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Volatility Curves of Incomplete Markets
The Trinomial Option Pricing Model
KATERYNA CHECHELNYTSKA
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

The graph of the implied volatility of call options as a function of the strike price
is called volatility curve. If the options market were perfectly described by the
Black-Scholes model, the implied volatility would be independent of the strike price
and thus the volatility curve would be a flat horizontal line. However the volatility
curve of real markets is often found to have recurrent convex shapes called volatility
smile and volatility skew. The common approach to explain this phenomena is by
assuming that the volatility of the underlying stock is a stochastic process (while in
Black-Scholes it is assumed to be a deterministic constant). The main purpose of this
project is to propose and explore the idea that the occurrence of non-flat volatility
curves is the result of market incompleteness. A market is incomplete if it admits
more than one risk-neutral probability. In other words, within an incomplete market,
investors do not necessarily agree on the market price of risk. The hypothesis that
volatility curves are linked to market incompleteness is, at least from a qualitative
perspective, reasonable and justified, since the convex shape of volatility curves
indicates that investors demand an extra premium for call options which are out of
the money, that is to say, they assume that out-of-the money options are more risky
than predicted by Black- Scholes. Mathematically this means that investors use a
different risk-neutral probability to price call options with different strikes. This
hypothesis will be tested quantitatively by using the trinomial model, which is the
simplest example of one- dimensional incomplete market.

Keywords: Implied volatility, Incomplete markets, Trinomial option pricing model,
Black-Scholes option pricing model, Risk-neutral probability.
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1

Introduction

Option pricing theory is one of the core topics in financial mathematics. It has
a long and illustrated history with a revolutionary breakthrough made by Fisher
Black and Myron Scholes [8] in 1973. They derived the first option pricing model
with the closed formula to calculate the price of European options on a stock that
pays no dividends. In the same year, Robert Merton extended their model in several
important ways with a more general approach. This development has become known
as Black–Scholes–Merton (or Black–Scholes) option pricing model. Up to this day,
this model has a huge influence on the way traders price derivatives and is widely
used [9].

The Black-Scholes model provides a unique theoretical price of an option in a com-
plete market based on the fundamental principle of absence of arbitrage oppor-
tunities. By this pricing formula, the discounted price of the stock of a European
derivative is a martingale under the corresponding risk-neutral measure. The Black-
Scholes model also implies the constant volatility assumption. Nevertheless, it is an
empirical fact that in the real world, prices do not correspond to the fixed value
of volatility as theory requires [7]. The solution adopted by traders is to extract
implied volatilities from market prices of options. Implied volatility can be seen as
what the market believes the volatility should be and depends on the strike price
and maturity of an option. A plot of the implied volatility as a function of the strike
price is commonly referred as the implied volatility smile [5].

Another example of complete market and a very popular and useful technique for
valuing options is the binomial option pricing model. It was firstly introduced by
John Cox, Stephen Ross and Mark Rubinstein [9] in 1979. This approach has
been widely used due to its simplicity, and the fact that it is more accurate than
the Black-Scholes model, particularly for longer-dated options on securities with
dividend payments. Subsequently, the trinomial model was formulated by Phelim
Boyle [10] in 1986 as an extension of the binomial model. The trinomial asset pricing
model introduces three possible price movements that an underlying asset can have
in one time period. It incorporates that the risk-neutral probability measure is not
unique and that the price of the European derivative is also not uniquely defined.
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The trinomial asset pricing model is the simplest example of an incomplete market.

The purpose of this thesis is to investigate the possible connection between the
implied volatility and incomplete markets. The common approach to resolve this
shortcoming of the Black–Scholes model is by assuming that the volatility of the
underlying stock is a stochastic process itself. While stochastic volatility models
can reproduce the smile, they have a major disadvantage. For general stochastic
volatility models, the pricing equations of European derivatives are not analytically
solvable, and they are very hard to calibrate. Examples of stochastic volatility
models are Heston, SABR and GARCH models [14]. This thesis approaches this
problem in a different way, namely the trinomial option pricing model as an example
of incomplete market is used to justify the volatility curves.

The thesis begins with an introduction to the risk-neutral probability measure and
pricing under it including some basic notions about the option pricing of a stan-
dard European derivative. It also covers the theory behind implied volatility and
incomplete markets. Chapter three is devoted to formulating the trinomial model
and its interpretation in a probabilistic sense. The conditions of the existence of
the risk-neutral (or martingale) probability measure are found for the general model
and for important special case. Thereafter, the conditions under which the stock
price converges to the geometric Brownian motion in the time continuous limit are
investigated. Two cases will are treated separately, videlicet with and without the
recombination condition. The chapter ends with a discussion dedicated to the tri-
nomial option pricing theory and the fair price of a European derivative will be
derived. The forth chapter is dedicated to the empirical analysis where Matlab is
used for numerical computations. The purpose of this chapter is to numerically see
the connection between the implied volatility and our incomplete model. Worth
to mention, that only European call option is included in the analysis through the
thesis.
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2

Background

The first part of this chapter gives a brief introduction to the risk-neutral measure
and pricing under it. Further, two fundamental theorems of asset pricing are pre-
sented as a part of the discussion dedicated to the markets incompleteness. There-
after, some basic notions about the option pricing of a standard European derivative
including the binomial and Black-Scholes models are introduced. The purpose of the
last section is to provide an introduction to the theory behind the implied volatility.

2.1 Risk-Neutral Probability Measure

Throughout this section, we assume that the probability space (Ω,F ,P) is given
and the filtration {FW (t)}t>0 is generated by a Brownian motion {W (t)}t>0. One
can interpret P as the actual probability measure or the real-world probability.

Definition 2.1.1. A probability measure P̃ is called a risk-neutral (or martingale)
probability measure if the following is true:

(i) P̃ and P are equivalent, i.e., for every A ∈ F , P(A) = 0 if and only if P̃(A) = 0.

(ii) The discounted price of the stock {S∗(t)}t>0 is a P̃-martingale relative to
filtration {FW (t)}t>0.

Recall that S∗(t) = e−rtS(t) is called the discounted price of a stock, where r is the
risk-free rate of the money market. It means that at time t = 0 the amount S∗(t)
should be invested in the risk-free asset in the way that it replicates the value of
the stock at time t. Denote Ẽ the conditional expectation in the probability space
(Ω,F , P̃). Then S∗(t) is a martingale if and only if
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Ẽ[S∗(t2) | FΩ(t1)] = S∗(t1), t2 > t1

where {FS(t)}t>0 is the filtration generated by {S(t)}t>0. Moreover, since martin-

gales have constant expectation Ẽ[S(t)] = S0e
rt [3]. Put in another words, in the

risk-neutral (or martingale) probability measure, the return of the stock is the same
as of the risk-free asset.

Let {(hS(t), hB(t)}t>0 be a self-financing portfolio process consisting of hS(t) shares
of stock and hB(t) shares of the risk-free asset at time t. Then its value {V (t)}t>0

is given by V (t) = hB(t)B(t) + hS(t)S(t).

Theorem 2.1.1. If {(hS(t), hB(t)}t>0 is a self-financing portfolio process with value

{V (t)}t>0, then the discounted portfolio value V ∗(t) = e−rtV (t) is a P̃-martingale
relative to the filtration {FW (t)}t>0, that is

V ∗(t) = Ẽ[V ∗(T ) | FΩ(t)], t 6 T (2.1)

Definition 2.1.2. An arbitrage is a portfolio value process whose value {V (t)}t>0

satisfies the following set of conditions:

V (0) = 0, P{V (T ) > 0} = 1 P{V (T ) > 0} > 0.

Thus, an arbitrage opportunity is a self-financing strategy where one starts with
zero initial value and, at some future time T , is sure to have a non-negative final
value and furthermore a positive probability of having positive final value, thereby
making a profit [6].

2.2 Incomplete Markets

Theorem 2.2.1 (First fundamental theorem of asset pricing). The market is arbitrage-

free if there exists a risk-neutral probability measure P̃.

We will consider only the European-style derivative on the stock which means that
the derivative can be exercised only at the maturity time T . Let Y be a FW (T )-
measurable random variable with finite expectation. The fair price of the derivative
at time t < T we will denote as ΠY (t). By definition ΠY (t) equals the value of self
financing-hedging portfolio V (t). Having that the hedging condition is V (T ) = Y
(that is V (T, ω) = Y (ω) for all ω ∈ Ω) and due to the equation (2.1), we may write
the risk-neutral pricing formula:
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ΠY (t) = e−r(T−t)Ẽ[Y | FΩ(t)] (2.2)

The next result is the key for the further development.

Theorem 2.2.2 (Second fundamental theorem of asset pricing). An arbitrage-free
market is complete if and only if the risk-neutral probability measure is unique.

Therefore, if we assume that the market is free of arbitrage, meaning that there
exists an equivalent martingale measure P̃, but it is not uniquely defined, the market
will be considered incomplete [6]. Moreover, in this case, we have to choose one of
this measures to price the derivative. Hence, when the market is incomplete, the
risk-neutral price of the European derivative is not unique.

2.3 Option Pricing

We start this section with a small discussion dedicated to the option pricing theory.
Recall that an option is a security that gives the right to buy or sell an asset at a
fixed price within a specified period of time. The fixed price that is paid for the asset
when the option is exercised is called the strike price and the given date on which
the option may be exercised is called the expiration date. A call option gives the
right to buy and a put option to sell. An American-type option is the one that can
be exercise at any given time prior to maturity. A European option can be exercise
only at maturity [8].

The option price is determined by the market as the fair value that the buyer is
willing to pay and the seller is willing to get in order to create a binding contract.
What is more, the fair price should be found in a way that it excludes arbitrage
opportunities. In other words, neither of parties should benefit from the transaction,
namely neither the buyer nor the seller is able to make the guaranteed risk-free profit
from buying or selling the derivative [1].

The fair price of the derivative is the quantity that is needed to open a self-financing
hedging portfolio. In order to understand this logic, assume that an option is sold
for ΠY (t) at time t, and that the seller invests this amount in a 1 + 1 dimensional
market consisting of an underlying asset and a risk-free asset. Moreover, assume
that the portfolio is self-financing, i.e., there is no movement of money in or out
of the portfolio, and the value of the portfolio at maturity T is equal to the payoff
Y of the option. From the above, we have that portfolio is hedging the option,
and therefore one can conclude that the fair price ΠY (t) of the derivative should be
equal to the value of a self-financing hedging portfolio [2]. Mathematically it means
that the fair value of the option is equal to its discounted expected payoff at the
expiration.
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The binomial option pricing model is the simplest method to price an option. The
option price under the Black-Scholes framework also has an analytical solution for
the fair price, see equation (2.4) below. Both models provide the unique risk-neutral
price of the derivative, and therefore the binomial and the Black-Scholes market are
considered to be complete.

