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“Cela est bien, répondit Candide, mais il faut cultiver notre jardin.”

From “Candide” by Voltaire (1694-1778)

“We are going to die, and that makes us the lucky ones. Most people
are never going to die because they are never going to be born. The
potential people who could have been here in my place but who
will in fact never see the light of day outnumber the sand grains of
Arabia. Certainly those unborn ghosts include greater poets than
Keats, scientists greater than Newton. We know this because the set
of possible people allowed by our DNA so massively exceeds the
set of actual people. In the teeth of these stupefying odds it is you
and I, in our ordinariness, that are here. We privileged few, who
won the lottery of birth against all odds, how dare we whine at our
inevitable return to that prior state from which the vast majority
have never stirred?”

From “Unweaving the Rainbow: Science, Delusion and the Appetite for Wonder” by
Richard Dawkins (1941-)
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Abstract

Mathematical modelling constitutes a forceful tool for elucidating properties
of biological systems. Using theoretical approaches in combination with ex-
perimental techniques it is possible to study specific molecular aspects of
phenomena such as the ageing of human beings. In fact, as many processes are
similar in simpler organisms such as the budding yeast Saccharomyces cerevisiae
it is possible to experimentally investigate for instance the accumulation of
damaged proteins due to ageing in these biological systems. The aim of this
thesis is to construct, analyse and validate mathematical mechanistic models of
protein kinetics consisting of both ordinary and partial differential equations in
the context of ageing. This is done both on a large time scale corresponding to
the entire life span of cells and a short time scale corresponding to an isolated
part of the cell division. The focus of the work on the large time scale is twofold,
firstly the life span of individual yeast cells is modelled (Paper II) and secondly
the life spans of vast numbers of cells in numerous populations are simulated
(Paper III). Using a model of the accumulation of damage involving the forces
cell growth, formation and repair of damage as well as the cell division, the
impact of these individual parts on the overall fitness of individual cells and en-
tire populations is investigated. On the short time scale, a more detailed model
of a single protein called Cdc42 involved in the cell division is presented (Paper
IV) and this theoretical framework has a high level of detail as it describes the
spatial movement of the protein of interest within the cell over time. Given
this precise description of the geometry of an individual cell, the mathematical
properties of the model is analysed and these theoretical results are used to
conduct numerical simulations of the activity of this protein. Lastly, an overall
theme of the thesis is the difficulty of validating mechanistic models even in
the presence of data. More precisely, as numerous and sometimes mutually
exclusive models can describe a system equally well it is currently very hard,
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even by calibrating the models to experimental data using statistical methods,
to differentiate between various models. To this end, a mathematical tool
called symmetry methods is introduced as a potential remedy to this problem,
and using this methodology it is possible to extract information in the data
as well as in the model that is not available using standard approaches. To
showcase the power of symmetries, a minimal example of the usage of these
methods in the context of enzyme kinetics is presented (Paper V). In conclu-
sion, this work suggests that novel analytical tools such as symmetry methods
could complement and assist the current standard approaches for modelling
protein kinetics where the purpose is to deduce the underlying mechanisms of
biological systems.

Keywords: Protein kinetics, replicative ageing, Cdc42, ordinary differential
equations, reaction diffusion models, parameter estimation, model validation,
model construction, symmetry methods.
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Sammanfattning

Matematisk modellering utgör ett kraftfullt verktyg för att klargöra egenskaper
hos biologiska system. Genom att använda teoretiska tillvägagångssätt kom-
binerat med experimentella tekniker så är det möjligt att studera specifika
molekylära aspekter hos diverse fenomen såsom mänskligt åldrande. Faktum
är att eftersom många processer är liknande i mer simpla organismer såsom
den knoppande jästen Saccharomyces cerevisiae så är det möjligt att exempelvis
undersöka ansamlandet av skadade proteiner till följd av åldrande i dessa
biologiska system. Syftet med denna avhandling är att konstruera, analysera
och validera matematiska mekanistiska modeller av proteinkinetik som består
av både ordinära och partiella differentialekvationer inom ramen för åldrande.
Detta görs både på en lång tidsskala vilket svarar mot hela levnadsspannet
hos celler och en kort tidsskala svarande mot en isolerad del av celldelnin-
gen. På den långa tidsskalan så är arbetets inriktning tvådelat, för det första
så modelleras hela levnadsspannet hos individuella jästceller (Artikel II) och
för det andra så simuleras levnadsspannet hos ett ofantligt stort antal celler i
flertalet populationer (Artikel III). Genom att använda en modell av ansam-
lande av skadade proteiner som innefattar krafterna celltillväxt, bildande och
reparation av skadade proteiner samt celldelning, så kan effekten som dessa
enskilda delar har på det övergripande välmåendet hos individuella celler och
hela populationer undersökas. På den korta tidsskalan så presenteras en mer
detaljerad modell av kinetiken hos ett enskilt protein vid namn Cdc42 som
är inblandat i celldelningen (Artikel IV) och detta teoretiska ramverk har en
hög grad av detalj då det beskriver den rumsliga rörelsen hos proteinet av
intresse inom cellen över tid. Givet denna utförliga beskrivning av geometrin
hos en enskild cell så analyseras de matematiska egenskaperna hos modellen
och dessa teoretiska resultat används sedan för att genomföra numeriska simu-
leringar av aktiviteten hos detta protein. Slutligen så är ett övergripande tema
i avhandlingen svårigheten att validera en mekanistisk modell även då data
är tillgänglig. Närmare bestämt, då det ofta finns flertalet, ibland ömsesidigt
uteslutande, modeller som kan beskriva ett system lika bra så är det i nuläget
väldigt svårt, även genom att kalibrera modellerna till experimentell data med
hjälp av statistiska metoder, att skilja olika modeller åt. För att potentiellt
kunna åtgärda detta problem så kan potentiellt ett matematiskt verktyg vid
namn symmetrimetoder införas och genom denna metodik så är det möjligt
att utvinna information i både datan och modellen som inte är tillgänglig
med hjälp av standardmetoder. För att visa upp förmågan hos symmetrier
så presenteras ett testproblem då dessa metoder används inom ramen för
enzymkinetik (Artikel V). Sammanfattningsvis, så visar detta arbete att nya
analytiska verktyg såsom symmetrimetoder kan komplettera samt bistå de
nuvarande standardmetoderna för att modellera proteinkinetik där syftet är
att härleda de underliggande mekanismerna hos biologiska system.
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1 Introduction

