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Abstract

Recent research by Burlig et al. (2020) has produced a useful formula for performing difference-

in-differences power calculation in the presence of serially correlated errors. A similar formula

for the ANCOVA estimator is shown by the authors to yield incorrect power in real data

where time shocks are present. This note demonstrates that the serial-correlation-robust

ANCOVA formula is in fact correct under time shocks as well. The reason that errors arise

in Burlig et al. (2020) is because time shocks remain unaccounted for in the intermediate step

where residual-based variance parameters are estimated from pre-existing data. When that

procedure is adjusted accordingly, the serial-correlation-robust ANCOVA formula of Burlig

et al. (2020) can be accurately used for power calculation.

Keywords: power calculation, randomized experiments, experimental design, panel data,

ANCOVA

JEL classification: C93, C23

In a recent paper, Burlig et al. (2020) derive a set of variance formulas for ex-ante power

calculation in panel data with serially correlated errors. Accounting for serial correlation is

important, since it is likely to occur in many real-world settings, e.g. whenever outcomes that

occur close in time are more highly correlated than more distant ones. For the difference-

in-differences estimator, the authors show that earlier power formulas that fail to account

for serial correlation yield incorrect power. By contrast, their novel serial-correlation-robust

power formula accurately predicts statistical power in simulated as well as actual data. These

methods and results are likely to prove highly useful to any researcher planning experiments

with multiple measurements.

The authors focus on difference-in-differences rather than the analysis-of-covariance (AN-

COVA) estimator. They do note that the latter estimator is more efficient than the former,
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and thus may be preferable in randomized settings where time fixed effects are not needed for

identification. However, when time shocks are present in the data generating process (DGP),

deriving the ANCOVA regression variance for any panel length requires the analyst to e.g.

invert matrices of arbitrary dimension. Noting such difficulties, Burlig et al. (2020) instead

consider a DGP without time shocks and derive the corresponding small-sample ANCOVA

variance formula

Var (τ̂ |X) =

(
1

P (1− P )J
+

(
Ȳ B
T − Ȳ B

C

)2
Z

)

×
(

(1− θ)2 σ2
v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

)
(1)

given as equation A61 in Burlig et al. (2020) and approximated in large samples by equation

10 of the same paper. This formula is shown to be accurate for simulated panel data, again

without time shocks; however, when the authors use it to calibrate a minimum detectable

effect (MDE) on real-world data, it fails to produce nominal power. Burlig et al. (2020)

attribute this outcome to the likely presence of time shocks in actual data and caution

against using ANCOVA power calculation formulas in practice.

The purpose of this note is to demonstrate, first, that ANCOVA power formula (1) is in

fact correct even in the presence of time shocks; or equivalently, that such effects do not affect

ANCOVA precision. This result is intuitive, since ANCOVA is a convex combination of an ex-

post means comparison and difference-in-differences, both of which involve comparing means

across treatment arms affected identically by the time shocks. Second, I show that with only

a few minor adjustments to the procedures introduced by Burlig et al. (2020), formula (1)

can be used to accurately perform power calculations for ANCOVA in the presence of both

serial correlation and time shocks. These findings should prove useful, given that ANCOVA

is arguably the estimator of choice in panel experimental settings (McKenzie, 2012).

As a first indication that time shocks do not impact ANCOVA precision, consider Figure

1. It is a variation of Figure 4 in Burlig et al. (2020), where the authors check whether

formula (1) accurately predicts power in simulated data. The DGP underlying the original

figure includes only a single intercept rather than a set of time shocks δt (i.e., σ2
δ = 0),

and is thus consistent with the analytical model of the authors. By contrast, Figure 1 adds

normally distributed time shocks with σ2
δ = 10 and also estimates time fixed effects in each

ex-post ANCOVA regression. I retain all other assumptions, steps, and parameter values

underlying the original figure (as described in Appendix B.1 of Burlig et al., 2020). Despite
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Figure 1: The power of regression ANCOVA is not affected by the presence of time shocks

.2
.4

.6
.8

1
Po

w
er

0 2 4 6 8 10

Pre/post periods

McKenzie

.2
.4

.6
.8

1
Po

w
er

0 2 4 6 8 10

Pre/post periods

Serial-Correlation-Robust

0 0.3 0.5 0.7 0.9
AR(1) γ

Note: The figure depicts rejection rates for the regression ANCOVA estimator when time shocks are present
in the data. As in Figure 4 of Burlig et al. (2020), both panels cluster standard errors by unit ex post and are
based on 10,000 draws from a population where idiosyncratic error term ωit follows an AR(1) process with
autoregressive parameter γ. In the left panel, the size of the MDEs are calibrated ex ante using the McKenzie
(2012) power formula. The right panel instead instead uses the Burlig et al. (2020) serial-correlation-robust
ANCOVA power formula (1). The DGP and all associated parameter values are as in Figure 4 and Appendix
B.1 of Burlig et al. (2020), with the single exception that normally distributed time shocks with µδ = 20,
σ2
δ = 10 are included. Despite this, the SCR ANCOVA formula yields appropriate rejection rates.

the addition of time shocks in Figure 1, rejection rates are clearly practically identical to

the original figure. In particular, rejection rates corresponding to serial-correlation-robust

formula (1) yield nominal power. Using other values of σ2
δ (including very large ones, such

as σ2
δ = 1000) does not alter these results.

In Appendix A of this note, I present analytical proofs mirroring these findings. Specifi-

cally: consider the DGP

Yit = δt + τDit + vi + ωit (2)

with time shocks δt, distributed i.i.d. N (µδ, σ
2
δ ); treatment indicator Dit; unit intercept

vi; and serially correlated idiosyncratic error ωit. For this model, I am able to show that

ANCOVA variance is exactly equal to formula (1).1 In fact, equation (1) applies both when

1Equation (2) admittedly differs slightly from the model stated as Assumption 1 in Burlig et al. (2020),
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time fixed effects are included in the ANCOVA regression (see Appendix A.1 of this note)

and when they are not (Appendix A.2), with the added implication that including such terms

in an ANCOVA regression does not improve precision.2

While somewhat technical, the proof has an overall structure highly similar to that of

Burlig et al. (2020). As in their analysis without time shocks, calculating the variance of the

ANCOVA estimator involves evaluating the expression

Var(τ̂ |X) =
PJ∑
i=1

PJ∑
j=1

(
MT

ij

r∑
t=1

r∑
s=1

E[εitεjs|X]

)
+

PJ∑
i=1

J∑
j=PJ+1

(
MX

ij

r∑
t=1

r∑
s=1

E[εitεjs|X]

)

+
J∑

i=PJ+1

J∑
j=PJ+1

(
MC

ij

r∑
t=1

r∑
s=1

E[εitεjs|X]

)

which derives from a standard coefficient-variance sandwich formula. Here, J is the number

of units in the experiment, P proportion of which are treated; r is the number of post-

experimental periods in the data; factors MT
ij ,M

X
ij ,M

C
ij are all specific to each i and j; X is

the ANCOVA regressor matrix; and εit is the regression residual for unit i and period t.

The main difficulty in evaluating this expression concerns conditional means E[εitεjs|X].

In Burlig et al. (2020), conditioning on X amounts to conditioning only on the baseline aver-

ages of i and j, included as controls in the ANCOVA regression. No other baseline averages

need be considered, because they are uninformative regarding εitεjs, being composed of av-

erage unit fixed effects and idiosyncratic errors that are assumed independent across units.

The authors then show that, under such conditions,
∑r

t=1

∑r
s=1 E[εitεjs|X] = 0 whenever

i 6= j; hence, the variance of ANCOVA is composed solely of those terms where i = j.

By contrast, when time shocks are included in the DGP, not only must shocks t and

s be added as conditioning variables in E[εitεjs|X] = 0, but so must the baseline averages

of all other units in the experiment. The reason is that each conditioning baseline average

now provides additional information about the average pre-treatment time shocks; and those

pre-treatment shocks are themselves included in both residuals.

I then show that, as a result, we no longer have
∑r

t=1

∑r
s=1 E[εitεjs|X] = 0 when i 6= j.

Instead,
∑r

t=1

∑r
s=1 E[εitεjs|X] takes one value when i 6= j, and takes the same value plus

a difference term whenever i = j. Both expressions are otherwise invariant across i, j. The

since that DGP includes both time shocks and a constant term β. However, the discrepancy is innocuous,
since it can be reconciled simply by viewing each time shock in (2) as δt = β + δ′t, with δ′t having mean zero
and variance σ2

δ .
2Running the ex-post regressions underlying Figure 1 without time FE confirms this point.
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i 6= j value reflects variation associated with the time shocks; since it is summed across both

i = j and i 6= j, it will be multiplied by

PJ∑
i=1

PJ∑
j=1

MT
ij +

PJ∑
i=1

J∑
j=PJ+1

MX
ij +

J∑
i=PJ+1

J∑
j=PJ+1

MC
ij

which can be shown to equal zero. Thus, only the difference term remains, and that turns

out to be exactly equal to the quantity summed across i = j in Burlig et al. (2020). It follows

that ANCOVA variance is again (1), concluding the proof.

An obvious question remains: if the ANCOVA variance formula derived by Burlig et al.

(2020) is correct after all, what might account for the inaccurate rejection rates they obtain

using real data? The answer is the following.

With real data, the parameters of the DGP are unknown, and Burlig et al. (2020) con-

struct a useful procedure for calculating MDEs by first estimating a set of residual-based

variance parameters. In a reasonable attempt to remain consistent with their assumed time-

shock free DGP, they ignore the possibility of time shocks throughout this step as well.

