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Abstract

In this thesis, a reduction procedure on quantum teams is defined. Physically, this reduction
procedure can be seen as an attempt to describe the measurement results of a certain (quantum
mechanics) experiment purely classically, i.e. with hidden variables. In complete agreement with
the expectation, the failure of this attempt indicates that genuine quantum effects are in play; the
reduction procedure halts without having converted the team to a multi-team. It can therefore be
used to demonstrate contextuality in a given quantum team. The reduction procedure conserves
the corresponding probability table as well as all the properties expressible in Quantum Team
Logic. Finally, an attempt has been made to solve the open problem of the axiomatisation of QTL
formulas that agree with quantum mechanics. Absence of references to literature indicates original
work from the author.
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1 Introduction

In this thesis logic is applied to quantum mechanics. More specifically, logical machinery is applied to
entanglement experiments in an attempt to give accurate and useful descriptions of the phenomena.
Entanglement sparks the imagination of many; arguably because of its connections with teleportation.
The phenomenon was first written about in [EPR1935] after which the literature of entanglement and,
more generally, contextuality has expanded. The most notable contributions to this subject are [B1964],
in which John S. Bell proved quantum mechanics to violate certain inequalities, and the contributions
[CHSH1969] stating the famous CHSH inequalities. In both papers, we imagine a scenario like in
Figure 1.1.

Figure 1.1: Bell’s scenario of type (2,2,2). Both Al-
ice and Bob have measuring devices with two differ-
ent settings. They measure particle pairs sent from
a shared source, with which measurement outcomes
are created, taking on values in {0, 1}.

In the figure, Alice and Bob are two physi-
cists who are measuring electron pairs emitted
from the source. In this situation, the relevant
property of electrons is their spin, which can be
thought of as an actual spinning motion around
their axis, creating a magnetic field due to the
electric charge. This spin is quantised: it does
not take on continuous values but instead takes
on values in the discrete spectrum {0, 1}. The
measurement that is being performed is a sim-
ple one conceptually. Incoming electrons pass
through a magnetic field, which alters the elec-
trons’ paths. For a vertically oriented magnetic field the paths are either bent upwards or downwards,
hence the dichotomous measurement values. The magnetic field can, in principle, have any orientation
in space, but for the present, we assume it has two orientations only; these are called the measurement
settings. Alice’s measurement settings are labelled a and a′ while Bob’s are labelled b and b′.

Quantum mechanics allows the electron pairs to be entangled, which will cause certain correlations
in Alice and Bob’s measurements that cannot be explained by classical theories of physics, where all
properties of a physical state are determined. The correlations violate the previously mentioned Bell
inequalities, which would have to be satisfied in classical physics. A general perspective can be found
by studying these inequalities from a logical point of view. In [AH2012] it is proved that all Bell
inequalities can be derived from these logical Bell inequalities. In [HPV2016] a logic is designed that
proves the violations of logical Bell inequalities.
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A tabulation of the Measurement Results

In the experimental setup above, we can imagine Alice and Bob having registered their measurement
outcomes as in table 1.

a a′ b b′

0 1 - 0 -
1 1 - - 1
2 0 - 1 -
3 - 0 - 0
. . .

Table 1: Alice’s and Bob’s measurements.

For the first three measurements Alice chose
setting a and for the fourth she chose a′, while
Bob is alternating between b and b′. Both Alice
and Bob can only choose one measurement set-
ting, hence the blanks in the table, indicating the
measurements that were not performed.

One can imagine many different scenarios
in which the measurement values are not di-
chotomous, but trichotomous or even continuous.
Also, one can imagine many more different mea-
surement settings, as well as more than two measuring agents. Later, we give a formal specification of
all these scenarios.

Dependence logic and team semantics

The previously mentioned correlations between the measurement results from Alice and Bob indicate
a certain dependence on their respective measurement outcomes. Dependence logic might therefore be
a valuable tool to study these correlations from a logical perspective. [V2007] Forms a good reference.
In the present context, what we need to understand from dependence logic, is its team semantics. An
example of a team is table 2. It shows the colours of the shirts of players in a soccer team. The players
in the field are wearing red while those on the bench are wearing white. There is one keeper with a
black shirt.

Red White Black

s0 0 1 0
s1 1 0 0
s2 0 1 0
s3 1 0 0
s4 0 1 0
s5 0 0 1
s6 1 0 0

Table 2: A team of soccer players.

The dependence logic formula = (Red,White,Black)

informally means that the value of Black depends
on the values of both Red andWhite. This means
that for any two different rows si and sj such
that both si(Red) = sj(Red) and si(White) =

sj(White) we have: si(Black) = sj(Black). De-
pendence logic is not used in this thesis, so the
team semantics just functions as an illustration.
Looking forward, note that table 1 can also be
seen as a team, although some of its fields are
undetermined. A team where some of the val-
ues are undetermined is called a quantum team;
a more formal definition follows later.
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Multi-teams

Observing Alice’s and Bob’s table, we can imagine the empty fields to contain definite values. This
physically corresponds to a situation where the electron travelling to Alice, after being emitted from
the source, contains information about the measurement results it will give for each of Alice’s mea-
surement settings. And similarly for the electron travelling towards Bob. In short, the unperformed
measurements have values. This is an assumption from classical physics, because a classical physical
state fully determines the results of any experiment that can be performed on it. The assumption
is usually referred to by hidden variables. A quantum team containing all information on the unper-
formed measurements is called a multi-team, to be defined formally later. An example of a multi-team
is shown in table 3. For the time being and for reasons that will become clear in the future, we call
this multi-team (Ω, τ).

p0 p1 p2 p3

0 1 1 0 1
1 1 1 0 1
2 1 1 1 1
3 1 1 1 0
4 0 0 1 1
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0

Table 3: An example of a multi-team.

This thesis centres around a reduction proce-
dure that aims to find a multi-team with the same
explanatory power as a given quantum team. It
is an attempt to describe the experimental results
found by Alice and Bob in classical terms, i.e. as
if there were hidden variables. As will be shown
later, it can be used to demonstrate contextual-
ity, a genuine quantum effect.

Logical Bell inequalities

Multi-teams give rise to probabilities associated
to propositions. For example, in table 3 we
see that p0 occurs with probability [p0](Ω,τ) =
1
2 , while p2 has an associated probability of
[p2](Ω,τ) = 3

8 .
In case of dichotomous measurement results, the measurement settings are boolean variables. This

allows us to find probabilities associated to propositional formulas using a multi-team. Let A = {φi}
be a set of formulas, each element of which has an associated probability [φi](Ω,τ). Let k = |A| be
the number of formulas. Using intuitive reasoning, we can understand the idea behind a logical Bell
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inequality:

1−
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Which after reordering becomes:

∑
i

[φi](Ω,τ) ≤ k − 1 +

[∧
i

φi

]
(Ω,τ)

When A is contradictory, the associated probability to its conjunction is zero: [
∧
i φi](Ω,τ)

= 0. In
this case we get: ∑

i

[φi](Ω,τ) ≤ k − 1

This last expression is what we call a logical Bell inequality. When in the following reference is
made to Bell inequalities, the logical type above is meant. Quantum mechanics predicts that these
inequalities can be violated. If [φi](Ω,τ) = 1 for all i, the inequality is maximally violated by 1.

Probabilistic Team Logic (PTL)

In [HPV2016] Probabilistic Team Logic (PTL) is introduced. Later in this thesis, we are going to use
Quantum Team Logic (QTL) which closely resembles PTL. It is discussed for introductory purposes.
PTL proves the logical Bell inequalities. The atomic formulas are the following:

Definition 1. Suppose φ0, ..., φk are propositional formulas, (aj)j≤k ∈ Z and c ∈ Z, then

a0φ0 + ...+ akφk > c

is an atomic formula of PTL.

Definition 2. The set of formulas of PTL is defined as follows:

• Atomic formulas are formulas;

• If α is a formula, then ¬α is a formula;

• If α and β are formulas, then α ∧ β is a formula.
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Definition 3. (Semantics). Suppose X is a multi-team and α a formula of PTL with all its proposi-
tional symbols corresponding to a column of X. We define by induction on α the relation X |= α in
the following way:

• X |= a0φ+ ...+ ak−1φk−1 > c iff a0[φ0]X + ...+ ak−1[φk−1]X > c;

• X |= ¬α iff X 2 α;

• X |= α ∧ β iff X |= α and X |= β.

Here, [φi]X is the probability associated to the propositional logic formula φi in the multi-team
X. PTL proves the Bell inequalities, which makes it an unsuitable tool to adequately describe the
experiment under discussion since these inequalities are violated. Later, we will be looking at Quantum
Team Logic (QTL), which is a modification of PTL. QTL will be able to prove violations of Bell
inequalities, which makes it better suitable to describe the experiment.