2.4 Binomial Option Pricing

One of examples of complete market is the binomial option pricing model. It is
a simple time-discrete model for valuing options [13]. Let us denote by S(t) the
binomial stock price at time t. The model is interested in monitoring the evolution
of the stock price on some finite time interval [0, T ] which can be viewed as the life
of an option. The maturity day of the option T > 0 and the price of the stock at
time t = 0, i.e., S(0) = S0 are known.

The underlying assumption is that the stock price follows a random walk. Hence,
the binomial stock price can only change at some given pre-defined time steps 0 =
t0 < t1 < ... < tN = T . We assume that the time steps are equidistant, so for some
h < T the following is true ti − ti−1 = h > 0 for all i = 1, ..., N .

By letting u, d ∈ R, u > d and p ∈ (0, 1), the binomial stock price is determined by

S(t) =

{
S(t− 1)eu, with probability p

S(t− 1)ed, with probability 1− p
(2.3)

for all t ∈ I = {1, ..., N}. If S(t) = S(t)eu the stock price goes up at time t and if
S(t) = S(t− 1)ed down respectively (in the application u > 0 and d < 0 are usually
chosen). We may interpret p as the real-world or physical probability. The possible
stock prices at time t belong to the set {S0e

Nu(t)u+(t−Nu(t))d, Nu(t) = 0, ..., t}, where
Nu(t) stands for the number of times the price can go up until the time t included.
It follows that there exists 2N possible paths of the stock price in a N -period model.

Given p ∈ (0, 1), the probability space ΩN = {H,T}N , Pp({ω}) = pNH(ω)(1−p)NT (ω)

is called the N -coin probability space. Here NH(ω) is the number of heads in the toss
ω ∈ ΩN and NT (ω) is the number of tails. The binomial stock price is a stochastic
process defined on the N -coin toss probability space (ΩN ,Pp). Let us consider the
following random variable:

Xt : ΩN → R, Xt(ω) =

{
u, if the tth toss ω is H

d, if the tth toss ω is T

16



We consider that the binomial stock price can be interpreted as a stochastic process
defined on this probability space. The equation (2.3) then can be rewritten as

S(t) = S(t− 1)exp[(
u+ d

2
+

(u− d)Xt

2
)]

and by iteration

S(t) = S0exp[(
u+ d

2
+

(u− d)

2
)Mt], Mt = X1 + ...+Xt, t ∈ I

Thus, S(t) : ΩN → R is a random variable and {S(t)}t∈I is a discrete stochastic
process on the probability space (ΩN ,Pp). Moreover, S(1, ω), ..., S(N,ω)) is a path
for this stock price for each ω ∈ ΩN .

Recall from the previous chapter that a 1 + 1 dimensional market is a market con-
sisting of of a risky asset such that the price of this asset is given by the binomial
model and a risk-free asset. The value of the risk-free asset at time t is given by a
deterministic function of time B(t) = B0e

rt [1]. Here we assume that interest rate
r of the money market is constant, and that the initial value of the risk-free asset
B0 = B(0) is known.

Recall that the discounted price of the stock is defined as S∗(t) = e−rtS(t) and that
by Ep we denote the conditional expectation in the corresponding probability space
(ΩN ,Pp).

Theorem 2.4.1. If r 6= (u, d), there exists a probability measure Pp on the sample
space ΩN such that the discounted stock price {S∗(t)}t∈I is a martingale. Moreover,
for r ∈ (u, d), {S∗(t)}t∈I is a martingale only in the special case when p = q, where

q =
er − ed

eu − ed

Thus, due to the Theorem 2.4.1, the probability measure Pq is called the martingale
probability measure. The focus of this thesis is the trinomial option pricing model
which is an extension of the binomial model and which will be investigated more
profoundly in the next chapter.

2.5 Black-Scholes Pricing

Another example of complete market is Black-Scholes. In this section we consider
the Black-Scholes market consisting of a risky asset, i.e., a non-dividend-paying
stock, a risk-free asset with a constant interest rate r > 0, and options on the stock.
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In the Black-Scholes theory, it is assumed that the stock price {S(t)}t∈[0,T ] is given
by the geometric Brownian motion

dS(t) = rS(t)dt+ σS(t)dW̃

where r is the constant interest rate, W̃ (t) is a Brownian motion in the risk-neutral
probability measure and σ > 0 is the volatility of the stock price. The risk-free asset
price {B(t)}t∈[0,T ] is given by B(t) = B(0)ert.

Definition 2.5.1. Consider a simple derivative of a European type with a pay-off
function Y = g(S(T )) at time of maturity T > 0. The Black-Scholes price of the
derivative at time t ∈ [0, T ] is defined as

ΠY (t) = υg(t, S(t))

where

υg(t, x) = e−rτ Ẽ[g(x)e(r−σ
2

2
)τ+σ(W̃ (T )−W̃ (t))) | Fw(t)]

where τ = T − t is the time left to the expiration of the derivative. Since the market
parameters are constant, then FW (t) = FW̃ (t), and the increment W̃ (T ) − W̃ (t) is
independent of FW̃ (t), the pricing function υg above becomes

υg(t, x) = e−rτ Ẽ[g(x)e(r−σ
2

2
)τ+σ(W̃ (T )−W̃ (t)))] (2.4)

=
erτ√
2π

∫
R
g(x)e(r−σ

2

2
τ)+σ

√
τy)e−

y2

2 dy

The Black-Scholes model assumes that the price of an asset follows a geometric
Brownian motion with constant drift and volatility [12]. However, it is an empirical
fact that in the real world, prices do not correspond to the fixed value of volatility as
theory requires. The difference between the Black-Scholes price and the market price
is expressed in terms of the implied volatility of the derivative, which is discussed
in more details in the section below.

2.6 Implied Volatility

In this section we will focus our discussion on the European call option. We thereby
assume that the pay-off is given by

Y = (S(T )−K)+, i.e., Y = g(S(T )), g(z) = (z −K)+

In the Black-Scholes model the price of the European call option with the strike
price K > 0 and fixed maturity T > 0 on a stock with price S(t) at time t is given
by the following formula

18



C(t, S(t), K, T ) = S(t)Φ(d1)−Ke−rτΦ(d2) (2.5)

where r > 0 is the constant interest rate of the money market, τ = T − t is the time
left to the expiration of the call,

d2 =
lnS(t)

K
+ (r − σ2

2
τ)

σ
√
τ

d1 = d2 + σ
√
τ

and Φ denoted the standard normal distribution

Φ(z) =

∫ z

−∞
e−

y2

2
dy√
2π

Under the above setting, the interest rate and the volatility are model parameters
which we want to estimate. Maturity T and strike price K differ for every option.
From all the quantities listed above, the volatility is the one that is more difficult
to estimate [2]. Therefore, we re-denote the price as

C(K,T, σ)

implying that we fix time t and price S(t), and we disregard the dependence on r.
Now assume that at some given fixed time t, we observe the real market price of a
European call option, say Cobs(K,T ), with maturity time T and strike price K.

Definition 2.6.1. The implied volatility σimp of a European call option is a strictly
positive solution of the equation

Cobs(K,T ) = C(K,T, σimp) (2.6)

In other words, the σimp is the volatility that, when substituted into the Black-
Scholes formula, makes the theoretical call price agrees with the market price. Note
that the implied volatility is a function of T,K.

Proposition 2.6.1. There can only be at most one solution to the Equation (2.6),
and if

Cobs(K,T ) ∈ ((S(t)−Ke−rt)+, S(t)) := U (2.7)

there exists exactly one strictly positive solution.

Proof. If the residual time τ is strictly positive

∂C

∂σ
= S(t)ϕ(

lnS(t)
K

+ (r + σ2

2
τ)

σ
√
τ

)
√
τ
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= S(t)ϕ(d1)
√
τ = S(t)e−

d12

2

√
τ

2π
> 0

It is easy to see that

lim
σ 7−→0+

C(t, S(t), K, T, σ) = lim
σ 7−→0+

e−rτE[(S(t)e(r−σ
2

2
)τ+σ

√
τy−K)+] = (S(t)−Ke−rτ )+

and
lim
σ 7−→∞

C(t, S(t), K, T, σ) = lim
σ 7−→∞

{S(t)Φ(d1)−Ke−rτΦ(d2)} = S(t)

Hence, C(K,T, ·) is strictly increasing and takes values in U ⊂ (0,∞), by which the
result follows.

Therefore, under the condition (2.7) there will always exist a unique solution σimp
of the equation (2.6). If the Black-Scholes model was correct, then σimp(K,T ) =
σ = constant for all K and T . However, empirical results indicate that in real world
this is not true and that the implied volatility as a function of K is most often not
a flat curve. Not only is the volatility surface not flat but it actually varies, often
significantly, with time. This effect has been commonly referred as the implied
volatility smile (a U-shaped curve) or skew (a downward sloping curve) or smirk (a
downward sloping curve with increase for large strike price). Therefore, the implied
volatility σimp(K,T ) can be seen as the quantitative measure of how real market
deviates from the Black-Scholes option pricing theory. The empirical evidence thus
shows that is does not seem plausible to price options with the constant volatility
assumption and few possible reasons were proposed to explain this effect, one of
which suggests that the market imperfection exists [11].
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3

The Trinomial Model

3.1 Foundation of the Trinomial Model

In this chapter, we will discuss the trinomial model as an example of incomplete
market. As was mentioned previously, the trinomial model is an extension of the
binomial model that incorporates three possible values that an underlying asset can
have in one time period [4]. Within this chapter we formulate the basic concepts of
the trinomial model and its probabilistic interpretation. Thereafter, the conditions
under which this model converges to the geometric Brownian motion are investi-
gated. The chapter ends with a discussion dedicated to the trinomial option pricing
theory and the fair price of a European derivative will be derived.

We start by assuming that the asset price at the present time is known, i.e. S(0) =
S0 > 0, the possible values of S(t) are:

S(t) =


S(t− 1)eu,with probability pu

S(t− 1)em,with probability pm

S(t− 1)ed,with probability pd,

where u > m > d, pu, pm, pd ∈ (0, 1) and pu+pm+pd = 1. We assume that the risky
asset is a stock and that the risk-free asset has valueB(t) = B0e

rt, t ∈ I = {1, ..., N},
r is constant.

The figure below shows the general 3-period trinomial tree with 6 possible values of
S(N) when N = 2, and 10 possible values when N = 3 respectively.
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S(3) = S0e
3u

S(2) = S0e
2u S(3) = S0e

2u+m

S(3) = S0e
2u+d

S(1) = S0e
u S(2) = S0e

u+m S(3) = S0e
u+2m

S(2) = S0e
u+d S(3) = S0e

u+m+d

S(0) = S0 S(1) = S0e
m S(2) = S0e

2m S(3) = S0e
3m

S(3) = S0e
u+2d

S(1) = S0e
d S(2) = S0e

d+m S(3) = S0e
d+2m

.

S(2) = S0e
2d S(3) = S0e

2d+m

.

