
Good News AI

Investigating feasibility of categorizing positive sentiment in
general news

Master’s thesis in Computer science and engineering

Klas Ludvigsson
Magnus Andersson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Good News AI

Investigating feasibility of categorizing positive sentiment in general
news

Klas Ludvigsson
Magnus Andersson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Good News AI
Investigating feasibility of categorizing positive sentiment in general news
Klas Ludvigsson
Magnus Andersson

© Klas Ludvigsson, Magnus Andersson, 2020.

Supervisor: Marwa Naili, Department of Computer Science and Engineering.
Advisor: Ignacio Mancha & Annika von Hofsten, i3tex AB
Examiner: Jennifer Horkoff, Department of Computer Science and Engineering.

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Good News AI
Investigating feasibility of categorizing positive sentiment in general news
Klas Ludvigsson
Magnus Andersson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In today’s society we are constantly fed information about catastrophic or sad events
through media. While it is important to know about these events, it should be
equally important to also see all the good things that are happening in our world.
Therefore, this thesis proposes two algorithms for classifying full-length news articles
to remove the non-positive articles. Traditionally these types of algorithms require
a large amount of labelled data, but this thesis explores possibilities for sentiment
classification with a limited amount of labelled data. The best performing algorithm
presented is this thesis achieves a precision percentage of 98% with only 40 articles
used for training.

Keywords: Computer, science, computer science, thesis, sentiment classification,
clustering.

v

Acknowledgements
We would like to extend our thanks to our academic supervisor Marwa Naili, and
our company supervisors Ignacio Mancha & Annika von Hofsten at i3tex for the
continued guidance and support throughout the thesis. And a special thanks to
our examiner Jennifer Horkoff and our opponent Jan Jürgen Eisenmenger for their
valuable feedback.

Klas Ludvigsson & Magnus Andersson, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Aim . 3
1.4 Limitations . 3
1.5 Road map . 3

2 Theory 5
2.1 Word Embeddings . 5

2.1.1 Word2vec . 5
2.1.2 Doc2vec . 7

2.2 Classification . 8
2.2.1 K-means . 8
2.2.2 Supervised K-means . 9

2.3 Definition of Good . 9
2.3.1 Utilitarianism . 9
2.3.2 Right-based ethics . 10

2.4 Sentiment Classification . 10
2.5 Related Works . 11

3 Methods 13
3.1 Defining "Good" . 13
3.2 Collecting data . 14

3.2.1 News sources . 14
3.2.2 Unlabelled Data . 14
3.2.3 Labelled Data . 14

3.3 Pipeline . 15
3.3.1 Preprocessing . 16

3.4 Classification algorithms . 16
3.4.1 Seeding . 17
3.4.2 K-means . 17
3.4.3 Tree Clusters . 17
3.4.4 Fixed Point Classifier . 19

ix

Contents

3.4.5 Exploring the Labelled Data 20
3.5 Evaluation . 21
3.6 Visualization of results . 21

4 Results and Discussion 23
4.1 Datasets . 23

4.1.1 Labelled . 23
4.1.2 Unlabelled . 24

4.2 Word Embedding Parameters . 24
4.3 K-means Evaluation . 25

4.3.1 Results . 25
4.3.2 Discussion . 26

4.4 Tree Clusters Evaluation . 26
4.4.1 Results . 26
4.4.2 Discussion . 26

4.5 Fixed Point Classifier Evaluation . 28
4.5.1 Results . 28
4.5.2 Discussion . 29

4.6 Overall results . 30
4.7 Visualization of website . 31

5 Conclusion 33
5.1 Conclusion . 33
5.2 Future work . 34

36

A Appendix 1 I
A.1 Complete result tables . I

x

List of Figures

2.1 Distributed Memory Model of Paragraph Vectors[11] 8
2.2 Bag of Words version of Paragraph Vector[11] 8

3.1 Visualization of the data flow through the modules in the trainer . . . 15
3.2 Visualization of the data flow through the modules in the application. 16
3.3 Visual of a single tree . 18
3.4 Single type versus Double type article comparison 18

4.1 Depth impact with type Single. The regression line was calculated
using least squares. 28

4.2 Depth impact with type Double. The regression line was calculated
using least squares. 28

4.3 Correlation between labelled data size and precision using least squares 30
4.4 Current look of website . 32

xi

List of Figures

xii

List of Tables

4.1 Labelled dataset statistics . 23
4.2 Unlabelled dataset statistics . 24
4.3 K-means evaluation results . 25
4.4 Tree Clusters evaluation results . 27
4.5 Tree Clusters average precision for depth 27
4.6 Fixed Point Classifier evaluation results 29
4.7 Best evaluation results for each model 30
4.8 Best FPC model compared to related works 31

A.1 Fixed Point Classifier evaluation results II
A.2 Tree Clusters evaluation results . III

xiii

List of Tables

xiv

1
Introduction

In recent years the task of algorithmically reading and interpreting text has been
constantly evolving. With the advancement in speed and availability of computer
hardware, these new algorithms are able to process far more data then what was
previously possible. At the same time, large datasets could be created by scanning
and downloading text from the internet. The remaining task was then, and still is
today, to find the best way to convert this text data into something a computer can
analyze and draw conclusions from.

The conclusions that can be drawn depends on the problem that one attempts to
solve. One of these possibilities is to try to comprehend the emotional intent of a
text, which falls within the field of sentiment classification. Sentiment classification,
a form of text classification, is a heavily researched area in the field of machine
learning. The currently used algorithms for this can, if not understand, then at
least extract information from text intended for the human eye. Traditionally these
algorithms require large amounts of manually labelled data to be able to successfully
classify text.

1.1 Background
The task of text classification usually entails classifying documents into topics, e.g.
politics and sports. When classifying as such, topic-related words are the key fea-
tures. For example the words "team" or "football" are related to sport articles.
However, in sentiment classification, the goal is to extract the positive or negative
sentiment of a text[13].

Sentiment is a inherently subjective thing, a text one person interprets as positive
might be interpreted as negative by another. Positive words or sentences have a pos-
itive sentiment attached to them. For example, sentences about happiness, kindness
and success are generally classified as positive, and sentences about hate, violence
and sadness are generally classified as negative. Humans are usually very good at
judging sentiment given a context, but for a machine it is very challenging.

Starting from the new century, the field of sentiment classification began to grow as
opinion based texts became widely available on the world wide web[13]. However
this research was, and still is today, limited in some regards. These limitations in-

1

1. Introduction

clude: Use of sentiment data from an unverified third party that have applied their
own definition of what is positive sentiment[12], or having the scope of texts be lim-
ited to one or a few topics. These limitations point towards unexplored possibilities
within the field of sentiment classification.

1.2 Problem Statement
There are still gaps in the field of sentiment classification, questions to which there
are no satisfactory answers. Due to the ever-changing nature of language in gen-
eral, and on the internet in particular, previous research might not be applicable
today. For example previous research focused on headlines will not apply to mod-
ern articles, since in today’s internet landscape a misleading headline is a common
occurrence[24]. Up-to-date research is needed in a field as adaptive as sentiment
classification.

Another problem is the absence of a large labelled dataset. This is because labelling
data is costly and time-consuming. A common approach is to use predefined sen-
timent generated through lexicon-based techniques[26]. However, this introduces
another problem in that the predefined sentiment carries bias. Predefined senti-
ment, as mentioned before, is subjective and will therefore differ from context to
context[7]. Addressing all these shortcomings will push sentiment classification for-
ward.

This thesis aims to address these issues by answering the following question: Can
positive sentiment be categorized in full-length news articles, according to some spe-
cific definition of good, using a limited amount of labelled data? To answer this,
two sub-questions will be answered.

How much data will be required? The research question asks for limited amount of
data, but how does different sizes of data impact the result.

Are there any current methods that can solve this problem or do new algorithms
need to be developed?

This work is done at the behest of i3tex AB, because they wish to contribute to the
field of artificial intelligence, and do not have access to any large labelled datasets
which makes this thesis a fitting choice. i3tex is trying to improve the world around
them in a multitude of ways, one of which is establishing a standard of what con-
stitutes a better world, and strive towards this in all their business dealings.

