkpoint expression on CML-exposed NK cells ............................. 32 

FACS Analysis Results ..................................................................................................... 33 

qPCR Results .................................................................................................................... 33 

Discussion with Conclusions and Implications ........................................................................ 38 

Strenghts and Weaknesses .................................................................................................... 41 



 4 

Populärvetenskaplig sammanfattning på svenska .................................................................... 42 

Acknowledgement .................................................................................................................... 43 

References ................................................................................................................................ 44 

Tables ....................................................................................................................................... 48 

Figures ...................................................................................................................................... 48 

Appendix – PCR Primers ......................................................................................................... 50 

 

  



 5 

Abstract 

Background 

Immunotherapy for cancer has improved overall survival and revolutionized the field of 

oncology. Blockade of immune checkpoint receptors has reversed cancer-induced inhibition 

of T cells and natural killer (NK) cells have similar receptors. An attractive approach would 

be to activate the cytotoxic potential of NK cells using blocking agents to these receptors. NK 

cells have different combinations of inhibitory NKG2A and KIR receptors which when bound 

to their cognate ligands both set the functional potential and dampen the cytotoxic behavior of 

the NK cell, a process called licensing. 

Aim 

To develop a method for transcript analyses of genes encoding NK cell immune checkpoint 

receptors that may be used to gain further knowledge of how to block the inhibition while 

maintaining the licensed state. 

Method 

PCR primers for immune checkpoint receptors (CTLA-4, PD-1, TIM-3, LAG-3 and NKG2A) 

were designed and tested on IL-2 and IL-15 activated peripheral blood mononuclear cells. NK 

cells were stimulated with IL-2 and leukemic K562 cells to trigger degranulation. 

Fluorescence-activated cell sorting (FACS) was performed to identify responder cells of 

specific NK cell subsets. cDNA of the transcriptome was generated using reverse 

transcription and the expression levels of immune checkpoint receptor genes was assayed 

using q-PCR. 
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Results 

The primers developed were tested and shown to have good specificity. No consistent 

expression of PD-1 or CTLA-4 could be shown in any NK cell subsets. The LAG-3 level was 

notably low in NKG2A+ subsets. TIM-3 was expressed in all subsets. 

Conclusion 

The results suggest that the developed methodology may be useful in studying how immune 

checkpoint transcript phenotypes are related to NK cell function. Studying responses in 

transcript-positive cells could not be tested, as all KIR+NKG2A- NK cells were negative for 

NKG2A transcripts. Future experiments will be designed to find the time window where these 

transition NK cells are present, enabling us to discriminate between the educating role of 

NKG2A and its role as an activation marker. 

Keywords: NK cells; immune checkpoint inhibitors; cancer immunotherapy 
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Introduction 

The Immune System 

The homeostasis of multicellular organisms is under constant threat by a multitude of 

pathogens. Through evolution, a line of defense called the immune system has developed to 

counter this threat. It consists of an array of effector cells and molecules protecting the 

organism from infectious agents and cancer cells. The less a cancer cell resembles a normal 

cell, the better the chances are for the immune system to recognize and kill it. In recent years, 

the concept of immunotherapy has revolutionized the treatment of a wide range of solid and 

hematologic cancers (1) and the Nobel Prize in Physiology or Medicine 2018 was awarded 

to James P. Allison and Tasuku Honjo "for their discovery of cancer therapy by inhibition of 

negative immune regulation." 

All blood cells including immune cells originate from a common cell, the hematopoietic stem 

cell (HSC). In a process called hematopoiesis the HSC proliferates, matures and differentiates 

through a series of steps into the different types of blood cells as shown in Figure 1 (2). 
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Figure 1 Overview of hematopoiesis (Created using resources from Somersault 18:24 (3)) 

The blood cells are divided into myeloid and lymphoid cells, derived from common myeloid 

progenitor (CMP) and common lymphoid progenitor (CLP) cells. Further differentiation of 

the CMP give rise to erythrocytes, platelets, granulocytes and monocytes. Granulocytes 

consist of eosinophils, basophils and neutrophils while monocytes can be divided into 

macrophages and dendritic cells. The CLP cells differentiate into B, T, NK and dendritic 

cells. Together, lymphocytes, monocytes and macrophages are called peripheral blood 
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mononuclear cells (PBMC) (2). By filtering away the other cells from a blood sample the 

PBMC can be extracted. 

The immune system can be classified into two subsystems known as the innate and adaptive 

immune systems. 

Innate Immune System 

The innate immune system developed first in evolution and can respond quickly to the 

invasion of an infectious agent. It consists of phagocytic cells (macrophages, eosinophils, 

basophils and neutrophils), antigen-presenting cells (APCs) including macrophages and 

dendritic cells (DCs), monocytes and innate lymphoid cells, e.g. natural killer (NK) cells. 

When an infectious agent is encountered, inflammatory signals attract innate immune cells, 

which form a first line of defense. Dendritic cells continuously scanning the extracellular 

environment for invading agents are also called to the site. They pick up foreign antigens and 

migrate to lymph nodes where they initiate an adaptive immune response aimed at the 

infectious agent. 

Adaptive Immune System 

Albeit slower than the innate immune system, the adaptive immune system complements it by 

having the ability to direct precise attacks towards the antigens presented by DCs. T cells 

specific for the antigen undergo clonal expansion and produce cytokines, in turn promoting 

maturation of B cells producing antigen-specific antibodies. This leads to a highly specific 

immune response against pathogens and infected cells. After resolution of the infection a 

small number of memory T and B cells remain, able to quickly respond in case of a 

reinfection. 
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The recent finding that some innate cells (macrophages and NK cells) have been shown to 

develop immunological memory (4–6) has blurred the line between the innate and adaptive 

immunity. 

