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Abstract

We study kmeans clustering estimation of panel data models with a latent group struc-

ture and N units and T time periods under long panel asymptotics. We show that the

group-specific coefficients can be estimated at the parametric root NT rate even if error

variances diverge as T → ∞ and some units are asymptotically misclassified. This limit

case approximates empirically relevant settings and is not covered by existing asymptotic

results.
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1 Introduction

Panel models can account for unobserved heterogeneity by dividing units into a finite number

of latent groups and allowing a unit’s coefficients to be group-specific (Bonhomme and Manresa

2015; Su, Shi, and Phillips 2016; Vogt and Linton 2017; Wang, Phillips, and Su 2018; Okui

and Wang 2020). Estimators of such models simultaneously estimate group memberships and

group-specific coefficients. For example, Bonhomme and Manresa (2015) propose a kmeans-type

estimator and Su, Shi, and Phillips (2016) propose the CLasso estimator that is based on solving

a penalized regression program. These two and other related estimators are justified under a

long panel asymptotic framework that sends both the number of units N and the number of
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time periods T to infinity. Existing theoretical results show that coefficients that are group-

specific and time invariant can be estimated at a root NT rate, i.e., at the parametric rate. In

this paper we show that the parametric rate can be obtained even if some units have a positive

probability of being misclassified in the limit. This limit case is highly relevant in practice since

it is common to misclassify at least some units in empirical applications (Bonhomme, Lamadon,

and Manresa 2019). However, existing results do not apply in such settings.

Existing asymptotic results for linear panel models assume that the variance of the error term

is universally bounded. From this assumption, it can then be shown that group memberships

can be estimated uniformly consistently, i.e., the probability of misclassifying one or more units

vanishes as N,T → ∞. This implies that the rate at which group-specific coefficients can be

estimated is the same as under a known group structure and is therefore equal to the parametric

rate.

However, the assumption of a universal bound on the variance of the error term may not

reflect real circumstances. It implies that the asymptotic limit as T → ∞ prescribes that, for

each unit, the level of statistical noise is negligible when compared to the number of observed

time periods. This is not characteristic of typical empirical applications. The number of ob-

served time periods is often rather small and, at least for some units, statistical noise plays an

important role in determining the outcome.

In this paper, we extend previous theoretical results to a heteroscedastic setting in which

units are endowed with unit-specific error variances σ2
1, . . . , σ

2
N . A unit i with small σi is easy

to classify, whereas a unit i with large σi is difficult to classify. The individual error variances

may depend on N and T and may diverge as T → ∞. We expect our asymptotic framework

to be a more faithful approximation of the finite sample behavior of the estimators than the

conventional framework.

For kmeans-estimation, we show that uniform consistency of group memberships holds pro-

vided that the unit-specific error variances do not diverge too fast. Units i for which σi diverges

too fast are potentially misclassified in the limit. However, if the proportion of such potentially

misclassified units is sufficiently small then it is still possible to estimate the group-specific

coefficients at a root NT rate.

Pollard (1981), Pollard (1982), and Bonhomme and Manresa (2015) consider panel models

with fixed T and estimate cluster-specific coefficients. They show that the cluster-specific coef-

ficients converge to a pseudo-true value at rate root N even though units are misclassified in the

limit with positive probability. Their setting and results are distinct from ours. We consider

long panel asymptotics under which true rather than pseudo-true cluster-specific coefficients

can be identified and estimated at a root NT rate.

We prove our results for a simple linear panel model with group-specific intercepts and focus

on estimation by least squares (equivalent to kmeans). By focusing on this simple model we

are able to derive our results under interpretable and intuitive conditions on the structure of

heteroscedasticity. While we think that our argument can be extended to more general regression

models with group-specific coefficients, we believe that such an exercise would impose more

involved assumptions and would not be as instructive about the mechanisms that allow root

NT -consistency to arise despite of diverging error variances and possibly misclassified units.
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Bonhomme and Manresa (2015) conduct a simulation experiment that is calibrated to their

empirical application. They find that the group-specific coefficients are estimated precisely,

even though it is likely that one or more units are misclassified. Existing theoretical results

about the rate of consistency of the group-specific coefficients cannot explain this phenomenon

as they do not apply in the presence of misclassification. We fill this gap in the literature by

showing that uniform consistency is sufficient but not necessary for precise estimation of the

group-specific coefficients.