2

1. Introduction

1.3 Aim
This thesis aims to develop an application capable of classifying news articles as
positive news, without the requirement of large labelled datasets. The main goals
of this thesis are as follows:

• Develop an application capable of collecting, classifying and displaying positive
news articles

• Create new algorithms for sentiment classification of news articles
• Explore how fewer labelled data points affect the classification results
• Explore how changing the parameters in the algorithms affect the classification

results
• Compare the new methods to previous work in the field

1.4 Limitations
The labelled dataset will be collected manually during a limited time period. There-
fore, the width of the collected news articles will be restricted to what is available.
If a particular category of news never appears as positive in the time-period then
there will be no positive entry of it in our labelled dataset.

Additionally, since we will only have access to our limited labelled dataset, a compar-
ison against using a larger labelled dataset with the same methods will not be made.

The thesis is not interested in overall performance of the model, but rather a spe-
cific evaluation parameter (precision). Most of the previous research in the field have
diverging focus and is therefore incompatible for comparison. A large-scale compar-
ison against these models would not improve the validity of the results presented in
this thesis and is therefore excluded.

1.5 Road map
The thesis is structured as follows: Chapter 2 provides the theory behind established
techniques used in this thesis. Chapter 3 describes the final system as well as the
methods used for developing it. Chapter 4 presents and discuss the results of each
individual method, but also the best overall results. Chapter 5 concludes the thesis
with a summary regarding the used methods and results, together with a discussion
regarding future work.

3

1. Introduction

4

2
Theory

This chapter will describe the different techniques that will be used in the project,
as well as previous work that aims to achieve similar goals. The first section will
describe how word embeddings work in general and how the two word embedding
libraries used in this thesis, Doc2vec and Word2vec, works in particular. The second
section will describe different methods for classification that are used in the thesis.
In the third section the notion of "good" will be discussed from different angles.
Finally, the concept of sentiment classification together with previous work similar
to this will be described.

2.1 Word Embeddings
When working with large quantities of text data you need to structure it in a way
that allows for efficient processing. One way to do this is to map the words into
a vector space, which then allows the words to be subject to mathematical opera-
tions. This technique is called word embeddings, and it includes many techniques
for dimension reduction of text data.

In this thesis we will use Doc2vec[11] to represent the articles for its ability to
take into account the context of an entire document, not only a sentence. This
functionality is highly relevant because this thesis is focused on classifying full-
length articles. Doc2vec is an extension of the word embedding library Word2vec
which will be described first.

2.1.1 Word2vec
In 2013 Mikolov et al.[14] presented two new models for word embeddings called
continuous bag-of-words model (CBOW) and continuous skip-gram model. CBOW
uses the surrounding words to predict the current word from the neighbouring words.
The skip-gram model instead uses the current word to predict the surrounding words.
The two models are used to find similarity between words and allows for relations
between words to be extracted with arithmetical operations. For example the re-
sulting vector of subtracting man from king is very close to the word vector for
the word queen. These algorithms were then released as a python package called
Word2vec and is primarily used for topic modelling.

5

2. Theory

Training of the Word2vec model involves two steps:
• Building vocabulary
• Training word vectors based on their context

Building of the vocabulary is done by assigning a word index to all of the words
that will be used in the model. This is done to allow each word to be represented
with 1-of-V encoding. 1-of-V encoding is a simple scheme that converts a word in
a vocabulary of size V into a vector of length V, where the index of the word is set
to 1 and all other indexes are 0. For example if our vocabulary is made up of the
words good, news and AI, we can give the words the indexes 0,1, and 2 respectively.
Then the word good can be represented with 1-of-V encoding as the vector [1,0,0],
and news as [0,1,0] etc.

Word2vec then uses the 1-of-V encodings as input and output for a fully connected
neural network with one hidden layer. The input and the output layer have the
same amount of nodes as there are words in the vocabulary, and the hidden layer
is the size of the resulting vector representation of the word, specified by the user.
Initialization values for the weights of each edge is a random number between -1 and
1. To train the network, it is given a context as input vector and a target vector
as a "goal" for what the output vector should be. The error vector is calculated by
subtracting the output vector from the target vector, and is then used for the back-
propagation. Using the example mentioned earlier together with CBOW to predict
the word "AI" from "good news", the input vectors are [1,0,0] and [0,1,0], and the
target vector is [0,0,1]. The input vectors are then multiplied with the weights and
the output vector is the average of those vectors. The error is then calculated and
the back-propagation can begin.

To learn the output vectors, Word2vec provides two options: Hierarchical Softmax
and Negative Sampling. These two algorithms also have, according to Mikolov et
al.[14], their own advantages and disadvantages. Hierarchical Softmax is said to
work better with infrequent words and Negative Sampling with frequent ones.

The input and target vectors are defined differently depending on whether CBOW
or skip-gram is used:

The CBOW model, as mentioned previously, uses the surrounding words to pre-
dict the current word. The model is given a window size that corresponds
to the interval length of surrounding words in the context. The words in the
window are averaged with the task to maximize the probability of each word
in the vocabulary appearing as output given the context of the word. This
probability is given by Equation 2.1, where N is the number of words in the
vocabulary, w(t) is the t:th word in the context and c is the window size.

1
N

N∑
t=1

log p(w(t)|w(t− c

2), ..., w(t + c

2)) (2.1)

The skip-gram model, almost as an inverse to the CBOW model, uses the cur-

6

2. Theory

rent word as context to predict the surrounding words. The error is here
computed by comparing the output to each of the word vectors in the window
interval. Maximization is then done on the probability given by Equation 2.2,
where N is the number of words in the vocabulary, w(t) is the t:th word in
the context and c is the window size.

1
N

N∑
t=1

t+c∑
j=t−c,j 6=t

log p(w(j)|w(t)) (2.2)

The two models both have, as with Hierarchical Softmax and Negative Sampling,
their own advantages and disadvantages. The CBOW model performs better with
frequent words and is faster, while skip-gram handles infrequent words better and
works well with smaller datasets, according to Mikolov et al.[14].

When the model have finished training, the similarity between two word vectors a
and b can be calculated as the cosine similarity between the vectors, as can be seen
in Equation 2.3.

cos(a, b) = ab
‖a‖‖b‖

=
∑n

i=1 aibi√∑n
i=1 (ai)2

√∑n
i=1 (bi)2

(2.3)

2.1.2 Doc2vec

Le and Mikolov[11] continued to develop an extension to word vectors, called para-
graph vectors. Paragraph vectors address some key weaknesses of bag-of-words
models. Previous techniques only work on surrounding words in a fixed interval,
but are unable to differentiate one document from another. Paragraph vectors do
not suffer this problem and can produce one vector for a document consisting of
multiple sentences. This allows for queries of the type "find the document most
similar to this other document", which is a useful functionality for this thesis. This
updated version of Word2Vec was released under the name Doc2Vec.

The model work similarly to Word2vec with the addition of a document index,
equivalent to the word indexes in Word2vec, to identify from which document a
sentence comes from. Doc2vec uses two techniques for training the paragraph vec-
tors: Distributed Memory Model of Paragraph Vectors (PV-DM) and Distributed
Bag of Words version of Paragraph Vector (PV-DBOW), and they are essentially
paragraph vector versions of the techniques used in Word2vec.

PV-DM uses a sequence of words, sampled from the document, together with the
paragraph id to predict the next word of the sequence, as shown in figure 2.1
where the input vector is the word sequence "the cat sat" together with the
paragraph id D, and the target vector contains only the word "on".

7

2. Theory

Figure 2.1: Distributed Memory Model of Paragraph Vectors[11]

PV-DBOW instead uses only the paragraph id to predict randomly sampled se-
quences from the document, as shown in figure 2.2 where the input vector is
only the paragraph id D, and the target vector contains the sentence "the cat
sat on".

Figure 2.2: Bag of Words version of Paragraph Vector[11]

For calculating similarities Doc2Vec uses the same method as Word2Vec, i.e cosine
similarity, as can be seen in Equation 2.3.

2.2 Classification
Classification methods are the core of this thesis. The task of classification is to
predict a label for some previously unseen data. In this thesis the focus will be on
binary classification; either the data is positive or it is not. In this section are the
existing classification methods used in this thesis explained.

2.2.1 K-means
K-means clustering technique aims to partition a dataset into k subgroups, also
called clusters. Each cluster is defined by a centroid, which is calculated as the
average of all the points in the cluster. The data points are assigned to clusters by
comparing their distances to the centroid of each cluster, and choosing the closest.