S(3) = S0e
3d

Let us compute the number of possible prices at time t in the N−period binomial
model and show that it is growing quadratically. The possible stock prices at time
t belong to the set

A ={S0e
Nu(t)u+Nm(t)m+Nd(t)d, Nu(t) = 0, ..., t;Nm(t) = 0, ..., t;Nd(t) = 0, ..., t;

Nu +Nm +Nd = t},

where Nu, Nm, Nd are the numbers of times that the stock price changes with rates
u, m and d respectively.

It is clear that Nu + Nm + Nd = t, so the total number of elements of the set A is
equal to the total number of integer positive solution of the following equation:

x1 + x2 + x3 = t

When considering the general case, the equation x1 + ...+xk = t has
(
t+k−1
k−1

)
integer

positive solutions. So in our case there are

22



(
t+ 3− 1

3− 1

)
=

(
t+ 2

2

)
=

(t+ 2)!

2!t!
=

(t+ 1)(t+ 2)

2

3.2 The Possible Stock Prices at time t

For simplification purposes, we shall later reduce the number of nodes by imposing
the recombination condition of the following form

m =
u+ d

2

and thus restrict the trinomial stock price to

S(t) =


S(t− 1)eu,with probability pu

S(t− 1)e
u+d
2 ,with probability pm

S(t− 1)ed,with probability pd

(3.1)

with u > d, t ∈ I.

Making use of the recombination condition, we obtain the 3-step trinomial tree with
7 nodes at t = 3.

We know show that in this case the number of possible stock prices at time t in the
trinomial model is 2t+ 1. Recall that Nu(t), Nm(t), Nd(t) are the numbers of times
the stock changes in value with rates u, m and d respectively. For simplicity denote
Nu(t) = k,Nm(t) = l and Nd(t) = t − (k + l). In our case, we have that m = u+d

2
,

which gives

ku+ l
u+ d

2
+ (t− k − l)d =

= u(k +
l

2
) + (t− k − l

2
)d =

= uv + (t− v)d,

where v = k + l
2
.

So now the general form of the states of prices can be represented as uv + (t− v)d,
where v takes its value from the set A, such that A = {0, 1

2
, 1, 3

2
, 2, ..., t}. Therefore,

the number of elements of the set A equals 2t+ 1.

Hence, we obtain that the trinomial model with the recombination condition has
the linear rate of growth of number of nodes, as the binomial model. Moreover, as
in the application of the binomial model, we shall later assume that u = −d.

23



3.3 Martingale Probability Measure

Let Ω = {−1, 0, 1}N and p = (pu, pm, pd), we define probability Pp on the sample
space Ω by letting

Pp(ω) = pN+(ω)
u pN0(ω)

m p
N−(ω)
d

where pu, pm, pd ∈ (0, 1), pu + pm + pd = 1 and N±(ω) is the number of ±1 and
N0(ω) = N −N+(ω)−N−(ω) is the number of zeroes.

The trinomial stock price S(t) : Ω→ R and {S(t)}t∈I is a stochastic process in the
probability space (Ω,Pp).

Theorem 3.3.1. There exists a probability measure Pp on the sample space ΩN

such that the discounted stock price {S(t)}t∈I is a martingale if and only if p = q =
(qu, qm, qd) where 

euqu + emqm + edqd = er

qu + qm + qd = 1

qu, qm, qd > 0

(3.2)

Proof. The process S∗(t) = e−rtS(t), t ∈ I is a martingale for all t ∈ I if and only if

Ep[e−rtS(t)|S∗(1), ..., S∗(t− 1)] = e−r(t−1)S(t− 1)

The expectation conditional to S∗(1), ..., S∗(t− 1) is the same as taking the expec-
tation conditional to S(1), ..., S(t− 1), therefore

Ep[e−rtS(t)|S∗(1), ..., S∗(t− 1)] =

= Ep[e−rtS(t)|S(1), ..., S(t− 1)] =

= e−rtEp[S(t)|S(1), ..., S(t− 1)]

Moreover,
Ep[S(t)|S(1), ..., S(t− 1)] =

= Ep[
S(t)

S(t− 1)
S(t− 1)|S(1), ..., S(t− 1)] =

= S(t− 1)Ep[
S(t)

S(t− 1)
|S(1), ..., S(t− 1)] =

where we used that S(t− 1) is measurable with respect to the conditional variables.

We know that the random variable

S(t)

S(t− 1)
=


eu,with probability qu

em,with probability qm

ed,with probability qd
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is independent of S(t), ..., S(t− 1), and therefore we have

Ep[
S(t)

S(t− 1)
|S(1), ..., S(t− 1)] =

= Ep[
S(t)

S(t− 1)
] = euqu + emqm + edqd

Then,
Ep[e−rtS(t)|S∗(1), ..., S∗(t− 1)] =

= e−rtS(t− 1)(euqu + emqm + edqd) =

= e−r(t−1)S(t− 1)

if and only if euqu + emqm + edqd = er. So
euqu + emqm + edqd = er

qu + qm + qd = 1

qu, qm, qd > 0

are conditions for S∗(t) = e−rtS(t) to be a martingale.

Let us now study condition of existence of martingale probability measure. We know
that there exists infinitely many triples (qu, qm, qd) that satisfy (3.2) when m = u+d

2
.

The solution of the equations in the system (3.2) can be written in the parametric
form as

qu =
er − ed

eu − ed
− ω ed/2

eu/2+ed/2
, qm = ω, qd =

eu − er

eu − ed
− ω eu/2

eu/2 + ed/2
(3.3)

where ω is a free parameter, and r, u, d are market parameters. It remains to show
when the inequalities qu + qm + qd > 0 are satisfied. We study first a special case.

Theorem 3.3.2. Let r > 0, u > 0 and u = −d. qu, qd, qm are probabilities that
satisfy (3.3) if and only if

u > r, 0 < ω =
eu − er

eu − 1
(3.4)

where
qu + qd + qm = 1, qu, qd, qm > 0 (3.5)

Proof. The equality in 3.5 holds always. Having that r > 0, u > 0 and u = −d, then
for qd we have

qd =
e−d − er

e−d − ed
− ω ed/2

e−d/2 + ed/2
> 0
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This inequality is equal to

e−d − er

e−d/2 − ed/2
− ωe−d/2 > 0

and therefore

ω <
e−d − er

e−d − 1
=
eu − er

eu − 1
(3.6)

Right-hand side in (3.6) is bigger than zero if and only if −d > r or u > r. Thereby,
qd and qm are > 0 if and only if {

u > r

0 < ω < eu−er
eu−1

(3.7)

Similarly we can show that

qu =
e−d/2

e−d/2 + ed/2
(
er − ed

1− ed
− ω)

So qu > 0 if er−ed
1−ed > ω. But we know that ω < eu−er

eu−1
from 3.7. Hence, for er−ed

1−ed > ω
the following should hold:

er − ed

1− ed
>
eu − er

eu − 1
=
e−d − er

e−d − 1

as d = −u or
er−d − 1 > e−d − er

The last inequality is equivalent to

er − ed > 1− er+d

This inequality is true if 0 < r < −d. Indeed fot the function f(r) = er−ed−1+er+d

we have that d
dr
f(r) = er + er+d > 0 and hence the function f(r) is increasing with

respect to r. But f(0) = 0, so f(r) > 0 for 0 < r < −d or 0 < r < u, which is
equivalent to qu > 0. Therefore, qu, qd, qm > 0 if (3.7) holds.

One can conclude that when m = u+d
2

and u = −d, the triples qu, qm, qd given in
(3.3) define a probability if and only if

u > r, 0 < ω =
eu − er

eu − 1
(3.8)

The first condition is rather intuitive. Recall that r determines the interest rate
of the risk-free asset of a portfolio, i,e, the growth of value for the risk-free asset.
Therefore, it would make little sense if the bond was growing more in value than the
stock. The second condition is crucial for existence of the martingale probability
measure from which it follows that the market is arbitrage-free according to the first
fundamental theorem of asset pricing.

Generalisation: Let us also study the general case of the existence of martingal
probability measure, i.e. when u 6= −d. Here qu, qd, qm are probabilities that satisfy
(3.3) if and only if
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qu, qd, qm > 0⇔ 0 < w < min(
er − ed

em − ed
,
eu − er

eu − em
) (3.9)

where
qu + qd + qm = 1, qu, qd, qm > 0 (3.10)

Proof. The equality 3.10 holds as

qu + qd + qm =
er − ed

eu − ed
+
eu − er

eu − ed
+ w − (

em − ed

eu − ed
+
eu − em

eu − ed
)w = 1 + w − w = 1

Now we consider

qd =
eu − er

eu − ed
− ωe

u − em

eu − ed
> 0

qd =
eu − er

eu − ed
> ω

eu − em

eu − ed
(3.11)

Which can be rearranged as

qd > 0⇔ w <
eu − er

eu − em

Therefore, we must take u > r for 3.11 to hold. In the same way,

qu =
er − ed

eu − ed
− ωe

m − ed

eu − ed
> 0 (3.12)

⇔ ω <
er − ed

em − ed
Hence, in this case, we must have r > d for 3.12 to hold.

To sum up, it is rather intuitive that d < r < u as risk-free rate cannot be bigger
or smaller than the stock. The second condition imposed on the ω means that
by choosing ω in such way, there will exist the martingale probability measure.
Moreover, in the limit ω → 0, the trinomial model becomes binomial and the solution
(3.9) converges to the martingale probability measure of the binomial model.

3.4 Convergence to the Geometric Brownian Mo-

tion

The purpose of this section is to show that the trinomial stock price converges to
the geometric Brownian motion in the time-continuous limit. We treat separately
the case with and without the recombination condition.
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The Geometric Brownian Motion is a stochastic process {S(t)}t>0, where

S̃(t) = S(0)eαt+σW (t)

where {W (t)}t>0 is a Brownian Motion, α is the instantaneous mean of log-return
and σ is volatility of a stock with price S̃(t). Let us consider a partition 0 = t0 <
t1 < ... < tN = t of the interval [0, t] with uniform size ti+1− ti = h. Recall that our
trinomial model with the recombination condition has the following structure:

S(ti) =


S(ti−1)eu,with probability pu

S(ti−1)e
u+d
2 ,with probability pm

S(ti−1)ed,with probability pd

(3.13)

We can rewrite 3.13 as

S(ti) = S(ti−1)exp[N(
u+ d

2
) + (

u− d
2

)Xi],

where

Xi =


1,with probability pu

0,with probability pm

−1,with probability pd

Iterating the previous identity, the trinomial stock price at time t = tN is

S(t) = S0 exp[N(
u+ d

2
) + (

u− d
2

)MN ],

where MN = X1 + ...+XN , N = t
h
.

Theorem 3.4.1. Let u and d be chosen in such way that

u = σ(1− pu + pd)

√
h

(pu + pd)(1− pu − pd)
+ αh (3.14)

d = −σ

√
h

(pu + pd)(1− pu − pd)
+ αh (3.15)

then S(t)→ S̃(t) in distribution.

