
Deep Learning and the Heston Model:

Calibration & Hedging

Oliver Klingberg Malmer & Victor Tisell

July 2020

A thesis presented for the degree of

Bachelor of Science in Statistics

Thesis advisor: Alexander Herbertsson
School of Business, Economics and Law

Department of Economics

Contact:
victor@tritonic.se or gusmalmeol@student.gu.se

Abstract

The computational speedup of computers has been one of the defining characteristics
of the 21st century. This has enabled very complex numerical methods for solving existing
problems. As a result, one area that has seen an extraordinary rise in popularity over the last
decade is what is called deep learning. Conceptually, deep learning is a numerical method
that can be ”taught” to perform certain numerical tasks, without explicit instructions, and
learns in a similar way to us humans, i.e. by trial and error. This is made possible by what is
called artificial neural networks, which is the digital analogue to biological neural networks,
like our brain. It uses interconnected layers of neurons that activates in a certain way when
given some input data, and the objective of training a artificial neural network is then to let
the neural network learn how to activate its neurons when given vast amounts of training
examples in order to make as accurate conclusions or predictions as possible.

In this thesis we focus on deep learning in the context of financial modelling. One very
central concept in the financial industry is pricing and risk management of financial securi-
ties. We will analyse one specific type of security, namely the option. Options are financial
contracts struck on an underlying asset, such as a stock or a bond, which endows the buyer
with the optionality to buy or sell the asset at some pre-specified price and time. Thereby,
options are what is called a financial derivative, since it derives its value from the under-
lying asset. As it turns out, the concept of finding a fair price of this type of derivative
is closely linked to the process of eliminating or reducing its risk, which is called hedging.
Traditionally, pricing and hedging is achieved by methods from probability theory, where
one imposes a certain model in order to describe how the underlying asset price evolves, and
by extension price and hedge the option. This type of model needs to be calibrated to real
data. Calibration is the task of finding parameters for the stochastic model, such that the
resulting model prices coincide with their corresponding market prices. However, traditional
calibration methods are often too slow for real time usage, which poses a practical problem
since these models needs to be re-calibrated very often. The hedging problem on the other
hand has been very difficult to automate in a realistic market setting and suffers from the
simplistic nature of the classical stochastic models.

The objective of this thesis is thus twofold. Firstly, we seek to calibrate a specific prob-
abilistic model, called the Heston model, introduced by Heston (1993) by applying neural
networks as described by the deep calibration algorithm from Horvath et al. (2019) to a
major U.S. equity index, the S&P-500. Deep calibration, amongst other things, addresses
the calibration problem by being significantly faster, and also more universal, such that it
applies to most option pricing models, than traditional methods.

Secondly, we implement artificial neural networks to address the hedging problem by a
completely data driven approach, dubbed deep hedging and introduced by Buehler et al.
(2019), that allows hedging under more realistic conditions, such as the inclusion of costs
associated to trading. Furthermore, the deep hedging method has the potential to provide
a broader framework in which hedging can be achieved, without the need for the classical
probabilistic models.

Our results show that the deep calibration algorithm is very accurate, and the deep hedging
method, applied to simulations from the calibrated Heston model, finds hedging strategies
that are very similar to the traditional hedging methods from classical pricing models, but
deviates more when we introduce transaction costs. Our results also indicate that different
ways of specifying the deep hedging algorithm returns hedging strategies that are different
in distribution but on a pathwise basis, look similar.

Keywords: deep learning, deep hedging, deep calibration, option pricing, stochastic volatility,
Heston model, S&P 500 index options, incomplete markets, transaction costs.

1

Acknowledgements

We would like to express our special thanks and gratitude to our advisor Alexander
Herbertsson, who enabled this thesis by his commitment to the subject, guidance, thoughtful
discussions and constructive comments.

2

Contents

1 Introduction 4

2 Background to Financial Derivatives 6

3 Theoretical Perspective on Pricing, Hedging & Probabilistic Modelling 7
3.1 The Black-Scholes Model . 9
3.2 Stochastic and Implied Volatility . 11
3.3 The Heston Model . 12
3.4 Classical Parameter Calibration . 17
3.5 Continuous time Martingale Pricing & Dynamic Replication 18

4 Optimal Hedging in Discrete Time using Convex Risk Measures & the Quadratic
Criterion 22

5 Theoretical Background to Neural Networks 25
5.1 Background . 25
5.2 Neurons . 26
5.3 Learning . 27

5.3.1 Gradient Descent . 28
5.3.2 Backpropagation . 30

6 Deep Calibration 31

7 Deep Hedging 35
7.1 Market Setting & Objective . 35
7.2 Approximation of Optimal Hedging Strategies by Neural Networks 36

8 Implementation & Numerical Results 39
8.1 Calibration Method . 40
8.2 Hedging Method . 46

9 Conclusions & Suggestions for Future Research 56

Appendix A Differential Evolution 58

3

1 Introduction

A financial derivative is a financial instrument that derives its value from some other financial
asset. In order for dealers of financial derivatives to operate efficiently and provide liquidity to
the marketplace, dealers must be able to minimize and ideally eliminate their risk. The practice
in which this is achieved is called hedging. A hedge is a offsetting position to an agents portfolio
of instruments and/or assets which serves to reduce risk. The theoretical motivation of how such
a strategy should be achieved is heavily intertwined with derivative pricing theory. The tradi-
tional framework in which pricing and hedging operates is a result of Black & Scholes (1973) and
is generally referred to as the Black-Scholes framework (BS), which is a coherent mathematical
structure that allows for closed form solutions to pricing and hedging, which will be described in
greater detail later on in this thesis. However, since the introduction of BS, financial markets,
including derivatives markets, has expanded and developed extensively. The evolution of the
derivatives market, which has closely been in line with the development of modern computa-
tional technology, has greatly impacted the way dealers operate and by extension how effective
capital allocation has become, since computationally intensive methodology enables numerical
solutions to complex problem formulations. As a result of the increased complexity of financial
markets, the flaws of the central assumptions of the BS-model have become more apparent. This
thesis seeks to research a numerical solution to both hedging and pricing, that is independent of
classical methods, such as the Black-Scholes model.

Motivated by the limitations of the Black-Scholes model, other models has been suggested.
Some of these frameworks model volatility as a separate process, such as the Heston model. The
Heston model, introduced by Heston (1993), is an expansion of the Black-Scholes model which
explicitly takes the non-constant volatility, i.e. the variation of any price series measured by the
standard deviation of log-returns, into account. However, complex financial models are often less
parsimonious as they depend on multidimensional parameter spaces, introducing a model cali-
bration problem. Model calibration is the process by which the parameters of a certain model is
estimated, generally by minimizing the difference between model generated data and observed
data. For the specific Heston model, fast numerical methods has been suggested that performs
well, however, are not generalizable to more complex models such as rough volatility models and
models with jumps in volatility. Even if the empirical properties of such models are promising,
the computational costs are large. Thus, the limiting the applicability of such models. Therefore,
there exist a need for faster and, ideally, more accurate calibration methods, will be the partial
objective of this thesis.

Hedging of financial derivatives should be performed with realistic market assumptions. When
a financial institution trades a security, the institution incurs a cost, generally referred to as a
transaction cost. If one combines the existence of transaction costs with the statistical properties
of realistic market conditions, classical models are insufficient descriptions of reality, meaning
they will produce non-systematic errors. The research of hedging under the conditions given
by realistic market assumption has long been an important subject for practitioners. However,
the inclusion of transaction costs omits analytical solutions to optimal hedging weights. Thus,
there exist a need for numerical methods to solve the solutions to optimal hedging weights with
inclusion of transaction costs. As such, the central property of numerical solutions to the hedging
problem should be model independence, as this exclude the assumption of unrealistic statistical
properties of financial markets, i. e. the method has to be data driven and independent of
explicit human input to correct non-systematic errors.

4

Modern computers have enabled accessibility of complex numerical methods for solving exist-
ing problems. One such group of methods are called machine learning. Machine learning (ML)
is the process in which computer systems use algorithms and statistical models to perform some
task, independently of explicit instructions of how to perform it. In general, machine learning al-
gorithms utilize training data, on which the machine ”learns” the pattern of the data and builds a
function such that it seeks to optimally perform a certain task. This model is then generally used
out of sample in which the quality of the predictions are validated. One example of such models
are artificial neural networks (ANN). Artificial neural networks are computational systems that
are reminiscent of biological neural networks in brains. As such, the learning procedure of ANN’s
are vaguely similar to that of human brains. Thus, such a network learns, without task specific
instructions, by ”feeding” some input and activating neurons in the network to come to a con-
clusion about what that the outcome should be. For example, in image recognition, a researcher
might want to classify images of hand written numbers. The network is given some input image
that is manually labelled with what number that image represents. The network then learns
how it should change its parameters to classify correctly by evaluating how well each parameter
combination performs the classification task. As one might suspect, this method requires very
large data sets to be able to learn how to solve the task sufficiently well. Hence, even though
the theory of ANN’s have existed since McCulloch & Pitts (1943), its practical application has
been limited until recently as the computational speedup of modern computers is substantial,
especially for complex neural networks with large dimensions, and thus many parameters.

This thesis will attempt to address some of the deficiencies of both model calibration and hedging
of the Heston model by means of deep learning, i.e. the application of multi-layered artificial
neural networks. Based on the results of Hornik (1991), in which deep neural networks are shown
to have universal approximating properties, any continuous function, and its derivatives, can be
approximated arbitrarily well by a deep neural network, numerical methods, utilizing ANN’s, for
model calibration was introduced by Horvath et al. (2019) and is called deep calibration. Similar
methods apply to hedging, i.e. neural networks can act as approximators for optimal hedging
strategies. We will consider optimality in the same sense as Buehler et al. (2019), which are the
originators of the method. We build a neural network calibration and hedging method on S&P
500 market data and attempt to address the compatibility of the methods. Thus, the objective
of the thesis is to implement and study methods of numerical approximation for any full-scale
front-office financial model under more realistic market assumptions than classical methods would
allow, by means of deep learning. We implement the methodology for the specific Heston model,
however, it is easily extendable to other financial models. Hence, we shall calibrate a Heston
model on the S&P 500 by deep calibration, and then simulate trajectories which are used to train
the deep hedging method. We then evaluate the performance of each separately by means of
descriptive statistics and visualization.

Our numerical studies in the Heston model, using simulated prices, indicate that the deep cali-
bration algorithm can approximate traditional calibration methods very well. However, as one
might expect, the calibration error grows when applied to real market data, since the Heston
model itself cannot perfectly capture real market dynamics, although the error is still small
enough to ensure a ”reasonable” fit to market data. Furthermore, we also show that when per-
forming unconstrained calibration, where the resulting parameter space violates what is known
as the Feller condition, which is a condition on the Heston model parameter space that ensures
that the discretized version of the variance process remains positive. As such, violations of the
Feller condition means that there exists possibilities for the simulated variance process being
negative, which is theoretically impossible, and therefore introduces problems when simulating

5

the Heston model. We deal with the problem introduced by the violation of the Feller condition
by simply constraining the parameter space, which as previously mentioned, will introduce larger
calibration error. However, as the simulation of sample paths is integral to the deep hedging
algorithm, the Feller condition becomes a ”necessary condition” to satisfy.

Our numerical results from the deep hedging algorithm shows that generated strategies are
consistently very close to a classical hedging strategy, used as a benchmark. Moreover, different
profit/loss (pnl) distributions, i.e. the frequencies of hedging strategy pnl evaluated over a large
number of sample paths, differ between risk measures. Hence, we are able to highlight some pros
and cons of deep hedging strategies over different measures of risk, by comparing descriptive
statistics such as their respective mean and variance etc. For example, when the risk measure
is a quadratic function, the pnl distribution is very similar to the benchmark strategy. Further-
more, we also introduce transaction costs and show their impact on the deep hedging strategy
and compare it to when costs are excluded. Our results indicate that the main difference when
one introduces transaction costs is that the mean of the hedging strategy pnl distribution shifts
upwards.

The thesis is structured as follows. In Section 2 we introduce the concept of financial derivatives,
specifically options. The theoretical background of pricing of financial derivatives, probabilis-
tic frameworks in which pricing and hedging are achieved and finally we provide a theoretical
background to hedging, which will rationalize our choice of risk measure, is discussed in Section
3. Furthermore, the section includes a short description of classical model calibration which
provides a contextual background to deep calibration. Section 4 expands previous discussions of
hedging theory into discrete time. Furthermore, we introduce the concept of convex risk mea-
sures and optimal hedging under such measures. We also formulate the theoretical background
of optimality under a shortfall measure weighted by a loss function. In Section 5, the theoretical
background of neural networks needed to understand the numerical methods for hedging and
calibration is covered. In Section 6 and 7 we explain the properties and the implementation
of the AI-methods used for calibration and hedging respectively. In Section 8 we present the
numerical results of the calibration method and the hedging strategy in relation to a traditional
hedge obtained by traditional methods. Lastly, we provide conclusions and suggestions for future
research in Section 9.

2 Background to Financial Derivatives

This section will introduce the concept of financial derivatives, specifically options and their
properties and also serve to introduce the reader to the financial concepts in the formulation of
the stated objective of the thesis.

A financial derivative is a financial instrument that derives its value from some other finan-
cial asset. The simplest form of a financial derivative is a forward contract. A forward is a
contract between a buyer and a seller to transact at a future time at the current forward price.
This contract is obligatory for both parties. Another slightly more complex form of derivative
are options. These contracts come in many forms but we will only consider European vanilla
options as these represent the derivative in its most simple form. A European vanilla option is a
contract between a buyer and seller that bestows the buyer the right, not the obligation, to buy
or sell a security at a pre-specified date and price. Other types of options differ in settlement
type. The date of settlement is referred to as maturity T and the pre-specified price is referred
to as strike K. There exist two types of vanillas, call options and put options, where call options

6

bestows the buyer right to buy the underlying asset and vice versa for put options. Because
of the structure of these contracts, the payoff is non-linear with respect to the state-variable,
which considers the space in which the underlying asset changes, in financial terms, the state
considered is time. In order to gain a better understanding of the concept of options, one can
consider the mathematical formulation of their payoff structure at time T,

call := (ST −K)+, put := (K − ST)+ (1)

where ST denotes the terminal value of the underlying asset at maturity. From Equation (1) it
becomes evident that, as K < ST , the call option will have a positive payoff and the put option
will have a payoff that equals zero. For the call option, this scenario is called in the money (ITM)
and for the put option this is called Out of the money (OTM), both of these scenarios stems
from the concept of moneyness which considers St

K = M . A option is considered at the money
(ATM) if M = 1, that is if the current price of the underlying is equal to the exercise price. A
option is considered to be in the money (ITM) if there exist a monetary gain in exercising it. A
call is ITM if M > 1 and a put is ITM if M < 1 and a option is out of the money if the converse
is true. The loss that the seller of the put option will be equal to strike of the option adjusted for
the cash received when sold at the inception of the contract. Conversely, the payoff for the call
option holder is equivalent to the strike, see Figure 1 for more details regarding option payoffs.

K
ST

0

S T
K

Call Payoff Function

(a) Call option payoff.

K
ST

0

K
S T

Put Payoff Function

(b) Put option payoff.

Figure 1: Payoff functions at maturity T for European call and put options with strike K.

3 Theoretical Perspective on Pricing, Hedging & Proba-
bilistic Modelling

In this section we will introduce the reader to the concept of option pricing, stochastic modelling
and two special cases of such models, namely the popular Black-Scholes model and the Heston
model, which is the stochastic model that we will consider for calibration and hedging. We will
cover the various tools needed in order to understand such models, for example stochastic pro-
cesses and volatility. Furthermore, the reader will be introduced to hedging in its most general
form and thus provide a solid theoretical background to the reader in order to understand the
objective of the thesis.

Options are a special case of what is called contingent claims. Contingent claims are gener-
ally defined as a financial derivative whose payoff is contingent/dependent on the realization of

7

some future uncertain event regarding the underlying asset. Pricing and risk management of such
claims is a central concept for financial practitioners and academics alike. In order to understand
modern financial markets, in which derivatives are an essential part, one needs to understand
their valuation. In order to model contingent claims, one needs to consider some form of proba-
bilistic model of the underlying asset S. In such a model, the price of contingent claims reflects
the known information about the terminal distribution of S under some probability measure.

In order to understand subsequent sections on stochastic models for financial assets, we need
to introduce the notion of probability spaces and filtered probability spaces. A probability space
is a measurable space, on which we can define a probability measure. A measurable space is
defined by a tuple (Ω,F), where Ω is any set, usually called the sample space in probability
theory, and F ⊆ 2Ω, where 2Ω is the power set of Ω, is whats called a σ-algebra. A σ-algebra
is a collection of subsets of Ω, which denotes all possible events, that includes Ω and the empty
set ∅ that is closed under complements and countable unions. A probability measure P on the
measurable space (Ω,F) is a function P : F 7→ [0, 1] such that P(Ω) = 1, P(∅) = 0 that satisfies
countable additivity for pairwise disjoints sets in F . We now have the triple (Ω,F ,P), which is
a probability space. Furthermore, since asset prices, and by extension, options evolve over time
and adapts to the information in the market place, we need to introduce the concept of filtration.
A filtration F := (Ft)t∈T is formally defined as a collection of σ-algebras ordered by some index
set, which for our purposes will be represented as time, provided that Fs ⊆ Ft ⊆ F for any
s ≤ t. The intuition behind filtration is that it represents all relevant information about the
probability space at each point in time. What we now have is what is called a filtered probability
space (Ω,F ,F,P). For further information see e.g. Protter (2005).

The general task of option pricing under the real measure P can then be described by dis-
counting the expected payoff in which the discount rate is determined by an individual investors
risk preference. Under the assumption of complete markets (see Section 3.5) and the absence of
systematic risk-free profits (absence of arbitrage) one does not need to adjust the expectation
individually but can incorporate all investors risk premia under a equivalent measure, Q, such
that P ∼ Q which means that the probability measures assign zero probability to the same sets,
see e.g. Björk (2009) for further details. Thus, pricing of options can be achieved by discounting
the expected payoffs of the probability distribution under the equivalent or risk-neutral measure
(Q). Thereby, one can consider a European option with strike K, maturity T and estimate its
value

V callt = e−r(T−t)EQ
[
max(ST −K)+|Ft

]
(2)

V putt = e−r(T−t)EQ
[
max(K − ST)+|Ft

]
(3)

in which T − t denotes the time to maturity. The task described by Equation (2) and (3)
amounts to evaluating the probability distribution of ST under Q. Here we denote the payoff
functions max(ST −K)+ by g(ST ;K,T) and max(K − ST)+ by h(ST ;K,T). When t = 0, then
Ft = F0 which means that the conditional expectation EQ[u(ST ;K,T)|F0] = EQ[u(ST ;K,T)] in
which u is any deterministic function. This means that the conditional expectations admits the
representation

V call0 = e−rTEQ [g(ST ;K,T)] = e−rT
∫ ∞
−∞

g(x;K,T)fST (x)dx (4)

V put0 = e−rTEQ [h(ST ;K,T)] = e−rT
∫ ∞
−∞

h(x;K,T)fST (x)dx. (5)

8

One can see in Equation (4) and (5) that the only stochastic element present in the pricing task
at t = 0 is the terminal distribution of S. In order to model this stochastic element, stochastic
processes needs to be introduced. Stochastic processes are ordered stochastic variables over a
continuous space, that we define as time. Formally, a stochastic process is a family of stochastic
variables defined on the probability space. The simplest form of such a process is the Brownian
motion/Wiener process (see Figure 2 for sample path.)