Notation

To formally describe the theory, we use the notation similar to [HPV2016], [AH2012] and [AB2011].
Firstly, we assume a finite set of agents A, a finite set of measurement settings Mi for i ∈ A, and a
set of measurement values V ji for j ∈ Mi. The measurement settings are boolean variables in case
|V ji | = 2; in other cases they are multi-valued propositional logic variables. To characterise a typical
Bell scenario, we can write the finite sequence (n, k, l), meaning that |A| = n, |Mi| = k for each i, and
|V ji | = l for each i and j. A Bell scenario is therefore one in which each agent has the same number of
measurement settings to choose from, each of which can take on the same number of possible values.
We say that such scenario is of type (n, k, l).

Picking one measurement setting from Mi = {pmi |m ∈ {0, ..., k − 1}} for each i ∈ A gives us a
measurement context U = {pmii |i ∈ A}. It represents an experimental setup where every agent has
chosen one setting on his/her device.

The set X = ∪i∈AMi is called the measurement set. It contains all measurement settings for every
agent.

The measurement cover U on a measurement set X is the set of all measurement contexts. There
are kn many of them. Formally, we have U = {Uj |j ∈ {0, ..., kn − 1}} where we assumed some
numbering of the measurement contexts.

Each measurement can take on l values; l = {0, ..., l − 1} denotes the set of these values. The
set lUi of functions from a measurement context Ui to l is thought of as the set of measurement
outcomes; each element of it is a measurement outcome. Note that these are thought of as measurement
values of measurements that have actually been carried out. Let U be a measurement context and
dU a probability distribution on lU . The set {dU}U∈U is a probability model or probability table on
the cover U . The probability model gives the probabilities for each measurement outcome within
each measurement context. The set S(U) =

{
s ∈ lU |dU (s) > 0

}
is the support ; the collection of

measurement outcomes that actually occur, i.e. have strictly positive probability. An assignment
ς : X → l such that for all U ∈ U we have ς|U ∈ S(U) is called a global section for the support.
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A multi-team is a pair (Ω, τ) where Ω is a non-empty set of rows and τ is a function on Ω such
that for every i ∈ Ω, τ(i) is an assignment for the measurement set X. The size of the multi-team Ω

is the cardinality |Ω|. In the following, we assume only finite multi-teams.
We denote the restriction τ |U of τ to a certain measurement context U by τU . The associated

probability table to a multi-team (Ω, τ) is the set {dU}U∈U where

dU (v) =
|{i ∈ Ω|τ(i) = v}|

|Ω|

with v an assignment for U .
In the case of dichotomous measurement values, the measurement settings are boolean, which

gives us a notion of satisfaction. We can use this to extend probabilities to logical formulas φ, with
propositional variables in U , as:

[φ](Ω,τ),U =
∑
v

dU (v|v satisfies φ)

which we usually write as [φ]U when the quantum team is known from the context.
Let U be non-empty and let Ω be an index set the elements of which we call rows. We assume

a function i 7→ Ui from Ω to U and name this the cover function. This function associates the
relevant measurement context to each element in Ω, i.e. the set of propositional variables that have an
assignment in that row. We call Ui the associated measurement context to i. A quantum team on U is
a pair (Ω, τ) such that Ω is non-empty and τ(i) is a truth value assignment to the proposition symbols
in Ui ∈ U for all i ∈ Ω. If all the Ui are the same, then our quantum team is in fact a multi-team. The
number of different measurement contexts is denoted N = |U| = kn.

For a quantum team (Ω, τ) on U = {Ui}i∈Ω, we write ΩU = {i ∈ Ω|U ⊆ Ui}. The associated
probability table for (Ω, τ) is the set {dU}U∈U where

dU (v) =
|{i ∈ ΩU |τU (i) = v}|

|ΩU |

Which also extends to probabilities of logical formulas φ, with propositional variables in U , as:

[φ](Ω,τ),U =
∑
v

dU (v|v satisfies φ)

which we usually write as [φ](Ω,τ) when the set of propositional variables in φ coincides with U .
For a summary of some part of the terminology, please observe the table depicted in figure 1.2.

This table is referred to as Bell’s table and is the associated probability table of the quantum team
displayed in table 4 which is contextual, i.e. displays genuine quantum behaviour. The notion of
contextuality comes in different grades and is defined in the next section.
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p0 p1 p2 p3

0 1 1 - -
1 1 1 - -
2 1 1 - -
3 1 1 - -
4 0 0 - -
5 0 0 - -
6 0 0 - -
7 0 0 - -
8 1 - - 1
9 1 - - 1
10 1 - - 1
11 0 - - 1
12 1 - - 0
13 0 - - 0
14 0 - - 0
15 0 - - 0
16 - 1 1 -
17 - 1 1 -
18 - 1 1 -
19 - 0 1 -
20 - 1 0 -
21 - 0 0 -
22 - 0 0 -
23 - 0 0 -
24 - - 1 1
25 - - 1 0
26 - - 1 0
27 - - 1 0
28 - - 0 1
29 - - 0 1
30 - - 0 1
31 - - 0 0

Table 4: A Bell scenario of type (2, 2, 2). This quantum team gives rise to Bell’s table. It shows
measurement outcomes that Alice and Bob could in principle have measured. Note that to reliably
demonstrate violation of Bell’s inequalities, many more measurements should be made to reach statis-
tical significance. So this table serves for illustration purposes only.
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Figure 1.2: The probability table that is referred to as Bell’s table for a (2, 2, 2) type scenario. Termi-
nology indicated. For its derivation, see the appendix.

Contextuality

Contextuality is the quantum phenomenon that refers to the fact that the measurement results of a
quantum experiment depend on the measurement context (the measurement devices and their settings).
In this thesis we restrict our attention to a specific instance of contextuality: violations of logical Bell
inequalities. Contextuality then comes in a hierarchy of flavours, ordered by strength. The following
result from [HPV2016] determines our way of presentation.

Lemma 4. ([HPV2016], 5.3) Every probability table with rational probabilities is the associated table
of some quantum team.

We will therefore mainly look at (rational) probability tables to illustrate the hierarchy. These
tables take up less space on the page and bear a closer connection to the logical Bell inequalities
because they readily show the probabilities.

Firstly, there is non-contextuality. This corresponds to classical physics where Bell inequalities are
not violated. It is formally defined by:

Definition 5. A quantum team (Ω, τ) is non-contextual if all Bell inequalities
∑k
i=0 [φi](Ω,τ) ≤ k − 1

with φi propositional formulas with variables in Ui, are satisfied.

For example, a quantum team with associated probability table 5 is non-contextual; any Bell
inequality is satisfied.

Secondly, the weakest form of contextuality, which is called probabilistic contextuality. This cor-
responds to a genuine quantum situation that cannot be explained in classical terms using hidden
variables.

Definition 6. A quantum team is probabilistically contextual if a Bell inequality is violated.

The quantum team in table 4 with associated table displayed in figure 1.2 is an example of a
probabilistically contextual quantum team. Namely, the formulas φ0 = a ↔ b, φ1 = a ↔ b′, φ2 =
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(0, 0) (0, 1) (1, 0) (0, 0)

(a, b) 1
2 0 0 1

2

(a, b′) 3
8

1
8

1
8

3
8

(a′, b) 3
8

1
8

1
8

3
8

(a′, b′) 3
8

1
8

1
8

3
8

Table 5: A probability table associated to a non-contextual quantum team in a (2, 2, 2) type Bell sce-
nario.

a′ ↔ b, and φ3 = a′ ⊕ b′ = ¬ (a′ ↔ b′) are contradictory, but their total probability is
∑
i [φi]Ui =

1 + 6
8 + 6

8 + 6
8 = 3 1

4 ≥ 3.
Thirdly, there is a stronger notion of contextuality called possibilistic contextuality. It implies

probabilistic contextuality.

Definition 7. A quantum team is possibilistically contextual if there exists an element s ∈ S(U) of
its support such that there is no global section ς with ς|U = s.

The quantum team in table 4 is not possibilistically contextual, as for every element in its support
a global section can be found. An example of possibilistic contextuality can be found in the quantum
team associated to table 6. For the measurement outcome s = {a′ 7→ 1, b′ 7→ 0} no global section ς

exists such that ς|{a′,b′} = s, as can be verified by inspection of the probability table.
Possibilistic contextuality implies probabilistic contextuality, as proved in [AH2012]:

Proposition 8. ([AH2012], III.1) Any possibilistically contextual model violates a logical Bell/CHSH
inequality.

(0, 0) (0, 1) (1, 0) (1, 1)

(a, b) 1
2 0 0 1

2

(a, b′) 1
2 0 0 1

2

(a′, b) 1
2 0 0 1

2

(a′, b′) 1
2 0 1

8
3
8

Table 6: The associated probability table of a pos-
sibilistically contextual quantum team in a type
(2, 2, 2) Bell scenario. The measurement outcome
{a′ 7→ 1, b′ 7→ 0} has no corresponding global sec-
tion.

Lastly, there is strong contextuality.

Definition 9. A quantum team is strongly con-
textual if there exists no global section.

A global section is an assignment ς such that
ς|U is in the support. This means that the formu-
las defining the support of a strongly contextual
quantum team are not satisfiable.