Unfortunately however, when time shocks are ignored in estimation, the variation that these

cause in the data — which, as noted, does not affect ANCOVA precision — will instead be

attributed to idiosyncratic factors that do impact power. As a result, the ANCOVA variance

calculated from residual-based parameter estimates will be biased upward; and the implied

MDE, as well as rejection rates, will likewise be too large. Fortunately, the problem has

a simple solution: one simply takes the presence of time shocks into account during the

estimation step as well. Indeed, Burlig et al. (2020) already do so when considering the

difference-in-difference estimator.

In Figure 2, I compare the two approaches for simulated data. The figure is based on the

same model and parameters as Figure 1; but instead of computing an MDE directly from

the parameters of the DGP, I use a set of residual-based parameters estimated from each

simulated data set. In panel (a), I follow exactly the procedure described for ANCOVA in

Appendix E.3 of Burlig et al. (2020);3 as expected, this procedure ignores the presence of

time shocks and consequently yields excessively high rejection rates. In panel (b), I modify

3For each simulated data set, I estimate σ̃2
v̂,S , σ̃2

ω̂,S , ψ̃Aω̂,S , and ψ̃Bω̂,S only once, with estimation range S

and sample size I given by all periods and all units in the data, respectively. σ̃2
v̂,S is estimated as the sample

variance of the fitted unit fixed effects, v̂i. To obtain unbiased estimates of the residual-based parameters, I
then deflate σ̃2

ω̂,S by IT−1
IT (T being the panel length) and σ̃2

v̂,S by I−1
I but leave the ψ̃ estimates unadjusted,

in accordance with the discussion of e.g. E[ψ̃Bω̂ ] in Appendix E.3 of Burlig et al. (2020).
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Figure 2: Accounting for time shocks when estimating residual-based parameters:
simulated data
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Note: The figure depicts rejection rates for the regression ANCOVA estimator when time shocks are present
in the data. Both panels are based on 10,000 draws from a population where idiosyncratic error term ωit
follows an AR(1) process with autoregressive parameter γ. The DGP and all associated parameter values
are as in Figure 1. Both panels calibrate an MDE appropriate for serial-correlation-robust power calculation
using estimates of residual-based parameters. In the left-hand panel, this procedure is based on a regression
of Yit on unit fixed effects only, in accordance with the approach described in Appendix E.3 of Burlig
et al. (2020). In the right-hand panel, the regression is on both time and unit FE; minor adjustments are
also made to the MDE calculation, as described in Appendix B of this note. These adjustments result in
appropriate rejection rates. Both panels estimate ANCOVA ex post, clustering standard errors by unit;
however, ANCOVA regressions include time FE only in the right-hand panel.

the procedure to correctly take time shocks into account (details are given in Appendix B of

this note); when this is done, nominal power is attained.

Then, in Figure 3, I repeat the exercise for real data, specifically the Bloom et al. (2015)

data set used for Figure 7 of Burlig et al. (2020). When not accounting for time shocks

(dashed lines), I am able to closely replicate the original figure. When instead I account for

time shocks in the proper way (solid lines), appropriate rejection rates are again achieved.

This demonstrates the feasibility, adding only minor modifications, of using the Burlig et al.

(2020) approach to perform an accurate ANCOVA power calculation robust to time shocks as

well as serial correlation. It seems likely that the Stata packages introduced by the authors

could be similarly modified, usefully expanding the power-calculation toolkit available to

experimenters even further.
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Figure 3: Accounting for time shocks when estimating residual-based parameters: real
data
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Note: Each panel simulates experiments with a certain number of pre-treatment periods m ∈ {1, 5, 10}.
Horizontal axes vary the number of post-treatment periods (1 ≤ r ≤ 10). In each panel, both lines calibrate
an MDE using the SCR ANCOVA formula in combination with estimates of residual-based parameters from
the Bloom et al. (2015) data set. Lines labeled ‘Unadjusted for time shocks’ replicate the original Burlig et al.
(2020) approach where time shocks are ignored in the parameter-estimation step. Lines labeled ‘Adjusted
for time shocks’ follow the procedure outlined in Appendix B of this note. Both cases estimate ANCOVA ex
post, clustering standard errors by unit; however, only the ‘Adjusted for time shocks’ lines include time FE
in the ANCOVA regression.
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Online Appendices for article “ANCOVA power

calculation under serial correlation and time shocks: A

comment on Burlig et al. (2020)”

Appendix A. Analysis of covariance (ANCOVA) variance formu-

las

This appendix derives the variance of the ANCOVA treatment estimator under the as-

sumption that time shocks are present in the data generating process and possibly in the

ANCOVA regression equation as well. All model assumptions in Burlig et al. (2020) are

retained as well as repeated below for convenience, with the exception of the part of As-

sumption 1 related to time shocks, which has been updated accordingly.

There are J experimental units, P proportion of which are randomized into treatment.

The researcher collects outcome data Yit for each unit i, across m pre-treatment time periods

and r post-treatment time periods. For treated units, Dit = 0 in pre-treatment periods and

Dit = 1 in post-treatment periods; for control units, Dit = 0 in all periods.

Assumption 1 (Data generating process). The data are generated according to the fol-

lowing model:

Yit = δt + τDit + vi + ωit (A.1)

where Yit is the outcome of interest for unit i at time t; τ is the treatment effect that is

homogenous across all units and all time periods; Dit is a time-varying treatment indicator;

vi is a time-invariant unit effect distributed i.i.d. N (0, σ2
v); ωit is an idiosyncratic error term

distributed (not necessarily i.i.d.) N (0, σ2
ω). Finally, in the first departure from the Burlig

et al. (2020) model, δt is a time shock specific to time t that is homogenous across all units

and distributed i.i.d. N (µδ, σ
2
δ ).

Assumption 2 (Strict exogeneity). E[ωit|Xr] = 0, where Xr is a full rank matrix of regres-

sors, including a constant, the treatment indicator D, and J − 1 unit dummies. This follows

from random assignment of Dit.

Assumption 3. (Balanced panel). The number of pre-treatment observations, m, and

post-treatment observations, r, is the same for each unit, and all units are observed in every
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time period.

Assumption 4 (Independence across units). E[ωitωjs|Xr] = 0,∀i 6= j,∀t, s.

Assumption 5 (Uniform covariance structures). Define:

ψBi ≡
2

m (m− 1)

−1∑
t=−m+1

0∑
s=t+1

Cov(ωit, ωis|Xr)

ψAi ≡
2

r (r − 1)

r−1∑
t=1

r∑
s=t+1

Cov(ωit, ωis|Xr)

ψXi ≡
1

mr

0∑
t=−m+1

r∑
s=1

Cov(ωit, ωis|Xr)

to be the average pre-treatment, post-treatment, and across-period covariance between dif-

ferent error terms of unit i, respectively. Using these definitions, assume that ψB = ψBi ,

ψA = ψAi , and ψX = ψXi ∀i.
We will derive the variance of the ANCOVA treatment-effect estimator, first, when time

shocks are included in the regression equation to be estimated; and second, when they are

not. In both cases, the result will be equal to the variance calculated as equation A61 in

Burlig et al. (2020).

A.1 Time shocks included in ANCOVA regression

Consider the following updated ANCOVA regression model:

Yit = αt + τDi + θȲ B
i + εit (A.2)

where Yit, τ , and Di are defined as above; also,

θ =
m
(
σ2
v + ψX

)
mσ2

v + σ2
ω + (m− 1)ψB

while Ȳit = (1/m)
∑0

t=−m+1 Yit is the pre-period average of the outcome variable for unit

i, and εit is the regression residual error term. Finally, in the second departure from the

original derivation, αt is one of r time fixed effects replacing the constant term in Burlig

et al. (2020). As is usual for ANCOVA regressions, equation (A.2) is estimated only on

post-treatment observations, allowing the t subscript of Dit to be dropped.
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Our goal is now to derive the variance of the τ̂ coefficient estimate implied by the com-

bination of DGP (A.1) and the above regression. Denoting the regressor matrix of (A.2) by

X and the set of regression coefficients as β̂, the coefficient covariance matrix is given by the

sandwich formula

Var(β̂|X) = (X′X)
−1

X′E[εε′|X]X (X′X)
−1

(A.3)

where, since β̂ contains r time fixed effects, Var(τ̂ |X) forms element (r + 1, r + 1).

As a first step in calculating this quantity, matrix multiplication yields

X′E[εε′|X]X =



J∑
i=1

J∑
j=1

E[εi1εj1|X] · · ·
J∑
i=1

J∑
j=1

E[εi1εjr|X]

...
. . .

...
J∑
i=1

J∑
j=1

E[εirεj1|X] · · ·
J∑
i=1

J∑
j=1

E[εirεjr|X]

PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεj1|X] · · ·
PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεjr|X]

J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεj1|X] · · ·

J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεjr|X]

PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεj1|X]
J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεj1|X]

...
...

PJ∑
i=1

J∑
j=1

r∑
t=1

E[εitεjr|X]
J∑
i=1

J∑
j=1

r∑
t=1

Ȳ B
i E[εitεjr|X]

PJ∑
i=1

PJ∑
j=1

r∑
t=1

r∑
s=1

E[εitεjs|X]
PJ∑
i=1

J∑
j=1

r∑
t=1

r∑
s=1

Ȳ B
j E[εitεjs|X]

PJ∑
i=1

J∑
j=1

r∑
t=1

r∑
s=1

Ȳ B
j E[εitεjs|X]

J∑
i=1

J∑
j=1

r∑
t=1

r∑
s=1

Ȳ B
i Ȳ

B
j E[εitεjs|X]


(A.4)

Next, consider inverting (1/J)X′X, which is the following square matrix of dimension

r + 2:

1

J
X′X =



1 · · · 0 P Ȳ B

...
. . .