Proof. Firstly, we will obtain the expected values and variances of the logarithm of
S̃(t) and S(t) divided by the initial stock price:

E[log
S̃(t)

S(0)
] = E[αt+ σW (t)] = αt
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Var[log
S̃(t)

S(0)
] = Var[αt+ σW (t)]σ2t

E[log
S(t)

S(0)
] = E[N(

u+ d

2
) + (

u− d
2

)MN ] =

= N(
u+ d

2
) + (

u− d
2

)E[MN ] =

= N(
u+ d

2
) + (

u− d
2

)E[
N∑
i=1

Xi] =

= N(
u+ d

2
) + (

u− d
2

)NE[X1] =

= N(
u+ d

2
) + (

u− d
2

)N(pu − pd)

In the same way,

Var[log
S(t)

S(0)
] = Var[N(

u+ d

2
) + (

u− d
2

)MN ] =

= Var[(
u− d

2
)MN ] = (

u− d
2

)2Var[MN ] =

= (
u− d

2
)2NVar[X1] = (

u− d
2

)2N(EX2
1 − (EX1)2) =

= (
u− d

2
)2N(pu + pd − (pu + pd)

2)

S(t) and S̃(t) must have the same expected value and the same variance:

αt = N [(
u+ d

2
) + (

u− d
2

)(pu − pd)] =

=
t

h
[(
u+ d

2
) + (

u− d
2

)(pu − pd)]⇒

α =
1

h
[(
u+ d

2
) + (

u− d
2

)(pu − pd)] (3.16)

σ2t =
t

h
(
u− d

2
)2(pu + pd − (pu + pd)

2)⇒

σ2 =
1

h
(
u− d

2
)2(pu + pd − (pu + pd)

2) (3.17)

By solving the equations (3.16) and (3.17) in terms of u and d, one finds that the
solution is given by (3.14) and (3.15).
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Now we will show that if we choose our parameters so that (3.16) and (3.17) holds,
then

N(
u+ d

2
) + (

u− d
2

)MN → αt+ σW (t) (3.18)

in distribution.

Then (3.18) is equivalent to

N(
u+ d

2
) + (

u− d
2

)MN → αt+ σ
√
tN(0, 1)

or
N(u+d

2
) + (u−d

2
)MN − αt

σ
√
t

→ N(0, 1)

Then
N(u+d

2
) + (u−d

2
)MN − αt

σ
√
t

=

=
N(u+d

2
) + (u−d

2
)MN − t

h
[(u+d

2
) + (u−d

2
)(pu − pd)]√

t
h
(u−d

2
)2(pu + pd − (pu + pd)2)

=

=
N(u+d

2
) + (u−d

2
)MN −N(u+d

2
)−N(u−d

2
)(pu − pd)√

N(u−d
2

)2(pu + pd − (pu + pd)2)
=

=
(u−d

2
)MN −N(u−d

2
)(pu − pd)

(u−d
2

)
√
N(pu + pd − (pu + pd)2)

=

=
MN −N(pu − pd)√

N(pu + pd − (pu + pd)2)
=

=

∑N
i=1 Xi − E(

∑N
i=1Xi)√

V ar[
∑N

i=1Xi]
→ N(0, 1)

in distribution (according to the central limit theorem).

Generalisation: Now we treat the general case without the recombination con-
dition. The general trinomial model of the change of the price of an asset is the
following

S(ti) =


S(ti−1)eu,with probability pu

S(ti−1)em,with probability pm

S(ti−1)ed,with probability pd

Or uniformly the latter can be replaced as

S(ti) = S(ti)e
a+bxi
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where xi is a random variable with the distribution

Xi =


1,with probability pu

c,with probability pm

−1,with probability pd

Then we want

ea+bxi =


S(ti−1)eu,with probability pu

S(ti−1)em,with probability pm

S(ti−1)ed,with probability pd


a+ b = u

a+ cb = m⇒
a− b = d


a = u+d

2

b = u−d
2

c = m−a
b

Therefore,

c =
m− u+d

2
u−d

2

and c = 0 when m = u+d
2

.

If c 6= 0 then we can consider convergence S(t)→ S̃(t) = S(0)eαt+σW (t). Let us also
consider a partition 0 = to < t1 < ... < tN = t of the interval [0, t] with uniform size
ti+1− ti = h. We can write the same representation for S(ti) as in the previous case:

S(ti) = S(ti−1) exp[N(
u+ d

2
) + (

u− d
2

)Xi],

But now

Xi =


1,with probability pu

c,with probability pm

−1,with probability pd

Iterating the previous identity we can write for t = tN :

S(t) = S0 exp[N(
u+ d

2
) + (

u− d
2

)MN ],

where MN = X1 + ... + XN , N = t
h
. As in the previous case, let us obtain the

expected values and variances of the logarithm of S̃(t) and S(t) divided by the
initial stock price:
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E[log
S̃(t)

S(0)
] = E[log

Soe
αt+σW (t)

S0

] =

E[log eαt+σW (t)] = E[αt+ σW (t)] =

αt+ E[σW (t)] = αt+ σE[W (t)] = αt

In the same way:

Var[log
S̃(t)

S(0)
] = Var[αt+ σW (t)] =

Var[αt] + Var[σW (t)] = σ2Var[W (t)] = σ2t.

S̃(t) and S(t) must have the same expected value and the same variance, then:

E[log
S(t)

S(0)
] = N(

u+ d

2
) + (

u− d
2

)E[
N∑
i=1

Xi] =

= N(
u+ d

2
) + (

u− d
2

)NE[X1] =

= N(
u+ d

2
) + (

u− d
2

)N(pu + cpm − pd)

In the same way:

Var[log
S(t)

S(0)
] = Var[N(

u+ d

2
) + (

u− d
2

)MN ] =

= Var[(
u− d

2
)MN ] = (

u− d
2

)2Var[
N∑
i=1

Xi] =

= (
u− d

2
)2NVar[X1] = (

u− d
2

)2N(pu + c2pm + pd − (pu + cpm − pd)2)

Having that

E[log
S(t)

S(0)
] = E[log

S̃(t)

S(0)
]

Var[log
S(t)

S(0)
] = Var[log

S̃(t)

S(0)
]

we can write down the following equations:

αt = N [(
u+ d

2
) + (

u− d
2

)(pu + cpm − pd)] =
t

h
[(
u+ d

2
) + (

u− d
2

)(pu + cpm − pd)]
(3.19)

and

σ2t =
t

h
(
u− d

2
)2(pu + c2pm + pd − (pu + cpm + pd)

2) (3.20)
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The exact form solution of (3.19) and (3.20) in terms of u and d can be found but
is very complicated and not necessary here.

Now we will show that

N(
u+ d

2
) + (

u− d
2

)MN → αt+ σW (t) (3.21)

Then (3.21) is equivalent to

N(
u+ d

2
) + (

u− d
2

)MN → αt+ σ
√
tN(0, 1)

or
N(u+d

2
) + (u−d

2
)MN − αt

σ
√
t

→ N(0, 1)

Substituting α and σ in (3.19) and (3.20), we will have:

N(u+d
2

) + (u−d
2

)MN − αt
σ
√
t

=

=
N(u+d

2
) + (u−d

2
)MN −N [(u+d

2
) + (u−d

2
)(pu + cpm − pd)]√

(u−d
2

)2(pu + c2pm + pd − (pu + cpm − pd)2)
=

=
(u−d

2
)MN −N(u−d

2
)(pu + cpm − pd)

(u−d
2

)
√
N(pu + cpm + pd − (pu + cpm − pd)2)

=

=

∑N
i=1 Xi − E(

∑N
i=1Xi)√

V ar[
∑N

i=1Xi]
→ N(0, 1)

according to the central limit theorem.

This result has significant implications for the relevance of the trinomial model.
Not only does it mean that the model can be used to accurately approximate the
Geometric Brownian Motion. It also follows from this that, under certain conditions,
the trinomial model option price of European derivatives will converge to the Black-
Scholes price.

3.5 Trinomial Option Pricing

As an incomplete model, the trinomial model exhibits infinitely many martingale
measures (qu, qm, qd) as we have proven in the chapter 3.3. Each of this martingale
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measures generates a different price of the derivative with pay-off Y and maturity
T = N . Recall that at the moment of time t < T , the fair price of the option is
given but the following formula:

ΠY (t, w) = e−r(N−t)Eω[Y | S(1), ..., S(t)] (3.22)

where Eω is the expectation in the probability measure 3.3.

As justified in the section before, the fair price of the European derivative should
be equal to the corresponding value of a self-financing hedging portfolio. By setting
t = 0 in (3.22), we obtain that the risk-neutral price of the derivative in the trinomial
market with martingale probability (qu, qm, qd) is given by

ΠY (0, w) = e−rN
∑

x∈{u,m,d}N−t

(qu)
Nu(x)(qm)Nm(x)(qd)

Nd(x)Y (x) (3.23)

The following recurrence is crucial for the generalised valuation of the self-financing
portfolio.

Theorem 3.5.1. The fair price of European derivative at time t ∈ t = {0, ..., N−1}
satisfies the recurrence formula

ΠY (t, w) = e−r[quΠ
u
Y (t+ 1, w) + qmΠm

Y (t+ 1, w) + qdΠ
d
Y (t+ 1, w)], (3.24)

where Πu
Y (t+1, w),Πd

Y (t+1, w),Πm
Y (t+1, w) denote the one-step price of the option

at time t+ 1 if the stock price goes in the directions (u, d, w) respectively.

Proof. As S(1), ..., S(t) are S(t + 1)-measurable then E[Y | S(1), ..., S(t)] also is
S(t+ 1)-measurable and

Eω[Eω[Y | S(1), ..., S(t)] | S(t+ 1)]

= [Eω[Y | S(1), ..., S(t)]

Then
ΠY (t, w) = e−r(N−t)Eω[Y | S(1), ..., S(t)]

= e−r(N−t)Eω[Eω[Y | S(1), ..., S(t)] | S(1), ..., S(t)]

= e−re−r(N−(t+1))Eω[Y | S(1), ..., S(t), S(t+ 1) = S(t)eu]× (3.25)

×P{S(t+ 1) = S(t)eu}+ e−re−r(N−(t+1))E[Y | S(1), ..., S(t), S(t+ 1) = S(t)em]×

×P{S(t+ 1) = S(t)em}+ e−re−r(N−(t+1))E[Y | S(1), ..., S(t), S(t+ 1) = S(t)ed]×

×P{S(t+ 1) = S(t)ed} =
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Let us denote

Πu
Y (t+ 1, ω) = e−r(N−(t+1))Eω[Y | S(1), ..., S(t), S(t+ 1) = S(t)eu]

Πm
Y (t+ 1, ω) = e−r(N−(t+1))Eω[Y | S(1), ..., S(t), S(t+ 1) = S(t)em]

Πd
Y (t+ 1, ω) = e−r(N−(t+1))Eω[Y | S(1), ..., S(t), S(t+ 1) = S(t)ed]

Then 3.25 will be equal to

= e−rΠu
Y (t+ 1, ω)P{S(t+ 1) = S(t)eu}

+e−rΠm
Y (t+ 1, ω)P{S(t+ 1) = S(t)em}

e−rΠd
Y (t+ 1, ω)P{S(t+ 1) = S(t)ed}

And eventually we will obtain

ΠY (t, w) = e−r[quΠ
u
Y (t+ 1, w) + qmΠm

Y (t+ 1, w) + qdΠ
d
Y (t+ 1, w)]

and the initial value when t = N will be

ΠY (N,w) = Eω[Y | S(1), ..., S(N)] = Y

due to the properties of conditional expectation. Hence, pay-off Y can be interpret
as measurable with regard to S(1), ..., S(N).