The previous quantum team corresponding to
6 is not strongly contextual; the formulas defin-
ing its support are satisfiable. Table 7 shows
what is known in the literature as the Popescu-
Rohrlich box. Any corresponding quantum team
is strongly contextual. The formulas defining its
support are precisely the formulas φi defined in the definition of probabilistic contextuality which are
contradictory.
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(0, 0) (0, 1) (1, 0) (1, 1)

(a, b) 1
2 0 0 1

2

(a, b′) 1
2 0 0 1

2

(a′, b) 1
2 0 0 1

2

(a′, b′) 0 1
2

1
2 0

Table 7: The Popescu-Rohrlich box with maximal
violation. The Bell scenario is of type (2, 2, 2).

In [AH2012], the following result is proven:

Proposition 10. ([AH2012], III.2) A model
achieves maximal violation of a logical Bell in-
equality if and only if it is strongly contextual.

Strong contextuality therefore implies possi-
bilistic contextuality as well as probabilistic con-
textuality.

Please note that the Popescu-Rohrlich box
displays a hypothetical situation. Quantum me-
chanics does not predict the violation of Bell inequalities to be this big. Incidentally, the situation
still exemplifies non-signalling, so even strong contextuality does not imply the possibility of sending
signals with arbitrary velocity.
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2 Reduction

In this section we define our reduction procedure. We can reduce a quantum team (Ω, τ) to one of a
simpler form in case we have the following:

• There is a subset C ⊂ Ω, |C| = N such that for i, j ∈ Ω if i 6= j the associated measurement
contexts are different Ui 6= Uj .

• There exists an assignment ς on X such that for all i ∈ Ω, we have ς|Ui = τ(i).

Now we can produce a structure (Ω1, τ1) which is the same as (Ω, τ), except that all i ∈ C are excluded
and replaced by one element j with Uj = X. Now τ1 on Ω1 coincides with τ on Ω∩Ω1 and τ1(j) := ς.
The quantum team (Ω1, τ1) is reduced from the quantum team (Ω, τ).

This procedure of finding the next reduced quantum team can be repeated, but not indefinitely.
When this process stops, let’s say after m steps, we say that the resulting quantum team (Ωm, τm) is
in reduced form.

Lemma 11. The reduced form is not unique in a Bell scenario of type (2, 2, 2).

Proof. Firstly, we consider two quantum teams the same if they merely differ in a permutation/relabelling
of their rows and columns. Let’s reduce table 4 in two different ways. First we replace rows 0, 8, 16 and
24 by a row assigning p0 = p1 = p2 = p3 = 1. Then we replace rows 1, 9, 20 and 28 by a row assigning
p0 = p1 = p3 = 1 and p2 = 0. We replace rows 2, 12, 17 and 25 by a row assigning p0 = p1 = p2 = 1

and p3 = 0. We replace rows 4, 11, 21 and 29 by a row assigning p0 = p1 = p2 = 0 and p3 = 1. We
replace the rows 5, 13, 22 and 31 by a row assigning p0 = p1 = p2 = p3 = 0. And lastly, we replace
the rows 6, 14, 19 and 26 by a row assigning p0 = p1 = p3 = 0 and p2 = 1. The resulting quantum
team cannot be reduced further. It is displayed on the left of Table 8.

Another quantum team can be obtained from the initial table by first replacing the rows 0, 12, 20
and 31 by a row that assigns p0 = p1 = 1 and p2 = p3 = 0. Then we replace rows 1, 8, 16 and 24 by a
row assigning p0 = p1 = p2 = p3 = 1. Then we replace the rows 4, 13, 19 and 25 by a row that assigns
p0 = p1 = p3 = 1 and p2 = 0. And lastly, we replace the rows 5, 11, 21 and 28 by a row assigning
p0 = p1 = p2 = 0 and p3 = 3. This quantum team cannot be reduced further. It is displayed on the
right of Table 8.

The two resulting tables are different; so, the reduced form of a quantum team is not unique.

Remark. Even though the reduction procedure is not unique, in the following we will sometimes refer
to it as the reduction procedure, with the understanding that multiple procedures are meant.
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p0 p1 p2 p3

0 1 1 1 1
1 1 1 0 0
2 1 1 1 0
3 0 0 0 1
4 0 0 0 0
5 0 0 1 0
6 1 1 - -
7 0 0 - -
8 1 - - 1
9 0 - - 0
10 - 1 1 -
11 - 0 0 -
12 - - 1 0
13 - - 0 1

p0 p1 p2 p3

0 1 1 0 0
1 1 1 1 1
2 0 0 1 0
3 0 0 0 1
4 1 1 - -
5 1 1 - -
6 0 0 - -
7 0 0 - -
8 1 - - 1
9 1 - - 1
10 0 - - 0
11 0 - - 0
12 - 1 1 -
13 - 1 1 -
14 - 0 0 -
15 - 0 0 -
16 - - 1 0
17 - - 1 0
18 - - 0 1
19 - - 0 1

Table 8: Two resulting Hybrid Teams.

Definition 12. A quantum team (Ω, τ) is hybrid if Ω = Ω1 ∪ Ω2, where:

• (Ω1, τ |Ω1) is multi-team, i.e. Ui = X for all i ∈ Ω1. We call this the non-contextual part of the
hybrid team.

• (Ω2, τ |Ω2
) is a quantum team which violates all Bell inequalities maximally. We call this the

contextual part of the hybrid team.

When the contextual part is non-empty, we say that the hybrid team is non-trivial.

Lemma 13. In a type (n, k, 2) Bell scenario, a quantum team (Ω, τ) is of reduced form iff it is hybrid.

Proof. Firstly, a quantum team (Ω, τ) of reduced form is a hybrid team. Due to the dichotomous
measurement values, we can use propositional logic to describe the quantum team and to construct
the proof. Let Ω′ be the part of the quantum team with no fully determined rows. If this part is
empty, we have a trivial hybrid team and we are done, so let’s assume otherwise.

Let qij denote the propositional logic formula which only satisfying valuation corresponds to the
ith row of Ω′Uj . That is

1:

qij =
∧

τ |Uj (i)(p)=1

p ∧
∧

τ |Uj (i)(p)=0

¬p

1For example, if Uj = {a, b′} and τ (i) (a) = 0 and τ (i) (b′) = 1, then qij = ¬a ∧ b′, such that the only valuation
making qij true is precisely the valuation at the ith row of Ω′

Uj
.

13



We denote the number of rows of Ω′Uj by Mj . A valuation making:

qi11 ∧ . . . ∧ qiNN

true, is precisely a global section.2

By assumption, we cannot find an assignment ς such that ς|Uij = τ(ij) for N different rows
i0, ..., iN−1 ∈ Ω, since we are at the end of the reduction procedure. So all the conjunctions like the
above are unsatisfiable. So the disjunction of all those conjunctions is unsatisfiable in this case. This
big disjunction is equivalent – by distributing conjunctions over disjunctions – to a conjunction with
terms of the form:

q1j ∨ . . . ∨ qM1j

where j ranges over the measurement contexts {1, . . . , N}. This conjunction precisely defines
the support. So, when we cannot find a global section, the formula defining the support of the
contextual part is not satisfiable, which means that the contextual part of the quantum team is strongly
contextual. Applying proposition 10 now proves that the contextual part maximally violates the logical
Bell inequality. The part Ω− Ω′ is a quantum team with only fully determined rows, therefore it is a
multi-team. Concluding, a quantum team of reduced form is a hybrid team.

For the converse, we show that a hybrid team (Ω, τ) cannot be reduced. It is sufficient to check
that the contextual part (Ω′, τ ′) cannot be reduced, as the non-contextual part of the hybrid team,
of course, does not even qualify for reduction. (Ω′, τ ′) violates Bell’s inequalities maximally. Let
{d′U}U∈U be its probability table. Let pv denote the propositional formula that is only satisfied for
valuation v ∈ lU . We define PU = {pv|v ∈ lU} to be the set of propositional formulas that define each
possible valuation v on U . Let PU |+ = {pv ∈ PU |d′U (pv 7→ v) > 0} be the subset of these formulas
that have positive probability. PU contains all propositional formulas pv such that there is a j ∈ Ω′

with τ ′(j)(pv) = 1. Let rU =
∨
pv∈PU |+ pv. rU is a propositional formula defining the measurement

outcomes with positive probability for a measurement context U . The formula:∧
U∈U

rU

therefore, defines the support of (Ω′, τ ′). This formula is contradictory by proposition 10 and our
assumption on maximal violation.

On the other hand, finding an assignment ς such that ς|Uij = τ(ij) for N different rows i0, . . . , iN−1

is equivalent to finding piv ∈ Ui such that
∧
i p
i
v is satisfiable, where i indexes the measurement contexts.

However, we see that:
piv → rUi

by disjunction introduction. Combining this with the conjuction above, we see that
∧
i p
i
v →

∧
i rUi →⊥,

so such an assignment ς cannot be found. Impossibility of any reduction step now proves the lemma.
2In the expression, for any j, ij is in the range {1, . . . ,Mj}. So there is one row for each of the N measurement

contexts. The conjunction shows that the assignment satisfies them all.

14



Lemma 14. Any reduction procedure is probability conserving.