...
...

...

0 · · · 1 P Ȳ B

P · · · P rP rP Ȳ B
T

Ȳ B · · · Ȳ B rP Ȳ B
T

r
J

J∑
j=1

(
Ȳ B
i

)2
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where, due to the inclusion of time fixed effects in the regression, the first r rows and columns

of the matrix form a nested identity matrix; note that

Ȳ B =
1

mJ

J∑
i=1

0∑
t=−m+1

Yit

Ȳ B
T =

1

mPJ

PJ∑
i=1

0∑
t=−m+1

Yit

J∑
i=1

(
Ȳ B
i

)2
=

J∑
i=1

(
1

m

0∑
t=−m+1

Yit

)2

= Z + PJ
(
Ȳ B
T

)2
+ (1− P ) J

(
Ȳ B
C

)2
where Z =

∑PJ
k=1

(
Ȳ B
k − Ȳ B

T

)2
+
∑J

k=PJ+1

(
Ȳ B
k − Ȳ B

C

)2
.

The following lemmas will prove useful for inverting (1/J)X′X.

Lemma 1. Any matrix of the form

Y =


1 · · · 0 x1
...

. . .
...

...

0
... 1 x1

x2 · · · x2 x3


with nested identity matrix of dimension r, has |Y| = x3 − rx1x2.

Proof. The argument is recursive: assuming the lemma holds when the nested identity matrix

has dimension r − 1, cofactor expansion along the first row of Y yields

|Y| = x3 − (r − 1)x1x2 + (−1)rx1
(
(−1)r−1x2|Ir−1|

)
= x3 − rx1x2

where the second term relies on expansion of the (1, r + 1) cofactor along the first column

of the corresponding submatrix; Ir−1 is an (r − 1)-dimensional identity matrix. Finally, if

r = 1, clearly |Y| = x3 − x1x2.
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Lemma 2. Any matrix of the form

Y =



0 1 · · · 0 x1
...

...
. . .

...
...

0 0
... 1 x1

x2 x2 · · · x2 x3

x4 x4 · · · x4 x5


with nested identity matrix of dimension r, has |Y| = (−1)r (x2x5 − x3x4).

Proof. By Lemma 1, cofactor expansion along the first column yields

|Y| = (−1)rx2 (x5 − rx1x4) + (−1)r+1x4 (x3 − rx1x2) = (−1)r (x2x5 − x3x4)

Lemma 3. Any matrix of the form

Y =



0 0 · · · 0 x1 x2

0 1 · · · 0 x1 x2
...

...
. . .

...
...

...

0 0
... 1 x1 x2

x3 x3 · · · x3 x4 x5

x6 x6 · · · x6 x7 x8


with nested identity matrix of dimension r, has |Y| = x2 (x3x7 − x4x6)− x1 (x3x8 − x5x6).

Proof. By Lemma 2, cofactor expansion along the first row yields

|Y| = (−1)r+1x1 [(−1)r (x3x8 − x5x6)] + (−1)r+2x2 [(−1)r (x3x7 − x4x6)]

= x2 (x3x7 − x4x6)− x1 (x3x8 − x5x6)
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Lemma 4. Any matrix of the form

Y =



1 · · · 0 x1 x2
...

. . .
...

...
...

0
... 1 x1 x2

x3 · · · x3 x4 x5

x6 · · · x6 x7 x8


with nested identity matrix of dimension r, has |Y| = x4x8 − x5x7 − rx1 (x3x8 − x5x6) +

rx2 (x3x7 − x4x6).

Proof. Assuming the result holds when the nested identity matrix has dimension r − 1,

Lemma 2 implies that cofactor expansion along the first row of Y yields

|Y| = x4x8 − x5x7 − (r − 1)x1 (x3x8 − x5x6) + (r − 1)x2 (x3x7 − x4x6)

+ (−1)rx1
[
(−1)r−1 (x3x8 − x5x6)

]
+ (−1)r+1x2

[
(−1)r−1 (x3x7 − x4x6)

]
= x4x8 − x5x7 − rx1 (x3x8 − x5x6) + rx2 (x3x7 − x4x6)

Finally, for r = 1, |Y| = x4x8 − x5x7 − x1 (x3x8 − x5x6) + x2 (x3x7 − x4x6).

We may now proceed to invert (1/J)X′X. By Lemma 4, |(1/J)X′X| = (r2P (1−P )Z)/J

and diagonal cofactors C11 = C22 = ... = Crr = rP
(

(1/J)rZ + (1− P )
(
Ȳ B
C

)2)
. Lemma 1

implies C(r+1)(r+1) = r
(
Z/J + P (1− P )

(
Ȳ B
T − Ȳ B

C

)2)
and well as C(r+2)(r+2) = rP (1− P ).

Next, Lemma 3 implies C12 = rP
(

(1/J)PZ + (1− P )
(
Ȳ B
C

)2)
. We claim that all other

cofactors Cij with i ≤ r, j ≤ r, and i 6= j will also be equal to this value. Consider such a

cofactor Cij 6= C12, with i < j, and suppose the claim applies for some C(i−1)j with i < j, or

some Ci(j−1) with i < j; at least one of these cofactors must exist. Now, the (r+ 1)× (r+ 1)

submatrix with determinant Cij will have the first r− 1 elements of column i, as well as the

first r−1 elements of row j−1, equal to zero. Moreover, the remainder of the first r−1 rows

and columns of the submatrix form an (r − 2)-dimensional identity matrix into which the

zeroes of column j− 1 and row i have effectively been inserted. It follows that interchanging

a single column (row) of the submatrix of C(i−1)j (Ci(j−1)) again yields the submatrix of Cij.

Since (−1)i−1+j = −(−1)i+j, we will have C(i−1)j = Cij, with an analogous statement for

Ci(j−1). For cofactors with i > j, the claim follows by the symmetry of (1/J)X′X.

Lemma 2 implies C1(r+1) = rP
(
−Z/J + (1− P )Ȳ B

C

(
Ȳ B
T − Ȳ B

C

))
. Similarly to above, the

submatrix of any Ci(r+1) with i ≤ r inserts a vector, the first r−1 elements of which are equal
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to zero, into column i; the first r columns and r− 1 rows are otherwise given by an (r− 1)-

dimensional identity matrix. Thus, an analogous argument to that made above implies that

Ci(r+1) = C1(r+1) = C(r+1)i for all i ≤ r. Lemma 2 also implies C1(r+2) = −rP (1 − P )Ȳ B
C ,

with all Ci(r+2) and C(r+2)i where i ≤ r similarly equal to this quantity. Finally, by Lemma

1, C(r+1)(r+2) = C(r+2)(r+1) = −rP (1− P )
(
Ȳ B
T − Ȳ B

C

)
.

In summary, since (X′X)−1 = 1
J

(
1
J
X′X

)−1
, we have

(X′X)
−1

=
1

r(1− P )Z
×



rZ
J

+ (1− P
(
Ȳ B
C

)2 · · · PZ
J

+ (1− P )
(
Ȳ B
C

)2
...

. . .
...

PZ
J

+ (1− P )
(
Ȳ B
C

)2 · · · rZ
J

+ (1− P )
(
Ȳ B
C

)2
−Z
J

+ (1− P )Ȳ B
C

(
Ȳ B
T − Ȳ B

C

)
· · · −Z

J
+ (1− P )Ȳ B

C

(
Ȳ B
T − Ȳ B

C

)
−(1− P )Ȳ B

C · · · −(1− P )Ȳ B
C

−Z
J

+ (1− P )Ȳ B
C

(
Ȳ B
T − Ȳ 2

C

)
−(1− P )Ȳ B

C
...

...

−Z
J

+ (1− P )Ȳ B
C

(
Ȳ B
T − Ȳ 2

C

)
−(1− P )Ȳ B

C

Z
PJ

+ (1− P )
(
Ȳ B
T − Ȳ B

C

)2 −(1− P )
(
Ȳ B
T − Ȳ B

C

)
−(1− P )

(
Ȳ B
T − Ȳ B

C

)
1− P


(A.5)

and may combine (A.5) with (A.4) to calculate element (r + 1, r + 1) of (A.3) as

Var(τ̂ |X) =
1

J2r2Z2

{
1

P 2

PJ∑
i=1

PJ∑
j=1

[(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )
×
(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

T

) )
×

(
r∑
t=1

r∑
s=1

E[εitεjs|X]

)]

+
2

P (1− P )

PJ∑
i=1

J∑
j=PJ+1

[(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )
×
(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

C

) )
×

(
r∑
t=1

r∑
s=1

E[εitεjs|X]

)]

+
1

(1− P )2

J∑
i=PJ+1

J∑
j=PJ+1

[(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

C

) )
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×
(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

C

) )
×

(
r∑
t=1

r∑
s=1

E[εitεjs|X]

)]
(A.6)

which, despite the inclusion of time FE, is identical to the corresponding expression (A51) in

Burlig et al. (2020). For the remainder of the derivation, we will be concerned with evaluating

this expression.4 To do so, we first need to compute the summed conditional means included

in each of the three terms in (A.6).