In contrast to the binomial model, the fair price of the European derivative at
time t is not uniquely defined due to the existence of infinitely many risk-neutral
probabilities. For this reason, the trinomial market model is said to be incomplete.
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4

Empirical Analysis

We start this chapter with the implementation of the special case of the trinomial
model that has been used for the numerical results later on in this chapter. This
chapter also covers the dependence of the trinomial price on the free-parameter of
our model that is crucial for the empirical analysis. The second part of the chapter
is dedicated to the results that were obtained using Matlab and real market data,
and the corresponding discussion to it.

4.1 Implementation of the Trinomial Model

We recall that in applications to the real world, the trinomial model should be
properly re-scaled in time. Indeed, as was previously proven in Chapter 3.5 − 3.6,
the trinomial stock price after being properly re-scaled, converges in distribution to
the geometric Brownian motion in the time-continuous limit. Hence, let T > 0 be
the maturity of the European call option and consider the uniform partition of the
interval [0, T ] with the size h > 0 such that:

0 = t0 < t1 < ... < tN = T, ti − ti−1 = h

for all i ∈ I = {1, ..., N}.

We take a closer look at the trinomial model that will be studied numerically. Let
us set up the model where S(0) = S0 and it has the following structure:

S(ti) =


S(ti−1)eu,with probability pu

S(ti−1)e
u+d
2 ,with probability 1− pu − pd

S(ti−1)ed,with probability pd

where u > d and pu, pd are defined in such way that they satisfy pu, pd ∈ (0, 1/2).
The risk-free asset is defined as B(t) = B0e

rt, t ∈ I, and r is constant.
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Then the trinomial stock price on the given partition is

S(ti) = S(ti−1)exp[(
u+ d

2
) + (

u− d
2

)Xi], i ∈ I (4.1)

where

Xi =


1,with probability pu

0,with probability 1− pu − pd
−1,with probability pd

while B(ti) = B0e
rhi.

The instantaneous mean of log-return and the instantaneous variance of trinomial
stock price are defined as follows

α =
1

h
Ep[logS(ti)− logS(ti−1)]

σ2 =
1

h
V arp[logS(ti)− logS(ti−1)],

the parameter σ is called instantaneous volatility [13]. It is important to notice
that these parameters are computed using the physical probability and not the risk-
neutral probability. In our case α and σ are given by:

α =
1

2h
[u+ d+ (pu − pd)(u− d)], (4.2)

σ2 =
1

4h
[pu + pd − (pu + pd)

2)(u− d)2], (4.3)

We assume for the simplification purposes that pu = pd = p ∈ (0, 1/2), and let us
invert the equations above in order to express u and d.

u = αh+ σ

√
h

2(1− 2p)p
(4.4)

d = αh− σ

√
h

2(1− 2p)p
(4.5)

Note that most frequently in the application of the trinomial model, one sets the
parameters α, σ and then computes u, d. In our case it can be done directly by using
the equations (4.4)-(4.5).

Clearly, one can see that u 6= −d here, unless α = 0. Therefore, we go back to the
second part of the Chapter 3.4, and recall that Pp(ω) is the martingale probability
measure if and only if p = q = (qu, qm, qd), where probabilities (qu, qm, qd) satisfy the
following conditions:
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qu =
er − ed

eu − ed
− ω ed/2

eu/2+ed/2
, qm = ω, qd =

eu − er

eu − ed
− ω eu/2

eu/2 + ed/2
(4.6)

whereas ω is conditioned as

0 < ω < min(
er − ed

em − ed
,
eu − er

eu − em
)

The latter can be interpret as that we choose the free parameter qm = ω in such
way that the discounted stock price {S∗(t)}t∈{0,...,N} is a Pω-martingale.

It is necessary that d < r < u, i.e. that the risk-free rate is neither bigger nor smaller
than the stock. Let us investigate the case when m = u+d

2
, then m = 2αh

2
= αh.

Having that h > 0 is the size of the given partition 0 = t0 < t1 < ... < tN = T of
the interval [0, T ], the condition imposed on w can be rewritten as

0 < ω < min(
erh − ed

eαh − ed
,
eu − erh

eu − eαh
) := ωmax(h) (4.7)

For the simplification, let us denote

σ̂ =
σ√

2(1− 2p)p

Then u and d will be expressed as follows

u = σ̂
√
h+ αh, d = −σ̂

√
h+ αh

This model is trustworthy only if 0 < ω < ωmax. We now show that this holds
provided h is small in comparison to T (i.e., N >> 1). If this condition is violated,
N is considered too small. In fact, it is easy to see that when N → ∞ and h → 0
then

ωmax(h)→ 1

Proof. First, we start with the first part in the minimum

lim
h→0

erh − e−σ̂
√
h+αh

eαh − e−σ̂
√
h+αh

= lim
h→0

e(r−α)h − e−σ̂
√
h

1− e−σ̂
√
h
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by L’Hospital’s rule

= lim
h→0

(r − α)e(r−α)h + σ̂
2
√
h
e−σ̂

√
h

σ̂
2
√
h
e−σ̂

√
h

= lim
h→0

(r − α)2
√
h× e(r−α)h

σ̂e−σ̂
√
h

= 1

And for the second part in the minimum, we prove in the same way

lim
h→0

eσ̂
√
h+αh − erh

eσ̂
√
h+αh − eαh

= lim
h→0

eσ̂
√
h − e(r−α)h

eσ̂
√
h − 1

= lim
h→0

σ̂
2
√
h
eσ̂
√
h − (r − α)e(r−α)h

σ̂
2
√
h
e−σ̂

√
h

= lim
h→0

1− (r − α)2
√
h× e(r−α)h

σ̂eσ̂
√
h

= 1

Hence,
ωmax(h)→ 1

as claimed.

4.2 Dependence on the Free-Parameter

All the latter results are crucial for the empirical analysis that was conducted using
Matlab. In this section, we will see how the free-parameter ω impacts the trinomial
price of the derivative.

First, we start by calculating historical volatility. Historical volatility is a method
with the help of which we can approximate the unknown σ. Historical volatility
uses historical values of S(t) in order to approximate volatility. Therefore, it can be
computed as the standard deviation of log-returns of the asset based on historical
data [16]. The asset that we will consider is a stock. The log-returns of the stock
price in the interval ti−1, ti is given by

Ri = log(
S(ti)

S(ti−1)
), for i = 1, ..., n. (4.8)

39



Let T = t− t0, then the square root of the T-historical variance is the T-historical
volatility defined as

ˆσT (t) =
1√
h

√√√√ 1

n− 1

n∑
i=1

(Ri − R̄)2 (4.9)

where R̄ is sample mean of log-returns

R̄ =
1

n

n∑
i=1

Ri

It is a known fact that the historical variance of a stock is an unbiased estimator for
the instantaneous variance [1]. In order to numerically find the 20-days historical
volatility of the stock, the real-world data was collected from Yahoo Finance. The
observable data is the daily adjusted closing price of the S & P 500 stock market
index between August, 22, 2019 and September, 20, 2019. Then by using Matlab,
the following results of the stock were obtained:

α̂20 = 0.2945, σ̂20 = 0.1377

The market prices that are used are for the European call options on S & P 500 stock
market index. These data were obtained from Yahoo Finance at close on September,
23, 2019 with S0 = 2991.78. The conducted analysis includes 8 different maturity
dates, i.e., T = 1 day, T = 1 week, T = 1 month, T = 2 months, T = 3 months,
T = 6 months, T = 9 months and finally T = 1 year. Tables of data can be found
in the Appendix B. To obtain the corresponding stock prices using the trinomial
model, we have used the calculated above instantaneous mean of log-return α̂ and
instantaneous variance σ̂ of the stock. It can be shown that it is numerically most
efficient to set pu = pd = p = 0.25. Thereafter, we find the parameters of the
trinomial model u, d according to the discussion above and formulas (4.4) - (4.5).
The Matlab code for the stock prices of a European call can be found in Appendix
A.1.

As it was proven in the previous chapter, according to the recurrence formula, the
fair price of the European derivative at time t satisfies the equation

ΠY (t, w) = e−r[quΠ
u
Y (t+ 1, w) + qmΠm

Y (t+ 1, w) + qdΠ
d
Y (t+ 1, w)],

if and only if equations (4.6) - (4.7) hold. We compute the trinomial price of Euro-
pean call options with different strike prices and maturity times by using the Matlab
function presented in Appendix A.2.

We have previously proven that there exists one parameter family of risk-neutral
probabilities Pw such that {S∗(t)}t∈{0,...,N} is a martingale, thus the price of a deriva-
tive will depend on the free parameter w ∈ (0, ωmax). While keeping volatility and
other input parameters constant, we use the free-parameter ω to fit the data. In
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order to do so we also fix the maturity for options with different strike prices and
calibrate the model in order to find the unique trinomial option price that corre-
sponds to the market price. We estimate the value of ω in the way that it minimises
the difference between the observed data and trinomial prices, i.e., by solving the
problem

min
ω

(Ctrn(K,T ;ω)− Cobs(K, t))2

In order to solve this problem numerically, the collected data from the real market,
presented in the Appendix B, and the Matlab code in the Appendix A.3 were used.
Having concluded that fixing r = 0 implies no significant errors, we have chosen the
number of steps to be equal N = 1000 and r = 0. The remaining parameters S(0),
p, α and σ are kept constant and they are set to S0 = 2991.78, p = 0.25, α = 0.2945
and σ = 0.1377 respectively. The obtained data for values of ω for European call
options with different strike prices and maturities can also be found in the Appendix
B. Worth to mentions that our free-parameter ω now depends on (K,T ).

4.3 Results and Discussion

The purpose of this thesis is to investigate the possible connection between σimp and
incompleteness of the market. The standard interpretation of σimp says that we are
using a different value of implied volatility to price options with different T and K.
Hence, σimp is a function of (K,T ). The graph of the implied volatility of call options
as a function of the strike price is called volatility curve. If the options market were
perfectly described by the Black-Scholes model, the implied volatility would be a
deterministic constant independent of the strike price and thus the volatility curve
would be a flat horizontal line [5].

