
Thesis for The Degree of Doctor of Philosophy

Understanding, Measuring, and Evaluating
Maintainability of Automotive Software

Jan Schroeder

Division of Software Engineering
Department of Computer Science & Engineering

University of Gothenburg
Göteborg, Sweden, 2020

Understanding, Measuring, and Evaluating Maintainability of Auto-
motive Software

Jan Schroeder

Copyright © 2020 Jan Schroeder
except where otherwise stated.
All rights reserved.

ISBN: 978-91-8009-009-4
Technical Report No. 187D
Division of Software Engineering
Department of Computer Science & Engineering
University of Gothenburg
Göteborg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Göteborg, Sweden 2020.

ii

iii

To Viktor

iv

Abstract

Context: The importance of software maintainability is well-addressed by soft-
ware engineering research, in general. Particularly for object-oriented and
open-source software, measurements as a means to represent maintainability
are well-established. Nevertheless, there is a lack of a similar understanding
for software maintainability of executable models, which are widely used in
the automotive industry, predominantly, using Simulink. Maintainability for
automotive software is the main setting of this thesis. Software growth and
complexity which are concepts related to maintainability are also investigated.
Objective: In this thesis, we aim to investigate maintainability for model-based
software in the automotive domain. We explore the aspects it consists of,
elicit maintainability measurements, and assess their applicability in practice.
Additionally, we investigate two approaches to evaluate existing measurement
data. First, we show how outliers with a significant impact on software quality
can be identified in measurement data. Second, regarding software growth
in the context of Simulink models, we show which predictions are relevant to
practitioners, how these can be reliably conducted, and which environmental
factors software growth is affected by. Lastly, in this thesis, we aim to present
a practical implementation of software quality-focused design and evaluation
of an automotive software architecture.
Method: As Simulink models are widely used in the automotive industry, we
always work in close collaboration with practitioners from industry. Hence, the
majority of the work presented in this thesis has been performed in the form
of case studies within the automotive industry in Sweden and Germany. In
addition, we always associate findings from the industry with current research
using literature. We use multiple qualitative and quantitative research methods.
This includes literature reviews, interviews and workshops with practitioners
in industry, surveys, and software measurement with consecutive data analysis
and hypothesis testing.
Results: In this thesis, we present a categorized list of aspects related to
the maintainability of Simulink models, as well as a list of measures for the
maintainability of Simulink models ranked by practitioners from industry. We
provide evidence that simple size measures can be more applicable maintainabil-
ity measures in practice than more complex measures. We present an approach
to detect impactful outliers in measurement data.
Furthermore, concerning software growth, we list environmental factors af-
fecting software growth measurement and prediction. We further provide a
collection of practitioners’ expectations towards growth predictions and rank
prediction approaches for growth measurements by their applicability in in-
dustry. Lastly, we present an approach to the design and evaluate a software
architecture in the automotive industry.
Conclusion: With these results, we provide a taxonomy of maintainability for
Simulink models and respective measurements. Together with the methods
for data analysis, we move a step towards a common understanding of main-
tainability for Simulink models which is presently missing. Next to that, we
present approaches for maintainability measurement and analysis applicable in
practical work environments. Thereby, we facilitate the application of rigorous
measurements and analysis in the domain of automotive software.

v

vi

Keywords

Software Engineering, Industrial Case Studies, Empirical Research, Software
Quality, Maintainability, Software Measurement, Automotive Software, Simulink,
Software Architecture

ISBN: 978-91-8009-008-7 (PRINT)
ISBN: 978-91-8009-009-4 (PDF)

Acknowledgments

My biggest thanks go to my supervisor Christian Berger, for his tireless en-
couragement, guidance, and positive energy. Without his support and feedback
I might not have pursued my PhD studies and definitely would not have made
it that far. I am grateful to have you as a friend and mentor.

I also want to thank my co-supervisor Miroslaw Staron, for his constructive
and honest advice at any time I needed it. His constant endeavor to strengthen
my work with scientific rigor was always highly appreciated.

A special thanks goes to Thomas Herpel, my co-supervisor and friend. Thank
you for sharing your technical knowledge, experience, and ideas. I could always
rely on your talent to show me new ways to my work where I could not see them.

I am very grateful to my colleagues at the Software Engineering Division.
Particularly, Ivica Crnkovic, Michel Chaudron, Regina Hebig, Alessia Knauss,
Hang Yin, Abdullah-Al Mamun, Antonio Martini, Vard Antinyan, Lukas Gren,
Grischa Liebel, Hugo Sica de Andrade, Federico Giaimo, Darko Durisic, Hiva
Alahyari, Salome Maro, and Emil Alégroth as they were always available for
constructive discussions and valuable reviews.

I also want to thank my friends and colleagues from industry Christoph Funda,
Okan Ecin, Ibrahim Alagöz, Herman Abt, Christian Baar, Martin Schalau, Rad-
hakrishna Kothamasu, Wilhelm Bairlein, Balázs Gábor, and Robert Dämbkes
for their willingness to share their technical knowledge, their patient availability
to answer all my questions, and for always making me feel welcomed on site.

I owe a special thanks to Bára, for being an indefatigable source of inspiration
and motivation for improvement, but also for her patience in stressful times
and her constant support.

Finally, I want to send a big “Danke” to my family. First, to my parents Frank
and Felicitas, who supported me with all means available and never stopped
believing in me, even in difficult times. Second, to my sister Julia for her
encouragement and decision support in times of doubt.

vii

List of Publications

Appended Papers

This thesis is based on the following papers.

[A] J. Schroeder, C. Berger, V. Antinyan, F. Hajredini, S. A. Manesh
“Understanding and Measuring Maintainability of Simulink Models”
In submission to the International Journal on Software and Systems
Modeling (SoSyM), 2020.

[B] J. Schroeder, C. Berger, T. Herpel, M. Staron
“Comparing the Applicability of Complexity Measurements for Simulink
Models during Integration Testing – An Industrial Case Study”
Proceedings of the 2nd International Workshop on Software Architecture
and Metrics (SAM), Florence, Italy, May 16, 2015.

[C] J. Schroeder, C. Berger, M. Staron, T. Herpel, A. Knauss
“Unveiling Anomalies and their Impact on Software Quality in Model-
Based Automotive Software Revisions with Software Metrics and Domain
Experts”
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA), Saarbrücken, Germany, July 18-22, 2016.

[D] J. Schroeder, C. Berger, A. Knauss, H. Preenja, M. Ali, M. Staron,
T. Herpel
“Prediction of Software Model Growth in Practice”
Proceedings of the 33rd International Conference on Software Maintenance
and Evolution (ICSME), Shanghai, China, September 17-24, 2017.

[E] J. Schroeder and C. Berger
“Environmental Factors for Measurement and Prediction of Software
Growth in the Automotive Industry”
In submission to the Journal of Software: Evolution and Process, 2020.