For a given single conditional mean with i 6= j as well as t 6= s,

E[εitεjs|X] = E[εjsE[εit|εjs,X]|X] = E[εjsE[εit|εjs, δs, δt, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j]|δs, Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j]

where the first equality uses the law of iterated expectations, and Ȳ B
−i,−j is the set of all

baseline averages associated with units other than i and j. Thus, conditioning on X implies

conditioning on all baseline averages in the experiment. This is because each conditioning

baseline average provides additional information about the average pre-treatment time shock

included in both residuals through baseline averages i and j. Also note that while δs is

unconditionally independent of εit, it must still be retained as conditioning variable in the

inner expectation. The reason is somewhat subtle: conditional on εjs and Ȳ B
j , δs provides

information on e.g. vj; but conditional on Ȳ B
j , vj is itself informative about the pre-treatment

time shocks included in εit.

When i = j and/or t = s, the above expectation is adjusted accordingly. For example,

when i 6= j but t = s, we have

E[εisεjs|X] = E[εjsE[εis|εjs, δs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j]|δs, Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j]

Since both residuals as well as all conditioning variables are assumed normally distributed,

we may evaluate any conditional mean using the following formula:

E[x|y] = µx + ΣxyΣ−1yy(y − µy) (A.7)

where µx is the mean of the normal variable x; Σxy is a row vector collecting the covariances

between x and each element of the vector of normally distributed conditioning variables y;

4If time shocks are assumed fixed rather than stochastic, all subsequent steps to derive the ANCOVA
variance will be identical to those in Burlig et al. (2020), with the result that their formula is again appro-
priate.

15



Σ−1yy is the inverted variance-covariance matrix of y; and µy is the vector of means of y. In

our case, µx = 0, since both residuals have mean zero by the properties of linear projection.

Also, E(Ȳ B
i ) = E(δt) = µδ for all i and t.

Like Burlig et al. (2020), we will begin by considering the case when i 6= j. For t 6= s, the

(J + 3)-dimensional covariance matrix corresponding to the above inner (nested) conditional

expectation is

Σt6=s
yy =



as me 0 bs c · · · c

me me 0 0 0 · · · 0

0 0 me 0 0 · · · 0

bs 0 0 d e · · · e

c 0 0 e d · · · e
...

...
...

...
...

. . .
...

c 0 0 e e · · · d


(A.8)

where the final bottom-right J rows and columns all have d as diagonal elements, and e as

off-diagonal elements. For convenience, the matrix uses the following parameter definitions.

as = Var(εjs) = (1− θ)2 σ2
v +

(
1 +

θ2

m

)(
σ2
ω + σ2

δ

)
− θCov

(
ωjs, ω̄

B
j

)
+
θ2 (m− 1)

m
ψB

bs = Cov
(
εjs, Ȳ

B
j

)
= Cov

(
ωjs, ω̄

B
j

)
− ψX − θσ2

δ

m

c = Cov
(
εjs, Ȳ

B
i

)
= Cov

(
εit, Ȳ

B
j

)
= −θσ

2
δ

m

d = Var
(
Ȳ B
i

)
=

1

m

(
σ2
δ + σ2

ω +mσ2
v + (m− 1)ψB

)
e = Cov

(
Ȳ B
i , Ȳ

B
j

)
=
σ2
δ

m

and ω̄Bj = (1/m)
∑0

p=−m+1 ωjp. Note that
∑

s bs = rc.

Furthermore,

Σt 6=s
xy =

(
f i 6=j 0 me c bt c · · · c

)
(A.9)

where

bt = Cov
(
εit, Ȳ

B
i

)
= Cov

(
ωit, ω̄

B
i

)
− ψX − θσ2

δ

m

f i 6=j = Cov (εit, εjs)− Cov (δt, δs) =
θ2σ2

δ

m

and similarly to above,
∑

t bt = rc.

16



When t = s, Σt=s
yy is the (J+2)-dimensional submatrix that results when row and column

3 (corresponding to δt) are dropped from (A.8). We also have

Σt=s
xy =

(
f i=j +me me c bs c · · · c

)
(A.10)

Our next objective is to invert the Σyy matrices. To that end, we make use of the following

lemma.

Lemma 5. Any n-dimensional square matrix of the form

Y1 =


d e · · · e

e d · · · e
...

...
. . .

...

e e · · · d


has |Y1| = (d− e)n−1 (d+ (n− 1) e), and any n-dimensional square matrix of the form

Y2 =


e e · · · e

e d · · · e
...

...
. . .

...

e e · · · d


has |Y2| = e (d− e)n−1.

Proof. Assuming the lemma holds for matrices of dimension n − 1, we have (note that the

second term is based on interchanging columns or rows to produce a submatrix of type Y2):

|Y1| = d
[
(d− e)n−2 (d+ (n− 2) e)

]
− (n− 1)e2 (d− e)n−2

= (d− e)n−1 (d+ (n− 1) e)

and

|Y2| = e (d− e)n−2 (d+ (n− 2) e)− (n− 1) e2 (d− e)n−2

= e(d− e)n−1

Finally, it is simple to confirm that these expressions also hold for n = 2.

Lemma 5 permits calculation of a large number of similar determinants, ensuring that
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inverting Σyy is feasible. These corollaries are straightforward but too numerous to list in

their entirety; however, the overall procedure is highly similar to that used when inverting

X′X above. One particularly useful example follows:

|Σt=s
yy | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

as me bs c · · · c

me me 0 0 · · · 0

bs 0 d e · · · e

c 0 e d · · · e
...

...
...

...
. . .

...

c 0 e e · · · d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= me

∣∣∣∣∣∣∣∣∣∣∣∣∣

as bs c · · · c

bs d e · · · e

c e d · · · e
...

...
...

. . .
...

c e e · · · d

∣∣∣∣∣∣∣∣∣∣∣∣∣
−me

∣∣∣∣∣∣∣∣∣∣∣∣∣

me 0 0 · · · 0

bs d e · · · e

c e d · · · e
...

...
...

. . .
...

c e e · · · d

∣∣∣∣∣∣∣∣∣∣∣∣∣

= asme (d− e)J−1 (d+ (J − 1) e)− bsme

∣∣∣∣∣∣∣∣∣∣∣

bs c · · · c

e d · · · e
...

...
. . .

...

e e · · · d

∣∣∣∣∣∣∣∣∣∣∣
+ (J − 1)mce

∣∣∣∣∣∣∣∣∣∣∣∣∣

bs c c · · · c

d e e · · · e

e e d · · · e
...

...
...

. . .
...

e e e · · · d

∣∣∣∣∣∣∣∣∣∣∣∣∣
−m2e2(d− e)J−1(d+ (J − 1)e)

= me(as −me)(d− e)J−1(d+ (J − 1)e)− bsme
(
bs(d− e)J−2(d+ (J − 2)e)− (J − 1)ce(d− e)J−2

)
+ (J − 1)mce

(
(bs + (J − 2)c)e(d− e)J−2 − c(d− e)J−2(d+ (J − 2)e)

)
= me(d− e)J−2

(
(d− e)

(
(as −me)(d+ (J − 1)e)− b2s − (J − 1)c2

)
− (J − 1)e(bs − c)2

)
≡ |Σ|

Notice that this determinant does not depend on t. Expressions may be similarly derived

for all cofactors of the covariance matrices, yielding the symmetric inverse

(
Σt 6=s

yy

)−1
=

(d− e)J−2

|Σ|



me(d− e)(d+ (J − 1)e) −me(d− e)(d+ (J − 1)e)

−me(d− e)(d+ (J − 1)e) (d− e)(as(d+ (J − 1)e)− b2s − c2)− (J − 1)e(bs − c)2

0 0

−me(bs(d+ (J − 2)e)− (J − 1)ce) me(bs(d+ (J − 2)e)− (J − 1)ce)

me(bse− cd) −me(bse− cd)
...

...

me(bse− cd) −me(bse− cd)
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0 −me(bs(d+ (J − 2)e)− (J − 1)ce) me(bse− cd)

0 me(bs(d+ (J − 2)e)− (J − 1)ce) −me(bse− cd)
|Σ|

me(d−e)J−2 0 0

0 me((as −me)(d+ (J − 2)e)− (J − 1)c2) me(−e(as −me) + bsc)

0 me(−e(as −me) + bsc) me
(

(as −me)(d+ (J − 2)e)− b2s − (J − 2)c2 − (J−2)e(bs−c)2
d−e

)
...

...
...

0 me(−e(as −me) + bsc) −me
(
e(as −me)− bse(bs−2c)+cd

d−e

)

· · · me(bse− cd)

· · · −me(bse− cd)

· · · 0

· · · me(−e(as −me) + bsc)

· · · −me
(
e(as −me)− bse(bs−2c)+c2d

d−e

)
. . .

...