In this thesis, we approach this problem in a different way, namely by using the
trinomial model as the simplest example of the incomplete markets. This is done
by not changing the value of volatility as in our model now we have one extra
parameter ω that can reproduce the curve. As was shown previously, ω depends
on (K,T ) which is a rigorous assumption due to the theory. Then by using the
calibration method, we find such martingale measures that the trinomial prices of
European call options correspond to the observed market prices for the options with
the same input parameters K, T , and σ.

In order to investigate this connection, we first calculate numerically the implied
volatility for different European call options with different strike and maturities.
There is no closed formula to calculate the implied volatility, but by using numerical
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methods it is possible to get an approximation. Therefore, the implied volatility was
determined by looking at the actual market prices and was computed with the inbuilt
Matlab function blsimpv. All the data and input parameters were kept the same
as in the trinomial model discussed in the previous section. The obtained data for
values of σimp for European call options with different strike prices and maturities is
also presented in the Appendix B. For the sake of comparison, we plotted ω and σimp
across strike prices for options with the same time to expiration for eight different
maturity times in Matlab .

Before we begin with the analysis dedicated to the obtained figures ??-??, let us
recall the concept of moneyness. Moneyness is the relative position of the current
price of an underlying asset in relation to the strike price of a derivative. The
derivative is said to be in the money if it would have positive intrinsic value if it was
exercised today; if the current price and strike price are equal, it is said to be at the
money; and out of the money if the current strike price is higher than the market
price for this option [7]. One can interpret the options to the left from the vertical
line in the figures ??-?? as in the money, and to the right, as out of the money.

Implied volatility can be seen as the proxy of the market risk. A higher implied
volatility means that the stock price is predicted to move drastically before the
expiration date. Since the payoff of the European call option Y = max((S(t)−K), 0)
has a lower limit zero but no upper limit, one is expected to gain from a high
volatility than to lose from it. Therefore, it seems logic that the call option is an
increasing function of the volatility. Usually, volatility smile implies that deep in the
money and deep out of the money options are over-priced or under-priced in the real
market compare to the Black-Scholes price. As a general rule, the lowest point of the
volatility smile corresponds to the at the money options [15]. Nevertheless, not all
data align with the volatility smile. In our example, we ended up with the volatility
curves which fluctuate more for in the money options. This seems reasonable as
implied volatility fluctuates the same way the prices do.

The hypothesis is that in our trinomial model we know without doubt that we are
using different risk-neutral probabilities (martingale probabilities) in order to price
an option. On the example of our experiment, we want to justify that investors when
facing the volatility smile effect, are also using the different risk-neutral probabilities
for each option. This should be logic for deeply in the money, and out of the money
options as they appear to be more risky, so the different risk neutral measure must
be used. The benefit of the risk-neutral pricing approach is that once the risk-
neutral probabilities are calculated, they can be used to price every asset based on
its discounted expected payoff.

It is worth pointing out that the trinomial price calculated with the ω = 0 is identical
to the price calculated with the binomial model. As ω decreases, qu, qd will increase
since qu + ω + qd = 1 and vice versa. The observed data in the Appendix B shows
that when ω decreases, the call price seems to increase. One can see visually in the
figures ??-?? that the curve for ω replicates the curve for the σimp. Therefore, we
conclude that choosing the value of ω is equivalent to choosing the value of σimp.
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Figure 4.1: ω and σimp across strike prices for European call options with time to expira-
tion 1 Day

Figure 4.2: ω and σimp across strike prices for European call options with time to expira-
tion 1 Week
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Figure 4.3: ω and σimp across strike prices for European call options with time to expira-
tion 1 Month

Figure 4.4: ω and σimp across strike prices for European call options with time to expira-
tion 2 Months
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Figure 4.5: ω and σimp across strike prices for European call options with time to expira-
tion 3 Months

Figure 4.6: ω and σimp across strike prices for European call options with time to expira-
tion 6 Months
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Figure 4.7: ω and σimp across strike prices for European call options with time to expira-
tion 9 Months

Figure 4.8: ω and σimp across strike prices for European call options with time to expira-
tion 1 Year
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4.4 Correlation

During this thesis, there was found an interesting result of some exact correlation
between implied volatility and the free-parameter ω. Without a doubt, it seems
reasonable as implied volatility is based on the probability p and is computed by
using it. What is more, this relation appeared to be independent of maturity. By
using Matlab, the figures of ω as a function of σimp for different maturities were
created.

Figure 4.9: ω as a function of σimp for 1 Month, 2, 3, 6, 9 Months and 1 Year Maturities

Figure 4.10: ω as a function of σimp for 1 Day and 1 Week Maturities

We treat the case for one day and one week maturity separately as we are very close
to the expiration date, and as we know, the price of the call close to maturity tends
to payoff. Therefore, in this case, the dependence on ω will be trivial and σimp is
independent of ω. While computing this ω numerically in Matlab, the minimum
value for which we can find ω is 0.0018 which will correspond to zero. It is a scale
problem of our model for options that are very close to maturity and are very deeply
in the money.

While looking at the figure 4.10, one can see that ω and σimp have a negative corre-
lation. This means that when one variable increases the other decreases on average,
and vice versa. The value of the correlation coefficients for different maturities where
computed in Matlab and are presented in the table below.
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Maturity ρ
1 Day -0.9430
1 Week -0.9916
1 Month -0.9944
2 Months -0.9971
3 Months -0.9949
6 Months -0.9937
9 Months -0.9909
1 Year -0.9867

While looking at the correlation coefficients for different maturities, one can see
that it is very close to −1 and is independent of the maturity essentially. By these
results, we can conclude that σimp is a decreasing function of ω. Therefore, there
is a unique correspondence between σimp and ω, which substantially means that if
we have implied volatility curve, we can always find the corresponding curve for ω
regardless of what the σimp curve is shaped as.

Taking everything into account, under the Black-Scholes assumption investors as-
sumed to be indifferent to risk. In our interpretation of the trinomial model, the
parameter Ω = 1− ω can be seen as the risk-aversion of the investors.

• The closer is Ω to zero, the more the stock price behaves as the risk-free asset
S(t) = S(0)emt.

• The closer is Ω to one, the more the stock price behaves as the binomial model

Because the closer is ω to one, the less risk the investors assign to the option. If the
investor prices the option with the martingale probability corresponding to Ω, then
the closer is Ω to one (i.e., ω to zero), the more this investor considers the option
as a risky investment. As we found a negative correlation between ω and σimp, then
Ω is positively correlated with it. This seems reasonable because a large implied
volatility is also considered an indication of the fact that investors are considering
the option more risky and thus overpricing it in comparison to the Black-Scholes
price.
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5

Conclusion

The purpose of this thesis was to investigate the possible connection between implied
volatility and market incompleteness. This hypothesis was tested quantitatively by
using the trinomial model, which is the simplest example of one-dimensional in-
complete market. First, the properties of the trinomial option pricing model were
examined. In doing so, the conditions of the existence of the risk-neutral (or mar-
tingale) probability measure were found for the general case when u 6= −d and for
the special case when u = −d.

Another important topic of the investigation was a study of the conditions under
which the stock prices converge to the geometric Brownian motion in the time
continuous limit. We treated separately the case with and without the recombination
condition. Thus we found the conditions under which the trinomial option price of
the European derivatives converges to the Black-Scholes price. Finally, the trinomial
fair price of a European derivative was derived.

Through empirical analysis, the implementation of the special case of the trinomial
model when u 6= −d but pu = pd = p ∈ (0, 1/2) was studied. The conditions under
which this model converges in distribution to the geometric Brownian motion in the
way that the discounted stock price is a martingale with respect to the risk-neutral
probability measure were found and the convergence proven. All these latter results
were crucial for the empirical analysis of how the free-parameter ω impacts the
trinomial price of the derivative. The dependence of ω on (K,T ) was concluded,
which is a rigorous assumption due to the theory. Then by using the calibration
method, we found such values of ω that the trinomial prices of European call options
correspond to the observed market prices for the options with the same K, T , and
σ.

In order to investigate the connection between σimp and incompleteness of the mar-
ket, we have calculated numerically the implied volatility for different European call
options with different strike and maturities. There is no closed formula to calculate
the implied volatility, but by using numerical methods it is possible to get an ap-
proximation. We plotted ω and σimp across strike prices for options with the same
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time to expiration for eight different maturity times, see figures ??-??. In our exam-
ple, we ended up with the volatility curves which fluctuate more for in the money
options. This seems reasonable as implied volatility fluctuates the same way the
prices do.

During this thesis, there was found an interesting result of some exact correlation
(almost -1) of implied volatility and the free-parameter ω. Without a doubt, it seems
reasonable as implied volatility is based on the probability p and is computed by us-
ing it. What is more, this relation appeared to be independent of maturity. By these
results, we have concluded that σimp is a decreasing function of ω. Therefore, choos-
ing the value of ω is equivalent to choosing the value of σimp, which substantially
means that if we have implied volatility curve, we can always find the corresponding
curve for ω regardless of what the σimp curve is shaped as. Overall, it may be said
that the hypothesis that volatility curves are linked to market incompleteness is
reasonable and justified from the qualitative perspective.

Nevertheless, the two parameters have a very different interpretation.

• An implied volatility that depends on (K,T ) is inconsistent with Black-Scholes
theory

• As the trinomial model is incomplete, there exists one more free-parameter
which can be used to measure the investors risk-aversion. We can interpret
volatility curves as a consequence of market incompleteness and investors as-
signing different risk to options far from being at the money.

Further research could focus on applicability of the trinomial model to different
derivatives, such as European put options, American derivatives, Asian and lookback
options, etc. The numerical studies of the convergence to the Black-Scholes model in
comparison to the binomial model can be explored. Moreover, future research could
also focus on investigating and testing the connection between implied volatility and
market incompleteness for other incomplete multinomial models. Bonds valuation
can be studied using this approach.
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Appendix A

Matlab code

A.1 Stock prices in the trinomial model

1 % TrinomialStock creates a (2N+1)x(N+1) matrix with the prices
2 % of a stock calculated by the trinomial model. The initial
3 % price can be found in position (N+1,1). The input parameter a
4 % is the instantaneous mean of log returns, s is the
5 % instantaneous volatility, N is the number of steps,
6 % p is the probability, T is the maturity, and S0 is the initial
7 % stock price.
8

9

10

11 function [S,h,u,d] = TrinomialStock(S0,p,a,s,T,N)
12

13 % Compute the trinomial tree of the stock
14

15 S=zeros(2*N+1,N+1);
16 S(N+1,1)=S0;
17

18 h=T/N;
19 u=sqrt(h/(2*(1-2*p)*p))*s+h*a;
20 d=-sqrt(h/(2*(1-2*p)*p))*s+h*a;
21

22

23 for i=2:(N+1)
24 S(:,i)=S(:,i-1)*exp((u+d)/2);
25 S(N+2-i,i)=S(N+3-i,i-1)*exp(u);
26 S(N+i,i)=S(N+i-1,i-1)*exp(d);
27

