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SIMON KARLSSON
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Abstract
Cities are continuously growing all over the world and the complexity of designing
urban environments increases. Therefore, there is a need to build a better understand-
ing in how our cities work today. One of the essential parts of this is understanding
the pedestrian movement. Using pedestrian count data from Amsterdam, London
and Stockholm, this thesis explore new variables to further explain pedestrian counts
using negative binomial and random forest. The models explored includes variables
that represent street centrality, built density, land division, attractions and the road
network. The result of the thesis suggests ways for variables to be represented or
created to increase the explanatory value in regards to pedestrian counts. These
suggestions include: including street centrality measurements at multiple scales, at-
traction counts within the surrounding area instead of counts on the street segment,
counting attractions instead of calculating the distance to the nearest attraction,
using network reach to constrain the network at different scales instead of bounding
box, and counting intersections in the road network instead of computing the network
length.

Keywords: data science, pedestrian movement, machine learning, random forest, neg-
ative binomial, spatial morphology, road network, street centrality, built environment,
built density, attractions, land division.
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1
Introduction

1.1 Background
It is important for urban designers, planners and policy-makers to create lively
streets and neighbourhoods because, as stated by Edwards and Tsouros [11], an
active city increases public health, social interactions and also contributes to a
stronger economy. The means of achieving this are, however, still either unclear or
not concrete enough. The complexity is also increasing because of the substantial
population growth in cities. In 2016, United Nations [32] estimated more than half of
the world’s population to be living in cities and that this percentage was increasing.
It is therefore important, more now than ever, that we expand our understanding of
how urban environments function so that we can make incremental improvements.

There has been many contributions towards this, two of which are Stavroulaki et al.
[30] and Håkansson [17]. They focus on understanding pedestrian movement, which
is an essential part of urban environments. They did this by building predictive
models for pedestrian movement counts per street segment. Stavroulaki et al. [30]
predicted the full day pedestrian movement counts using negative binomial models.
Håkansson [17] predicted the hourly fluctuations during the day using what they
refer to as a functional ANOVA negative binomial model with logarithmic link.

These predictive models used meta data about the surrounding area in order to
predict pedestrian movement. This meta data included things like, how central a
street is, how dense an area is built and how accessible public transport is.

1.2 Motivation
Exploring predictive models for pedestrian movement counts is interesting because it
can give insight into how the built environment affects the actual usage and movement
within it. A deeper understanding of this relationship would mean a possibility to
alter or create built environments to enable an increase of activity within the city.

Even though these type of predictive models have already been created by Stavroulaki
et al. [30] and Håkansson [17] there is still room for improvement. The performance
of the models in Stavroulaki et al. [30], the predictive models for full day pedestrian
counts, achieves an R2 score of approximately 0.65. This can be interpreted as the
models explaining 65 percent of the variance in the pedestrian movement counts.

1



1. Introduction

This then means that 35 percent of the pedestrian movement counts are not yet
explained; this is the main reason why it is useful to further explore improvements
in these predictive models.

1.3 Objective
The focus of this thesis is to analyse and also extend the work done by Stavroulaki
et al. [30] and Håkansson [17]. This is done using the same data, collected by
Stavroulaki et al. [29] and Berghauser Pont et al. [3] using a service offered by
Bumbee labs, Stockholm. The objectives in extending these predictive models are
the following:

• Evaluate random forest as an alternative algorithm to negative binomial.
• Explore new variables to further explain pedestrian movement counts.
• Find, from the variables available, the set of variables that best explain the

pedestrian movement counts.

The new variables that are explored in this thesis are still focused on the built
environment. Most of them are the same type of variables as used in Stavroulaki
et al. [30] but represented in different ways. The aim of the variables used is to
describe street centrality, built density, land division and attractions. The meaning
of these concepts are described in Chapter 3.

1.4 Outline
This section gives brief explanations of what is presented in each of the following
chapters.

Chapter 2 introduces the data used. Chapter 3 presents variables used to represent the
built environment, related research and also algorithms and metrics used. Chapter 4
presents common methodology for all the experiments. Chapter 5 reproduces previous
work from Stavroulaki et al. [30]. Chapter 6 explores different representations of street
centrality. Chapter 7 explores different representations of attractions. Chapter 8
explores new variables based on road network. Chapter 9 combines the findings from
each of the previous experiments, then designs and evaluates the final model. Chapter
10 includes discussion of the results and also a section on ethical considerations.
Chapter 11 summarizes the thesis with conclusion and future work.

2



2
Data

This chapter introduces the data used, e.g., what the data is, how it was recorded,
the possible limitations in this data and the variables created previous to this thesis.

2.1 Collection

Figure 2.1: Placements of Wi-Fi tracking sensors in Södermalm in
Stockholm.
The dots represent the placement of the sensors. The lines represent
street segments.
Attribution: Leaflet[1] | mplleaflet[33] | © OpenStreetMap[23] ©
CartoDB[9]

This thesis will make use of data collected by Stavroulaki et al. [29] and Berghauser Pont
et al. [3], using a service offered by Bumbee labs, Stockholm. During three weeks in
October 2017, they collected the data by tracking anonymized Wi-Fi signals from
mobile phones. They did this by placing Wi-Fi tracking sensors in the intersections
in an area. In total, this was done in around 60 areas for one day each. The areas
included are from three cities, Stockholm, London and Amsterdam. See Figure 2.1
for an example of how the sensors were located in an area.

3



2. Data

Figure 2.2: Areas included in the measurement in Stockholm.
Attribution: Leaflet[1] | mplleaflet[33] | © OpenStreetMap[23] ©
CartoDB[9]

Each of the areas were monitored for one day and the areas were selected as to
include a diversity in type of area, e.g., how central the areas are. The diversity of
areas can be understood when looking at the spread in the distribution of areas in
Stockholm as visualized in Figure 2.2.

An example for the data collected in one of the areas can be seen in Table 2.1. As
shown in the table, each of the “visits” at a node is recorded with an id of the visitor,
an id of the gate/sensor and a position of the gate in form of X and Y coordinates.
The coordinates here uses the EPSG:3006 coordinate system, also referred to as
SWEREF99 TM.

2.2 Data processing
Using the data with Wi-Fi sensors at each intersection, it possible to calculate which
visitors that passed through a specific street segment. This has been done previous to
this thesis to create a data set that contains the counts of visitors per street segment.
The amount of monitored street segments sum up to approximately 300 in each of
the cities.

From knowing which visitors passed through which street segments, a table was
created where each row corresponds to a street segment. This aggregation per street
segment was for full day counts and hourly counts. It was also done per direction for
both full day counts and hourly counts.

During the creation of this table, there was some preprocessing performed. This
preprocessing included scaling, extrapolation and filtering. The following Sections

4



2. Data

Table 2.1: An overview of the data collected by tracking Wi-Fi signals.

visit_id gate_id timestamp X Y
0114_1 114197 2017-10-05 06:00:30 675092.947832 6579125.31807
0114_1 114198 2017-10-05 06:02:40 675270.5775479999 6579181.03863
0114_2 114196 2017-10-05 06:02:50 674922.099638 6579073.26476
0114_2 114197 2017-10-05 06:03:40 675092.947832 6579125.31807
0114_3 114197 2017-10-05 06:03:40 675092.947832 6579125.31807
0114_3 114196 2017-10-05 06:03:50 674922.099638 6579073.26476
0114_4 114205 2017-10-05 06:05:10 674986.373212 6578857.9952
0114_4 114201 2017-10-05 06:05:30 674947.89521 6579001.07808
0114_4 114196 2017-10-05 06:05:50 674922.099638 6579073.26476
0114_5 114209 2017-10-05 06:06:00 675002.666861 6578792.841519999
0114_5 114205 2017-10-05 06:06:20 674986.373212 6578857.9952
0114_6 114196 2017-10-05 06:01:40 674922.099638 6579073.26476
0114_6 114201 2017-10-05 06:09:20 674947.89521 6579001.07808
0114_6 114200 2017-10-05 06:11:00 675117.7263859999 6579048.06709
0114_7 114203 2017-10-05 06:08:30 675136.4088229999 6578994.175969999
0114_7 114197 2017-10-05 06:09:40 675092.947832 6579125.31807
0114_7 114200 2017-10-05 06:09:50 675117.7263859999 6579048.06709

visit_id is a unique id of an anonymized pedestrian.
gate_id is a unique id of the sensor, also referred to as gate.
timestamp is the time when the pedestrian was recorded.
X and Y marks the position of the sensor.

explain the reason and process for all of these preprocessing methods. Note that
this processed and aggregated data is what was used to build the previous models in
Stavroulaki et al. [30] and Håkansson [17], it is also the representation of the data
that is used to create the predictive models in this thesis.

2.2.1 Scaling
The reason for scaling the data is simply because the gates do not capture all the
pedestrians. This is because the measurements are dependent on the pedestrian
having a phone with Wi-Fi turned on. So in order to know how many pedestrians
that actually walked past an intersection, manual measurements were performed
simultaneously for a few select street segments. These measurements then resulted
in using a scaling of 2.3 for all the street segments in all the cities.

2.2.2 Extrapolation
The reason for applying extrapolation on the data is that some of the gates were stolen,
vandalized, stopped working or missed a pedestrian. Three different extrapolation
methods were used: based on time-frames, based on neighbouring gates and based
on path. The extrapolation based on time-frames was to assume that the count for a
gate during its downtime was similar to the count before and after the downtime, this
method was used only for time-frames of one hour or shorter. The extrapolation based
on neighbouring gates was to calculate the number of visitors based on surrounding
gates. It is worth to note that this method was only used for gates that were
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completely surrounded by other gates. The extrapolation based on path was done
when one visitor seemingly skipped one of the gates on a straight path when there
was no other way to go.

2.2.3 Filtering
The reason for filtering the data was two-fold. The first reason was that a gate had
too much downtime and none of the extrapolation methods worked, that gate was
then removed completely. The second reason was that some of the measurements
indicated movement speeds that would not be possible for a pedestrian to reach.
Therefore, all the measurements that exceeded a speed of 6 km/h were removed.

2.3 Limitations
Using Wi-Fi sensors to collect this type of data creates a few biases in the data.
It does this because of the need of having a phone with Wi-Fi turned on. This
means that only people that have phones with Wi-Fi turned on are included in the
measurement. Likewise, people that have multiple phones with Wi-Fi turned on are
measured multiple times.

These Wi-Fi sensors also capture signals from phones within buildings, as long as
it is in within proximity. However, this mostly affects the recorded pedestrians at
single gates and not the counts per street segment since the same device would have
to be captured at a neighbouring gate as well to be counted.

There are also some uncertainties in the data collected using Wi-Fi sensors. Firstly,
there is no clear differentiation between different modes of transport. Secondly,
the exact position is not known, the sensor measures within a radius of 25 meters.
Thirdly, the exact time is not known, the recorded sensor data is presented with a
granularity of 10 seconds, as seen in Table 2.1. These limitations are further explored
in Section 2.3.1.

For this specific data collection, each area was monitored for one day (only workdays).
This limits the probability that the measured pedestrian movement count on a street
segments is representative. E.g., there could be an event happening in an area on
the day of the measurement which would greatly affect the pedestrian count.

Another possible limitation with this data collection is the sample size. The data
contains only 700 street segments with full day counts, i.e., the sample size is 700.
To determine if this is a limitation or not is, however, very difficult. It could be a
limitation if the relationship between the pedestrian movement counts and the built
environment is complex. This means that it might be difficult for a predictive model
to find this relationship between them. If this is the case, a larger data set could
help in giving a better indication of what the relationship actually is.

A quick summary of this section gives the following limitations of the collected data:
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• People passing the area without a phone or Wi-Fi activated are not counted.
• A person with more than one phone having Wi-Fi turned on is measured

multiple times.
• Cannot clearly differentiate between different modes of transport (e.g. walking,

biking, driving).
• Position is within a 25 meter radius.
• Time is presented with 10 second granularity.
• Each area is only recorded one day.
• Limited data size.

2.3.1 Speed of walking
Speed of walking was calculated previous to this thesis in order to do filtering on the
data, as explained in Section 2.2.3. These calculations are, however, not available
for use during this thesis so speed of walking is re-calculated. It is, as previous
calculation also was, calculated for each pedestrian and street segment and this is
done using the raw data as opposed to the processed data which was described in
Section 2.2. This is done by using the length of the street segment and the duration
between visiting one of the sensors up until visiting the other sensor.

Unfortunately, the calculated speed of walking has a big error margin. This is because
each of the gates that has been used during the measurement has a radius of 25
meters, and the timestamps for the measurements has a granularity of 10 seconds.
This means that when calculating the speed for a pedestrian that has walked a street
segment that is 100 meters, they could in reality have walked anything between 50
and 150 meters. Similarly if the time spent on the street segment is measured to
be 80 seconds, it could in reality be that the duration was anything between 70 to
90 seconds. The reason for this is because each timestamp can be off by 5 seconds
and therefore the duration can be off by 10 seconds. Both of these uncertainties
contributes to an uncertainty in the calculations of walking speed, and in short
distances and/or durations the range of uncertainty can prove to be quite large.

As mentioned, there is a filtering performed based on the speed of movement. The
filtering excludes all measurements that show a speed of movement above 6 km/h.
This leads to only keeping 23 percent of the raw measurements. See Figure 2.3 which
shows a histogram of the movement speeds. The 23 percent of the data that is kept
is on the left side of the line which is drawn at 6 km/h. This seems like a reasonable
threshold when considering the average walking speed of younger (younger than 65
years) and older people (65 years or older) being 4.90 km/h (1.36 m/s) and 4.10
km/h (1.14 m/s) respectively, as reported in Montufar et al. [20].