Natural Killer Cells 

NK cells are part of the innate immune system and are implicated in the defense against viral 

infection, malignant cells and even physical or chemical damage (7,8). These innate cytotoxic 

lymphocytes develop from HSCs in a step-wise fashion as depicted in Figure 2.  

 

Figure 2 NK cell development and maturation (Created using resources from Somersault 18:24 (3)) 

The mature CD56bright and CD56dim NK cells differ in the level of expression of CD56 and 

CD16 but they also have distinct functional features. CD56bright NK cells constitute a smaller 

fraction of the total number of NK cells (9) and have traditionally been considered to 

modulate the immune reaction by secreting cytokines attracting other immune cells to a site. 

CD56dim cells, on the other hand, make up about 90% of the NK cells and have been ascribed 

cytotoxic ability to attack and lyse aberrant cells. They can do this without any prior 

sensitization owing to the presence of germline-encoded activating and inhibitory receptors 

on their surface (7,10–13). The presence or absence of cognate ligands on the target cell 

determines in a complex fashion whether the NK cell will release its cytotoxic granules and 

kill the target cell. CD107a expression on the NK cell surface is a marker for degranulation 
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and by measuring this using flow cytometry the cytotoxic activity can be assessed at the 

single-cell level (14). 

Integration of activating and inhibitory signals guiding the NK cell behavior 

Through surface receptors, NK cells are inhibited by major histocompatibility (MHC) class I 

molecules expressed on most normal healthy “self” cells. This interaction keeps the NK cells 

calm in physiological conditions. Virus infected and aberrant cells that do not express “self” 

MHC class I molecules are recognized and eliminated by NK cells. This is the basis of the 

“missing self” theory.  

A complex intracellular integration of signals from inhibitory and activating receptors 

determines the magnitude of NK-cell mediated cytotoxicity and cytokine production (11–13). 

Inhibitory killer-cell immunoglobulin-like receptors (KIRs) constitute a major family of 

inhibitory receptors. They bind to MHC class I molecules represented by several of the 

human leukocyte antigen (HLA) class I molecules in humans. Natural Killer Cell Receptor 

Group 2 Member A (NKG2A) acts together with CD94 as an inhibitory receptor that appears 

on NK cells and recognizes the non-classical MHC class I molecule, HLA-E. Expression of 

HLA-E requires expression of the other MHC class I molecules because it presents the leader 

peptides derived from classical MHC class I molecules. The level of HLA-E thus indicates 

the expression level of classical MHC class I. Through NKG2A, NK cells can monitor these 

levels and if they are low the “missing self” response is triggered. Many cancers, including 

both solid tumors and leukemia/lymphoma, upregulate the expression of HLA-E . By 

blocking NKG2A pharmacologically, the inhibition of NK cells is lowered and HLA-E is then 

available for binding to the activating receptor NKG2C, thus increasing the activation of the 
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NK cell. The monoclonal antibody Monalizumab works this way and has shown efficacy 

against HLA-E-overexpressing tumor cells in both solid and hematological cancers (16). 

In addition to inhibiting NK cell activation, the interaction of inhibitory receptors with their 

cognate ligands on healthy cells also renders NK cells more responsive to activating signals 

(17). This process is called licensing. For this to happen at least one inhibitory receptor must 

be expressed that recognize self-HLA class I molecules. Without this, the NK cell will be 

unlicensed, i.e. hyporesponsive, under steady state. It will however carry an autoreactive 

potential that can be activated through perturbations of the immune homeostasis, such as 

autologous transplantation, treatment with monoclonal antibodies and viral infections (18). 

Stimulation of unlicensed NK cells with IL-2 causes transcription of the NKG2A gene and 

results in expression of NKG2A on the cell surface (Figure 3). 

 

Figure 3 Steps toward NKG2A expression after IL-2 stimulation of NK cells. 

Transcript-positive unlicensed cells constitute  a subset of NK cells that are activated, but not 

yet expressing any inhibitory receptors. This cell population may be an important effector 

population during immunotherapy because of its potential cytotoxic power without the 
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inhibition of licensed cells. Identifying the specific characteristics of this cell population 

would be advantageous for developing future therapies. 

Cancer Immunotherapy 

Malignant tumors are capable of activating negative regulatory pathways, also called 

checkpoints, associated with immune homeostasis, effectively suppressing immune responses 

(15). The purpose of immunotherapy is to somehow induce or reactivate the immune system 

to recognize and eliminate virus infected and malignant cells. One type of immunotherapy 

called checkpoint inhibition relies on eliciting a dynamic anticancer response aimed not only 

at a single malignant derangement or specific features of cancer cells. Therefore many of the 

aberrations distinguishing cancer cells from healthy cells can be targeted simultaneously (19). 

One common way for cancer cells to evade the immune system is, like some viruses, to 

downregulate the expression of MCH class I molecules so that antigens are not presented to 

cytotoxic T cells, reducing their activation. However, this will allow for NK cell activation 

because of the lower inhibitory signal they get. For example, chronic myeloid leukemia 

(CML) patients in remission after treatment with tyrosine kinase inhibitors had a significantly 

better clinical outcome after discontinuing their medication if they had a high proportion NK 

cells (20). In non-small cell lung cancer (NSCLC), clear cell renal cancer and colorectal 

cancer, infiltration of NK cells into tumors is associated with better prognosis (15). 