Definition 3.1. Wiener process. The Wiener process (Wt)t≥0 is a stochastic process with the
following properties:

1. W0 = 0. The initial point of the process is zero.

2. Increments in W are independent.

3. Wt is almost surely continuous.

4. Wt ∼ N (0, t). All increments of W are normally distributed with E[Wt −Ws] = 0 and
V ar(Wt −Ws) = t− s for t ≥ s

0.0 0.2 0.4 0.6 0.8 1.0

1.25

1.00

0.75

0.50

0.25

0.00

0.25

Figure 2: Sample trajectory of Brownian motion/ Wiener process (Wt)t∈(t,T] with W0 = 0,
independent normally distributed increments with Wt ∼ N (0, t) for each t.

A Wiener process is sometimes also referred to as Brownian motion. One informal way of
representing a stochastic process, is by what is called a stochastic differential equations (SDE’s).
A SDE is the representation of a stochastic process in its differential form, and differs from an
ordinary differential equation in the sense that one or more terms is a stochastic process, typically
some random noise, for example dW , which is the representation of Brownian motion with the
property that dW ∼ N (0, dt) and can be conceptualized as the limit of Brownian increments. In
order to solve such equations, stochastic calculus is applied.

3.1 The Black-Scholes Model

The Black-Scholes (BS) model is a analytically coherent framework of market dynamics and is
the bedrock on which most derivative pricings are based. The BS-model allows for closed form

9

solutions to V callt and V putt given by Equations (2) and (3) respectively, where Ft = σ(Ws : s ≤ t)
and is called the filtration generated by the Wiener process. The spot process S follows the SDE

dSt = rStdt+ σStdWt (6)

where W is a Wiener process, see Definition 3.1. In order to solve this equation, stochastic
calculus must be applied. Consider its integral form

St = S0 +

∫ t

0

rSudu+

∫ t

0

σSudWu

and when Itô calculus is applied the resulting stochastic process is a geometric Brownian motion

St = S0e
(r− 1

2σ
2)t+σWt . (7)

If one would consider the SDE under the real measure P, the risk free rate r should be substituted
for the instantaneous drift as assets do no-longer have the same expected return Black & Scholes
(1973). After solving the BS partial differential equation, the following expression is obtained.

Definition 3.2. Black-Scholes Equation

CBS(St, σ,K, T) = N (d1)St −N (d2)Ke−r(T−t) (8)

in which CBS(S0, σ,K, T) = V call, N (·) denotes the standard normal cumulative distribution
function and

d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t (9)

where time to maturity is denoted as T − t. The only unknown quantity under Q is the volatility
parameter σ.

As mentioned in the introduction, there exist severe limitations of the BS-model.

• The stochastic differential equation. The stochastic differential equation (6) that
Black-Scholes utilizes is a oversimplification of the way that stock prices evolve. By ex-
tension, this implies that prices are continuous and returns are log-normally distributed.
As empirical data suggests, asset returns are more fat-tailed than that of the Gaussian
distribution. This results in distortions in the probability that a contract expires in the
money (ITM) and, by extension, in the price of the option.

• Volatility. The only unknown quantity of the model is the volatility, σ. This quantity is
thereby the a critical component of the model and is considered to be constant. Market
data indicates that this is not the case as it varies across strike and maturity of the option.

• Discretization. Real life trading and hedging takes place at discrete times while Black-
Scholes assumes continuous time and approximations leads to suboptimal solutions for
practitioners.

In order to deal with these inherent deficiencies, new models has been proposed which focus
primarily on the concept of volatility.

10

3.2 Stochastic and Implied Volatility

Volatility is the main measurement of risk associated with any financial asset. Realized volatility,
σR, is defined as the standard deviation of continuous compounding historical returns. Let
St1 , St2 , . . . , Stn be observations of a stock price St at n different time points t1 < t2 < · · · < tn
then the realized volatility over n time point is defined as

σR =

√√√√[1

n− 1

n∑
i=1

(ri − r̄)2

]
(10)

where ri = ln
(

Sti
Sti−1

)
and denotes the log return of the financial asset over the non-finite time

interval t− u. Furthermore r̄ denotes the mean log return of the asset

r̄ =
1

n

n∑
i=1

ri .

Volatility estimates can be split into two main fields. Historical volatility and Implied volatility
(IV). Historical volatility is calculated by estimating the standard deviation of returns over some
finite historical time interval as in Equation (10). Thereby arguing that the best estimate of
future realized volatility is historical realized volatility. In contrast, implied volatility (σBS)
is the main measure of anticipated/perceived price risk and is defined as the input value of σ
into Equation (8) that will generate a theoretical quote that is equal to the market or a quote
generated by another model. The IV for a unique option can be found by extracting σ using the
Black-Scholes pricing formula, such that

σBS :=
{
σ : CBS(T,K, σ) = P(K,T)

}
(11)

where P(K,T) denotes an option price and can be represented by a market quote or by a quote
generated by any model at t = 0. This equation is solved by numerical solvers, for example
the algorithm proposed by Stefanica & Radoicic (2017). The implied volatility surface is the
volatility such that Equation (11) holds across a grid of strikes and maturities. Formally, one
can define the (call option) implied volatility surface as

ΣBS =
{
{σTj ,Kk}mj=0,

n
k=0 : CBS(Tj ,Kk, σTj ,Kk) = P(Kk, Tj)

}
(12)

where Tj denotes the jth maturity and Kk denotes the kth strike. Emprical data for the call
option market implied volatility surface on the 8th of November 2019 for the S&P 500 index is
shown in Figure 3.

The market implied volatility surface is highly complex and to have any hope of replicating
it, one must treat volatility with extra care. Stochastic volatility (SV) is a joint model of prices
and variance that has been suggested to model variable volatility surfaces by allowing prices
to depend on the variance process and by extension, volatility. Hence, volatility is modelled
as a latent stochastic process. In SV models, one generally tries to capture the mean-reverting
property of volatility and generate the stochastic element by a standard Brownian motion that is
correlated to the Brownian motion that produces the spot price process. These properties allows
stochastic volatility models to be more dynamic than the Black-Scholes model and thus differ in
pricing. There exist a vast amount of SV-models, this paper will only consider one such model,
namely the Heston model.

11

tim
e t

o m
atu

rity
50
100

150
200

250
300

350
400

moneyness 0.9250.9500.9751.0001.0251.0501.0751.100

im
plied volatilities 0.10

0.12
0.14
0.16
0.18
0.20

S0 = 3093.0, ir = 0.0156, dr = 0.0188, v0 = 0.0145

0.10

0.12

0.14

0.16

0.18

S&P 500 index implied volatility

Figure 3: 2019-11-08 Implied volatility surface of S&P 500 index call options. Each point in
the grid is the Black-Scholes implied volatility (IV) that generate the market price, so the IV
surface is the set of volatilites that generate all market prices from the Black-Scholes model, as
in Equation (12), such that σBS ∈ ΣBS .

3.3 The Heston Model

One of the major assumptions of the Black-Scholes model, as noted in Subsection 3.1, is constant
volatility. However, in reality we typically have skewed volatility surfaces. Many different models
has been proposed in order to try and correct this shortfall of the BS framework. One such model
is the Heston model. The Heston model, introduced by Heston (1993), is an extended version
of the Black-Scholes model that takes stochastic volatility into account in which variance is
modelled as a hidden Cox-Ingersoll-Ross process. The Heston model takes the leverage effect in
to account as volatility and returns are correlated and is modeled by two correlated Brownian
motions. One difference between the Heston model and other stochastic volatility models is the
existence of a fast and semi closed solutions to European option pricing, as we shall see later in
this section, which gives an indication as to why it is so popular Gatheral (2015).

12

Definition 3.3. Heston SDE’s:

dSt = rStdt+
√
VtStdW̃

(S)
t (13)

dVt = κ(θH − Vt)dt+ σ
√
VtdtdW̃

(V)
t (14)

where W̃ =
(
W̃ (S), W̃ (V)

)
is a correlated 2-dimensional Q-Wiener process and

dW̃
(S)
t dW̃

(V)
t = ρdt so that corr

(
W̃

(S)
t , W̃

(V)
t

)
= ρ .

The parameters in Equations (13) and (14) are interpreted as in Table 1.

Parameter Interpretation
κ Variance mean reversion speed
θ Long term variance
V0 Initial variance
σ Volatility of variance
ρ Spot v.s. variance correlation

Table 1: Parameter interpretations

The Heston model allows for semi-analytical solutions to option pricing. This is obtained by
standard arbitrage arguments, risk neutrality and the Itô formula where one obtains a partial
differential equation (PDE) which looks like

∂C

∂t
+
S2V

2

∂2C

∂S2
+ rS

∂C

∂S
− rC + [κ(θ − V)− λV]

∂C

∂V

+
σ2V

2

∂2C

∂V 2
+ ρσSV˜

∂2C

∂S∂V
= 0

(15)

where λ is the market price of volatility risk, for further description see Heston (1993). European
call options that satisfies the PDE in Equation (15) are subject to various boundary conditions
implied by rational choice and other factors. For the full mathematical description of these
boundary conditions see Heston (1993). Intuitively, these constraints can be described for a call
option C(S, V, t) where S ∈ [0,∞], V ∈ [0,∞] and t ∈ [0, T] as

• Terminal payoff. The terminal payoff of each call option is described by C(S, V, T) =
max(S −K)+.

• Lower and upper boundary w.r.t spot price. The lower bound, C(0, V, t), is zero.
As prices does not have a upper boundary, only the delta, which measure spot price risk
for a option and, for a call option, defined as δC = ∂C

∂S , is bounded by 1.

• Upper limit w.r.t volatility. The upper bound for the option is equivalent to the spot
price.

By analogy with the Black-Scholes call option pricing formula in Equation (8), Heston (1993)
makes the following ansatz and propose a solution to the original Heston PDE in Equation (15)
that respects the above boundary conditions

C(s, v, t) = sP1(s, v)− e−r(T−t)P2(s, v). (16)

13

If one consider the logarithm as a change of variables, i.e. x = ln s, and substitute the proposed
solution in Equation (16) into the Heston PDE in Equation (15), one finds that P1(s, v) and
P2(s, v) must satisfy the PDE

1

2
v
∂2Pj
∂x2

+ ρσv
∂2Pj
∂x∂v

+
1

2
σ2v

∂2Pj
2

+ (r + ujv)
∂Pj
∂x

+ (κθH +−bjv)
∂Pj
∂v

+
∂Pj
∂t

= 0, j = 1, 2

(17)

where

u1 =
1

2
, u2 = −1

2
, b1 = k + λ− ρσ, b2 = k + λ.

In order for Equation (16) to satisfy the terminal payoff condition, the PDEs in Equation (17)
(Equation (12) p.330 in Heston (1993)) are subject to the condition

Pj(s, v) = Pr(lnST > lnK| lnSt = s, Vt = v) j = 1, 2 (18)

where St and Vt are driven by slightly altered versions of the SDEs in Equation (13) and (14),
see p.331 Equation (14) in Heston (1993).

Thereby, P1(s, v) and P2(s, v) represents the probability of expiring in the money conditional
on realizations of lnSt and Vt, analogously to d1 and d2 in the Black-Scholes formula in Equation
(8). However, the probabilities in Equation (18) are not analytically tractable, yet their charac-
teristic functions satisfy the same PDEs as P1(s, v) and P2(s, v). Recall that the characteristic
function defines the probability distribution of any random variable. Hence the characteristic
functions can be used in order to evaluate the in-the-money (ITM) probabilities in Equation
(18). The characteristic function of the log asset price is

fj(lnST , V, T ;φ) = E
[
e(iφ lnST)

]
= exp (C(T ;φ+D(T ;φ)V + iφ lnST)

where D, C, and φ are functions such that the characteristic function satisfies Equation (17).
The probabilities in (18) can be obtained semi-analytically by the inversion theorem, introduced
by Gil-Pelaez (1951), as

Pj(lnST , V, T ; ln(K)) =
1

2
+

1

π

∫ ∞
0

Re

[
exp (−iφ ln(K))fj(lnST , V, T ;φ)

iφ

]
dφ (19)

where Re(z) denotes the real part of any complex number z. The solution to Equation (19)
can be obtained by fast numerical integration, hence the popularity of the Heston model in the
industry Rouah (2013).

As the construction of hedging strategies for both the benchmark strategy and the neural net-
work strategy depend on realizations of sample paths, one needs to be capable of simulating such
paths in a effective manner. There exists two main methods for simulation, discretization and
exact simulation.

Discretization is a method in which one samples from a approximation of stochastic differential
equations (SDE) at discrete time points. For the Heston model, numerous discretization methods
has been proposed, the most simple of which is the Euler-Maruyama method. The Euler-
Maruyama (EM) method approximates the Heston SDE’s by a Markovian model and thereby
only depend on the previous state. This property of the EM scheme makes the simulation

14

procedure very simple as one can iteratively sample from St and Vt. Time is partitioned into
small intervals and as these intervals become smaller, the approximation converges to the true
solution to the SDE. The resulting model is

St = St−1 + rSt−1∆t+
√
Vt−1St−1

√
∆tZ

(S)
t−1 (20)

Vt = Vt−1 + κ(θH − Vt−1)∆t+ σ
√
Vt−1∆tZ

(V)
t−1 (21)

√
∆tZ

(V)
t ,
√

∆tZ
(S)
t ∼ N (0,∆t) corr

(
Z(S), Z(V)

)
= ρ.

However, if 2κθH ≤ σ2, Vt is not strictly positive. This condition is known as the Feller-condition.
When the Feller condition is violated, an error is introduced in the cumulative distribution of
the integrated volatility over time, see e.g. Bégin et al. (2015). This means that under this
violation, the standard Euler-Maruyama scheme will not reflect the true variance process, and
by extension, introduce a bias in the spot process as well. Thereby, the simulation scheme has
been modified to handle this discretization error, by assigning functions that forces Vt to be
positive. One can restate the variance process in the EM scheme as

Vt = f1(Vt−1) + κ(θ − f2(Vt−1))∆t+ σ
√
f3(Vt−1)∆tZ

(V)
t .

There exist at least three different schemes to assign functions, reflection: f1(V) = f2(V) =
f3(V) = |V |, partial truncation : f1(V) = f2(V) = V, f3(V) = V + and Full Truncation: f1(V) =
V, f2(V) = f3(V) = V + in which V + = max(V, 0). We shall see that our calibrated parameter
combination does indeed violate this condition, thus introduce a bias in the simulation procedure
which will affect the estimated hedging weights. However, one can easily constrain the search
space for the calibration method to take these boundary conditions into account. This will be
expanded upon in Section 6.

However, even when the Feller-condition is satisfied, if one considers the deviation of the monte-
carlo price from the semi-analytical price in Equation (16) as a measure of convergence, there
still exists some non-negligible bias in the EM scheme. In order to circumvent such biases one
can consider exact simulation as introduced by Broadie & Kaya (2006). Exact simulation uti-
lizes the distributional properties of Vt, described in Cox et al. (1985), which are such that the
conditional distribution of Vt|Vu for u < t follows a non-central chi-square distribution. However,
even though the exact simulation algorithm is very accurate since it does not explicitly rely on
approximation of a continuous process by a discrete process, it suffers from some drawbacks
related to its complexity and computational inefficiency. Hence, other discrete approximations
has been introduced inspired by the exact simulation algorithm, see e.g. the quadratic exponen-
tial scheme introduced by Andersen (2007),which has similar accuracy as the exact simulation
scheme but retains the computational efficiency, and relative simplicity, of the Euler-scheme
Mrázek & Posṕısil (2017). We shall however utilize the Moment-matching scheme, introduced in
Andersen & Brotherton-Ratcliffe (2005). Which is a approximation where the variance process
in the Euler-type approximation is adjusted such that its first two moments match that of a
log-normal distribution. The discretization takes the form

Vt =
(
θH +

(
Vt−1 − θH

)
e−κ∆t

)
exp

(
−1

2
Γ2
t−1 + Γt−1Z

(V)
t

)
(22)

where

Γt−1 = ln

(
1 +

σ2Vt−1

(
1− e−2κ∆t

)
2κ (θH + (Vt−1 − θH) e−κ∆t)

2

)
.

15

The reason we choose this scheme is because our approach is very dependent on computational
efficiency since, as earlier noticed, our hedging method depend on a large number of realizations.
Hence, we chose a discrete time process and the reason we chose the moment matching scheme
is that we believe that it is the best in terms of balance between complexity, computational
efficiency and approximating capability, see e.g. Rouah (2013) pp.202.

As the Heston model does not assume constant volatility, the implied volatility is variable and
thereby more inline with empirical reality, see Figure 4, which displays a implied volatility surface
generated from the Heston model.

time to maturity

50
100

150
200

250
300

350
400

moneyness

0.925
0.950

0.975
1.000

1.025
1.050

1.075
1.100

ivs

0.70

0.75

0.80

0.85

S0 =46.298, ir =0.0117, dr =0.0080, v0 =0.8092

= 1.894, = 0.135, = 0.361, = 0.734

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Heston Impvol surface

Figure 4: Example of implied volatility surface from a Heston model with parameters κ =
1.894, θH = 0.135, σ = 0.361 and ρ = 0.734. This parameter combination generates a rather
simple implied volatility (IV) surface. The model has the capacity to generate skewness in all
dimensions. For example, the model can capture what is called volatility term structure and
smile. See Cont & Fonseca (2001).