2.4 Variables
Values for some variables for each street segment were calculated previous to this
thesis. Most of these variables are calculated to describe the surrounding area
of the street segment. The surrounding area is limited by a threshold of walking
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Figure 2.3: Movement speed histogram for the raw measurements.
The movement speed is per “pedestrian” and street segment. The dotted
line is drawn at 6 km/h, which is the filtering threshold. The top one
percent highest values are excluded from the histogram in order to have
a more concentrated plot.

distance. The street segments reachable within this threshold are then included in
the calculations. For example, when using a threshold of 500 meters, then all street
segments possible to reach by walking 500 meters or less are included. In this thesis,
and in Stavroulaki et al. [30] amongst others, this threshold is referred to as the
radius. See Figure 2.4 for an illustration of how the included area looks for a street
segment using three different radii.

The variables that are included for each street segment is shown in Table 2.2, their
meaning and their grouping is explained in Chapter 3, Section 3.1. All variables are
calculated by Stavroulaki et al. [30]. See a simplified example of the data in Table
2.3 which presents a few selected variables and also the full day pedestrian count,
which is to be predicted, as the column TOTAL.

2.4.1 Attraction data

As presented in Table 2.2, attraction variables are included for each street segment in
the data. These variables are counting the number of local market, public transport
nodes and schools. They are counted both on the street segment and within a 500
meter radius, see Table 2.2.

To calculate these attraction variables, different attractions were collected into a
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Figure 2.4: 500, 2500 and 5000 meter radius around a street segment in
Stockholm.
The dot shows the center of the street segment in question and all the
black lines are street segments that are included in the measurement for
that specific radius.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]
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Table 2.2: Variables calculated for each street
segment in the data.

Name Radii
Street centrality
Angular integration Range[500, 5 000, 500]
Angular betweenness Range[500, 5 000, 500]
Built density
Accessible FSI 500
Accessible GSI 500
Land division
Accessible #plots 500
Attractions
#Local markets Street segment, 500
#Public transport nodes Street segment, 500
#Schools Street segment, 500
Range[min, max, step]: Represents a range of numbers
from min to max with increments of step size.
Street segment: Variable is measured on the street seg-
ment itself.

Table 2.3: Example data from table with processed and aggregated
counts per street segment.

START END TOTAL Bet500 Int500 FSI_500 PubTr_500
114196 114197 5 316 612,50 1,06 1,65 13,00
114197 114200 1 677 786,00 1,14 1,65 13,00
114201 114202 6 010 1 961,50 1,29 1,72 11,00
114200 114203 835 831,00 1,19 1,68 16,50
114202 114205 4 898 2 084,25 1,39 1,66 14,00
114205 114206 103 629,63 0,96 1,56 16,50
114205 114208 315 601,60 1,02 1,59 16,00
114207 114208 338 684,83 1,15 1,65 12,67
114206 114207 393 1 088,00 1,18 1,69 15,67
114208 114209 498 1 764,33 1,22 1,59 15,33
114199 114200 93 121,00 1,10 1,77 18,00
114197 114198 1 967 196,00 1,13 1,66 17,00
114196 114201 10 069 2 046,50 1,20 1,59 13,00
114202 114203 58 493,17 1,18 1,72 14,00
114205 114209 4 258 2 509,00 1,43 1,52 18,50
114198 114199 217 1 074,00 1,13 1,65 18,00
114203 114204 70 271,00 1,11 1,75 17,00
114199 114204 120 919,75 1,17 1,70 18,50
Only a few select columns are included here to exemplify the table.
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data set by Bobkova et al. [7] using OpenStreetMap (OSM)1. This data set is also
used during this thesis.

Table 2.4: Descriptions of different OSM codes.

Code Included Description
10xx - Cities, towns, suburbs, villages,...
20xx X Public facilities such as government offices, post office, police, ...
21xx X Hospitals, pharmacies, ...
22xx X Culture, Leisure, ...
23xx X Restaurants, pubs, cafes, ...
24xx X Hotel, motels, and other places to stay the night
25xx X Supermarkets, bakeries, ...
26xx X Banks, ATMs ...
27xx X Tourist information, sights, museums, ...
29xx - Miscellaneous points of interest
41xx - Natural features
50xx - Parking lots, petrol (gas) stations, ...
52xx - Traffic related
56xx X Bus, tram, railway, taxi, ...
5601 X A larger railway station of mainline rail services.
Included column marked with X means that attractions having that code was collected in
Stavroulaki et al. [30].

Each of the attractions in this attraction data set is categorized using a code used in
OSM. This OSM code is four digits and the first two digits of OSM code are related
to general function, e.g., retail and service while the last two digits are related to
subcategory of each class, e.g., bakery. See Table 2.4 for some descriptions. See also
the Included column which, if marked with an X, means that it is Included in the
attraction data set.

Note that the grouping of attraction into local markets, public transport nodes and
schools does not follow the OSM codes, these groupings were created by Stavroulaki
et al. [30]. Local markets include attractions with OSM codes starting with 23 and
25. Public transport includes attractions with OSM codes starting with 56 and
schools include attractions with OSM code 2082.

1https://www.openstreetmap.org
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3
Theory

This chapter describes the background, previous work, main variables and predictive
model algorithms used in this thesis.

3.1 Variables
In order to understand the problem, solution and lessons learned, it is important
to understand the variables that are used. There are conceptually four information
categories for the main variables used in the models and these are: street centrality,
built density, land division and attractions. What they mean and how they are or
can be represented is explained below.

Street centrality is a measurement of how central a street is. In detail, it is a
combination of two measurements, betweenness and integration.

Betweenness, is described in Stavroulaki et al. [31] at page 7 in the following way:
“Network Betweenness calculates how often a line falls on the shortest path between
all pairs of lines in a network, or how many shortest paths pass through it. In
other words, lines (axial lines or segments) which control and mediate movement
and connections between many other lines in the system have a high betweenness
value.”. Lines can in this context be seen as a street segment. See Figure 3.1 for a
visualization.

Integration, similar to mathematical closeness, as defined by Hillier et al. [14], is a
measurement of centrality which looks at the distance to all other street segments.
See Figure 3.2 for a visualization.

Both the betweenness and the integration are in this thesis measured using angular
deviation instead of metric distance, based on the findings in Hillier and Iida [15].
Therefore, they are referred to as Angular betweenness and Angular integration
respectively, as defined in Hillier et al. [16]. Whenever betweenness or integration is
mentioned in this thesis, it refers to the angular version.

It is also important to note that these measurements can be calculated within different
cut-off radii which means that they can, e.g., be calculated at a local as well as a
global scale.
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Figure 3.1: Betweenness measurement.
Given the shortest path between A and B, as visualized with black lines
and arrows. Then the segments marked with a 1 are then the segments
that fall on this shortest path. The more times a segment falls on one of
these shortest paths, the higher the betweenness value.

Figure 3.2: Integration measurement.
The street segment marked out with arrows on the top and bottom is the
street segment being measured. Each other street segment is marked
with the distance between them. The final integration value is an average
of these distances.
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Built density is a measurement of how densely or sparsely an area is built. One
simplified way of looking at it is how big buildings are with respect to how much
area they fill up. In detail, as described by Berghauser Pont and Haupt [4], it is a
combination of the measurements; Floor Space Index (FSI), Ground Space Index
(GSI) and Network density (N).

FSI, also referred to as intensity, is described by Berghauser Pont and Haupt [4]
as a ratio between the gross floor area and the base land area, see Figure 3.3 for
a visualization. Gross floor area is the total floor area for all the floors within a
building. Base land area would for a district be the whole area of the district where
the boundaries of the district are drawn in the middle of the streets surrounding the
district.

Figure 3.3: FSI measurement.
I.e., the ratio between the gross floor area to the left and the base land
area to the right.
Figure source: Page 95 in Berghauser Pont and Haupt [4]
Permission: Meta Berghauser Pont

GSI, also referred to as coverage, is described by Berghauser Pont and Haupt [4] as a
ratio between the footprint and the base land area, see Figure 3.4 for a visualization.
The footprint, also referred to as built area, for a building is the area of land that it
covers.

Figure 3.4: GSI measurement.
I.e., the ratio between the footprint to the left and the base land area to
the right.
Figure source: Page 95 in Berghauser Pont and Haupt [4]
Permission: Meta Berghauser Pont

Network density is a measurement of network length in relation to the base land area,
see Figure 3.5 for a visualization. Network length is simply the length of the network.
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Berghauser Pont and Haupt [4] gives a few examples for what the network consists
of at the district scale and those are circulation streets, rails, roads and canals.

Figure 3.5: Network density measurement.
I.e., the ratio between the network length to the left and the base land
area to the right.
Figure source: Page 94 in Berghauser Pont and Haupt [4]
Permission: Meta Berghauser Pont

Land division, also referred to as plot systems, looks at the boundaries between
different plots. In detail, as mentioned in Bobkova et al. [6], land division measures
accessible number of plots, accessible compactness and accessible openness. Accessible
here refers to measurements calculated within a specific distance, e.g., within 500
meters walking distance.

Plots are divided by ownership, i.e., each property is a plot.

Figure 3.6: Compactness measurement.
I.e., the ratio between the plot area, the marked area, and the bounding
rectangle area.
Figure source: Figure 5 in Bobkova et al. [6]
Permission: Evgeniya Bobkova

Compactness, is a measurement of how close a plot shape is to a rectangle, see Figure
3.6.

Openness is described in Bobkova et al. [6] as the ratio between the total plot frontage
and the total plot perimeter, see Figure 3.7. An example of plot frontage is the
length of the lawn for a house that merges with the street and not just another plot.

Attractions, sometimes referred to as activities, refer to non-residential land uses
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Figure 3.7: Openness measurement.
I.e., the ratio between the plot frontage, marked with a thick solid line,
and the plot perimeter, both the thick solid and dashed line.
Figure source: Figure 5 in Bobkova et al. [6]
Permission: Evgeniya Bobkova

such as restaurants, hair salons, grocery shops, bars, bus stops and schools. Attrac-
tions can be represented as a count accessible within an area, the distance to specific
attractions or possibly many other ways.

3.2 Theoretical background
Some of the variables used and their representations in this thesis are chosen by
taking other researchers’ contributions in this field into consideration. This section
introduces some of the most important contributions.

There is a strong correlation between the pedestrian movement and the
street configuration. This is shown in Hillier et al. [14] where they concluded that
the more a street is connected with the rest of the city, the higher the pedestrian
movement. Note that street configuration is what determines angular betweenness
and angular integration for each of the street segments in a city. They also concluded
that streets with high pedestrian movement attract attractions which in return
attract more pedestrians, as later confirmed by Penn et al. [24] and Stavroulaki et al.
[30]. This addition of attractions supposedly acts as a multiplier on the pedestrian
movement, more specifically on the pedestrian movement estimated using the street
configuration. This is one of the reasons why both street centrality and attractions
are included in the pedestrian movement models.

The type of street determines the radius of integration measurement
which will give the optimal predictability. Radius of integration measure-
ment is here referring to the how big of a radius the integration measurement is
calculated within, e.g., the integration measurement can be calculated within 500
meters or 5 000 meters. The different street types referred to here are categorized
as primary, secondary and local street. A primary street is for example long and
stretches throughout the city while local would be a short street that only stretches
within a neighbourhood. That there is an optimality of radius for the integration
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measurement is shown for vehicular traffic in Penn et al. [24] and for pedestrians
in Read [27] and Pont and Marcus [25]. The difference in optimal radius for the
integration measurement is why some researchers, such as Berghauser Pont et al. [5].
calculate street centrality at multiple scales.

Pedestrian appreciation of "distance" is better predicted by the angle
needed for navigation rather than the metric distance itself. This is shown
in Hillier and Iida [15] which increases our understanding of the individual pedestrians’
cognitive reasoning when it comes to choosing paths, it also confirmed by Dalton [10].
This is the reason why street centrality is calculated by the authors of Berghauser Pont
et al. [5] using Angular integration and Angular betweenness. However, metric
walking distance is still used to determine the radius for the area to include in the
calculations.

Street centrality helps determine the potential character of a street, e.g.,
residential or commercial. This is shown in Özbil et al. [34] where they also state
that land uses1 is a more significant factor for determining pedestrian movement in an
area, while street configuration is a more significant factor for pedestrian movement
in individual street segments. Both of these are considered in our models, land use
through attractions and street centrality through integration and betweenness.

Attractions on the ground floor and a diversity of attractions correlate
positively with pedestrian movement. These were the two factors, found in
Netto et al. [22], that had the strongest positive correlation with pedestrian movement.
They found this when looking into how to explain the extra variation of pedestrian
movement while the street centrality is the same. Therefore, it is probably a good
idea to try to represent attractions in different ways in order to try to improve the
predictiveness of pedestrian movement.

Street configuration explains the distribution of pedestrian movement
but not the volume. This is shown in Özbil et al. [35] where they studied 20 2km
x 2km areas in Istanbul, it is also confirmed by Berghauser Pont et al. [3]. Özbil et al.
[35] also found that the attractions on the ground floor explained 35 percent of the
pedestrian movement as well as that sidewalk width had the strongest correlation
to pedestrian movement amongst other street design variables. In this experiment
they categorized street segments into four different groups depending on the number
of attractions available. The different groups were called: active/friendly, mixture,
boring and inactive. This categorization of street segments might be one of the
possible ways to represent attractions in order to improve predictiveness.

Built density of an area determines the volume of pedestrians and street
centrality determines the distribution of the pedestrians. This is shown in
Berghauser Pont et al. [3] were they group street segments based on street centrality
and built density. They then compare the intensity and fluctuation of the pedestrian
movement flow between these groups. The data used in Berghauser Pont et al. [3] is
the same as the data used in this thesis.

1Different types of land use can for example be recreational, commercial or residential
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Walkability has decreased when adding other means of transport. The
reason for this is the imposed barrier on walking that each new means of transport
brings. Cars have for example lead to the construction of high speed roads which
can be tricky to cross or get past for pedestrians. This is explained in Forsyth and
Southworth [12] where they also mention underground subways as the exception
to this rule. They also explain walkability quite thoroughly but there is another
conclusion that might be more interesting in the context of this thesis. If walkability
decreases with other means of transport then having variable(s) that represent this
might help explain pedestrian movement.