[F] J. Schroeder, D. Holzner, C. Berger, C. J. Hoel, L. Laine, A. Magnusson
“Design and Evaluation of a Customizable Multi-Domain Reference Archi-
tecture on top of Product Lines of Self-Driving Heavy Vehicles”
Proceedings of the 37th International Conference on Software Engineering
(ICSE), Florence, Italy, May 16-24, 2015.

ix

Other Papers

The following papers are published during my PhD studies but not appended
to this thesis.

Simulation & Validation in HIL environments

[a] J. Schroeder, C. Berger, T. Herpel
“Challenges from Integration Testing using Interconnected Hardware-in-
the-Loop Test Rigs at an Automotive OEM”
In Proceedings of the First International Workshop on Automotive Soft-
ware Architecture (WASA), Montréal, QC, Canada, May 4, 2015.

[b] J. Schroeder, C. Berger, T. Herpel
“A Methodology for Simulation and Validation of a Safety-Critical Elec-
tronic Control Unit for Integration Testing in Connected Hardware-in-
the-Loop Environments”
Proceedings of the 3rd International Symposium on Future Active Safety
Technology Towards Zero Traffic Accidents (FASTzero), Gothenburg,
Sweden, September 9-11, 2015.

[c] T. Herpel, T. Hoiss, J. Schroeder
“Enhanced Simulation-Based Verification and Validation of Automotive
Electronic Control Units”
Proceedings of the 5th International Conference on Electronics, Commu-
nications and Networks (CECNet), Shanghai, China, December 12-15,
2015.

[d] I. Alagöz, J. Schroeder, C. Funda, R. German, C. Berger
“Validating Test Cases for Safety Relevant ECUs using Simulation Models”
Proceedings of the 4th International Symposium on Future Active Safety
Technology Towards Zero Traffic Accidents (FASTzero), Nara, Japan,
September 18-21, 2017.

Testing Autonomous Vehicles

[a] A. Knauss, J. Schroeder, C. Berger, H. Eriksson
“Paving the Roadway for Safety of Automated Vehicles: An Empirical
Study on Testing Challenges”
Proceedings of the Intelligent Vehicles Symposium (IV), Redondo Beach,
California, USA, June 11-14, 2017.

[b] A. Knauss, C. Berger, H. Eriksson, J. Schroeder
“Proving Ground Support for Automation of Testing of Active Safety
Systems and Automated Vehicles”
Proceedings of the 4th International Symposium on Future Active Safety
Technology Towards Zero Traffic Accidents (FASTzero), Nara, Japan,
September 18-21, 2017.

x

xi

[c] I. R. Jenkins, L. O. Gee, A. Knauss, H. Yin, J. Schroeder
“Accident Scenario Generation with Recurrent Neural Networks”
Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems (ITSC), Maui, Hawaii, USA, November 4-7,
2018.

Others

[a] H. S. Andrade, J. Schroeder, I. Crnkovic
“Software Deployment on Heterogeneous Platforms: A Systematic Map-
ping Study”
IEEE Transactions on Software Engineering (Early Access), 2019.

[b] R. Hebig, T. H. Quang, R. Jolak, J. Schroeder, H. Linero, M. Ågren,
A. M. Raj, S. Maro, K. Al-Sabbagh
“How do Students Experience and Judge Software Comprehension Tech-
niques?”
In Proceedings of the 28th International Conference on Program Compre-
hension (ICPC), Seoul, South Korea, October 5-6, 2020.

Research Contribution

For all appended papers, except Paper F, I contributed with the study design,
data collection, data analysis, and the majority of writing. The remaining
co-authors contributed with discussions, reviews, survey and interview coding,
and improvement suggestions. The ideas for the papers usually emerged during
discussions with Christian Berger, Thomas Herpel, and Miroslaw Staron.

Study design, data collection, and data analysis for paper F are conducted
in evenly balanced collaboration with the co-author Daniela Holzner, under
the supervision of Christian Berger. The writing of the final publication was
equally split up among the three main authors.

In Paper A and D, two co-authors conducted the initial literature reviews
in form of thesis work supervised by me. In both cases, I re-evaluated and
extended results, discussions, threats, and related work leading to substantial
changes or extensions.

xii

Contents

Abstract v

Acknowledgment vii

List of Publications ix

1 Introduction 1
1.1 Background and Scope . 2
1.2 Study Goals . 5
1.3 Related Work . 6
1.4 Research Methodology . 7
1.5 Study Summaries . 10
1.6 Contributions . 13
1.7 Discussion . 14
1.8 Conclusions . 17

Bibliography 19

xiii

xiv CONTENTS

Chapter 1

Introduction

Automotive Software is growing in size and complexity as vehicles are required
to become more and more intelligent. Modern premium cars can easily accom-
modate over 100 million lines of software code (cf. [1] and [2]). Next to the
challenge of growing software size, automotive software is often complex. For ex-
ample, Pretschner et al. [3]) mention high complexity due to hardware/software
interaction and the distributed nature of automotive software. Even though
there is an ongoing change of paradigms towards multi-purpose computers,
which is highlighted, for example, by Zerfowski and Buttle [4], currently software
in cars is distributed over multiple electronic control units (ECUs) specialized
for specific components of the car. In his study, Vogelsang [5] has recently shown
that such automotive architectures contain numerous feature dependencies,
which may largely be unknown to the developers. Accordingly, architectural
design for automotive software is required to embrace the interaction of pos-
sibly 100 computing units working and interacting simultaneously. Lastly, in
addition to the challenges of growth and complexity, Pretschner et al. [3] found
that there is a large number of tools used in automotive software development
and Bock et al. [6] highlight that there is a constant change in development
methods, processes, and tool chains. Altogether, this shows that developing
software in the automotive domain poses various challenges.

Considering ongoing trends in the field, currently predominantly electrifica-
tion and autonomous driving, we expect above challenges to exacerbate. For
example, Vdovic et al. [7] list a set of challenges in regard to electrification.
In particular, they mention the challenge of increasing architectural complex-
ity and the need for better software quality. Regarding autonomous driving,
Mallozzi et al. [8] found that the uncertainties when driving autonomously
and the related need for constant adaptation pose a challenge towards future
automotive software and its architecture. Furthermore, they mention the vast
amount of data received from sensors and the environment which in turn
motivates the wide use of machine learning approaches to be a challenge for
automotive software development.

Software engineering research provides investigations and solutions ad-
dressing software quality, maintainability, and architectural design in general.
However, on multiple occasions during our work in the automotive industry,
we identified a lack of such coverage in the specific field of automotive software

1

2 CHAPTER 1. INTRODUCTION

and model-based software development. According to Altinger et al. [9], model-
based software, using the Matlab/Simulink development environment, makes
up for on third of the development activities in the field. Hence, there is a clear
need for further investigations to which extent currently existing approaches are
applicable in the context of model-based software development with Simulink
in the automotive industry. Considering this scope, in this thesis, we look
into the aspects of software quality and architecture design with a particular
focus on maintainability and its associated concepts of software complexity
and software growth.