8

2. Theory

This is an iterative process of calculating the centroid and finding clusters until the
clusters move less than a threshold or a set amount of iterations are reached. Dif-
ferent kernels, that defines the preferred distance metric, can be used for comparing
distances. The results are clusters of data points close to each other that might
share similarities, for example positive and non-positive clusters[10].

2.2.2 Supervised K-means
Supervised k-means is standard k-means with some constraints. These constraints
are considered hard constraints, meaning that they must be satisfied. There are com-
monly two types of constraints, one of which will be used in this thesis, the cannot-
link constraint[23]. The cannot-link constraint prevents the introduced points from
being assigned to the same cluster.

The algorithm start by adding N fixed points each time a centroid is to be calculated.
These fixed points act like anchors, and each of them anchor their own cluster. This
allows the clusters more movement than fixed centroids would, but still forces the
clusters to remain within some general area. It also provides information about
which of the clusters are categorized as positive and non-positive.

2.3 Definition of Good
What is good? In this thesis good will have to be defined, such that when the
algorithm classifies a specific article as "good", a predefined system is available to
judge if the predicted sentiment was correct. This work is not the first to try to deal
with these intangible ideas. Different frameworks regarding ethical decision making
have been presented throughout history. The most prevalent and diverse of ethics
are the consequence-based group and the opposing action-based group.

This thesis was suggested by the company i3tex, with the intent to spread positive
feelings around the offices. i3tex are working for a better world by pursuing the
common good, and to do this they have developed a method called Better World
Index (BWI)[8]. It consists of the following five criteria:

• Reduce environmental impact
• Reduce human suffering
• Make people’s everyday life easier
• Increase people’s security
• Facilitate communication and information flows

The BWI lays the groundwork for what is considered "good news" in this thesis.

2.3.1 Utilitarianism
According to the ethical theory of utilitarianism one should always make decisions
based on what will increase the pleasure and decrease the pain for the largest group
of people. In practice this implies that the needs of the many outweigh the needs
of the few. This is often described as a consequentialist approach because it states

9

2. Theory

that all actions should be weighed only against the consequences it produces[6]. A
utilitarian would for example consider it ethically correct to use humans as scientific
test subjects against their will to find a cure for a disease that would save many
more people, even if the test subject might loose their life.

2.3.2 Right-based ethics
In contrast to utilitarian in particular, and consequential ethics in general, are de-
ontological ethics. The basic theory of deontology is that not all actions can be
justified by their effects, no matter how morally good they might be. Right-based
ethics is a branch of deontological ethics that focuses on people’s rights. This prac-
tice forbids using another’s body, labor or talent without consent[1]. In contrast
to the example in the above section, a right-based ethical approach would consider
the right against being used as a test subject without one’s consent as an ethical
violation, no matter how much good may come of it.

2.4 Sentiment Classification
There are three main approaches used to train models:

Supervised: Train a model to predict a label by feeding it prelabelled data.

Unsupervised: Train a model to predict a label by feeding it unlabelled data.

Semi-supervised: Train a model to predict a label by feeding it a small amount
of prelabelled data and a large amount unlabelled data.

Supervised sentiment classification contains a finite amount of categories, and ev-
ery category has some labelled training data associated with it. Then a model is
trained using classification algorithms such as Naive Bayes and support vector ma-
chine (SVM). Another technique is to use a preexisting lexicon of sentiment items
(word or n-grams)[13].

Unsupervised sentiment classification attempts to find the semantic orientation of
a document without the use of labelled data. As an example of this, Turney[21]
used the words "excellent" and "poor" respectively to represent positive and nega-
tive categories of user reviews in his text classification algorithm, explained further
in Section 2.5.

Semi-supervised sentiment classification makes a compromise between the two. Clus-
tering techniques using labelled data as starting seeds is one example of this. Semi-
supervised Naive Bayes takes a small amount of labelled data and a large amount
of unlabelled data, and using the small amount of labelled data and some initial
assignment to the unlabelled data, reclassify the unlabelled data until a satisfactory
model is achieved[18].

10

2. Theory

2.5 Related Works
Previous work exists in the field of sentiment classification. For example, Peter D.
Turney had already in 2002 [21] developed a simple unsupervised learning algorithm
that could classify text as positive or negative, with only the two words “excellent”
and “poor” as training data. The algorithm classifies the reviews by calculating the
semantic orientation of the phrases in the text. This semantic orientation comes
from comparing which of the starting words the phrases are more closely related to.
The algorithm achieved an accuracy of 74% and served as a proof of concept for the
field in general.

Another example is Haribhakta and Doddi[26], who created a platform for classi-
fying news as positive or negative. They did this with the supervised algorithm
Support Vector Machine (SVM) and a labelled dataset collected from SentiWord-
Net. SentiWordNet is an extension of the lexical database WordNet and provides
a sentiment score for a large number of words[3]. This was used to identify the
sentiment scores of an article. Based on these sentiment scores and the specific
combination of adjectives, adverbs and verbs they were able to calculate a score for
an arbitrary news article.

Jang et al.[9] investigated how to use word embeddings together with convolutional
neural networks to classify news articles and tweets. More specifically they intended
to classify articles and tweets related to advertisement as negative data and articles
with disease-related information as positive data. To accomplish this they collected
news articles and tweets under a two-month period. They then used this data to
create word embeddings using the word2vec library. Their results were an accuracy
of 93% and concluded that classifying news articles can be done with a higher success
rate than classifying tweets because of news articles uniform structure.

11

2. Theory

12

3
Methods

This chapter contains a definition of good used in the thesis, followed by a section
about data handling and collection, an outline of the whole intended system, and a
description of all algorithms used in the thesis.

3.1 Defining "Good"
This thesis’ definition of good will be based on i3tex’s BWI criteria, but it will be
expanded upon with concepts from ethical frameworks to mitigate gray areas. The
result is intended for a diverse group of people, and as such a rigorous and precise
definition will filter out all but a small subset of acceptable articles.

The framework used to classify the articles will, on top of i3tex’s BWI criteria, be a
combination of the utilitarian and rights-based approach mentioned in section 2.3.
To be considered as good news an article must address at least one of the five BWI
criteria or adhere to both these two ethical requirements:

E1: Either increase the total sum of pleasure or decrease the total sum of pain
E2: Respect the rights of all parties involved

The resulting logical formula can be seen in Equation 3.1.

BWI ∨ (E1 ∧E2) (3.1)

The intention of these additional requirements are to widen the scope for what good
news entails. With the BWI criteria a news story about rescued animals would not
necessarily be considered good, but it will fall within the extended scope as good
news because it decreases the pain for the related parties and nobody is treated
unjust.

13

3. Methods

3.2 Collecting data
The resulting application will be collecting data constantly to provide the user with
the latest curated good news from the chosen news sources.

3.2.1 News sources
The news sources used in this thesis are:

• BBC[4]
• Reuters[16]
• ScienceDaily[17]
• The Guardian[19]
• The Independent[20]
• UN News[22]
• Wired[25]

These news sources were chosen because they cover a diverse set of news, and be-
cause we perceive them to hold a certain standard of credibility.

To be able to query all these different news sources constantly, the application will
use Rich Site Summary (RSS) web feeds. These are standardized machine-readable
web feeds used for this express purpose.

3.2.2 Unlabelled Data
Articles will be collected from the news sources to build an unlabelled dataset.
Since thesis took place under a four month period, this dataset will be limited in
size. To complement this a larger dataset will be used as well. The reasoning
behind this is that the larger dataset will provide the general structure of articles to
be comprehended by the word embeddings, while the collected data can provide a
more up-to-date collection of words and phrases. For example Covid-19 will not be
present in older articles, so all mentions of it will not affect the classification results
because it is not present in the vocabulary. Note that since the larger unlabelled
dataset will be used to provide a general structure for the word embeddings, diversity
is the only important feature.

3.2.3 Labelled Data
The definition of good explained in 3.1 will be used to produce a labelled dataset.
This labelling process will be done in two steps: first one party reads the full-length
article and assigns either a positive or non-positive label, and then a second party
verifies the correctness of the label. In total 400 articles will be labelled, 200 labelled
as positive and 200 labelled as negative. Collection of labelled data will happen in
two one month long iterations, where 200 articles are collected each iteration. This
is done to ensure a wide variety of news is included. The data will then be used to
train and evaluate the models.