Route directness and completeness of pedestrian facilities affects pedes-
trian volumes. This is shown in Moudon et al. [21] where they compare pedestrian
volumes in neighbourhoods with similar residential density. They are referring to
directness as the ratio between the straight line path and the shortest path and
to completeness as the ratio of dedicated pedestrian pathways. In this study, they
used two categories of neighbourhoods, urban and sub-urban, between which both
route directness and completeness differ. The urban neighbourhoods have both more
direct routes and more complete sidewalk systems. This is then compared to the
pedestrian volume where urban neighbourhoods are measured to have a three times
higher count. Both of these variables can therefore be seen as potential variables in
predicting pedestrian counts. However, route directness is presumably, at least to
some extent, correlated with street centrality since they both measure the ease of
traveling by foot.

In summary, street centrality, built density and attractions have been found to be
helpful when predicting pedestrian movement. Street centrality seems to be better
represented by the angular deviation and should preferably be measured for multiple
radii. Attractions seem to have a strong impact on pedestrian movement where
ground floor attractions and a diversity of attractions are supposed to be the most
important. Built density seems to give a strong indication of the total number of
pedestrians in an area.

3.3 Previous work

This section will explain the previous work in predictive models for pedestrian
movement done by Stavroulaki et al. [30] and Håkansson [17].

Stavroulaki et al. [30] created three negative binomial models (negative binomial
is explained further in Section 3.4.1) using the full day counts of pedestrians. The
three different models were called configurational, spatial and attraction. See Table
3.1 for an overview of the models.

The configurational model takes street centrality into account, using Angular integra-
tion and Angular betweenness as explanatory variables. The spatial model included
the same variables with the addition of accessible FSI (to represent built density)
and accessible number of plots (to represent land division). The attraction model
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Table 3.1: Overview of the models used in Stavroulaki et al. [30].

Configurational Spatial Attraction
Street centrality
Angular integration X X X
Angular betweenness X X X
Built density
Accessible FSI - X X
Accessible GSI - - -
Land division
Accessible #plots - X X
Attractions
#Local Markets on segment - - X
#Local Markets within 500m - - X
#Public Transport on segment - - X
#Public Transport within 500m - - X
#Schools on segment - - X
#Schools within 500m - - X
Control variables
Weekday X X X
City X X X
Random effect
Neighbourhood X X X
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included all the variables in the spatial model with the addition of attractions which
were represented using the following variables:

• Accessible Local Markets within 500 m walking distance
• Number of Local Markets on segment
• Accessible Public Transport nodes within 500 m walking distance
• Number of Public Transport nodes on segment
• Accessible Schools within 500 m walking distance
• Number of Schools on the segment.

All three models included day of the week and the city as categorical variables.

Stavroulaki et al. [30] also compared these negative binomial models to logarithmic
regression models using the same variables and concluded that the negative binomial
models were preferable because they gave higher Continuous Rank Probability Scores
(CRPS), which can be interpreted as giving more reliable results when probabilities
are taken into account.

As an extension to the work done by Stavroulaki et al. [30], Håkansson [17] created
a model focused on the pedestrian flow, more specifically the pedestrian count for
each hour during the day from 6am to 9pm. Instead of using continuous variables to
represent the street centrality and built density as in Stavroulaki et al. [30] the model
uses categorical variables for street and density types, developed by Berghauser Pont
et al. [3], see Table 3.2. This was to make the problem easier to model and the
result easier to interpret. The model also includes variables to represent attractions,
specifically public transport stops, schools and local markets.

Table 3.2: Density and street types used in Håkansson [17].

Built density Street centrality
Type Description Type Description
1 Spacious low-rise 1 Background network
2 Compact low-rise 2 Neighbourhood streets
3 Dense mid-rise 3 City streets
4 Dense low-rise 4 Local streets
5 Compact mid-rise
6 Spacious mid-rise

Both the work in Stavroulaki et al. [30] and Håkansson [17] suggested that there is a
correlation between the morphological structure, i.e., street centrality, built density
and land division, and the number of pedestrians.

The pedestrian count models in Stavroulaki et al. [30] suggest that street cen-
trality which was included in the Configurational model can explain a large part of
the pedestrian count. Adding built density and land division, as done in the Spatial
model, only had a small increase in model accuracy while the Attraction model had
a higher increase. This suggests that the inclusion of attraction variables does make
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an important difference while the inclusion of land division and built density has a
smaller impact. It is, however, uncertain if the attraction variables by themselves,
not including built density and land division, would have the same effect. It is also
interesting to note that even though the Attraction model increased the accuracy,
only the variable for public transport stops on the same street showed a significant
effect.

The Angular betweenness and Angular integration variables, which explain street
centrality, included in Stavroulaki et al. [30] is calculated using specific distances,
as explained in Chapter 2. The exact distance used in these models was chosen by
performing Pearson correlations and the results gave Angular betweenness within
3 500 meters and Angular integration within 1 000 meters.

The pedestrian flow model in Håkansson [17] gives an indication of which mor-
phological types in the data that generally correlates with a higher pedestrian count.
The comparison between density types and street types was done individually, not
in combination. The order for Density types, from higher to lower, was the follow-
ing: Dense mid-rise, Compact mid-rise, Dense low-rise, Compact low-rise, Spacious
low-rise. This indicates that the more densely built an area is, the more pedestrian
movement there will be. The order for Street types was: City streets, Local streets,
Neighbourhood streets, Background network. This indicates that the more central a
street is, the more pedestrian movement there will be. There was also an indication
of differences in the number of pedestrians between cities where, when all other
variables were considered, Amsterdam was correlated with the highest counts followed
by Stockholm and then London.

The results also indicates that markets within 500 meters are correlated with the
highest pedestrian count amongst the attraction variables. That is different from
the results in Stavroulaki et al. [30] where the public transport stops in the same
street was the only variable with significant effect. A difference to note here is that
the significance effect was calculated in Stavroulaki et al. [30], but not in Håkansson
[17]. The conclusions here for Håkansson [17] are based on the values for the fixed
effects within the model, i.e., the coefficients for each variable.

3.4 Predictive model algorithms

Two types of predictive model algorithms are used in this thesis, negative binomial
and random forest. Negative binomial is used because of the findings in the previous
work done in Stavroulaki et al. [30]. Random forest is mainly used because it is
relatively stable, interpretable and easy to use. Using two different models can also
help in giving more “robust” results. If both models indicate the same thing then
those results are more trustworthy than if it was indicated by just one model.
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3.4.1 Negative binomial
In order to understand the negative binomial distribution, it is first important to
understand the Poisson distribution. The Poisson distribution models the count of
independently occurring events within a specific time frame. Independently here
means that the probability of an event happening is independent of if or when other
events occur. The Poisson distribution only has one parameter and that is λ, the
average number of events in one time frame, also referred to as the mean. The
Poisson distribution assumes that the variance is the same as the average, this is
where the negative binomial comes in. Negative binomial is a special version of a
Poisson distribution where the difference is the addition of a dispersion parameter.
That is, a parameter that controls the variance in the data separately from the
average. See Figure 3.8 for a comparison between Poisson and Negative binomial.
More information about the negative binomial is provided by Hilbe [13], the negative
binomial referred to here is the one called NB2.

Figure 3.8: Comparison of the Poisson distribution with the Negative
binomial distribution.
The Negative binomial distribution in the middle is the same as the
Poisson distribution to the left since they both have their variance equal
to the mean. The Negative binomial to the right is an example of
over-dispersion, i.e., when the variance is higher than the mean.

The negative binomial regression model is a generalized linear model and can therefore
be fitted using many different approaches, e.g., maximum likelihood estimation.

3.4.2 Random forest
Random forest is an ensemble of decision trees that makes use of bagging. An
ensemble means that there is a collection of multiple models that all contribute to the
prediction. A decision tree can be seen as a collection of nested if statements where
an if statement either leads to a new if statement or a prediction. Bagging refers to
an ensemble technique that creates multiple models where each one is trained on a
subset of the training data, see Figure 3.9.

The prediction of the whole model is made by a majority vote or an average of all
the sub-models, see Figure 3.10. There is also one extra technique used in random
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Figure 3.9: Training process of random forest.
Each tree is trained with a subset of data.

forest, which is that the split of each node is done by selecting the best split within
a random subset of the variables, see Figure 3.11. This differs from normal decision
trees in that the split at each node will for normal decision trees be selected by the
best split amongst all variables. In this thesis we make use of the R implementation
of random forest, as described in Liaw and Wiener [19].

Figure 3.10: Prediction made by random forest.
The prediction is the average of the prediction made by each of the
decision trees.

The benefit of random forest is that it is a relatively stable model, it is interpretable
and it is simple to use. It is simple to use in the sense that it does not require
transformation of any variables. There are two main parameters to tune in random
forest: number of trees and number of variables for the random subset of variables
for each node. In order to interpret the model, random forest makes use of something
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Figure 3.11: Picking of a random subset of features during random
forest training.
A random subset of features is picked for each node before finding the
best split. This is only visualized for the right side of the tree for
simplicity.

called importance. Importance is a measurement for each variable in how important
they are for making a prediction. I.e., a high importance for a variable means that it
has a heavy weight in determining what the prediction is.

3.5 Metrics
There are four different metrics used for evaluating model performance in this thesis,
all of them are introduced in this section.

Mean Absolute Error (MAE) sums up the difference between the predictions and
the actual values. See Equation 3.1, where n is the number of samples, yi is the true
value for the i:th sample and ŷi is the predicted value of the i:th sample.

MAE = 1
n

n∑
i=1
|yi − ŷi| (3.1)

Root Mean Squared Error (RMSE) is similar with the difference that it penalizes
higher values more heavily by squaring the error. See Equation 3.2, where n is the
number of samples, yi is the true value for the i:th sample and ŷi is the predicted
value of the i:th sample.

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (3.2)
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Coefficient of determination (R2) is a metric that indicates how well the model
explains the variability in the data, simply put it is the mean squared error divided
by the variance. See Equation 3.3, where n is the number of samples, yi is the true
value for the i:th sample, ŷi is the predicted value of the i:th sample and ȳ is the
average value of all the samples.

R2 = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2 (3.3)

Adjusted R2 is similar to R2 with the difference that it also takes the number of
features used into account, so the more features included the lower the score. See
Equation 3.4, where n is the number of samples and k is the number of features used.

R2
adj = 1−

[
(1−R2) (n− 1)

n− k − 1

]
(3.4)

3.5.1 Metrics for statistical models
Statistical models such as the negative binomial do not give predictions in the same
way as machine learning models. So, the metrics are for the statistical models
calculated using the fitted mean, µ̂. Similar to how R2

RES is calculated in Cameron
and Windmeijer [8]. See Equation 3.5, where n is the number of samples, yi is the
true value for the i:th sample, µ̂i is the fitted mean for the i:th sample and ȳ is the
average value of all the samples.

R2
RES = 1−

∑n
i=1 (yi − µ̂i)2∑n
i=1 (yi − ȳ)2 (3.5)

3.6 Feature preprocessing
The previous work, Stavroulaki et al. [30] and Håkansson [17], scaled all numerical
features except for attractions. The scaling was performed in R without centering.
See Equation 3.6, as described by Becker [2], where n is the number of samples, X is
the numerical vector of all the values for a feature and X_scaled is the vector of
the scaled values for that feature.

X_scaled = X√
1

n−1
∑n

i=1 x
2
i

(3.6)
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Preparation for experiments

This chapter explain the preparation needed before performing any of the experiments
in this thesis. For example, the training and test set split and algorithm parameters.

4.1 Data split
In order to evaluate the final model, mostly how well it generalizes, test data is
picked out of the data set. There a four options for how to pick the test data:

• Pick one of the cities.
• Pick a few areas.
• Pick completely random street segments.
• Pick street segments such that there is a similar distribution of the type of

street segments within the training and test set.

Pick one of the cities. This limits the relation between the street segments in the
training data and the test data, meaning that a good test score would be a strong
indication that the predictive model has found a general relationship between the
built environment and the pedestrian movement. A drawback is that taking one city
out of the data reduces the training data by one third.

Pick a few of the areas. This also limits the relationship between the street
segments in the training data. However, it would not give as strong of an indication
if the predictive model is generalized between cities, compared to picking one of the
cities. Picking out a few areas might result in removing some specific “types” of
streets which decreases the possibility for the predictive models to find the underlying
relationship between the built environment and pedestrian movement counts.

Pick completely random street segments. This does not limit the relation
between the street segments in the training data and the test data. There is also
a chance that all street segments of a specific “type” could be picked into only the
training data or the test data although more unlikely than when picking out a few
areas. It does, however, give the opportunity to choose the exact amount of data
that is picked for the test set.

Pick street segments such that there is a similar distribution of the type
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4. Preparation for experiments

of street segments within the training and test set. This choice does not
limit the relationship between the street segments in the training and test set. It
does however provide the opportunity to pick an exact amount of data for the test
set. It also, of course, keeps a similar distribution between street segment “types”
between the training data set and test data set.

For a compacted version of these comparisons see Table 4.1.

Table 4.1: Comparison between different data split methods.

Method Test/Train relation Test set size Distribution of types
City Very limited One third Fairly good
Area Limited Fairly dynamic Probably bad
Random Not limited Dynamic Possibly bad
Type Not limited Dynamic Good

The data split is done using the last choice, keeping the distribution between the
test set and training set, mostly because of the possible limitation of the data set
that was discussed in Section 2.3.

Table 4.2: Number of street segments with
full day count per street and density type
combination.