· · · me
(

(as −me)(d+ (J − 2)e)− b2s − (J − 2)c2 − (J−2)e(bs−c)2
d−e

)


(A.11)

Furthermore,
(
Σt=s

yy

)−1
is equal to the submatrix that results when row and column 3 are

dropped from (A.11). Inserting expressions (A.11) and (A.9), or
(
Σt=s

yy

)−1
and (A.10), into

formula (A.7) yields the inner expectation E[εit|·] under t 6= s and t = s, respectively. It

turns out that the results of both cases can be combined into the single expression

E[εit|εjs, δs, δt, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j] = Ai 6=j1 εjs − Ai 6=j1 (δs − µδ) + δt − µδ + Ai 6=j2

(
Ȳ B
j − µδ

)
+ Ai 6=j3

(
Ȳ B
i − µδ

)
+ Ai 6=j4

(∑
k 6=i,j

(
Ȳ B
k − µδ

))

where

Ai 6=j1 =
me(d− e)J−2

|Σ|

(
(d− e)

(
f i 6=j(d+ (J − 1)e)− (J − 1)c2

)
+ cd(c− bt − bs) + btbse

)

Ai 6=j2 =
me(d− e)J−2

|Σ|

(
−
(
bs(d+ (J − 2)e)− (J − 1)ce

)
f i 6=j + (as −me)(cd− bte)

+ c
(
btbs + (J − 2)bsc− (J − 1)c2

))

Ai 6=j3 =
me(d− e)J−2

|Σ|

(
(bse− cd)f i 6=j + (as −me)((d− e)bt + (J − 1)e(bt − c)
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+
c(cd− bse)(bs + (J − 2)c) + (J − 1)bsce(bs − c)− (J − 2)bt(b

2
se− 2bsce+ c2d)

d− e
− btb2s

)

Ai 6=j4 =
me(d− e)J−2

|Σ|

(
(bse− cd)f i 6=j + (as −me)(cd− bte)

+
(cd− bte)(bsc− b2s − c2) + (cd− bse)btc+ c2e(bs − bt)

d− e

)

In each of the above factors, results under t = s can be obtained simply by imposing that

equality. In any case, since these factors are all functions only of model parameters, it follows

that the full expectation is

E[εitεjs|X] = Ai 6=j1 E[ε2js|δs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j] +

[
− Ai 6=j1 (δs − µδ) + δt − µδ + Ai 6=j2

(
Ȳ B
j − µδ

)
+ Ai 6=j3

(
Ȳ B
i − µδ

)
+ Ai 6=j4

(∑
k 6=i,j

(
Ȳ B
k − µδ

) )]
× E[εjs|δs, Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j] (A.12)

where E[ε2js|δs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j] = Var

(
εjs|δs, Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j

)
+
(
E[εjs|δs, Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j]

)2
,

and the ‘outer’ expectation E[εjs|δs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j] may also be calculated using formula

(A.7). To do so, note first that the appropriate covariance matrix of conditioning variables,

which has dimension J + 1, is now

Σ̂yy =



me 0 0 · · · 0

0 d e · · · e

0 e d · · · e
...

...
...

. . .
...

0 e e · · · d


for which Lemma 5 implies inverse

Σ̂−1yy =
(d− e)J−2

|Σ̂yy|
(A.13)

×



(d− e)(d+ (J − 1)e) 0 0 · · · 0

0 me(d+ (J − 2)e) −me2 · · · −me2

0 −me2 me(d+ (J − 2)e) · · · −me2
...

...
...

. . .
...

0 −me2 −me2 · · · me(d+ (J − 2)e)


(A.14)
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with |Σ̂yy| = me(d− e)J−1 (d+ (J − 1)e). Noting that the corresponding covariance vector

is

Σ̂xy =
(
me bs c · · · c

)
(A.15)

application of formula (A.7) now yields

E[εjs|δs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j] = δs − µδ +B1

(
Ȳ B
j − µδ

)
+B2

∑
k 6=j

(
Ȳ B
k − µδ

)
(A.16)

where

B1 =
me (d− e)J−2

|Σ̂yy|

(
bs (d+ (J − 2)e)− (J − 1)ce

)
B2 =

me (d− e)J−2

|Σ̂yy|

(
cd− bse

)
The fact that none of these quantities depend on t will soon prove useful. Next, to evaluate

E[ε2js|δs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j] we will also need to calculate Var

(
εjs|δs, Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j

)
. Again,

because all variables involved are normally distributed, this may be done by the following

conditional-variance formula:

Var(x|y) = σ2
x −ΣxyΣ−1yy (Σxy)′ (A.17)

where σ2
x is the unconditional variance of x and all other quantities are as defined in (A.7).

Here, σ2
x = as; combining this fact with (A.14) and (A.15) in accordance with the above

formula yields

Var
(
εjs|δs, Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j

)
=
|Σ|
|Σ̂yy|

(A.18)

which also does not depend on t. Finally, inserting (A.18) and (A.16) into (A.12) and

collecting terms, we find that the full expectation is

E[εitεjs|X] = Ai 6=j1

|Σ|
|Σ̂yy|

+ (δt − µδ) (δs − µδ) +
(
Ai 6=j1 B1 + Ai 6=j2

)
(δs − µδ)

(
Ȳ B
j − µδ

)
+
(
Ai 6=j1 B2 + Ai 6=j3

)
(δs − µδ)

(
Ȳ B
i − µδ

)
+
(
Ai 6=j1 B2 + Ai 6=j4

)
(δs − µδ)

∑
k 6=i,j

(
Ȳ B
k − µδ

)
+B1 (δt − µδ)

(
Ȳ B
j − µδ

)
+B2 (δt − µδ)

(
Ȳ B
i − µδ

)
+B2 (δt − µδ)

∑
k 6=i,j

(
Ȳ B
k − µδ

)
+B1

(
Ai 6=j1 B1 + Ai 6=j2

) (
Ȳ B
j − µδ

)2
+B2

(
Ai 6=j1 B2 + Ai 6=j3

) (
Ȳ B
i − µδ

)2
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+B2

(
Ai 6=j1 B2 + Ai 6=j4

)(∑
k 6=i,j

(
Ȳ B
k − µδ

))2

+
(
B1

(
Ai 6=j1 B2 + Ai 6=j3

)
+B2

(
Ai 6=j1 B1 + Ai 6=j2

)) (
Ȳ B
j − µδ

) (
Ȳ B
i − µδ

)
+
(
B1

(
Ai 6=j1 B2 + Ai 6=j4

)
+B2

(
Ai 6=j1 B1 + Ai 6=j2

)) (
Ȳ B
j − µδ

) ∑
k 6=i,j

(
Ȳ B
k − µδ

)
+B2

(
Ai 6=j1 B2 + Ai 6=j3 + Ai 6=j1 B2 + Ai 6=j4

) (
Ȳ B
i − µδ

) ∑
k 6=i,j

(
Ȳ B
k − µδ

)
which may feasibly be summed across all t and s. Recall that certain terms and factors

depend only on one of the time periods; in particular, since |Σ| depends only on s, only the

numerator of each A factor includes t. The summed expectation can therefore be written as

r∑
t=1

r∑
s=1

E[εitεjs|X]

=
r∑
s=1

[
|Σ|
|Σ̂yy|

r∑
t=1

Ai 6=j1 +

(
B1

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j2

)
(δs − µδ)

(
Ȳ B
j − µδ

)
+

(
B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j3

)
(δs − µδ)

(
Ȳ B
i − µδ

)
+

(
B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j4

)
(δs − µδ)

∑
k 6=i,j

(
Ȳ B
k − µδ

)
+B1

(
B1

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j2

)(
Ȳ B
j − µδ

)2
+B2

(
B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j3

)(
Ȳ B
i − µδ

)2
+B2

(
B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j4

)(∑
k 6=i,j

(
Ȳ B
k − µδ

))2

+

(
B1

(
B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j3

)
+B2

(
B1

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j2

))(
Ȳ B
j − µδ

) (
Ȳ B
i − µδ

)
+

(
B1

(
B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j4

)
+B2

(
B1

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j2

))(
Ȳ B
j − µδ

) ∑
k 6=i,j

(
Ȳ B
k − µδ

)
+B2

(
B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j3 +B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j4

)(
Ȳ B
i − µδ

) ∑
k 6=i,j

(
Ȳ B
k − µδ

) ]

+
r∑
t=1

[
(δt − µδ)

(
Ȳ B
j − µδ

) r∑
s=1

B1 + (δt − µδ)
(
Ȳ B
i − µδ

) r∑
s=1

B2
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+ (δt − µδ)
∑
k 6=i,j

(
Ȳ B
k − µδ

) r∑
s=1

B2

]
+

r∑
t=1

r∑
s=1

[
(δt − µδ) (δs − µδ)

]

The first term of this expression is

r∑
s=1

(
|Σ|
|Σ̂yy|

∑
t

Ai 6=j1

)
=

r∑
s=1

r

(
f i 6=j − bsc+ (J − 1) c2

d+ (J − 1)e

)
= r2

(
f i 6=j − Jc2

d+ (J − 1)e

)

where the equalities use
∑

t bt = rc and
∑

s bs = rc, respectively. Similarly,

B1

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j2 = B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j3 = B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j4 =
r∑
s=1

B1 =
r∑
s=1

B2

=
rc

d+ (J − 1)e

implying that the summed expectation reduces to

r∑
t=1

r∑
s=1

E[εitεjs|X] = r2
(
f i 6=j − Jc2

d+ (J − 1)e

)
+

r∑
t=1

r∑
s=1

(
(δt − µδ) (δs − µδ)

)
+

rc

d+ (J − 1)e

r∑
s=1

(δs − µδ)
J∑
k=1

(
Ȳ B
k − µδ

)
+

rc

d+ (J − 1)e

r∑
t=1

(δt − µδ)
J∑
k=1

(
Ȳ B
k − µδ

)
+

rc

d+ (J − 1)e

r∑
s=1

B1

(
J∑
k=1

(
Ȳ B
k − µδ

)2
+

J∑
k=1

∑
l 6=k

(
Ȳ B
k − µδ

) (
Ȳ B
l − µδ

))

= r2
(
f i 6=j − J2c2

d+ (J − 1)e

)
+

(
r∑
p=1

(δp − µδ) +
rc

d+ (J − 1)e

J∑
k=1

(
Ȳ B
k − µδ

))2

which is seen to be constant across any i, j with i 6= j.