28 end
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A.2 European call option prices in the trinomial

model

1 % TrinomialPrice creates a matrix with the prices of call options
2 % calculated by the trinomial model. Each column corresponds
3 % to a time instant. S is the trinomial stock prices computed
4 % with the function TrinomialStock. K is the strike price of call
5 % options, r is the market risk-free rate, w is the
6 % free-parameter in trinomial model, and u and d correspond
7 % to the price change when the stock goes up or down respectively.
8

9

10

11 function P0 = TrinomialPrice(S,h,u,d,K,r,w)
12

13 % Compute the trinomial price of the call on the stock
14

15 qu=(exp(r*h)-exp(d))/(exp(u)-exp(d))-w*(exp((u+d)/2)-exp(d))/
16 /(exp(u)-exp(d));
17 qd=(exp(u)-exp(r*h))/(exp(u)-exp(d))-w*(exp(u)-exp((u+d)/2))/
18 /(exp(u)-exp(d));
19

20 % Check the conditions for the risk-neutral probabilities
21

22 if (qu<0 | | qd<0)
23 display('take smaller w');
24 P0=0;
25 return
26 end
27

28

29 M=size(S,1);
30 N=size(S,2);
31 P=zeros(M,N);
32 P(:,N)=max(S(:,N)-K,0); % Pay-off of the call option
33

34 % Recurrence formula to calculate the option prices
35

36 for j=N-1:-1:1
37 for i=(N-j+1):(M-(N-j))
38 P(i,j)=exp(-r*h)*(qu*P(i-1,j+1)+w*P(i,j+1)+qd*P(i+1,j+1));
39 if P(i,1)>0
40 P0 = P(i,1);
41 end
42 end
43 end
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A.3 Dependence on the free-parameter

1 % Input parameters of the model
2

3 M=500;
4 x=zeros(M,1);
5 w=zeros(M,1);
6 wcal=zeros(40,1);
7 vol=zeros(40,1);
8 S0=2991.78;
9 p=0.25;

10 a=0.2945;
11 s=0.1377;
12 r=0;
13 T=1; % Changes with the data
14 N=1000;
15

16 [S,h,u,d] = TrinomialStock(S0,p,a,s,T,N);
17

18 % Compute the Black-Scholes implied volatility
19

20 for j=1:40
21 vol(j)=blsimpv(S0,dataK(j),r,T,dataPrice(j));
22

23 % Computes the free-parameter w of the trinomial model
24

25 for i=1:M
26 w(i)=i/(M+M/10);
27 x(i)=TrinomialPrice(S,h,u,d,dataK(j),r,w(i));
28 end
29

30 [y,I]=min((x-dataPrice(j)).ˆ2);
31 wcal(j)=w(I);
32 end
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Appendix B

Tables of Data and Results

The market prices that are presented in the following tables are for the European
call options on S & P 500 stock market index. These data were obtained from Yahoo
Finance at close on September, 23, 2019.
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B.1 Time to Maturity: 1 Day

Maturity Strike Price w ImpV ol
25/09/2019 2895 102.8 0.0018 0.4741
25/09/2019 2900 96.5 0.0018 0.4239
25/09/2019 2905 91.5 0.0018 0.4072
25/09/2019 2910 85.95 0.0018 0.3761
25/09/2019 2915 82.26 0.0018 0.3918
25/09/2019 2920 75.85 0.0018 0.3402
25/09/2019 2925 73.67 0.0018 0.3867
25/09/2019 2930 62.95 0.3600 0.2193
25/09/2019 2935 62.58 0.0018 0.3270
25/09/2019 2940 55.5 0.0836 0.2637
25/09/2019 2945 54.04 0.0018 0.3170
25/09/2019 2950 47.3 0.0745 0.2648
25/09/2019 2955 39.8 0.4964 0.1954
25/09/2019 2960 39.82 0.0527 0.2681
25/09/2019 2965 31.3 0.5364 0.1874
25/09/2019 2970 27.1 0.5709 0.1803
25/09/2019 2975 23.8 0.5527 0.1843
25/09/2019 2980 20.77 0.5345 0.1880
25/09/2019 2985 16.35 0.6255 0.1687
25/09/2019 2990 12.75 0.6727 0.1575
25/09/2019 2995 9.7 0.7055 0.1494
25/09/2019 3000 9.8 0.5745 0.1795
25/09/2019 3005 4.89 0.7600 0.1348
25/09/2019 3010 3.3 0.7745 0.1305
25/09/2019 3015 3.5 0.6891 0.1536
25/09/2019 3020 1.36 0.7927 0.1253
25/09/2019 3025 0.85 0.7964 0.1245
25/09/2019 3030 1 0.7273 0.1439
25/09/2019 3035 0.34 0.7891 0.1263
25/09/2019 3040 0.25 0.7727 0.1311
25/09/2019 3045 0.15 0.7709 0.1316
25/09/2019 3050 0.1 0.7618 0.1343
25/09/2019 3055 0.05 0.7691 0.1326
25/09/2019 3060 0.1 0.6873 0.1540
25/09/2019 3065 0.03 0.7309 0.1428
25/09/2019 3070 0.05 0.6636 0.1598
25/09/2019 3075 0.05 0.6255 0.1687
25/09/2019 3080 0.05 0.5836 0.1776
25/09/2019 3085 0.05 0.5418 0.1864
25/09/2019 3090 0.03 0.5473 0.1852
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B.2 Time to Maturity: 1 Week

Maturity Strike Price w ImpV ol
2/10/2019 2895 105 0.0018 0.3005
2/10/2019 2900 98.47 0.0255 0.2717
2/10/2019 2910 86.11 0.0018 0.2811
2/10/2019 2915 79.28 0.4073 0.2119
2/10/2019 2920 87.25 0.5400 0.1869
2/10/2019 2925 77.2 0.0018 0.2792
2/10/2019 2930 75.3 0.2855 0.2327
2/10/2019 2935 63.2 0.2091 0.2449
2/10/2019 2940 73.6 0.5564 0.1835
2/10/2019 2945 76.5 0.0018 0.2789
2/10/2019 2950 51.7 0.0018 0.3176
2/10/2019 2955 63.63 0.5818 0.1781
2/10/2019 2960 42 0.0018 0.2751
2/10/2019 2965 41.9 0.6691 0.1582
2/10/2019 2970 39.13 0.5836 0.1776
2/10/2019 2975 35.31 0.5782 0.1789
2/10/2019 2980 31.17 0.6055 0.1731
2/10/2019 2985 28.9 0.6418 0.1646
2/10/2019 2990 22.56 0.6345 0.1666
2/10/2019 2995 20.85 0.7291 0.1435
2/10/2019 3000 18.3 0.7145 0.1470
2/10/2019 3005 14.7 0.7255 0.1445
2/10/2019 3010 12.9 0.7618 0.1343
2/10/2019 3015 10.6 0.7636 0.1342
2/10/2019 3020 8.2 0.7782 0.1295
2/10/2019 3025 6.77 0.8018 0.1225
2/10/2019 3030 5.1 0.8073 0.1208
2/10/2019 3035 4 0.8236 0.1156
2/10/2019 3040 3 0.8309 0.1133
2/10/2019 3045 2.4 0.8400 0.1103
2/10/2019 3050 1.75 0.8400 0.1100
2/10/2019 3055 1.65 0.8473 0.1075
2/10/2019 3060 1.06 0.8345 0.1121
2/10/2019 3065 0.9 0.8491 0.1072
2/10/2019 3070 0.66 0.8418 0.1092
2/10/2019 3075 0.58 0.8455 0.1082
2/10/2019 3080 0.41 0.8382 0.1109
2/10/2019 3085 0.34 0.8418 0.1095
2/10/2019 3090 0.24 0.8364 0.1111
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B.3 Time to Maturity: 1 Month

Maturity Strike Price w ImpV ol
25/10/2019 2895 137 0.3091 0.2289
25/10/2019 2900 123 0.5036 0.1941
25/10/2019 2905 101.5 0.7727 0.1311
25/10/2019 2910 121.7 0.4073 0.2119
25/10/2019 2915 124.65 0.2945 0.2313
25/10/2019 2920 103.9 0.5891 0.1764
25/10/2019 2925 109.35 0.4527 0.2037
25/10/2019 2930 94.1 0.6345 0.1664
25/10/2019 2935 71 0.8636 0.1021
25/10/2019 2940 96.95 0.5018 0.1944
25/10/2019 2945 98 0.4382 0.2064
25/10/2019 2950 83.5 0.6091 0.1723
25/10/2019 2955 92.5 0.4327 0.2073
25/10/2019 2960 67.7 0.7291 0.1432
25/10/2019 2965 77.3 0.5745 0.1795
25/10/2019 2970 64.12 0.7055 0.1495
25/10/2019 2975 58.77 0.7345 0.1420
25/10/2019 2980 56.83 0.7255 0.1441
25/10/2019 2985 49.82 0.7709 0.1316
25/10/2019 2990 50.42 0.7400 0.1405
25/10/2019 2995 45.29 0.7673 0.1329
25/10/2019 3000 43.51 0.7618 0.1345
25/10/2019 3005 41.65 0.7564 0.1357
25/10/2019 3010 38.08 0.7709 0.1318
25/10/2019 3015 34.83 0.7818 0.1285
25/10/2019 3020 30.52 0.8036 0.1218
25/10/2019 3025 28.6 0.8036 0.1218
25/10/2019 3030 26 0.8109 0.1195
25/10/2019 3035 21.97 0.8327 0.1124
25/10/2019 3040 21.96 0.8182 0.1173
25/10/2019 3045 18.8 0.8345 0.1121
25/10/2019 3050 16.52 0.8418 0.1092
25/10/2019 3055 20.6 0.7855 0.1273
25/10/2019 3060 13.94 0.8436 0.1091
25/10/2019 3065 17.88 0.7873 0.1272
25/10/2019 3070 10.4 0.8582 0.1039
25/10/2019 3075 9.1 0.8618 0.1024
25/10/2019 3080 7.9 0.8655 0.1009
25/10/2019 3085 7.5 0.8600 0.1026
25/10/2019 3090 5.92 0.8727 0.0983
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B.4 Time to Maturity: 2 Months