Density
1 2 3 4 5 6

Centrality

1 65 36 76 33 90 42
2 12 18 25 28 18 23
3 8 18 21 10 23 10
4 23 36 48 10 15 19

To understand how this test data is picked out, it is important to understand
the density and centrality type distribution of the data. There are six different
density types and four different centrality types, this amounts to 24 combinations
of those types. These are the centrality and density types used in Håkansson [17]
and developed by Berghauser Pont et al. [3], as introduced in Section 3.3. Table
4.2 presents the number of street segments with full day counts for each of these
combinations. The minimum number of street segments in these type combinations
is 8, see Centrality 3 and Density 1, while the maximum is 90, see Centrality 1 and
Density 5. It is also possible from this to calculate that the average number of street
segments per combination is 29. This means that even though there is a wide spread
of the street segments between the categories, the categories still differ noticeably in
the amount.

The test data is picked by randomly choosing 10 percent of the street segments within
each type combination. This means that the distribution stays roughly the same
within the training and test data. The reason for having this relatively low percentage
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of the data for testing is because of the limitation of the sample size. Keeping a
larger part of the data for training and validation can help avoid over-fitting to
individual data points, it does however limit the reliability of the final test score.

4.2 Variable evaluation

Pearson correlation is calculated for all of the variables explored in this thesis in
order to understand if there is a linear relationship with the pedestrian movement
counts. Whenever correlations are presented or mentioned in the following chapters,
they are calculated using Pearson correlation.

4.3 Model training

Figure 4.1: R2 using different methods of cross-validation for the
previous work models.

There are two different algorithms used in this thesis. One is negative binomial
and the other is random forest. These algorithms train the models in different
ways. Negative binomial is in this thesis trained using Integrated Nested Laplace
Approximation (INLA), same as in previous work done by Stavroulaki et al. [30] and
Håkansson [17]. More details about INLA is provided in Rue et al. [28]. Random
forest is evaluated using leave-one-out cross-validation. Leave-one-out cross-validation
is chosen above k-fold cross-validation because it performed slightly better when
testing different methods on the previous work models created in Stavroulaki et al.
[30]. See the results in Figure 4.1.

The implementations used for these algorithms are both libraries in R, R-INLA [26]
for the negative binomial and Liaw [18] for random forest.
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4.4 Model evaluation
In order to evaluate the predictive models against each other, four different metrics
are used and they are MAE, RMSE, R2 and Adjusted R2. For negative binomial,
these metrics are calculated using the fitted means, as explained in Section 3.5.1.
These metrics are always presented in this thesis as averages of 10 runs using different
fixed random seeds in order to get more stable result. The results from the negative
binomial models are deterministic. However, random forest training is parallelized
for speed up and therefore the metrics can differ slightly between runs. The baseline
for evaluation are the models created in the previous work, the ones explained in
Section 3.3.

The four metrics for evaluation are used because they have slightly different charac-
teristics, the difference between them is explained in Section 3.5. It is important to
note that none of these metrics are perfect at explaining how well a model performs.
Therefore, when needed, visualizations such as residual plots are used for further
analysis.

4.5 Algorithm parameters
The algorithm parameters used in this thesis are chosen following some tests, which
are summarized in this sections. The same parameters are used throughout the
thesis.

There are two main parameters to tune for random forest, those are the number of
trees and the number of variables for the random subset of variables for each node,
as mentioned in Section 3.4.2. The latter parameter is referred to as mtry.

Figure 4.2: R2 using different number of trees for the previous work
models.

The number of trees is the amount of trees created during training and these are then
used for prediction. This number of trees to use is chosen from running a test with 25,
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50, 100, 200 and 400 trees on the previous work models created by Stavroulaki et al.
[30]. The result from this test can be seen in Figure 4.2. In this figure, it is possible
to see that there is a continuous, but slight, increase in performance. However, the
largest increase, mostly for the Attraction model, is to around 50 trees. With this in
mind, 200 trees are chosen for the experiments in this thesis so that there are more
than enough trees. The most important is that the models do not suffer any major
performance loss because of a lack of trees.

Figure 4.3: R2 using different mtry for the Spatial and Attraction
model.
The Spatial model’s default value is the circled two.
The Attraction model’s default value is the circled four.
*The Configurational model is left out because of low amount of
parameters.

Mtry is explained as the number of variables randomly sampled as candidates at
each split. The default value for mtry is the number of variables divided by three.
Whether or not this default is good enough is determined in a test on the Spatial
and Attraction model using different mtry values. The Configurational model is
excluded from this test because it only includes 4 variables which makes it difficult
to see any trend in performance between different mtry values. The result of the test
is presented in Figure 4.3. For the Spatial model, the default mtry value is two and
is marked with a circle on the top horizontal axis. For the Attraction model, the
default mtry value is four and is marked with a circle on the bottom horizontal axis.
From this figure it seems like none of the models are performing considerably better
at any other mtry values compared to the default. Therefore the default value for
mtry is used in all the experiments in this thesis. It is also worth noting that higher
mtry values increase training time.

There are no optimization parameters to mention for negative binomial.
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5
Reproducing previous work

The models created in the previous work, Stavroulaki et al. [30], are used as a starting
point for evaluation of the models created during this thesis. Therefore, the first
experiment is to train and calculate the metrics for those models. The variables used
in each model are specified in Section 3.3 in Table 3.1.

5.1 Variable correlation

Table 5.1: Correlation with pedestrian movement counts for variables used in
previous predictive models.

Street centrality Built density &
Land division Attractions 500m Attractions Street

Integration 0.276 FSI 0.411 PT 500m 0.341 PT street 0.127
Betweenness 0.372 GSI 0.384 LM 500m 0.479 LM street 0.390

Plots -0.034 Sch 500m -0.051 Sch street 0.001
PT: Public transport nodes, LM: Local markets, Sch: Schools
FSI: Floor Space Index, GSI: Ground Space Index

The correlation with pedestrian movement counts is calculated for each of the variables
used in Stavroulaki et al. [30]. This is done to get insight into the explanatory value
of each variable. The correlations are presented in Table 5.1.

From these correlations, it seems like the number of accessible plots is not very
informative in terms of pedestrian movement counts. It also seems like attractions
within 500 meters are more explanatory than attractions on the same street segment.
Moreover, schools do not seem to have a strong correlation for either of the distances.

5.2 Result
The result for the negative binomial models using the previous work variables is
presented in Table 5.2. These R2 scores are surprisingly low considering the result in
Stavroulaki et al. [30]. The scores differ for two reasons. The first reason is that the
metrics here are calculated using only 90 percent of the data, i.e., the training data,
as explained in Section 4.1, whereas 100 percent of the training data was used in
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Table 5.2: Metrics for the Negative binomial models
following the previous work.

Model MAE RMSE R2 Adjusted R2

Configurational 756 1 731 0.664 0.661
Spatial 857 2 685 0.192 0.183
Attraction 797 2 243 0.436 0.424

Stavroulaki et al. [30]. The second reason is that two street segments with high FSI
values were excluded in Stavroulaki et al. [30] but they are included here.

When comparing the MAE scores between the models, it seems like the models
perform similarly. However, when we look at the RMSE scores, then the Spatial and
Attraction model scores much higher than the Configurational model. This means
that a few of the prediction errors in the Spatial and Attraction model are relatively
large.

Figure 5.1: Residual plot for the previous work models using negative
binomial.

The residual plots for these models using the negative binomial are presented in
Figure 5.1. To interpret these residual plots, it is important to know that values
above the x-axis are underestimated and values below the x-axis are overestimated.
When inspecting the Spatial and Attraction residuals, it is possible to see that a few
of the residuals are very highly overestimated.

Table 5.3: Metrics for the Random forest models
following the previous work.

Model MAE RMSE R2 Adjusted R2

Configurational 962 1 935 0.580 0.577
Spatial 765 1 731 0.664 0.661
Attraction 745 1 808 0.633 0.626

The result for the random forest models using the previous work variables is presented
in Table 5.3. The R2 score improves 0.084(= 0.664− 0.580) with the Spatial model
in comparison with the Configurational model. However, the score decreases when

34



5. Reproducing previous work

comparing the Attraction model to the Spatial model. This indicates that the
additional variables in the Attraction model provides less information gain than it
increases the complexity of finding a good fit.

When comparing the results in Table 5.2 and Table 5.3 it seems like the random
forest models are generally performing better than the negative binomial models,
in terms of these metrics. However, the most interesting in these results are how
surprisingly low the Spatial model with negative binomial scores, less than one third
of the Configurational model.

5.3 Exploring variable transformation
According to the result in Section 5.2 the Spatial model was scoring very low. This
is mostly because of an overestimation of two street segments having high FSI values.
One way of dealing with this could be to transform the FSI variable as to decrease
the influence of these extreme values.

Figure 5.2: Histogram of skewed variables.

Looking at the distribution of betweenness, FSI and GSI, see Figure 5.2, it is possible
to see that these variables are asymmetrically distributed, i.e., skewed. They are not
presented in plots here but Angular integration and accessible number of plots are
fairly symmetrically distributed.

Figure 5.3: Histogram of skewed variables from Figure 5.2 after
transformation.

Using different transformation, the logarithm and the square root, then betweenness,
FSI and GSI can be represented in ways that are more symmetrical, see Figure 5.3.
This could allow the negative binomial models to be more arithmetically stable.
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Table 5.4: Correlation with pedestrian movement
counts before and after variable transformation.

Betweenness FSI GSI
Before Transformation 0.372 0.411 0.384
After Transformation 0.275 0.375 0.338
Difference: 0.097 0.036 0.046

When comparing the correlation of the variables before and after transformation, see
Table 5.4, it is possible to see that the correlations are lower after the transformation.
This indicates that there is some information loss in terms of linear relationship
during the transformation of these variables. However, it can still be useful to
transform these variables in order to decrease the influence of extreme values.

5.3.1 Result using variable transformation
Table 5.5: Metrics for the negative binomial models
following the previous work with transformed betweenness
and FSI.

Model MAE RMSE R2 Adjusted R2

ConfigurationalT 726 1 796 0.638 0.635
SpatialT 730 1 793 0.640 0.636
AttractionT 735 1 845 0.618 0.610

T: Angular betweenness and FSI are transformed.

The results for the negative binomial models using transformed versions of Angular
betweenness and FSI are presented in Table 5.5. All the metrics are here fairly
similar between the models. The Spatial and Attraction models are, with these
variables transformed, scoring much higher in R2 than before the transformations, as
presented in Table 5.2.

Figure 5.4: Residual plot for the negative binomial following the
previous work with transformed betweenness and FSI.

The residual plots are presented in Figure 5.4. In these plots, there are two highly
underestimated counts, in the top right corners, for all of the models that stick out
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from the rest of the residuals. It is, however, worth questioning how much these
counts actually represent the average pedestrian count for these street segments.
Since the measurements were performed for only one day in each area, it could for
example be that there was a specific event happening on that day that increases the
number of pedestrians.

5.4 Analyzing high counts
According to the results in Section 5.3.1 all the previous work models were underes-
timating two high counts. This section therefore investigates these high counts to
see if there is something that explains why these counts are so much higher than
the rest. It is important to understand why these street segments have much higher
counts than the other street segment because the metrics used, i.e., MAE, RMSE,
R2 and Adjusted R2, are affected more by high counts than low ones.

Table 5.6: The top ten highest
pedestrian counts.

ID City Pedestrian count
348 Stockholm 40 537
349 Stockholm 34 149
329 Stockholm 18 709
340 Stockholm 16 418
318 Stockholm 15 963
317 Stockholm 15 214
332 Stockholm 15 044
389 London 12 714
755 Stockholm 10 069
444 London 10 005
The two top street segments are approx-
imately double the amount of the third
highest count. These two street segments
are connected and part of Drottninggatan
(a major shopping street) in Stockholm.

The two very high counts are in a specific area in Stockholm, Norrmalm, see Table
5.6. Therefore, it might have been an event during the measurement that caused the
count to be very high. Otherwise it might be that the area is very active and that it
is not uncommon with very high number of pedestrians.

5.4.1 Events in Stockholm
There were at least two events happening in the centre of Stockholm during the
day, 2017-10-04, of the Norrmalm measurement. One of the events was the “Nobel
Calling” which lasted for a week, from 2017-10-02 to 2017-10-08. However, this
event was not happening close (Hotel Rival, Mariatorget 3) to Norrmalm during
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that day. The other event during that day, or actually in the evening, was “Gunnar
Wennerberg 200 år” which included live music in memory of Gunnar Wennerberg.
This was happening relatively close (Konstakademien, Fredsgatan 12) to Norrmalm
but it is doubtful that it would have serious impact on the number of pedestrians in
the measured area.

It was difficult to find out if any of the stores on these street segments had any major
sale during this day which could also be a factor in why so many people visited the
street.

5.4.2 Attractions and spatial layout

Figure 5.5: Overview of Norrmalm in Stockholm with the exact
pedestrian counts presented.
The most notable counts are 40 537 and 34 149, down to the right.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]

The street segments with high counts can be seen in Figure 5.5. The street segments
in question are in the south east going north west, they are in the beginning of
the second street from the right. From the figures it is possible to see that the
pedestrian count quickly goes down in the street segments above or to the side of
the ones in question. Looking at the pedestrian counts from the south east and up,
the progression is 40 537, 34 149 and then 16 418. The drop from 34 149 to 16 418 is
almost half of the pedestrians that have turned around or walked in another direction.

Along the whole street which the street segments are part of, there are stores on
the ground floor level. The difference with these two street segments, within the
measured area, is that the stores are larger and probably also enjoy a larger number
of customers, even though the number of them are roughly the same.

It is also worth considering that Norrmalm has a big shopping area, the middle of
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that area is just south east of these high count street segments. So to sum everything
up, this area is very central and dense with attractions.

When this is considered, it seems plausible that these two street segments attract
many pedestrians that are there to visit one or more stores and then walk back in
the other direction.

5.4.3 Result excluding high counts

Table 5.7: Metrics for the previous work models using
negative binomial with two high counts excluded.