Other immune subversion mechanisms employed by cancers include production of 

immunosuppressive factors or regulatory cytokines and expression of immune checkpoint 

molecules. Immune checkpoint molecules have the ability to inhibit immune cells, T cells in 

particular, from attacking cancer cells. By pharmacologically blocking immune checkpoints 



 14 

using antibodies the inhibition can be avoided, thus enabling T cells’ function to kill cancer 

cells. The T cell functions have been shown to decrease in association with enhanced 

expression of immune checkpoints like programmed cell death protein 1 (PD-1), cytotoxic T 

lymphocyte-associated antigen 4 (CTLA-4), T cell immunoglobulin and mucin-domain 

containing 3 (TIM-3), and lymphocyte-activation gene 3 (LAG-3). The roles of these 

molecules in NK cells have been much less studied (16). That is why these four immune 

checkpoints, together with inhibitory receptor NKG2A are the focus of this thesis. The current 

knowledge of these molecules is summarized below. 

PD-1 

PD-1 is expressed on activated T and B lymphocytes. Its ligands PD-L1 and PD-L2 are 

expressed on tumors, infected cells and APCs in inflammatory infiltrates (19). It is involved 

in the termination of immune responses by T and B cells and deficient expression of PD-1 is 

associated with autoimmunity. Blocking PD-1 during cancer treatment can also cause 

autoimmune manifestations. PD-1 is upregulated after prolonged T cell receptor (TCR) 

stimulation and the receptor/ligand interactions hamper the T cell which becomes exhausted. 

PD-1 has also been shown to be a negative regulator of NK cells and is present most often on 

CD56dimCD16+ cells. Blocking PD-1 has emerged as a promising treatment of various cancer 

types although only a minority of patients respond strongly to monotherapy with 10-40% 

reduction in tumor volume (15). It is considered to rely heavily on the enhanced effector 

functions of tumor-specific T cells. However, blocking PD-1 also reverts the NK cell function 

defects induced by PD-1/PD-L1 interactions, indicating that PD-1 is involved in NK cell 

exhaustion and not a mere marker of activation (16). The phenotypic and functional 
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characteristics of PD-1+ NK cells have not been studied in depth, justifying the development 

of reliable methods for analyzing these cells. 

CTLA-4 

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) also acts as an immune checkpoint 

molecule on T cells (19). It is an inhibitory receptor, which is upregulated upon T cell 

activation during chronic viral infections and tumors. This helps tumor immune escape by 

hampering effector functions of T cells. Lack of CTLA-4 in animal models is associated with 

aggressive and fatal autoimmune diseases, indicating its function in regulating immune 

homeostasis (16). 

CTLA-4 has been shown on mouse NK cells activated by IL-2 and in mouse tumors, but the 

knowledge about CTLA-4 expression on human NK cells is limited. The effect of cancer 

treatment with anti-CTLA-4 therapy on NK cells would be beneficial to elucidate. By 

targeting regulatory T (Treg) cells and improving T cell IL-2 production, anti-CTLA-4 

treatment could possibly also lead to NK cell anti-tumor immune response (16). 

TIM-3 

T-cell immunoglobulin and mucin domain 3 (TIM-3) was first described on activated T cells 

but is also expressed on NK cells. It is a co-inhibitory receptor important in negatively 

regulating proinflammatory responses to avoid excessive host damage. It also mediates T cell 

exhaustion during cancer and chronic viral infections. Highly exhausted CD8 T cells express 

both PD-1 and TIM-3 indicating that these receptors cooperate to inhibit T cell functions. By 

blocking TIM-3 in tumor models, T cell functions have been revived leading to better control 

of tumor growth. In advanced melanoma patients, increased expression of TIM-3 on 
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circulating NK cells has been reported to correlate with exhaustion of these cells. Blocking 

TIM-3 signaling with monoclonal antibodies in lung adenocarcinoma increases the 

cytotoxicity and IFN-γ (15). On NK cells TIM-3 acts as a marker of maturation and/or 

activation. The function is however uncertain, showing signs of both activating and inhibitory 

effects depending on experimental or clinical setting. Because of this, further studies are 

needed to understand if and how blocking TIM-3 on NK cells can help restore immune 

surveillance in cancer (16). 

LAG-3 

Lymphocyte Activation Gene-3 (LAG-3) appears on activated T and NK as well as several 

other immune cells and is an inhibitory receptor. It binds MHC class II molecules and has 

diverse biological effects (15). For example, it has been shown to be involved in T cell 

exhaustion in various cancers and chronic infections. Blocking LAG-3 improves T cells 

functions against several cancers and chronic infections, especially in combination with PD-1 

blockade. The effect of LAG-3 on NK cells has not been thoroughly studied and there is 

inconclusive data regarding its role in NK cells. Antibodies to LAG-3 and soluble LAG-3 has 

no effect on NK cell cytotoxic capability but low NK cell expression of LAG-3 is associated 

with viral control in HIV patients (16). 

Aim 

The aim of this project was to develop a method for transcript analyses of genes encoding NK 

cell immune checkpoint receptors and NKG2A which may be used to gain further knowledge 

of the mechanisms underlying NK cell regulation and licensing. 
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The aim was further to apply the method to study the response of transcript-positive NK cells 

with and without prior IL-2 stimulation after exposure to leukemic K562 cells. 

Material and Methods 

Instrumentation 

All cell sorting was performed using a 3-laser FACSAria III flow cytometer (405, 488 and 

633 nm; BD Biosciences, San Diego, CA, USA). Reverse transcriptions were performed using 

a BioRad T100 thermal cycler. The qPCR operations were performed using a BioRad 

CFX384 Touch™ Real-Time PCR Detection system. 

qPCR Assay Design 

To find as good PCR primer pairs as possible a number of web applications were used. With 

the help of the NCBI Gene web page (21) genes with as many verified (NM) and predicted 

(XM) splice variants as possible were identified. Primer-BLAST (22) was then used to find 

suggestions of primer pairs for these genes. Finally, the NetPrimer (23) web page was used to 

calculate the theoretical quality of the primer pairs, i.e. the tendency to form hairpins and self 

and cross complementarity as well as other parameters. 