Having calculated the sum of conditional means for the case of different experimental

units, we now move on to consider the i = j case, for which

E[εitεis|X] = E[εisE[εit|εis, δs, δt, Ȳ B
i , Ȳ

B
−i]|δs, Ȳ B

i , Ȳ
B
−i]

where, similarly to before, Ȳ B
−i is the set of all baseline averages belonging to units other than

i. It is straightforward to confirm that, both when t 6= s and t = s, the variance-covariance

matrices Σyy of the inner (εit) expectation are identical to their counterparts when i 6= j.
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It follows, of course, that the corresponding inverse matrices are also identical. By contrast,

the covariance vectors are now different from before; when t 6= s, we have

Σt6=s
xy =

(
f i=jts 0 me bt c · · · c

)
where

f i=jts = Cov (εit, εis)− Cov (δt, δs)

= (1− θ)2 σ2
v +

θ2

m

(
σ2
ω + σ2

δ

)
+
θ2 (m− 1)

m
ψB + Cov (ωit, ωis)− θCov

(
ωit, ω̄

B
i

)
− θCov

(
ωis, ω̄

B
i

)
which we may also note implies

r∑
t=1

f i=jts = r

(
(1− θ)2 σ2

v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2σ2
δ

m

+
θ2(m− 1)

m
ψB +

∑
p 6=s Cov (ωip, ωis)

r
− θψX − θCov

(
ωis, ω̄

B
i

))
≡ rf̄ i=js

In any case, when t = s we have

Σt=s
xy =

(
f i=jts +me me bs c · · · c

)
Applying formula (A.7) to calculate the inner expectation, it is again the case that the t 6= s

and t = s cases may be collected into a single expression, namely

E[εit|εis, δs, δt, Ȳ B
i , Ȳ

B
−i] = Ai=j1 εis − Ai=j1 (δs − µδ) + δt − µδ

+ Ai=j2

(
Ȳ B
i − µδ

)
+ Ai=j3

(∑
k 6=i

(
Ȳ B
k − µδ

))

where

Ai=j1 =
me(d− e)J2
|Σ|

(
(d− e) (d+ (J − 1)e) f i=jts − bt

(
bs (d+ (J − 2)e)− (J − 1)ce

)
+ (J − 1)c (bse− cd)

)
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Ai=j2 =
me(d− e)J2
|Σ|

(
−
(
bs (d+ (J − 2)e)− (J − 1)ce

)
f i=jts

+ bt

(
(as −me)(d+ (J − 2)e)− (J − 1)c2

)
+ (J − 1)c (−e(as −me) + bsc)

)

Ai=j3 =
me(d− e)J2
|Σ|

(
(bse− cd)f i=jts + (as −me)(cd− bte) + bsc(bt − bs)

)

As before, only the numerator of each factor depends on t.

As for the outer (εis) expectation, both covariance matrix Σ̂yy and covariance vector

Σ̂xy are identical to those of the i 6= j case. It follows that E[εis|ds, Ȳ B
i , Ȳ

B
−i] as well as

Var[εis|ds, Ȳ B
i , Ȳ

B
−i] are again equal to (A.16) and (A.18). Combining this fact with the

above expressions, then, the summed full expectation when i = j is

r∑
t=1

r∑
s=1

E[εitεis|X]

=
r∑
s=1

[
|Σ|
|Σ̂yy|

r∑
t=1

Ai=j1 +

(
B1

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j2

)
(δs − µδ)

(
Ȳ B
i − µδ

)
+

(
B2

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j3

)
(δs − µδ)

∑
k 6=i

(
Ȳ B
k − µδ

)
+B1

(
B1

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j2

)(
Ȳ B
i − µδ

)2
+B2

(
B2

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j3

)(∑
k 6=i

(
Ȳ B
k − µδ

))2

+

(
B1

(
B2

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j3

)
+B2

(
B1

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j2

))(
Ȳ B
i − µδ

)∑
k 6=i

(
Ȳ B
k − µδ

) ]

+
r∑
t=1

[
(δt − µδ)

(
Ȳ B
i − µδ

) r∑
s=1

B1 + (δt − µδ)
∑
k 6=i

(
Ȳ B
k − µδ

) r∑
s=1

B2

]

+
r∑
t=1

r∑
s=1

[
(δt − µδ) (δs − µδ)

]
(A.19)

but

r∑
s=1

(
|Σ|
|Σ̂yy|

r∑
t=1

Ai=j1

)
=

r∑
s=1

(
rf̄ i=js − r (bsc+ (J − 1) c2)

d+ (J − 1)e

)
= r2

(
f̄ i=j − Jc2

d+ (J − 1)e

)
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where

f̄ i=j =
1

r

r∑
s=1

f̄ i=js =

(
(1− θ)2 σ2

v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2σ2
δ

m
+
θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

)

and furthermore

B1

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j2 = B2

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j3 =
rc

d+ (J − 1)e

Inserting these expressions into (A.19) yields the summed expectation as

r∑
t=1

r∑
s=1

E[εitεis|X] = r2
(
f̄ i=j − Jc2

d+ (J − 1)e

)
+

(
r∑
p=1

(δp − µδ) +
rc

d+ (J − 1)e

J∑
k=1

(
Ȳ B
k − µδ

))2

This differs from the summed expectation we found when i 6= j only by r2
(
f̄ i=j − f i 6=j

)
.

Clearly, everything but this difference is constant across all i, j and will thus be summed

across both i 6= j and i = j. Referring back to equation (A.6), the constant will therefore be

multiplied with

1

P 2

PJ∑
i=1

PJ∑
j=1

[(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

T

) )]

+
2

P (1− P )

PJ∑
i=1

J∑
j=PJ+1

[(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )
×
(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

C

) )]

+
1

(1− P )2

J∑
i=PJ+1

J∑
j=PJ+1

[(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

C

) )
×
(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
j − Ȳ B

C

) )]

=
1

P 2

PJ∑
i=1

[
PJZ

(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )]

+
2

P (1− P )

PJ∑
i=1

[
− (1− P )JZ

(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )]

+
1

(1− P )2

J∑
i=PJ+1

[
− (1− P )JZ

(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

C

) )]
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= 0

As a result, we are left only with

Var (τ̂ |X) =
f̄ i=j − f i 6=j

J2Z2

{
1

P 2

PJ∑
i=1

(
Z − PJ

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ B

T

) )2
+

1

(1− P )2

J∑
i=PJ+1

(
− Z − (1− P )J

(
Ȳ B
T − Ȳ B

C

) (
Ȳ B
i − Ȳ T

C

) )2}
(A.20)

but

f̄ i=j − f i 6=j = (1− θ)2 σ2
v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

implying that (A.20) is exactly equal to equation A61 in Burlig et al. (2020) and may likewise

be simplified to yield

Var (τ̂ |X) =

(
1

P (1− P )J
+

(
Ȳ B
T − Ȳ B

C

)2
Z

)

×
(

(1− θ)2 σ2
v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

)
which is the small-sample ANCOVA variance formula derived by Burlig et al. (2020).

A.2 Time shocks not included in ANCOVA regression

Now, consider instead the ANCOVA regression model

Yit = α + τDi + θȲ B
i + εit

where α is an intercept term and all other variables and coefficients are defined as in (A.2);

this regression model, which does not account for time shocks, is identical to that analyzed

in Burlig et al. (2020); although, of course, the assumed DGP (A.1) is not. Again, we will

calculate the ANCOVA variance by sandwich formula (A.3). However, since X′X is now the

3-by-3 matrix considered in Burlig et al. (2020), we may simply follow their initial calculation

steps as far as equation (A.6) above.

The next task is to evaluate conditional means E[εitεjs|X], as in the previous section.

With time FE no longer included in the regression, we may write any such quantity for
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which i 6= j as

E[εitεjs|X] = E[εjsE[εit|εjs, Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j]|Ȳ B

j , Ȳ
B
i , Ȳ

B
−i,−j]

These means can again be calculated using formula (A.7). Here, the covariance matrix

associated with the inner (εit) expectation is

Σyy =



as bs c · · · c

bs d e · · · e

c e d · · · e
...

...
...

. . .
...

c e e · · · d


(A.21)

where all parameters are defined as in section A.1 above. Lemma 5 may again be used to

calculate corresponding inverse

Σ−1yy =
(d− e)J−2

|Σyy|



(d− e)(d+ (J − 1)e) −bs(d+ (J − 2)e) + (J − 1)ce

−bs(d+ (J − 2)e) + (J − 1)ce as(d+ (J − 2)e)− (J − 1)c2

bse− cd bsc− ase
...