Maintenance is a major part of a software project life-cycle. Low main-
tainability has been associated to a low motivation and productivity among
developers, as well as high project costs (cf. [10] and [11]). Furthermore, the
constant change with the field of automotive software development seems to be
reflected in the development teams, too. We observed change and fluctuation in
the teams which may lead to the constant need to instruct new team members.
Maintainable software may reduce respective efforts. Lastly, we have seen that
software in automotive is often continuously evolved from existing versions.
A car, evolving to a new version, usually still contains the same major parts
like, for example, the engine, brakes, airbags, etc. Hence, reuse is important.
Maintainable software may facilitate this extensive need for reuse in the field.
All these factors motivated us to conduct research in this area.

In this thesis, our main approach to evaluate software quality and maintain-
ability is by using software measurements as it is an established approach to
quantify the concept of software quality. For example, Fenton and Bieman [12]
describe how the size and other structural attributes of software relate to its
quality and how measuring those attributes provides us with a way of describing
quality according to clear, predefined rules. Measuring provides deterministic
and replicable results for our studies.

1.1 Background and Scope

As software quality and maintainability are main aspects of this thesis we follow
clear and established definitions in all of the included studies. Throughout
the thesis, we use the definitions from the ISO/IEC 25000 series standard
for software quality characteristics. The standard defines maintainability as
follows

Maintainability
“[The] degree of effectiveness and efficiency with which a product or system
can be modified by the intended maintainers.”

These modifications include corrections, improvements or adaptation. Mod-
ifications may occur during initial software development and during later
maintenance phases. We study both in this thesis and treat them as equally
important. The ISO/IEC 25000 standard series was the most apparent choice
for our definitions. It is well-established and used in research as well as in
practice. Whenever we needed to determine which quality characteristic a
practitioner or a paper refers to, we mapped their descriptions to the definitions
from the standard.

1.1. BACKGROUND AND SCOPE 3

Maintainability comprises seven sub-characteristics, modularity, reusability,
analysability, changeability, modification stability, testability, and maintain-
ability compliance. All sub-characteristics are considered when investigating
maintainability. This applies, for example, when judging studies or replies from
practitioners.

During this thesis we also discuss two other concepts related to maintainabil-
ity, which are (a) software complexity and (b) software growth. The following
will introduce both concepts. Complexity (a) has multiple definitions. For
example, Antinyan et al. [13] interpret complexity as “[...] an emergent property
of code that is magnified by the addition of more elements and/or intercon-
nections, changing the existing elements and interconnections, or not clearly
specifying the function of existing elements.” In this definition, the connection
to maintainability is explicit. In this thesis we understand complexity as one
possible aspect affecting software maintainability.

In general, we are led by the concept that independent of its cause, complex-
ity always is related to how the software can be understood by the developers.
Furthermore, in some situations, complexity might be unavoidable, for example,
if artifacts demand extensive logic. In a recent work on complexity with a
focus on cyber-physical systems, Kopetz [14] discusses these concepts in detail.
Kopetz claims that complexity can be categorized as “object complexity”,
focusing on the properties of a software artifact, and “cognitive complexity”,
focusing on how an observer comprehends the artifact. In this thesis, we do
not make this distinction as we consider both of the concepts of complexity to
be strongly related. Instead, we understand complexity as always related to an
observer.

Furthermore, Kopetz elaborates on the terms of essential complexity and
accidental/incidental complexity, following the terms created by Brooks and
Kugler [15] and Dvorak [16]. Complexity is essential if it is unavoidable to
create the functionality of a system. Complexity is accidental or incidental if
created unintentionally or because of inadequate design decisions. Separating
between these two categories is out of the scope of this thesis as we are mostly
interested in the connection of complexity and maintainability. We are aiming
to understand which aspects of a software artifact make it more difficult to
maintain, independent of its accidental or essential nature.

This leads to two observations. First, a software artifact which is highly
complex only becomes a problem if it has to be maintained. Second, complexity
can become problematic if it is not controlled, for example, if it is unintended
or unmanaged. The concept of the recently emerging term technical debt is
relate to these unintended complexities which may accumulate over time. The
connection of technical debt and maintainability is shown, for example by Li et
al. [17]. Most of the studies that they investigated mentioned a negative effect
of technical debt on the maintainability of a software system. Accordingly,
we understand complexity, technical debt, and maintainability as strongly
related and far from being fully understood. Particularly, we see a high need to
investigate how complexity affects the maintainability of model-based software
in the automotive industry.

In industrial practice, complexity is a widely used term. At times, this leads
to biased interpretations, for example related to the well-known concept of
cyclomatic complexity. To illustrate that, we observed that some engineers may

4 CHAPTER 1. INTRODUCTION

perceive large software artifacts as complex, while others concern interdepen-
dencies or the levels of nested blocks inside a model. In practice, it is critical
to first investigate what exactly makes a software artifact complex before using
existing metrics. Hence, we expect that practitioners will benefit from in-depth
studies aimed to improve understanding of maintainability and complexity in
the domain of automotive software development.

Software size (b) is the second concept used in this thesis, related to
maintainability. Many studies indicate this relation, for example, Sjøberg et
al. [18] and more recently Gil and Lalouche [19]. In practice, software exceeding
size limits set by hardware or software requirements causes long loading, build,
and deployment times. Hence, while software grows in size and complexity,
situations arise where refactoring and software maintenance becomes necessary.
Hence, size and growth measurement is an important part of this thesis.

For the majority of studies comprising this thesis, we focus on software
used in the automotive industry as subject of study; examples from our in-
dustrial collaborations include Simulink models used during the development
of embedded systems for multiple vehicle control functions. Whereas vehi-
cle control functions in this thesis include all functionality used to operate
functionality within the vehicle. For example, this includes steering, braking,
and safety, but also climate management and entertainment functions. In
general, research on model-based software is broad and established. Liebel et
al. [20] outlined current trends regarding model-based software engineering
and found that various languages are used. UML and SysML are common but
there is also a broad spectrum of domain-specific languages. The amount of
available tools is vast and Liebel et al. found Matlab with Simulink and State
Flow, Eclipse-based tools, and Enterprise Architect. The wide set of languages
and tools indicates that depending on the domain or context, models may be
understood differently. In this thesis, we use the following classification created
by Zheng and Taylor [21]: the goal of any modeling in this thesis is to create
compilable and executable models so they can replace source code as main
development artifact. Throughout the thesis, we call these models executable
models. Simulink models are one example of such executable models which are
heavily used in the automotive industry. Most of the studies in this thesis focus
particularly on Simulink models. As Simulink models are largely used to im-
plement control software in vehicles, our interpretation of automotive software
is limited to control software and generally excludes higher-level components
like, for example, infotainment systems. Simulink models usually rely a set of
tools and artifacts like code generators, version control, connected libraries,
etc. In this thesis, we are trying to isolate the models and investigate them
independent of the surrounding tool chain.

In Paper F, we raise the level of abstraction and investigate software siting
on top of the vehicle control layer. Specific details can be found in Chapter7.
Figure1.1 summarizes the scope for a better overview. It shows that we focus
on Simulink in Papers A to E and on higher-level software in Paper F. It also
shows that automotive software is not limited to these fields but hosts a variety
of different tools, languages and application areas.