In large parts of the world, illnesses related to ageing constitute a substan-
tial problem. Medical conditions such as Huntington’s, Parkinson’s and
Alzheimer’s diseases impose severe problems on an individual and a soci-
etal level both in terms of suffering and financial costs. Thus, in the modern
world it is of interest for the society as a whole to alleviate suffering by treating
symptoms related to ageing and to this end an understanding of the phenom-
ena is essential.

The deterioration of our bodies due to ageing is a consequence of the fact that
reproduction is prioritised over longevity. As most animals in the wild die
at a relatively young age on account of, for example, accidents, diseases or
predation [68, 91] traits that correspond to rapid development allowing for
fast reproduction are favoured by natural selection. Moreover, as animals
have a limited amount of resources to spend on either maintenance of the
body, called the soma, or on the germ cells, corresponding to investing in
reproduction, processes related to the latter will be promoted rather than the
former. Accordingly, higher organisms typically grow quickly in order to
reproduce which is then followed by a quick degradation of the soma [77].
This is the essence of the so called disposable soma theory [55, 68, 91, 116, 118]
which is the accepted evolutionary theory as to why ageing occurs. Due to the
advancement of medical science, a larger number of human beings do not die
from the previously listed reasons and thus ageing is a natural consequence of
modern life. As ageing like most biological phenomena is highly complex it is
often studied in simpler so called model organisms.

The baker’s yeast Saccharomyces cerevisiae (S. cerevisiae) is an advantageous
model organism for studying ageing. This is due to the fact that its biological
foundation is highly similar to higher animals such as human beings, it is
unicellular, it has a short life-span and it is extremely well-studied experimen-
tally. Most importantly, it undergoes ageing as its cellular functions decline
over time and as it shares many fundamental properties with human beings,
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2 1. Introduction

the biological details of specific illnesses such as Alzheimer’s disease can be
studied in yeast [8, 85, 89, 111]. Despite the relative simplicity of S. cerevisiae,
its biology is still highly complex and governed by intricate reaction networks.
Furthermore, as merely isolated parts of these biological systems can be ob-
served experimentally, and as an understanding of the interaction of multiple
unobserved components are required to elucidate the underlying mechanism
of the studied system researchers often resort to mathematical modelling.

Input Model Output

Design of
model Predictions

Figure 1.1: Statistical versus mechanistic modelling. Statistical modelling focuses on
describing a set of outputs from a set of given inputs where the model itself is not
necessarily of interest and it is often treated as a “black box”. To the contrary, in the
context of mechanistic modelling the construction and structure of the model as well as
its properties are emphasised.

A mechanistic model constitutes a theoretical holistic description of a complex
biological system. Although only limited parts of a system can be studied
experimentally, a model can connect numerous inaccessible components in a
theoretical framework which enables the proposal of an underlying mechanism.
In fact, the mechanism is built into the very structure of the proposed model
and thus the validation of a mechanistic model implies the proposal of an
underlying mechanism. Empirically, biological systems can be studied by
altering a controllable input, such as the availability of food, and observing
the response of some measurable output, e.g. the expression of a certain gene.
Mechanistic models are validated by testing whether or not the proposed
model can describe the measured data. It should be noted that so called
statistical models generally aim at connecting an input to a certain output
without analysing the, typically very simple, structure of the model in contrast
to mechanistic models where the actual model is the focus (Fig 1.1). However,
the difficulty of validating a mechanistic model is that multiple different and
sometimes mutually exclusive descriptions can sometimes capture the available
data equally well which obstructs the task of finding the correct mechanism.
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The work presented in this thesis consists of the construction, validation and
analysis of mechanistic models of ageing in the baker’s yeast Saccharomyces
cerevisiae. As multiple common features of human and yeast ageing involve
proteins, the kinetic models in this work describe the change in concentration
of age-related proteins over time and sometimes in space (i.e. specific locations
in the cell). Furthermore, in this work the ageing of yeast is modelled on two
different time-scales, namely a long time-scale corresponding to the entire
life span of yeast cells (Chapter 3) and a short time scale focusing on a single
protein involved in the cell division (Chapter 4). As a common theme in both
these cases is the difficulty of deducing the mechanism corresponding to the
construction of the correct model, we propose a potential remedy in a specific
mathematical tool called symmetry methods (Chapter 5). Before all this, the
biological and mathematical background is presented (Chapter 2).
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2 Background

As mechanistic modelling requires knowledge in both biology and mathemat-
ics, the background is divided into two parts. Firstly, the biological theory
behind ageing in the baker’s yeast S. cerevisiae is described (section 2.1). Sec-
ondly, the mathematics related to mechanistic models of protein kinetics is
presented (section 2.2).

It should be emphasised that one of the difficulties with interdisciplinary
research is that knowledge in numerous fields is required. Therefore, both
these sections focus on the theory necessary for understanding the crucial
concepts in the subsequent chapters (Chapter 3-5). As my intention is that
both theoreticians and experimentalists within the research field should be
able to read the text, this chapter constitutes a condensed introductory course
about the major topics of the thesis. The difficulty level of the biology section
of the background assumes that terms such as DNA, RNA, and proteins are
familiar and if not it is is advised to read the glossary in Chapter 8 before
proceeding with the background. The difficulty level of the mathematical
section assumes elementary knowledge in analysis, differential equations,
linear algebra, numerical analysis, optimisation and statstistics. The last part of
the mathematical background, i.e. subsection 2.2.6, about symmetry methods is
perhaps of particular interest for the theoreticians since this topic is quite rarely
used in mathematical biology and since it tackles differential equations from
a perspective that is fairly novel in the field. Thus, to introduce this, perhaps,
unfamiliar topic, quite a lengthy background has been provided here where it
is assumed that the reader has no knowledge of the topic in advance.