Model MAE RMSE R2 Adjusted R2

ConfigurationalT 664 1 346 0.612 0.609
SpatialT 673 1 417 0.570 0.565
AttractionT 671 1 406 0.576 0.567

T: Angular betweenness and FSI are transformed.

The results for training negative binomial when excluding the high counts is presented
in Table 5.7. These scores seem to be worse than when the two high counts were
included in the data, as presented in Table 5.5.

Table 5.8: Metrics for the previous work models using
random forest with two high counts excluded.

Model MAE RMSE R2 Adjusted R2

Configurational 876 1 578 0.467 0.463
Spatial 679 1 357 0.605 0.601
Attraction 662 1 333 0.619 0.612

The results for training random forest when excluding these counts is presented in
Table 5.8. These scores are lower than when the two high counts were included, same
as with the negative binomial.

Training the previous work models when excluding the two high counts seem to
decrease the scores for the metrics used. This suggests that there is something in the
models capturing the fact that these street segments have high pedestrian counts.

Comparing Table 5.7 to Table 5.5, it is possible to see that the Configurational model
is not affected by the removal of these points as much as the Spatial and Attraction
model. This most probably means that one of the variables included in both of these
models is the one that mostly explains the high pedestrian counts. There are two
candidate variables, FSI and the number of accessible plots. Amongst these two,
FSI has a much higher correlation to pedestrian movement counts, as can be seen in
Table 5.1. This suggests that FSI is the best candidate.
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6
Exploring different representations

of street centrality

An extension of predictive models for pedestrian count is here explored by comparing
different representations for street centrality. The reason for this is two-fold. Firstly,
previous research, such as Hillier et al. [14], indicates that street centrality has a high
influence on pedestrian movement. Secondly, these variables have been calculated
within multiple radii by Stavroulaki et al. [30] and is readily available.

6.1 Method
This experiment is performed by creating a few variables which are referred to as
centrality polynomials and then by designing new models based on different centrality
variables. The creation of the centrality polynomials is explained in Section 6.1.1.
The design of the models is provided in Section 6.1.3 together with a short description
for each model. The results of the new models are presented in Section 6.2 and they
are there also evaluated in comparison to the Spatial model, which is the highest
scoring of the original models created in Stavroulaki et al. [30].

6.1.1 Variable: Centrality polynomials

Figure 6.1: Three examples for polynomial estimation of Angular
betweenness.

ax2 + bx+ c (6.1)
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Figure 6.2: Three examples for polynomial estimation of Angular
integration.

Angular integration and angular betweenness is calculated at ten different distances
by Stavroulaki et al. [30]. This means that there are 20 variables to include in
order to keep the calculations for each distance. However, these calculations can be
estimated using a polynomial representation, see Figure 6.1 and 6.2. They are then
represented using the coefficient for each term, i.e., a, b and c in Equation 6.1. This
leads to both angular integration and angular betweenness being represented using
only 6 variables.

6.1.2 Variable correlations
In order to explore the explanatory value of the available centrality variables regarding
pedestrian movement counts, correlation is calculated for each one of them. These
correlations are presented in Table 6.1. In Stavroulaki et al. [30] Angular betweenness
at 3 500 meters and Angular integration at 1 000 meters were picked because they
correlated highest with the pedestrian counts. In Table 6.1 Angular betweenness
at 3 500 meters correlates the highest but Angular integration at 1 000 meters does
not. There are two possible explanations for this. The first and probably most likely
explanation is because the correlation in Stavroulaki et al. [30] were calculated per
city which is not the case here. The second explanation could be that only the
training data is used to calculate the correlations here, i.e., only 90 percent of the
data.

The centrality polynomials for Angular integration has a low correlation with pedes-
trian movement counts, except for the constant term. The centrality polynomials
for Angular betweenness, however, all correlate higher than Angular betweenness at
500 meters. The highest correlated term in these is the 2nd term in Equation 6.1.
This is the term that determines the rate of change in Angular betweenness when
increasing the radii of the measurement.

6.1.3 Models
Three new models are explored here, see Table 6.2. The new models are All, Three
and Polynomials. The model referred to as All simply includes all measurements for
angular integration and angular betweenness. The model referred to as Three includes
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Table 6.1: Correlation with pedestrian movement counts for
centrality variables.

Integration Betweenness Polynomials
Int5000m 0.151 Bet5000m 0.253 Int Constant 0.245
Int4500m 0.179 Bet4500m 0.269 Int 1st term -0.030
Int4000m 0.202 Bet4000m 0.277 Int 2nd term -0.057
Int3500m 0.127 Bet3500m 0.372 Bet Constant 0.151
Int3000m 0.236 Bet3000m 0.279 Bet 1st term -0.179
Int2500m 0.266 Bet2500m 0.275 Bet 2nd term 0.224
Int2000m 0.284 Bet2000m 0.260
Int1500m 0.289 Bet1500m 0.205
Int1000m 0.276 Bet1000m 0.160
Int500m 0.253 Bet500m 0.108

three measurements each for angular integration and angular betweenness, within 500
meters, 2 500 meters and 5 000 meters. The model referred to as Polynomials represent
angular betweenness and angular integration by using polynomial estimations, in
the way described in Section 6.1.1.

6.2 Result
The result of the negative binomial for the centrality models is presented in Table
6.3. These results indicate that the Three model is the best of the models evaluated,
it scores best in all the metrics, it is also the only new model scoring higher than the
Spatial model.

The result of the random forest for the centrality models is presented in Table 6.4.
These results show that both the Three model and the Polynomials model scores
higher than the Spatial model in all metrics. The Three model, however, scores
considerably better than the Polynomials model.

The results presented in Tables 6.4 and 6.3 both indicate that the Three is the best
model among those tested. This could be because it informs the model about how
central a street segment is in regards to different radii. An example is that a small
street in a neighborhood could be a very central part for navigating within and out
of the neighborhood while it is not a central part for navigating within the city as a
whole. It is then probably more informative to know both of these facts instead of
only one of them to understand the pedestrian movement count of a street like this.

The same information as in the Three model is of course also included in the All
model. However, the All model is evidently scoring lower than the Three model.
This indicates that the information gain with including all radii is less than the
increase of complexity in finding a relationship to the pedestrian movement count
when training on this data. If given a larger set of data, there is a possibility that
the All model could perform better because it is then possible for the model to learn
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Table 6.2: Overview of the centrality models.

Spatial All Three Polynomial
Street centrality
Angular integration

5 000m - X X -
4 500m - X - -
4 000m - X - -
3 500m - X - -
3 000m - X - -
2 500m - X X -
2 000m - X - -
1 500m - X - -
1 000m X X - -
500m - X X -

Angular betweenness
5 000m - X X -
4 500m - X - -
4 000m - X - -
3 500m X X - -
3 000m - X - -
2 500m - X X -
2 000m - X - -
1 500m - X - -
1 000m - X - -
500m - X X -

Integration polynomial
Constant - - - X
1st term - - - X
2nd term - - - X

Betweenness polynomial
Constant - - - X
1st term - - - X
2nd term - - - X

...

... represents the other variables used that are not shown because
they are the same as the Spatial model in Table 3.1.
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Table 6.3: Results for negative binomial centrality
models

Model MAE RMSE R2 Adjusted R2

SpatialT 730 1 793 0.640 0.636
AllT 732 1 878 0.605 0.588
ThreeT 724 1 747 0.658 0.652
PolynomialsT 807 2 103 0.504 0.495

T: Angular betweenness and FSI are transformed.

Table 6.4: Results for random forest centrality
models

Model MAE RMSE R2 Adjusted R2

Spatial 761 1 722 0.668 0.664
All 748 1 738 0.661 0.648
Three 687 1 571 0.723 0.719
Polynomials 721 1 651 0.694 0.689

more complex relationships.
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7
Exploring different representations

of attractions

An extension of predictive models for pedestrian count is here explored by comparing
different representations for attractions. The reason for this is three-fold. Firstly,
previous research, such as Netto et al. [22], indicates that attractions have a high
influence on pedestrian movement. Secondly, the highest correlated variable to the
pedestrian movement counts is an attraction variable, see local markets within 500
meters in Table 5.1. Thirdly, more attraction data than was used in the previous
predictive models has already been collected by Bobkova et al. [7] from OSM and is
available for use.

7.1 Method
This experiment is performed by first creating two different types of variables which
are referred to as OSM Counts and OSM Distance, these are explained in Section
7.1.1. Then, new models are designed based on different attraction variables. The
design of the models is provided in Section 7.1.3 together with a short description of
each model. The results of the new models are presented in Section 7.2 and they are
also evaluated in comparison to the Spatial model, which is the highest scoring of
the original models created in Stavroulaki et al. [30].

7.1.1 Variable: OSM Attractions
Previous to this thesis, six attraction features had been calculated. These six features
are made up of three categories with two different “distances” for each. The three
categories are; Local Market, Public Transport and School. Each of them are
represented with a count from the actual street segment in question and a count
within a 500 meter walking radius. Note that these are the variables used in the
previous work, as mentioned in Section 3.3.

Considering the background knowledge from Section 3.2, it is clear that attractions
are important when predicting pedestrian movement. Therefore more granular data
for attractions are created in this thesis. This is done using the attraction data
collected by Bobkova et al. [7] as mentioned in Section 2.4.1. The distances to
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the surrounding attractions from each street segment are then calculated using
GeoPandas1 for storing geographical data, OSMnx2 for downloading OSM road
networks and NetworkX3 for calculating the shortest path.

Two new types of variables are then created from these calculations. One of the
types is the count of attractions within 500 meters for each OSM group. The other
type is the distance to the nearest attraction for each OSM group. A simplified
walk-through of the steps involved is provided below:

• Download the road network for walking from OSM using OSMnx with a 1 000
meter radius around every area.

• For each street segment in an area, calculate the distance to all the attraction
within this 1 000 meter radius using NetworkX.

• Calculate the number of attractions for each OSM group within 500 meters for
each street segment, using GeoPandas.

• Find the distance to the nearest attraction for each OSM Group for each street
segment, using GeoPandas. (Some attractions are further away than 1 000
meters, therefore extra calculations for longer distances are performed when
necessary.)

Figure 7.1: Shortest path to an attraction from a street segment
calculated from the nearest node of the center.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]

Figure 7.2: Shortest path to an attraction from a street segment
calculated from the center of the street segment.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]

The distances to attractions is calculated in two different ways. One way is to
calculate the distance from the nearest node from the center of the street segment,

1http://geopandas.org/
2https://osmnx.readthedocs.io/
3https://networkx.github.io/
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7. Exploring different representations of attractions

see Figure 7.1. The other way is calculate the distance from the center of the street
segment by adding it as a node in the road network, see Figure 7.2. In both ways
of calculating, the distance is calculated to the node that is closest to the target
attraction.

Only the result for calculating from the nearest node, as in Figure 7.1, is included
here, the results for calculating from the center of the street segment, as in Figure
7.2, is instead presented in Appendix A.1. The variables calculated from the nearest
node are chosen because, on average, they scored higher in R2 values and had higher
correlations with the pedestrian movement counts.

There is one important note regarding the differences in the road networks used
for the distance calculation to attractions. The calculations here are performed on
the OSM walking road network which is different from the road network used by
Stavroulaki et al. [30] for calculating the variables presented in Section 3.1, i.e., the
variables that were calculated previous to this thesis. The main difference between
the networks is that the non-motorized does not include lanes while the OSM walk
network does.

7.1.2 Variable correlation

Table 7.1: Correlation between attraction variables and
pedestrian movement counts.

Previous attractions OSM Counts OSM Distance
PT 500m 0.341 OSM-20 0.171 OSM-20 -0.199
LM 500m 0.479 OSM-21 0.413 OSM-21 -0.227
Sch 500m -0.051 OSM-22 0.383 OSM-22 -0.251
PT street 0.127 OSM-23 0.427 OSM-23 -0.180
LM street 0.390 OSM-24 0.409 OSM-24 -0.238
Sch street 0.001 OSM-25 0.495 OSM-25 -0.190

OSM-26 0.281 OSM-26 -0.256
OSM-27 0.258 OSM-27 -0.210
OSM-56 0.343 OSM-56 -0.133
OSM-5601 0.400 OSM-5601 -0.141

PT: Public transport nodes, LM: Local markets, Sch: Schools
The description of each OSM code is found in Table 2.4.

The correlation between all the attraction variables and the pedestrian movement
counts is presented in Table 7.1. These correlations indicate that the OSM Count
variables have higher explanatory value than the OSM Distance variables. The
variable with highest correlation is OSM-25 when counted within 500 meters. This is
not too surprising when considering that the OSM-25 group contains supermarkets,
see Table 2.4 for details on OSM-25, which is a frequent destination for many people.
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Table 7.2: Overview of the attraction models.
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Attractions
Local Markets
Segment - - - - - - - -
500m - C - - - - - -

Public Transport
Segment - - - - - - - -
500m - C - - - - - -

Schools
Segment - - - - - - - -
500m - C - - - - - -

OSM codes
20 (Public facilities) - - C C D - - -
21 (Hospitals,...) - - C C D C D C+D
22 (Culture,...) - - C C D - D D
23 (Restaurants,...) - - C C D C - C
24 (Hotel,...) - - C C D C D C+D
25 (Supermarkets,...) - - C C D C - C
26 (Banks,...) - - C C D - D D
27 (Tourism) - - C C D - D D
56 (Public transport) - - C C D - - -
5601 (Railway station) - - - C D C - C

...

C: count of attractions.
D: walking distance to the nearest attraction in meters.
... represents the other variables used that are not shown because
they are the same as the Spatial model in Table 3.1.
The full description of each OSM code is found in Table 2.4.
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7.1.3 Models
Seven new models are explored using the available attraction variables, see Table
7.2. The Attraction 500m model only includes the attraction variables at 500 meters
calculated previous to this thesis, these attraction variables are also calculated at
street segment level which is included in the original Attraction model created by
Stavroulaki et al. [30]. The OSM Group model includes all the unique OSM groups,
i.e., the two digit codes. The OSM Railway model is an extension of OSM Group
where OSM-5601 is also included. OSM-5601 is the code for railway stations. The
OSM Distance model includes OSM Distance variables. The OSM Railway Top
model includes the OSM Count variables that has a correlation above 0.4. The OSM
Distance Top includes the OSM Distance variables that has a correlation below −0.2.
The OSM All Top model includes all of the variables included in both OSM Railway
Top and OSM Distance Top.