The inability to generate variable implied volatility surfaces is, as earlier noted, one of the main
shortcomings of the Black-Scholes model, that is, the Black-Scholes model cannot realistically
be calibrated to available market data. In the Heston model however, the calibration can be
done much better compared to the Black-Scholes model, that is one can find a parameter vector
such that the fit of the generated implied volatility surface roughly matches that of the market
Gatheral (2015). Generally, sellers of deep out-of-the-money (OTM) calls charges a larger risk
premium relative to more at the money (ATM) options. This phenomena can be explained by
the fact that a short call position has unlimited downside and thereby, for the seller to either
hedge this exposure or accumulate unlimited downside risk, the seller will likely charge higher
premium to finance a hedge or accumulate risk. Since the Heston model is able to produce a
volatility surface that is roughly in line with the market, the Heston model to adapt better to
changes in the distribution of returns than models that treat volatility as a constant.

16

Another nice property of the Heston model is the intuitive nature of its parameters and by
extension, their impact on the implied volatility surface. θH essentially shifts the implied volatil-
ity surface higher and by extension increases prices as higher long term mean variance implies
a wider terminal distribution and more uncertainty, warranting higher prices. The correlation
parameter, ρ, effects the skewness of the spot return distribution and hence the skewness in the
surface w.r.t strikes. A negative ρ induce negative skewness in the terminal return distribution
and vice versa since lower spot returns will be accompanied by higher volatility and by extension
makes the terminal spot return more leptokurtic. The volatility of variance parameter, σ, will
affect the kurtosis of the the terminal spot return distribution and by extension cause a steeper
IV surface. When κ is not too large, then high values of σ cause more violent fluctuations in the
volatility process and hence stretch the tails of the return distribution in both directions Mrázek
& Posṕısil (2017).

3.4 Classical Parameter Calibration

In this subsection we will introduce the concept of parameter calibration, which will serve as
a basis for the discussion on deep calibration. The notation and setup of this subsection are
presented as in Horvath et al. (2019).

Consider the Heston model parameterized by a set of parameters θ = (κ, θH, σ, ρ) so that θ ∈ Θ.
We will analyze options characterized by strike K and maturity T The market pricing function
PMKT then takes two parameters T and K and outputs market prices of options characterized
by their strike and maturity, which we denote by PMKT (T,K) for each T and K. We then
impose some kind of model, with an associated pricing function that maps the model parameters
and option characteristics to prices, which in the case of the Heston model is Equation (16)
for European call options. The common property of all model calibration methods is that they
iteratively evaluate the model pricing function, or some approximation of it, on each instance
of model parameters θ until a small enough distance, described by some appropriate distance
function, between model prices and market prices is obtained. Formally, this can be described
by the minimization

θ̂ = argmin
θ∈Θ

d
(
P (θ, T,K),PMKT (T,K)

)
(23)

where d is some distance function. However, direct implementation of the model pricing function
can be very slow or analytically intractable, especially for more complicated models. Then it
may be more computationally efficient to consider some numerical approximation of the model
pricing function P̃ , and calibrate with this approximation instead. In this thesis we will use
neural networks in the numerical approximation of P̃ , as will be elaborated upon in Section 6.
The optimization in Equation (23) can then be approximated by

θ̂ = argmin
θ∈Θ

d
(
P̃ (θ, T,K),PMKT (T,K)

)
. (24)

One can let the function d in Equation (24) be related to the squared distance and as proposed
in Horvath et al. (2019), then the calibration in Equation (24) becomes

θ̂ = argmin
θ∈Θ

n∑
k=1

m∑
j=1

ωTj ,Kk

(
P̃ (θ, Tj ,Kk)− PMKT (Tj ,Kk)

)2

(25)

where the dimensionality of the grid is given by n×m, that is, n maturities and m strikes, and the
weights ω is pre-specified and can reflect the relative importance of a specific option with respect

17

to liquidity etc. Classical model parameter calibration describes the process by which Equation
(24) is minimized by some specified distance function. The minimization of the distance function
in Equation (25) produces a non-linear least squares problem and is solved by numerical least
squares algorithms such as the Levenberg-Marquardt algorithm. For a full description of the al-
gorithm, the reader is referred to Mrázek & Posṕısil (2017). In essence, the algorithm minimises
the residual of the pricing map for each parameter combination θ and evaluates the improve-
ment for changes in the parameters in which the increments is computed by solving a normal
equation. This method introduces severe calibration bottlenecks as the normal equations have
to be recalculated as the true pricing function is unknown and in option models where analytical
solutions are sparse, the normal equations also have to be recomputed frequently. This means
that the calibration task becomes unnecessarily computationally expensive.

Recall that the partial objective of this thesis is to implement a calibration method using neural
networks. In essence, we will approximate the model pricing function P (θ, T,K) by a neural
network. However, there are a some differences to equation (25) which will be detailed in Section
6.

3.5 Continuous time Martingale Pricing & Dynamic Replication

To understand the relation between hedging and pricing of financial derivatives as presented in
Section 3.3 and 3.1, one must consider so called dynamic replication. This section will introduce
the theoretical background to hedging of general contingent claims, both in the complete market
case and the incomplete case, which will act as the basis of the discussion on numerical approx-
imations of optimal hedging strategies by neural networks as such strategies can be seen as the
implementation of the strategies in this section, with machine learning.

Our discussion of dynamic hedging is based on the work of Föllmer & Schweizer (1990). Consider
a financial market where prices can be described by a stochastic process S = (St)t≥0 on some
filtered probability space (Ω,F ,F,P), as described in Section 2. If the market is complete, any
contingent claim (a derivative whose future payoff depends on the value of the underlying asset),
H, is a variable on the probability space at terminal time T and its payoff can be generated by
a dynamic strategy based on S. If markets are free of arbitrage, there must exist a probability
measure Q ∼ P such that S is a martingale under the equivalent measure and that Q and P
share the same null sets Björk (2009).

A martingale is defined by the conditional expectation, E [St|Fu] = Su for all u < t, where
Ft ∈ F. Under the martingale approach to derivative pricing, the price at time t of a contingent
claim on S at maturity, is given by the conditional expectation Ht = E(HT |Ft) in which the
terminal payoff H is denoted by HT . According to the martingale pricing theory,the conditional
expectation of the price change of H given the filtration is zero which in turn implies that H
is a martingale under the probability measure and that successive changes in H are uncorre-
lated. The economic argument is thereby that all the information in the past that is useful for
forecasting future prices, is already discounted in the current price and thus exclude arbitrage
opportunities. This is a weaker assumption than that of Fama (1970), in which all information
useful for forecasting the probability distribution of the next period is contained in the current
price, generally referred to as the random walk hypothesis.

The martingale pricing theory assumes that S is a semimartingale under Q, i.e. can be de-
composed as a sum of a local martingale and a adapted process with bounded variation.

S = S0 +M +A

18

where M is a local martingale and A is a adapted to the filtration, i.e. At is Ft-measurable for
each t. For a formal definition of a local martingale, see Protter (2005). The result of this is
that one can define a Itô integral on S, with maximal generality Protter (2005). Consider the
contingent claim H on the stochastic process S, then H can be considered a random loss incurred
and a stochastic variable on the probability space of all square Lebesgue integrable functions at
T that is

H ∈ L2(Ω,FT ,P).

To hedge against this claim, a portfolio strategy must be used which involves S and a risk free
money market instrument Y = 1, i.e. price variation is non existent and the risk free return is
zero. Furthermore, amounts of stock and money market instruments, δ is a predictable process,
in which predictability means that δt is Ft+ adaptive, and η is a adaptive process, defined over
the same time interval as S. The value of the portfolio, Πt is given as

Πt = δtSt + ηt

and the cost C can be represented by a stochastic integral over S

Ct = Πt −
∫ t

0

δudSu. (26)

We are only interested in a replicating portfolio such that Π = H, i.e. only admits hedging
strategies that replicates the terminal payoff of the claim. Suppose further that H can be
written under the Itô interpretation as

H = H0 +

∫ T

0

δudSu (27)

if δ satisfies the technical integrabillity conditions of square integrable processes, a strategy can
be defined as

η := Π− δ · S, Πt = H = H0 +

∫ t

0

δudSu, (0 ≤ t ≤ T)

where we define δ · S as δ · S =
∫ T

0
δudSu. When one considers the definition of the cost process

in Equation (26), simple mathematical manipulation leads to the observation that

Πt = Ct +

∫ t

0

δudSu,

Ht = H0 +

∫ t

0

δudSu ⇐⇒ Ct = H0

(28)

is self financing as Ct = CT = H0. Self financing refers to the concept of a portfolio which
you do not consume or insert capital such that the purchase of new assets must be financed by
the sale of a current asset Björk (2009). In our case this means that the Itô differential of the
hedging portfolio Π is the integrand in the stochastic integral in Equation (28). Intuitively, this
means that changes in the value of the replicating portfolio is only given by changes in the value
of the price of the asset. Since Π is self financing, we have that Π produces the claim from the
initial capital injection and thereby no further risk and costs arises and H is completely hedged
by the strategy on S under the assumption of complete markets, for more details see Föllmer &
Schweizer (1990). Hence, options are redundant as the replicating portfolio ,Π, perfectly repli-
cates the cash flow of the contingent claim/option. Therefore, the value of H should equal the
value of Π.

19

However, in incomplete markets, perfect replication is no longer possible as most claims carry
intrinsic/residual risk. Intuitively this means that there is a replication error at maturity T , in
the sense that there is a difference between the value of the replicating portfolio ΠT and the
payoff of the contingent claim HT which leaves a ”gap-risk” for the seller of the derivative. In a
complete market it will always be possible, as seen above, to find a replication strategy δ such
that ΠT = HT almost surely. However, in a incomplete market, perfect replication is not attain-
able by definition since each claim carries intrinsic risk. For a incomplete market, the problem is
not described by risk-elimination, but by risk-minimization as the residual risk is unhedgeable.
As the strategy is now only minimizing risk, we are interested in finding a admissible hedging
strategy such that it minimizes the residual risk

E[(CT − Ct)2|Ft]

as the replication is not perfect. This implies that the objective of the hedging strategy is to
minimize the error of replication. The cost process C for the hedging strategy is no longer
self-financing as CT 6= Ct, in fact it will be self-financing in only its expectation

E[CT − Ct|Ft] = 0

and implies that H no longer admits to Equation (27) as one needs to consider that Ct 6= CT
and is in fact a martingale. Thereby, the risk minimizing strategy needs to be modified in order
for ΠT = H according to the Kunita-Watanabe decomposition

H = H0 +

∫ T

0

δudSu + LT (29)

in which L = {Lt}T0 represents a orthogonal martingale process such that L is orthogonal to
S and thus gives rise to the unhedgable/residual risk inherent in market incompleteness. A
martingale is orthogonal if and only if their product is also a martingale. See e.g. Protter (2005)
for orthogonality in terms of risk-minimization. The risk minimizing strategy is obtained

η = Π− δ · S

However the replicating portfolio

Πt = E[H|Ft]

= H0 +

∫ t

0

δudSu + Lt
(30)

no longer perfectly replicates the contingent claim due to the square integrable orthogonal martin-
gale L. See Föllmer & Schweizer (1990) for further description of hedging in incomplete markets.
One of the goals of this thesis is to numerically approximate δ in Equation (30) in discrete time
by a so called a artificial neural network, via utility maximization and risk measures which would
theoretically allow us to transcend specific model implied dynamics of S, for more details, see
Section 4.

We shall now consider how one might obtain the hedging strategy {δt}T0 by classical methods,
which relies on specific model assumptions. To reiterate, we are interested in finding the hedging
strategy that minimizes risk. Conceptually, the purpose of δ is to choose a ”optimal” weight of
S in the portfolio Π such that the replication error is, ideally, eliminated. As discussed earlier,

20

complete market hedging allows the strategy on S to perfectly replicate H such that the risk is
totally eliminated. However, when hedging is conducted in incomplete markets, such weighting
of S only minimizes the risk as the claim carries intrinsic risk as a result of L in Equation (3.5).
If we assume the absence of arbitrage and complete markets, then a replicating portfolio should
be risk free and should thereby earn the risk free rate. In the case of the Black-Scholes model,
where dS is defined as in Equation (6), one can find analytic expressions for the hedging portfolio
by letting Π = −H + ∂H

∂S S and applying Itô’s lemma for two variables to the claim H on S.

Using the arbitrage argument and complete markets we know that ∆Π = −∆H + ∂H
∂S ∆S should

earn the risk free rate if it has no risk. As it turns out, ∆Π = rΠ∆t, which means that δ in
Equation (28), in the case of the Black-Scholes model, is determined by

δt =
∂Ht

∂St
(31)

for each t ∈ [0, T] and eliminates ∆W in the Itô differential equation for ∆Π. For full derivation
see Black & Scholes (1973). The practice in which this is achieved is called delta-neutralization
and δ is called the hedging parameter. This result is very intuitive since one want to hedge
consecutive changes in S which is only dependent on one Brownian motion, i.e. only one source
of risk exist. δ is what is called a greek. Greeks are formally defined as the partial derivative of
the claims value with respect to some factor that effects the value of the claim.

In the Heston model, where volatility a latent stochastic process, there exist another source

of risk, namely W̃
(V)
t in Equation (14), which will need to be hedged. Thus any portfolio con-

taining S or claims on S will carry volatility risk. This means that, when one constructs a
hedging portfolio H, one needs to insert a second hedging parameter in order to neutralize both
Brownian motions in Equation (14). We will not cover the details of this concept, however it
should be noted that using a delta hedging strategy in a stochastic volatility model will always
ignore volatility risk.

As noted earlier, the calculation of delta is directly dependent on which stochastic differen-
tial equation (SDE) is used to describe the spot process in differential form. In the Black-Scholes
model where S follows a geometric Brownian motion as in Equation (7), δ is calculated as N (d1),
where d1 is defined as in Equation (9). For the Heston model, δ is calculated as P1 in Equation
(18). However, there exist model independent approximations of the hedge ratio that utilize nu-
merical differentiation, specifically finite difference methods. Consider any continuous function
f(x), its first order derivative can be computed as

f ′(x) = lim
ε→0

f(x+ ε)− f(x− ε)
2ε

.

By approximating the limit with a small enough ε, the numerical derivative can be found. We
shall now define H as a call option C. To reiterate, we are interested in approximating the
partial derivative δt = ∂Ct

∂St
for all t ≤ T , thereby we need to calculate the price of the call option

CH(θ)(St + ε, V, T − t) at each t and CH(θ)(St − ε, V, T − t) by the fourier pricing method in
Equation (16) and approximate the partial derivative by choosing a sufficiently small ε

δt ≈
CH(θ)(St + ε, V,K, T − t)− CH(θ)(St − ε, V,K, T − t)

2ε
(32)

for each t ∈ [0, T]. The results is the approximated hedging strategy such that δ defines the
relative amount of stock that needs to be held in order to replicate the payoff of the claim.

21

This hedging strategy is maintained in practice by continuous recalculation of a positions delta
and rebalanced accordingly. This hedging strategy will serve as the benchmark to which the
neural network strategy is compared. However, as earlier noted, this method will still leave the
volatility risk of C unhedged. We are aware of the fact that this will limit the capacity of the
benchmark strategy to replicate the payoff of C. We have chosen this approach as we believe
that the introduction of contingent claims on V is beyond the technical scope of this thesis.

4 Optimal Hedging in Discrete Time using Convex Risk
Measures & the Quadratic Criterion

This section will present the theoretical background to hedging in incomplete and discrete time
markets and expand the previous discussions on hedging, where we formulate the hedging prob-
lem as a numerical optimization task and introduce the concept of optimality under monetary
risk measures, of which we introduce three measures with different properties. The formulation
of the hedging problem as a numerical minimization task is crucial since it will enable the use of
artificial neural networks as described in Buehler et al. (2019).

Expanding on hedging in incomplete markets in Subsection 3.5, we need to consider that time is
not continuous in any practical implementation of hedging strategies and thereby the claim H is
not admissible to the representation in Equation (29). Thereby, H needs to be discretized with
respect to time so that

H = H0 +

n∑
i=1

δti∆Sti + LT (33)

in which ∆Sti = Sti − Sti−1
approximates dSt in the limit as ∆→ 0 and t ∈ [0, T]. To reiterate,

St represents the spot process for the financial security and δ represents a unique self-financing
hedging strategy in which δt represents the hedging ratio based on the knowledge of Sti−1 . Let

GT (δ) =

n∑
i=1

δti∆Sti

represent the cumulative profit/loss of the dynamic hedging strategy and the cost process C is
defined as

CT (δ) =

n∑
i=0

ci(δti+1
− δti).

If H is considered a random variable on the filtered probability space of square integrable func-
tions, H ∈ L2(Ω,F ,F,P). Then H − c − GT (δ) represents the net loss incurred with initial
capital c when transaction costs are not considered, i.e. CT = 0. The risk associated to the
size of the difference H − c−GT (δ) is often referred to as shortfall risk or replication error risk.
The simplest representation of H, and indeed how we will represent it, is a financial liability
resulting from the sale of a European vanilla option. We will consider H = −Z = −(ST −K)+

with maturity T and strike K. The goal of a agent under incomplete markets in discrete time
with no frictions would then be to minimize this incurred net loss.

In order to motivate the structure that has been introduced above, one needs to consider the
concept of utility based hedging. In a complete market with no transaction costs and continuous
trading, there exists a fair price, p0 and a strategy δ such that −Z+p0 +GT (δ)−CT (δ) = 0 holds
P−almost surely Föllmer & Leukert (2000). This price, p0 ensures that the agent is indifferent

22

between the accumulation of risk, i.e. taking a position in −Z and to holding no position at
all. This in turn implies that the initial capital insertion, c = p0 for the strategy to be self
financing, and for the position to make sense. However, under the current market setting, one
can not find a price such that the portfolio is completely risk free, as there exist residual risk by
means of the orthogonal martingale L. However, one can approximate optimal hedging strategies
under some monetary risk measure such that p0 is approximated. This risk measure should have
appropriate properties such that it reflects a financial agents monetary views on risk. As such
there exists various utility constraints on such a measure. For a monetary risk measure to be a
”good” measure of risk they either have to be coherent or convex risk measures, where coherency
is a more strict property than convexity as all coherent risk measures are also convex measures
of risk. When one considers the risk measures in terms of a hedging problem, one can consider
these measures as evaluating the shortfall/replication error risk. The main idea in Buehler et al.
(2019) is to use neural networks to approximate the strategies obtained from minimizing shortfall
risk via convex measures. To this end we need to introduce the concept of convex risk measures.
The following notation and setup originates from Buehler et al. (2019).