Moreover, if the reader has a background in biology it is advised to skip the
biology section and vice versa if the reader has a theoretical background with
regards to the mathematical section. Lastly, if the reader is solely interested
in the actual research it is advised to skip this entire chapter and jump to the
subsequent ones.

5



6 2. Background

2.1 Biology of ageing in the budding yeast

Since the disposable soma theory of ageing relies on multicellularity, it was
long believed that unicellular organisms were immortal. Or to quote George C.
Williams [118] who expressed this sentiment as follows

“The theory regards ageing as an evolved characteristic of the soma.
We should find it wherever a soma has been evolved, but not else-
where.”

The balance between maintaining the body, i.e. the soma, and reproducing
corresponding to investing in the germ line is referred to as a division of labour.
Since unicellular organisms such as the baker’s yeast S. cerevisiae lack a soma it
implies by the original formulation of the evolutionary theory that unicellular
ageing should not occur. In the presence of food, yeast cells grow until a certain
size is reached and then they divide. This cell division which is called budding
results in the generation of two cells, one larger mother cell and one smaller
daughter cell, from one original cell (Fig 2.1B). However, with each division the
mother cell becomes phenotypically older [1] (while the daughter cells remain
young) which ultimately culminates in cell death [72] confirming that budding
yeast undergoes ageing. In fact, a yeast cell can only undergo a finite number
of divisions before cell death occurs [7], more precisely around 20-30 divisions
[7, 48], and the number of divisions before cell death is called the replicative life
span (RLS). This constitutes one measure of the age of yeast cells in the presence
of food, but it is also possible to quantify age by means of the chronological
life span defined as the time to cell death in the absence of food. The focus of
this thesis is replicative ageing1 as it resembles the ageing process in human
cells, and in fact the ageing of unicellular organisms is in accordance with the
evolutionary theory of ageing. This is due to the fact that on a population level
it is possible to argue that the division of labour occurs between the mother
cells (analogous to the soma) and the daughter cells (analogous to the germ
cells) [77]. We have yet to define what we mean by ageing except for loosely
describing it as the gradual deterioration of cells, and to be able to construct
a model of the process the specific characteristics of yeast ageing must be
described.

Yeast ageing is characterised by a number of features. Examples of such
properties are an increase in both generation time2 and the size of the cell,

1In fact, when the term “ageing” is used throughout this thesis it exclusively refers to replicative
ageing.

2The generation time is the time it takes for cell division to occur.
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an accumulation of bud scars3, mitochondrial fragmentation and perhaps
most importantly an accumulation of so called ageing factors corresponding
to “damage” [110]. There are numerous types of damage where certain are
specific to yeast such as Extra-Chromosomal rDNA Circles (ERCs) [78, 101] and
others are more universal. Of the latter type, three examples are malfunctioning
mitochondria [47], the production of reactive oxygen species (ROS) [27, 60, 74]
and the accumulation of damaged proteins [1, 25, 78, 97]. Specifically, the
proteins Htt103Q involved in Huntington’s disease, β-Amyloid involved in
Alzheimer’s disease and Alpha synuclein in Parkinson’s disease can all be
studied in yeast [97]. Also, as proteins execute the majority of the functions
of an organism as well as constituting the building blocks of the cells it is the
corresponding ageing factor that is the focus of this work. Moreover, the basic
make up of yeast cells is similar to animal cells which makes the budding yeast
in particular an appropriate model organism for human ageing.

The budding yeast S. cerevisiae is a unicellular4 eukaryote. This means that
it is of the same type as the cells in higher animals implying that aspects of
human ageing, for example, can be studied in budding yeast and it is also
one of the most well-studied eukaryotic systems. Specifically, as yeast cells
are more primitive than higher animals the former type has evolved earlier
than the latter. Thus, if a biological feature is common to both these systems it
implies that it is important as it has been preserved throughout evolution and
these properties are referred to as evolutionary conserved. Furthermore, unlike
the smaller and even more primitive bacteria, eukaryotic cells are bigger, they
have various compartments with specialised tasks called organelles (Fig 2.1)
and the DNA of eukaryotes5 is kept separated from the rest of the cell in a
membrane enclosed compartment called the nucleus [2]. Thus, if the content of
bacteria is a disordered soup protected by a thick cell wall a eukaryotic cell is
more like an ordered city with different buildings responsible for specific tasks.
In fact, the evolutionary theory called the endosymbiont hypothesis states that
eukaryotic cells evolved as anaerobic6 hunters which engulfed smaller bacteria
that could make use of oxygen through respiration [2]. Subsequently, some of
them co-evolved with the original cell and these specific bacteria later became
organelles such as the chloroplasts in plants or the mitochondria7 in animal
cells.

3Bud scars are marks on the cell membrane where the daughter cell grows out.
4A unicellular organism consists of a single cell.
5The nucleus is the key distinction between eukaryotes and bacteria. In fact, the word itself is

Greek where “eu” means “well” or “truly” and “karya” means “kernel” or “nucleus” [2].
6Anaerobic organisms require (or occur in) the absence of oxygen.
7Strong evidence in support of this theory is that both mitochondria and chloroplasts contain

bacterial DNA. Interestingly enough, this is why human beings are more genetically related to
their mothers than their fathers as they inherit the mitochondrial DNA of their mothers.
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As we will see, the mitochondria is a key component of ageing in both yeast
and human cells. This is on account of the fact that damage is formed as
a by-product of the main task of this organelle namely to provide the cell
with energy from food taken up from the environment. As a response to
toxic by-products, yeast cells have evolved various cellular responses to cope
with damage. Subsequently, in the following subsections, the details of the
formation of damage is presented first before the mechanisms for coping with
damage are elaborated upon. After this, the focus is narrowed down when a
particular aspect of the cell division concerning the protein Cdc42 is presented.
Lastly, a section on the experimental techniques used to generate data follows
as a transition to the next section of the thesis about mathematical modelling.