2 Setting

The units i = 1, . . . , N are partitioned into G groups. The set of all groups is G = {1, . . . , G}
and unit i belongs to group g0

i ∈ G. For units in group g ∈ G the mean outcome in each period

is given by µg. At time t = 1, . . . , T we observe the scalar outcome yit generated by

yit = µg0i
+ σivit,

where vit is a noise term with variance one. Let Γ denote the space of possible group assignments

g = (g1, . . . , gN ) and letM denote the space of possible group-specific means µ = (µ1, . . . , µG).

The true group assignment g0 ∈ Γ and the true group-specific mean µ0 ∈ M are unknown

parameters and are estimated.

We consider kmeans-type estimation as suggested in Bonhomme and Manresa (2015). The

objective function for estimation is defined on Γ×M and is given by

QN,T (g,µ) =
1

NT

N∑
i=1

T∑
t=1

(yit − µgi)
2 .

The estimator is defined as (µ̂, ĝ) = arg minµ∈M,g∈ΓQN,T (g,µ). In practice, the estima-

tor is computed by the iterative kmeans procedure. We start with an initial group mem-

bership structure g(0) and then iterate µ and g such that the s-th iteration sets µ(s) =

arg minµ∈MQN,T (g(s−1),µ) and g(s) = arg ming∈ΓQN,T (g,µ(s)) until convergence. Since the

iteration may converge to a local minimum we re-start the procedure from many initial values

for g.

3 Main results

We consider asymptotic sequences under which N,T →∞ and

(log T )
√

logN√
T

= o(1). (1)

We treat (σ1, . . . , σN ) and g0 as unobserved deterministic parameters.

We first state sufficient conditions for consistent estimation of µ0.

Assumption 1. i) {vit}Tt=1 is an independent sequence with Evit = 0 and Ev2
it = 1.

ii) The average error variance satisfies N−1
∑N

i=1 σ
2
i = o(T ).
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iii) There is a bounded set M⊂ RG such that µ0 ∈M.

iv) There is a positive constant MG such that

min
g∈G

min
h∈G\{g}

∣∣µ0
g − µ0

h

∣∣ > MG.

v) For all g ∈ G, N−1
∑N

i=1 1(g0
i = g) ≥ qmin.

Part i) imposes independence of the error term over time. Using this assumption we obtain

asymptotic results under simply conditions on between-unit heteroscedasticity. The assumption

can be relaxed to allow for weak serial correlation at the expense of conditions on heteroscedas-

ticity that are more difficult to interpret. Part ii) states that the average error variance increases

at a slower rate than T . This assumption ensures that, as T → ∞, the additional information

from observing more time periods is not undone by an increased noisiness of the signal. Part iii)

is a standard regularity assumption. Part iv) requires that the group-specific means are distinct

(group separation). Part v) ensures that the effective sample size that can be used to estimate

the group-specific mean grows at the same asymptotic rate for all groups.

Assumption 1 does not restrict cross-sectional dependence. Assumption 3 below limits the

amount of cross-sectional dependence and is required for our result on NT -convergence of the

group-specific parameters, but not any of our intermediate results.

The grouped model is invariant to a relabeling of the groups and the vector of group-specific

means µ0 is therefore only identified up to a re-ordering of its components. The following result

states that the identified set is consistently estimated.

Lemma 1 (Consistency of group-specific means). Suppose that Assumption 1 holds. Then,

there is a (possibly random) permutation function π : G→ G such that for all ε > 0

lim
N,T→∞

P

(
max
g∈G

∣∣µ̂π(g) − µ0
g

∣∣ > ε

)
= 0.

Similarly to related results in the literature (e.g. Bonhomme and Manresa 2015), proving

this result does not require establishing that group memberships are consistently estimated for

all units. In Theorem 1 below, we strengthen the result to root NT convergence under weaker

assumptions on heteroscedasticity than are commonly assumed in the literature.

The subsets of units for which we can guarantee that group memberships are uniformly

consistently estimated is given by

IN,T =

{
i ∈ {1, . . . , N} : σi ≤

MG

140

√
T

logN

}
. (2)

For the units in IN,T the error variances are allowed to diverge but only at rate
√
T/ logN .

Controlling the rate of divergence is necessary to ensure that observing additional time periods

adds enough information to estimate group memberships precisely. What rates of divergence

are permissible is determined by bounds on the tail of the error distribution. The error term

of our panel model is given by σivit. We assume that vit is a sub-exponential random variable.
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Under this assumption, new observations add information at the usual parametric rate root T

and the price of uniformity is root logN .