14

3. Methods

3.3 Pipeline
The program will be divided into two distinct modules, the application and the
trainer. The latter will train and evaluate all the models used to classify new ar-
ticles, while the former will collect, classify, and display the articles on a website.
Since the application needs the trained models to classify the articles, the trainer
will need to execute before the application for the program to be functional. This
separation was done because of the computational requirements needed to train the
models are far more significant than the requirements for the rest of the application,
and it would not be feasible to train new models each time the program is executed.

The trainer trains the models according to some algorithm-specific parameters. Its
default behaviour is to train one model for each permutation of parameters, and
after completing the training it evaluates every available model. The classifier is
a combination of a word embedding model and one of the four classification algo-
rithms seen in the Figure 3.1. The word embedding model is used to convert the
documents into the vectors that are used for the classification. All the models are
semi-supervised, so they will use some amount of the labelled data during training.
When the training is done the models are saved for later use in the application. The
rest of the labelled data is used for the evaluation, which is also performed each time
the code base is updated to provide a progression log for the project. In Figure 3.1
the data flow of the trainer is visualized, where the classifier is the combination of a
Doc2Vec-model and one of the 4 algorithms that are described later in this chapter.

Unlabelled
Data

Classifier

Dataset

Labelled
Test
Data

Doc2Vec

Pre-Processing

Evaluator

Labeled Dataset

Labelled
Training

Data

Pre-Processing

All Models

K-means

Supervised
K-means

Tree
Clusters

Fixed
Point

Classifier

Figure 3.1: Visualization of the data flow through the modules in the trainer

The application receives a continuous stream of news articles from the scraper, which
queries the chosen news sources every fourth hour. The aggregated articles are both
saved to a database, and sent to be classified. News articles classified as positive are
displayed on the designated website for the end users, while the negative articles are
simply discarded. This whole process can be seen in Figure 3.2.

15

3. Methods

Scraped
Articles

Positive
Articles

Database

Internet

Classifier

WebsiteUsers

All
Articles

Scraper

All
Articles

Negative
Articles

Pre-Processing

Processed
Articles

Discard

Figure 3.2: Visualization of the data flow through the modules in the application.

3.3.1 Preprocessing
The data both collected from the news sources and extracted from the dataset will
be preprocessed the same way. The preprocess step includes: making all characters
lowercase, removing words that have a length of two characters or less, removing
non-alphabetic characters, and removing words that do not contribute to the senti-
ment of the text, such as "a", "and" or "be"(also known as stop-words).

Additionally, a stemmer will be used to reduce words to their root. Stemming is
used to group words that mean the same thing, but are written on different forms.
For example "happy" and "happiest" would be considered one word instead of two
after this process.

3.4 Classification algorithms
In this section all classification algorithms used during this thesis are outlined, or
further expanded upon if outlined in previous theory section. The different methods
are all used to find articles similar to the labelled articles, and with this similarity
classify incoming articles as positive or not positive.

Two custom algorithms, Tree Clusters and Fixed Point Classifier, are proposed be-
cause existing algorithms for sentiment classification are mainly focused on super-
vised learning and the current semi-supervised algorithms looked at do not fit the
aims of this thesis.

16

3. Methods

3.4.1 Seeding

Every classification model in this thesis is using some form of semi-supervised learn-
ing, which involves using labelled data points for both training and evaluation. To
avoid reusing training data as evaluation data, each model is assigned a seed and
a size. The seed is a string of numbers used as input to a pseudorandom number
generator to shuffle the labelled data in a specific and repeatable way. The size then
corresponds to how much of the labelled data is used for training and how much is
used for evaluation. This will allow for good variety in how the data is divided be-
tween the models and allow for pinpointing how specific changes impact the models.
Seeding is used by every classification algorithm in this thesis to ensure all training
data is randomly selected.

3.4.2 K-means

Standard k-means explained in section 2.2.1. Once the clusters have been generated,
a subset of the test data is used to determine which sentiment each cluster of arti-
cles represent. Multiple clusters can be classified as positive or non-positive. The
clusters with more positive than non-positive articles in them are chosen as positive
clusters.

Regular k-means might have a hard time identifying positive and non-positive clus-
ters, and lean more towards clusters of categories. To counter this, supervised
k-means will be used, explained in section 2.2.2. Supervised k-means comes with
inherent knowledge of which clusters are positive and non-positive, which can al-
low for more separation within categories. For example a fixed positive technology
article and a fixed non-positive technology article could be used to avoid category
clusters.

3.4.3 Tree Clusters

Tree clusters (TC) is an algorithm developed during this thesis. A Doc2Vec model,
together with K starting points from the seeding process, are supplied to start the
algorithm. For each starting point a paragraph vector is created, and from this
vector a tree of the most similar paragraph vectors is explored. Similar paragraph
vectors are found using the cosine similarity formula in Equation 2.3. The n most
similar vectors are added as leaves. Then each vector in the list of leaves are run
through the same process until the given depth, d, is reached.

The selection is depth-based, and is limited by d and n. Each time a new depth is
reached, the n most similar vectors are added. This continues all the way until the
max depth d is reached, and the tree is complete, as can be seen in Figure 3.3.

17

3. Methods

Figure 3.3: Visual of a single tree

There are two different types of TCs. The first type, called Single, generates only
positive clusters, and compares the entirety of the dataset against those positive
clusters. The second type, called Double, generates both positive and non-positive
clusters, and makes the final classification based on the comparison of those clusters.
Figure 3.4 shows how two articles would be classified by the different types of TC’s.

Figure 3.4: Single type versus Double type article comparison

This algorithm can produce clusters containing both positive and non-positive ar-
ticles, even with the specific starting points. There are no requirements on the
selected leaves, as long as they are within the n most similar. The advantage is that
only things that are in the positive cluster will be classified as such, so it is very
strict in that regard.

18

3. Methods

//Initialization of clusters
Get the n most similar vectors
//Add depth zero leaves
Do While there are vectors left

If potential leaf exceeds selection-critera:
Add potential leaf

Endif;
EndDo;
//Iterate through leaves until stop-criteria is met
Do While depth not reached

Do While there are still vectors to traverse
If vector has not been traversed before

Get the n most similar vectors
//Note that vector has now been traversed
Do While there are potential leaves left

Add potential leaf
EndDo;

Endif;
EndDo;

EndDo;

To classify a new article the n most similar articles, M , are used. All articles in
positive clusters found in M are added together and compared against another sum,
K. The max of the two sums determines the new label. In type Single, K is all other
articles in M ; in type Double, K is the sum of all articles in non-positive clusters
found in M .

3.4.4 Fixed Point Classifier
The Fixed Point Classifier (FPC) is a classifier algorithm developed during this
thesis. Despite not creating clusters, the classifier can be used to achieve a similar
effect. k vectors are assigned as positive centroids, and k as non-positive centroids
through the seeding process. Each vector represents a labelled article. A new unla-
belled article is classified as positive if the resulting vector is closer to the positive
centroids. To make the classifier more strict an offset can be added to the distances
to the positive centroids, so that the classifier is weighted towards classifying arti-
cles as negative. The algorithm can use either euclidean distance or cosine distance
to calculate the distances. This algorithm removes the process in the supervised
k-means algorithm of finding the clusters, by using the fixed points as centroids,
giving it a tremendous advantage in speed.

The algorithm also allows for multiple articles to be used for one centroid. In that
case the centroid is defined as the average of all supplied articles’ paragraph vectors.

19

3. Methods

//Initialization of centroids
Do for every set of articles

Preprocess articles
Generate doc2vec paragraph vectors for articles
//Combine all articles for current centroid
Calculate the average of paragraph vectors to be the centroid

Enddo;

//Classification of article
Preprocess article
Generate doc2vec paragraph vector for article
Do for every centroid

Calculate distance to centroid
Compare average negative distance to positive distance
If positive distance + offset is larger

Article is classified as positive
Otherwise

Article is classifed as negative

The advantage of FPC over TC is that FPC only compares the incoming data point
to previously labelled articles. The obvious drawback is that it relies heavily on the
random labelled articles used as training data to produce the centroids.

3.4.5 Exploring the Labelled Data
There are several categories of articles in the set of "general news"-articles, like sci-
ence, technology and sports. These categories will most likely share more similarities
than two positive articles that are of different categories. For example, a positive
sports article is likely more similar to a non-positive sports article than to a posi-
tive article about the environment. With the seeding system each model will use a
pseudo-random subset of the labelled data for training and another for evaluation,
but there might be some articles that yields better results than others. Finding these
articles will give more insight into what the word embedding models interprets as
’most positive’ and ’least positive’.