2.1.1 Formation of damage is a by-product of food uptake

In environments with oxygen, eukaryotic cells harness energy from the con-
sumed food. This task is accomplished by the mitochondria which produces
energy in the form of adenosine triphosphate (ATP)8 from the oxidation of food
molecules, e.g. sugars. Specifically, the organelle contains various enzymes
in its membrane which breaks down fatty acids and pyruvate with the aid of
oxygen later leading to the production of ATP where one of the end products
(which is released as waste) is carbon dioxide CO2. Chemically, this entails the
transport of electrons along the membrane and this transport electron chain is
called the respiratory chain [2]. This transfer of electrons can lead to the forma-
tion so called radicals which are molecules with an unpaired valence electron
[5] and these are typically highly reactive. In the case of the mitochondria, a
class of such molecules called ROS9 [74] is formed in the organelle and these
molecules can damage10 other parts of the cell such as components of the
mitochondria or even proteins.

The fact that oxidative damage caused by mithochondria contributes to ageing
is the essence of the “mitochondrial theory of ageing” [37]. In accordance with
this theory, it has been shown that a yeast mother cell contains more ROS in
its mitochondria than its daughter [60] and interestingly enough the daughter
cells are able to clear their corresponding ROS [27]. Also, the production of
ROS results in damaged mitochondria and accordingly a sign of ageing in yeast
is the accumulation of damaged mitochondria. Normally, the cell has a system

8In fact, the majority of the cells ATP is produced from the mitochondria [2].
9It should be noted that ROS is an umbrella term which encompasses a large set of molecules

with different chemical properties [74]. Examples are superoxide, hydrogen peroxide, nitric oxide,
peroxy nitrite, hypochlorous acid, singlet oxygen and the hydroxyl radical.

10By “damage” in the case of proteins, we mean for example that these molecules can alter the
shape of proteins which is critical for their functionality.
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Figure 2.1: The budding yeast S. cerevisiae. (A): A schematic representation of the
major organelles of the cell. The nucleus contains the DNA encoding the genetic infor-
mation. The plasma membrane marks the boundary between the exterior and interior
of the cell where the cytoplasm corresponds to the interior of the cell excluding the
nucleus. The chaperones are proteins that promote the avoidance of the misfolding of
other proteins as well as promoting the correct folding. The ribosomes are particles that
translates RNA (specifically mRNA) into proteins. The mitochondria are the membrane-
bound organelles conducting oxidative phosphorylation which produces the molecule
ATP corresponding to energy that the cell can use. The vacuoles (called lysosomes in
most animal cells) which are also membrane-bound degrade various molecules such as
damaged proteins and they contain digestive enzymes to achieve this task. The Golgi
apparatus is an organelle with a complex structure which sorts and modifies proteins
and lipids from the ER (described next). The Endoplasmic reticulum (ER) is a membrane-
bound organelle with a labyrinth-like structure which synthesises lipids and makes
various proteins. The contents of the cytoplasm excluding the ER and the mitochondria
is called the cytosol. (B): The cell cycle in budding yeast resulting in the generation of
two cells, one large mother cell and one small daughter cell, from an original cell. The first
phase corresponds to the G1-phase which is a gap-phase to allow the cell to grow and
increase in mass. Budding yeast is special as it only has one gap phase while most other
eukaryotes have an additional gap phase between the S- and M-phase called G2. The S
phase is the phase where chromosome duplication occurs implying the synthesis of new
DNA (note that the S-phase comprises half of the cell cycle in length implying that the
arrow is not scaled). The M phase is where the chromosome segregation occurs which is
divided into two events, nuclear division called mitosis and cytoplasmic division called
cytokinesis. This sub figure is re-drawn based on Figure 17-5 in [2].
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called mitophagy [47] which removes damaged mitochondria but as the cell ages
the capacity to maintain mitophagy declines which is the cause behind this
symptom of ageing. Moreover, mitochondria is not only crucial for ageing in
yeast but it is also a determining factor in multiple aspects of human ageing. For
example, in skeletal and muscle tissue the respiratory capacity of mitochondria
decreases by 50% with age leading to a decline in production of ATP [29, 93].
Specifically this leads to a decrease in muscle strength which is believed to
be the causal factor of age-related sarcopenia [82]. Another example is that
dysfunctional mitochondria is closely connected to neurological disorders such
as Alzheimer’s and Parkinson’s disease [110]. Hence, the production of ROS
leading to the accumulation of damaged mitochondria is consequential for
ageing.

In addition, the age-related ROS result in the production of oxidatively dam-
aged proteins [1, 25, 110]. However, it should be emphasised that the exact
extent to which ROS contribute to the formation of damaged proteins is not
clear as the term constitutes numerous toxic oxygen species, and an increase
in ROS does not always lead to a proportional increase in damaged proteins
[74]. Besides, since the mitochondria is a very old organelle, various reactions
in eukaryotic cells rely on ROS implying that these molecules are not always
harmful but, in fact, necessary for the cell to a certain extent [74]. Further, as the
formation of damage is a consequence of the activity of mitochondria it is logi-
cal to hypothesise that lowering the intake of food would promote longevity.
This is exactly the idea of what is called caloric restriction (CR) which is a very
well-studied life-prolonging strategy. For instance, it has been shown that CR
increases the life span of yeast in low levels of glucose [63] and in fact this
generalises to higher eukaryotes [36]. Nevertheless, despite this life prolonging
strategy the inevitable formation of damaged proteins is a consequence of the
uptake of food and to counteract these toxic components the cell has evolved
specific systems.