Assumption 2 (Sub-exponential errors). There are positive constants ν, α such that

max
1≤i≤N

max
1≤t≤T

E exp(λ |vit|) ≤ exp

(
λ2ν2

2

)
for all λ > 0 such that λ <

1

α
.

In addition to errors that are Gaussian and sub-Gaussian (conditional on σi) this assumption

allows also for certain “fat-tailed” distributions such as Poisson or chi-squared. It is possible

to relax this assumption and allow for distributions with even heavier tails, but only at the

expense of a different rate condition in (3) that is more difficult to state and to interpret. In

our setting, misclassification can occur even for moderate realizations of vit if σi is sufficiently

large. Therefore, misclassification does not hinge on heavy tails of vit and is not ruled out or

limited by Assumption 2.

The following lemma states that group membership is estimated consistently uniformly over

all units in IN,T .

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then, there exists a (possibly random)

permutation function π : G→ G such that

lim
N,T→∞

P

(
sup
i∈IN,T

∣∣π(ĝi)− g0
i

∣∣ > 0

)
→ 0.

This lemma extends existing results in the literature that are derived under the assumption

that max1≤i≤N σ
2
i is bounded in which case IN,T = {1, . . . , N} eventually. Lemma 2 shows that

uniform consistency over all units can be obtained even if the error variance σ2
i diverges for some

or all units. In this case, all unit-specific error variances must diverge at most at the rate given

in (2) and the average error variance must diverge at most at the rate given in Assumption 1ii).

We study the asymptotic behavior of µ̂ without requiring that all units are contained in

IN,T and therefore guaranteed to be estimated consistently. The idea of Theorem 1 below is

that units that are not in IN,T do not affect the asymptotic distribution provided that there

are sufficiently few of them.

Let IcN,T = {1, . . . , N}\IN,T and write #A to denote the cardinality of a set A. We assume

#IcN,T
N

max

√NT,
√√√√N

1

#IcN,T

∑
i∈#IcN,T

σ2
i

 = o(1). (3)

Existing theoretical results cover only settings under which no units are potentially misclassified

in the asymptotic limit, i.e., #IcN,T = 0. In this case (3) is trivially satisfied. Our result allows

#IcN,T 6= 0 provided that the proportion of possibly misclassified units #IcN,T /N vanishes at

a sufficiently fast rate. The rate in the first component of the max ensures that units in IcN,T
asymptotically do not affect the mean of µ̂. The rate of the second component in the max

ensures that units in IcN,T asymptotically do not affect the variance of µ̂. By (2), the second
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component satisfies √√√√N
1

#IcN,T

∑
i∈#IcN,T

σ2
i >
√
NT

MG

140
√

logN
.

This shows that the first component can dominate the second component at most at a root logN

rate. Therefore, replacing the max in (3) by the second component gives a good approximation

(up to order root logN) of the required rate condition.

To state the assumption for asymptotic normality of µ̂g, g ∈ G, let IN,T (g) =
{
i ∈ IN,T : g0

i = g
}

and

Ñg = #{i ∈ IN,T : g0
i = g}, Ng = #{i ∈ 1, . . . , N : g0

i = g}, N̂g = #{i ∈ 1, . . . , N : ĝi = g}.

Assumption 3. i) Condition (3) is satisfied.

ii) For each g ∈ G there are positive constants δg and qg such that Ng/N → qg and

1

Ñg

∑
i∈IN,T (g)

σ2
i +

1

Ñg

∑
i,j∈IN,T (g)

i 6=j

σiσj cov(vi1, vj1)→ δg.

iii) We have

1

#IN,T

∑
i∈IN,T

σ2
i = O(

√
T ) and

1

#IN,T

∑
i∈IN,T

σ4
i = O(NT ).

iv) In addition, ∑
i,j,k∈IN,T

{i}∩{j}∩{k}=∅

σiσjσkE[v2
i1vj1vk1] =O(N2T ),

∑
i,j,k,`∈IN,T

{i}∩{j}∩{k}∩{`}=∅

σiσjσkσ`E[vi1vj1vk1v`1] =O(N2T ).