To calculate which points that are mathematically interpreted as ’most positive’ and
vice versa, the labelled articles with the furthest average distance from the articles
with the opposite label can be calculated, as shown in Equation 3.2.

si = 1
N − 1

N∑
k=1,k 6=i

zk · d(vi, vk) + 1
N − 1

N∑
n=1,n6=i

(zn − 1) · d(vi, vn) (3.2)

where si is the final score, N is equal to the number of vectors in the training data,
vi is the i:th vector in the training data, d(v, v) is a distance function, and zi is given

20

3. Methods

by Equation 3.3.

zi =

1, if label of the i:th article is positive
0, otherwise

(3.3)

The calculation is equivalent to the average distance from the given vector to the
positive articles subtracted by the average distance to the non-positive articles.
Therefore, a lower score indicates a more positive article and vice versa.

3.5 Evaluation
The evaluation of how well the algorithms perform is measured primarily by preci-
sion; how big percentage of the articles that have been classified as positive actually
are positive, as shown in Equation 3.4. Additional parameters that are measured
are recall, what fraction of the positive articles were classified as positive (Equation
3.5), and accuracy, how much of the data was classified correctly (Equation 3.6).
Recall, and accuracy are not as important as precision, since the goal is to show
only positive articles and not to find all positive articles.

P = Ap

Acp

(3.4)

R = Ap

Atp

(3.5)

A = Ap + Acn

Ap + Atn

(3.6)

where Ap is the amount of correctly classified positive articles, Acp is the amount of
articles classified as positive, Atp is the amount of total actual positive articles, Acn

is the amount of correctly classified non-positive articles, Atn is the amount of total
non-positive articles.

To achieve a better evaluation for the algorithms they are cross validated. The
cross validation includes evaluating multiple models with the same parameters but
different seeds and calculating the average score across all models evaluated. Since
this thesis explores how few labelled data points are required the majority of the
labelled data will be used for testing, but the ratio of the training/testing data will
differ from model to model.

3.6 Visualization of results
The platform to present the results of the final algorithm will be a website hosted
on the company’s internal web. Here all articles from the chosen RSS feeds will be
processed, classified and displayed if deemed as positive news.

21

3. Methods

22

4
Results and Discussion

This chapter contains the results and discussion for all parts of this thesis. The
first section describes the properties of the datasets. The second section discuss the
word embedding model used for the algorithms. The following three sections present
and discuss the results for each of the algorithms. After that a comparison between
the best performing models is made. Finally, the last section discuss the resulting
website.

4.1 Datasets
There are two datasets used in the evaluation: one labelled dataset used to train
and evaluate the models, and one unlabelled dataset to train the word embeddings.
In this section the characteristics of these datasets will be explained.

4.1.1 Labelled
400 articles have been collected and labelled, where 100 positive and 100 non-positive
articles were collected during the period 2020-02-03 - 2020-02-18, and another 100
positive and 100 non-positive articles were collected during the period 2020-03-12 -
2020-04-14. The articles differ in length, so an average word count is provided for
completeness. The articles were collected manually from the websites of the news
sources listed in Table 4.1.

News source Number of articles Average word count
BBC 43 4731

Reuters 117 2094
ScienceDaily 54 4623
The Guardian 46 3944

The Independent 58 3208
UN News 35 2897
Wired 47 9235

Table 4.1: Labelled dataset statistics

When exploring the dataset, as described in Section 3.4.5, we found that the articles
labelled as positive that were least similar to the non-positive articles were in the
category of science news. Of the top 10 with the lowest scores, i.e the mathematically

23

4. Results and Discussion

"most positive", all were science related, even though a minority of the labelled
articles were science related. This indicates that, of the news we collected, positive
science articles differentiates themselves more from non-positive articles than other
news categories.

4.1.2 Unlabelled
142570 unlabelled news articles were used in the creation of the word embedding
model. The dataset was acquired on the website Kaggle, and was collected be-
tween 2000-05-15 and 2017-04-09, but 95% of the articles was collected from 2016
or 2017[2]. The news sources and the number of articles from each source are shown
in Table 4.2. Note that, as mentioned in Section 3.2.2, the credibility of these news
sources are as important because the articles are only used to provide structure for
the word embeddings. More specifically, a larger dataset of similarly structures texts,
in this case news articles, provides the Doc2Vec model with a broader understanding
of the context, which in turn yields more accurate similarity queries.

News source Number of articles Average word count
Atlantic 7179 7909
Breitbart 23781 2985

Business Insider 6757 2656
BuzzFeed News 4853 4854

CNN 11488 4245
Fox News 4354 3148

National Review 6203 5679
New York Post 17493 2549

NPR 11992 4537
Reuters 10710 4068

Talking Points Memo 5214 2219
The Guardian 8681 5349

The New York Times 7803 6862
Vox 4948 7972

Washington Post 11114 6121

Table 4.2: Unlabelled dataset statistics

4.2 Word Embedding Parameters
A single word embedding model is used in the evaluation of all models. The pa-
rameters for this model were chosen by trying the different values recommended in
the Doc2Vec documentation, then selecting the parameters that yielded the highest
precision. The final parameters are:
Vector size: 300
Epochs: 20
Min count: 5

24

4. Results and Discussion

TheVector size corresponds to the size of the resulting paragraph vectors, Epochs
corresponds to the number of iterations made over the training corpus and Min
count corresponds to how many occurrences of a word are required for it to be
included in the final vocabulary.

For all models distance is calculated using either euclidean or cosine distance. Cosine
distance was chosen because it is what the word embeddings use to calculate the
similarity between two paragraph vectors. Euclidean was chosen to have another
metric to compare how well the cosine distance works.

4.3 K-means Evaluation
As is mentioned in Section 3.4.2, standard k-means is theorized to produce average
results, with supervised k-means focusing the algorithm more on sentiment, and
therefore, increasing precision. In this section are the results and discussion of the
cross evaluation.

4.3.1 Results
Presented in Table 4.3 are the final results of the two k-means algorithms. All values
are rounded to 4 decimals, each model have been evaluated using cross validation
with 10 different seeds and all models make use of stemming in their preprocessing
step. This is true for all models in this chapter.

The different parameters for the K-means models are size, type and kernel. Size
corresponds to both K i.e the number of clusters and the number of labelled articles
used when training the model. Size ranges from a minimum of 2, since there has
to be at least 2 clusters, to a maximum of 20. The maximum of 20 was chosen
because with larger sizes the models takes longer to train, without much effect on
the results. Type is either "Standard" or "Supervised", and corresponds to which
algorithm was used. Kernel is either "e", which implies that euclidean distance was
used, or "c", which implies that cosine distance was used. The table is sorted after
highest precision because this is the attribute considered to be most important in
this thesis.

Type Size Kernel Precision Recall Accuracy
Supervised 10 e 0.7361 0.5236 0.5810
Standard 2 c 0.7180 0.6606 0.7005
Supervised 2 c 0.7156 0.6563 0.6977
Standard 10 c 0.6750 0.9300 0.7411
Supervised 10 c 0.6582 0.7231 0.6733
Standard 10 e 0.6548 0.9058 0.7139
Standard 2 e 0.5047 0.9980 0.5093
Supervised 2 e 0.5007 0.7920 0.5019

Table 4.3: K-means evaluation results

25

4. Results and Discussion

4.3.2 Discussion
Poor precision was theorized at the start, because categories and themes were as-
sumed to stand out more in news than sentiment. So that standard k-means per-
forms well above 50% is a surprise; likewise, that the introduction of guidance in
the form of supervised k-means barely improved precision. The theory beforehand
was that categories of news would be the identifying factor of the clusters instead of
sentiment. Therefore, a more finely-grained approach of 10 clusters could divide one
category of news into different sentiment clusters and produce better results. This
theory was not supported by the results, because the difference of 1,81% between
the first and second models can be reasonably contributed to margin of error. The
fact that the results are so similar points towards some overall similarity between
the positive and negative articles across categories. These results are, however, still
too imprecise. If this algorithm were to be used to classify everyday news, with
the intuition that most of everyday news does not fall under the definition of good
described in Section 3.1, the result would be a majority of non-positive news. For
example: assuming a 9-to-1 split in favor of non-positive news, the best model would
find on average 3.23 non-positive news for every "good news"-article.