Definition 4.1. Assume that X,X1, X2 ∈ X , represents financial positions (−X represents a
liability), where X denotes a given linear space of functions X : Ω 7→ R. Then ρ : X 7→ R is a
convex risk measure if it adheres to the following criteria:

1. Monotonicity: if X1 ≥ X2 then ρ(X1) ≤ ρ(X2).
A more favourable position requires less cash injection.

2. Convex: ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2), for λ ∈ [0, 1].
Diversification lowers risk.

3. Cash-invariance: ρ(X + c) = ρ(X − c).
Additional cash injection reduces the need for more such injections

If ρ adheres to Definition 4.1, then one can consider the optimization problem,

π(−X) := inf
δ∈∆
{ρ(−X +GT (δ)− CT (δ))} (34)

where ∆ denotes the set of all constrained hedging strategies, and means that π is a convex risk
measure as π is monotone decreasing and cash invariant and if CT (·) and ∆ are convex Buehler
et al. (2019).

To reiterate, we seek to minimize the risk associated with the replication error at maturity for
a financial liability −Z which admits to the representation in Equation (33) by choice of δ ∈ ∆.
In order to apply convex risk measures to evaluate the replication error, we first have to assume
that p0 is observable, which we will proxy as the risk neutral price under Q. If ρ(−Z) denotes the
minimal amount of capital to be added to the position −Z in order for it to be acceptable under
ρ, then π(−Z) denotes the minimal amount to be charged in order to replicate −Z. Thus one
can define the indifference price as p0, as it is the solution to π(−Z+p0) = π(0). If π is a convex
risk measure, one can utilize the its translation invariance property such that p0 = π(−Z)−π(0).
This implies that approximating optimal hedging strategies δ of Z under the risk measure π,
involves approximation of the price of Z. For further information, see Buehler et al. (2019).

We now proceed by introducing the various risk measures which we will use for the numeri-
cal approximation of optimal hedging strategies. Once again we follow the notation and setup in

23

Buehler et al. (2019). One reasonable way of minimizing risk could be to maximize the expected
utility of the replication. Consider the entropic risk measure

ρ(Z) =
1

λ
logE[exp(−λZ)] (35)

in which λ > 0 denotes the risk aversion parameter. Note that the expectation in Equation (35)
is the expected exponential utility of Z. Proving that Equation (35) is a convex risk measure is
nontrivial, and a detailed proof can be found in e.g. in Föllmer & Schied (2008).

The optimal hedging strategy under the entropic risk measure is obtained by substituting ρ
in Equation (34) with the entropic risk measure

π(−Z) = inf
δ∈∆

{
1

λ
logE [exp(−λ(−Z +GT (δ)− CT (δ)))]

}
(36)

Another reasonable way to compute risk could be to consider the tail of the profit/loss distri-
bution, at some quantile, and compute its expectation, this is called conditional value at risk or
expected shortfall (ES). Expected shortfall is a ”better” risk measure than the entropic risk mea-
sure, see Equation (35), in the sense that it is so called coherent. Coherent measures of risk are
a stronger form of risk measures since, a convex risk measure that satisfies positive homogeneity,
i.e. if ρ(λX) = λρ(X), and ρ satisfies the properties in Definition 4.1, then ρ is also a coherent
risk measure. Expected shortfall ESα(X) represents the expected value at risk at the α quantile
of the loss distribution given that it has been exceeded, hence, it is also called average value at
risk or conditional value at risk. The measure can be defined as

ESα(X) =
1

1− α

∫ 1−α

0

V aRγ(X)dγ

where
V aRγ(X) = inf {m ∈ R : P[X ≤ −m] ≤ γ}

is the 1−α-level value at risk, and is nothing more than the average of the 1−α-quantile of the
loss distribution. However, the formulation that is generally used for optimization purposes, and
to prove coherency, is formulated in terms of the loss tail mean

ESα(X) = −x̄(α)

where x̄(α) is the average in the α-quantile of the return distribution and is formally described
as

x̄(α) = α−1
(
E[X1{X≤x(α)}] + x(α)(α− P[X ≤ x(α)])

)
(37)

in which x(α) := inf {x ∈ R : P[X ≤ x] ≥ α} and represents the lower quantile of X and 1A is
a indicator function over the set A. Note that V aRα = −x(1−α). For proof of coherence which
implies convexity, see Acerbi & Tasche (2002). If we consider the risk measure in terms of our
current hedging problem, i.e. represent X as the replication of −Z, then one can reformulate
the optimization in Equation (34) as

π(−Z) = inf
δ∈∆

ESα(−Z +GT (δ)− CT (δ)). (38)

Recall that p0 is endogenously given in the marketplace, furthermore, according to Buehler et al.
(2019), one can also fix a loss function ` : R 7→ [0,∞). As we are interested in minimizing the
loss at maturity, the optimal δ can be considered a minimizer to

π(−Z) = inf
δ∈∆
{E[`(−Z + p0 +GT (δ))]} (39)

24

which tells us that a numerical approximation of the optimal hedging strategy can be found by
minimizing the shortfall risk weighted by the loss function. For a loss function to be appropriate
for the purpose of measuring shortfall risk, one usually specifies a convex loss function as the
convexity of the loss entails risk aversion. This formulation of the problem allows investors to
systematically find an efficient hedge and interpolate between the extremes of full shortfall risk
and maximal risk elimination by changing the risk aversion parameter. The optimal hedge under
this shortfall measure does not only minimize the probability of shortfall occurrence, but also its
size. For further explaination of the concept of variance optimal hedging, which is an utility based
hedging strategy, see Schweizer (1995), in which the loss function is defined as `(x) = x2. This
is called quadratic hedging or mean-variance hedging which is variance optimal in the sense that
optimality under this shortfall measure returns the hedging strategy with the smallest variance
of the replication error

π(−Z) = inf
δ∈∆

{
E
[
(−Z + p0 +GT (δ))2

]}
(40)

and since the optimal quadratic shortfall hedge is optimal in terms of variance of terminal
replication error.

E[(−Z + p0 +GT (δ))2] = V ar(−Z +GT (δ)) (41)

However, neither V ar(X) or E[X2] can be considered convex risk measures since V ar(X) is not
convex when X,Y in Definition 4.1 are correlated, only when independent, and its monotonocity
property can only be considered in a informal sense. If X is preferable to Y , then the variance
of X is lower than the variance of Y . However, variance is translation invariant.

We have now considered three scenarios in which the optimal hedging problem has been for-
mulated as a numerical optimization problem by finding optimal hedging strategies δ such that
either the expected shortfall, entropic risk or a shortfall risk weighted by a loss function is min-
imized for the hedge portfolio. Hence we need to introduce the numerical method in which we
seek to achieve approximate optimality under these measures. We will use so called artificial
neural networks for this task.

5 Theoretical Background to Neural Networks

This section will introduce the reader to the theoretical background of Neural Network needed for
the implementation done later in this thesis, and is structured as follows. First, the background
and context of the use, as well as the formal definition of Neural Networks will be explained.
Lastly, various parts and properties of Neural Networks will be covered, such as some terminology,
neurons and the learning properties.

5.1 Background

An artificial neural network (ANN/NN) is a system inspired by the a brains neural network and
is used to approximate functions. It consists of interconnected groups of nodes, which represents
the neurons of the brain, with connections that represents the synapses of the brain. ANN are
unique in its ability to ”learn” from given examples, without being programmed with task-specific
objectives.

The notation and setup given in this subsection is partly taken from Horvath et al. (2019).
As noted earlier, ANN is used to approximate functions. Consider the function F ∗, which is
not available in closed form but can be approximated by a given input data x and output
data y = F ∗(x). A feed forward network, which is the most simple ANN architecture, defines

25

y = F (x,w) and the training of the neural network determines the optimal values of the networks
parameters ŵ, which creates the best approximation F ∗(·) ≈ F (·, ŵ), given the input data y and
output data x. In a more formal manner, the definition of NN is given by definition 5.1.

Definition 5.1. Neural Networks (Horvath et al. (2019)):
Let L ∈ N denotes the number of layers in the NN and the ordered list (N1, N2 . . . , NL) ∈ NL

denote the neurons (nodes) in each layer respectively. Furthermore, define the functions acting
between layers as

wl : RNl 7→ RNl+1 for some 1 ≤ l ≤ L− 1

x 7→ Al+1x+ bl+1
(42)

in which Al+1 ∈ RNl+1×Nl . bl+1 represents the bias term vector and each Al+1
(i,j) denotes the

weight connecting neuron i of layer l with neuron j in layer l+1. If we then denote the collection
of functions in the form of Equation (42) on each layer to w = (w1, w2 . . . , wL) then the sequence
w is the network weights. Then the NN F (·, w) : RN0 7→ RNL is defined as:

F := FL ◦ · · · ◦ F1 (43)

where each component is in the form Fl := σl ◦ wl, i.e. Fl := σl(w
l(x)) as ◦ denotes a function

composition. The first term in this, σl : R 7→ R, denotes the activation function and is applied
component wise to the vector wl. wl denotes the output given by wl−1.

The justification of the use of ANN in this thesis is derived from the results of Hornik (1991)
and is presented in Theorem 1 below. The theorem shows that if the objective is to approximate
a real valued continuous function, a simple neural network with at least three layers, i. e. at
least one hidden layer, will be successfully, and thus justifying the use of ANN in this thesis.

Theorem 1. Universal Approximation Theorem (Hornik (1991)): Let σ : R 7→ R be a activation
function. Let Im denote the m dimensional hypercube [0, 1]m. The space of R valued functions
on Im is denoted by C(Im). Given any ε > 0 and any g ∈ C(Im), there exists an integer, N ,
constants vi, bi ∈ R and wi ∈ Rm for i = 1, .., N such that

F (x) =

N∑
i=1

viσ
(
aTi xi + bi

)
where

|F (x)− g(x)| < ε, for all x ∈ Im.

Thereby, any continuous real valued function can be approximated arbitrarily well by a simple
neural network consisting of at least 3 layers.

5.2 Neurons

As noted earlier, the main component of ANN’s are neurons. There are two different types
of artificial neurons, perceptrons and sigmoid neurons. Perceptrons are the oldest version of
artificial neurons, developed in the 50s by Frank Rosenblatt in the paper Rosenblatt (1958)
and influenced by McCulloch and Pitts paper McCulloch & Pitts (1943). The perceptron takes
binary input x1, x2, . . . , xN and produces an single output. However, there are limitations of
the perceptrons. Since the output is binary, the change in weights will make big changes in
the output of a neural network consisting of perceptrons. These will be inefficient for learning,

26

the process of adjusting model parameters in order if the network to attaining a more accurate
result. The sigmoid neuron does not have this error. A sigmoid neuron, shown in figure 5, has
an output value between 0 and 1.

x1

x2 bi +
∑3

j=1 ai,jxj σ

Activation
function

y

Output

x3

ai,1

ai,2

ai,3

Figure 5: Example of a sigmoid neuron with three input variables (x1, x2 and x3). The neuron
adds the bias with the sum of the the input multiplied with the assign weights, which then sends
through the sigmoid activation function σ.

It has weights a1, a2, ... just like the perceptron, and an overall bias b. The output take the
value σ(x · a + b), where σ is the activation function, in the format of a sigmoid function. A
sigmoid function is a monotonic function which has a derivative shaped as a bell curve. One
example of a sigmoid function is the logistic function

σ(z) =
1

1 + e−z
.

Hence, the output from these neurons with input x1, x2, ..., xn, weights a1, a2, ..., an and bias b is

1

1 + exp(−
∑n
i=1 aixi + b)

.

The selection of an activation function in this thesis is based on the work of Hornik (1991). The
following is the interpretation of Hornik (1991) given by Horvath et al. (2019):

Theorem 2. Universal Approximation Theorem for derivatives (Hornik (1991)): Let F ∗ ∈ Cn
(the function has n orders of derivatives) and F : Rd0 7→ R and NN σ

d0,1 be the set of single-layer
neural networks with activation function σ : R 7→ R, input dimension do ∈ N and output dimen-
sion 1. Then, if the (non-constant) activation function is σ ∈ Cn(R), then NN σ

d0,1 arbitrarily
approximates F ∗ and all its derivatives up to order n.

The results from Theorem 2 is that when selecting a activation function, its smoothness is of
importance, where smoothness is the number of derivative orders of the function. For example,
if σ(x) = x then σ ∈ C1(R), thus the NN will not be able to arbitrarily approximate the function
and all its derivatives if F ∗ ∈ Cl and l > 0. But for example, if σ(x) = σElu(x) = α(ex − 1)
and σElu ∈ C∞(R) then the activation function is smooth and will be sufficient to arbitrarily
approximate all functions, i.e F ∗ ∈ C∞.

5.3 Learning

As mentioned earlier, what makes ANN attractive is its ability to ”learn”. The goal of an ANN is
to approximate a function f : Rn 7→ Rn, which, in simple terms, is done by training with labeled
data, i. e. the input is fed to the ANN and outputs are produced, these are then compared with

27

the real values. To put this in mathematical terms, let’s consider a cost function C(·), network
parameters w, input x1, x2, · · · and y1, y2, · · · , where yi = F ∗(xi) for all i, then the optimal
weights, i.e. the weights that approximates F (x, ŵ) ≈ F ∗(x) is found by,

ŵ = argmin
all w

NTrain∑
i=1

C(F (xi, w)− yi).

Note that the learning is made using a training set with size NTrain. The solution ŵ is found
using gradient descent and backpropagation, which will be described in the next subsections.

5.3.1 Gradient Descent

Gradient-Based learning utilizes the gradient of a function. The gradient can be described as
the slope, if the function has a one variable then the gradient is the same as the derivative. Let’s
consider the function f : Rm 7→ Rm, then the gradient is denoted as ∇f . If we want to find
the minimum of f then we could move in the opposite direction of the gradient ∇f , since the
gradient always point towards the steepest change towards the maximum of the function. The
method of gradient descent uses iterative steps in the opposite direction of the gradient to reach
the minimum of the function. The step size of these iterations are stated when building the NN
and is called the learning rate. According to Murphy (2012), when setting the learning rate there
is a trade-off between slow learning and the possibility of overshooting. In the context of ANN,
using the notation above, the target function is

J(w) =

NTrain∑
i=1

C(F (xi, w)− yi) (44)

The general method of gradient descent described so far can be executed in different ways, using
different methods. The most common one is batch gradient descent. This method uses all the
examples z, where z are pairs of (x, y), to find one gradient descent. In mathematical terms with
the objective function F (·), as written in Ruder (2016), this can be expressed as follows

w = w − η · ∇wJ(x,w)

where w is the network parameters, η is the learning rate and ∇wJ(x) is the gradient of the
objective function with respect to w. A problem with this method is that it is applied to the
entire data set and this causes inefficiencies for very large data sets.

To solve this problem, stochastic gradient descent (SGD) is introduced, according to Bottou
(2012). An iteration of SGD instead takes the form of

w = w − η∇wJ(w; z(i))

where z(i) is a randomly selected example, in the training set and J(w; z(i)) denotes C(F (xi, w)−
yi). The model calculates the gradient and then immediately makes the correction to the model
parameters for each example. The result is a more efficient algorithm for big data sets but not as
reliable for smaller data sets since the cost will fluctuate based on the randomly picked examples.

One problem with SGD is that vectorization can not be applied as it is constrained by
memory, and thus requires a step by step approach. To solve this, Mini-batch gradient descent
is introduced. Mini-batch gradient descent is a mixture of ordinary gradient descent and SGD.

28

Instead of taking one example for each step, it takes a small amount of examples (mini-batches),
z(i:i+n) in the form a sequence of examples z.

w = w − η · ∇wJ
(
w; z(i:i+n)

)
where n is the size of the mini-batch, and J(w; z(i:i+n)) denotes

n∑
i=1

C(F (xi, w)− yi). (45)

Besides allowing vectorization in the code to make it work more efficiently, it also results in a
smoother convergence.

An extension of SGD and mini-batch gradient descent is adaptive momentum optimizer (Adam),
first described in Kingma & Ba (2014), but the following description is given by Ruder (2016).
Adam computes an adaptive learning rate for each parameter, instead of a constant one, in
contrast to gradient descent methods. It uses an exponentially decaying average of past squared
gradients vt as well as an exponentially decaying average of past gradients mt

mt = β1mt−1 + (1− β1) · ∇wJ(wt)

vt = β2vt−1 + (1− β2) · (∇wJ(wt))
2

where β1 and β2 is parameters, recommended to be set to 0.9 and 0.999 respectively. Vectors
m0 and v0 is set to 0. mt and vt are estimates of the first moment and second moment of the
gradients receptively. Especially in the beginning, there will be a bias towards 0. To solve this,
Adam optimizer computes bias-corrected estimates.

m̂t =
mt

1− β1

v̂t =
vt

1− β2

Finally, the updated network parameters are set to

wt+1 = wt −
η√
v̂t + ε

· m̂t

where ε is a parameter suggested to be set to 10−8.

An extended version of Adam is Nestrov-accelerated Adaptive Moment Estimation (Nadam).
Nadam modifies the momentum term mt in Adam, according to the description given by Ruder
(2016). To get a grasp of how Nadam works, one needs to understand Nestrov Accelerated
Gradient (NAG). If we first consider the momentum update rule:

gt = ∇wtJ(wt)

mt = γmt−1 + ηgt

wt+1 = wt −mt

we have that momentum involves taking a step in the direction of the current gradient, as well
as in the direction of the previous momentum vector. NAGs steps are more accurately in the

29

gradient direction by updating the parameters with the momentum step before calculating the
gradient.

gt = ∇wtJ(wt − ηmt−1)

mt = ηmt−1 + ηgtwt+1 = wt −mt

(46)

Further, this can be modified by applying the look-ahead momentum vector to update the current
parameters

gt = ∇wtJ(wt)

mt = γmt−1 + ηgt

wt+1 = wt − (γmt + ηgt)

instead of applying the momentum vector twice, one time for updating gradient gt and one time
for updating the parameters wt+1. NAG can now be applied to Adam by replacing the previous
momentum vector with the current one. First, recall the expanded Adam-equation with the
notation gt = ∇wtJ(wt)

wt+1 = wt −
η√
v̂t + ε

(
β1mt−1

1− βt1
+

(1− β1)gt
1− βt1

)
then mt−1

1−βt1
can be replaced with the bias-corrected estimate m̂t−1 and we get

wt+1 = wt −
η√
v̂t + ε

(
β1m̂t−1 +

(1− β1)gt
1− βt1

)
.

Lastly, just as done in Equation (46), Nestrov momentum is added by replacing the previous
steps estimated momentum with the current steps estimated momentum.

wt+1 = wt −
η√
v̂t + ε

(
β1m̂t +

(1− β1)gt
1− βt1

)
.