Part ii) ensures that the asymptotic variance of µ̂g converges. Part iii) imposes two con-

ditions on the rate of divergence of the L2 and the L4 norm of {σi : i ∈ IN,T }. Under cross-

sectional independence the first condition is implied by ii). The second condition is satisfied if

N log2N/T →∞. Part iv) limits the amount of cross-sectional dependence.

The following theorem guarantees root NT -consistency and asymptotic normality of µ̂g.

Theorem 1. Suppose that Assumptions 1–3 hold. Then, for g ∈ G as N,T →∞

√
NT

(
µ̂π(g) − µ0

g

) d−→ N (0, q−1
g δg).

This result shows that rootNT -consistency can be obtained even if some units are potentially

misclassified in the limit. In addition, the error variance for the units that are consistently

estimated need not be bounded. For root NT -consistency we require a stronger assumption on
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the average error variance than for the result on consistent estimation of group memberships

in Lemma 2. Assumption 3ii) implies that the average error variance is bounded. In contrast,

Lemma 2 allows the average error variance to diverge at a controlled rate.

4 Conclusion

We have shown that uniformly consistent estimation of group memberships is not a necessary

condition of root NT estimation of time invariant group-specific parameters. The simple model

with group-specific intercepts served our purpose of providing an example of a grouped panel

model in which a root NT rate can be obtained even under misclassification in the limit. We

are confident that similar results can be obtained for general linear panel regression, albeit

under more involved conditions that may not be straightforward to interpret. We leave such

extensions to future research. For scenarios where the amount of misclassification permitted by

our assumption (3) is exceeded by only a sufficiently small margin, our proofs suggest that it

is possible to obtain a convergence rate that is slower than root NT but faster than root N .

This suggests a negative relationship between the difficulty of classifying individual units and

the precision of the estimator of the vector of group-specific coefficients.

A Appendix: Mathematical proofs

Lemma 3. Let P denote a class of probability measures that satisfy Assumption 2. Then

sup
P∈P

P

(
max

1≤i≤N

∣∣∣∣∣ 1√
T

T∑
t=1

vit

∣∣∣∣∣ > 14
√

logN

)
≤ 3N−1.

Proof. Fix a probability measure P ∈ P and let ν, α > 0 denote the parameters from Assump-

tion 2. Let λ∗ > 0 large enough that λ∗ < 1/π and exp(ν2(λ∗)2/2) ≤ 2. Define the Orlicz

norm

‖vit‖ψ1
= inf {η > 0 : E [ψ1(|vit| /η)] ≤ 1}

with ψ1(t) = exp(t)− 1. By Assumption 2,

max
1≤i≤N

max
1≤t≤T

E exp(λ∗ |vit|) ≤ exp
(
ν2(λ∗)2/2

)
≤ 2.

Defining K = 1/λ∗ this implies for all 1 ≤ i ≤ N and 1 ≤ t ≤ T

E
[
exp

(
|vit|
K

)
− 1

]
≤ 1

and therefore

‖vit‖ψ1
= inf

{
η > 0 : E

[
exp

(
|vit|
η

)
− 1

]
≤ 1

}
≤ K.

Hence, max1≤i≤N max1≤t≤T ‖vit‖ψ1
≤ K. Applying Theorem 3.4 in Kuchibhotla and Chakrabortty
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(2018) with α = 1, Kn,q = K, Γn,q = 1 and t = logN yields

P

(
max

1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

vit

∣∣∣∣∣ > 7

√
2 logN

T
+
C1K log(2T )(2 logN)

T

)
≤ 3N−1.

By Assumption 2,

C1K log(2T )(2
√

logN)√
T

= o(1)

and therefore

14

√
logN

T
> 7

√
2 logN

T
+
C1K log(2T )(2 logN)

T
.

Lemma 4. Suppose that Assumption 1i)–iii) holds. Then, for all ε > 0

lim
N,T→∞

P

(
sup

g∈Γ,µ∈M

∣∣∣∣∣QN,T (g,µ)− 1

NT

N∑
i=1

T∑
t=1

u2
it +

1

N

N∑
i=1

(
µ0
g0i
− µgi

)2
∣∣∣∣∣ > ε

)
= 0.

Proof. This proof is very similar to the proof of Lemma A.1 in Bonhomme and Manresa (2015).

Expanding QN,T gives

QN,T (g,µ) =
1

NT

N∑
i=1

T∑
t=1

u2
it +

1

N

N∑
i=1

(
µ0
g0i
− µgi

)2

+
2

NT

N∑
i=1

T∑
t=1

σivit

(
µ0
g0i
− µgi

)
.