2.1.2 To cope with accumulated damage the cell has devel-
oped systems for repairing and retaining damage

The protein quality control (PQC) system ensures that the available proteins are
produced, renewed and that they function properly [38, 52]. This system is
further divided into two parts, namely temporal and spatial PQC. The temporal
PQC ensures the correct timing of the production of various proteins as well as
focusing on repairing and degrading damaged proteins. The repair of proteins
is conducted by a special class of proteins called (molecular) chaperones [2] which
encounters newly synthesised proteins in proximity of the ribosomes. The
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chaperones are crucial in assuring the function of proteins as they ensure the
correct structure of proteins which is necessary for functionality. A big class
of chaperones is the heat shock proteins (Hsp)11 where Hsp70 [2] and Hsp40
[52] constitute a system which folds newly translated peptides. Another heat
shock protein called Hsp104 which belongs to the class disaggregases can repair
aggregated proteins by supplying the various peptides of the aggregate to the
Hsp70-Hsp40 system [52]. Additionally, the proteins that cannot be repaired are
degraded by the vacuole12 which is a membrane-enclosed organelle containing
digestive enzymes that can break down large macromolecules. Nevertheless, as
the formation of damage increases with age the systems involved in temporal
PQC cannot repair and degrade all of the damaged proteins. Consequently,
ageing entails the accumulation of damage and to ensure that a young damage-
free daughter cell is formed after cell division the mother cell retains most of
the damage. In other words, the mother cell sacrifices herself by acting as a
“rubbish bin” [78] at cell division by preventing the damage from leaking over
to the daughter cells.

The systems involved in spatial PQC is responsible for the retention of dam-
age in the mother cell. Initially, it was hypothesised that this retention was
established merely by passive processes [122] such as the slow diffusion of
the aggregates in combination with the fact that the size of the bud neck is
very small. This entirely passive retention would imply that the cell division is
completed before the aggregates manage to enter the daughter cell. However,
it has since been demonstrated that the spatial segregation of damaged proteins
at cell division has an active component (which is probably more influential)
composed of at least two different systems.

The active retention of damage is based on protein inclusions and actin com-
bined with the polarisome [77]. Smaller misfolded proteins are disposed into
two different compartments called JUNQ (juxtanuclear inclusions) and IPOD
(perivacuolar inclusions) [102] in the mother cell. Larger assemblies of dam-
aged proteins organised into aggregates are rather retained using actin cables13

[77]. During cell division when the new cell grows out from the original cell,
there are sites located at the tip of the daughter cell called the polarisome where
actin filaments are synthesised [78]. The abundant protein actin forms large
cable-like structures that connects both the mother and the soon to be daugther
cell by binding to the cell membrane [2]. One can imagine the actin filaments

11The heat shock proteins are named after the fact that their synthesis is increased spectacularly
when cells are exposed to an increased temperature for a brief time [2]. This occurs as a response
to the increased production of misfolded proteins due to the sudden rise in temperature.

12The vacuole is called the lysosome in higher eukaryotic cells [2].
13At least, this is the case in the context of Huntington’s disease [65].
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being connected so as to form a large system of funicular railways14 along
which the cell can retroactively transport aggregates from the daughter to the
mother cell [65]. Two key disaggregases that are linked to the actin-based
spatial PQC are the previously mentioned Hsp104 [64, 106] and a protein called
Sir2 [1, 26, 80, 92]. Lastly, another key player in spatial PQC is the adaptor
protein Vac17 involved in vacuole inheritance [115]. Vac17 generates inclusions
for aged cells as well as limiting the inheritance of aggregates [39].

In summary, the biological processes involved in the retention of damage
during cell division constitute a vital part of ageing in yeast as well as in higher
organisms. Consequently, it is perhaps not surprising that other proteins
involved in the cell division such as the master regulator cell division control
protein 42 homolog (Cdc42) also play a role in the ageing of most eukaryotic
organisms.

2.1.3 Cdc42-mediated cell polarisation in the context of ageing

Cdc42 is a highly evolutionary conserved enzyme15 in eukaryotic cells. More
precisely, the importance (indicated by its evolutionary conservation) of this
protein is affirmed by the fact that the Cdc42 of yeast is 80% similar to that of
human cells [9, 12, 14, 22, 51, 66, 70, 73, 100]. The role of Cdc42 is that in the
late G1-phase it accumulates at a specific spatial location on the cell membrane,
called the pole, which subsequently determines where the new cell grows out
during cell division [10]. Moreover, it has been shown that the activity of Cdc42
is involved in both the ageing and the rejuvenation of hematopoietic stem cells
[28, 30] in human beings. In addition, the Cdc42 pathway looses its function
in aged yeast cells which in turn prevents replicative ageing [69]. Thus, to
study the function of Cdc42 is of interest in the context of ageing in eukaryotic
organisms in general and replicative ageing in yeast in particular.

The class of enzymes called GTPases to which Cdc42 belongs is an example of
molecular switches [2]. In the cell, energy is often stored in terms of a molecule
consisting of a nucleoside (which is a nitrogen base in the building blocks of
DNA) bound to a number of phosphate groups. One such “energy storing”-
molecule is based on the nucleoside guanosine and when this base is bound
to three phosphate groups it is called guanosine triphosphate (GTP). Likewise,
if it is bound to two phosphate groups it is called guanosine diphosphate (GDP)
and the addition of a phosphate group resulting in the transition from GDP
to GTP corresponds to the release of energy. Now, a GTPase is an enzyme

14For explanatory schematic figures of both systems of PQC, see [38, 77, 78].
15An enzyme is a protein that catalyses reactions in the cell, i.e. it aids the reaction to occur,

without being consumed itself.
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that is regulated by a molecular switch using GDP and GTP. More precisely,
a GTPase is active when it is bound to GTP and inactive when it is bound to
GDP. Moreover, the activation of GTPases relies on so called guanine nucleotide
exchange factors (GEFs) and the inactivation relies on so called GTPase-activating
proteins (GAPs). Also, it is possible to classify GTPases based on the events
which precedes activation.