1.2. STUDY GOALS 5

Automotive Software

... other
automotive
software is
out of the
scope of
the thesis

Paper A, B, C, D, E

Simulink models for vehicle
control

Paper F

High-level software on top
of vehicle control software

Figure 1.1: The scope of the thesis, including Simulink models and higher level
software used in the automotive industry.

1.2 Study Goals

The overall goal of this thesis can be summarized to investigating maintainability
and related concepts for model-based software in the automotive domain. We
combined the specific study goals from each paper to the following three goals
which we address in this thesis.

G1 Understanding and measuring maintainability of Simulink models in the
automotive industry

G2 Interpreting and evaluating measurement results received in the automo-
tive industry

G3 Designing and Evaluating a reference architecture in the automotive
industry

In Table 1.1, we assigned the papers in this thesis to a goal and highlight
the particular focus of the study. For example, the focus of Paper A is on
aspects of and metrics for maintainabilty which in turn addresses Goal 1. The
table visualizes how the studies are connected.

Papers A to E all have either maintainability or a related concept in focus.
In Paper F software quality, including maintainability, is part of the design and
evaluation of the architecture. Software measurement is a major aspect of our
studies, too. In all our studies, we either use software measures, compare their
performances, or evaluate their results. Software measurement is particularly
prominent in Papers A to C where we compare and evaluate metrics. Papers
C to E build on top of results from software measurements. In Paper F we use
measurements to evaluate a reference architecture.

The following research questions are derived from the goals and summarized
from the individual papers. All research questions are limited to automotive
software development.

RQ1 How is maintainability of Simulink models interpreted in practice?

• Answered in Papers A and B

6 CHAPTER 1. INTRODUCTION

Table 1.1: Goals and focus for each paper presented in this thesis

Goal Study Focus Details

G1 Paper A Maintainability Metrics

Aspects

G1 Paper B Complexity Metrics

Aspects

G2 Paper C Quality Metrics

Outlier analysis

G2 Paper D Growth Prediction approaches

G2 Paper E Growth Environmental aspects

G3 Paper F Architecture Requirements

Design

Evaluation

RQ2 What are applicable measurements for maintainability, complexity, and
growth of Simulink models?

• Answered in Papers A, B, and C

RQ3 What are methods to interpret and evaluate measurement results in
practice?

• Answered in Papers C and D

RQ4 What are environmental aspects affecting software growth measurement
results?

• Answered in Paper E

RQ5 How to design and evaluate a reference architecture?

• Answered in Paper F

1.3 Related Work

In this section we focus on related work respective to the main goal of the
thesis of investigating maintainability and related concepts. Related work on
other more specific aspects of the thesis are presented in the respective papers.
For related work, the scope is not reduced to automotive software and Simulink.
We looked into approaches from other domains as well as looking for work on
general model-based software or even architecture design.

As mentioned in Section 1.1, there are multiple standards addressing soft-
ware maintainability and it is a well-defined concept. Next to the standards,
we were not able to find extensive research covering the interpretation of
maintainability in the automotive industry. Practitioners may interpret the

1.4. RESEARCH METHODOLOGY 7

quality characteristic according to their understanding and possibly focus on
specific aspects of it relevant in their projects. We identified a gap in research
investigating aspects of maintainability in the automotive industry.

Complexity on the other hand is not as well-defined. Instead, there are
multiple attempts to formalize the concept using theoretical frameworks (cf. [22]
and [23]) and using empirical approaches as in Antinyan [13]. The general
conclusion being that more research is necessary, particularly regarding the
actual application of the presented approaches. We deem both, complexity and
maintainability in the automotive industry to be a worthwhile research area.

The concept of software quality is usually quantified using software mea-
surement. There is extensive research available investigating metrics for soft-
ware quality characteristics and complexity. Next to metrics for common
object-oriented software, Plaska et al. [24], Boström et al. [25], and Card and
Agresti [26], for example, all look into metrics for models and architectures. In
this thesis, much of the initial work builds on these three studies.

A dissertation by Scheible [27] addresses similar to this thesis automotive
software development. The focus on metrics and the broad spectrum of software
quality. While they list a big collection of possible metrics and thresholds,
the evaluation is limited to a single case study. Similarly, Vogel et al. [28]
have recently published a literature review on metrics for automotive software
development. They look at the broad spectrum of all quality characteristics but
find that maintainability is the one which is most often addressed. They found
19 studies investigating model-based software containing 29 metrics somehow
related to measuring models. We could not identify an overview of which single
metrics are model metrics. Hence, even the most recent work shows us that
maintainability is a relevant topic and that there is still a gap for investigating
model-based software in the automotive industry.

1.4 Research Methodology

The thesis work was conducted in close collaboration with industry. All studies
investigate research questions in practice. In our research and data-collection
methods, we always relate to practitioners by investigating existing documents,
conducting interviews, workshops, or surveys. These methods are used either
as an initial step to collect data to be confirmed or evaluated consecutively
or as a confirming step after collecting data from other sources. This work
with practitioners is always paired with literature studies or measurement
and data analysis methods. Thereby, in each study, we achieve method/data
triangulation. Table 1.2 contains an overview of all data collection methods
used in the included studies.

In most studies, we start with a comprehensive investigation of existing
literature. Four of our studies involve some measurements of software artifacts
at a case company and consecutive data analysis and thereby have a very
applied focus. This includes Papers B, C, D, and F which can be best described
as case studies. Paper A and E also address research questions emerged from
practice. They have a strong focus on the underlying concepts.

In their paper, Stol and Fitzgerald [29] categorize studies according to four
scales. They aim to provide a holistic view over existing research methods in

8 CHAPTER 1. INTRODUCTION

Table 1.2: Data collection methods used in this thesis

Methods Data sources

Paper A Literature study 8 final papers

Survey 45 participants

Paper B Software measurement 65 artifacts, 3 measures

Stakeholder interviews 8 participants

Paper C Software measurement 71 artifacts, 4 measures

Stakeholder interviews 6 participants

Paper D Literature study 3 existing literature reviews

Stakeholder interviews 6 participants

Software measurements 48 artifacts, 1 measure

Paper E Literature study 5 final papers

Survey 22 participants

Paper F Literature study 16 final papers

Part 1 Stakeholder interviews 13 participants

Existing document analysis 4 documents

Paper F Literature study 5 final papers

Part 2 Stakeholder workshops 2 participants

software engineering. To provide a better understanding of the set of studies
attached with this thesis, we categorize them using the scales proposed by
them. The four scales are obtrusiveness, research focus, generalizability, and
setting. They are explained in the following list

• Obtrusiveness
This scale describes the extent of control researchers have on the study
setting. For example, in controlled experiments, researchers have full
control over variables and confounding factors while in case studies in
the field researchers usually merely observe.

• Focus
This scale has three categories, ‘actor’, ‘context’, and ‘behavior’. This in
an indicator as to which aspect of a study is represented as most realistic
or most generalizable. For example, in survey studies, the actors are in
the focus and as realistically represented as possible. In field studies, on
the other hand, the context is in focus. Lastly, experimental studies are
a typical example for a strong focus on a behavior.