Proof. We shall prove that the corresponding probability table of a quantum team does not change
during one reduction step. This implies directly that it does not change over the whole reduction
procedure, which consists of a finite number of steps.

Let (Ω, τ) be a quantum team with cover U of which we assume that it can be reduced. Let
{dU}U∈U be its corresponding probability table. By definition,

dU (v) =
|{i ∈ ΩU |τU (i) = v}|

|ΩU |

Now we perform a reduction step, which means that we can find a global section. So we choose
N different ij ∈ Ω, j ∈ {0, . . . , N − 1} such that there is a ς : X → l with ς|Uij = τ (ij), where Uij
denotes the measurement context pertaining to ij . We replace all ij ∈ Ω by this single ς and get the
quantum team (Ω′, τ ′). The corresponding probability table is {d′U}U∈U where

d′U (v) =
|{i ∈ Ω′U |τ ′U (i) = v}|

|Ω′U |

Note now that Ω′U = {i ∈ Ω′|U ⊆ Ui}. We are going to prove that for any U and any i ∈ ΩU , there
is an i′ ∈ Ω′U and vice versa. There are two cases to consider. Firstly, i 6= ij for any j. In that case,
i = i′, because the reduction step did not substitute this row, which means it is still there.

In the second case, i = ij for some j. This i now, corresponds to ς. The reason is that Uς = X,
such that U ⊆ Uς for any subset U of X. So ς ∈ Ω′U for any U .

So we proved that for every i ∈ ΩU , there is an i′ ∈ Ω′U . It is easy to see that a similar reasoning
applies when we want to prove the converse. Concluding, we have proved that |ΩU | = |Ω′U |. The
following equality holds because τU = τ ′U .

d′U (v) =
|{i ∈ Ω′U |τ ′U (i) = v}|

|Ω′U |

=
|{i ∈ ΩU |τU (i) = v}|

|ΩU |
= dU (v)

And we see that the corresponding probability table remains unchanged.
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3 Quantum Team Logic (QTL)

As we have seen, the logical Bell inequalities are proved by probability team logic, as well as propo-
sitional logic with measurement covers and probabilities associated to the propositions. We have also
seen that these inequalities are an inadequate description of reality, because quantum mechanics pre-
dicts these inequalities to be violated in certain circumstances (see figure 1.2), a fact that is supported
by experimental evidence. Considering this, we would like to use a different logic that is able to prove
violations of the Bell inequalities. The logic we are using here is called Quantum Team Logic (QTL)
and is developed in [HPV2016]. Its syntax and semantics are adopted from that paper; the rest of this
section is original work.

Definition 15. We assume a sequence of propositional formulas (φi)i<k, a sequence of whole numbers
(ai)i<k ∈ Zk, a number c ∈ Z, and a sequence of finite sets of propositions (Ui)i<k, such that the
proposition symbols of φi are in Ui for every i < k. An atomic formula of QTL is of the form:

a0 (φ0;U0) + . . .+ ak−1 (φk−1;Uk−1) ≥ c

These (φi;Ui) represents the proposition φi, together with the measurement context Ui on which
it is defined. This is important, as it gives us a notion of satisfaction of a proposition without the
requirement of using global sections. The numbers allow us to express the relevant (rational) proba-
bilities.

Definition 16. The set of formulas F of QTL is defined inductively as:

• α ∈ F for atomic formulas α

• α ∈ F implies ¬α ∈ F

• α ∈ F and β ∈ F together imply α ∧ β ∈ F

• F contains nothing else

The atomic formulas look like arithmetical expressions. As such, we will use abbreviations like the
following:

• (φ;Ui)− (ψ;Uj) ≥ c for (φ;Ui) + (−1) (ψ;Uj) ≥ c

• (φ ≥ ψ;Ui) for (φ;Ui)− (ψ;Ui) ≥ 0

• (φ;Ui) = c for ((φ;Ui) ≥ c) ∧ ((φ;Ui) ≤ c)

etc.
Let α be a formula of QTL. We define its Context set, Cs (α) inductively as3:

3In [HPV2016] this notion is called the Support. Here, the term Context set is chosen instead, to avoid confusion
with the other notion that was given the same name.
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• Cs
(∑

i<k ai (φi;Ui) ≥ c
)

= {Ui|i < k}

• Cs (¬α) = Cs (α)

• Cs (α ∧ β) = Cs (α) ∪ Cs (β)

We use the following notation in the definition of the semantics:

U ≤c U ′ ⇐⇒ ∀U ∈ U∃U ′ ∈ U ′ (U ⊆ U ′)

It allows us to express an important condition stating that each measurement context in the mea-
surement set is contained in some measurement set of the quantum team.

Definition 17. (Semantics) Let α be a QTL formula and (Ω, τ) a quantum team with Cs (α) ≤c
{Ui|i ∈ Ω}. We define by induction on α the relation (Ω, τ) � α by:

• (Ω, τ) �
∑
i<k ai (φi;Ui) ≥ c iff

∑
i<k ai [φi](Ω,τ),Ui

≥ c

• (Ω, τ) � ¬α iff (Ω, τ) 2 ¬α

• (Ω, τ) � α ∧ β iff (Ω, τ) � α and (Ω, τ) � β

With both the syntax and semantics of QTL defined, we can use it to describe and compare quantum
teams. Note that [φi](Ω,τ),Ui

assumes the Bell scenario under discussion to be of type (n, k, 2), because
it uses the notion of satisfaction which relies on dichotomous measurement results.

A notion of equivalence in terms of QTL semantics is straightforwardly defined.

Definition 18. Quantum teams (Ω, τ) and (Ω′, τ ′) are equivalent if they satisfy the same formulas of
QTL, i.e. (Ω, τ) |= α iff (Ω′, τ ′) |= α for any QTL formula α.

Note that the definition implies that the two quantum teams have the same cover, for if this were
not the case, there would be a cover containing a measurement context U which is not contained in
the other cover; in that case, the QTL formula (

∧
p∈U p;U) ≥ 0 is satisfied in one, but not in the other

quantum team, so the quantum teams are not equivalent.

Lemma 19. In (n,k,2) type Bell scenarios, quantum teams (Ω, τ) and (Ω′, τ ′) are equivalent iff they
have the same corresponding probability table.

Proof. By induction on the complexity of QTL formulas, first the atomic case. Because of equivalence,
for any atomic formula

∑
j<k aj (φj ;Uj) ≥ c the following holds:

(Ω, τ) |=
∑
j<k

aj (φj ;Uj) ≥ c iff (Ω′, τ ′) |=
∑
j<k

aj (φj ;Uj) ≥ c

This means, by definition, that:

∑
j<k

aj [φj ](Ω,τ),Uj
≥ c iff

∑
j<k

aj [φj ](Ω′,τ ′),Uj ≥ c
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Therefore, [φj ](Ω,τ),Uj
= [φj ](Ω′,τ ′),Uj for any φj (take k = 1) and we thus have, by definition, for

any U ∈ U :
P(Ω,τ),U ({i ∈ ΩU |τU (i)(φ) = 1}) = P(Ω′,τ ′),U ({i ∈ Ω′U |τ ′U (i)(φ) = 1})

Now we can conclude that

dU (v) =
|{i ∈ ΩU |τU (i) = v}|

|ΩU |

=
|{i ∈ Ω′U |τ ′U (i) = v}|

|Ω′U |
= d′U (v)

For the converse, let us assume that for the quantum teams (Ω, τ) and (Ω′, τ ′) their corresponding
probability tables are the same: dU (v) = d′U (v). Now of course also [φj ](Ω,τ),Uj

= [φj ](Ω′,τ ′),Uj for
any formula φj with corresponding Uj . This readily implies that (Ω, τ) and (Ω′, τ ′) are equivalent.

For the induction step let us assume that (Ω′, τ ′) |= α iff (Ω, τ) |= α for an arbitrary formula α.
This also means that (Ω′, τ ′) 2 α iff (Ω, τ) 2 α. So, by definition, this means that (Ω′, τ ′) |= ¬α iff
(Ω, τ) |= ¬α .

Now also assume that for a formula β, we have (Ω′, τ ′) |= β iff (Ω, τ) |= β . Then we very easily
see that (Ω′, τ ′) |= α and (Ω′, τ ′) |= β, iff (Ω, τ) |= α and (Ω, τ) |= β, which means, by definition that
(Ω′, τ ′) |= α ∧ β iff (Ω, τ) |= α ∧ β .

So equivalent quantum teams have equal corresponding probability table, and quantum teams with
the same probability tables are equivalent.

Corollary 20. In Bell scenarios of type (n, k, 2), if (Ω′, τ ′) is a reduced quantum team from (Ω, τ),
then (Ω′, τ ′) and (Ω, τ) are equivalent.

Proof. Let (Ω′, τ ′) be a reduced quantum team from (Ω, τ). By a lemma 14 (Ω′, τ ′) and (Ω, τ) have
the same corresponding probability table. By the previous lemma, they are equivalent.