5.3.2 Backpropagation

The following subsection is based the description given by Nielsen (2015). While gradient descent
is the method used for learning, backpropagation is the method used for finding the gradient.
Let alji denote the weight for the connection from the ith neuron in the (l− 1)th layer to the jth

neuron in the lth layer. Let blj denote the bias of the jth neuron in the lth layer and denote the

activation of the same neuron be denoted as xlj . For a given activation function σ(·)

xlj = σ

(∑
n

aljnx
l−1
n + bj

)

for notational convenience, we can consider matrices and vectors instead of scalars. Let Al denote
the weight matrix, bl denote the bias vector and xl = σ(Alxl−1 +bl) denote the activation vector.
Furthermore, let zl = Alxl−1 + bl denote the weighted inputs, hence

xl = σ(zl)

is only a function of the weighted input vectors. The objective is to find the partial derivatives

∂C

∂a
and

∂C

∂b

30

where C is the cost function, that evaluates the error of the model compared to the real value,
y. In this example a quadratic cost function is used,

C =
1

2n

∑
x

||y − F (x)||2

To find these, backpropagation uses each neurons error. The error of the jth neuron in the lth
layer is

δlj =
∂C

∂zlj

This is called an error because the size of the partial derivative describes if C is close to zero and
can be rewritten as

δLj =
∂C

∂aLj
σ′(zLj)

and represent it in matrix form
δL = ∇xC � σ′(zL)

where ∇aC is a vector whose elements are ∂C/∂aLj and � is the Hadamard product (elementwise
product). The next equation in the backpropagtion process is

δL = ((wl+1)T δl+1)� σ′(zl)

which describes the error in one layer in terms of the error in the next layer. We also get that
the error is dependent on the change in the bias:

δlj =
∂C

∂blj

Lastly, the backpropagation uses an equation for the rate of change of the cost with respect to
weights:

∂C

∂aljk
= al−1

k δlj

The complete backpropagation algorithm is presented in Algorithm 1.

Algorithm 1: Backpropagation

Result: Gradient is obtained by
Set activation xl for the input layer. for each l = 1, 2, ..., L do

Compute zl = alxl−1 + bl and xl = σ(zl) ;
end

Compute vector δL = ∇xC � σ′(zL) ;
Backpropagate the error for each l = L-1, L-2,...,2 do

Compute δl = ((al+1)T δl+1)� σ′(zl)
end

Compute gradient using ∂C
∂aljk

= al−1
k δlj

6 Deep Calibration

In this section we will consider the calibration of a Heston model through finding a approxima-
tion of the market implied volatility surface by means of neural networks and then use numerical

31

techniques to find parameters that best generate such a surface. As outlined in the introduction,
see Section 1, the objective of this thesis is to analyse a coherent algorithm for both calibration
and hedging of the Heston model. As such, this section will introduce the first partial objective
of the thesis. Furthermore, this section relies on the theoretical background of the Heston model,
see Subsection 3.3, calibration as presented in Subsection 3.4 and neural networks in Section 5.
Although the framework and the context in which neural networks is used are presented in this
section, the model specifications are disclosed in Subsection 8.1.

Deep calibration is the translation of the classical calibration problem into artificial intelligence.
This was first introduced by Hernández (2016) and further developed by Horvath et al. (2019)
to solve computationally intensive calibration of complex stochastic volatility models. We will
only consider the application of such a calibration method to the Heston model, see Subsection
3.3. Intuitively what we are trying to achieve in this section is to find a neural network param-
eterization that approximates the implied volatility map, then find the model parameters that
best generates that surface.

To reiterate, consider the Heston model H(θ) that is parameterized by the parameter vector
θ, belonging to the parameter space Θ, that is θ ∈ Θ and its associated pricing function P ,
described in Equation (16). If the Heston model parameters is calibrated correctly, it can pro-
duce option prices roughly similar to market prices. However, for computational or analytical
tractability reasons, it may be better to consider some approximation of the model pricing func-
tion, P̃ ≈ P . The classical calibration task can be described as choosing a parameter vector
θ̂ ∈ Θ that minimizes the distance between model quotes P (θ̂, T,K), or a approximation thereof

P̃ (θ̂, T,K), and market prices PMKT (T,K), as in Equation (23) or (24). However, we will first
approximate the Heston model pricing function in terms of the implied volatility surface by a
neural network, then apply classical calibration procedures in order to obtain the parameter set
that best generates the trained volatility surface, weighted by some appropriate distance func-
tion. In other words, we will approximate the implied volatility surface generated by the Heston
model with a neural network. Then we will use this neural network in the calibration of the
Heston model by techniques similar to classical calibration as described in Subsection 3.4. The
major advantage of using the neural network approach is that one can train a neural network
as a approximator for the entire implied volatility surface. This, amongst other factors, means
that the calibration using the trained neural network will be significantly faster compared to the
classical calibration using the fast Fourier transform for the characteristic functions and then
solve for the Black-Scholes implied volatility. This is crucial in real time pricing, since risk man-
agement, computations and calibrations of liquid options ,such as S&P500 options, often have
to be done multiple times per minute during real time trading.

Motivated by Theorem 1 which states that any continuous function can be approximated by
a simple neural network with at least 3 layers, i.e. at least 1 hidden layer, we know that the
implied volatility approximation task can be solved by implementing a feed forward network,
as described in Section 5. In Section 3.4 we discussed the calibration of the stochastic model
through approximating the market pricing function by choosing a set of parameters that mini-
mizes the sum of squared errors relative to market quotes. We shall now redefine the problem in
terms of training a neural network to approximate the market implied volatility surface and find
the parameters that generate the surface by the two step approach in Horvath et al. (2019). Let

P̃ (θ, T,K) and PMKT (T,K) in Equation (24) be replaced by Σ
H(θ)
BS =

{
σ
H(θ)
BS (Tj ,Kk)

}n, m
j=1,k=1

,

such that Σ
H(θ)
BS represents the Black-Scholes implied volatility surface, see Equation (12), gen-

32

erated by the Heston model parameterized by θ ∈ Θ, and ΣMKT
BS =

{
σMKT
BS (Tj ,Kk)

}n, m
j=1,k=1

are the implied volatilities to the corresponding market prices. Note that ΣMKT
BS and Σ

H(θ)
BS are

actually approximations, since finding the inverse of Black-Scholes pricing function in Equation
(8), relies on numerical approximations. The problem of finding optimal parameter sets can then
be expressed as

θ̂ = argmin
θ∈Θ

d
(

Σ
H(θ)
BS ,ΣMKT

BS

)
in which d : Rm×n × Rm×n 7→ R+ denotes an appropriate distance function. We are first

interested in approximating the Heston model implied volatility map Σ
H(θ)
BS , by training a neural

network as an approximator to the IV surface. Let F := {F (w; θ, Tj ,Kk)} denote a neural
network approximation of the IV-surface generated by the Heston model, parameterized by w
(weights and biases), which can be formally expressed as learning the map

F : (w, θ) 7→ Σ
H(θ)
BS (47)

by finding a optimal parameterization ŵ of the neural network. In view of the notation of Section

5, let {θi,K, T} be a collection of input data and let yi = Σ
H(θi)
BS be the corresponding collection

of output data. Recall from Section 5 that training the neural network function F (w, θ,K, T)
on the data (θi, T,K, yi) means finding optimal weights and biases w such that for any θ we

have that F (w, θ,K, T) ≈ Σ
H(θ)
BS . Training the neural network on the training set (θi,K, T),

where θi is chosen from a suitable set in the parameter space and the pair (K,T) are chosen
over some standard grid of market implied volatilities and a neural network loss function d(·) as
d(x, y) =

∑
i

∑
j(xij − yij)2, means finding optimal w and can be described by the optimization

ŵ := argmin
all w

NTrain∑
i=1

n∑
j=1

m∑
k=1

ηj,k

(
F (w; θi, Tj ,Kk)− σH(θi)

BS (Tj ,Kk)
)2

(48)

where ηjk denotes weights that can be assigned in order to reflect specific approximation objec-
tives for each point on the grid. For example can assign smaller η to at-the-money options and
larger to tail options, however we shall not ”favour” any option, hence ηj,k = 1 for all j, k.

We next describe the input data of the training set in more detail. Recall that we want to train
a feed forward neural network over NTrain pseudo-random parameter samples (θi) generated by
pre-specified prior distributions. We have specified the number of training iterations as Ntrain =
100 000. For each iteration, we also have to simulate collections of market observable quantities,
i.e. spot price S0, risk free rate r, dividend rate q and initial variance V0, as these are also inputs
for the Heston model. We have chosen uninformative prior distributions, specifically a collection
of beta and uniform distributions over reasonable boundaries for all quantities and parameters.
Boundaries are specified in order to limit the training examples to a reasonable set of Heston
model parameters and market obvservables, see Table 2 and these boundaries were chosen by

Parameter Boundary
κ (0.001, 15.)
θH (0.001, 6.)
σ (0.005, 4.)
ρ (-0.999, 0.999)

Table 2: Calibration boundary conditions for optimization algorithm.

33

literature review, see Crisóstomo (2014). These parameter samples are then divided into training,
validation and testing data, where validation data is used to save network parameterizations and
thus evaluate the minimization in Equation (48) out-of-sample, and testing data is used as
second step to ”validate the validation”. In order to find a minimum of the loss function, one
needs specify a optimizer, we shall consider the Nestrov accelerated adaptive momentum (Nadam)
optimizer for this task, outlined in Subsection 5.3.1. Recall that, conceptually, Nadam optimizer
is a variant of gradient descent that is more likely to find global minimum than stochastic gradient
descent since it utilizes the magnitude of the gradient. If the gradient is large, the optimizer will
take larger steps since it builds momentum and accelerates, thereby, hopefully, ”overshoot” local
minimum.

Once the optimal w are obtained and the implied volatility map is learned, we shall de-
note the trained network as F̃ (θ) = F (ŵ, θ) and we denote pixel-wise prediction as F̃ (θ)j,k =
F (ŵ, θ, Tj ,Kk). If one retains the ”least squares” distance function in Equation (48), the calibra-
tion problem is formulated as finding parameters such that one minimizes the difference between
the neural network approximation of the IV-surface and the market.

θ̂ := argmin
θ∈Θ

m∑
j=1

n∑
k=1

(
F̃ (θ)j,k − σMKT

BS (Tj ,Kk)
)2

(49)

A more intuitive formal description of the calibration step can be presented as

θ̂ = argmin
θ∈Θ

m∑
j=1

n∑
k=1

(
σ̃
H(θ)
BS (Tj ,Kk)− σMKT

BS (Tj ,Kk)
)2

, (50)

where σ̃
H(θ)
BS (Tj ,Kk) = F̃ (θ)j,k = F (ŵ, θ, Tj ,Kk). We deem this to be a more intuitive explana-

tion as it expresses the optimization in terms of a more explicit classical calibration problem.

There exist several optimizers that can solve the minimization in Equation (49). These opti-
mizers differs mainly on computing time. We have selected differential evolution (DE) for this
task. DE is, as the name suggests, a evolutionary algorithm, inspired by natural evolution of
species, that can solve numerical optimization problems in a wide variety of fields. The reader
is referred to Appendix A for more detailed description of the DE-optimization method.

As we have discussed in Subsection 3.3, simulation schemes are somewhat limited by the Feller
condition.The Feller condition is based on the observation that if 2κθH ≤ σ2, then there is a
non-zero probability of sampling negative values of V . In order to avoid negative values of the
variance process, one can restrict the parameter search space such that the condition is met by,
dynamically, adjusting the upper boundaries of Θ such that 2κ̂θ̂H ≤ σ̂2 is met. If the feller
condition is applied to Equation (49), one obtains the constrained optimization

θ̂ := argmin
θ∈Θ

m∑
j=1

n∑
k=1

(
F̃ (θ)j,k − σMKT

BS (Tj ,Kk)
)2

Subject to : 2κθH ≤ σ2

(51)

where we remind the reader that θ̂ = (κ̂, θ̂H, σ̂, ρ̂) denotes the calibrated parameter vector.
However, the Feller condition has created quite the divide in both practice and industrial appli-
cations. Option prices generated by the model is still valid even upon violation Cui et al. (2017),

34

and the price of the underlying asset S is still a martingale under the risk neutral measure
Ribeiro & Poulsen (2013), but simulations may be impaired for severe violations. In fact, the
unconstrained calibration in Equation (49) returns better fit than Equation (51) according to
Ribeiro & Poulsen (2013) and is also what our results indicate, see Section 8.1. Furthermore, it
is well established, especially in foreign exchange markets , see e.g. Table 6.3 pp.99 Clark (2011),
that unconditional calibration usually violates the Feller condition, and is also usually the case
when calibrating to various equity indices, see Table 6.2 pp.156 Rouah (2013). Furthermore, we
see that on p.1283 in Buehler et al. (2019), the Feller condition is also ignored. Therefore, we
have decided to report unconstrained calibration results, i.e. using the optimization in Equation
(51), and the Feller constrained minimzation in Equation (51), in the numerical results Section
8.1.

7 Deep Hedging

This section will provide the reader with the theoretical background to the methodology of hedg-
ing using neural networks by reformulating the hedging objective, in terms of finding optimal
parameter sets. As such, the following reasoning heavily depend on hedging theory, covered in
Section 3.5 and 4 as well as understanding of neural networks, see Section 5. First, we will define
the market setting and conditions in which we will apply the deep hedging algorithm in Section
7.1. Then, in Section 7.2, we will formally describe the deep hedging algorithm in more detail,
including an example of how the neural network approximates optimal hedging strategies for a
specific risk measure.

As the name suggests, deep hedging is the process by which derivatives are hedged exclusively
with deep learning techniques and was initially researched and implemented by Buehler et al.
(2019). The approach is totally different from the classic replication techniques (see Section 3.5).
In many ways however, deep hedging is still very classical as it can be seen as the implementation
of hedging in incomplete markets, see Section 4, with machine learning. Thus, a problem that
was inaccessible before, becomes accessible by the virtue of modern computational technology
and the subsequent rise in the applicability of AI.

Deep hedging is a natural consequence of the practical application of automated hedging
techniques. Initially, these automated hedging strategies was implemented through the use of
classic greek models. However, classical hedging models like the Black-Scholes model, assumes
conditions that conflict with empirical reality such as constant volatility. The problem with
classical models is that they presume that the model specific parametric description of reality
is a good enough approximation. For example, the Heston model assumes that the dynamics
between instantaneous variance and spot returns evolve according to the system of SDE’s in
Equations (13) and (14). Deep hedging on the other hand, is a purely data driven approach that
attempts to automatically implement hedging strategies that circumvents the replication theory
and by extent, does not rely explicitly on any model describing market dynamics. Furthermore,
deep hedging lends it self to be applicable to the cases in which the classical hedging models do
not work very well. For example in markets where there is not a lot of buyers and sellers such as
the OTC-derivative market. We will however only consider the case of liquid European vanilla
options.

7.1 Market Setting & Objective

This section will introduce the basic market setting on which we will define the deep hedging
algorithm similarly to Buehler et al. (2019). This means we reintroduce the hedging portfolio

35

and terminal pnl distribution and the discrete versions of the stochastic integrals in Section 3.5,
i.e. trading strategy and transaction costs.

We will consider a discrete time market with terminal time T and trading is only allowed at
0 = t0, . . . , tn = T, t ∈ [0, T]. We assume that (Sti)i=0,...,n evolves by the discrete version of the

Heston model parameterized by H(θ̂), where θ̂ is obtained by deep calibration as described in
Section 6.The filtered probability space is fixed on (Ω,F ,F,P) in which F := (Fti)i=0,...,n is the
filtration generated by the discrete versions of the Brownian motions in Equation (13) and (14)
and Fti contains all relevant information at time ti. Furthermore, S is adapted to the filtration.
The contingent claim that we seek to hedge −Z is a FT measurable random variable on the
filtered probability space. Intuitively, the above conditions means that we seek to hedge in a
incomplete market setting as described in Section 3.5.

Recall from Section 4 that the strategy applied in order to hedge −Z is implemented by trading
in S with the sequence of weights δ = (δti)i=0,...,n, as we ignore volatility risk for ease of im-
plementation. If one represents −Z as a liability and injects cash at t0, the terminal wealth is
defined as

PnLT (Z, p0, δ) = −Z + p0 +GT (δ)− CT (δ) (52)

in which the agent sells a contingent claim and

GT (δ) =

n∑
i=0

δti∆Sti (53)

denotes the gains from the hedging strategy and where C is defined as the cost of trading in a
discrete market

CT (δ) =

n∑
i=0

ε | δti − δti−1 | (54)

and p0 represents the initial cash injection, which we have shown in Subsection 3.5 to be equiva-
lent to the market price that the trader receives when selling the option. In a complete market,
Equation (52) would be zero, however, this is not the case in our current setting, hence optimiz-
ing a strategy will imply finding a price that minimizes the PnL of the hedging portfolio under
some suitable risk measure. Furthermore, we have specified the settings, see Section 4, in which
we will describe optimality in terms of various risk measures, mainly convex measures of risk.

In order to find close-to-optimal hedges under these measures, we need to employ some nu-
merical technique. As stated earlier, we shall consider neural networks for this task.

7.2 Approximation of Optimal Hedging Strategies by Neural Networks

This section will cover the theoretical background to the deep hedging algorithm, and link it to
our previous discussions on hedging under convex risk measures in Section 4 and neural networks
in Section 5. First, in order to justify the application of neural networks as approximators of
optimal hedging strategies, we will reformulate the constrained hedging problem , see Section 4,
in terms of a unconstrained problem, as presented in Theorems 1 and 2. We have chosen to only
reformulate the hedging problem for the entropic risk in Equation (36), because of notational
convenience and in order to follow the setup of Buehler et al. (2019). However, the methodology
presented below easily extends to the other risk measures in Section 4. Then we utilize the un-
constrained set of admissible hedging strategies in order to formulate the hedging problem under

36

convex risk measures as a optimization of neural network parameters. Lastly, we illustrate how
the neural network minimizes the discrete objective function using stochastic gradient descent
and mini-batch training.