7.2 Result
Table 7.3: Results for negative binomial attraction models

Model MAE RMSE R2 Adjusted R2

SpatialT 730 1 793 0.640 0.636
Attraction 500mT 752 1 854 0.615 0.609
OSM GroupsT 742 1 855 0.614 0.604
OSM RailwayT 745 1 867 0.609 0.598
OSM DistanceT 714 1 763 0.652 0.642
OSM Railway TopT 736 1 829 0.625 0.617
OSM Distance TopT 717 1 768 0.650 0.643
OSM All TopT 726 1 820 0.629 0.618

T: Angular betweenness and FSI are transformed.

The result of the negative binomial for the attraction models is presented in 7.3.
Only the models using OSM Distance variables scored better than the Spatial model.

Table 7.4: Results for random forest attraction models

Model MAE RMSE R2 Adjusted R2

Spatial 762 1 720 0.668 0.665
Attraction 500m 725 1 719 0.669 0.664
OSM Groups 725 1 782 0.644 0.635
OSM Railway 715 1 766 0.650 0.641
OSM Distance 776 1 843 0.619 0.609
OSM Railway Top 708 1 679 0.684 0.678
OSM Distance Top 760 1 828 0.625 0.619
OSM All Top 729 1 751 0.656 0.647

The result of the random forest for the attraction models is presented in 7.4. Both
the Attraction 500m model and the OSM Railway Top model scored higher than the
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Spatial model. However, only the OSM Railway Top model is worth considering in
this result since the increase in R2 is so low for the Attraction 500m model.

Results in Tables 7.4 and 7.3 indicate that the negative binomial and random forest
react quite differently to the new models. Negative binomial scores the best when
using distance while random forest scores the best when using counts. One of the
reasons for this could be the zero inflation in the count variables, i.e. that the
variables contain a high percentage of zero values. In the case of zero inflated
variables, random forest is not affected in the same way because it is trained using
many binary decisions, i.e. yes or no questions. This means that the model can treat
the zero values completely differently from how it treats the non-zero values. The
same is not true for the negative binomial since it is a type of linear regression model.
Instead, it tries to find a linear relationship between the variables and predictor.
This means that the relationship found between the variable and the predictor can
be highly influenced by zero values if they are many. This is true for the OSM Count
variables, the average of zero values is 41.3% which is a large part the values.
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8
Exploring new variables based on

road network

An extension of predictive models for pedestrian count adds variables created based
on the road network. The reason for this is based on previous research. The first
insight considered from previous research is that route directness and completeness
of pedestrian facilities was found to affect pedestrian volumes, as stated by Moudon
et al. [21]. Route directness and completeness are not the exact variables that are
created in this experiments, however, the variables here explain the connectivity of
the network to some extent which is similar to these variables. The second insight
considered from previous research is that walkability decreases when other means of
transport is added, as stated by Forsyth and Southworth [12].

8.1 Method

Figure 8.1: OSM walk network around a street segment with 500m
reach.
The center of the street segment is marked with a circle.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]
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Figure 8.2: OSM bike network around a street segment with 500m
reach.
The center of the street segment is marked with a circle.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]

Figure 8.3: OSM drive network around a street segment with 500m
reach.
The center of the street segment is marked with a circle.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]
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Figure 8.4: Non-motorized network around a street segment with 500m
reach.
The center of the street segment is marked with a circle.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]

Four different road networks are used. Three are OSM road networks with different
modes of transport, walk, bike and drive, see Figure 8.1, 8.2 and 8.3. The last one is
a non-motorized network that is provided by Berghauser Pont et al. [3], see Figure
8.4. The non-motorized network includes all streets and paths that are accessible for
people walking or cycling, including those that are shared with vehicles. From the
aforementioned four figures, it is possible to see that the OSM road networks are
more detailed than the non-motorized network. The difference is that the OSM road
networks include “lanes” while the non-motorized network does not.

Using the OSM road networks, it is possible to compare the road networks for
different modes of transport, i.e., walking, biking and driving. This could be useful
because of the findings in Forsyth and Southworth [12], that suggested that an
addition of other means of transport decreases walkability.

The road networks used are constricted using two different distance measures for
a distance of 500 meters. One is network reach which restricts the network to the
street segments reachable within 500 meters distance of travel. The other is called
bounding box which includes the road network inside a square with each side being
the 500 meters from the center. Figure 8.5 shows the walk network using bounding
box for 500 meters, this can be compared to Figure 8.1 which instead uses network
reach for the same network.

8.1.1 Variable: Network length
A few variables are created by summing up the length of the road network. This
could give an indication of how well connected the network is. When the total
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Figure 8.5: OSM walk network around a street segment with 500m
bounding box.
The center of the street segment is marked with a circle.
Attribution: Leaflet[1] | © OpenStreetMap[23] © CartoDB[9]

network length is larger, it is likely that there are more connected roads. These
variables are created using the OSM road networks, i.e., walk, bike and drive. They
are created using both network reach and bounding box.

There are also two ratio variables created, one for each of the distance measures. The
variables are calculated as the ratio between the walk network and drive network.
This is done with the assumption that the longer the network length is for walking
in comparison to driving, the better the walkability.

8.1.2 Variable: Intersection density

Some variables are created by calculating the number of intersections in the road
network. The reason is partly the same as for the network length variables, that it
gives an indication on how well connected the road network is.

Four intersection variables are created for each road network, the road networks
are here limited by using network reach. The first three variables are created by
calculating three way, four way and more way intersections. The last variable is the
total count of intersections, i.e., three way + four way + more way.

An extra variable is created by taking the ratio between the intersections in the
walking network and the driving network, similar to the ratio variables for the
network length.

56



8. Exploring new variables based on road network

Table 8.1: Correlation between road network variables and pedestrian movement
counts.

NMZ Intersection OSM Intersection OSM Network Length
Three Way 0.108 Walk Three Way 0.314 Walk Reach 0.335
Four Way 0.207 Walk Four Way 0.295 Bike Reach -0.046
More Way 0.076 Walk More Way 0.264 Drive Reach -0.017
Intersections 0.150 Walk Intersections 0.327 Walk/Drive Reach 0.127

Bike Three Way 0.098 Walk Box 0.288
Bike Four Way 0.099 Bike Box -0.006
Bike More Way 0.162 Drive Box 0.076
Bike Intersection 0.118 Walk/Drive Box 0.115
Drive Three Way 0.045
Drive Four Way 0.101
Drive More Way 0.158
Drive Intersections 0.074
Walk/Drive Intersections 0.168

8.1.3 Variable correlation
The correlations with pedestrian count for all of the road network variables are
presented in Table 8.1.

The walk network (Walk Three Way, Walk Four Way, Walk More Way and Walk
Intersections) seems to correlate the highest with pedestrian counts which is not
too surprising. It is worth noting here, however, that the walking network has a
noticeably higher correlation than the non-motorized network (Three Way, Four Way,
More Way, Intersections). This indicates that the extra details included in the OSM
road networks are valuable when predicting pedestrian counts.

The bike and drive network length variables, to the right in Table 8.1, have low
correlations with pedestrian movement counts and they are mostly negative. The
negative correlation here supports the claim made by Forsyth and Southworth [12],
that the addition of other means of transport decreases walkability and therefore
also the pedestrian counts. However, the correlations here are too small to draw any
conclusions. Moreover, the bike and drive intersection variables, in the middle of
Table 8.1, all have a positive correlation.

The network length variables calculated using road networks constrained by network
reach have higher correlation than those constrained by bounding box. This could be
because of the simple fact that the network reach constrains the road network in the
same way as people actually travel. Therefore, then also being more representative
of pedestrian counts.

8.1.4 Models
The new models created in this experiment are presented in Table 8.2. Six of the
models are created using the intersection variables (NMZ Intersection Detailed, NMZ
Intersection, Walk Intersection Detailed, Walk Intersection, All OSM Intersection

57



8. Exploring new variables based on road network

Table 8.2: Overview of the road network models.
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Road network
Intersections
Walk Three Way - - - X - - - - - - - - -
Walk Four Way - - - X - - - - - - - - -
Walk More Way - - - X - - - - - - - - -
Walk Intersections - - - - X X - - - - - - -
Bike Intersections - - - - - X - - - - - - -
Drive Intersections - - - - - X - - - - - - -
Walk/Drive Intersections - - - - - - X - - - - - -
NMZ Three Way - X - - - - - - - - - - -
NMZ Four Way - X - - - - - - - - - - -
NMZ More Way - X - - - - - - - - - - -
NMZ Intersections - - X - - - - - - - - - -

Network length
Walk Box - - - - - - - - X - X - -
Bike Box - - - - - - - - X - - - -
Drive Box - - - - - - - - X - - - -
Walk/Drive Box - - - - - - - - - - - - X
Walk Reach - - - - - - - X - X - - -
Bike Reach - - - - - - - X - - - - -
Drive Reach - - - - - - - X - - - - -
Walk/Drive Reach - - - - - - - - - - - X -

...

... represents the other variables used that are not shown because they are the same as
the Spatial model in Table 3.1.
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and Intersection Ratio). The six other models are created using the network length
variables (All OSM Reach, All OSM Box, Walk Reach, Walk Box, Ratio Reach and
Ratio Box).

The NMZ Intersection models include the variables from the non-motorized network.
The NMZ Intersection Detailed model includes the intersection count variables for
each intersection type and the NMZ Intersection model includes the total intersection
count.

The Walk Intersection models (both Walk Intersection Detailed andWalk Intersection)
include the variables created from the walk network. The Walk Intersection Detailed
model includes the intersection count variables for each intersection type and the
Walk Intersection model includes the total intersection count.

The All OSM Intersection model includes the intersection variable for the walk, bike
and drive network.

The Intersection Ratio model includes the intersection ratio variable, i.e., the ratio
between walk and drive intersections.

The All OSM models (both All OSM Reach and All OSM Box) include the network
length variables for all the OSM road networks, i.e., walk, bike and drive. The All
OSM Reach model includes the variables created using the network reach constraint
and the All OSM Box model includes the variables created using the bounding box
constraint.

The Walk models (both Walk Reach and Walk Box) include the network length
variables created using the walk networks. The Walk Reach model include the
variables created using the network reach constraint and the Walk Box model
includes the variables created using the bounding box constraint.

The Ratio models (both Ratio Reach and Ratio Box) include the network length
ratio variables, i.e., the ratio between the walk and drive network length. The Ratio
Reach model includes the ratio variable created using the network reach constraint
and the Ratio Box model includes the ratio variable created using the bounding box
constraint.

8.2 Result
The result of the negative binomial for the road network models is presented in Table
8.3. There does not seem to be any models that score noticeably better than the
Spatial model. The ones that do score better than the Spatial model (Intersection
Ratio, Walk Reach, Ratio Reach and Ratio Box) all score less than one percent
higher in R2. One model that attracts attention is the OSM All Reach model which
scores considerably lower than all the other models.

The result of the random forest for the centrality models is presented in Table 8.4.

59



8. Exploring new variables based on road network

Table 8.3: Results for negative binomial road network models

Model MAE RMSE R2 Adjusted R2

SpatialT 730 1 793 0.640 0.636
NMZ Intersection DetailedT 742 1 819 0.629 0.623
NMZ IntersectionT 741 1 815 0.631 0.626
Walk Intersection DetailedT 744 1 811 0.633 0.626
Walk IntersectionT 741 1 803 0.635 0.631
All OSM IntersectionT 740 1 802 0.636 0.630
Intersection RatioT 729 1 785 0.643 0.638
All OSM ReachT 738 1 917 0.588 0.581
All OSM BoxT 732 1 780 0.637 0.631
Walk ReachT 736 1 782 0.644 0.639
Walk BoxT 732 1 798 0.637 0.633
Ratio ReachT 726 1 773 0.647 0.643
Ratio BoxT 730 1 789 0.641 0.636

T: Angular betweenness and FSI are transformed.

Table 8.4: Results for random forest road network models

Model MAE RMSE R2 Adjusted R2

Spatial 760 1 725 0.666 0.663
NMZ Intersection Detailed 754 1 756 0.654 0.649
NMZ Intersection 751 1 726 0.666 0.662
Walk Intersection Detailed 729 1 708 0.673 0.668
Walk Intersection 728 1 660 0.691 0.687
All OSM Intersection 717 1 671 0.687 0.683
Intersection Ratio 755 1 715 0.670 0.666
All OSM Reach 748 1 694 0.678 0.673
All OSM Box 743 1 685 0.682 0.677
Walk Reach 747 1 712 0.671 0.668
Walk Box 747 1 689 0.680 0.677
Ratio Reach 745 1 729 0.665 0.661
Ratio Box 753 1 741 0.660 0.656
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There are a few models that score better than the Spatial model, the most noticeable
are the Walk Intersection and the OSM All Intersection models. Between these two
models, the Walk Intersection model scores worse in MAE but better in the other
three metrics. This means that the OSM All Intersection model, comparatively, has
one or more bigger errors.

The results presented in Tables 8.4 and 8.3 show that road network models only
score noticeably better when using random forest.
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9
Selection and evaluation of final

model

In the previous experiments a few models are found that score higher than the Spatial
model, the highest scoring model from the experiment of reproducing previous work
which is why it is used as a baseline. In this experiment, the highest scoring models
from the experiments in Chapters 6, 7 and 8 are combined into one new model.
This model is then inspected to see if any of the variables included can be removed
without any major performance impact. After this filtering of variables, the final
model is evaluated using the test data.