Definition 21. Two quantum teams (Ω1, τ1) and (Ω2, τ2) are analogous if the following hold:

• |Ω1| = k |Ω2| or |Ω2| = k |Ω1| for a natural number k > 0. Without loss of generality, let us
assume in the following that (Ω2, τ2) is the bigger one.

• there is a function f : Ω1 → {A ⊆ Ω2 : |A| = k} , i 7→ f (i) = {j1, . . . , jk} such that τ2 (jl) = τ1 (i)

for all l ∈ {1, . . . k} and f (i) ∩ f (i′) = ∅ when i 6= i′.

Informally, two quantum teams are analogous if the bigger one just consists of a number of copies of
the smaller one, with the order of the rows possibly permuted.

Proposition 22. In Bell scenarios of type (n, k, 2) quantum teams are equivalent iff they are analogous.
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Proof. Let (Ω, τ) and (Ω′, τ ′) be equivalent. Let {dU}U∈U and {d′U}U∈U be the associated probabil-
ity tables of (Ω, τ) and (Ω′, τ ′) respectively over the same cover U . By lemma 19, the probability
tables must be equal: {dU}U∈U = {d′U}U∈U . This means that for any measurement outcome v with
corresponding measurement context U ∈ U , we have:

|{i ∈ ΩU |τU (i) = v}|
|ΩU |

=
|{i ∈ Ω′U |τ ′U (i) = v}|

|Ω′U |

We can make the denominators equal by finding a natural number k such that4:

|{i ∈ ΩU |τU (i) = v}|
|ΩU |

=
k |{i ∈ Ω′U |τ ′U (i) = v}|

k |Ω′U |

So, |{i ∈ ΩU |τU (i) = v}| = k |{i ∈ Ω′U |τ ′U (i) = v}|. So for every element i ∈ Ω′U such that for a
given assignment v we have τ ′U (i) = v, we can find k elements i′j ∈ ΩU , j ∈ {0, . . . , k − 1} such that
τU (i) = v. This constitutes the desired function f : Ω′U → {A ⊆ ΩU : |A| = k} with i 7→ {j1, . . . , jk}
where τ (jl) = τ ′ (i) for l ∈ {1, . . . , k} and f (i) 6= f (i′) for i = i′. So, (Ω, τ) and (Ω′, τ ′) are analogous.

For the converse, assume that (Ω, τ) and (Ω′, τ ′) are analogous. Then, without loss of generality,
there is a k such that |Ω| = k |Ω′| and there is, for any U ∈ U , a function f : Ω′U → {A ⊆ ΩU : |A| = k}
such that i 7→ {j1, . . . , jk} where τ (jl) = τ ′ (i) for l ∈ {1, . . . , k} and f (i) 6= f (i′) for i = i′. Now we
see that:

d′U (v) =
|{i ∈ Ω′U |τ ′U (i) = v}|

|Ω′U |

=
k |{i ∈ Ω′U |τ ′U (i) = v}|

k |Ω′U |

=
|
⋃
{f(i)|τU (i) = v}|

|ΩU |

=
|{i ∈ ΩU |τU (i) = v}|

|ΩU |
= dU (v)

Having proved that the probability tables are the same, we can conclude, again using lemma 19,
that (Ω, τ) and (Ω′, τ ′) are equivalent, which concludes the proof.

An open problem

QTL is capable of proving maximal violations of Bell inequalities in a type (2, 2, 2) Bell scenario. This
is undesirable, because these situations do not correspond to reality. An explicit open question in
[HPV2016] is the problem of how to characterise precisely those QTL formulas that do correspond to
the predictions of quantum mechanics. In an attempt to solve this problem, attention must be paid
to an article by Boris S. Tsirelson [C1980]. In it he states the quantum analogue to Bell’s theorem: a
type (2, 2, 2) Bell scenario is consistent with quantum mechanics iff it satisfies Tsirelson’s inequality.
A derivation can be found in the appendix. Tsirelson’s inequality looks like:

4Without loss of generality, we assume that (Ω, τ) is the bigger quantum team.
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A1B2 +A2B1 +A1B1 −A2B2 ≤ 2
√

2

Here, Ai and Bj are quantum operators for the two agents respectively. AiBj is short for the tensor
product Ai ⊗Bj which is the correlation-operator of the observables Ai and Bj . It takes on the value
of 1 when the measurement values correlate and it takes on the value of −1 when the measurement
values anti-correlate. We can use this inequality to derive an inequality expressible in QTL. We first
demand that A1 signifies setting a for our first agent whom we call Alice. A2 denotes Alice’s setting
a′. The other agent is called Bob and he has the settings b and b′ corresponding to B1 and B2

respectively. Now A1B1 expresses correlation so it corresponds to the formula a↔ b and similarly for
the other operators. From [AH2012] we quote the following correspondence between correlations Ei
and probabilities pi associated to propositions:

pi =
Ei + 1

2

Hence, we write Tsirelson’s inequality as:

A1B2 + 1 +A2B1 + 1 +A1B1 + 1− (A2B2 + 1) ≤ 2
√

2 + 2

And by dividing both sides by two, we get:

A1B2 + 1

2
+
A2B1 + 1

2
+
A1B1 + 1

2
− A2B2 + 1

2
≤
√

2 + 1

Which now actually means:

[a↔ b′]U0 + [a′ ↔ b]U1 + [a↔ b]U2 − [a′ ↔ b′]U3 ≤
√

2 + 1

Where, perhaps superfluously, we used the following definitions: U0 = {a, b′}, U1 = {a′, b}, U2 =

{a, b}, and U3 = {a′, b′}. By adding 1 to both sides and by noting that 1− [φ]X = [¬φ]X , we arrive at:

[a↔ b′]U0 + [a′ ↔ b]U1 + [a↔ b]U2 + [¬(a′ ↔ b′)]U3 ≤
√

2 + 2

Which is the inequality that should be satisfied. Note that the set of propositional logic formulas
appearing in the expression is collectively contradictory, which means that the corresponding Bell
inequality is:

[a↔ b′]U0
+ [a′ ↔ b]U1

+ [a↔ b]U2
+ [¬(a′ ↔ b′)]U3

≤ 3

So the interval [3, 2+
√

2] is ‘where the magic happens’. This expression cannot readily be formulated
in QTL, because QTL only accounts for rational inequalities, while

√
2 /∈ Q, as has been long known

since the ancient Greeks.

Lemma 23. For a type (2, 2, 2) Bell scenario, there exists a complete axiomatisation of the QTL
formulas that are valid in quantum teams that correspond to quantum reality. This set is recursive.
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Proof. Let (ai)i∈N be the infinite sequence of decimals of
√

2. We define the number si recursively:

1. s0 = 1

2. si+1 = si + ai × 10−i

It denotes the partial decimal expansion of
√

2, its values are: (1; 1.4; 1.41; 1.414, ...). Using this
sequence, we define the sequence ti:

1. t0 = 4

2. ti+1 = 2 + si+1 + 10−i

So, these values are: (4; 3.5; 3.42; 3.415, ...)

The sequence (ti) approaches 2 +
√

2 from above, starting from 4.
We now define:

φ = [a↔ b′]U0 + [a′ ↔ b]U1 + [a↔ b]U2 + [¬(a′ ↔ b′)]U3 ≤ 0

ψi = ¬ ([a↔ b′]U0 + [a′ ↔ b]U1 + [a↔ b]U2 + [¬(a′ ↔ b′)]U3 ≥ ti)

Note now that φ and ψi are not QTL formulas in the strict sense of the word. Expressing the
inequalities as above, however, makes them easier to work with. We define Γ = {ψi|i ∈ N}∪{φ}. Now
Γ axiomatises completely the set of QTL formulas consistent with quantum mechanics. To see this,
let us look at a QTL formula χ that does not violate Tsirelson’s inequality. It has the form:

χ = [a↔ b′]U0
+ [a′ ↔ b]U1

+ [a↔ b]U2
+ [¬(a′ ↔ b′)]U3

≤ c

for some c ∈ Q. Note now that c ≥ 0, so φ implies χ and we see that the QTL formulas consistent
with quantum mechanics are proved in quite a trivial way.

If, on the other hand, χ is inconsistent with quantum mechanics, it must violate Tsirelson’s in-
equality. That is, it must have the form:

χ = [a↔ b′]U0
+ [a′ ↔ b]U1

+ [a↔ b]U2
+ [¬(a′ ↔ b′)]U3

≥ c

for a certain c ∈ Q with c > 2 +
√

2.
Because the sequence (ti)i∈N is strictly decreasing, there must be an n ∈ N for which tn < c. For

this n, we have that χ implies:

[a↔ b′]U0 + [a′ ↔ b]U1 + [a↔ b]U2 + [¬(a′ ↔ b′)]U3 ≥ tn

which contradicts ψn ∈ Γ. So QTL formulas inconsistent with quantum mechanics contradict our
axiomatisation. So the set Γ completely axiomatises the desired set of QTL formulas and this set is
recursive.
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4 Demonstrating Contextuality

In this section, we prove that non-contextual quantum teams reduce to multi-teams. The reduction
procedure is therefore a tool to detect quantum behaviour in a given Bell scenario.