There are two families of GTPases which rely on signals from cell-surface
receptors, namely the RAS and the RHO families [2]. Together with Rho and
Rac, Cdc42 is one of the most well-studied members of the RHO family. As
for all GTPases, Cdc42 is activated by GEFs and inactivated by GAPs and an
astonishing fact is that there are more than 60 Rho-GEFs and 70 Rho-GAPs
in humans [2]. A particular property of the GTPases of the Rho family is that
it is the cell surface receptors that activate these enzymes by activating the
corresponding GEFs, although the mechanisms behind the interaction between
the cell surface receptors and the GEFs are, in most cases, unknown. Another
characteristic of the Rho GTPases is that in the cytosol they are often bound
to a so called guanine nucleotide dissociation inhibitor (GDI) [2] which prevents
interaction with their corresponding GEFs, and a consequence of the binding
of GDI to Cdc42 specifically is that it enhances mobility of the inactive GDP-
bound form of the GTPase in the cytosol [14]. At the cell membrane, the active
GTP-bound form of Cdc42, unlike the inactive form, can bind to various other
proteins called effectors which further quickens the local activation of Cdc42 in
a positive feedback loop [14].

The activation of Cdc42 is accelerated in a positive feedback circuit by two
classes of effector proteins. Firstly, GTP-bound Cdc42 can bind to a so called p21-
Activated Kinases (PAKs) which further can bind to a so called polarity scaffold
protein [14]. The scaffold proteins, which are called Bem1 in the budding yeast
S.cerevisiae and Scd2 in the fission yeast Schizosaccharomyces pombe (S.pombe),
can then link the PAKs to the GEFs which can further activate Cdc42. Thus, the
membrane bound effectors activates Cdc42 in a positive feedback loop as they
recruit more GEFs to a site already containing active Cdc42. It is this sequence
of events in combination with the fact that the different states of Cdc42 have
varying rates of diffusion which underlie the polarisation process.

As mentioned before, the mechanisms behind the interaction between the
effectors and regulators of Cdc42 are unknown. This is partly due to the fact
that it is hard to measure these rates since the concentration of Cdc42 varies at
different spatial locations on the cell membrane. Since the concentration profile
of Cdc42 is inhomogeneous, it is essential to account for spatial effects when this
protein is studied. Thus, a complication with studying the detailed properties of
Cdc42-mediated cell polarisation experimentally is that high resolution spatial
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microscopy is required. To account for this difficulty in order to elucidate the
underlying phenomena, researchers often resort to mathematical modelling
which is described in the next section. Before proceeding with the theoretical
aspects of the background, a summary of the experimental techniques used for
generating data will be presented subsequently.

2.1.4 Two experimental techniques for generating data of protein
kinetics are microscopy and microfluidics

The experimental data used to validate models of protein kinetics is usually
a time series. This is a table of the protein abundance, proportional to the
concentration, at specific time points and it is usually generated through image
analysis of microscopy images taken at each time point in the time series. In
the specific context of protein kinetics, so called fluorescence microscopy is often
implemented to detect particular proteins and there are two major techniques
for render specific protein visible under the microscope. The first is to stain the
proteins with fluorescent dyes [2] which are chemical compounds re-emitting
light after being excited. An example of such a dye is fluorescein which emits
green fluorescence as a response to being excited with blue light [2], and usually
the dyes are coupled to antibodies that can bind selectively to a targeted protein
[2].

The second technique is to insert genes encoding for so called fluorescent proteins
[2]. These proteins are usually encoded by a single gene and the advantage
of this technique is that by inserting a gene for these specific proteins the
organism produces its own fluorescent molecules which can be detected as
oppose to introducing foreign molecules to achieve the same result. Typically,
these molecules are used as reporter molecules which entails that the gene of
the fluorescent protein is inserted adjacent to the target protein, and in this
way every time the target protein is expressed so is the fluorescent protein.
However, a more specific usage of these molecules is to directly fuse the domain
of the fluorescent protein with the target in order to create a fusion protein
having the same function as the original target but at the same time being
fluorescent. The most common of these proteins which was originally isolated
from the jellyfish Aequoria victoria is called green fluorescent protein (GFP) but
there are more similar alternatives such as RFP and YFP. It is the strength of
the signal of the fluorescent light that is reported in the time series and usually
a spatial average of the signal in a particular compartment of the cell, such as
the nucleus, is calculated. Here, the strength of the signal is proportional to
the concentration of the fluorescent protein. The staining of a specific protein
or the creation of a particular fusion protein in order to study its kinetics is
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typically done by altering the genetic code of the host organism, e.g. the yeast
cell.

The insertion of a particular piece of DNA encoding a fluorescently tagged
protein is enabled through plasmid vectors [2]. This is a circular piece of bacterial
DNA that is readily taken up by microorganisms and here the methodology
for staining proteins makes use of the efficient system that bacteria has evolved
to interchange genetic information. Typically, the technique for inserting DNA
into a plasmid revolves around two types of enzymes, namely restriction nucle-
ases and DNA ligases [2]. The former class of enzymes corresponds to natures
“scissors” which can cut open a plasmid and the latter class fascilitates the
joining of DNA strands. In particular, this implies that the ligases can mend
the broken plasmid while simultaneously inserting the piece of DNA encoding
the fluorescent dye. In this way, cells that are transfected, i.e. that take up, the
plasmid will express the fluorescent protein. Typically, the number of plasmids
are immensely increased by introducing them into rapidly reproducing bac-
teria and in order to purify the liquid sample in which the colony is cultured
so that it contain large quantitites of the plasmid, the antibiotic resistance of
numerous bacteria is taken advantage of. Since numerous plasmids contain
genes for antibiotic resistance naturally, it is possible to grow a bacterial cell
culture in a media containing a specific antibiotic for which resistance genes
are found in the plasmid. In this manner, only the bacteria that are transfected
with the plasmid survive. Furthermore, microscopy can be coupled to other
experimental techniques such as microfluidics devices [67] also referred to as
a “lab on a chip” [121]. These are devices in which channels allows for the
manipulation of small amounts of fluids, more precisely in the order of 10−8

to 10−9 litres [117], and at these scales the mixing of the various fluids in the
system is minimal since it is limited by diffusion. This gives the researchers a
high level of control over the environment in which single cells can be studied.