Maturity Strike Price w ImpV ol
29/11/2019 2885 165.1 0.4164 0.2104
29/11/2019 2890 153.7 0.5127 0.1922
29/11/2019 2895 159.5 0.4073 0.2121
29/11/2019 2900 145.5 0.5327 0.1883
29/11/2019 2905 141.8 0.5382 0.1872
29/11/2019 2910 131.02 0.6164 0.1705
29/11/2019 2915 144.1 0.4436 0.2054
29/11/2019 2920 140.7 0.4473 0.2046
29/11/2019 2925 123.94 0.5945 0.1754
29/11/2019 2930 120.26 0.6000 0.1740
29/11/2019 2940 106.75 0.6709 0.1581
29/11/2019 2945 111.5 0.6000 0.1740
29/11/2019 2950 108.4 0.6036 0.1735
29/11/2019 2960 96.19 0.6636 0.1599
29/11/2019 2965 82.2 0.7527 0.1369
29/11/2019 2970 89.32 0.6745 0.1569
29/11/2019 2975 83.06 0.7055 0.1496
29/11/2019 2980 88.45 0.6382 0.1656
29/11/2019 2985 80.45 0.6855 0.1546
29/11/2019 2990 74.8 0.7109 0.1483
29/11/2019 2995 81.38 0.6345 0.1663
29/11/2019 3000 69.59 0.7127 0.1474
29/11/2019 3005 66.47 0.7200 0.1459
29/11/2019 3010 77.3 0.6091 0.1722
29/11/2019 3015 64.37 0.7000 0.1506
29/11/2019 3020 59.55 0.7218 0.1453
29/11/2019 3025 60.7 0.6964 0.1519
29/11/2019 3030 53.9 0.7327 0.1423
29/11/2019 3035 48.8 0.7564 0.1359
29/11/2019 3040 46.2 0.7618 0.1345
29/11/2019 3045 49.05 0.7255 0.1443
29/11/2019 3050 41.5 0.7691 0.1323
29/11/2019 3055 39 0.7745 0.1307
29/11/2019 3060 39.8 0.7564 0.1360
29/11/2019 3065 40.5 0.7382 0.1411
29/11/2019 3070 31.89 0.7909 0.1257
29/11/2019 3075 29.82 0.7964 0.1243
29/11/2019 3080 28.3 0.7964 0.1241
29/11/2019 3085 34.3 0.7382 0.1411
29/11/2019 3090 29.1 0.7691 0.1324
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B.5 Time to Maturity: 3 Months

Maturity Strike Price w ImpV ol
20/12/2019 2895 171.1 0.5055 0.1937
20/12/2019 2900 168 0.5055 0.1936
20/12/2019 2905 142.9 0.6836 0.1548
20/12/2019 2910 154.4 0.5709 0.1804
20/12/2019 2915 103.7 0.8800 0.0951
20/12/2019 2920 103.8 0.8636 0.1017
20/12/2019 2925 135.63 0.6473 0.1634
20/12/2019 2930 146.78 0.5364 0.1874
20/12/2019 2935 125.3 0.6800 0.1557
20/12/2019 2940 122 0.6836 0.1550
20/12/2019 2945 135.56 0.5600 0.1826
20/12/2019 2950 118 0.6709 0.1578
20/12/2019 2955 99.04 0.7745 0.1306
20/12/2019 2960 119.8 0.6200 0.1698
20/12/2019 2965 114.4 0.6400 0.1652
20/12/2019 2970 117.6 0.5964 0.1748
20/12/2019 2975 109.6 0.6364 0.1658
20/12/2019 2980 109 0.6236 0.1690
20/12/2019 2985 94 0.7091 0.1485
20/12/2019 2990 90.4 0.7164 0.1466
20/12/2019 2995 87.75 0.7182 0.1462
20/12/2019 3000 83.6 0.7291 0.1433
20/12/2019 3005 85.2 0.7036 0.1498
20/12/2019 3010 78.2 0.7327 0.1420
20/12/2019 3015 79.54 0.7109 0.1479
20/12/2019 3020 78.18 0.7055 0.1493
20/12/2019 3025 67.54 0.7582 0.1353
20/12/2019 3030 77.93 0.6800 0.1559
20/12/2019 3035 63.1 0.7600 0.1348
20/12/2019 3040 61 0.7600 0.1346
20/12/2019 3045 63.4 0.7345 0.14199
20/12/2019 3050 55.15 0.7727 0.1313
20/12/2019 3055 51.9 0.7800 0.1289
20/12/2019 3060 50.7 0.7764 0.1299
20/12/2019 3065 48.2 0.7818 0.1286
20/12/2019 3070 45.8 0.7855 0.1274
20/12/2019 3075 42.6 0.7945 0.1246
20/12/2019 3080 41.4 0.7927 0.1253
20/12/2019 3085 38.7 0.8000 0.1232
20/12/2019 3090 40.4 0.7800 0.1291
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B.6 Time to Maturity: 6 Months

Maturity Strike Price w ImpV ol
20/03/2020 2500 538.4 0.0655 0.2661
20/03/2020 2525 517.7 0.0764 0.2647
20/03/2020 2550 485.53 0.2364 0.2405
20/03/2020 2575 468.15 0.2073 0.2452
20/03/2020 2600 444.95 0.2509 0.2383
20/03/2020 2625 425.45 0.2545 0.2376
20/03/2020 2650 399.52 0.3291 0.2256
20/03/2020 2675 374.3 0.3909 0.2147
20/03/2020 2700 370 0.2618 0.2364
20/03/2020 2725 310.69 0.6109 0.1717
20/03/2020 2750 311.2 0.4673 0.2009
20/03/2020 2775 292.65 0.4764 0.1990
20/03/2020 2800 272.65 0.5000 0.1944
20/03/2020 2825 266.97 0.4273 0.2084
20/03/2020 2850 239.83 0.5073 0.1931
20/03/2020 2875 223.5 0.5164 0.1915
20/03/2020 2900 197.91 0.5836 0.1776
20/03/2020 2925 180.45 0.6036 0.1734
20/03/2020 2950 164.9 0.6145 0.1708
20/03/2020 2975 146.02 0.6473 0.1634
20/03/2020 3000 129.7 0.6691 0.1584
20/03/2020 3025 115.2 0.6836 0.1546
20/03/2020 3050 102 0.6964 0.1515
20/03/2020 3075 88.7 0.7127 0.1473
20/03/2020 3100 73.7 0.7418 0.1399
20/03/2020 3125 61.8 0.7582 0.1351
20/03/2020 3150 53.58 0.7636 0.1339
20/03/2020 3175 41.64 0.7891 0.1263
20/03/2020 3200 33.88 0.8000 0.1230
20/03/2020 3225 27 0.8109 0.1196
20/03/2020 3250 21 0.8218 0.1161
20/03/2020 3275 17.7 0.8200 0.1164
20/03/2020 3300 15.19 0.8164 0.1174
20/03/2020 3325 10.5 0.8345 0.1118
20/03/2020 3350 10.4 0.8182 0.1172
20/03/2020 3375 8.26 0.8200 0.1163
20/03/2020 3400 5.75 0.8327 0.1124
20/03/2020 3450 4.39 0.8218 0.1160
20/03/2020 3500 2.91 0.8200 0.1165
20/03/2020 3600 1.69 0.8000 0.1228
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B.7 Time to Maturity: 9 Months

Maturity Strike Price w ImpV ol
19/06/2020 2500 518.66 0.5655 0.1812
19/06/2020 2525 494.93 0.5891 0.1764
19/06/2020 2550 471.76 0.6073 0.1724
19/06/2020 2575 454.36 0.5800 0.1782
19/06/2020 2600 408.62 0.7691 0.1319
19/06/2020 2625 384.25 0.7873 0.1266
19/06/2020 2650 435.5 0.2964 0.2309
19/06/2020 2675 376.6 0.4655 0.2011
19/06/2020 2700 253.75 0.9091 0.0825
19/06/2020 2725 232.9 0.9073 0.0836
19/06/2020 2750 295.57 0.5509 0.1842
19/06/2020 2775 237.45 0.7491 0.1378
19/06/2020 2800 278.99 0.4782 0.1986
19/06/2020 2825 260.62 0.5018 0.1944
19/06/2020 2850 228.2 0.5927 0.1756
19/06/2020 2875 220 0.5673 0.1809
19/06/2020 2900 198 0.6091 0.1719
19/06/2020 2925 192.02 0.5800 0.1782
19/06/2020 2950 165.9 0.6436 0.1644
19/06/2020 2975 150 0.6618 0.1599
19/06/2020 3000 133.8 0.6836 0.1546
19/06/2020 3025 123.6 0.6836 0.1545
19/06/2020 3050 111 0.6964 0.1515
19/06/2020 3075 94.37 0.7273 0.1437
19/06/2020 3100 81.4 0.7455 0.1388
19/06/2020 3125 70.4 0.7582 0.1351
19/06/2020 3150 60.77 0.7691 0.1321
19/06/2020 3175 53.6 0.7727 0.1309
19/06/2020 3200 43.47 0.7909 0.1254
19/06/2020 3225 41.56 0.7782 0.1293
19/06/2020 3250 33.75 0.7927 0.1250
19/06/2020 3275 25.58 0.8127 0.1186
19/06/2020 3300 23.3 0.8073 0.1204
19/06/2020 3325 21.1 0.8036 0.1218
19/06/2020 3350 16.4 0.8145 0.1180
19/06/2020 3450 12.3 0.8145 0.1183
19/06/2020 3500 8.6 0.8182 0.1170
19/06/2020 3600 5.35 0.8055 0.1210
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B.8 Time to Maturity: 1 Year

Maturity Strike Price w ImpV ol
18/09/2020 2175 823.95 0.5673 0.1807
18/09/2020 2200 801.85 0.5364 0.1872
18/09/2020 2400 658.3 0.2000 0.2462
18/09/2020 2575 437 0.7873 0.1265
18/09/2020 2600 423 0.7473 0.1383
18/09/2020 2625 370.85 0.9091 0.0774
18/09/2020 2650 385.4 0.7327 0.1421
18/09/2020 2700 413.5 0.4073 0.2119
18/09/2020 2750 359.6 0.5200 0.1905
18/09/2020 2775 293.5 0.7345 0.1416
18/09/2020 2800 276.05 0.7382 0.1408
18/09/2020 2825 312.11 0.5291 0.1888
18/09/2020 2850 294.06 0.5455 0.1855
18/09/2020 2875 276.69 0.5600 0.1825
18/09/2020 2900 259.51 0.5745 0.1793
18/09/2020 2925 237.66 0.6091 0.1718
18/09/2020 2950 226.46 0.6036 0.1731
18/09/2020 2975 210.34 0.6182 0.1698
18/09/2020 3000 193.1 0.6400 0.1652
18/09/2020 3025 179.36 0.6473 0.1631
18/09/2020 3050 164 0.6636 0.1592
18/09/2020 3075 150.3 0.6764 0.1563
18/09/2020 3100 136.5 0.6909 0.1529
18/09/2020 3125 123.25 0.7036 0.1495
18/09/2020 3150 110.8 0.7164 0.1462
18/09/2020 3175 99.33 0.7273 0.1432
18/09/2020 3200 87.9 0.7418 0.1397
18/09/2020 3225 77.44 0.7527 0.1365
18/09/2020 3250 68.06 0.7636 0.1337
18/09/2020 3275 59.3 0.7727 0.1308
18/09/2020 3300 50.9 0.7836 0.1276
18/09/2020 3325 50.09 0.7691 0.1321
18/09/2020 3350 37.5 0.8000 0.1228
18/09/2020 3375 32.1 0.8055 0.1208
18/09/2020 3400 27.6 0.8109 0.1194
18/09/2020 3450 21.6 0.8109 0.1191
18/09/2020 3500 14.8 0.8236 0.1151
18/09/2020 3550 12.85 0.8127 0.1185
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