Definition 24. In a Bell scenario of type (n, k, l), let {dU}U∈U be a probability table. Let U and V
be measurement contexts with U ∩V = p. {dU}U∈U satisfies non-signalling if dU (p 7→ v) = dV (p 7→ v)

for v ∈ {0, ..., l − 1} .

Informally, it means that the probabilities that one agent measures are independent of the mea-
surement settings of the other agent(s). If this dependence actually existed, it could be used to send
signals from one agent to another without any assumptions (and hence restrictions) on the signals’
speed. For example, see table 9. Alice, by keeping her measurement setting fixed, can receive signals
from Bob upon his changing his measurement setting. Bob can likewise receive signals from Alice.

(0, 0) (0, 1) (1, 0) (1, 1)

(a, b) 1 0 0 0
(a, b′) 0 0 1 0
(a′, b) 0 1 0 0
(a′, b′) 0 0 0 1

Table 9: A Bell scenario of type (2, 2, 2) in which the agents are called Alice and Bob. This probability
table violates non-signalling. It can be used by Alice and Bob to send signals at any speed.

Lemma 25. Every non-contextual probability table in a Bell scenario of type (n, k, 2) satisfies non-
signalling.

Proof. Let a probability table {dU}U∈U be given, such that it is non-contextual, i.e. any Bell inequality
is satisfied instead of violated. We can select two measurement contexts U, V ∈ U with a propositional
symbol p in common. We define formulas φU = p and φV = ¬p pertaining to U and V respectively.
The formulas contradict each other, so they obey, rather than violate, the logical Bell inequality:

[φU ]U + [φV ]V = [φU ∧ φV ]U∪V ≤ 2− 1 = 1

Similarly, we can define φ′U = ¬p and φ′V = p and get [φ′U ]X + [φ′V ]X ≤ 1. We also have the
following:

[φU ]U + [φ′U ]U + [φV ]V + [φ′V ]V = [φU ∧ φ′U ]U + [φV ∧ φ′V ]V

= [>]U + [>]V

= 2
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So we can conclude that:

[φU ]U + [φV ]V = 1

[φ′U ]U + [φ′V ]V = 1

And combining this again with the facts that:

[φU ]U + [φ′U ]U = 1

[φV ]V + [φ′V ]V = 1

we get:

[φU ]U = [φ′V ]V

[φV ]V = [φ′U ]U

No assumptions were made on the properties of p, so we can conclude that the probability of p
taking on a specific value v is equal for both measurement contexts in which p appears and is therefore
independent of the measurement setting(s) of the other agent(s). Also, no assumptions were made on
the number of measurement settings. The argument can be repeated for every pair of agents.

Proposition 26. For every non-contextual probability table {dU}U∈U with rational probabilities in a
Bell scenario of type (n, k, 2), there is a quantum team (Ω, τ) of size D×N for some D such that there
are D rows for every measurement context and {dU}U∈U is its associated probability table.

Proof. Let a probability table {dU}U∈U be given, such that it is non-contextual. We write all fractions
dUi (v) such that they have the same denominator D. We are going to construct a quantum team of
size D that has {dU}U∈U as the associated probability table. We construct the rows of this quantum
team one by one. We pick a measurement outcome f0 = {~p→ ~vp}, pertaining to the measurement
context U0, that has non-zero probability dU0

(f0) = a
D . Now we define τU0

(0) = f0 and define:

d0
U (f) =

a−1
D if U = U0 and f = f0

dU (f) otherwise

d0
U Still contains fractions, but is not a probability distribution anymore; from now on it can be

considered as an accounting tool used to construct the desired quantum team. Informally speaking,
compared to {dU}U∈U , the numerator of the probability corresponding to the chosen measurement
outcome has been lowered by 1. We can repeat this a number of times, but process stops after D×N
steps, when all values in

{
dD×N−1
U

}
U∈U are equal to zero. The resulting quantum team (Ω, τ), where

Ω = {0, . . . , D ×N − 1} and τ =
{
τU0

(0), . . . , τUD×N−1
(D ×N − 1)

}
is the desired quantum team.
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Lemma 27. In a Bell scenario of type (n, k, 2), every non-contextual quantum team (Ω, τ) of size
D ×N such that there are D rows for each measurement context reduces to a multi-team.

Proof. Let the finite set fi =
{
aji 7→ via, bji 7→ vib, . . .

}
be a measurement outcome where ai is some

measurement setting with result via for agent A and similarly for B,C, . . .. The corresponding mea-
surement context Ui = dom(fi). fi And fj can be linked if Ui ∩ Uj 6= ∅ and fi|Ui∩Uj = fj |Ui∩Uj , so
they must have some measurement setting that they agree upon and they agree on all of those. In
a Bell scenario with non-signalling, for any measurement outcome fi and any measurement setting
p ∈ dom(fi), there is a measurement setting fj , with i 6= j such that fi(p) = fj(p). Note that it is
possible that these measurement settings don’t link. Picking a measurement context fi and a mea-
surement setting p ∈ Ui, we can define the set S1 = {fj |fj links to fi} with corresponding domain
D1 =

⋃
fj∈S1

Uj . Furthermore, we can define Sn+1 = {fj |fj links to a measurement setting fi ∈ Sn}
with domain Dn+1. If our quantum team (Ω, τ) is of size D ×N (note the different D here), then for
sure SD×N+1 = SD×N , because there are no more measurement outcomes. We call SD×N a quilt.

There are two cases: DD×N 6= X or DD×N = X .
In the former case, there exist finitely many other quilts Qi such that DD×N ∪

⋃
iQi = X. To

construct a formula violating a logical Bell inequality, we restrict each quilt Q to QR such that
they have non-overlapping domains. Each QR is an assignment on its domain and has therefore
an associated propositional logic formula defining this assignment. We define this formula thus:
φQR =

∧
p∈DQR , QR(f)=1 p ∧

∧
p∈DQR , QR(f)=0 ¬p. Now the formula

∧
QR φQR is a contradiction and

violates the logical Bell inequality
∑
QR

[
φQR

]
(Ω,τ)

≤ M − 1 maximally with M the number of (re-
stricted) quilts, as

[
φQR

]
(Ω,τ)

= 1 for every restricted quilt QR. This case therefore, is impossible for
a non-contextual quantum team.

In the case that DD×N = X , we can have yet again two cases. The first is where SD×N is
a global section; in which case we are done. The second case is one where SD×N is not a global
section. This means that there is a propositional variable p appearing in at least two measurement
contexts Ui and Uj , such that fi(p) 6= fj(p). Due to non-signalling, there must be measurement
outcomes f ′j and f ′i pertaining to measurement contexts Uj and Ui respectively such that fi(p) =

f ′j(p) and fj(p) = f ′i(p). We can define S1
1 =

{
f |f links to f ′j

}
, S2

1 = {f |f links to f ′i} and S1
n+1 =

{f |f links to a measurement setting fi ∈ S1
n} and S2

n+1 in similar fashion. Now there is a measurement
setting q ∈

(
Di
n+1 −Di

n

)
such that Sin+1(q) 6= SD×N or else we would have a global section.5 So,

continuing our quilting in this way, which we can do because of non-signalling, we must arrive at the
conclusion that for some n and m, there is an r ∈ S1

n ∩ S2
m. So there is a sequence (fk) such that:

• f0 = fi

• f1 = f ′j

• fl+1 ∈ S1
l+1, which links to fl with fl ∈ S1

l for l ∈ {1, . . . , n− 1}

• fn = r

5Two actually: one in which p 7→ 0 and one in which p 7→ 1.
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• fl+1 ∈ S2
m−l , which links to fl with fl ∈ S2

m−l for l ∈ {n+ 1, . . . , n+m}

• fn+m+1 = fj

• fl+1 ∈ SD×N , which links to fl with fl ∈ SD×N for l ∈ {n+m+ 1, . . . , 2(n+m)− 1}

• f2(m+n) = fi

This sequence gives rise to the violation of another logical Bell inequality. Let ψk be a propositional
logical formula defining fk, that is ψk =

∧
p∈Uk, f(p)=1 p ∧

∧
p∈Uk, f(p)=0 ¬p. For every valuation fl

there is a counterpart fl such that there is a q ∈ dom(fl)∩ dom(fl) with fl(q) 6= fl(q). Note that ¬ψk
corresponds to fk. We define χl = ψl ∨ ¬ψl. The logical Bell inequality

∑
l<n+m [χl](Ω,τ) = m+ n ≥

m+ n− 1, where the numbering is such as to avoid counting twice, is again violated maximally. This
case is, therefore, also impossible in a non-contextual situation. Hence, we can always find a global
section.

Any reduction procedure reduces the non-contextual quantum team to a multi-team, because we
can always find a global section. Note that the requirements pertaining to the size of (Ω, τ) and the
size of its measurement contexts U was necessary to avoid ending up with undetermined rows for which
no global section can be found on the basis of there being to few of them to constitute a measurement
cover.

Proposition 28. Let (Ω, τ) be a quantum team in a type (n, k, 2) Bell scenario such that there are D
rows for every measurement context. (Ω, τ) is non-contextual iff its reduced form is a multi-team.