A pool of cDNA material was created to test the primer pairs. PBMCs had previously been 

isolated from buffy coat from healthy donors. 10e6 PBMCs were mixed with IL-2 and IL-15 

(10 ml of IMDM with 10% P9 medium containing IL-2 at a concentration of 100 U/ml and 

IL-15 at 10 ng/ml) and incubated for 5 days at 37°C. Using the RNEasy Plus Mini Kit from 

QIAGEN according to the manufacturer’s instructions, the RNA from the cells was purified. 
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Finally, the cDNA was created by running reverse transcription (RT) on the RNA using the 

TATAA GrandScript cDNA Synthesis Kit. To the wells of a 96-well plate was added 5 μl 

nuclease free water, 4 μl TATAA GrandScript cDNA Synthesis Mix, 1 μl TATAA 

GrandScript RT reverse transcription enzyme and 10 μl of the purified RNA. RT enzyme was 

replaced with nuclease free water in a number of wells. These wells are used as controls and 

are denoted no reverse transcription (RT-) wells. The plate was then run in the thermal cycler 

to create cDNA. 

The primer pairs with the best theoretical values were evaluated by running qPCR on the 

cDNA material created. Each primer pair was evaluated on 9 wells with 6 µl reactions (3 µl of 

TATAA SYBR GrandMaster Mix, 0.24 µl of 10 µM primer pair mix, 0.76 µl of nuclease free 

water and 2 µl of cDNA material). Three normal wells contained the cDNA material 

previously created, two no reverse transcript (NRT) control wells contained RT- material and 

four no template control (NTC) wells contained nuclease free water instead of cDNA 

material. Quantitation cycle (Cq) is the qPCR cycle in which fluorescence can be detected. It 

is inverse to the amount of target nucleic acid and correlates to the number of target copies in 

the sample (24). The acceptance criteria were a stable signal in the normal wells and a Cq 

value over 34 for the NRT and NTC wells. This number represents the presence of a single 

copy of the target DNA sequence. 

To verify the uniqueness and correct length of each product, the contents of the wells were 

also analyzed using gel electrophoresis. 
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FACS Panel 

Table 1 shows the FACS panel used for sorting the stained cells using the FACSAria III flow 

cytometer. 

Table 1 FACS panel used for the sorting 

Marker Comment Fluorochrome Laser 
CD56 NK cell marker BV711 Violet 405 
NKG2A 

 

PE Blue 488 
KIR2DL2/L3 

 

PeCy5.5 Blue 488 
KIR2DL1/S1 CD158 PeCy7 Blue 488 
KIR3DL1 

 

APC Red 633 
CD107a Degranulation 

marker 

BV510 Violet 405 
Cell stain K562 cells Cell Trace Violet Violet 405 

 

For each of the lasers, the overlaps of the fluorochromes were analyzed using the BD 

Biosciences Spectrum Fluorescence Viewer (Figure 4, Figure 5 and Figure 6). 

 

Figure 4 FACS panel spectral overlaps for the 405 nm laser 
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Figure 5 FACS panel spectral overlaps for the 488 nm laser 

 

Figure 6 FACS panel spectral overlaps for the 633 nm laser 

Laboratory Measurements 

The assays developed were used to measure the difference in immune checkpoint receptor 

expression between those NK cells having been stimulated by IL-2 and those that have not 

after being exposed to K562 CML cells. 
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Cell Preparation 

A cryopreserved sample of PBMC isolated from a patient with HLA-typed NK cells was 

thawed, mixed with pooled human serum (P9) and washed in buffered saline containing 0.5% 

BSA and 0.1% EDTA (referred to as elutriation buffer, E-buffer). The cells were then dyed 

for T cell marker CD3 and NK cell marker CD56 and analyzed with an Accuri C6 flow 

cytometer to determine the NK cell content. Following the protocol of the NK Cell Isolation 

Kit from Miltenyi Biotec the NK cells were isolated. They were then washed in E-buffer, 

counted, analyzed for NK cell content like above and washed in medium (IMDM with 1% 

pest and 10% Fetal Calf Serum). On a 96-well plate the NK cells were added to two wells, 

one of which contained 500 U/ml IL-2. The plate was then incubated at 37°C for 48 hours. 

Thereafter, cells of the K562 leukemic cell line dyed with Cell Trace Violet was added to 

both wells in a 1:1 ratio relative to the NK cells and incubated for four hours in presence of 

CD107a antibody. The plate was centrifuged and the supernatant discarded. Fluorochrome-

conjugated antibodies of the FACS panel were added to the wells and incubated for 30 

minutes in a fridge. The cells were washed to remove any free antibodies before being 

resuspended in NaCl and moved to two FACS tubes, one with cells stimulated by IL-2 and 

one with unstimulated cells. 

Sorting of Cells 

Two 96-well plates were prepared with 5 μl lysis buffer per well. The IL-2 stimulated and 

unstimulated cells were sorted to different plates with the same plate layout using the 

FACSAria III flow cytometer. 100 cells were sorted to each well. Living NK cells with the 

correct size and granularity were selected using gates on forward scatter, side scatter and 

CD56. 
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The K562 cells were gated out. NK cells that had degranulated were identified as cells 

expressing the granule marker CD107a. 100 NK cells of each subset were sorted by 

combining gates for NKG2A and the three KIRs using logical gating (illustrated in Figure 7) 

into the groups shown in Table 2. 