The study of individual yeast cells using microfluidics is enabled in three
steps. Firstly, the device which is typically made of a polymer material such
as thermoplastics [119] can be generated through 3D printing [114] where the
design is based on fluid dynamics simulations. Secondly, the device is coupled
to a systems of pumps which grants the researcher complete control of growth
conditions such as availability of nutrients. Also, this type of experimental
setup is also suitable for studying how single cells respond to sudden shifts in
the availability and composition of nutrients in the environment [24]. Thirdly,
using laser based techniques such as optical tweezers [119], it is possible to
capture as well as move individual yeast cells and thereby generate high
quality data of single cells. In summary, it is these techniques that enables
the generation of experimental data that can be used to validate and calibrate
mathematical models of protein kinetics. Thus, provided this knowledge of
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the biological aspects of protein kinetics the proceeding section switches focus
to the theoretical aspects of the topic at hand.

2.2 The construction, analysis and validation of
mechanistic mathematical models of protein
kinetics

The fundamental assumption of mechanistic modelling is that the cell is viewed
as a chemical reactor. Accordingly, the cell is an enclosed volume where various
reactions take place which in the context of this thesis corresponds to the
formation and degradation of proteins. Mathematically, the description of the
change in the quantity or concentration of proteins over time is described by
systems of ordinary differential equations (ODEs). In this chapter, we consider
two (in certain cases one) proteins described by the functions U, V : R+ 7→ R
which satisfy the following system of ODEs

dU

dt
= F (U(t), V (t),k)

dV

dt
= G(U(t), V (t),k)

U(0) = U0 and V (0) = V0.

(2.1)

The solutions, also referred to as the states, of (2.1) are the concentrations of the
proteins U(t) and V (t) at time t ∈ R+. The reactions governing the dynamics
are determined by the non-linear functions F and G which depend on the
concentration of the proteins, the time and the kinetic rate parameters which
are gathered in the vector k ∈ Rp+ where p ∈ N+ is the number of parameters.
Lastly, the initial concentration of the proteins, which mathematically are
called the initial conditions, are given by the constants U0, V0 ∈ R+. Here,
physically reasonable solutions corresponds to non-negative concentrations, i.e.
U(t), V (t) ≥ 0 ∀t ∈ R+. Another assumption underlying the ODE based model
is that the concentrations of the proteins are homogeneous in the cell, which in
certain cases is not plausible to assume.

In certain situations, the concentration of the proteins depend on both time
and space. To account for this, let Ω ⊂ Rn for n = 1, 2 or 3 denote the spatial
domain which in this thesis is the interior of the cell, i.e. the cytosol, and
Γ ⊂ Rn−1 be its boundary which in this thesis is the cell membrane. Then, the
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two proteins are described by the multivariate functions U, V : Ω × R+ 7→ R
which satisfy the following system of partial differential equations (PDEs)

∂U

∂t
= F (U(x, t), V (x, t),k) +D1∆U, x ∈ Ω, t ∈ R+

∂V

∂t
= G(U(x, t), V (x, t),k) +D2∆V, x ∈ Ω, t ∈ R+

U(x, 0) = U0(x) & V (x, 0) = V0(x), x ∈ Ω

D1∇UTn = H1(U(x, t), V (x, t)), x ∈ Γ, t ∈ R+

D2∇V Tn = H2(U(x, t), V (x, t)), x ∈ Γ, t ∈ R+.

(2.2)

This particular type of PDEs are called reaction diffusion (RD) equations. The
solutions to the RD-system in (2.2) are the concentration of the proteins U(x, t)
and V (x, t) at spatial coordinate x ∈ Ω at time t ∈ R+. The meaning of the
terms is similar to the ODE based model in (2.1) with the addition of the spatial
dependence. The movement in space is determined by the process of diffusion
which is mathematically described by the Laplace operator ∆ =

∑n
i=1 ∂

2/∂x2
i

where xi is the ith spatial coordinate [59]. Here, the diffusion coefficients of
the proteins U and V are given by D1 and D2 respectively. Also, there are
boundary conditions determined by the functions H1 and H2 where ∇ =
(∂/∂x1, . . . , ∂/∂xn)T is the gradient, “T ” is the transpose operator and n ∈ Rn
is the outward normal at x ∈ Γ. Now, kinetic modelling entails the analysis
of the solutions of (2.1) and (2.2) which hinges on the fact that such solutions
actually exist.

If the reaction terms satisfy certain regularity conditions, there exist solutions
to both the ODE and RD based models. If the reaction terms, e.g. F and G,
are “nice”16 enough, there exist solutions to the system of ODEs in (2.1) which
follows from the Picard-Lindelöf theorem [105] based on Banach’s fixed point
theorem [18]. For the RD-model in (2.2), similar existence properties can be
proven using fixed point arguments17 provided that the reaction terms are
quasi-positive and take on a “mass control structure” [83]. Throughout this
thesis, the reaction terms F and G are polynomial or at least continuous with
continuous first derivatives, denoted C1, which guarantees18 the existence of
solutions to both the system of ODEs in (2.1) and the RD system in (2.2). Given
this knowledge, let us now describe the general workflow implemented in
mechanistic modelling.