• Generalizability
This scale describes how universally results are applicable. The scale goes
from ‘universal’ to ‘particular’.

• Research setting

1.4. RESEARCH METHODOLOGY 9

Table 1.3: Categorization of the studies included in the thesis

Source Stol and Fitzgerald [29] Runeson and

Höst [30]

Scale obtrusiveness context setting focus purpose

Paper A unobtrusive universal natural actors descriptive

Paper B unobtrusive particular natural actors exploratory

Paper C unobtrusive particular natural context exploratory

Paper D unobtrusive particular natural context descriptive

Paper E unobtrusive universal natural actors descriptive

Paper F unobtrusive particular natural context exploratory

This scale contains for four categories describing how realistic the environ-
ment is in which the study is conducted. It reaches from ‘natural’ if the
study is conducted in the field, to ‘contrived’, if the study environment
is more artificial, like for example in a research lab, and ‘no empirical
setting’ which corresponds to studies may also be ‘setting independent’
which may, for example, be achieved using a survey with a large sample
size.

In Table 1.2, we decided to select the categories that fit our studies best.
There are naturally always nuances to this particularly considering that we
combine at least two research methods in each study. In addition to the scales
provided by Stol and Fitzgerald, we list each study’s purpose, according to
the four types presented by Runeson and Höst [30]. They are ‘exploratory’,
‘descriptive’, ‘explanatory’, and ‘improving’.

We always aimed to be as unobtrusive as possible in our studies. As we
always investigate real world problems and actual practitioners in the field, we
wanted to ensure to investigate the context as realistic as possible and avoid
bias induced by us as researchers. This concept is, for example, highlighted
in the work of Zelkowitz et al. [31]. Our studies are always in the automotive
domain and we always concern observations in practice. Accordingly, our
setting for each study is categorized as ‘natural’. Accordingly, we portrait the
current status of the study setting as realistically as possible while we usually
do not provide hard evidence for causal relationships. We also do not exercise
control over our study setting.

While all studies are very similar regarding the above mentioned two scales,
they are diverse regarding the focus and context scales. Regarding the study
focus, the levels of obtrusiveness and setting practically exclude a focus on
behavior due to the lack of control. The other two categories, namely ‘context’
and ‘actors’ are addressed to an equal extent. While studies A, B, and E are
particularly focused on how practitioners in the field act, behave, and think,
studies C, D and F rather focus on the phenomena and processes observable in
the field. In studies A and E we aim for a high generalizability while the other
studies have a very particular context.

10 CHAPTER 1. INTRODUCTION

The above categorizations are probably inherited by the purpose we seek to
fulfill with our studies. The study purposes can be categorized as exploratory
and descriptive (cf. [30]). In our studies, we usually aim to portrait the current
situation in the field. Even though, we attempt to highlight associations we
usually do not intent to reveal causal relationships as this would require to
enforce a higher level of control.

1.5 Study Summaries

In this section we shortly introduce the studies attached with this thesis. We
describe what was the motivation to conduct each study, which methods were
used and what are the main outcomes.

1.5.1 Chapter 2: Understanding and Measuring Main-
tainability of Simulink Models (Paper A)

During our work with different Simulink modeling departments in industry
and investigation of related literature, we identified a lack of comprehensive
overviews for Simulink model maintainability. Accordingly, in this study we
aimed to establish a taxonomy of the concept and to provide a list of metrics
which can assess it. We used a literature review to collect existing metrics.
We extracted 23 individual metrics, provided definitions, and discussed related
maintainability sub-characteristics. In the subsequent survey, we selected the
17 most-relevant metrics for a ranking. 44 practitioners from industry assessed
which of the metrics they believe addresses maintainability of Simulink models
best. Hence, we present a ranked list of maintainability metrics which, according
to our sample work best in practice. Additionally, the practitioners provided a
list of positive and negative aspects which they believe affect maintainability.
We used the 256 collected aspects to create a taxonomy of maintainability for
Simulink models.

1.5.2 Chapter 3: Comparing the Applicability of Com-
plexity Measurements for Simulink Models During
Integration Testing – an Industrial Case Study (Pa-
per B)

Similarly to the first study, this work addresses the need of understanding
complexity in Simulink models. We aimed to compare three existing metrics
to assess complexity in practice. We selected two size measurements and a
complexity measurement based on existing work. Those measures were applied
to 78 Simulink models currently used in practice. In consecutive interviews with
the team developing the models, we were able to collect ratings of perceived
complexity for each model. These ratings were independent of the measurement
results and therefore unbiased. They could be compared directly with the
measurement results. We showed that practitioners favor simple size metrics
like block count and lines of code over more sophisticated metrics assessing
the model structure and signal routing. This is particularly interesting as it
was counter-intuitive to the practitioners. They favored the more complex

1.5. STUDY SUMMARIES 11

metrics, when asked to rank the metrics based on their underlying concepts
in the beginning of the interviews. Hence, we showed not only which metric
works better in practice but also that practitioners may be biased when rating
metrics based on their description.

1.5.3 Chapter 4: Unveiling Anomalies and Their Impact
on Software Quality in Model-Based Automotive
Software Revisions with Software Metrics and Do-
main Experts (Paper C)

In the third study, after having a reasonable understanding of applicable
metrics, we decided to investigate data analysis approaches. We investigated
measurement results taken over time using version histories of the models. The
goal was to develop a methodology to automatically highlight software versions
where changes with high impact on software quality are made. We applied four
metrics to 65,000 software revisions of 71 Simulink models. We then applied
two different approaches from the fields of time series analysis and statistics
to highlight outliers within the measurements. The identified outliers were
then shown to the developers in individual interviews and follow-up workshops.
They rated the impact of the changes made in the outlying software version
regarding six software quality characteristics. Hence, we could verify if detected
outliers actually reveal changes with high impact on software quality and which
metrics reveal the most relevant outliers. We show that detected outliers are
associated to the assessment of the practitioners. Hence, the automated outlier
detection approach is applicable in practice. It is able to reveal software changes
with high impact on software quality. We further showed that each metric
reveals outliers with impact on different software quality characteristics. This
approach can be used to analyze historic changes but also to survey current
development.

1.5.4 Chapter 5: Predicting and Evaluating Software
Model Growth in the Automotive Industry (Paper
D)

In Chapter 5, we continued the work on data analysis by investigating how
measurement results can be predicted in practice. Next to the best prediction
approach, we aimed to investigate what practitioners actually expect from a
prediction of measurement data. In this study we decided to focus on size
measures as they exhibit certain practical advantages and also showed to be
well-qualified to assess maintainability of Simulink models. We started with
a literature review to collect existing approaches to predict time series of
measurement data. At the same time, in interviews and workshops we collected
the expectations towards the predictions from Simulink developers in practice.
By extending the measurements conducted in Paper B, we collected 4,547
size measurements using the version history of 48 Simulink models. We found
five different approaches currently used to predict measurement data grouped
into linear, statistical approaches and non-linear machine learning approaches
including neural networks and support vector machines. Further, we found
that practitioners require long-term prediction, up to one month into the future

12 CHAPTER 1. INTRODUCTION

using approaches which require low maintenance effort. Speed is not a strong
requirement. The prediction itself may run over night. When comparing
the prediction results, we show that both, statistical and machine learning
approaches are applicable to our data. Only support vector machines predicted
our data significantly worse than the other approaches. The results for the
statistical approaches were slightly better. They also require less maintainance
effort as they do not have to be trained. Accordingly, in this study we show
how to predict future development of measurement results in practice.