4.4 Tree Clusters Evaluation
In this section are the results and the discussion of the cross evaluation.

4.4.1 Results
The different parameters for the Tree clusters models are type, size, depth and n.
The type parameter indicates if the algorithm uses only positive clusters (Single) or
if it uses both positive and negative clusters (Double), and that is why the size is
doubled when using type Double. Size is the number of trees generated, and therefore
equivalent with the number of labelled articles used since each tree is generated from
one article. These articles comes from the seeding process described in Section 3.4.1,
so the number of articles used for evaluation be slightly different depending on the
Size parameter, more specifically it will be equal to the total amount of labelled
articles subtracted by the Size. The largest size used is 40 articles because it is 10%
of all labelled articles, so there is still enough data left for the evaluation. Depth and
n are explained in Section 3.4.3. Depth ranges between 1 through 4, because higher
values result in long compute times and less strict models. n is either 5 or 10 based
on default values in the word embedding model. The cross validation results with
precision above 0.8 can be seen in Table A.2. The full TC cross validation table can
be found in Appendix A.

4.4.2 Discussion
From the results it can be seen that TC overall benefits from multiple small trees.
The vast majority of the best TC’s have 10 or more trees, with the best model of

26

4. Results and Discussion

Type Size Depth n Precision Recall Accuracy
Double 4 1 5 0.9147 0.0338 0.5154
Single 4 3 5 0.9074 0.0332 0.5143
Double 40 2 5 0.9064 0.1217 0.5547
Double 20 2 5 0.8965 0.0600 0.5271
Single 40 2 5 0.8952 0.2181 0.5959
Single 40 1 5 0.8841 0.0944 0.5413
Double 20 1 5 0.8808 0.1547 0.5668
Single 40 1 10 0.8751 0.2256 0.5966
Single 4 2 10 0.8718 0.0730 0.5321
Double 20 2 10 0.8703 0.1768 0.5753
Single 20 2 5 0.8623 0.0961 0.5406
Single 20 1 10 0.8546 0.0989 0.5408
Double 40 1 10 0.8522 0.1050 0.5433
Single 40 3 5 0.8418 0.3012 0.6222
Double 40 2 10 0.8368 0.2994 0.6206
Double 4 1 10 0.8345 0.0990 0.5412
Double 4 3 5 0.8341 0.1010 0.5396
Single 4 4 5 0.8337 0.0541 0.5212
Single 20 2 10 0.8233 0.3006 0.6172
Single 20 3 5 0.8224 0.1694 0.5664
Single 40 2 10 0.8187 0.4725 0.6834
Double 40 1 5 0.8167 0.2761 0.6081
Double 20 1 10 0.8151 0.3911 0.6508
Single 4 3 10 0.8143 0.1474 0.5571
Double 4 2 10 0.8120 0.0323 0.5145
Double 20 4 5 0.8091 0.1605 0.5618
Double 4 4 5 0.8036 0.0389 0.5165
Single 20 4 5 0.8033 0.2550 0.5961

Table 4.4: Tree Clusters evaluation results

both types being outliers.

It was theorized in Section 3.4.3 that too deep trees would create clusters with a
mix of positive and non-positive articles, which would result in lower precision. This
theory was confirmed by the results, as can be seen in Table 4.5.

Depth Average precision
1 83%
2 85%
3 77%
4 77%

Table 4.5: Tree Clusters average precision for depth

The breath of the trees, n, also benefits from being smaller. The deepest trees, with

27

4. Results and Discussion

depth of 3 or 4, produce the best results when size and n are smaller.

An observable downside to this algorithm is that it suffers when it comes to recall.
A solution to low recall would be to use bigger trees, since the best average recall is
achieved when using a depth of 3 with 40% average recall. But this solution would
suffer when it comes to precision because it allows for more non-positive articles
to be included in the tree. The impact of different depth values have on precision
and recall for the different types are shown in Figure 4.1 and Figure 4.2. It can
be observed that greater depth values have a bigger impact on type Single TC’s
compared to the type Double TC’s.

3211 221 3 42 32 3 441 2 4331 44
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Percision
Recall

Figure 4.1: Depth impact with type
Single. The regression line was calculated

using least squares.

1 221 21 21 311 2 442 43 41 3 4333
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Percision
Recall

Figure 4.2: Depth impact with type
Double. The regression line was
calculated using least squares.

4.5 Fixed Point Classifier Evaluation

As mentioned in Section 3.4.4, FPC uses only labelled data to classify incoming
articles, which was thought to reduce the number of false positives while decreasing
the recall. In this section the results of the algorithm will be presented together
with a discussion.

4.5.1 Results
The different parameters for the Fixed point classifier models are size, offset and
kernel. Size is the number of fixed points used in the model, and is equivalent to
the Size parameter in the Tree Cluster algorithm. Offset and kernel are explained in
Section 3.4.4, with the caveat that the kernel is either "e" for euclidean distance or
"c" for cosine distance. The values for the offset, [0, 0.2], are based on the evaluation
during development, where offset greater than 0.2 showed a negative trend. The
cross validation results with precision above 0.8 can be seen in Table 4.6. The full
FPC cross validation table can be found in Appendix A.

28

4. Results and Discussion

Size Offset Kernel Precision Recall Accuracy
40 0.1 c 0.9818 0.1044 0.5508
20 0.12 c 0.9671 0.0747 0.5366
40 0.08 c 0.9585 0.2183 0.6047
20 0.1 c 0.9569 0.1468 0.5705
20 0.08 c 0.9332 0.2637 0.6218
40 0.05 c 0.9059 0.4739 0.7122
40 0.12 c 0.9000 0.0383 0.5190
20 0.05 c 0.8701 0.4753 0.7016
4 0.15 c 0.8603 0.1020 0.5422
40 0.2 e 0.8533 0.3961 0.5894
40 0.15 e 0.8461 0.4356 0.6053
40 0.12 e 0.8439 0.4572 0.6128
40 0.08 e 0.8376 0.4678 0.6161
40 0.1 e 0.8335 0.4606 0.6131
40 0.05 e 0.8332 0.5056 0.6306
40 0 e 0.8165 0.5333 0.6369
4 0.12 c 0.8103 0.1803 0.5692
4 0.1 c 0.8012 0.2535 0.5947
20 0.15 c 0.8000 0.0179 0.5087

Table 4.6: Fixed Point Classifier evaluation results

4.5.2 Discussion

This model yields high precision while maintaining a recall above 10% using 40 ar-
ticles, an offset of 0.1 and cosine distance as kernel. A balance of parameters can be
noticed, where an identical model with an offset of 0.08 instead of 0.1 drop approx-
imately 3 percent in precision while doubling the recall. On the other hand using
the same model but with an offset of 0.12 it drops in both precision and recall.

One can also determine that cosine distance performed better than euclidean dis-
tance, with the former having an average precision of 85% and the latter 78%.

The correlation between size and precision seems to indicate that more data provides
higher precision, as can be seen in Figure 4.3. The average precision is 75% for size
4, 82% for size 20 and 86% for size 40. This indicates that more data points provides
a wider definition of what is considered positive.

29

4. Results and Discussion

5 10 15 20 25 30 35 40
Size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ec

isi
on

regression
data

Figure 4.3: Correlation between labelled data size and precision using least
squares

4.6 Overall results
A single model with the highest precision from each algorithm is displayed in Table
4.7. The best performing algorithm for this thesis is FPC, since it has the highest
rated precision. The best performing TC got 6.7% lower precision with a tenth
the amount of data. Standard k-means produced the best scores if all evaluation
parameters would be of equal importance.

Algorithm Size Precision Recall Accuracy
Best FPC 40 0.9818 0.1044 0.5508
Best TC 4 0.9147 0.0338 0.5154
SVM[26] 480 0.8571 0.6667 0.6521

Best Supervised K-means 10 0.7361 0.5236 0.5810
Best Standard K-means 2 0.7180 0.6606 0.7005

Table 4.7: Best evaluation results for each model

Taking a look at the example with a majority of non-positive news from Section
4.3.2, with general news split 9-to-1 in favor of non-positive news, the best FPC
model would yield 0.17 non-positive articles for every "good news"-article and the
best TC model would yield 0.84 non-positive articles for every "good news"-article.
So if we were to use the best FPC model on our website with this assumption we
would get roughly 5 out of 6 positive news articles. On the other hand, if we were to
use the best TC model it would be roughly an even split of positive and non-positive
news articles showing up on the website.