By Cauchy-Schwarz∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

σivit

(
µ0
g0i
− µgi

)∣∣∣∣∣
2

≤CM
1

N

N∑
i=1


(
σ2
i

T

)(
1√
T

T∑
t=1

vit

)2
 ,

where CM is a constant that depends on a bound onM. Under the assumptions of the lemma,

1

N

N∑
i=1

E


(
σ2
i

T

)(
1√
T

T∑
t=1

vit

)2
 = o(1).

Therefore, by Markov’s inequality,

P

 1

N

N∑
i=1


(
σ2
i

T

)(
1√
T

T∑
t=1

vit

)2
 > ε

 = o(1).

The conclusion follows.
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Lemma 5. Suppose that Assumption 1i)–iii) holds. For each ε > 0

lim
N,T→∞

P

(
1

N

N∑
i=1

(
µ0
g0i
− µ̂ĝi

)2
> ε

)
= 0.

Proof. By definition,

QN,T (ĝ, µ̂) ≤ QN,T (g0,µ0).

Let WN,T denote a random variable such that for each ε > 0

lim
N,T→∞

P (|WN,T | > ε) = 0.

Applying Lemma 4 to both sides of the inequality yields

1

N

N∑
i=1

(
µ0
g0i
− µ̂ĝi

)2
≤ 1

N

N∑
i=1

(
µ0
g0i
− µ0

g0i

)2
+WN,T

and the conclusion follows.

Proof of Lemma 1. This proof is very similar to the proof of Lemma B.3 in Bonhomme and

Manresa (2015). By Lemma 5

1

N

N∑
i=1

(
µ0
g0i
− µ̂ĝi

)2
= op(1).

Suppose that there is a constant ε > 0 and g ∈ G such that for N,T →∞ satisfying (1)

lim sup
N,T→∞

P

(
min
h∈G

∣∣µ̂h − µ0
g

∣∣ > ε

qmin

)
≥ ε. (4)

Under minh
∣∣µ̂h − µ0

g

∣∣ > ε/qmin we have

1

N

N∑
i=1

(
µ0
g0i
− µ̂ĝi

)2
>

1

N

∑
i=1,...,N
g0(i)=g

ε

qmin
≥ ε

and therefore

lim sup
N,T→∞

P

(
1

N

N∑
i=1

(
µ0
g0i
− µ̂ĝi

)2
> ε

)
≥ ε.

This contradicts Lemma 5. Therefore (4) does not hold and for all ε > 0

lim
N,T→∞

P

(
max
g∈G

min
h∈G

∣∣µ̂h − µ0
g

∣∣ > ε

)
≤
∑
g∈G

lim
N,T→∞

P

(
min
h∈G

∣∣µ̂h − µ0
g

∣∣ > ε

)
= 0.
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This result implies that, for any constant 0 < ε < MG/2 and

lim sup
N,T→∞

P

(
max
g∈G

min
h∈G

∣∣µ̂h − µ0
g

∣∣ ≥ ε) < ε.

If

max
g∈G

min
h∈G

∣∣µ̂h − µ0
g

∣∣ < ε

then there exists, to each g ∈ G, a non-empty set Hg ⊂ G such that
∣∣µ̂h − µ0

g

∣∣ < ε for all h ∈ Hg.

We now prove Hg ∩Hg′ = ∅ for g, g′ ∈ G with g 6= g′. Suppose h ∈ Hg. Then

∣∣µ̂h − µ0
g′
∣∣ =

∣∣µ̂h − µ0
g + µ0

g − µ0
g′
∣∣ ≥ ∣∣µ0

g′ − µ0
g

∣∣− ∣∣µ̂h − µ0
g

∣∣ ≥MG − ε > ε.

Therefore h 6= Hg′ and Hg ∩ Hg′ = ∅. Since Hg 6= ∅ this implies that all sets Hg, g ∈ G are

singletons. Define the function π : G → G that maps each group g to the unique h such that∣∣µ̂h − µ0
g

∣∣ < ε. The function π is a bijection and hence a permutation function. For any given

h ∈ G setting g = π−1(h) guarantees |µ̂h − µ0
g| < ε. Therefore,

lim sup
N,T→∞

P

(
max
h∈G

∣∣µ̂π(g) − µ0
g

∣∣ ≥ ε) ≤ ε.