 

Figure 7 Dot plots illustrating how FACS gates are used for identifying NK cell subsets based on the amount of NKG2A and 

KIRs on the cell surface. The image shows how the NKG2A+ KIR- NK cell population is identified using logical gating.  
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Table 2 NK cell subsets studied and the abbreviations used in this thesis 

NK cell subsets Abbreviation 
No NKG2A and no KIR N-K- 
NKG2A and no KIR N+K- 
NKG2A and one KIR N+K1 
No NKG2A and one KIR N-K1 
No NKG2A and two KIRs N-K2 
 

Every combination of subset and CD107a status (CD107a+ or CD107a-) was sorted to four 

wells each. After sorting the plate was stored in a -80°C freezer. 

Reverse Transcription 

To be able to analyze the amount of relevant NK cell mRNA it was reverse transcribed into 

cDNA using the TATAA GrandScript cDNA Synthesis Kit. To each well of the sorted 96-

well plate was added 2.5 μl nuclease free water, 2 μl TATAA GrandScript cDNA Synthesis 

Mix and 0.5 μl TATAA GrandScript RT reverse transcription enzyme. To one of the four 

wells of each combination of NK cell subset and CD107a status, RT enzyme was replaced 

with nuclease free water to create NRT wells. 

The recommended thermal cycling program from TATAA was run (22°C for 5 min, 42°C for 

30 min, 85°C for 5 min and hold at 4°C). Thereafter 20 μl of nuclease free water was added to 

each well and the plate was stored in a -18°C freezer. 

Quantitative Polymerase Chain Reaction 

The amount of cDNA for our five immune checkpoints of interest was analyzed using qPCR. 

Each well of a 384-well plate was prepared with 3 μl TATAA SYBR GrandMaster Mix, 0.24 

μl 10 μM forward and reverse primer, 0.76 μl nuclease free water and 2 μl cDNA. The cDNA 

was replaced with corresponding RT negative material for the NRT wells and with nuclease 
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free water for the NTC wells. Three cDNA wells and one NRT well were used per cell type 

and gene and three NTC wells were used per gene. The data was collected using the software 

Bio-Rad CFX Maestro. 

Ethics 

All experiments were performed using blood cells collected from blood donors. Blood donors 

give a general consent to the use of blood cells in research. Since the connection between 

blood donor and buffy coat is removed, no further ethical review of experiments using blood 

cells is needed according to Swedish law. 

Data Collection Procedures 

The qPCR data collected by the qPCR software Bio-Rad CFX Maestro was exported to Excel 

and analyzed. The Cq value for each assay was calculated as the average of the Cq values of 

the three wells of the assay. Since the Cq value represents the number of PCR cycles, i.e. the 

number of doubling of genetic material, a relative value for the amount of product of the gene 

in question was calculated as 2^(40-Cq). 

Missing and Extreme Data Values 

Missing or very high Cq values of a single well have been adjusted to 36, indicating low 

expression, in order not to ruin the average Cq value. 

Wells with no melt temperature values, thus indicating a very low or no expression or an 

error, have been adjusted to Cq value 38. This value represents a very low expression of the 

gene in question and means that the lowest relative expression marker value is 2^(40-38) = 4. 
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Results 

qPCR Assay Design 

For the assays to be considered acceptable a number of criteria must be met. Preferrably only 

the desired product with its expected length should be amplified during the qPCR process. As 

little amplification as possible of the primers themselves should occur, a concept called 

primer dimers. A low Cq value in the NTC wells may be a sign of this. The NRT wells 

contain no cDNA from mRNA and a low Cq value here could indicate that the primers are 

picking up genomic DNA which is not desirable. In addition the melt temperature should be 

approximately the same across all wells containing reverse transcribed mRNA material. Table 

3 shows results from the qPCR of the primer tests. The primers that were evaluated are listed 

in the Appendix. 

Table 3 qPCR results of primer tests 

Primer 
pair  

Mean 
Cq  

Min NRT Cq  Min NTC 
Cq  

Mean Melt 
Temperature  

Melt Temperature 
Spread  

CTLA4 24.52 40.97 35.13 77.83 0.50 

PD-1v1 30.86 34.21 35.69 84.17 0.50 

PD-1v2 31.53 38.47 36.20 85.00 0.00 

TIM-3 25.05 47.56 32.77 79.50 0.00 

LAG-3v1 23.86 29.66 29.54 82.00 0.00 

LAG-3v2 24.86 No target detected 38.61 80.00 0.00 

LAG-3v3 24.57 42.91 42.62 82.00 0.00 

NKG2Av1 25.06 46.13 39.28 76.00 0.00 

NKG2Av2 25.15 33.34 33.49 76.50 0.00 

NKG2Av3 22.83 35.61 34.70 76.33 0.50 

 



 26 

The results of running the qPCR products on gel electrophoresis can be seen in Figure 8. Both 

wells for PD-1 v1 show some bands in addition to the expected one. The other primer tests 

show distinct single bands.

 

Figure 8 Results of running the qPCR products on gel electrophoresis 

The lengths of the DNA segments duplicated by the primer pairs found using gel 

electrophoresis are shown in Table 4. The observed length is without exception slightly 

greater than the expected length. On average, the observed length is 23.5% greater, varying 

between 6.8% and 35.4%. 
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Table 4 Observed and expected lengths of qPCR products for the different primer pairs 

Primer pair Observed length 

(base pairs) 

Expected length 

(base pairs) 

CTLA-4 125 117 

PD-1v1 85 77 

PD-1v2 150 132 

TIM-3 150 121 

LAG-3v1 175 140 

LAG-3v2 130 101 

LAG-3v3 170 136 

NKG2Av1 130 96 

NKG2Av2 135 100 

NKG2Av3 135 103 

CTLA-4 

Only one primer pair with promising theoretical properties was found for CTLA-4. The qPCR 

results are shown in figure 4. PTC wells are all well separated from NRT and NTC regarding 

cycles. The Cq values of the NRT and NTC wells are all above the acceptance criteria of 34. 