30

4. Results and Discussion

Algorithm Size Precision Recall Accuracy
Best FPC 40 0.9818 0.1044 0.5508
SVM[26] 480 0.8571 0.6667 0.6521

Table 4.8: Best FPC model compared to related works

Table 4.8 shows a comparison between the best FPC model to the SVM model,
described in Section 2.5. It can be observed that the precision of our model is
significantly greater. For example, if we take the 9-to-1 scenario and apply it to the
SVM model it yields 1.5 non-positive articles for every positive one. The results can
be attributed to our focus on only precision, while the SVM model aimed for overall
performance. Most of the related works does not even include the precision score at
all.

4.7 Visualization of website
The resulting set of articles scraped from the news sources end up on a website if
they are classified as positive, as can be seen in Figure 4.4. Each article have but-
tons for thumbs up and thumbs down, and the results of the ratings are saved in a
database (but not currently used for anything else).

When observing what articles end up on the website when we use the FPC model
with highest precision, we notice a majority of the articles being either science
related. Out of 94 articles, 64 was science related, while the rest was scattered
over a range of categories. These stats supports the observation that science news
distinguish themselves the most from non-positive news articles, discussed while
exploring the labelled dataset in Section 4.1.1.

31

4. Results and Discussion

Figure 4.4: Current look of website

32

5
Conclusion

5.1 Conclusion

This thesis addressed the problem of classifying positive sentiment in full-length
news articles, using a limited amount of labelled data. To solve this problem two
sub-problems were explored: How much labelled data is needed and are there any
existing methods that could solve this problem.

Existing algorithms were compared with two new algorithms with the focus being on
avoiding false positives, and therefore the precision parameter was highly relevant.
For existing algorithms, precision were not the main focus, so a new approach was
necessary.

The first proposed algorithm, Tree Clusters, achieved a precision of 91.47%, which
while above existing methods, is not high enough for the purpose of this thesis. The
second proposed algorithm, Fixed Point Classifier, achieved a precision of 98.18%.
That is a remarkably good result, which even in scenarios with a high imbalance of
positive and non-positive news will produce a majority of positive news article. To
display them, an application was developed for scraping, classifying and uploading
news articles to a website.

The results show that is it possible to categorize positive sentiment from full-length
news articles given a limited amount of labelled data. In this thesis 400 labelled
articles were used, with at most 10 percent used as training data. The encouraging
results of models with up to 40 data points support that small amounts of data can
be used for precise results.

The methods proposed in this thesis performs as good or better than existing meth-
ods, while using a small amount of data, when solving the problem presented in this
thesis. Previous work in general have focused on the accuracy of the models, which
makes the results incompatible for comparison against the results presented in this
thesis. Therefore, this thesis explores new avenues and is a step forward in the field
of sentiment classification.

33

5. Conclusion

5.2 Future work
This thesis broaches on a wide variety of possible next steps. A limitation for this
thesis was up-to-date data. Since the start of this thesis the news feeds of the
world have changed remarkably, and one particular word previously unseen have
been used extensively, Covid-19. For this thesis there were no aggregated datasets
which included this word, which excluded the word from the models. The website
currently aggregate news articles ad infinitum, and could make use of that to update
the word embeddings’ vocabulary so that it can interpret up-to-date news articles
automatically.

The algorithms proposed could make use of continuous feedback while in use. Cur-
rent functionality collects and creates a dataset based on feedback, but no further
steps were taken. This data could be used to continuously train the models, which
might compensate for the small amount of labelled data, and also decrease false
positives.

Changing the Doc2Vec parameters or using another method for the word embed-
dings, such as FastText[5] and GloVe[15], is another area open for exploration.

Another possible avenue is to introduce a linguistic model, in combination with what
is presented here, that focuses on identifying and filtering out key features in non-
positive news articles, and thereby pushing general news toward a more balanced
ratio of positive and non-positive.

From the data exploration we found some insight into what articles are consid-
ered "good news", but further work can be done to find the articles best suited to
represent positive news, and therefore reduce the size of the training data even more.

One might also want to explore the possibility of using different training data for
different categories of news, since some categories of news were under-represented
for the best performing models.

34

Bibliography

[1] Larry Alexander and Michael Moore. “Deontological Ethics”. In: The Stan-
ford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Winter 2016. Meta-
physics Research Lab, Stanford University, 2016.

[2] All the news. https://www.kaggle.com/snapcrack/all-the-news. Ac-
cessed: 2020-04-23.

[3] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. “SentiWordNet
3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Min-
ing”. In: LREC. Ed. by Nicoletta Calzolari et al. European Language Resources
Association, 2010. isbn: 2-9517408-6-7. url: http://nmis.isti.cnr.it/
sebastiani/Publications/LREC10.pdf.

[4] BBC. https://www.bbc.com/news/10628494. Accessed: 2020-03-24.
[5] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Information”.

In: CoRR abs/1607.04606 (2016). arXiv: 1607.04606. url: http://arxiv.
org/abs/1607.04606.

[6] Julia Driver. “The History of Utilitarianism”. In: The Stanford Encyclopedia
of Philosophy. Ed. by Edward N. Zalta. Winter 2014. Metaphysics Research
Lab, Stanford University, 2014.

[7] Pollyanna Gonçalves et al. “Comparing and Combining Sentiment Analysis
Methods”. In: CoRR abs/1406.0032 (2014). arXiv: 1406.0032. url: http:
//arxiv.org/abs/1406.0032.

[8] i3tex. i3tex - our vision. https://www.i3tex.com/en/about- us/our-
vision/. Accessed: 2020-02-04.

[9] Beakcheol Jang, Inhwan Kim, and Jong Wook Kim. “Word2vec convolutional
neural networks for classification of news articles and tweets”. In: PLOS ONE
14.8 (Aug. 2019), pp. 1–20. doi: 10.1371/journal.pone.0220976. url:
https://doi.org/10.1371/journal.pone.0220976.

[10] Xin Jin and Jiawei Han. “K-Means Clustering”. In: Encyclopedia of Machine
Learning. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer
US, 2010, pp. 563–564. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-
30164-8_425. url: https://doi.org/10.1007/978-0-387-30164-8_425.

[11] Quoc V. Le and Tomas Mikolov. “Distributed Representations of Sentences
and Documents”. In: CoRR abs/1405.4053 (2014). arXiv: 1405.4053. url:
http://arxiv.org/abs/1405.4053.

[12] Kalev Leetaru. “Culturomics 2.0: Forecasting large-scale human behavior us-
ing global news media tone in time and space”. In: First Monday 16.9 (Aug.
2011). doi: 10.5210/fm.v16i9.3663. url: https://journals.uic.edu/
ojs/index.php/fm/article/view/3663.

35

https://www.kaggle.com/snapcrack/all-the-news
http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf
http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf
https://www.bbc.com/news/10628494
https://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1406.0032
http://arxiv.org/abs/1406.0032
http://arxiv.org/abs/1406.0032
 https://www.i3tex.com/en/about-us/our-vision/
 https://www.i3tex.com/en/about-us/our-vision/
https://doi.org/10.1371/journal.pone.0220976
https://doi.org/10.1371/journal.pone.0220976
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
https://doi.org/10.5210/fm.v16i9.3663
https://journals.uic.edu/ojs/index.php/fm/article/view/3663
https://journals.uic.edu/ojs/index.php/fm/article/view/3663

Bibliography

[13] Bing Liu. “Sentiment analysis and opinion mining”. In: Morgan Claypool Pub-
lishers (2012). url: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.244.9480&rep=rep1&type=pdf.

[14] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector
Space”. In: CoRR abs/1301.3781 (2013). url: https://arxiv.org/pdf/
1301.3781.pdf.

[15] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural
Language Processing (EMNLP). 2014, pp. 1532–1543. url: http : / / www .
aclweb.org/anthology/D14-1162.

[16] Reuters. http://feeds.reuters.com/reuters/topNews. Accessed: 2020-03-
24.

[17] Science Daily. https://www.sciencedaily.com/. Accessed: 2020-04-15.
[18] Nagesh Bhattu Sristy and D.V.L.N Somayajulu. “Semi-supervised Learning of

Naive Bayes Classifier with feature constraints”. In: Proceedings of the First In-
ternational Workshop on Optimization Techniques for Human Language Tech-
nology. Mumbai, India: The COLING 2012 Organizing Committee, Dec. 2012,
pp. 65–78. url: https://www.aclweb.org/anthology/W12-6105.

[19] The Guardian. https://www.theguardian.com/world/rss. Accessed: 2020-
03-24.