Proof of Lemma 2. Let π : R → R denote the permutation function from Lemma 1. For

i = 1, . . . , N , we have ĝi 6= π(g0
i ) only if there is g ∈ G \ {π(g0

i )} such that

T∑
t=1

(
yit − µ̂π(g0i )

)2
≥

T∑
t=1

(yit − µ̂g)2 .

Plugging in yit = µ0
g0i

+ σivit and rewriting the inequality yields

sign(µ̂g − µ̂π(g0i ))
1√
T

T∑
t=1

vit ≥
√
T

2σi

∣∣∣µ̂g − µ̂π(g0i )

∣∣∣− sign(µ̂g − µ̂π(g0i ))

√
T

σi
(µg0i

− µ̂π(g0i )).

Let EN,T denote the event

EN,T = {max
g∈G

∣∣µ̂π(g) − µ0
g

∣∣ > MG/5}.

On EN,T ,

√
T

2σi

∣∣∣µ̂g − µ̂π(g0i )

∣∣∣− sign(µ̂g − µ̂π(g0i ))

√
T

2σi
(µg0i

− µ̂π(g0i ))

≥
√
T

2σi

(∣∣∣µ0
π−1(g) − µ

0
g0i

∣∣∣− ∣∣∣µ̂g − µ0
π−1(g)

∣∣∣− 3
∣∣∣µ̂π(g0i ) − µ0

g0i

∣∣∣) ≥ √T
10σi

MG.
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Therefore,

P

(
max
i∈IN,T

∣∣ĝi − π(g0
i )
∣∣ > 0

)
≤P

(
there exists i ∈ IN,T such that sign(µ̂g − µ̂π(g0i ))

1√
T

T∑
t=1

vit ≥
√
T

10σi
MG

)
+ P (EN,T )

≤P

(
max

1≤i≤N

∣∣∣∣∣ 1√
T

T∑
t=1

vit

∣∣∣∣∣ ≥ 14
√

logN

)
+ P (EN,T ) ,

where the last inequality follows since

√
T

10σi
MG ≥ 14

√
logN

for all i ∈ IN,T and IN,T ⊂ {1, . . . , N}. By Lemma 1 and Lemma 3,

lim
N,T→∞

[
P

(
max

1≤i≤N

∣∣∣∣∣ 1√
T

T∑
t=1

vit

∣∣∣∣∣ ≥ 14
√

logN

)
+ P (EN,T )

]
= 0.

Proof of Theorem 1. Throughout the proof we omit the N,T subscripts and write I, I(g) and

Ic instead of IN,T , IN,T (g) and IcN,T . Assumption 3i) implies

#IcN,T
N

= o(1).

Hence, for g ∈ G,

1 ≤ Ñg

Ng
≤ Ng

Ng
+

#IcN,T
Ng

≤ 1 + (1 + o(1))
qg#IcN,T

N
≤ 1 + o(1)

and therefore ∣∣∣∣∣Ñg

Ng
− 1

∣∣∣∣∣ = o(1).

For g ∈ G,

N̂h

Ñg

=
1

Ñg

∑
i∈Ic

1(π(ĝi) 6= g) +
1

Ñg

∑
i∈I

1 (π(ĝ) = g) .

By Lemma 2

lim
N,T→∞

P

(
1

Ñg

∑
i∈I

1 (π(ĝ) = g) 6= 1

)
= 0.
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Moreover,

1

Ñg

∑
i∈Ic

1(π(ĝi) 6= g) ≤ (1 + o(1))
#IcN,T
qgN

≤ o(1)

and therefore for all ε > 0

lim
N,T→∞

P

(∣∣∣∣∣N̂h

Ñg

− 1

∣∣∣∣∣ > ε

)
= 0.

For all g ∈ G we can bound∣∣∣∣∣ 1

N̂gT

∑
i∈Ic

T∑
t=1

1 (π(ĝi) = g) yit

∣∣∣∣∣
≤ 1

qgN
(1 + op(1))

(∑
i∈Ic

1 (π(ĝi) = g)
∣∣µ0
i

∣∣+
1√
T

∑
i∈Ic

1 (π(ĝi) = g)σi

(
1√
T

T∑
t=1

vit

))

≤ 1

qgN
(1 + op(1))

(
#Ic sup

µ∈M
‖µ‖max +

#Ic√
T

√
1

#Ic
∑
i∈Ic

σ2
i

√√√√ 1

#Ic
∑
i∈Ic

(
1√
T

T∑
t=1

vit

)2)
,

where ‖·‖max is the max norm in RG. By independence over time and Ev2
it = 1 we have

E
1

#Ic
∑
i∈Ic

(
1√
T

T∑
t=1

vit

)2

= 1

and hence by the Markov inequality

1

#Ic
∑
i∈Ic

(
1√
T

T∑
t=1

vit

)2

= Op(1).