1.5.5 Chapter 6: Environmental Factors for Measure-
ment and Prediction of Software Growth in the
Automotive Industry (Paper E)

When predicting and analyzing software change and growth in the previous
work, we found that functionality is not the only aspect influencing it. We saw
that there is a continuous impact of external, environmental events affecting
change within software which are not possible to predict when focusing only
on functional or artifact-related factors. Research addressing non-artifact-
related factors is scarce. We identified a need for a rigorous investigation of
this problem.

Accordingly, in Chapter 6, we aimed to investigate environmental factors
influencing software growth. Using a survey within automotive industry, we
elicit factors from practitioners. A literature review complements the prac-
titioners’ opinion with research findings. As result we created a synthesized
list which includes, for example, factors like change in requirements, hardware,
team size and the development environment.

1.5.6 Chapter 7: Design and Evaluation of a Customiz-
able Multi-Domain Reference Architecture on top
of Product Lines of Self-Driving Heavy Vehicles
An Industrial Case Study (Paper F)

In Chapter7, we develop and evaluate a reference architecture in an industrial
context. The architecture is meant to capture all possible transport mission
and route planning a heavy vehicle or a fleet thereof may perform. It focuses
on high level software and does not include vehicle control software. While
following the functional needs, the main goal was to design strictly following the
major software quality requirements of software maintainability and portability.
The evaluation, which was the second main goal, evaluated the same quality
characteristics but specifically the sub-characteristics adaptability, changeability,
and stability. All design and evaluation steps are based on rigorous analysis of
current literature, stakeholder involvement, and existing document analysis.
Hence, in this study we present a systematic process to design and evaluate
reference architectures in practice. The process supports the design of the
functional architecture while ensuring software quality.

1.6. CONTRIBUTIONS 13

1.6 Contributions

In this thesis, we contribute to the software engineering body of knowledge by
answering five research questions. Regarding research question 1 on how main-
tainability is interpreted in the field, we found aspects explaining the concept
in Papers A and B. Paper A resulted in 256 maintainability aspects, grouped
into eleven categories and 77 sub-categories. We also ranked the aspects by the
number of mentions. As the results are received from a broad survey, we are
convinced that we provide an extensive classification of maintainability for the
whole field of automotive software development with Simulink models. Paper B
provides a ranked list of maintainability aspects from one industrial case com-
pany. Together, these results provide a comprehensive taxonomy and address
the lack of rigorous literature assessing maintainability for Simulink models.
Thereby, we contribute towards the understanding of software maintainability
of Simulink models used in the automotive industry.

To answer research question 2, in Paper A, we collected 16 metrics to
assess maintainability of executable models which we found applicable in the
field. Therefrom, we extracted 23 re-occurring base measures for a better
understanding of the building blocks used to design maintainability measure-
ments and to increase generalizability as those base measures can be compared
with measurements from other fields and the maintainability aspects collected
for research question 1. Furthermore, we provide a ranking of the measures
collected from 44 survey participants and are able to answer which metric is
perceived to work best considering automotive Simulink models in practice. As
highlighted in Section 1.3, rigorous and comprehensive overviews of measures
for maintainability are missing. Hence, we understand that our identified
measures are relevant to both, academia and industry; in addition, industry
contributes from the directly applicable metrics presented in this thesis as they
are broken down to their basic building blocks and are defined in detail. In
Paper B, we compare the performance of three maintainability measures for
Simulink, in practice. We present how well the metrics address the practitioners’
view of maintainability. By answering the first two research questions, we are
convinced to present a realistic state-of-the-art view on maintainability in the
field.

Research question 3 asks for the evaluation and interpretation of measure-
ment results. In Paper C, we present a novel approach to uncover anomalies
among measurement data with an impact on software quality. Hence, using
measurements and outlier detection, we can show when changes to a software
artifact have a high impact on software quality characteristics. In the same
study, we verify the results using a single case study in the automotive industry.
Our focus in Paper D are predictions of measurement data. We present the
most relevant prediction approaches for model growth from literature, including
traditional statistical approaches and more recent machine learning approaches
using neural networks and suport vector machines. We further collect a set of
expectations towards predictions in practice from practitioners. This enables
us to finally present a ranking of the prediction approaches by accuracy and
other criteria important to the field. Hence, the results reported in this thesis
contribute to industry by providing approaches that can be directly applied to
evaluate measurement results. In addition, these approaches have also been

14 CHAPTER 1. INTRODUCTION

evaluated in practice. We could not find any study reporting a similar anomaly
detection approach applied to measurement data. Hence, the approach also
constitutes a novel contribution to academia.

Paper E addresses research question 4 by listing and explaining environmen-
tal factors affecting predictions and measurement data, in general. Thereby,
we aim to improve future predictions and measurements by incorporating
possible confounding factors. In Paper F, answering the last research question,
we design and evaluate a complete reference architecture in the field. In the
paper, we present a systematic process to designing reference architectures for
automotive heavy vehicles. This includes applicable approaches to elicit and
document requirements, make and document architectural design decisions,
handle variability, and evaluate architectural quality.

1.7 Discussion

With the answers to the five research questions, we contribute towards the
study goal of understanding maintainability of Simulink models in the field
of automotive software engineering. Still, the combined results raise a set of
questions to be discussed in the scope of this thesis.

1.7.1 What is the best metric to assess maintainability of
Simulink models used in the automotive domain?

In this thesis, we present a set of metrics which may be used to measure
maintainability of automotive software. The combined results of Papers A
and B provide a ranked list of possibly applicable metrics. Some metrics may
perform better than others but there is no single best metric to recommend in
general. In practice, a set of highly metrics can be combined in a function. For
example, one could combine the number of signal line crossings in a Simulink
model in relation to the total number of signals. Both are highly ranked by
practitioners in Paper A.

1.7.2 Are maintainability metrics from other domains ap-
plicable to Simulink?

We found that metrics from other domains partly follow similar concepts
as metrics used for Simulink models. Regarding maintainability metrics in
general, Jabangwe et al. [32] report that complexity, cohesion, coupling, and size
measures correlate with maintainability of object oriented software. Similarly,
when investigating object-oriented Java projects, Kozlov et al. [33] found
that the number of code lines, data types, inputs, outputs, and cyclomatic
complexity correlates with maintainability. For source code in general, Riaz
et al. [34] found that size, complexity, and coupling are the most commonly
used metrics. Next to the concept of size, the cohesion, and the coupling of
components are recurring.