The corresponding melt peaks are also distinct (Figure 9). The gel electrophoresis indicates a 

single product with a length close to the expected (Table 4). 
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Figure 9 Amplification and melting curves for CTLA-4. cDNA, NTC and NRT lines are green, red and blue, respectively. 

PD-1 

Two primer pairs denoted PD-1v1 and PD-1v2 with satisfactory theoretical properties were 

discovered and their amplification and melting curves are shown in Figure 10 and Figure 11, 

respectively. The amplification curves for neither PD-1v1 nor PD-1v2 are well separated. All 

NRT and NTC Cq values are above 34. The PTC melt peaks of PD-1v1 are more distinct than 

those of PD-1v2, although according to the gel electrophoresis in Figure 8 the product 

amplified by PD-1v2 is more specific and of the expected length. 

Figure 10 Amplification and melting curves for PD-1v1. cDNA, NTC and NRT lines are green, red and blue, respectively. 
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Figure 11 Amplification and melting curves for PD-1v2. cDNA, NTC and NRT lines are green, red and blue, respectively. 

TIM-3 

One auspicious primer pair was identified for TIM-3. Cycle separation, melt peaks and gel 

electrophoresis indicate a clear-cut product with the expected length and low expression in the 

NRT and NTC wells Figure 12 and Table 4. One NTC Cq value is 32.77, that is below the 

acceptance criteria. However, the expression in the cDNA wells is far greater with a mean Cq 

value of 25.05. 

 

Figure 12 Amplification and melting curves for TIM-3. cDNA, NTC and NRT lines are green, red and blue, respectively. 
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LAG-3 

Three primer pairs denoted LAG-3v1, LAG-3v2 and LAG-3v3 with promising theoretical 

properties were found. All three have unambiguous cycle separation, melt peaks and product 

lengths (Figure 13, Figure 14, Figure 15, Figure 8and Table 4). The NTC and NRT Cq values 

for LAG-3v1 are all below 34 thus not meeting the acceptance criteria. 

 

Figure 13 Amplification and melting curves for LAG-3v1. cDNA, NTC and NRT lines are green, red and blue, respectively.

Figure 14 Amplification and melting curves forLAG-3v2. cDNA, NTC and NRT lines are green, red and blue, respectively.
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Figure 15 Amplification and melting curves for LAG-3v3. cDNA, NTC and NRT lines are green, red and blue, respectively. 

NKG2A 

The theoretical evaluation of potential primers resulted in three candidates. Both NKG2Av1 

and NKG2Av2, but not NKG2Av3, were shown to have distinct amplification and melt 

curves in addition to the expected length. The NTC and NRT Cq values are above 34 for all 

three primer pairs (Figure 16, Figure 17, Figure 18, Figure 8 and Table 4). 

 

Figure 16 Amplification and melting curves for NKG2Av1. cDNA, NTC and NRT lines are green, red and blue, respectively. 
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Figure 17 Amplification and melting curves for NKG2Av2. cDNA, NTC and NRT lines are green, red and blue, respectively. 

 

Figure 18 Amplification and melting curves for NKG2Av3. cDNA, NTC and NRT lines are green, red and blue, respectively. 

Analysis of immune checkpoint expression on CML-exposed NK cells 

The qPCR assay design in the first part of the project resulted in verified methods for 

analysing the transcript expression of genes for all four checkpoint inhibitor as well as 

NKG2A. In this second part of the project those methods were applied to NK cells exposed to 

leukemic K562 cells to study the reaction and identify patterns of checkpoint inhibitor and 

NKG2A transcript expression in different NK cells subsets. 
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FACS Analysis Results 

The relative amount of product for each immune checkpoint receptor is presented graphically 

in respective bar chart. The fraction of NK cells that degranulated after exposure to K562 

cells was 44.6% and 37.1% with and without IL-2 treatment, respectively. The NK cell 

fraction expressing NKG2A increased from 27.9% to 31.2% with IL-2 treatment and the shift 

towards NKG2A+ subtypes is shown in Figure 19.  

  

Figure 19 Distribution of NK cell subsets after exposure to K562 cells depending on IL-2 stimulation. 

qPCR Results 

CTLA-4 

No or very low expression of CTLA-4 could be shown in all of the NK cell subsets regardless 

of IL-2 stimulation or NKG2A/KIR expression (Figure 20). Unstimulated cells possibly 

express slightly more CTLA-4 transcript than IL-2 stimulated cells. Similarly, cells that 

degranulate express slightly more than non-degranulating cells. The differences are however 

miniscule. 
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Figure 20 Relative amount of CTLA-4 expression of NK cells after exposure to K562 cells. 

PD-1 

No expression of PD-1 could be shown in any of the NK cell subsets regardless of IL-2 

stimulation or NKG2A/KIR expression (Figure 21). 

 

Figure 21 Relative amount of PD-1 expression of NK cells after exposure to K562 cells. 
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TIM-3 

All NK cell subsets contain transcript for TIM-3. In all subsets but NKG2A- KIR- cells the 

effect of IL-2 treatment is an increased expression of TIM-3. Among the IL-2 stimulated 

cells, the immature NKG2A- KIR- subset shows the lowest level of expression (Figure 22). 

There is no apparent correlation between degranulation status and the level of TIM-3 

transcript (Figure 23). 

.  

Figure 22 Relative amount of TIM-3 expression of NK cells after exposure to K562 cells depending on IL-2 stimulation. 
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Figure 23 Relative amount of TIM-3 expression of NK cells after exposure to K562 cells depending on degranulation status. 