In addition, supµ∈M‖µ‖max is bounded by Assumption 1iii). Therefore∣∣∣∣∣ 1

N̂gT

∑
i∈Ic

T∑
t=1

1 (π(ĝi) = g) yit

∣∣∣∣∣
≤O(1) (1 + op(1))

#Ic

N

1 + (1 +Op(1))T−1/2

√
1

#Ic
∑
i∈Ic

σ2
i

 = op

(
1√
NT

)
,

(5)

where the last equality follows from Assumption 3i). We will now apply the Lindeberg-Feller

CLT to show

1√
Ñg

∑
i∈I(g)

{
σi

(
1√
T

T∑
t=1

vit

)}
d−→ N (0, δg). (6)
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The variance of the term is given by

E

 1

T

T∑
t=1

 1√
Ñg

∑
i∈I(g)

σivit

2 =
1

Ñg

∑
i∈I(g)

σ2
i +

1

Ñg

∑
i,j∈I(g)
i 6=j

σiσj cov(vi1, vj1)→ δg

To verify the Lindeberg condition it suffices to show that

E

[
T−1/2

T∑
t=1

zN,t

]4

≤ K (7)

eventually, where

zN,t =
1√
Ñg

∑
i∈I(g)

σivit

and K is a constant that does not depend on N and T . By independence across time periods

E

[
1√
T

T∑
t=1

zN,t

]4

=

(
4
2

)
2!

1

T 2

T∑
s=1

∑
t6=s

E[z2
N,s]E[z2

N,t] +
1

T 2

T∑
t=1

E[z4
N,t] = 3δ2

g +
1

T 2

T∑
t=1

E[z4
N,t] + o (1) .

To bound the right-hand side write for t = 1, . . . , T

E
[√

ÑgzN,t

]4

= E

 ∑
i∈I(g)

σivit

4

=
∑
i∈I(g)

σ4
i E[v4

it] +

(
4
2

)
2!

∑
i,j∈I(g)
i 6=j

σ2
i σ

2
jE[v2

itv
2
jt] +

(
4
2

)
2!

∑
i,j,k∈I

{i}∩{j}∩{k}=∅

σ2
i σjσkE[v2

itvjtvkt]

+
∑

i,j,k,`∈I
{i}∩{j}∩{k}∩{`}=∅

σiσjσkσ`E[vitvjtvktv`t] = I1,t + I2,t + I3,t + I4,t.

To show (7) it suffices to show
∑T

t=1 Ik,t = O(N2T 2) for k = 1, . . . , 4. Assumption 3i) implies∣∣∣∣#IN − 1

∣∣∣∣ = o(1).

Moreover, by Assumption 2 there is a finite constant M4 independent of N and T such that

max1≤t≤T E[v4
it] ≤M4. Therefore,

T∑
t=1

I1,t ≤M4NT (1 + o(1))

(
1

#I
∑
i∈I

σ4
i

)
= O(N2T 2).

and

T∑
t=1

I2,T ≤3M4(1 + o(1)(N2T )

{
1

#I
∑
i∈I

σ2
i = O(N2T 2)

}2

.
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Moreover, Assumption 3iv) yields
∑T

t=1 Ik,t = O(N2T 2) for k = 1, 2. This proves (7). For g ∈ G

µ̂π(g) =
1

N̂gT

∑
i∈Ic

T∑
t=1

1 (π(ĝi) = g) yit +
1

N̂gT

∑
i∈I\I(g)

T∑
t=1

1 (π(ĝi) = g) yit

+ (1 + op(1))
1

ÑgT

∑
i∈I(g)

T∑
t=1

1 (π(ĝi) = g) (µg0i
+ σivit)

The first term on the right-hand side is op
(
(NT )−1/2

)
by (5). The second term is op

(
(NT )−1/2

)
by Lemma 2. The third term converges to a centered normal with variance δg by (6) and

Slutzky’s lemma.
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