As discussed in Section 4, expected shortfall, entropic risk, and the quadratic criterion1 are
reasonable monetary measures of shortfall risk in incomplete markets as discussed in Section 4.
recall that the entropic risk measure is convex and expected shortfall is a coherent risk measure,
which implies convexity. When one consider optimal hedging strategies under such measures,
one can seek optimality in terms of minimizing the PnL-distribution in Equation (52), which is
called minimizing shortfall risk or replication error. We shall now, at least in part, formulate
close-to-optimal hedges under the entropic measure as a problem such that Theorem 1 and 2
can be applied, where the notation originates from Buehler et al. (2019). First some technical
conditions must be considered regarding constrained and unconstrained hedging strategies. The
idea is that the constrained strategy δ in Equation (36) is replaced with a unconstrained strategy
D ◦ δ so that the unconstrained formulation of the entropic hedging objective in Equation (36)
can be described as

π(−Z) = inf
δ∈∆u

1

λ
logE(exp(−λ[−Z +GT (D ◦ δ))− CT (D ◦ δ)]) (55)

where ∆u is the unconstrained set of admissible hedging strategies. The reader is referred to
Buehler et al. (2019) for further discussions with respect to these technical conditions. One can
now seek to approximate Equation (55), by neural networks. Following the notation and setup
of Buehler et al. (2019), we have that the space of admissible neural network hedging strategies
∆M ⊂ ∆u, to be the space of all possible output data from neural networks with a architecture
that Buehler et al. (2019) calls semi-recurrent neural networks

∆M :=
{

(δti)i=0,...,n−1 ∈ ∆u : δti = Fti(Sti , δti−1), Fti ∈ NNM,d0=2,d1=1

}
=
{

(δw̃ti)i=0,...,n−1 ∈ ∆u : δw̃ti = F w̃ti (Sti , δti−1
), w̃ti ∈ W̃M,d0=2,d1=1

}
.

(56)

Here, (Fti)i=1,...,n−1 is a sequence of feed forward neural network (FNN) functions, indexed time,
in a abstract space of all semi-recurrent networks NN σElu

M,d0=2,d1=1 with parameter dimension M ,

input dimension 2 and output dimension 1 and W̃M,d0=2,d1=1 is its corresponding the abstract
space for its parameters. Intuitively, the right hand sides in Equation (56) means that we define
a sequence of neural networks ordered by time such that for each ti, i = 0, 1, . . . , n− 1, we have
a neural network Fti , parameterized by w̃ti whose output δti , is an input in the neural network
at the next time step Fti+1

parameterized by w̃ti+1
, which output feeds into the next FNN in the

sequence, up until tn−1. In other words, the neural network NN σElu
M,d0,d1

is the abstract space of

sequences of feed forward neural networks (Fti)i=0,1,...,n−1 parameterized by W̃M,d0,d1 , such that
each element in the sequence (Fti)i=0,1,...,n−1 is parameterized by a corresponding element in the
sequence (w̃ti)i=0,...,n−1 where the resulting neural network is denoted by (F w̃ti)i=0,...,n−1. For
visualization of the neural network architecture, see Figure 12. Equation (56) tells us that the
set of admissible neural network hedging strategies is all the unconstrained hedging strategies
that are outputs of semi-recurrent neural networks with parameter dimension M . Thus, the

1As noted in Section 4, the quadratic criterion is neither a convex or coherent monetary risk measure. However,
approximating −Z in L2, i.e. the space of square Lebesgue integrable functions, by stochastic integrals GT (δ) of a
given discrete stochastic process S, leads to the variance-optimal hedging strategy, which is equivalent to optimality
under the quadratic criterion. Hence, approximating optimality of the expectation of the PnL-distribution for a
hedging portfolio, weighted by a quadratic shortfall measure is a prudent setup for deep hedging and was also
used in Buehler et al. (2019) as an example.

37

problem of finding neural network hedging strategies can be reformulated as parameterising a
semi-recurrent neural network. Note that the reason why each feed forward network only have
to depend on the ”current” Sti and the previous hedging weight δtt−1

is that S is a discrete
Markovian process and δt is Ft-measurable for all t, however the setup and notation could be
easily extended to cover non-Markovian processes, as shown in Buehler et al. (2019).

In the case of the entropic risk measure, we replace ∆u with ∆M in Equation (55) and ob-
tain the formulated numerical optimization of finding optimal parameter combinations for the
neural network

π(−Z) =
1

λ
log inf

δ∈∆M

E(exp(−λ[−Z +GT (D ◦ δ)− CT (D ◦ δ)])

=
1

λ
log inf

w̃∈W̃M

E(exp(−λ[−Z +GT (D ◦ δw̃)− CT (D ◦ δw̃)]).
(57)

Let J(w̃) = E(exp(−λ[−Z + GT (δw̃) − CT (δw̃))]). Then the approximately optimal hedging
strategy in terms of the sequence w̃ = (w̃ti , w̃t2 , . . . , w̃tn) describing neural network parameters
for each feed forward neural network at each time ti for i = 1, . . . , n, under the entropic measure
is defined as

πM (−Z) =
1

λ
log inf

w̃∈W̃M

J(w̃). (58)

The objective of approximating a optimal strategy is reduced to the constrained problem of
finding optimal parameters (weights and biases) for our neural network such that w̃ minimizes
the loss function J(w̃). This strategy can arbitrarily well approximate strategies in δ since

lim
M→∞

πM (−Z) = π(−Z) (59)

in which, as earlier, M denotes the dimensions of the parameter space for the neural network.
One result of this is the convergence of the hedging price, defined as π(−Z)− π(0) to the semi-
analytical price of Z, obtained by fourier pricing as described in Section 3.3. The reader is
referred to Buehler et al. (2019) for proof of the approximation as it is beyond the technical
scope of this thesis.

We now proceed by formally describing the computation of w̃ in (58), by means of a neural
network. Here we utilize the theoretical background from Section 5 in order to formally define
the process in by which the risk measure is minimized by choice of w̃. As discussed in Section
5, the process in by which a neural network learns is by finding the gradient of the cost function
and step in the opposite direction of the gradient, changing the network parameters along the
way, and, hopefully, find a global minimum of the cost function.

Since we have discretized the stochastic integrals into sums in Equation (53), we now have a
discrete sample space Ω = (ω1, . . . , ωN). Let J(w̃) denote the expectation in Equation (57), it
can now be computed as

J(w̃) =
∑
ω∈Ω

exp(−λ[−Z(ω) +GT (D ◦ δw̃)(ω)− CT (D ◦ δw̃)(ω)])P(ω)

=

N∑
i=1

exp(−λ[−Z(ωi) +GT (D ◦ δw̃)(ωi)− CT (D ◦ δw̃)(ωi)])P(ωi).

(60)

However, since training neural networks relies on vast amounts of data, N will be very large
and therefore it may be computationally infeasible to perform gradient descent. To address this

38

problem, one may consider mini-batch training, as discussed in Section 5, where the concept is

that one selects m subsets (Ω(1), . . . ,Ω(m)) where Ω(j) = (ω
(j)
1 , . . . , ω

(j)
NBatch

) ⊂ Ω by uniformly
sampling over Ω m-times such that each mini-batch has NBatch elements. One can then compute
the expectation of each batch separately as

Jj(w̃) =
N

NBatch

NBatch∑
i=1

exp(−λ[−Z(ω
(j)
i) +GT (D ◦ δw̃)(ω

(j)
i)− CT (D ◦ δw̃)(ω

(j)
i)])P(ω

(j)
i) (61)

for each j = 1, . . . ,m and where N
NBatch

is a scalar value to make sure that the expectation

becomes the mini-batch sample average since the probabilities in Equation (61) are uniform with
P(ω(j)) = 1/N , as on page 1283 in Buehler et al. (2019). Evaluating the expectation in Equation
(61) for each mini-batch is much more computationally efficient than computing the expectation
over the entire sample space as in Equation (60) for each iteration in the minimization procedure.
One can now as earlier Minimizing the target function J(w̃) by stochastic gradient descent, as
described in Section 5.3.1, over each mini-batch can be described by starting with a initial guess
and stepping in the opposite direction of the gradient for each mini-batch until local minimum
is potentially obtained, or more formally

w̃(j+1) = w̃(j) − ηj∇Jj(w̃(j)), (62)

for some small ηj > 0 and initial guess w̃(0). Stochastic gradient descent finds the local minimum
of J as the number of batches j → ∞. Equation (62) describes the simple gradient descent
algorithm, however, keeping computational efficiency in mind, and the discussion in Section
5.3.1, resulted in us choosing adaptive momentum optimizer (Adam) instead, which updates the
network parameters w̃ with

w̃j+1 = w̃j −
η√
vj

1−β2
+ ε
· mj

1− β1

where

mj = β1mj−1 + (1− β1)∇wJ(w̃j)

vj = β2vj−1 + (1− β2(∇wJ(w̃j)))
2.

The above methodology easily extends to the rest of the monetary risk measures that we consider
in this thesis, i.e. expected shortfall and the quadratic criterion, see Section 4 as Equation (61)
can be generalised to be used with other risk measures, see Buehler et al. (2019).

8 Implementation & Numerical Results

This section will discuss the implementation of the deep calibration and hedging respectively. In
Section 8.1 we first discuss practical considerations when training the deep calibration algorithm,
introduced in Section 6, such as the feed forward neural network architecture, number of training
examples etc. Then we proceed by illustrating some results from deep calibration of the Heston
model, both to synthetic data out of sample and to real market in order to illustrate the accuracy
of the calibration process. We will also illustrate differences in terms of fitting when the Feller
condition, as discussed in Section 6, is both enforced and violated, .

In Section 8.2, we consider results from the deep hedging algorithm. We illustrate and dis-
cuss the semi-recurrent architecture of the neural network, as introduced in Equation (56) and

39

discussed in the subsequent text in Section 7. Then we proceed illustrating simulated terminal
profit/loss distributions, i.e. realizations of Equation (52), for all risk measures introduced in
Section 4 and compare the results to the benchmark delta hedging strategy introduced in Sec-
tion 3.5. Furthermore, we will also vary the level of risk aversion for expected shortfall and the
entropic risk measure, i.e. varying α and λ in Equation (37) and (35) respectively. We will also
display and comment on descriptive statistics for each simulated pnl distribution and compare
them to the benchmark delta hedging strategy. Then, we illustrate pathwise characteristics of
the deep hedging strategies and, yet again compare them to the benchmark strategy. Lastly we
illustrate the impact of introducing transaction costs on profit and loss distribution of the ex-
pected shortfall deep hedging strategy and display sample path and contrast them towards when
transaction costs are not included. We also discuss the ”joint” methodology of deep calibration
and hedging.

We implement both deep calibration and deep hedging through Python in which we primar-
ily use the packages Numpy, QuantLib and Tensorflow. The resulting code is available at the
project GitHub repository, which is extensively based on the code made available at Teichmann
(2019), especially the deep calibration algorithm, the availability of which we are grateful.

8.1 Calibration Method

In this subsection we will discuss the implementation and results of the deep calibration al-
gorithm, As discussed in Subsection 3.4 and Section 6, the calibration of the Heston model is
the process in which one estimates the optimal parameter combination in terms of a distance
function from parameter implied quotes to market quotes. The calibration task, as described
in Section 6, is performed by implementation of a 4-layered feed forward neural network with
30 neurons in the two hidden layers, introduced in Section 5 in which the output layer is the

volatility surface σ̃
H(θ)
BS (Tj ,Kk) where j = 1, . . . , 10 and k = 1, . . . , 9. As such we specify a 9×10

implied volatility grid of approximately equidistant points in moneyness ranging from 0.91 to
1.1. The corresponding maturities Tj were specified for a grid ranging from 31 days to 406 days.
The reason as to why these are not equidistant is the fact that we calibrate to market data, hence
they are subject to real world maturities and moneyness. The input layer consists of the model
parameter combinations θ = (κ, θH, σ, ρ), see Figure 6 for network architecture. We generate
100 000 synthetic parameter combinations from the uninformative prior distributions over the
parameter space as described in Section 6, the data is then split into 80% training data, 10%
validation data, 10% testing data. Validation data is used to make an unbiased evaluation of the
model fit, and update the network hyperparameters accordingly. Testing data is used to monitor
the loss function out of sample, i.e. as a second step. The rest of the observations is used for
training. As we shall perform mini-batch training, the training samples are split into batches of
size 1024, for efficient training, we set the number of epochs to 250, based on the discussion in
Section 5 and set σELU as the activation function.

We then employ the differential evolution algorithm as outlined in Section 6 (for details
see Appendix A) in order to find the optimal parameter combinations that minimize the loss
in Equation (49) from the neural network predicted implied volatility surface, F̃ , in order to

obtain parameter combinations θ̂ = (κ̂, θ̂(H), σ̂, ρ̂). The methodology can be roughly split into 4
consecutive sections, as follows:

40

https://github.com/VictorTisell/HestonModelHedging-Calibration

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

α1
2 α1

3

α2
2 α2

3 y1

κ ...
... y2

θH ...
...

...

σ ...
...

...

ρ ...
... y89

α255
2 α255

3 y90

α256
2 α256

3

Input 1

Input 2

Input 3

Input 4

...

...

σ̃(1,1)

σ̃(2,1)

σ̃(9,9)

σ̃(10,9)

Figure 6: Neural Network Architecture for model calibration. The input layer is the Heston
model parameters and output layer represents the implied volatility surface. We have two hidden
layers with 256 neurons each. The objective for the neural network is to learn the map from
parameters to implied volatilities as in Equation (47) where we weight the neural network output
error as in Equation (48). The learning procedure is achieved by backpropagation and stochastic
gradient descent, outlined in Section 5. The trained neural network is then used in the differential
evolution algorithm, which is conceptually covered in Appendix A, to find the Heston model
parameters that best generate the trained implied volatility map.

1. Data handling. Implied volatility data is extracted from option-chain by the trial and
error and data is structured to fit the network.

2. Heston model generation and simulation. Synthetic pseudo-random parameter com-
binations θtrain ∈ Θ are simulated from priors where analytical prices and volatility surfaces
are generated.

3. Feed-forward Neural Network creation and training. Generation and training of
Neural Network to learn the map from parameters to implied volatilities.

4. Model calibration. Calibration step by differential evolution in order to approximate op-
timal parameter combinations that generates the neural network predicted implied volatil-
ity surface.

As the partial stated objective of the thesis is to calibrate the Heston model to market data,
we consider the calibration of S&P 500 call options on 2019-11-08. One important factor to
consider when one calibrates to empirical data is the inability of the pricing model to fully
capture the real terminal distribution of S and V and by extension, not be able to fully capture

41

the states of nature that generates the implied volatility surface that one seeks to calibrate. In
order to illustrate the approximating properties of neural networks and the accuracy of the deep
calibration algorithm, we first show results from calibration to synthetic data, where we know
the Heston parameter vector θ beforehand and show the error of the calibration. Only after
we have considered the validity of the method, shall we apply the deep calibration algorithm to
empirical data. Hence, we now proceed to analyse the approximating capabilities of the neural
network in terms of calibration of simulated parameter combinations, see Figure 7.

time to maturity (days)

50
100

150
200

250
300

350
400

mon
ey

ne
ss

 (%
)

0.925
0.950

0.975
1.000

1.025
1.050

1.075
1.100

im
pl

ie
d

vo
ls

0.415

0.420

0.425

0.430

0.435

0.440

0.445

0.450

S0 = 70.078, ir = 0.0586, dr = 0.0089, v0 = 0.1951

Historical parameters: = 7.390, = 0.175, = 0.792, = 0.587

0.415

0.420

0.425

0.430

0.435

0.440

0.445

time to maturity (days)

50
100

150
200

250
300

350
400

m
on

ey
ne

ss
 (%

)

0.925
0.950

0.975
1.000

1.025
1.050

1.075
1.100

im
pl

ie
d

vo
ls

0.415

0.420

0.425

0.430

0.435

0.440

0.445

0.450

Calibrated params: = 8.076, = 0.174, = 0.644, = 0.756

0.415

0.420

0.425

0.430

0.435

0.440

0.445

0.415

0.420

0.425

0.430

0.435

0.440

0.445

Heston Calibrated implied vols with Neural Network

Figure 7: Synthetic and calibrated Heston surface. Right hand side plots both calibrated (blue
scale) and synthetic volatility surface (red scale). Synthetic parameters; κ = 7.390, θ(H) =

0.175, σ = 0.792, ρ = 0.587. Calibrated parameters; κ̂ = 8.076, θ̂(H) = 0.174, σ̂ = 0.644, ρ̂ =
0.756.

As one can see in Figure 7, the network seems to be able to replicate the simulated implied
volatility surface, hence the method is accurate on random volatility surfaces generated from
the same prior distributions as used in the training example. In order to more formally analyse
errors over the entire grid we can calculate relative errors which allow us to consider whether the
errors in the calibration is constant over maturities, see Figure 8 for visualisation. In Figure 8
we see e.g. that the maximal relative error is 0.2%, the minimal relative error is -0.3% and the
mean relative error is approximately 0%.

42

time to maturity

50
100

150
200

250
300

350
400

moneyness

0.925
0.950

0.975
1.000

1.025
1.050

1.075
1.100

re
la

tiv
e

er
ro

r

0.004

0.002

0.000

0.002

0.004

S0 = 70.078, ir = 0.0586, dr = 0.0089, v0 = 0.1951

= 8.076, = 0.174, = 0.644, = 0.756

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

S&P 500 index Heston Calibrated Implied Volatility Relative Errors

Figure 8: Relative error of calibrated implied volatility surface, i.e. a visualisation of
(ε1,1, . . . , εn,m) where εj,k is defined as the relative percentage error of the calibrated implied
volatility surface in Equation (49), relative to the data. In this case, the data is the ran-
dom samples of our prior distributions with boundary conditions specified as in Table 2. Syn-
thetic parameters; κ = 7.390, θ(H) = 0.175, σ = 0.792, ρ = 0.587. Calibrated parameters;
κ̂ = 8.076, θ̂(H) = 0.174, σ̂ = 0.644, ρ̂ = 0.756. Clearly, the relative errors are very small since
the largest error is approximately 0.15 % which can also be deduced from the fit in Figure 7.

We have now visualized the approximating capabilities of the neural network, and validated
its numerical proficiency in terms of the total calibration task, i.e. learning the map from param-
eters to volatility surface and the inverse map by calibration through differential evolution, see
Section 6 for more details. As such, we are confident that the deep calibration algorithm should
also be able to calibrate to empirical data. The empirical data we use is the implied volatility
surface of the S&P 500 index on the 8th of November 2019 and has already been introduced to
the reader in Figure 3.

As earlier discussed in Section 6, the variance process in the Heston model is constrained by
the Feller condition, which becomes very apparent when performing simulations as the variance
process can become negative. However, the option prices generated by the model are still le-
gitimate when the Feller condition is violated, and as it turns out, empirical calibration often
imply parameter calibrations that violates this condition, for further details see the discussion
in Section 6. This has led to somewhat of a divide in weather or not to enforce the condition.
Therefore we have decided to show the performance of the deep calibration algorithm for both
cases, i.e. using Equation (49) when the Feller condition is ignored, visualized in Figure 9 and
its relative errors in Figure 10 and use Equation (51) when the condition is enforced, where the
relative errors are displayed in Figure 11.