CD107a is a marker for degranulation. 

LAG-3 

The transcript level of LAG-3 varies considerably between NK cell subsets. The more mature 

KIR+ subsets express more transcript than the KIR-. There is a clear difference between 

unstimulated and IL-2 exposed NK cells in almost all subsets and IL-2 favors LAG-3 

expression (Figure 24). Cells that degranulate tend to have a lower level of expression than 

cells that do not (Figure 25). 
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Figure 24 Relative amount of LAG-3 of NK cells exposed to K562 cells depending on IL-2 stimulation 

 

Figure 25 Relative amount of LAG-3 of NK cells exposed to K562 cells depending on degranulation status. CD107a is a 

marker for degranulation. 
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exposure to the K562 cells (Figure 26). IL-2 had no clear effect on the level of NKG2A 

expression per cell subset. However, as noted above the NKG2A+ fraction of NK cells 

increases with IL-2 stimulation. 

 

Figure 26 Relative amount of NKG2A of NK cells exposed to K562 cells depending on degranulation status. CD107a is a 

marker for degranulation. 
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cells for 48 hours both with and without 500 U/ml IL-2. Even though there was an expected 

shift towards more NKG2A expression with IL-2 stimulation (30), there was no obvious 

difference in transcript expression in each NK cell subtype depending on the presence or 

absence of stimulation. All extra NKG2A expression induced by IL-2 thus seems to have not 

only reached the transcript stage but also the protein stage after 48 hours. It is possible that a 

stronger stimulus given during at shorter time period would generate more transcript-positive 

cells that are not yet expressing the cell surface protein. 

CTLA-4 was not shown to be clearly expressed in any NK cell subsets and data on it is scarce 

in the literature (16). If anti-CTLA-4 therapy improves NK cell contribution to anti-tumor 

immune response, it is likely to be indirectly, for example by improving IL-2 production by T 

cells which may unleash NK cells from their suppressive effects (25,26). 

The yield of the PD-1 assays was lower than for the other assays during the primer tests and 

effectively zero when NK cells were analyzed. This can of course be because the amount of 

PD-1 mRNA in the primer test material was low and that none of the NK cells subsets express 

PD-1. Previous studies have shown that depending on the clinical setting, varying NK cell 

subsets express PD-1 (27,28)  However, there is also a possibility that the quality of the 

primer pair was low leading to low sensitivity in the qPCR experiments. Further evaluation of 

this primer pair would be desirable to verify its value. 

In line with previous findings in the literature, TIM-3 was found to be expressed in all NK 

cell subsets regardless of degranulation status and it has been assigned both activating and 

inhibitory effects (16). Of the IL-2 stimulated cells the level was lowest for the immature 

NKG2A- KIR- subset. This is in line with it being constitutively expressed in functional and 
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more mature NK cells (15). Since no PD-1 expression was detected in any of the subsets, it 

seems like TIM-3 is not coexpressed with PD-1 on NK cells like it is on T cells in some other 

cancers (15). 

The expression of LAG-3 transcript was found to be low mainly in the NKG2A+ and high in 

the NKG2A- NK cells. This is the opposite of the NKG2A transcript expression and suggests 

a shift from LAG-3 and inhibition by MHC class II in immature NK cells to NKG2A and 

inhibition by HLA-E as the cells mature. Later maturation seems to reverse the shift, once 

again in favor of LAG-3, when NKG2A levels decrease. Further studies are required to 

determine if the LAG-3 transcript is translated to protein expressed on the cell surface, if there 

really is a causal connection between LAG-3 and NKG2A and the implications thereof. 

LAG-3 is an inhibitory receptor binding MHC class II molecules. It has been well established 

that K562 cells do not express MHC class II on the cell surface (29). The observed tendency 

for NK cells with low a level of LAG-3 transcripts to degranulate to a greater degree thus 

likely does not necessarily involve LAG-3 directly. Instead, LAG-3 may in certain 

circumstances constitute a marker for less cytotoxic NK cells. 

In conclusion, a methodology was developed that may be useful in studying how immune 

checkpoint transcript phenotypes are related to NK cell function. Since no cells transcript-

positive and protein-negative for NKG2A were found, future experiments will be designed to 

find the time window where these transition NK cells are present, enabling us to discriminate 

between the educating role of NKG2A and its role as an activation marker. 

The presence of LAG-3 on NK cells has not previously been thoroughly studied and our 

finding that the gene transcript is present in different amounts in the various NK cell subsets 
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as well as the seemingly inverse relationship with NKG2A calls for further investigation with 

the hope of finding new targets for treatment of malignant disease. 

Strenghts and Weaknesses 

A method for studying transcript levels of five NK cell receptor genes was successfully 

developed. The primer test assays for CTLA-4, TIM-3, LAG-3 and NKG2A showed good 

specificity for the desired transcript of the correct length without picking up genomic DNA or 

producing primer-dimers in disturbing amounts. However, during the verification of the 

primer pairs there was a recurring discrepancy between the observed and expected length of 

the DNA copies on the gel electrophoresis. The fact that the observed length on average was 

23.5% (varying between 6.8% and 35.4%) greater than the expected length implies a 

systematic error in the gel electrophoresis. Investigating the cause of this and possible 

structural differences between the DNA ladder and the amplified DNA would be desirable to 

be able to determine if there really is a length difference. 

The method developed was tested on 100 cells, which means that the results represent the 

average of those cells. Important patterns may be obscured by the noise from this large 

number of cells. Future experiments will focus on scaling it down to single cells for more 

detailed analysis. 