...

bse− cd bsc− ase

bse− cd · · · bse− cd
bsc− ase · · · bsc− ase

as(d+ (J − 2)e)− b2s − (J − 2)c2 − (J−2)e(bs−c)2
d−e · · · −ase+ bse(bs−c)−c(bse−cd)

d−e

−ase+ bse(bs−c)−c(bse−cd)
d−e · · · as(d+ (J − 2)e)− b2s − (J − 2)c2 − (J−2)e(bs−c)2

d−e


(A.22)

with

|Σyy| = (d− e)J−2
[
(d− e)

(
as(d+ (J − 1)e)− b2s − (J − 1)c2

)
− (J − 1)e(bs − c)2

]
We also note that

Σxy =
(
gi 6=jts c bt c · · · c

)
(A.23)

where

gi 6=jts = Cov(εit, εjs) =
θ2σ2

δ

m
+ Cov(δt, δs)
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implying
r∑
t=1

gi 6=jts = r

(
θ2

m
+

1

r

)
σ2
δ ≡ rḡi 6=j

Combining (A.22) and (A.23) in accordance with (A.7) yields the full expectation as

E[εitεjs|X] = Ai 6=j1 E[ε2js|Ȳ B
j , Ȳ

B
i , Ȳ−i,−j]

+

(
Ai 6=j2

(
Ȳ B
j − µδ

)
+ Ai 6=j3

(
Ȳ B
i − µδ

)
+ Ai 6=j4

∑
k 6=i,j

(
Ȳ B
k − µδ

))
× E[εjs|Ȳ B

j , Ȳ
B
i , Ȳ−i,−j] (A.24)

where

Ai 6=j1 =
(d− e)J−2

|Σyy|

(
(d− e)

(
gi 6=jts (d+ (J − 1)e)− (J − 2)c2

)
+ e(bsbt + c2)− (bs + bt)cd

)

Ai 6=j2 =
(d− e)J−2

|Σyy|

(
gi 6=jts

(
− bs(d+ (J − 2)e) + (J − 1)ce

)
+ as(cd− bte)

− (J − 1)c3 + btbsc+ (J − 2)bsc
2

)

Ai 6=j3 =
(d− e)J−2

|Σyy|

(
gi 6=jts (bse− cd) + as

(
bt(d+ (J − 2)e)− (J − 1)ce

)
+ bsc

2

− btb2s − (J − 2)btc
2 +

J − 2

d− e

(
c
(
b2se− 2bsce+ c2d

)
− bte(bs − c)2

))

Ai 6=j4 =
(d− e)J−2

|Σyy|

(
gi 6=jts (bse− cd) + as(cd− bte) + bsc

2 − b2sc− (J − 2)c3

+
(bt + (J − 3)c) (b2se− 2bsce+ c2d)− (J − 2)ce(bs − c)2

d− e

)

To calculate the two remaining conditional expectations in (A.24), note first that the corre-

sponding covariance matrix of conditioning variables is now simply

Σ̂yy =


d e · · · e

e d · · · e
...

...
. . .

...

e e · · · d
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for which Lemma 5 implies inverse

Σ̂−1yy =
(d− e)J−2

|Σ̂yy|


d+ (J − 2)e −e · · · −e

−e d+ (J − 2)e · · · −e
...

...
. . .

...

−e −e · · · d+ (J − 2)e

 (A.25)

with |Σ̂yy| = (d− e)J−1(d+ (J − 1)e). The appropriate covariance vector for εjs is

Σ̂xy =
(
bs c · · · c

)
so applying formula (A.7) yields

E[εjs|Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j] = B1

(
Ȳ B
j − µδ

)
+B2

∑
k 6=j

(
Ȳ B
k − µδ

)
where

B1 =
(d− e)J−2

|Σ̂yy|

(
bs(d+ (J − 2)e)− (J − 1)ce

)
B2 =

(d− e)J−2

|Σ̂yy|

(
cd− bse

)
Also, application of formula (A.17) yields

Var(εjs|Ȳ B
j , Ȳ

B
i , Ȳ

B
−i,−j) =

|Σyy|
|Σ̂yy|

Thus, after combining with (A.24) and collecting terms, we find that the full expectation

term is

E[εitεjs|X] = Ai 6=j1

|Σyy|
|Σ̂yy|

+B1(A
i 6=j
1 B1 + Ai 6=j2 )

(
Ȳ B
j − µδ

)2
+B2(A

i 6=j
1 B2 + Ai 6=j3 )

(
Ȳ B
i − µδ

)2
+B2(A

i 6=j
1 B2 + Ai 6=j3 )

(∑
k 6=i,j

(
Ȳ B
k − µδ

))2

+
(
B1(A

i 6=j
1 B2 + Ai 6=j3 ) +B2(A

i 6=j
1 B1 + Ai 6=j2 )

) (
Ȳ B
j − µδ

) (
Ȳ B
i − µδ

)
+
(
B1(A

i 6=j
1 B2 + Ai 6=j4 ) +B2(A

i 6=j
1 B1 + Ai 6=j2 )

) (
Ȳ B
j − µδ

) ∑
k 6=i,j

(
Ȳ B
k − µδ

)
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B2

(
Ai 6=j1 B2 + Ai 6=j3 + Ai 6=j1 B2 + Ai 6=j4

) (
Ȳi − µδ

) ∑
k 6=i,j

(
Ȳ B
k − µδ

)
(A.26)

Since

r∑
t=1

r∑
s=1

(
Ai 6=j1

|Σyy|
|Σ̂yy|

)
=

r∑
s=1

r

(
ḡi 6=j − bsc+ (J − 1)c2

d+ (J − 1)e

)
= r2

(
ḡi 6=j − Jc2

d+ (J − 1)e

)

and furthermore

B1

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j2 = B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j3 = B2

r∑
t=1

Ai 6=j1 +
r∑
t=1

Ai 6=j4 =
rc

d+ (J − 1)e

it follows that summing (A.26), first across t and then across s, produces

r∑
t=1

r∑
s=1

E[εitεjs|X] = r2

ḡi 6=j − Jc2

d+ (J − 1)e
+

(
c

d+ (J − 1)e

J∑
k=1

(
Ȳ B
k − µδ

))2


which we note is invariant across any i, j with i 6= j.

Moving on to the i = j case, conditional expectations are now

E[εitεis|X] = E[εisE[εit|εis, Ȳ B
i , Ȳ−i]|Ȳ B

i , Ȳ
B
−i]

where the covariance matrix Σyy relevant to the inner expectation is again (A.21). As for

Σxy, it is now

Σxy =
(
gi=jts bt c · · · c

)
(A.27)

where

gi=jts = Cov(εit, εis)

= (1− θ)2 σ2
v +

θ2

m

(
σ2
ω + σ2

δ

)
+ Cov(δt, δs) +

θ2 (m− 1)

m
ψB + Cov (ωit, ωis)

− θCov
(
ωit, ω̄

B
i

)
− θCov

(
ωis, ω̄

B
i

)
with

r∑
t=1

gi=jts = r

(
(1− θ)2 σ2

v +

(
θ2

m
+

1

r

)(
σ2
ω + σ2

δ

)
+
θ2(m− 1)

m
ψB +

∑
p 6=s Cov (ωip, ωis)

r
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− θψX − θCov
(
ωis, ω̄

B
i

))
≡ rḡi=js

Combining (A.10) with (A.21) in formula (A.7) now yields

E[εitεis|X] = Ai=j1 E[ε2is|Ȳ B
i , Ȳ

B
−i] +

(
Ai=j2

(
Ȳ B
i − µδ

)
+ Ai=j3

∑
k 6=i

(
Ȳ B
k − µδ

))
E[εis|Ȳ B

i , Ȳ
B
−i]

where

Ai=j1 =
(d− e)J−2

|Σyy|

(
gi=jts (d− e)(d+ (J − 1)e)− btbsd− (J − 2)bsbte

+ (J − 1)c
(

(bt + bs)e− cd
))

Ai=j2 =
(d− e)J−2

|Σyy|

(
gi=jts

(
− bs(d+ (J − 2)e) + (J − 1)ce

)
+ as

(
bt(d+ (J − 2)e)− (J − 1)ce

)
+ (J − 1)c2(bs − bt)

)

Ai=j3 =
(d− e)J−2

|Σyy|

(
gi=jts (bse− cd) + as(cd− bte) + btbsc− b2sc

)

It is also simple to check that Σ̂yy, and Σ̂xy, corresponding to the conditional mean of εis,

are both unchanged compared to the i 6= j case. It follows that the full expectation term is

E[εitεis|X] =
|Σyy|
|Σ̂yy|

Ai=j1 +B1(A
i=j
1 B1 + Ai=j2 )

(
Ȳ B
i − µδ

)2
+B2(A

i=j
1 B2 + Ai=j3 )

(∑
k 6=i

(
Ȳ b
k − µδ

))2

+
(
B1(A

i=j
1 B2 + Ai=j3 ) +B2(A

i=j
1 B1 + Ai=j2 )

) (
Ȳ B
i − µδ

)∑
k 6=i

(
Ȳ B
k − µδ

)
but, similarly to above,

r∑
s=1

(
|Σyy|
|Σ̂yy|

r∑
t=1

Ai=j1

)
=

r∑
s=1

(
rḡi=js − r (bsc+ (J − 1) c2)

d+ (J − 1)e

)
= r2

(
ḡi=j − Jc2

d+ (J − 1)e

)
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for

ḡi=j =
1

r

r∑
s=1

ḡi=js =

(
(1− θ)2 σ2

v +

(
θ2

m
+

1

r

)(
σ2
ω + σ2

δ

)
+
θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

)

Also, since

B1

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j2 = B2

r∑
t=1

Ai=j1 +
r∑
t=1

Ai=j3 =
rc

d+ (J − 1)e

we can finally compute the summed expectation as

r∑
t=1

r∑
s=1

E[εitεis|X] = r2

ḡi=j − Jc2

d+ (J − 1)e
+

(
c

d+ (J − 1)e

J∑
k=1

(
Ȳ B
k − µδ

))2


Similarly to before, this is invariant across all i, j with i = j. Moreover, because everything

except r2(ḡi=j − ḡi 6=j) will be summed across both the i 6= j and the i = j cases, thus

canceling out in equation (A.6), and furthermore because

ḡi=j − ḡi 6=j = (1− θ)2 σ2
v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

we conclude that the appropriate ANCOVA variance formula will again be that derived by

Burlig et al. (2020).

Appendix B. Estimating an ANCOVA MDE from pre-existing data

Throughout this section, we retain model assumptions 1-5 from Appendix A of this note;

this means, in particular, that time shocks remain included in the DGP. As a modification

of the algorithm proposed by Burlig et al. (2020) for estimating minimum detectable effects

(MDE) from a pre-existing data set, consider the following. (Notice that steps 1 and 3 remain

as originally proposed by the authors.)