43

time to maturity (days)
50100150200250300350400

moneyness (%)

0.9250.9500.9751.0001.0251.0501.0751.100

im
plied volatilities

0.10

0.12

0.14

0.16

0.18

0.20

S0 = 3093.0, ir = 0.0156, dr = 0.0188, v0 = 0.0145

0.10

0.12

0.14

0.16

0.18

time to maturity (days)
50100150200250300350400

moneyness (%)

0.9250.9500.9751.0001.0251.0501.0751.100

im
plied volatilities

0.10

0.12

0.14

0.16

0.18

0.20

Calibrated parameters: = 0.708, = 0.121, = 0.909, = -0.75

0.10

0.12

0.14

0.16

0.18

0.10

0.12

0.14

0.16

0.18

S&P 500 index Heston Calibrated implied vols with Neural Network

Figure 9: Left hand side visualises the implied volatility surface in Figure 3. The right hand
side visualises the calibrated implied volatility surface (blue scale) versus the actual volatility
surface (red scale). The calibrated parameters for the Heston model on SPX 2019-11-08 are;

κ̂ = 0.708, θ̂(H) = 0.121, σ̂ = 0.909, ρ̂ = −0.75.

As can be seen in Figure 9, the overall term and strike structure of the implied volatility (IV)
surface is captured by the deep calibration algorithm. Furthermore, one can see that the tail
options seem to be fairly well replicated by the calibrated parameter combinations.

Evidently, the Heston model pricing model inefficiency for negative jump risk, see e.g. Gatheral
(2015) and Pan (2001), seems correct as the model seems to be less able to calibrate short term
ITM options than short term OTM options, see Figure 10. The overall results are also largely in
line with the findings of Horvath et al. (2019), in the sense that the deep calibration algorithm
is very accurate, although we do not show computing time.

As one can see in when comparing Figure 10 and 11, the Feller constrained parameter cali-
bration is less capable than the the unconstrained calibrated parameter combination to replicate
the market IV surface. In Figure 10 we see e.g. that the maximal relative error is 23% and the
minimal relative error is -0.13% . Which can be contrasted to the maximal relative error of 33.3%
and minimal relative error of -32% for the Feller constrained calibration in Figure 11. Further-
more, the mean relative error across the whole grid is 1.8% in Figure 10, which can be contrasted
to 2.38% in Figure 11. Both calibrations could however be altered slightly since one can spec-
ify the weights ηj,k in Equation (48) to counteract this, if this error is indeed a consistent feature.

Recalling our discussion of the Feller condition and various simulation schemes, one has to make
a choice, utilize more complicated, and potentially slower discretization schemes that better deal
deal with the Feller condition (but may still be inadequate for severe violations) or utilize the
constrained calibrated parameter combination such that one can obtain unbiased trajectories.

44

time to maturity

50
100

150
200

250
300

350
400

moneyness

0.925
0.950

0.975
1.000

1.025
1.050

1.075
1.100

relative error

0.10

0.05

0.00

0.05

0.10

0.15

0.20

S0 = 3093.0, ir = 0.0156, dr = 0.0188, v0 = 0.0145

= 0.708, = 0.121, = 0.909, = -0.75

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

S&P 500 index Heston Calibrated Implied Volatility Relative Errors

Figure 10: Relative error of the unconstrained calibrated implied volatility surface, i.e. a visu-
alisation of (ε1,1, . . . , εn,m) where εj,k is defined as the relative percentage error of the implied
volatility surface generated by calibrated parameters in Equation (49), relative to market data.
Final value of the differential evolution algorithm (for details, see Appendix A); 0.008. Resulting

Heston model parameter values; κ̂ = 0.708, θ̂(H) = 0.121, σ̂ = 0.909, ρ̂ = −0.75.

time to maturity

50
100

150
200

250
300

350
400

moneyness

0.925
0.950

0.975
1.000

1.025
1.050

1.075
1.100

relative error

0.3

0.2

0.1

0.0

0.1

0.2

0.3

S0 = 3093.0, ir = 0.0156, dr = 0.0188, v0 = 0.0145

= 0.791, = 0.072, = 0.338, = -0.99

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

S&P 500 index Heston Calibrated Implied Volatility Relative Errors

Figure 11: Relative error of the Feller-constrained calibrated implied volatility surface, i.e. a
visualisation of (ε1,1, . . . , εn,m) where εj,k is defined as the relative percentage error of the implied
volatility surface generated by calibrated parameters in Equation (51), relative to market data.
Final value of the differential evolution algorithm (for details, see Appendix A); 0.0145. Resulting

Heston model parameter values; κ̂ = 0.791, θ̂(H) = 0.072, σ̂ = 0.338, ρ̂ = −0.99. Note that
scales differ relative to Figure 10.

45

8.2 Hedging Method

This section will present our numerical results from the deep hedging algorithm, as described in
Section 7. First, we remind the reader of the central aspects of the deep hedging algorithm. Then
we discuss the neural network architecture and link it to the theoretical background in Section
7 as a minimizer of replication error under a convex risk measure. We also discuss some imple-
mentation related considerations such as number of neurons, activation functions etc. Then we
proceed by presenting numerical results, consisting of simulated hedging profit/loss distributions
and associated descriptive statistics compared to the benchmark strategy introduced in Section
4. We also compare various deep hedging strategies to the benchmark strategy on a pathwise
basis, and lastly analyse the effects of including transaction costs in the deep hedging algorithm.

The deep hedging framework, detailed in Section 7, is the process by which optimal hedging
strategies are approximated by minimizing the replication error of a hedging portfolio, under
some monetary risk measure, as in Equation (34), by using the approximating capabilities of
artificial neural networks. The theory in Buehler et al. (2019) is developed for convex risk mea-
sures, which were introduced in Definition 4.1, but can be extended to cover other risk measures,
such as coherent risk measures, see e.g. Föllmer & Schied (2008) for further details.
As seen in Section 7, the task of finding optimal hedging strategies, as in Equation (34), can be
reformulated as finding optimal parameters for a sequence of neural network approximations of
the hedging strategy at each time-step, as Fti ∈ NN

σ
M,d0,d1 in Equation (56). This sequential

chain of neural networks is what Buehler et al. (2019) calls a semi-recurrent neural network,
where the output at each time-step is the current hedging strategy, which is the input, along
with a simulated value of S into the next feed forward network in the sequence. More concretely,
one can visualize the semi-recurrent neural network as a series of feed forward networks indexed
by time, ti to tn. At each ti, the input layer consists of the simulated underlying asset price Sti
for each ti ∈ (t1, . . . , tn), generated by the Heston model calibration described in Section 6 and
implemented as in Subsection 8.1, and the output at ti−1 of the approximately optimal hedging
weights under some monetary risk measure, as discussed in Section 4. We have decided to specify
each feed forward network with two hidden layers, 30 neurons and σElu as activation function,
as seen in See Figure 12.

46

Input
layer
at ti

Hidden
layer 1
at ti

Hidden
layer 2
at ti

Output
layer
at ti

α1
2 α1

3

α2
2 α2

3

sti
...

... δti

δti−1
...

...

...
...

α30
2 α30

3

Output layer at ti−1

Input layer at ti+1

Figure 12: Deep hedging semi-recurrent neural network, formally described in Equation (56) and
discussed in Section 7. The semi-recurrent neural network is a sequence (F w̃ti)i=1,...,n of feed

forward networks indexed by time and parameterized by a vector w̃ ∈ W̃M containing weights
and biases. The input for F w̃ti is a simulation of the underlying asset Sti , from Equation (20),
which in our case evolves according to Heston model dynamics where the variance process is
discretized according to the moment matching scheme in Equation (22).

As discussed earlier in Section 4, we shall consider the approximation of optimal hedging
strategies under both convex and non-convex monetary risk measures. The various risk mea-
sures will serve as the neural network loss function, described in Section 5. We consider optimality
under expected shortfall (ES) and the entropic risk measure, with varying risk aversion parame-
ters α and λ respectively, see Equations (38) and (35). We shall also consider optimality under
a non-convex measure, namely the quadratic criterion, see Equation (40). The neural network
minimizes the replication error by stochastic gradient descent, using mini-batch training, de-
scribed formally for the entropic risk measure in Equation (62) and (61) respectively, however,
the methodology easily extends to all measures under consideration.

Before presenting the numerical results of the hedging algorithm, one need to consider the fact
that the method suffers from the so called black-box problem. Namely, that we cannot know the
reason as to why the model gives a certain output as the dimensions of deep neural networks are
too large. Hence, this will impair our ability to discuss the results in detail.

We now present the results of the deep hedging algorithm. All of the following hedging strate-
gies will be evaluated at the spot value S0 = 3093.08, and option parameters T = 31/365,
K = 3100, for the calibrated SPX Heston model. Firstly, we simulate trajectories of St, by the
moment-matching scheme, which are then used to train a neural network strategy δw̃ ∈ ∆u as a
minimizer to (34), where ∆ is replaced by the set of unconstrained strategies ∆u. This numerical
approximation of a optimal hedging strategy δw̃ under some convex risk measure is then used
to produce profit/loss-distributions of the hedging strategy as in Equation (52). The hedging
profit/loss (pnl) distribution, see Equation (52), for deep hedging strategies are benchmarked
to the pnl-distribution of a simple delta hedging strategy, see Equation (31) (and preceding
discussion in Section 3.5) calculated numerically as in Equation (32), evaluated over the same
trajectories as the deep hedging strategies.

47

100 50 0 50 100
Profit/Loss

0

1000

2000

3000

4000

5000

6000

Co
un

t

Test Sample Hedging Profit/Loss
NN: ES0.001
Delta Hedge

(a) Expected shortfall PnL when
α = 0.01.

100 50 0 50 100
Profit/Loss

0

1000

2000

3000

4000

5000

6000

Co
un

t

Test Sample Hedging Profit/Loss
NN: ES0.05
Delta Hedge

(b) Expected shortfall PnL when
α = 0.05.

100 50 0 50 100 150
Profit/Loss

0

1000

2000

3000

4000

5000

6000

Co
un

t

Test Sample Hedging Profit/Loss
NN: ES0.10
Delta Hedge

(c) Expected shortfall PnL when
α = 0.10.

100 50 0 50 100 150 200
Profit/Loss

0

1000

2000

3000

4000

5000

6000

7000

Co
un

t
Test Sample Hedging Profit/Loss

NN: ES0.50
Delta Hedge

(d) Expected shortfall PnL when
α = 0.50.

Figure 13: Simulated terminal pnl-histograms for delta hedge (blue) and expected shortfall (see
e.g. Equation (38)) deep hedging strategies with varying α-quantile (red) evaluated over 50 000
trajectories and tn = 30 days. Pnl’s are calculated as in Equation (52) where δ is replaced by
δw̃ for deep hedging strategies. The benchmark delta hedge δ (see Section 3.5 for details) is
approximated numerically as in Equation (32) by finite difference. −Z in Equation (52) is the
terminal payoff when selling a call option, see Equation (16).

In Figure 13, one can see that a increase in risk aversion, larger α, shifts the distribution to
the right, as the PnL distributions in Figure 13 imply that the agent can charge the indifference
price, i.e. pw̃0 = πM (−Z) − πM (0) and not fair market prices of −Z, which is also noted by
Buehler et al. (2019). We can therefore, without fear of contradiction, say that increase in risk
aversion generally causes prices to converge towards the risk neutral price, as it is consistent with
the results in Buehler et al. (2019). Furthermore, we can also see that, in general, decreases in
risk aversion generally causes the deep hedging strategy to look more like the benchmark delta
hedging strategy.

48

150 100 50 0 50 100
Profit/Loss

0

1000

2000

3000

4000

5000

6000

Co
un

t
Test Sample Hedging Profit/Loss

NN: Entropic = 1
Delta Hedge

(a) Entropic measure PnL when λ = 1.

100 50 0 50 100
Profit/Loss

0

1000

2000

3000

4000

5000

Co
un

t

Test Sample Hedging Profit/Loss
NN: Entropic = 10
Delta Hedge

(b) Entropic measure PnL when λ = 10.

Figure 14: Simulated terminal pnl-histograms for delta hedge (blue) and entropic (see Equation
(55)) deep hedging strategies with varying risk aversion parameter λ (red) evaluated over 50 000
trajectories and tn = 30 days. Pnl’s are calculated as in Equation (52) where δ is replaced by
δw̃ for deep hedging strategies. For the benchmark delta hedge δ (see Section 3.5 for details) is
approximated numerically as in Equation (32) by finite difference. −Z in Equation (52) is the
terminal payoff when selling a call option, see Equation (16).

An increase in the risk aversion parameter λ in Equation (57) corresponds to a increase in
risk aversion, which is evidently rather subtle in Figure 14, since one could only see a slight
decrease in variance in Figure 14b relative to Figure 14a.

We next consider approximations of optimal hedging strategies under the quadratic criterion,
that is, when the optimization is given as in Equation (40). As earlier noted, the quadratic
criterion is not a convex risk measure, however, it is a common practice to consider hedging in
incomplete markets under the quadratic criterion as it returns variance optimal hedging strate-
gies, see e.g. Föllmer & Schweizer (1990). It is also a well established practice in finance to
consider expectation of portfolio returns, weighted by a loss function of the form `(x) = xp for
p ≥ 1, see e.g. Föllmer & Leukert (2000). This is also used by Buehler et al. (2019), see p. 1288.
In Figure 15 we illustrate the simulated pnl-distribution for the quadratic criterion, in which we
can see that it is very similar to the benchmark delta hedge.

49

100 75 50 25 0 25 50 75
Profit/Loss

0

1000

2000

3000

4000
Co

un
t

Test Sample Hedging Profit/Loss
NN: Quadratic
Delta Hedge

Figure 15: Simulated terminal pnl-histograms for delta hedge (blue) and quadratic (see Equation
(40)) deep hedging strategies (red) evaluated over 50 000 trajectories and tn = 30 days. Pnl’s
are calculated as in Equation (52) where δ is replaced by δw̃ for deep hedging strategies. For the
benchmark delta hedge δ (see Section 3.5 for details) is approximated numerically as in Equation
(32) by finite difference. −Z in Equation (52) is the terminal payoff when selling a call option,
see Equation (16).

From Figure 15 we can see that the variance of the close-to-variance-optimal hedging strategy
is larger than the variance of the delta hedging strategy. Figures 13 - 15 visualizes the PnL
distributions of all considered risk measures and Table 3 gives the corresponding descriptive
statistics for all hedging strategies.

Model type pw̃0 Min, Max Mean Std.dev Skewness Kurtosis
ES0.01 39.55 (−130.374, 135.67) −2.379 22.02 −0.365 0.85
ES0.05 41.06 (−119.22, 123.08) −1.22 18.75 −0.25 1.64
ES0.10 42.7 (−114.72, 139.45) 2.79 19.47 −0.029 2.152
ES0.50 58.79 (−110.51, 220.07) 17.616 26.74 0.957 2.186

Quadratic 40.89 (−103.626, 86.051) −0.336 19.10 −0.38 0.292
Entropicλ=1 41.02 (−139.022, 126.094) 0.3041 22.83 −0.45 0.468
Entropicλ=10 43.04 (−116.051, 131.920) 3.763 22.61 −0.187 0.5209
Delta Hedge 40.82 (−50.158, 37.386) −0.215 14.51 0.088 −0.804

Table 3: Descriptive statistics for pnl of hedging strategies, given by Equation (52) and evaluated
over all risk measures introduced in Section 4 and illustrated in Figures 13 to 15. Calculations are
based on test sample with 50 000 trajectories of S when tn = 30 days. Skewness and kurtosis are
the third and fourth standardized moments of the pnl-distribution respectively. Notice the mean
hedging PnL is dependent on risk aversion, α, and the mean hedging PnL is roughly equivalent
to the deep hedging price premium relative to the market price, which we approximate as the
fair price under Q, see Equation (16). The resulting fair market price is 40.82.

50

As one can see from Table 3, most statistics are quite similar, which is also supported by
Figures 13 - 15 since their simulated distributions are also quite similar. However, the implied
hedging price, i.e. p0 in Equation (52), of expected shortfall with α = 0.5 diverges substantially
from the risk neutral price, indicating that this is more risk averse parameterization than the rest.
Other differences are for example the differences in min-max values for different risk aversions,
the same can be said for their standard deviations. The neural network strategy with the lowest
standard deviation is expected shortfall with α = 0.01 and the strategy with the lowest maximum
loss (minimum value) is the expected shortfall with α = 0.50. The risk measure that seemingly
best approximate the fair market price is the quadratic criterion, see Table 3, however, these
are surely negligible differences. One of the main conclusions that we draw from Table 3 is that
using the expected shortfall strategy in the deep hedging algorithm makes the algorithm very
flexible. This is because training can be made to target different objectives such as minimizing
worst case scenarios by choosing a large α or be very ”risk neutral” by specifying a smaller α.
One other main conclusion that may be drawn is that no strategy seem able to outperform the
benchmark delta strategy.

In Figure 16 we see the realization of the hedging strategy for individual sample paths, for
the collection of expected shortfall measures.

0 5 10 15 20 25

0.2

0.4

0.6

Hedging Strategy Weights

NN: ES0.01
NN: ES0.05
NN: ES0.10
NN: ES0.50

0 5 10 15 20 25 30
t

3000
3025
3050
3075
3100
3125

S t

Figure 16: Comparisons of expected shortfall strategies with different α-quantiles, see e.g. Equa-
tion (4) over one trajectory of S (red line in sub figure), evolving according to Equation (20)
with discretized variance process V as in Equation (22), where tn = 30 days. Each trajectory of
the deep hedging algorithm is computed as (δw̃ti)i=1,...,n in Equation (56). Note that although
deep hedging strategies have similar weights over time, initial hedging weights differ, since pw̃0 in
Equation (52) differs, due to differences in risk measure, see e.g Table 3.

51

Figure 16 display deep hedging strategies δw̃ when using expected shortfall as risk measure,
see e.g. Equation (4) over a given trajectory of S, evolving according to Heston model dynamics
with parameters from the constrained deep calibration in Equation (51), presented in Section
8.1. As one can see, the expected shortfall strategies are rather similar, especially ES0.05 and
ES0.10. Furthermore, notice that expected shortfall with higher α has higher initial hedging
weight. This is due to the fact that pw̃0 in Equation (52), differ between risk measures as seen
in Table 3. Furthermore one can deduce from Figure 16 that deep hedging strategies evolve
similarly over time, even though ES0.50 seems less numerically stable, which is likely due to
insufficient observations in training dataset, as mentioned earlier in the section.