The PCR analysis was only run once per checkpoint receptor and NK cell subtype which 

means that no standard deviation or other measures could be calculated to indicate the 

statistical significance of the findings. This shortcoming could be overcome by repeating the 

experiments multiple times.  
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Populärvetenskaplig sammanfattning på svenska 

Förekomst av “immune checkpoint”-receptorer hos NK-celler 

Den mänskliga kroppen är uppbyggd av flera miljarder celler. Dessa kommunicerar med 

varandra för att reglera antalet celler och vilken typ av celler som behövs. Fel i denna 

reglering kan leda till ohämmad celltillväxt vilket är karaktäristiskt för de sjukdomar som 

benämns cancer. För att skydda kroppen mot infektioner och cancer finns immunförsvaret 

bestående av celler som har förmågan att attackera främmande mikroorganismer och 

cancerceller. Vissa cancerceller har förmågan att påverka immunförsvarsceller genom att 

stimulera sensorer på deras yta, s.k. immune checkpoint-receptorer. Detta får till effekt att 

immunförsvaret bromsas och cancercellerna undkommer attack. En relativt ny och mycket 

lovande medicinsk behandlingsmetod för cancer kallas immunterapi och innebär att immune 

checkpoint-receptorer på immunförsvarets s.k. T-celler blockeras så att cancercellerna inte 

kan bromsa immunförsvaret. 

En annan typ av immunförsvarsceller är naturliga mördarceller, även kallade NK-celler. Vi 

vet inte lika mycket om immune checkpoint-receptorer på dessa celler men vi vet att deras 

attackbeteende kontrolleras av aktiverande och hämmande receptorer. Ett syfte med detta 

projekt var att studera hur mycket av fyra immune checkpoint-receptorer, kända från T-celler,  

som finns i olika undergrupper av NK-celler. Detta som ett steg mot att hitta nya sätt att på 

medicinsk väg kunna stimulera NK-cellers cancerdödande förmåga. 

Under vissa omständigheter har NK-celler den hämmande receptorn NKG2A och reagerar då 

på två sätt vid stimulering. Dels stärks deras celldödande förmåga, men samtidigt hämmas 

deras attackbeteende. Genom att lära oss mer om NK-celler som är i färd med att skaffa sig 
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NKG2A hoppas vi kunna utnyttja att deras celldödande förmåga stärkts, men innan deras 

attackbeteende hämmas, till att behandla cancer. 

En metod togs fram för att mäta mängden NKG2A samt de fyra immune checkpoint-

receptorerna PD-1, CTLA-4, TIM-3 och LAG-3. NK-celler som fått interagera med en viss 

typ av blodcancerceller sorterades till olika undergrupper och analyserades med den 

framtagna metoden. 

Resultaten visade att den framtagna metoden fungerade väl. Två av de undersökta 

receptorerna, PD-1 och CTLA-4, kunde inte påvisas i NK-cellerna. Däremot kunde vi se 

TIM-3 och LAG-3 vilket inger förhoppning om att dessa kan utnyttjas för immunterapi. 

Betydelsen av detta kommer visa sig i framtida studier och kan eventuellt leda till nya 

behandlingar av cancersjukdomar. Tyvärr kunde inga NK-celler i färd med att skaffa NKG2A 

hittas men med förfinad metodik kommer framtida studier lära oss mer om dessa celler och 

deras terapeutiska potential. 
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Appendix – PCR Primers 

Table A 1 lists the primer pairs that were designed, evaluated and used in the analysis of 

checkpoint inhibitor transcript expression. Table A 2 lists the primer pairs that were designed 

and evaluated but not considered adequate for the analysis. 

Table A 1 Primer pairs used in the analysis 

Gene 
Primer	
label Ensembl	number Left	Primer	5'-3' Right	primer	5'-3' T-anneal Length 

CTLA-4 CTLA4 ENSG00000163599 GCAGCAGTTAGTTCGGGG TGGGGGCATTTTCACATAGACC 58.11/60.62 117 
PD-1 PDCD1v2 ENSG00000188389 TCGTCTGGGCGGTGCTA AGGTGAAGGTGGCGTTGTC 60.43/60.23 132 
TIM-3 HAVCR2 ENSG00000135077 GTGTCCTCTGACTTTTCTTCTGC CGACCTCCGCTCTGTATTCC 59.50/59.97 121 
LAG-3 LAG3v3 ENSG00000089692 TTCGACTAGAGGATGTGAGCC GATCCAGGTGACCCAAAGGATT 58.97/60.02 136 
NKG2A KLRC1v1 ENSG00000134545 AACGATAGTTGTTATTCCCTCTACA GGACAATGGCCACAATGACG 57.59/59.83 96 

 

Table A 2 Primer pairs designed but not used in the analysis 

Gene 
Primer	
label Ensembl	number Left	Primer	5'-3' Right	primer	5'-3' T-anneal Length 

PD-1 PDCD1v1 ENSG00000188389 GCACGAGGGACAATAGGAGC ACAGAGAACACAGGCACGG 60.53/59.93 77 
LAG-3 LAG3v1 ENSG00000089692 AGGCTGGGACCTACACCTG TGGAGTCACCTCACAAAGCAG 60.61/60.20 140 
LAG-3 LAG3v2 ENSG00000089692 TCATCACAGTGACTCCCAAATCC GCTCCACACAAAGCGTTCTT 60.31/59.34 101 
NKG2A KLRC1v2 ENSG00000134545 ACGATAGTTGTTATTCCCTCTACAT CCTCAGGACAATGGCCACAA 57.40/60.25 100 
NKG2A KLRC1v3 ENSG00000134545 TTGGGAAGAGAGTTTGCTGG TGAGGATGGTGAAATGATGGAC 57.72/58.11 103 

 