1. Determine all feasible ranges of experiments with (m + r) periods, given the number

of time periods in the pre-existing data set.

2. For each feasible range S:

(a) Regress the outcome variable on unit and time-period fixed effects, Yit = vi + δt +

ωit, and store the residuals. This regression includes all I available cross-sectional
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units, but only time periods with the specific range S.

(b) Calculate the variance of the fitted unit fixed effects, and store as σ̃2
v̂,S.

(c) Calculate the variance of the stored residuals, and save as σ̃2
ω̂,S.

(d) For each pair of pre-treatment periods, (i.e. the first m periods in range S),

calculate the the covariance between these periods’ residuals. Take an unweighted

average of these m(m− 1)/2 covariances, and store as ψ̃Bω̂,S.

(e) For each pair of post-treatment periods, (i.e. the last r periods in range S),

calculate the the covariance between these periods’ residuals. Take an unweighted

average of these r(r − 1)/2 covariances, and store as ψ̃Aω̂,S.5

3. Calculate the average of σ̃2
v̂,S, σ̃2

ω̂,S, ψ̃Bω̂,S, and ψ̃Aω̂,S across all ranges S, deflating σ̃2
ω̂,S

by I(m+r)−1
I(m+r)

and σ̃2
v̂,S, ψ̃Bω̂,S, and ψ̃Aω̂,S by I−1

I
. These averages are equal in expectation

to σ2
v̂ ,σ

2
ω̂, ψBω̂ , and ψAω̂ .

4. To produce the estimated MDE, plug these values into

MDEest =
(
tJ1−κ − tJα/2

)
×

{(
1

P (1− P )J
+

(
Ȳ B
T − Ȳ B

C

)2
Z

)
×
(

I

I − 1

)
×
[
(1− θ2)σ2

v̂ +

(
m+ θr

2m2r2

)(
(m+ r) (m+ θr) + (1− θ)(mr2 −m2r)

)
σ2
ω̂

+

(
m+ θr

2mr2

)
(m− 1) (m+ θr − (1− θ)mr)ψBω̂

+

(
m+ θr

2m2r

)
(r − 1) (m+ θr + (1− θ)mr)ψAω̂

]}1/2

(A.28)

where tJ1−κ and tJα/2 are suitable critical values of the t distribution, and θ is expressed in

terms of the residual-based parameters as

θ =
m [4mrσ2

v̂ − (m (m− r + 2) + r(r −m+ 2))σ2
ω̂]

2r [2m2σ2
v̂ + (m(m+ 1)− r(m− 1))σ2

ω̂ + (m(m− 1)(m+ 1)ψBω̂ − r(m− 1)(r − 1)ψAω̂ ]

+
m
[
−m(m− 1)(m− r + 2)ψBω̂ − r(r − 1)(r −m+ 2)ψAω̂

]
2r [2m2σ2

v̂ + (m(m+ 1)− r(m− 1))σ2
ω̂ + (m(m− 1)(m+ 1)ψBω̂ − r(m− 1)(r − 1)ψAω̂ ]

(A.29)

5Burlig et al. (2020) add an additional step estimating the residual-based across-period covariance, ψ̃Xω̂,S .

However, that step turns out to be redundant, both here and in the original procedure, since ψ̃Xω̂,S is not
used when calculating the MDE.
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The remainder of this section of the appendix mirrors the calculations in Appendix E of

Burlig et al. (2020), showing that the above modified algorithm is appropriate.

First, we claim that steps 1-3 of the algorithm yield unbiased estimates of all residual-

based parameters. For all estimates except σ̃2
v̂ , the proof is identical to that provided in

Appendix E.2 of Burlig et al. (2020). Furthermore,

σ̃2
v̂ =

1

I

I∑
i=1

(
v̂i −

1

I

I∑
i=1

v̂i

)2

which is identical to the σ2
v̂ estimate obtained when time FE are not included in the estimating

regression of step 2a above. The proof that E[σ̃2
v̂ ] = σ2

v̂ is will therefore be identical to that

provided in Appendix E.3 of Burlig et al. (2020).

Next, step 4 uses these estimates to calculate the MDE. To see why this works, we first

need to express each residual-based parameter as a function of the parameters of the DGP.

For σ2
v̂ , we note that

v̂i =
1

m+ r

r∑
t=−m+1

Yit −
1

I(m+ r)

I∑
i=1

r∑
t=−m+1

Yit

= vi −
1

I

I∑
i=1

vi +
1

m+ r

r∑
t=−m+1

ωit −
1

I(m+ r)

I∑
i=1

r∑
t=−m+1

ωit (A.30)

which has variance

σ2
v̂ =

(
I − 1

I(m+ r)2

)(
(m+ r)2σ2

v + (m+ r)σ2
ω +m(m− 1)ψB + r(r − 1)ψA + 2mrψX

)
For all other parameters, we simply repeat the calculations in Appendix E.2 of Burlig et al.

(2020), yielding

σ2
ω̂ =

(
I − 1

I(m+ r)2

)(
(m+ r)(m+ r − 1)σ2

ω −m(m− 1)ψB − r(r − 1)ψA − 2mrψX
)

ψBω̂ =

(
I − 1

I(m+ r)2

)(
−(m+ r)σ2

ω + (r2 + 2r +m)ψB + r(r − 1)ψA − 2r2ψX
)

ψAω̂ =

(
I − 1

I(m+ r)2

)(
−(m+ r)σ2

ω +m(m− 1)ψB + (m2 + 2m+ r)ψA − 2m2ψX
)

ψXω̂ =

(
I − 1

I(m+ r)2

)(
−(m+ r)σ2

ω − r(m− 1)ψB −m(r − 1)ψA + 2mrψX
)
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Comparing with the corresponding expressions in Appendix E.3 of Burlig et al. (2020), we

note the single difference that all residual-based parameters σ2
v̂ , σ

2
ω̂, ψ

B
ω̂ , ψ

A
ω̂ , and ψXω̂ are now

multiplied by I−1
I

, while this was true only for σ2
v̂ in the original procedure. In any case,

we now seek coefficients kv, kω, kB, kA, and kX that allow us to express the SCR ANCOVA

variance in terms of the residual-based parameters rather than the true parameters. The

coefficients will be given by any solution to the following equation:

kvσ
2
v̂ + kωσ

2
ω̂ + kBψ

B
ω̂ + kAψ

A
ω̂ + kXψ

X
ω̂

= (1− θ)2 σ2
v +

(
θ2

m
+

1

r

)
σ2
ω +

θ2(m− 1)

m
ψB +

r − 1

r
ψA − 2θψX

This implies the equation system(
kv kω kB kA kX

)
Γ =

(
(1− θ)2 m+θ2r

mr
(m−1)θ2

m
r−1
r
−2θ

)
where

Γ =
I − 1

I(m+ r)2



(m+ r)2 m+ r m(m− 1) r(r − 1) 2mr

0 (m+ r)(m+ r − 1) −m(m− 1) −r(r − 1) −2mr

0 −(m+ r) r2 + 2r +m r(r − 1) −2r2

0 −(m+ r) m(m− 1) m2 + 2m+ r −2m2

0 −(m+ r) −r(m− 1) −m(r − 1) 2mr


Although the equation system has infinite solutions, we follow Burlig et al. (2020) in selecting

the one where kX = 0. This yields

kv =

(
I

I − 1

)
(1− θ)2

kω =

(
I

I − 1

)
m+ θr

2m2r2
(
(m+ r)(m+ θr) + (1− θ)(mr2 −m2r)

)
kB =

(
I

I − 1

)
m+ θr

2mr2
(m− 1)(m+ θr − (1− θ)mr)

kA =

(
I

I − 1

)
× m+ θr

2m2r
(r − 1)(m+ θr + (1− θ)mr)

kX = 0

which implies equation (A.28) may be used to compute the MDE. Similarly to above, the

only difference between this solution and that of the original procedure is that all coefficients
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(rather than just kv) now include the factor I
I−1 .

Finally, as in Burlig et al. (2020), we must also express θ in terms of the residual-based

parameters. This requires choosing coefficients kNv , k
N
ω , k

N
B , k

N
A , k

N
X (corresponding to the

numerator of θ) as well as kDv , k
D
ω , k

D
B , k

D
A , k

D
X (corresponding to the denominator) such that

θ =
mσ2

v +mψX

mσ2
v + σ2

ω + (m− 1)ψB
=
kNv σ

2
v̂ + kNω σ

2
ω̂ + kNBψ

B
ω̂ + kNAψ

A
ω̂ + kNXψ

X
ω̂

kDv σ
2
v̂ + kDω σ

2
ω̂ + kDBψ

B
ω̂ + kDAψ

A
ω̂ + kDXψ

X
ω̂

For the numerator, the solution where kNX = 0 is

kNv =

(
I

I − 1

)
m

kNω = −
(

I

I − 1

)
1

4r
(m(m− r + 2) + r(r −m+ 2))

kNB = −
(

I

I − 1

)
m

4r
(m− 1)(m− r + 2)

kNA = −
(

I

I − 1

)
1

4
(r − 1)(r −m+ 2)

kNX = 0

For the denominator, the solution where kDX = 0 is

kDv =

(
I

I − 1

)
m

kDω =

(
I

I − 1

)
1

2m
(m(m− 1)− r(m− 1))

kDB =

(
I

I − 1

)
1

2
(m+ 1)(m− 1)

kDA = −
(

I

I − 1

)
r

2m
(m− 1)(r − 1)

kDX = 0

which gives θ as equation (A.29). Again, these solutions differ from the original results only

in that all coefficients (rather than just the kv coefficients) include I
I−1 .
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