[20] The Independent. http : / / www . independent . co . uk / news / world / rss.
Accessed: 2020-03-24.

[21] Peter D. Turney. “Thumbs Up or Thumbs Down? Semantic Orientation Ap-
plied to Unsupervised Classification of Reviews”. In: CoRR cs.LG/0212032
(2002). url: http://arxiv.org/abs/cs/0212032.

[22] UN News. https://news.un.org/en/rss-feeds. Accessed: 2020-03-24.
[23] Kiri Wagstaff and Claire Cardie. “Clustering with Instance-level Constraints”.

In: AAAI/IAAI 1097 (2000), pp. 577–584. url: https://www.aaai.org/
Papers/AAAI/2000/AAAI00-180.pdf.

[24] Wei Wei and Xiaojun Wan. “Learning to Identify Ambiguous and Misleading
News Headlines”. In: CoRR abs/1705.06031 (2017). arXiv: 1705.06031. url:
http://arxiv.org/abs/1705.06031.

[25] Wired. https://www.wired.com/. Accessed: 2020-04-15.
[26] Kiran Shriniwas Doddi Yashodhara Haribhakta. “Categorization of News Ar-

ticles using Sentiment Analysis”. In: International Journal of Scientific Re-
search in Computer Science 2 Issue 5 (September-October 2017), pp. 52–60.
issn: 2456-3307.

36

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.244.9480&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.244.9480&rep=rep1&type=pdf
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://feeds.reuters.com/reuters/topNews
https://www.sciencedaily.com/
https://www.aclweb.org/anthology/W12-6105
https://www.theguardian.com/world/rss
http://www.independent.co.uk/news/world/rss
http://arxiv.org/abs/cs/0212032
https://news.un.org/en/rss-feeds
https://www.aaai.org/Papers/AAAI/2000/AAAI00-180.pdf
https://www.aaai.org/Papers/AAAI/2000/AAAI00-180.pdf
https://arxiv.org/abs/1705.06031
http://arxiv.org/abs/1705.06031
https://www.wired.com/

A
Appendix 1

The stemmer used in this thesis was NLTK:s Snowball stemmer.

A.1 Complete result tables
The following are the complete result tables for the FPC, Table A.1, and TC, Table
A.2, classifier evaluation.

I

https://www.nltk.org/_modules/nltk/stem/snowball.html

A. Appendix 1

Size Offset Kernel Precision Recall Accuracy
40 0.1 c 0.9818 0.1044 0.5508
20 0.12 c 0.9671 0.0747 0.5366
40 0.08 c 0.9585 0.2183 0.6047
20 0.1 c 0.9569 0.1468 0.5705
20 0.08 c 0.9332 0.2637 0.6218
40 0.05 c 0.9059 0.4739 0.7122
40 0.12 c 0.9000 0.0383 0.5190
20 0.05 c 0.8701 0.4753 0.7016
4 0.15 c 0.8603 0.1020 0.5422
40 0.2 e 0.8533 0.3961 0.5894
40 0.15 e 0.8461 0.4356 0.6053
40 0.12 e 0.8439 0.4572 0.6128
40 0.08 e 0.8376 0.4678 0.6161
40 0.1 e 0.8335 0.4606 0.6131
40 0.05 e 0.8332 0.5056 0.6306
40 0 e 0.8165 0.5333 0.6369
4 0.12 c 0.8103 0.1803 0.5692
4 0.1 c 0.8012 0.2535 0.5947
20 0.15 c 0.8000 0.0179 0.5087
20 0.2 e 0.7855 0.5295 0.6000
20 0.15 e 0.7731 0.5595 0.6055
20 0.12 e 0.7722 0.5616 0.6055
4 0.08 c 0.7674 0.3217 0.6121
20 0.1 e 0.7671 0.5874 0.6111
40 0 c 0.7576 0.8872 0.8003
20 0.08 e 0.7567 0.5837 0.6032
20 0.05 e 0.7526 0.5974 0.6082
20 0 e 0.7463 0.6084 0.6074
4 0.12 e 0.7369 0.4672 0.5492
4 0.1 e 0.7338 0.4722 0.5477
4 0.15 e 0.7319 0.4606 0.5472
4 0.05 e 0.7269 0.4773 0.5523
4 0.08 e 0.7239 0.4828 0.5477
4 0.05 c 0.7199 0.4444 0.6374
4 0 e 0.7171 0.4859 0.5477
4 0 c 0.6335 0.6652 0.6402

Table A.1: Fixed Point Classifier evaluation results

II

A. Appendix 1

Type Size Depth n Precision Recall Accuracy
Double 4 1 5 0.9147 0.0338 0.5154
Single 4 3 5 0.9074 0.0332 0.5143
Double 40 2 5 0.9064 0.1217 0.5547
Double 20 2 5 0.8965 0.0600 0.5271
Single 40 2 5 0.8952 0.2181 0.5959
Single 40 1 5 0.8841 0.0944 0.5413
Double 20 1 5 0.8808 0.1547 0.5668
Single 40 1 10 0.8751 0.2256 0.5966
Single 4 2 10 0.8718 0.0730 0.5321
Double 20 2 10 0.8703 0.1768 0.5753
Single 20 2 5 0.8623 0.0961 0.5406
Single 20 1 10 0.8546 0.0989 0.5408
Double 40 1 10 0.8522 0.1050 0.5433
Single 40 3 5 0.8418 0.3012 0.6222
Double 40 2 10 0.8368 0.2994 0.6206
Double 4 1 10 0.8345 0.0990 0.5412
Double 4 3 5 0.8341 0.1010 0.5396
Single 4 4 5 0.8337 0.0541 0.5212
Single 20 2 10 0.8233 0.3006 0.6172
Single 20 3 5 0.8224 0.1694 0.5664
Single 40 2 10 0.8187 0.4725 0.6834
Double 40 1 5 0.8167 0.2761 0.6081
Double 20 1 10 0.8151 0.3911 0.6508
Single 4 3 10 0.8143 0.1474 0.5571
Double 4 2 10 0.8120 0.0323 0.5145
Double 20 4 5 0.8091 0.1605 0.5618
Double 4 4 5 0.8036 0.0389 0.5165
Single 20 4 5 0.8033 0.2550 0.5961
Double 4 2 5 0.8000 0.0101 0.5048
Double 40 4 5 0.7967 0.2517 0.5933
Double 20 3 5 0.7905 0.3779 0.6384
Single 40 4 5 0.7897 0.3794 0.6387
Single 20 1 5 0.7739 0.0333 0.5133
Double 4 4 10 0.7674 0.1747 0.5634
Single 4 2 5 0.7667 0.0158 0.5073
Single 4 4 10 0.7649 0.2806 0.5959
Double 40 1 10 0.7588 0.5578 0.6908
Single 20 3 10 0.7557 0.4878 0.6647
Double 40 3 5 0.7531 0.5128 0.6725
Single 40 3 10 0.7269 0.6356 0.6984
Double 40 4 10 0.7197 0.5906 0.6800
Single 4 1 10 0.7167 0.0143 0.5064
Double 4 3 10 0.7096 0.3742 0.6136
Double 20 3 10 0.6842 0.7579 0.7037
Single 20 4 10 0.6791 0.6439 0.6692
Single 40 4 10 0.6556 0.7350 0.6744
Double 40 3 10 0.6458 0.8606 0.6936

Table A.2: Tree Clusters evaluation results
III

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Aim
	Limitations
	Road map

	Theory
	Word Embeddings
	Word2vec
	Doc2vec

	Classification
	K-means
	Supervised K-means

	Definition of Good
	Utilitarianism
	Right-based ethics

	Sentiment Classification
	Related Works

	Methods
	Defining "Good"
	Collecting data
	News sources
	Unlabelled Data
	Labelled Data

	Pipeline
	Preprocessing

	Classification algorithms
	Seeding
	K-means
	Tree Clusters
	Fixed Point Classifier
	Exploring the Labelled Data

	Evaluation
	Visualization of results

	Results and Discussion
	Datasets
	Labelled
	Unlabelled

	Word Embedding Parameters
	K-means Evaluation
	Results
	Discussion

	Tree Clusters Evaluation
	Results
	Discussion

	Fixed Point Classifier Evaluation
	Results
	Discussion

	Overall results
	Visualization of website

	Conclusion
	Conclusion
	Future work

	
	Appendix 1
	Complete result tables