In Figure 17, we show the performance of the entropic neural network approximation, where
one can see that the strategies seem more volatile than expected shortfall strategies. We cannot
deduce any significant differences that would allow us to systematically discriminate between
risk measures in on a per sample path basis, as the risk aversion parameters, λ in Equation (36)
and α in Equation (38) are not comparable.

0 5 10 15 20 25
0.0

0.2

0.4

0.6

Hedging Strategy Weights

Entropy = 1
Entropy = 10
Delta Hedge

0 5 10 15 20 25 30
t

3000
3025
3050
3075
3100
3125

S t

Figure 17: Comparisons of entropic strategies with different λ-values to benchmark, see e.g.
Equation (55), over one trajectory of S (red line in sub figure), evolving according to Equation
(20) with discretized variance process V as in Equation (22), where tn = 30 days. Each trajectory
of the deep hedging algorithm is computed as (δw̃ti)i=1,...,n in Equation (56) and the benchmark
delta hedging strategy (δti)i=1,...,n is approximated according to Equation (32) for each ti as
a discrete version of Equation (31), the theoretical implications of which has been discussed in
Section 3.5. Note that although deep hedging strategies have similar weights over time, initial
hedging weights differ, since pw̃0 in Equation (52) differs, due to differences in risk measure, see
e.g Table 3.

52

We now proceed by presenting the results of the approximate variance optimal hedge, see
Figure 18. Here one can see that, in general, all hedging strategies are rather similar in terms of
their respective sample paths. However, we detect a pattern across all neural network approxi-
mations that the strategies are more volatile than the delta hedge, we believe that this is likely
due to numerical instability from insufficient sample size for the training of the semi-recurrent
neural network in Equation (56), discussed earlier in the section.

0 5 10 15 20 25
0.1
0.2
0.3
0.4
0.5
0.6

Hedging Strategy Weights

Quadratic
Delta Hedge

0 5 10 15 20 25 30
t

3000
3025
3050
3075
3100
3125

S t

Figure 18: Comparison of quadratic hedging to benchmark delta strategy, see Equation (40),
over one trajectory of S (red line in sub figure), evolving according to Equation (20) with dis-
cretized variance process V as in Equation (22), where tn = 30 days. Each trajectory of the
deep hedging algorithm is computed as (δw̃ti)i=1,...,n in Equation (56) and the benchmark delta
hedging strategy (δti)i=1,...,n is approximated according to Equation (32) for each ti as a discrete
version of Equation (31), the theoretical implications of which has been discussed in Section
3.5. Note that although deep hedging strategies have similar weights over time, initial hedging
weights differ, since pw̃0 in Equation (52) differs, due to differences in risk measure, see e.g Table
3.

In light of these various visualizations, Figures 13 - 18, and statistics in Table 3, we can be-
gin to form some conclusions about the various deep hedging strategy specifications. The most
flexible risk measure, and arguably most intuitive, that we consider is seemingly expected short-
fall, as varying the α-quantile in Equation (4) allows an economic agent to alter risk aversion
based on individual risk preference. However our results suggest that larger α-quantile may more

53

easily exhibit numerical instability. In our view, the intuitive nature of the expected shortfall
risk aversion parameter makes it more easily implemented than the entropic risk measure. The
quadratic criterion performs best in terms of learning the deep hedging price, i.e. pw̃0 is closest to
the risk neutral price in Equation (16) for the quadratic criterion, even though by a slim margin.
However, in terms of profit/loss performance, the simple delta hedging strategy, presented in
Section 3.5, has seemingly superior performance to all deep hedging strategy specifications, see
e.g. Table 3. We believe that this is likely due to us simulating from a Heston model, thereby
out of sample performance on real market data would likely be different.

In Figure 19 we illustrate the impact of proportional transaction costs, as presented in Equa-
tion (54), on the pnl distribution for ESα=0.05, i.e. a non-zero CT (δw̃) in Equation (52) where
we set ε = 0.01.

100 50 0 50 100 150
Profit/Loss

0

1000

2000

3000

4000

5000

6000

7000

Co
un

t

Test Sample Hedging Profit/Loss
ES0.05, = 0.01
ES0.05, = 0.0

Figure 19: Simulated terminal pnl-histograms for deep hedging-expected shortfall strategy (see
e.g. Equation (38)), without transaction costs,(blue) and expected shortfall deep hedging strate-
gies with varying with proportional transaction costs (red) evaluated over 50 000 trajectories
and tn = 30 days. Pnl’s are calculated as in Equation (52) where δ is replaced by δw̃ for deep
hedging strategies, and when transaction costs are included, CT (δw̃) > 0, given by proportional
transaction costs in Equation (54) where ε = 0.01. −Z in Equation (52) is the terminal payoff
when selling a call option, see Equation (16).

54

The deep hedging price of the ES0.05,ε=0.01 strategy, pw̃,ε0 = 52.22 in Equation (52), which
can be contrasted to the risk neutral price of 40.82 and the ES0.05,,ε=0.00 price of 41.06. Hence,
as one might expect, transaction costs will shift the smallest acceptable price higher since there
is a implicit cost associated to trading. Next, Figure 20 shows the impact of transaction costs
on a per trajectory basis.

0 5 10 15 20 25

0.2

0.4

0.6

Hedging Strategy Weights

ES0.05, = 0.01
ES0.05
Delta Hedge

0 5 10 15 20 25 30
t

3000
3025
3050
3075
3100
3125

S t

Figure 20: Comparison of expected shortfall strategy, see e.g. Equation (4), with and without
transaction costs, to benchmark delta strategy over one trajectory of S (red line in sub figure).
S is evolving according to Equation (20) with discretized variance process V as in Equation (22),
and tn = 30 days. Each trajectory of the deep hedging algorithm is computed as (δw̃ti)i=1,...,n

in Equation (56). When transaction costs are included (red line in super figure), ε = 0.01
in Equation (54) representing transaction cost of 1% for each trade (daily rebalancing). The
benchmark delta hedging strategy (δti)i=1,...,n is approximated according to Equation (32) for
each ti as a discrete version of Equation (31), the theoretical implications of which has been
discussed in Section 3.5. The delta hedging strategy ignores transaction costs. Note that although
deep hedging strategies have similar weights over time, initial hedging weights differ, since pw̃0 in
Equation (52) differs, due to CT (δw̃) > 0 in Equation (34).

55

9 Conclusions & Suggestions for Future Research

Complex stochastic models introduce the need for model independent numerical methods for
calibration and hedging. In this thesis we have investigated the application of artificial neural
networks for calibration and hedging of stochastic volatility. The purpose of this thesis, was
to combine the method of Horvath et al. (2019) with the deep hedging algorithm, introduced
by Buehler et al. (2019) such that one can hedge and calibrate a stochastic model using both
methods, which has been successfully implemented. Interestingly, both of these methods are
generalizable to all types of stochastic models in need for hedging and calibration. Thus, the
need for model specific methodology can be, largely, averted since one can approximate, both
the pricing map of the model and the hedging formula with artificial neural networks. How-
ever, our current formulation of the hedging method relies on the ability to simulate from the
calibrated stochastic volatility model, which introduce some necessary considerations. First of
all, one must consider some form of accurate discretization in order to sample correctly from
the spot process with sufficient speed for training to be practical. Secondly, the formulation of
the hedging method is dependent on which sources of risk is described by the stochastic model
and will thus affect which financial instruments are utilized for hedging. For example, if one
were to seek to completely hedge all risk in a stochastic volatility model, then one would have
to introduce a hedge of W (V) as well as a hedge of W (S), see e.g. Equation (13) and (14). As
such, our formulation of the hedging method still has some important model dependencies. One
potentially interesting subject for research could be utilizing the approximating capabilities of
neural networks to train a simulation scheme which samples from a discretized version of S.
Here one could potentially train a neural network to sample at all given time-points in a interval
simultaneously by for example using model parameters as input data and the exact simulation
algorithm of Broadie & Kaya (2006) in the output layer.

The applicability of deep calibration and hedging is very general, as pointed out by Horvath
et al. (2019), since the training step of both can be conducted offline and thus the prediction
of stochastic model parameters and hedging strategy is fast. Furthermore, we show that both
methods approximate the pricing function and optimal hedging strategies respectively. One pos-
sible area of future research that could be interesting is the eventual regulatory implication of
applying numerically optimal hedging approximations in terms of capital requirements. Even
though this research would not be strictly statistical, it would almost surely effect the spread
and speed of the adaptation for the hedging methodology, since it would provide a clear path to
implementation from a operations perspective.

However, there exist a problem with the current formulation of the hedging methodology that
might impair the practical applicability of the joint algorithm. Namely the fact that the hedging
model is not well equipped to handle fundamental regime switches for the underlying market,
as it has to be retrained in order to handle these. This could be solved if a regime switching
model was calibrated in the first place, however this implies that switching probabilities and
circumstances are constant. Hence, if one would consider fitting the neural network hedging
strategy, only using real empirical data, then the network would have to be retrained, which is a
slow procedure and thus not realistic. Furthermore, only considering empirical data for training
would produce severe distortions of the neural network hedge since the output is very sensitive to
the quality of the data. Therefore, the method is not very suitable to sparse data sets, especially
if the feature set is very large. These problems indicates that there is quite a lot of problems that
need to be addressed in order for the method to be applied to OTC derivatives, where relevant
data is naturally much more sparse.

56

One interesting possible solution to OTC derivatives is the recent research into market gen-
erators, see e.g. Wiese et al. (2019), Wiese et al. (2020) or Kidger et al. (2020), which introduces
a non-parametric way of learning financial time-series in a completely data driven way. These
methods may prove to be able to circumvent the need for parametric stochastic models, such as
the Heston model, in the deep hedging algorithm to simulate financial time-series. This is, in
our view, of immense importance for the general quantitative finance community. Since it may
be able to let the finance industry move away from the classical Markovian models. However, to
our knowledge, there are still many important topics of research such as ensuring no-arbitrage
condition holds etc.

Furthermore, although the aggregate difference of hedging PnLs between risk measures are quite
large, individual differences on a per trajectory basis is quite small. However, for our example,
none of the hedging strategies seem to outperform the simple delta hedging strategy which we
believe is due to the fact that we are simulating from a Heston model, nonetheless, they are more
practical since they allow for the inclusion of market frictions such as transaction costs.

57

A Differential Evolution

Differential evolution (DE) is, as the name suggests, a evolutionary algorithm, inspired by natural
evolution of species, that can solve numerical optimization problems in a wide variety of fields.
In the case of our problem, the DE algorithm aims at evolving a population of NP 4-dimensional
parameter vectors, usually called individuals, which denotes the set of candidate solutions. Let
θi,G =

{
κi, θ

H
i , σi, ρi

}
, i = 1, . . . NP where G denotes the number of generations .The initial

guess of the population covers the entire space by uniformly randomly selecting individuals
within the search space, constrained by the parameter bounds, see Table 2. Then, the algorithm
employs a mutation operation, generated by some mutation strategy, and produce a mutant

vector, Vi,G =
{
νκi,G, ν

θH

i,G, ν
σ
i,G, ν

ρ
i,G

}
for each individual θi,G, which is called the target vector.

After the mutation, a crossover operation is performed, where a trial vector Ui,G is produced,
where each element is selected from either the mutation or the target vector based on a pre
specified crossover probability. The elements in the trial vector are then passed through a loss
function, which in our case is the squared distance function in Equation (49), where the loss
is evaluated and mutations accepted if the loss becomes smaller. This procedure is repeated
until some stopping criterion on the loss function is satisfied. If the calibration problem in
Equation (49) is convergent, then the optimal parameter vector, θ̂ is found. For a more complete
description of the algorithm, see e.g. Qin et al. (2009). Some advantages of the DE-algorithm
is it does not require any significant assumptions of the optimization problem and it can search
large spaces for solutions. However, the algorithm does not guarantee global optima.

58

References

Acerbi, C. & Tasche, D. (2002), ‘On the coherence of expected shortfall’, Journal of Banking
Finance 26, 1487–1503.

Andersen, L. B. G. (2007), ‘Efficient simulation of the heston stochastic volatility model’.

Andersen, L. B. G. & Brotherton-Ratcliffe, R. (2005), ‘Extended libor market models with
stochastic volatility’, Journal of Computational Finance 9.

Björk, T. (2009), Arbitrage Theory in Continuous Time, third edn, Oxford University Press.

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’, Journal of
political economy 81, 637–654.

Bottou, L. (2012), Stochastic gradient tricks, in G. Montavon, G. B. Orr & K.-R. Müller, eds,
‘Neural Networks, Tricks of the Trade, Reloaded’, Lecture Notes in Computer Science (LNCS
7700), Springer, pp. 430–445.

Broadie, M. & Kaya, Ö. (2006), ‘Exact simulation of stochastic volatility and other affine jump
diffusion processes’, Operations research 54, 217–231.

Buehler, H., Ganon, L., Teichmann, J. & Wood, B. (2019), ‘Deep hedging’, Quantitative Finance
19, 1271–1291.

Bégin, J.-F., Bédard, M. & Gaillardetz, P. (2015), ‘Simulating from the heston model: A gamma
approximation scheme’, Monte Carlo Methods and Applications 21, 205–231.

Clark, I. J. (2011), Foreign Exchange Option Pricing: A Practitioner’s Guide, Wiley Finance,
John Wiley & Sons, Inc.

Cont, R. & Fonseca, J. D. (2001), ‘Dynamics of implied volatility surfaces’, Quantitative finance
2, 45–60.

Cox, J. C., Ingersoll, J. E. & Ross, S. A. (1985), ‘A theory of the term structure of interest rates’,
Econometrica: Journal of the Econometric Society pp. 385–407.

Crisóstomo, R. (2014), ‘An analysis of the heston stochastic volatility model: Implementation
and calibration using matlab’, Documentos de trabajo (CNMV) pp. 1–46.

Cui, Y., del Baño Rollin, S. & Germano, G. (2017), ‘Full and fast calibration of the heston
stochastic volatility model’, European Journal of Operational Research 263(2), 625–638.

Fama, E. F. (1970), ‘Efficient capital markets: A review of theory and empirical work’, The
Journal of Finance 25, 383–417.

Föllmer, H. & Leukert, P. (2000), ‘Efficient hedging: Cost versus shortfall risk’, Finance and
Stochastics 4, 117–146.

Föllmer, H. & Schied, A. (2008), ‘Convex and coherent risk measures’, Encyclopedia of Quanti-
tative Finance pp. 355–363.

Föllmer, H. & Schweizer, M. (1990), ‘Hedging of contingent claims’, Applied stochastic analysis
5, 389–415.

Gatheral, J. (2015), The Heston Model, John Wiley Sons, Ltd, chapter 2, pp. 15–24.

59

Gil-Pelaez, J. (1951), ‘Note on the inversion theorem’, Biometrika 38(3-4), 481–482.

Hernández, A. (2016), ‘Model calibration with neural networks’.

Heston, S. L. (1993), ‘A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options’, The Review of Financial Studies 6, 327–343.

Hornik, K. (1991), ‘Approximation capabilities of multilayered feedforward networks’, Neural
Networks 4, 251–257.

Horvath, B., Muguruza, A. & Tomas, M. (2019), ‘Deep learning volatility’.

Kidger, P., Morrill, J., Foster, J. & Lyons, T. (2020), ‘Neural controlled differential equations for
irregular time series’, arXiv preprint arXiv:2005.08926 .

Kingma, D. P. & Ba, J. (2014), ‘Adam: A method for stochastic optimization’, Computing
Research Repository abs/1412.6980.

McCulloch, W. S. & Pitts, W. H. (1943), ‘A logical calculus of the ideas immanent in nervous
activity’, Bulletin of Mathematical Biophysic 5, 115–133.

Mrázek, M. & Posṕısil, J. (2017), ‘Calibration and simulation of heston model’, Open Mathe-
matics 15, 679–704.

Murphy, K. P. (2012), Machine Learning: A Probabilistic Perspective, MIT Press.

Nielsen, M. A. (2015), Neural Networks and Deep Learning, Determination Press.

Pan, J. (2001), ‘The jump-risk premia implicit in options: Evidence from an integrated time-
series study’, Journal of Financial Economics 63, 3–50.

Protter, P. E. (2005), Stochastic differential equations, Springer, Berlin, Heidelberg, pp. 249–361.

Qin, A. K., Huang, V. L. & Suganthan, P. N. (2009), ‘Differential evolution algorithm with
strategy adaptation for global numerical optimization’, IEEE Transactions on Evolutionary
Computation 13, 398–417.

Ribeiro, A. & Poulsen, R. (2013), ‘Approximation behoves calibration’, Quantitative Finance
Letters 1(1), 36–40.

Rosenblatt, F. (1958), ‘The perceptron: A probabilistic model for information storage and orga-
nization in the brain’, Psychological Review 65(6), 386–408.

Rouah, F. D. (2013), The Heston Model and Its Extensions in Matlab and C, Wiley Finance,
John Wiley & Sons, Inc.

Ruder, S. (2016), ‘An overview of gradient descent optimization algorithms’, arXiv preprint
arXiv:1609.04747 .

Schweizer, M. (1995), ‘Variance-optimal hedging in discrete time’, Mathematics of Operations
Research 20, 1–32.

Stefanica, D. & Radoicic, R. (2017), ‘An explicit implied volatility formula’, International Journal
of Theoretical Applied Finance 20.

Teichmann, J. (2019), ‘Machine learning in finance’.
URL: https://people.math.ethz.ch/ jteichma/index.php?content=teach mlf2019

60

Wiese, M., Bai, L., Wood, B. & Buehler, H. (2019), ‘Deep hedging: learning to simulate equity
option markets’, Available at SSRN 3470756 .

Wiese, M., Knobloch, R., Korn, R. & Kretschmer, P. (2020), ‘Quant gans: deep generation of
financial time series’, Quantitative Finance pp. 1–22.

61

	Introduction
	Background to Financial Derivatives
	Theoretical Perspective on Pricing, Hedging & Probabilistic Modelling
	The Black-Scholes Model
	Stochastic and Implied Volatility
	The Heston Model
	Classical Parameter Calibration
	Continuous time Martingale Pricing & Dynamic Replication

	Optimal Hedging in Discrete Time using Convex Risk Measures & the Quadratic Criterion
	Theoretical Background to Neural Networks
	Background
	Neurons
	Learning
	Gradient Descent
	Backpropagation

	Deep Calibration
	Deep Hedging
	Market Setting & Objective
	Approximation of Optimal Hedging Strategies by Neural Networks

	Implementation & Numerical Results
	Calibration Method
	Hedging Method

	Conclusions & Suggestions for Future Research
	Appendix Differential Evolution