The final model is created using random forest since the models evaluated using
random forest generally score better than the ones using negative binomial.

9.1 Models

Table 9.1: Variables included in the Combination model.

Street centrality Built density &
Land division Attractions Misc

Integration 5 000m FSI OSM 21 Walk intersections
Integration 2 500m Plots OSM 23 City
Integration 500m OSM 24 Weekday
Betweenness 5 000m OSM 25
Betweenness 2 500m OSM 5601
Betweenness 500m
FSI, Plots, City and Weekday are variables kept from the Spatial model as
mentioned in Section 3.3.
The description of each OSM code is found in Table 2.4.

The Combination model includes the variables from each of the best performing
models from each of the experiments in Chapters 6, 7 and 8. The highest scoring
street centrality model is the Three model. The highest scoring attraction model
using random forest is the OSM Railway Top. The highest scoring road network
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model using random forest is the Walk Intersection model. The variables from all
these models sum up to the variables presented in Table 9.1.

Figure 9.1: Correlations for Combination model variables.

The correlations between these variables and also the pedestrian count are presented
in Figure 9.1. The most obvious correlations to point out are the correlations within
groups of variables, i.e., the group of attraction variables, the group of betweenness
variables and the group of integration variables. Other than these, there are a few
other correlations to point out:

• OSM 21 correlates more with betweenness than integration. This indicates
hospitals, pharmacies and other attractions included in OSM-21 are generally
close to street segments that mediate movement within the area.

• OSM 24 and 25 correlates more with integration than betweenness. This
indicates that hotels, motels, supermarkets, bakeries, etc. are generally close to
street segments that are relatively easy to reach from the other street segment
in the area.

• Betweenness at 500 meters correlates negatively with all the integration vari-
ables. This indicates that street segments that mediate movement in a smaller
area tend to not be placed in such a way that it is easily accessible from all
street segments in the area.

• FSI correlates with attractions, walk intersections and pedestrian count. This
supports the fact that FSI is a very informative variable in regards to pedestrian
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movement. It also indicates that attraction variables and the walk intersection
variable are not as important when FSI is included, and vice versa.

• Plot correlates with integration at 5 000 meters and negatively with OSM 5601.
This indicates that street segments that are relatively easy to access from most
other street segments in a larger area tend to have more accessible plots around
them. It also indicates that street segments close to railway station tend to
have less accessible plots around them.

• Walk intersection correlates highest with FSI, attractions and pedestrian count.
This indicates that densely built areas are generally more “connected”. It also
indicates that more highly “connected” areas generally enjoy a larger number
of pedestrians.

9.2 Selection

Table 9.2: Combination model variable importance.

Percentage of MSE Increase Node Purity Increase
FSI 10.93 Integration 2 500m 760 957 540
OSM 23 7.84 OSM 25 712 498 917
Integration 5 000m 7.78 FSI 544 217 204
Integration 2 500m 7.31 Betweenness 2 500m 397 781 844
Betweenness 5 000m 6.61 Betweenness 5 000m 390 716 238
Betweenness 2 500m 6.46 OSM 23 378 126 925
OSM 25 6.33 Integration 500m 367 889 341
Walk intersections 6.31 Integration 5 000m 359 413 367
Integration 500m 5.07 OSM 21 278 078 407
OSM 24 4.91 OSM 5601 242 076 788
OSM 5601 4.67 Betweenness 500m 208 445 651
Weekday 4.60 OSM 24 206 418 895
OSM 21 4.43 Walk intersections 195 218 881
Betweenness 500m 3.91 Plot 500m 133 159 434
City 2.38 Weekday 52 799 925
Plot 500m 2.20 City 21 646 961
Percentage of MSE Increase indicates how much MSE would increase if
the variable in question is assigned other values.
A high Node Purity Increase indicates that splits using the variable in
question leads to better grouping of the data.
The description of each OSM code is found in Table 2.4.

Starting from the Combination model, multiple models are evaluated where the
first one includes all variables and each following model has one more variable
removed. Which variable to remove in which order is chosen using the importance
of each variable. These importances are presented in Table 9.2 in the form of
Percentage of MSE Increase and Node Purity Increase. The reason why this is
done using the importance measurements instead of correlation is because the
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importance measurements directly indicate how useful each variable is in respect
to the others. The importance scores are calculated from running cross-validation
on the Combination model. This removal of variables is done to keep the model as
simple as possible and can also limit the possibility of the model overfits to the data.

Table 9.3: Results for combination model and variable
filtering

Model MAE RMSE R2 Adjusted R2

Spatial 760 1 725 0.666 0.663
Combination 640 1 493 0.750 0.743
-City +3 +15 −0.005 −0.004
-Plot −8 −9 +0.003 +0.004
-Weekday +4 +4 −0.001 +0.000
-Bet500 +13 +27 −0.009 −0.007
-OSM21 +8 +21 −0.007 −0.004
-OSM5601 +17 +46 −0.016 −0.013
-OSM24 +19 +25 −0.008 −0.005
-Int500 +27 +37 −0.012 −0.009
-WalkIntersection +28 +53 −0.018 −0.014
-Int5000 +39 +65 −0.022 −0.018
-Bet2500 +53 +137 −0.048 −0.043
Each of the metrics reported after the Combination model are
relative scores, relative to the Combination model and the model
names are based on which of the variables have been excluded
in that model. E.g., in the -City model, the City variable has
been excluded and in the -Plot model, the City variables and the
number of plots variable have been excluded.

Table 9.4: Variables included in the Final model.

Street centrality Attractions Built density &
Road network

Integration 5 000m OSM 21 (Hospitals, pharmacies, ...) Floor Space Index (FSI)
Integration 2 500m OSM 23 (Restaurants, pubs, cafes, ...) Walk intersections
Integration 500m OSM 24 (Hotel, motels, ...)
Betweenness 5 000m OSM 25 (Supermarkets, bakeries, ...)
Betweenness 2 500m OSM 5601 (A larger railway station.)
Betweenness 500m

The results of the variable filtering are presented in Table 9.3. The -Weekday model
scores the same in Adjusted R2 as the combination model and almost as good in all
the other metrics. It is difficult to know which of these models is the best choice but
because the -Weekday model scores almost as well as the Combination model, it is
chosen as the final model. A summary of the variables included in the Final models
is presented in Table 9.4.
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Table 9.5: Results for Final model evaluated
using the test data

Model MAE RMSE R2 Adjusted R2

Spatial 842 1889 0.491 0.449
Final 810 2024 0.416 0.301

9.3 Evaluation
Table 9.5 presents the metrics from evaluating with the test data. The results here
seem to indicate that the Spatial model performs better than the Final model, all of
the metrics except for MAE are in favor for the Spatial model. It is, however, worth
noting that the test data is only approximately 10 percent of the data collection, in
total 80 street segments. With that in mind, it is difficult to know how these scores
represent the actual performance of the models.

The Spatial model scores an R2 of 0.491 which can be interpreted as describing 49
percent of the variance in the data. This is noticeably lower than when the Spatial
model is evaluated using cross-validation on the training data, 67 percent, those
scores are presented in Table 9.3.

9.3.1 Exploring highly over- and underestimated counts

Figure 9.2: Residuals for Final and Spatial model using test data.

The fact that the Final model scores worse in all the metrics except MAE indicates
that there are one or more larger errors. The residuals for each of the models are
presented in Figure 9.2. There are three very noticeable residuals, two underestimated
and one overestimated. These three residuals look similar for both the Spatial and
the Final model but the overestimated error is a bit larger for the Final model. This
difference can have a big impact when the error is squared, therefore it can be the
explanation for why the Final model scores worse.
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An interesting fact to note here is that two of these three noticeable residuals are
street segments in Norrmalm, Stockholm which is the area that is explored in Section
5.4. So this again indicates that there is either something different with Norrmalm
that is not captured in the model or that the measurements in Norrmalm are somehow
not representative of the “usual” pedestrian counts in the area.

Table 9.6: Results for Final model evaluated
using the test data with the largest error
removed

Model MAE RMSE R2 Adjusted R2

Spatial 738 1602 0.585 0.550
Final 668 1520 0.626 0.551

The metrics recalculated when removing the top error, the overestimated street
segment, are presented in Table 9.6. The metrics are clearly better because the top
error is removed but the interesting part is how much better the metrics are. The
R2 score for the Final model increases with more than 0.2. The fact that one data
point affects the metrics as much as this opens up the question if the test set is
representative of the general population of street segments.

9.3.2 Cross-validation using all data
Table 9.7: Results for Final model evaluated
using cross-validation on all the data

Model MAE RMSE R2 Adjusted R2

Spatial 760 1751 0.646 0.643
Final 656 1533 0.729 0.724

In order to test if the test data is not representative of the general population of
street segments, a 10-fold cross-validation is run on all the data. This can be seen
as 10 different runs with randomly chosen training set of 90 percent and test set of
10 percent (in this case the test set is better viewed as a validation set). The result
from this cross-validation is presented in Table 9.7. From the results it is possible to
see that the Final model scores higher than the Spatial model in all metrics. It is
also possible to see that the decrease in the metrics is similar between both models.
The Spatial model decrease from an R2 of 0.666 to an R2 of 0.646 and the Final
model decrease from an R2 of 0.749 to an R2 of 0.729.

As with all other experiments in this thesis, this cross-validation is run 10 times using
different random seeds. The results from each individual run is not presented here
but they all indicate the same things, the Final model performs noticeably better in
all of them. This result does support the fact that the test data is not representative
of the general population of street segments, this could mean that it was by chance
that the Spatial model performs better than the Final model using the original train
and test data split.
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10
Discussion

This chapter includes discussion about the result from the experiments performed in
this thesis. There is also a section that explores ethical considerations.

10.1 Discussion

10.1.1 Reproducing previous work

There are three noteworthy findings from reproducing the previous work, Stavroulaki
et al. [30]. The first finding is that the negative binomial performs much better when
transforming FSI and betweenness. The second finding is that there are two very
high counts in Norrmalm, Stockholm, and when considering the spatial layout and
the shopping malls there, they seem possible. The third finding is that the Spatial
model (the model that includes street centrality, built density and land division)
scores higher than the Attraction model (the model that includes attractions in
addition to the variables included in the Spatial model). That indicates that the
attraction variables created previous to this thesis complicates the model more than
it provides new information to the model when training on this data. If given a larger
set of data, there is a possibility that the Attraction model could perform better
than the Spatial because it is then possible for the model to learn more complex
relationships.

To summarize the best performing model from this experiment, the Spatial model, it
includes the variables that represent street centrality, built density and land division.
More specifically the variables are:

• Angular integration within 1 000 meters
• Angular betweenness within 3 500 meters
• FSI accessible within 500 meters
• Number of accessible plot within 500 meters
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10.1.2 Exploring different representations of street central-
ity

One noteworthy finding from exploring different representations of street centrality
is that the highest scoring model using different representations of street centrality is
the Three model (the model that includes street centrality measurements using three
different radii). The Three model includes the following street centrality variables:

• Angular integration within 500, 2 500 and 5 000 meters
• Angular betweenness within 500, 2 500 and 5 000 meters

The Three model probably scores higher than the Spatial model because it includes
the street centrality variables at more ranges, providing more information to the
model about the street. This information is also included in the All model (the model
that includes all the street centrality variables, i.e., street centrality measurements
using ten different radii). However, the All model scores lower than the Three model.
This indicates that the information gain with including all radii is less than the
increase of complexity in finding a relationship to the pedestrian movement count
when training on this data. If given a larger set of data, there is a possibility that
the All model could perform better because it is then possible for the model to learn
more complex relationships.

10.1.3 Exploring different representations of attractions
There are three noteworthy findings from exploring different representations of
attractions. The first finding is that attraction variables counted on the street
segment generally correlate lower with the pedestrian counts in comparison to counts
within 500 meters. The second finding is that the attraction variables with counts of
attractions generally correlate higher with the pedestrian counts in comparison to
the variables with the distance to the nearest attraction. The third finding is that
the highest scoring model for negative binomial and random forest are not the same.

When using negative binomial, the highest scoring model is the OSM Distance model
(the model that includes the distance to the nearest attraction within each OSM
category). When using random forest, the highest scoring model is the OSM Railway
Top model (the model that includes the five highest correlated variables that count
the number of attractions within 500 meters for each OSM category). The reason
why the negative binomial and random forest score higher with different models is
probably because of the linear nature of negative binomial. The OSM Railway Top
model, which scores best using random forest, contains attraction count variables
and those variables contain a considerable amount of zeroes, on average about 40
percent. Because of that, the negative binomial might not be good at finding a linear
relationship. Random forest can naturally treat the zero values and the non-zero
values differently, therefore, it is not affected by this fact.

The new variables included in the OSM Railway Top model, the highest scoring
using random forest, are the attraction counts within 500 meters for the following
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categories:

• OSM-21: Hospitals, pharmacies, ...
• OSM-23: Restaurants, pubs, cafes, ...
• OSM-24: Hotel, motels, and other places to stay the night
• OSM-25: Supermarkets, bakeries, ...
• OSM-5601: A larger railway station of mainline rail services.

10.1.4 Exploring new variables based on road network
There are three noteworthy findings from exploring new variables based on road
network. The first finding is that network length calculated using network reach (a
way of limiting the included road network from a point by using the distance traveled)
correlates higher with the pedestrian counts in comparison to using a bounding box
(a way of limiting the included road network from a point within a square with
each side being the same distance from the center). The second finding is that
variables created from the walk network (the road network for pedestrians) correlated
higher with the pedestrian movement counts in comparison to the bike, drive (the
road network for cars, motorcycles, etc.) and non-motorized (the road network for
non-motorized traffic) networks. The third finding is that only random forest, not
negative binomial, scored noticeably higher than the Spatial model with any of the
models created during this experiment. The highest scoring model using random
forest is the Walk Intersection model which includes the count of walk intersections
within 500 meter network reach.