Proof. The direction from left to right is given by lemma 27. For the other direction, we use the fact
expressed in Corollary 20 that QTL properties do not change during a reduction: all Bell inequalities
that are violated, remain so. Assuming the reduced form is a multi-team, which satisfies all Bell
inequalities, (Ω, τ) must satisfy all Bell inequalities as well and must hence be non-contextual.
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5 Conclusion

We defined a reduction procedure for quantum teams as an attempt to explain Bell scenarios of a
certain type (n, k, l) in classical terms, i.e. with hidden variables. This procedure is not unique, but
always yields a hybrid team. If this hybrid team is a multi-team, the original quantum team displayed
no contextuality. Contextuality is, however, present when the resulting hybrid team is non-trivial.
The procedure preserves the logical properties of the team in terms of QTL. Moreover, equivalence
between two quantum teams in this logic coincides with a structural resemblance called analogousness.
An attempt has been made to solve an open problem, namely the axiomatisation of QTL formulas
that do not violate quantum mechanics. This set is proved to be recursive, but only applies to Bell
scenarios of type (2, 2, 2).
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Appendix 1: Constructing the Probability Table

For the sake of completeness, this appendix contains the derivation of the Bell probability table. It
can be calculated from quantum mechanics in the following way. We assume a two-level quantum
system like the spin of an electron. We assume both Alice and Bob to measure their electrons under
two different angles, to be specified later. The probabilities are calculated by taking inner products
of the operators with the quantum state. We work in the z-basis. In that basis, corresponding to a
measurement of the electron along the x-axis, we have the projections: 〈SX ; ↑| = 1√

2
(〈↑|+ 〈↓|) for

up and 〈SX ; ↓| = 1√
2

(〈↑| − 〈↓|) for down. The projection corresponding to a measurement making an

angle of π3 with the x-axis, looks like: 〈S]; ↑| = 1√
2

(
〈↑|+ e−i

π
3 〈↓|

)
= 1√

2

(
〈↑|+

(
1
2 −

√
3

2 i
)
〈↓|
)
for up

and 〈S]; ↓| = 1√
2

(
〈↑| − e−iπ3 〈↓|

)
= 1√

2

(
〈↑| −

(
1
2 −

√
3

2 i
)
〈↓|
)
for a down.

When two agents (for example Alice and Bob) are measuring similar two-level quantum systems,
the ‘combined’ projection of the system as a whole is constructed by the tensor product:

〈SX , SX ; 1, 1| = 〈SX ; ↑| ⊗ 〈SX ; ↑|

=
1√
2

(〈↑|+ 〈↓|)⊗ 1√
2

(〈↑|+ 〈↓|)

=
1

2
(〈↑↑|+ 〈↑↓|+ 〈↓↑|+ 〈↓↓|)

Note that 0 corresponds to ↓ and 1 corresponds to ↑.
This yields 16 different operators, one for each measurement (2 for Alice and 2 for Bob, so 4 in
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total) and measurement outcome (up and down, both for Alice and Bob).

〈SX , SX ; 1, 1| =
1

2
(〈↑↑|+ 〈↑↓|+ 〈↓↑|+ 〈↓↓|)

〈SX , SX ; 1, 0| =
1

2
(〈↑↑| − 〈↑↓|+ 〈↓↑| − 〈↓↓|)

〈SX , SX ; 0, 1| =
1

2
(〈↑↑|+ 〈↑↓| − 〈↓↑| − 〈↓↓|)

〈SX , SX ; 0, 0| =
1

2
(〈↑↑| − 〈↑↓| − 〈↓↑|+ 〈↓↓|)

〈SX , S]; 1, 1| =
1

2

(
〈↑↑|+

(
1

2
−
√

3

2
i

)
〈↑↓|+ 〈↓↑|+

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈SX , S]; 1, 0| =
1

2

(
〈↑↑| −

(
1

2
−
√

3

2
i

)
〈↑↓|+ 〈↓↑| −

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈SX , S]; 0, 1| =
1

2

(
〈↑↑|+

(
1

2
−
√

3

2
i

)
〈↑↓| − 〈↓↑| −

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈SX , S]; 0, 0| =
1

2

(
〈↑↑| −

(
1

2
−
√

3

2
i

)
〈↑↓| − 〈↓↑|+

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], SX ; 1, 1| =
1

2

(
〈↑↑|+ 〈↑↓|+

(
1

2
−
√

3

2
i

)
〈↓↑|+

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], SX ; 1, 0| =
1

2

(
〈↑↑| − 〈↑↓|+

(
1

2
−
√

3

2
i

)
〈↓↑| −

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], SX ; 0, 1| =
1

2

(
〈↑↑|+ 〈↑↓| −

(
1

2
−
√

3

2
i

)
〈↓↑| −

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], SX ; 0, 0| =
1

2

(
〈↑↑| − 〈↑↓| −

(
1

2
−
√

3

2
i

)
〈↓↑|+

(
1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], S]; 1, 1| =
1

2

(
〈↑↑|+

(
1

2
−
√

3

2
i

)
〈↑↓|+

(
1

2
−
√

3

2
i

)
〈↓↑|+

(
−1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], S]; 1, 0| =
1

2

(
〈↑↑| −

(
1

2
−
√

3

2
i

)
〈↑↓|+

(
1

2
−
√

3

2
i

)
〈↓↑| −

(
−1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], S]; 0, 1| =
1

2

(
〈↑↑|+

(
1

2
−
√

3

2
i

)
〈↑↓| −

(
1

2
−
√

3

2
i

)
〈↓↑| −

(
−1

2
−
√

3

2
i

)
〈↓↓|

)

〈S], S]; 0, 0| =
1

2

(
〈↑↑| −

(
1

2
−
√

3

2
i

)
〈↑↓| −

(
1

2
−
√

3

2
i

)
〈↓↑|+

(
−1

2
−
√

3

2
i

)
〈↓↓|

)

When measuring the entangled state:

|α〉 =
1√
2

(|↑↑〉+ |↓↓〉)
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We get probabilities, according to the formula:

P = |〈S1, S2;m1,m2| α〉|2

Firstly, the bra(c)ket expressions become:

〈SX , SX ; 1, 1| α〉 =
1

2
√

2
(1 + 1) =

1√
2

〈SX , SX ; 1, 0| α〉 =
1

2
√

2
(1− 1) = 0

〈SX , SX ; 0, 1| α〉 =
1

2
√

2
(1− 1) = 0

〈SX , SX ; 0, 0| α〉 =
1

2
√

2
(1 + 1) =

1√
2

〈SX , S]; 1, 1| α〉 =
1

2
√

2

(
1 +

(
1

2
−
√

3

2
i

))
=

3−
√

3i

4
√

2

〈SX , S]; 1, 0| α〉 =
1

2
√

2

(
1−

(
1

2
−
√

3

2
i

))
=

1 +
√

3i

4
√

2

〈SX , S]; 0, 1| α〉 =
1

2
√

2

(
1−

(
1

2
−
√

3

2
i

))
=

1 +
√

3i

4
√

2

〈SX , S]; 0, 0| α〉 =
1

2
√

2

(
1 +

(
1

2
−
√

3

2
i

))
=

3−
√

3i

4
√

2

〈S], SX ; 1, 1| α〉 =
1

2
√

2

(
1 +

(
1

2
−
√

3

2
i

))
=

3−
√

3i

4
√

2

〈S], SX ; 1, 0| α〉 =
1

2
√

2

(
1−

(
1

2
−
√

3

2
i

))
=

1 +
√

3i

4
√

2

〈S], SX ; 0, 1| α〉 =
1

2
√

2

(
1−

(
1

2
−
√

3

2
i

))
=

1 +
√

3i

4
√

2

〈S], SX ; 0, 0| α〉 =
1

2
√

2

(
1 +

(
1

2
−
√

3

2
i

))
=

3−
√

3i

4
√

2

〈S], S]; 1, 1| α〉 =
1

2
√

2

(
1 +

(
−1

2
−
√

3

2
i

))
=

1−
√

3i

4
√

2

〈S], S]; 1, 0| α〉 =
1

2
√

2

(
1−

(
−1

2
−
√

3

2
i

))
=

3 +
√

3i

4
√

2

〈S], S]; 0, 1| α〉 =
1

2
√

2

(
1−

(
−1

2
−
√

3

2
i

))
=

3 +
√

3i

4
√

2

〈S], S]; 0, 0| α〉 =
1

2
√

2

(
1 +

(
−1

2
−
√

3

2
i

))
=

1−
√

3i

4
√

2
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And secondly, the probabilities become:

P (a, b; 0, 0) =
1

2
P (a, b; 1, 0) = 0

P (a, b; 0, 1) = 0

P (a, b; 1, 1) =
1

2

P (a, b′; 0, 0) =

∣∣∣∣∣3−
√

3i

4
√

2

∣∣∣∣∣
2

=

(
3−
√

3i

4
√

2

)(
3 +
√

3i

4
√

2

)
=

9 + 3

32
=

3

8

P (a, b′; 1, 0) =

∣∣∣∣∣1 +
√

3i

4
√

2

∣∣∣∣∣
2

=

(
1 +
√

3i

4
√

2

)(
1−
√

3i

4
√

2

)
=

1 + 3

32
=

1

8

P (a, b′; 0, 1) =

∣∣∣∣∣1 +
√

3i

4
√

2

∣∣∣∣∣
2

=

(
1 +
√

3i

4
√

2

)(
1−
√

3i

4
√

2

)
=

1 + 3

32
=

1

8

P (a, b′; 1, 1) =

∣∣∣∣∣3−
√

3i

4
√

2

∣∣∣∣∣
2

=

(
3−
√

3i

4
√

2

)(
3 +
√

3i

4
√

2

)
=

9 + 3

32
=

3

8

P (a′, b; 0, 0) =

∣∣∣∣∣3−
√

3i

4
√

2

∣∣∣∣∣
2

=

(
3−
√

3i

4
√

2

)(
3 +
√

3i

4
√

2

)
=

9 + 3

32
=

3

8

P (a′, b; 1, 0) =

∣∣∣∣∣1 +
√

3i

4
√

2

∣∣∣∣∣
2

=

(
1 +
√

3i

4
√

2

)(
1−
√

3i

4
√

2

)
=

1 + 3

32
=

1

8

P (a′, b; 0, 1) =

∣∣∣∣∣1 +
√

3i

4
√

2

∣∣∣∣∣
2

=

(
1 +
√

3i

4
√

2

)(
1−
√

3i

4
√

2

)
=

1 + 3

32
=

1

8

P (a′, b; 1, 1) =

∣∣∣∣∣3−
√

3i

4
√

2

∣∣∣∣∣
2

=

(
3−
√

3i

4
√

2

)(
3 +
√

3i

4
√

2

)
=

9 + 3

32
=

3

8

P (a′, b′; 0, 0) =

∣∣∣∣∣1−
√

3i

4
√

2

∣∣∣∣∣
2

=
1 + 3

32
=

1

8

P (a′, b′; 1, 0) =

∣∣∣∣∣3 +
√

3i

4
√

2

∣∣∣∣∣
2

=
9 + 3

32
=

3

8

P (a′, b′; 0, 1) =

∣∣∣∣∣3 +
√

3i

4
√

2

∣∣∣∣∣
2

=
9 + 3

32
=

3

8

P (a′, b′; 1, 1) =

∣∣∣∣∣1−
√

3i

4
√

2

∣∣∣∣∣
2

=
1 + 3

32
=

1

8

Thus, we get precisely the Bell probability table as in table 1.2.
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Appendix 2: Calculating Tsirelson’s bound

For the sake of completeness, a derivation of Tsirelson’s inequality is given. It is an inequality that is
precisely satisfied (as opposed to being violated) by systems in a type (2, 2, 2) Bell scenario that agree
with quantum mechanics. First we calculate some conspicuously looking expressions:

√
2− 1

8

((√
2 + 1

)
(A1 −B1) +A2 −B2

)2

=

√
2− 1

8
(
(

3 + 2
√

2
) (
A2

1 − 2A1B1 +B2
1

)
+A2

2 +B2
2 − 2A2B2

+
(√

2 + 1
)

(A1A2 −B1A2 −A1B2 +B1B2)

+
(√

2 + 1
)

(A2A1 −A2B1 −B2A1 +B2B1))

=
1 +
√

2

8

(
A2

1 − 2A1B1 +B2
1

)
−
√

2− 1

4
A2B2

+

√
2− 1

8

(
A2

2 +B2
2

)
+

1

8
(A1A2 +A2A1 − 2 (A1B2 +A2B1) +B1B2 +B2B1)

√
2− 1

8

((√
2 + 1

)
(A1 −B2)−A2 −B1

)2

=

√
2− 1

8
(
(

3 + 2
√

2
) (
A2

1 − 2A1B2 +B2
2

)
+A2

2 +B2
1 + 2A2B1

+
(√

2 + 1
)

(−A1A2 +B2A2 −A1B1 +B2B1)

+
(√

2 + 1
)

(−A2A1 +A2B2 −B1A1 +B1B2))

=
1 +
√

2

8

(
A2

1 − 2A1B2 +B2
2

)
+

√
2− 1

4
A2B1

+

√
2− 1

8

(
A2

2 +B2
1

)
+

1

8
(−A1A2 −A2A1 − 2 (A1B1 −A2B2) +B2B1 +B1B2)
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√
2− 1

8

((√
2 + 1

)
(A2 −B1) +A1 +B2

)2

=

√
2− 1

8
(
(

3 + 2
√

2
) (
A2

2 − 2A2B1 +B2
1

)
+A2

1 +B2
2 + 2A1B1

+
(√

2 + 1
)

(A2A1 −B1A1 +A2B2 −B1B2)

+
(√

2 + 1
)

(A1A2 −A1B1 +B2A2 −B2B1))

=
1 +
√

2

8

(
A2

2 − 2A2B1 +B2
1

)
+

√
2− 1

4
A1B1

+

√
2− 1

8

(
A2

1 +B2
2

)
+

1

8
(A2A1 +A1A2 − 2 (−A2B2 +A1B1)−B1B2 −B2B1)

√
2− 1

8

((√
2 + 1

)
(A2 +B2)−A1 −B1

)2

=

√
2− 1

8
(
(

3 + 2
√

2
) (
A2

2 + 2A2B2 +B2
2

)
+A2

2 +B2
1 + 2A1B2

+
(√

2 + 1
)

(−A2A1 −B2A1 −A2B1 −B2B1)

+
(√

2 + 1
)

(−A1A2 −A1B2 −B1A2 −B1B2))

=
1 +
√

2

8

(
A2

2 + 2A2B2 +B2
2

)
+

√
2− 1

4
A1B2

+

√
2− 1

8

(
A2

1 +B2
1

)
+

1

8
(−A2A1 −A1A2 − 2 (+A2B1 +A1B2)−B2B1 −B1B2)

Summing these expressions gives an interesting, and very concise, result:
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√
2− 1

8

((√
2 + 1

)
(A1 −B1) +A2 −B2

)2

+

√
2− 1

8

((√
2 + 1

)
(A1 −B2)−A2 −B1

)2

+

√
2− 1

8

((√
2 + 1

)
(A2 −B1) +A1 +B2

)2

+

√
2− 1

8

((√
2 + 1

)
(A2 +B2)−A1 −B1

)2

=
1 +
√

2

8

(
A2

1 − 2A1B1 +B2
1

)
−
√

2− 1

4
A2B2

+

√
2− 1

8

(
A2

2 +B2
2

)
+

1

8
(A1A2 +A2A1 − 2 (A1B2 +A2B1) +B1B2 +B2B1)

+
1 +
√

2

8

(
A2

1 − 2A1B2 +B2
2

)
+

√
2− 1

4
A2B1

+

√
2− 1

8

(
A2

2 +B2
1

)
+

1

8
(−A1A2 −A2A1 − 2 (A1B1 −A2B2) +B2B1 +B1B2)

+
1 +
√

2

8

(
A2

2 − 2A2B1 +B2
1

)
+

√
2− 1

4
A1B1

+

√
2− 1

8

(
A2

1 +B2
2

)
+

1

8
(A2A1 +A1A2 − 2 (−A2B2 +A1B1)−B1B2 −B2B1)

+
1 +
√

2

8

(
A2

2 + 2A2B2 +B2
2

)
+

√
2− 1

4
A1B2

+

√
2− 1

8

(
A2

1 +B2
1

)
+

1

8
(−A2A1 −A1A2 − 2 (A2B1 +A1B2)−B2B1 −B1B2)

=
(
A2

1 +A2
2 +B2

1 +B2
2

)(1 +
√

2

8
+

1 +
√

2

8
+

√
2− 1

8
+

√
2− 1

8

)

+

√
2− 1

4
(−A2B2 +A2B1 +A1B1 +A1B2)

−2 + 2
√

2

8
(A1B1 +A1B2 +A2B1 −A2B2)

−4

8
(A1B2 +A2B1 +A1B1 −A2B2)

=
(
A2

1 +A2
2 +B2

1 +B2
2

)( 1√
2

)
− (A1B2 +A2B1 +A1B1 −A2B2)
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In summary, we see that:

A1B2 +A2B1 +A1B1 −A2B2 =
1√
2

(
A2

1 +A2
2 +B2

1 +B2
2

)
−
√

2− 1

8

((√
2 + 1

)
(A1 −B1) +A2 −B2

)2

−
√

2− 1

8

((√
2 + 1

)
(A1 −B2)−A2 −B1

)2

−
√

2− 1

8

((√
2 + 1

)
(A2 −B1) +A1 +B2

)2

−
√

2− 1

8

((√
2 + 1

)
(A2 +B2)−A1 −B1

)2

The second to fifth term are each negative, so we can derive the following inequality:

A1B2 +A2B1 +A1B1 −A2B2 ≤ 1√
2

(
A2

1 +A2
2 +B2

1 +B2
2

)
≤ 4√

2
= 2
√

2

Where we used the fact that the expected value of a squared operator equals unity.
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