We found that these concepts can also be found in Simulink metrics. The
concept of size, for example, appears in our best ranked metrics “Number
of Signals/Transitions”, ‘Number of n-Ports”, and “Number of Out-Ports”.

1.7. DISCUSSION 15

While the concepts are similar, it is important to note that the realization of
these concepts into measurements may differ for Simulink. For example, the
measure “number of code lines generated” from the model, an equivalent to
the common size measurement lines of code, received a low ranking. Other
metrics which were highly ranked in the context of Simulink are not typical in
research on traditional software. These are measures specific to Simulink. This
is, for example, the number of blocks in a model without proper configuration.
Accordingly, we conclude that metrics from other domains are usually not
directly applicable. They may need to be adapted to fit the Simulink domain.

1.7.3 How useful are prediction approaches for Simulink
measurement results in practice?

Predicting measurement results is used in this thesis to predict the development
of software quality of Simulink models. We found, that practitioners do not
necessarily look for the most precise prediction approach. Especially not for
only one next point in time but are rather interested in how a model will
develop through the coming months. This has to be taken into account when
choosing prediction approaches.

Further we observed that prediction approaches are susceptible to the
number of inputs provided. This is particularly problematic considering the
measurements presented in this thesis, which mostly assess structural attributes
of software, like size or coupling. The problem arises if such attributes change
only occasionally. This leads to respectively few data points and may affect
the prediction performance. We found that particularly in these cases, linear
prediction approaches seem to outperform machine learning approaches.

1.7.4 Threats to Validity

In Table 1.4, we collected the major threats from the studies collected in this
thesis. As previously shown in Section 1.4, most of our studies are particular
in context and have a natural setting. Specifically, Papers B, C, D and F can
clearly be classified as case studies and consequently share a common threat to
generalizability. Being aware of this, we always tried to mitigate using data
and method triangulation but naturally, fully generalizable results cannot be
achieved with this type of study. Hence, our results in these studies is limited
to Simulink models or executable models within the automotive industry.

Paper F is a case study, too, but only the design of the actual architecture
is specific to the case company. Other steps in the presented process, like
the requirements and evaluation include a wide range of external information
sources. Accordingly, we expect the presented concepts to be applicable in a
broader context, too.

Partly, we are working with small samples which has an effect on the validity
of our data analysis, as in Paper B and C. When working with small samples,
we make our conclusions carefully, not to overestimate results. We also mitigate
the threat to generalizability by making the sample as diverse as possible. For
example, by interviewing practitioners taking on different roles in the company
and with different experience.

16 CHAPTER 1. INTRODUCTION

Paper A

Convenience sampling in the sur-
vey

Broad sample, snowballing of practitioners

Manual, extensive data extraction At least two researchers per task

Survey participants biased from ex-
isting metrics and approaches

Survey design and formulation to avoid
bias

Paper B

Interviews with only one inter-
viewer

Consecutive confirmatory workshops

Data analysis on few data points Triangulation of results with qualitative
data

Generalizability (single case) Data and method triangulation

Paper C

Generalizability (single case) Interview experienced engineers; clearly
outline data collection and analysis for
replications

Human aspects in interviews Introductions before interviews; open in-
terviews with possibility to ask questions;
confirmation with consecutive workshops

Small sample Data and method triangulation

Paper D

Generalizability (single case) Clearly outline data collection and analysis
for replications

Variability in machine learning
methods

Provide step by step descriptions and used
libraries

Small interview sample Practitioners with different roles and expe-
rience

Paper E

Convenience sampling in the sur-
vey

Broad sample, snowballing of practitioners

Bias start set in snowballing litera-
ture review

Analysis of start set topics and citation
hierarchy

Paper E

Generalizability (single case) Extensive set of methods and samples (in-
ternal and external to the case company)

Table 1.4: Summary of the major threats to the validity of this thesis and their
mitigation. Threats are on the left side and mitigations on the right.

1.8. CONCLUSIONS 17

Our two broader studies A and E, which are less prone to generalizability
issues, rely on a survey in which convenience sampling was used to collect
the participants. This could not be avoided to reach the intended popula-
tion of practitioners. To reduce bias in the sample, we contacted a broad
set of practitioners, diverse regarding experience, job title, and educational
background.

To summarize, the results in our thesis are mostly confirmed withing the
scope of Simulink models within the automotive industry. Still, we have no
reason to believe that the metrics and other findings may not be applicable to
other modeling approaches, too. During the survey in paper A, we received
answers from developers using other modeling languages like Modelica, Dymola,
and UML. The number of respondents is not large enough for a deeper analysis
but their statements indicate that similar concepts are important for other
modeling languages, too.

1.8 Conclusions

In this thesis we investigated maintainability of automotive software. We
extracted three goals, reaching from understanding and measuring maintain-
ability, to interpreting and evaluating measurement results, to designing and
evaluating a complete reference architecture. Five research questions were
answered to address these goals. In the process, we collected an extensive set
of measures and aspects describing maintainability in the field. Ranking of
these measures and aspects allows us to recommend the metrics that shall be
favored over others and highlight the aspects that describe maintainability
best. We propose methods to predict the growth of software artifacts and
to detect impactful outliers among measurement results. We provide a set
of environmental factors affecting measurements allowing for the creation of
more accurate measures. Lastly, we are able to present an applicable approach
to designing and a reference architecture in the field. Even though, future
work may provide an even deeper and more rigorous understanding of the
applicability of maintainability measurements, we believe that results presented
in this thesis present a considerable step to improve understanding, measuring,
and evaluating maintainability of automotive software.

As whole, with this thesis, next to explaining maintainability in the field, we
provide the metrics which are most applicable to measure it. Using the received
measurement data, we show how to further evaluate and interpret results
using outlier detection and predictions. We also show how prediction and
measurement results can be further improved by determining environmental
influences. Combining these results enables practitioners to establish a reliable
assessment and more rigorous investigation of maintainability for Simulink
models.

When interpreting these results we are able to address some of the challenges
still present in the automotive industry. As confirmed, for example, by Dajsuren
and van den Brand [1], Altinger [2], and Pretschner et al. [3], still currently,
growth in size and complexity is challenging the domain and is aggravated
by the trends towards electrification and automation. Establishing a rigorous
understanding of what makes automotive software maintainable may help to

18 CHAPTER 1. INTRODUCTION

address the challenge of growth and complexity, while applicable measurements
help to reliably assess where in the software these problems are most prominent.
Together with the findings on interpreting and improving measurement results
we have established further applicable and reliable approaches in the field to
eventually cope with growing size and complexities.

Close collaboration with industry in all our studies increases the applicability
of our results, which are at parts currently used in industry practice. Hence,
we are convinced that the whole domain of Simulink software development in
the automotive industry may benefit from this work. The use of method and
data triangulation throughout the thesis is our strongest means to produce
reliable results which contributes an academical advancement of the domain.