The reason why only random forest scored noticeably better with road network models
could be that the relation between the road network variables and the remaining
variance after considering all the other variables might not be linear.

The summary of the findings in the experiment is:

• Using network reach to limit the road network seems more informative than
limiting it using a bounding box.

• The walk network seems more informative than the bike, drive and non-
motorized networks.

• The highest scoring model for random forest includes the count of intersections
in the walk network limited by a 500 meter network reach.

10.1.5 Selection and evaluation of the final model
In this experiment, a model called Combination is constructed from combining all
of the variables from the highest scoring model using random forest for each of the
preceding experiments. This model is then used as the basis for creating the model
called Final. The Final model is found by sequentially removing one variable at a
time from the Combination model based on the importance given by random forest.
The Final model is then chosen by arbitrarily finding a good balance between the
performance and the number of variables included. See Figure 10.1 for the variables
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Table 10.1: Variables included in the Final model.

Street centrality Attractions Built density &
Road network

Integration 5 000m OSM 21 (Hospitals, pharmacies, ...) Floor Space Index (FSI)
Integration 2 500m OSM 23 (Restaurants, pubs, cafes, ...) Walk intersections
Integration 500m OSM 24 (Hotel, motels, ...)
Betweenness 5 000m OSM 25 (Supermarkets, bakeries, ...)
Betweenness 2 500m OSM 5601 (A larger railway station.)
Betweenness 500m

that are included in the Final model. The rest of the experiment is to evaluate the
Final model in comparison to the Spatial model (the best performing model when
reproducing the previous work).

A summary of the initial results in this experiment is provided below:

• The Combination model scores noticeably higher than the Spatial model using
cross-validation on the training data, 0.750 compared to 0.666 in R2.

• The Final model excludes three variables from the Combination model and
scores an R2 of 0.749.

• The Final model scores worse than the Spatial model in most of the metrics
when evaluating on the test data, 0.416 in comparison to 0.491 in R2. However,
the Final model scores better in MAE, 810 in comparison to 842.

The fact that the Final model scores worse on the test data in all metrics except
MAE is surprising given the fact that the Final model scores considerably better
than the Spatial model on the training data. There are two possible reasons for this,
one is that the Final model generalizes worse than the Spatial model and the other
is that the test set does not represent the general population of street segments.
When the second reason is explored we find that one street segment, amongst the 80
included in the test data, affects the metrics greatly. If this one street segment is
excluded, the Final model scores an R2 of 0.626 instead of 0.416. In this case, the
Final model also scores better than the Spatial model, which scores an R2 of 0.585.

Whether the test set is representative of the general population of street segments is
further explored by running a 10-fold cross-validation on all of the data, i.e., including
both the training and the test set. The result of this is that Final model scores
noticeably higher than the Spatial model, 0.729 in comparison to 0.643 in R2.

A summary of the results from this further analysis is provided below:

• When excluding a street segment that is greatly over-estimated by both the
Final and Spatial model, then the Final model performs better than the Spatial
model, 0.626 in comparison to 0.585 in R2.

• When running a 10-fold cross validation on all of the data (both training and
test data), the Final model scores considerably better than the Spatial model,
0.729 in comparison to 0.643 in R2. Note also that the decrease in performance

72



10. Discussion

in comparison to the result when running on only the training data is similar
between the Spatial and Final model.

The fact that the Final model scores higher than the Spatial when running cross-
validation on all the data is to be expected. It is expected since the Final model
scores higher than the Spatial model on the training data, which is the majority (90
percent) of the data used in this cross-validation. One interesting thing to note here,
however, is that both models decrease similar in performance when comparing with
the result from using only the training data. If the Spatial model generalizes better
than Final model, then we would expect that the Final model would decrease more
in performance than the Spatial model when including the test data. Since this is not
the case, a reasonable assumption is that the Spatial model by pure chance scored
better in the original train and test data split and not because it generalizes better.

10.1.6 Main findings in relation to this thesis’ objectives
The objectives in this thesis are the listed below, with an explanation of the findings.

Evaluate random forest as an alternative algorithm to negative binomial.
Random forest seems to be more robust than the negative binomial in two ways.
There is no need to transform any variables and it does not perform worse using zero-
inflated variables. Random forest, in general, scores higher than negative binomial
using MAE, RMSE, R2 and Adjusted R2. However, it is important to note that the
choice of algorithm should be based on the purpose of using it. Negative binomial
is a probabilistic model which means that it provides probabilities for each of the
samples in the data, this is not the case for random forest. So negative binomial
could be more useful if the purpose is mainly to model and analyze the data rather
than performing predictions.

Explore new variables to further explain pedestrian movement counts.
Many new variables are explored in this thesis. Such as:

• polynomial estimation of integration and betweenness, see Section 6.1.1 for
more details.

• attraction variables based on OSM codes (both counts within 500 meters and
distance to nearest attraction), see Section 7.1.1 for more details.

• road network lengths within 500 meters and intersection counts within 500
meters (total count and categorized into three-way, four-way and more-way
intersections), see Sections 8.1.1 and 8.1.2 for more details.

Both the road network lengths and the intersection counts are evaluated using
four different road networks, the OSM walk, bike and drive network and also a
non-motorized network created by Berghauser Pont et al. [3].

Find, from the variables available, the set of variables that best explain
the pedestrian movement counts.
The best set of variables found is the one that composes the Final model, see Table
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10.1. These variables include street centrality variables within three different radii,
built density in the form of FSI, attraction counts for five different OSM categories
and the intersection count based on the OSM walk network. See Figure 9.1 and
Table 9.2 for more details of the correlation and importance for these variables.

10.2 Ethics
This thesis explores the relation between the built environment and pedestrian
movement counts. If findings are used as a basis for change of the built environment,
it is important to know what the potential biases in the data are. Otherwise it can
lead to exclusion or down-prioritization of specific areas or groups of people.

It is possible to imagine that there are generally fewer people having their phone and
Wi-Fi turned on in some specific areas. An example of those would be areas with
elderly care, meditation centers or schools. The attraction variables for schools did
not show any correlation to the pedestrian counts but whether or not that gives any
indication that people tend to have their phones or Wi-Fi turned off in those areas is
difficult to determine. It might just be that schools are placed in areas where there
tend to be few pedestrians.

It is also possible to imagine that different groups of people generally have different
number of phones. For example, it is common for people in some professions to have
a work phone and then also a personal phone. This may mean that this group of
people are likely to be counted more than the general population. On the other hand,
it might be less common for elderly, children or people with lower income to have
phones with Wi-Fi turned on. This may mean that these groups of people are counted
less than the general population when using this technology for measurements. These
biases for different groups of people support the idea that there can be a bias in
some areas, if we make the assumption that different areas tend to be visited more
or less by different groups of people.

There were as mentioned manual counts for some of the select street segments as
well, and these counts would not be biased in the same way. These counts were then
used to scale the pedestrian counts. However, since the scaling factor was the same
for all street segments, it seems unlikely that it removed the possible biases discussed
above.
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Conclusion

This chapter includes conclusions from this thesis and future work.

11.1 Conclusion

This thesis had a goal to help urban designer, planners and policy-makers understand
how urban environments function by extending previous work in predicting pedestrian
movement counts. The final result gave a model that scored an R2 of 0.729 compared
to the highest scoring model created in Stavroulaki et al. [30] which scored 0.646
when evaluating using a 10-fold cross-validation on all the available data. This score
might be high enough for the model to be used in practice, at least in the measured
cities and areas.

It is, however, fair to assume that the model could perform differently on street
segments not included in the data. The important question is then how much worse
it would perform. This can only be tested reliably by gathering new data. It is also
important to keep in mind that the street segments included in the data used in this
thesis were measured for only one day. The results might differ if an average count
for each street segment was used instead.

No matter if the predictive model is useful by itself or not, there are findings in
this thesis that may be useful by themselves. Those findings are (all in regards to
pedestrian movement counts):

• Count of attractions within the surrounding area seems more informative than
the count of attractions on a street segment.

• Count of attractions seem more informative than the distance to the nearest
attraction.

• The OSM walk network seems more informative than the less detailed non-
motorized network.

• Using network reach to constrain the surrounding area when creating variables
seems to be better in comparison to a bounding box.

There are also some methodological findings for future work in predictive models for
pedestrian movement counts. Those are:
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• Random forest is preferred over the negative binomial when the goal is to
predict pedestrian counts.

• Splitting the training and test data using a stratified random split based on
street types (presented in Table 3.2) seems like a good approach when weighing
the advantages and disadvantages (presented in Section 4.1), even better if it
is possible to combine with splitting on areas or cities.

• The test data set should include considerably more than 80 street segments
since that amount did not seem to provide reliable test results.

11.2 Future work

A few possible extensions for this work in predictive models for pedestrian movement
is discussed in this section.

The most valuable extension is to collect more data, more streets and more cities.
During future measurements it would probably be useful to note if there are any
events, major sales or other things that could temporarily increase or decrease the
number of pedestrians. There is currently a data set available from Gothenburg1,
this data was collected by Trafikkontoret in Gothenburg, again by using the service
provided by Bumbee Labs, Stockholm. However, this data is not exactly the same
as the data used in this thesis. There are two important differences. The first one
is that the gates in the Gothenburg data were not placed in every intersection in
the area covered. It is therefore difficult to aggregate count per street segment. The
second one is that only the raw data is available, that means that the data processing
performed previous to this thesis, as mentioned in Section 2.2, would be needed
before the data can be used in the same way.

One other possible extension of this work is to create another type of categorizations
of street segments based on attractions, similar to centrality and density types
developed by Berghauser Pont et al. [3]. This categorization could be similar to the
ones used in Özbil et al. [35].

In the experiment in Chapter 8 the road length and intersections of the car and
bike road networks were included because of a statement in Forsyth and Southworth
[12]. The statement referred to here is that walkability has decreased when adding
other means of transport. One way of creating variables to represent this difference
could be to include counts of cars and/or bikes. These counts can be created in
the same way as the pedestrian counts, by filtering on the speed of movement as
discussed in Section 2.3.1. While this would not be variables that are possible to
use when the making prediction on non-measured street segments, it could still give
some interesting insights into the relationship between pedestrians, bikes and cars.

There are then also a few other extensions, however, smaller ones. Those are, e.g.,
evaluating:

1https://data.goteborg.se/
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• attraction counts using zero-inflated negative binomial.
• attraction counts at different radii.
• attraction counts only for attractions at ground floor level.
• average distance to attractions using route directness (ratio between the shortest

path and the straight line path).
• network length for the non-motorized network.
• OSM attraction variables created by calculating the distance in the non-

motorized network instead of the OSM walk network.
• variables representing the "centrality" in terms of the public transport network.
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A
Appendix 1

A.1 Attraction calculation comparison
This appendix presents the results from both the ways of calculating attraction. The
results presented in Chapter 7 are from the attraction variables calculated from the
center of the street segment.

Table A.1: Variable correlation for all OSM attraction variables.

Center Nearest node
OSM Counts OSM Distance OSM Counts OSM Distance

OSM-20 0.160 OSM-20 -0.160 OSM-20 0.171 OSM-20 -0.199
OSM-21 0.419 OSM-21 -0.193 OSM-21 0.413 OSM-21 -0.227
OSM-22 0.379 OSM-22 -0.226 OSM-22 0.383 OSM-22 -0.251
OSM-23 0.425 OSM-23 -0.138 OSM-23 0.427 OSM-23 -0.180
OSM-24 0.409 OSM-24 -0.244 OSM-24 0.409 OSM-24 -0.238
OSM-25 0.487 OSM-25 -0.143 OSM-25 0.495 OSM-25 -0.190
OSM-26 0.280 OSM-26 -0.241 OSM-26 0.281 OSM-26 -0.256
OSM-27 0.245 OSM-27 -0.213 OSM-27 0.258 OSM-27 -0.210
OSM-56 0.343 OSM-56 -0.108 OSM-56 0.343 OSM-56 -0.133
OSM-5601 0.405 OSM-5601 -0.158 OSM-5601 0.400 OSM-5601 -0.141

Table A.2: Results for negative binomial attraction model
using attraction variables calculated from the center of the
street segment

Model MAE RMSE R2 Adjusted R2

OSM GroupsT 749 1 902 0.594 0.584
OSM RailwayT 766 1 936 0.580 0.568
OSM DistanceT 713 1 727 0.666 0.656
OSM Railway TopT 746 1 896 0.597 0.589
OSM Distance TopT 720 1 739 0.661 0.654
OSM All TopT 744 1 866 0.610 0.599
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Table A.3: Results for negative binomial attraction model
using attraction variables calculated from the nearest node

Model MAE RMSE R2 Adjusted R2

OSM GroupsT 742 1 855 0.614 0.604
OSM RailwayT 745 1 867 0.609 0.598
OSM DistanceT 714 1 763 0.652 0.642
OSM Railway TopT 736 1 829 0.625 0.617
OSM Distance TopT 717 1 768 0.650 0.643
OSM All TopT 726 1 820 0.629 0.618

Table A.4: Results for random forest attraction model
using attraction variables calculated from the center of the
street segment

Model MAE RMSE R2 Adjusted R2

OSM Groups 723 1 808 0.634 0.625
OSM Railway 720 1 819 0.629 0.619
OSM Distance 758 1 798 0.637 0.628
OSM Railway Top 719 1 771 0.649 0.642
OSM Distance Top 729 1 783 0.652 0.646
OSM All Top 729 1 783 0.644 0.634

Table A.5: Results for random forest attraction model
using attraction variables calculated from the nearest node

Model MAE RMSE R2 Adjusted R2

OSM Groups 725 1 782 0.644 0.635
OSM Railway 715 1 766 0.650 0.641
OSM Distance 776 1 843 0.619 0.609
OSM Railway Top 708 1 679 0.684 0.678
OSM Distance Top 760 1 828 0.625 0.619
OSM All Top 729 1 751 0.656 0.647
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