Bibliography

[1] Y. Dajsuren and M. van den Brand, “Automotive software engineering:
Past, present, and future,” in Automotive Systems and Software Engineer-
ing, Y. Dajsuren and M. van den Brand, Eds. Springer International
Publishing, 2019, ch. 1, pp. 3–8.

[2] H. Altinger, State-of-the-Art Tools and Methods Used in the Automotive
Industry. Cham: Springer International Publishing, 2019, pp. 59–73.
[Online]. Available: https://doi.org/10.1007/978-3-030-12157-0 4

[3] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software en-
gineering for automotive systems: A roadmap,” in Future of Software
Engineering (FOSE ’07), 2007, pp. 55–71.

[4] D. Zerfowski and D. Buttle, “Paradigmenwechsel im automotive-software-
markt,” ATZ - Automobiltechnische Zeitschrift, vol. 121, no. 9, pp. 28–35,
2019.

[5] A. Vogelsang, “Feature dependencies in automotive software systems:
Extent, awareness, and refactoring,” Journal of Systems and Software, vol.
160, 2020.

[6] F. Bock, C. Sippl, S. Siegl, and R. German, “Status report on automotive
software development,” in Automotive Systems and Software Engineer-
ing, Y. Dajsuren and M. van den Brand, Eds. Springer International
Publishing, 2019, ch. 3, pp. 29–57.

[7] H. Vdovic, J. Babic, and V. Podobnik, “Automotive software in connected
and autonomous electric vehicles: A review,” IEEE Access, vol. 7, pp.
166 365–166 379, 2019.

[8] P. Mallozzi, P. Pelliccione, A. Knauss, C. Berger, and N. Mohammadiha,
Autonomous Vehicles: State of the Art, Future Trends, and Challenges.
Cham: Springer International Publishing, 2019, pp. 347–367. [Online].
Available: https://doi.org/10.1007/978-3-030-12157-0 16

[9] H. Altinger, F. Wotawa, and M. Schurius, “Testing methods used in
the automotive industry: Results from a survey,” in Proceedings of the
2014 Workshop on Joining AcadeMiA and Industry Contributions to Test
Automation and Model-Based Testing, ser. JAMAICA 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 1?6. [Online].
Available: https://doi.org/10.1145/2631890.2631891

19

https://doi.org/10.1007/978-3-030-12157-0_4
https://doi.org/10.1007/978-3-030-12157-0_16
https://doi.org/10.1145/2631890.2631891

20 BIBLIOGRAPHY

[10] J. T. Nosek and P. Palvia, “Software maintenance management: changes
in the last decade,” Journal of Software: Evolution and Process, vol. 2,
no. 3, pp. 157–174, 1990.

[11] B. P. Lientz and E. B. Swanson, “Software maintenance management: a
study of the maintenance of computer applications software in 487 data
processing organizations,” 1980.

[12] N. Fenton and J. Bieman, “Software metrics: A rigorous and practical
approach, 3rd edition,” Feb 02 2015, copyright - Copyright Ringgold Inc
Feb 2, 2015; Last updated - 2015-02-06.

[13] V. Antinyan, M. Staron, and A. Sandberg, “Evaluating code complexity
triggers, use of complexity measures and the influence of code complexity
on maintenance time,” Empirical Software Engineering, vol. 22, no. 6, pp.
3057–3087, 2017.

[14] H. Kopetz, Simplicity is Complex. Springer, 2019.

[15] F. Brooks and H. Kugler, No silver bullet. April, 1987.

[16] D. Dvorak, “Nasa study on flight software complexity,” in AIAA Infotech@
Aerospace Conference and AIAA Unmanned... Unlimited Conference, 2009,
p. 1882.

[17] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical
debt and its management,” Journal of Systems and Software, vol. 101, pp.
193–220, 2015.

[18] D. I. K. Sjøberg, B. Anda, and A. Mockus, “Questioning software main-
tenance metrics: A comparative case study,” in Proceedings of the 2012
ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, Sep. 2012, pp. 107–110.

[19] Y. Gil and G. Lalouche, “On the correlation between size and metric
validity,” Empirical Software Engineering, 2017.

[20] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-based
engineering in the embedded systems domain: an industrial survey on
the state-of-practice,” Software & Systems Modeling, vol. 17, no. 1, pp.
91–113, Feb 2018.

[21] Y. Zheng and R. N. Taylor, “A classification and rationalization of model-
based software development,” Software & Systems Modeling, vol. 12, no. 4,
pp. 669–678, Oct 2013.

[22] E. Weyuker, “Evaluating software complexity measures,” IEEE Trans.
Softw. Eng., vol. 14, no. 9, pp. 1357–1365, Sep 1988.

[23] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software
engineering measurement,” IEEE Trans. Softw. Eng., vol. 22, no. 1, pp.
68–86, 1996.

[24] M. Plaska, “Simulink-specific design quality metrics,” Turku Centre for
Computer Science, Tech. Rep. TUCS Tech. Rep. 1002, February 2011.

BIBLIOGRAPHY 21

[25] P. Boström, R. Grönblom, T. Huotari, and J. Wiik, “An approach to
contract-based verification of simulink models,” Turku Centre for Com-
puter Science, Tech. Rep. TUCS Technical Report 985, 2010.

[26] D. Card and W. Agresti, “Measuring software design complexity,” Journal
of Systems and Software, vol. 8, no. 3, pp. 185 – 197, 1988.

[27] J. Scheible, Automatisierte Qualittsbewertung am Beispiel von MATLAB
Simulink-Modellen in der Automobil-Domäne. Tübingen, Germany: Uni-
versität Tübingen, 2012.

[28] M. Vogel, P. Knapik, M. Cohrs, B. Szyperrek, W. Püschel, H. Etzel,
D. Fiebig, A. Rausch, and M. Kuhrmann, “Metrics in automotive software
development: A systematic literature,” Journal of Software: Evolution
and Process, 2020, preprint.

[29] K. Stol and B. Fitzgerald, “A holistic overview of software engineering
research strategies,” in IEEE/ACM 3rd International Workshop on Con-
ducting Empirical Studies in Industry. IEEE, 2015, pp. 47–54.

[30] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[31] M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating
technology,” Computer, vol. 31, no. 5, pp. 23–31, May 1998. [Online].
Available: http://dx.doi.org/10.1109/2.675630

[32] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, “Empirical evidence on
the link between object-oriented measures and external quality attributes:
a systematic literature review,” Empirical Software Engineering, vol. 20,
no. 3, pp. 640–693, Jun 2015.

[33] D. Kozlov, J. Koskinen, M. Sakkinen, and J. Markkula, “Assessing main-
tainability change over multiple software releases,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 20, no. 1, pp.
31–58, 2008.

[34] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software
maintainability prediction and metrics,” in Proceedings of the 2009 3rd
International Symposium on Empirical Software Engineering and Measure-
ment, ser. ESEM ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 367–377.

http://dx.doi.org/10.1109/2.675630

	Abstract
	Acknowledgment
	List of Publications
	Introduction
	Background and Scope
	Study Goals
	Related Work
	Research Methodology
	Study Summaries
	Contributions
	Discussion
	Conclusions

	Bibliography