16By “nice” we mean continuous and Lipschitz continuous.
17See the proof of Theorem 1 in Paper IV.
18At least for most open, bounded and regular domains Ω ∈ Rn with smooth boundaries.
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An overall aim of mechanistic modelling is to predict unknown biological
properties using simulations. The first step in achieving this goal is to construct
a model which is usually based on biological knowledge found in the litera-
ture. When a model is constructed, there are two approaches for analysing the
model stemming from different research fields. The older of the two fields is
mathematical biology which uses analytical methods such as linear stability
analysis or symmetry methods to analyse the properties of the models which
can be based on both ODEs (2.1) and PDEs (2.2). However, with the emergence
of technologies enabling the gathering of large quantities of experimental data,
a newer more empirical field called systems biology has emerged. Here, one
common class of models consists of systems of ODEs, e.g. (2.1), and a large em-
phasis is on the validation of the models using experimental data where model
parameters are calibrated by some measured experimental output. This valida-
tion is based on statistical methods which places the field of systems biology in
between statistical and mechanistic modelling described in the introduction
(Fig 1.1 on page 2). Although there is no clear distinction between the fields,
it is rather the emphasis and tradition that differ slightly. An approximate
workflow is presented below (Fig 2.2) and the disposition of the subsequent
section is based on this workflow.

Initially, the construction of mechanistic models is described. Thereafter, the
mathematical tool called linear stability analysis is presented followed by a
description of the different numerical methods used to solve the ODE models
in (2.1) and RD models in (2.2). Then, the validation of ODE models using
experimental data is described including a description of the concepts parame-
ter estimation, numerical identifiability and model selection. Thereafter, the
mathematical tool of symmetry methods is presented within the context of
mechanistic models. Lastly, based on a similar theoretical framework to the
one used in the context of symmetries, a theoretical version of the notion of
identifiability called structural identifiability is described.
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Figure 2.2: Workflow in mechanistic modelling within systems and mathematical
biology. The workflow in systems biology illustrated by the squares consists of a
literature study leading to the construction of a mechanistic model. The validation of
this model using experimental data typically consists of parameter estimation (PE), and
numerical identifiability (NI) analysis. Lastly, the simulations of the validated model can
be used to make predictions regarding unknown outcomes. In mathematical biology,
illustrated by the circles, mathematical techniques such as linear stability analysis,
symmetry methods and various numerical methods are implemented to analyse the
properties of a model of interest. Using symmetry methods it is possible to analyse
the mathematical properties of models based on differential equations and, using a
similar approach, a theoretical version of the identifiability analysis called structural
identifiability (SI) analysis can be conducted.

2.2.1 Construction of kinetic models and non-dimensionalisation

The construction of kinetic models is based on the law of mass action. This law
states that the rate of a chemical reaction is proportional to the concentration of
the involved species [58]. To exemplify its usage, let us consider the enzymati-
cally catalysed conversion of a substrate S to a product P aided by the enzyme
E where the intermediary substrate-enzyme complex is denoted C (Fig 2.3).
The corresponding dynamics is governed by three reaction rates

r1 = k1 SE, r−1 = k−1C and r2 = k2 C

where all these terms have the units “concentration per time unit”. Now, if S,
E, C and P have the unit concentration it implies that the kinetic rate constants
k−1 and k2 have the unit “per time” while the kinetic rate constant k1 has the
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unit “per concentration per time”. Moreover, by summing these reactions using
the logic “formation subtracted by degradation” it is possible to describe the
dynamics of this system mathematically.

k1

k−1

Substrate, S Enzyme, E Complex, C

Complex, C

k2

Enzyme, E
Product, P

Figure 2.3: An enzymatically catalysed reaction. The substrate S is converted to the
product P catalysed by the enzyme E by forming an intermediary complex C.

The mechanistic model of the enzymatically catalysed substrate-to-product
conversion is given by the following system of ODEs (2.3)

dS

dt
= k−1C − k1SE

dE

dt
= −dC

dt
= (k−1 + k2)C − k1SE

dP

dt
= k2C

S(0) = S0, E(0) = Etot and C(0) = P (0) = 0.

(2.3)

Here, the initial conditions are S0 for the substrate, Etot for the enzyme and
there are no complex molecules or products present initially. Further, under
the assumption that S0 � Etot it is possible to show19 that the dynamics of this
system is governed by the classic Michaelis-Menten equation (2.4) [23, 58, 76]

19A generalised description of this enzymatically catalysed system, and some elaboration on the
meaning of the involved assumptions as well as the involved parameters are found in Paper V.
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dP

dt
= −dS

dt
= vmax

S

KM + S

S(0) = S0, and P (0) = 0.

(2.4)

The involved parameters in the reduced version (2.4) are functions of the
original kinetic rate parameters in (2.3), and even though they are not explained
fully here the important point is the following. The law of mass action yields
polynomial reaction functions, e.g. F and G in (2.1) and (2.2) respectively, and
using simplifying assumptions it is possible to obtain polynomially bounded20

non-linearities as in (2.4). Thus, using this type of methodology for constructing
the kinetic models, solutions to both the ODE based models in (2.1) and the RD
based models in (2.2) are guaranteed.

In addition, a common technique in mathematical biology is called
non-dimensionalisation. This entails the scaling of the states and the variable
in order to render them dimensionless [76]

u =
1

C1
U, v =

1

C1
V and τ =

1

k
t

for some concentration C1 and some first order kinetic rate parameter k. The
advantage of the resulting model is that the parameters (which we will denote θ
in the dimensionless case as oppose to k) which themselves also are dimension-
less are usually fewer in number and they are more meaningful compared to
the original parameters as more properties are captured by them. Consequently,
the original ODE model in (2.1) is re-written after it is non-dimensionalised in
the following manner (2.5)

du

dτ
= f(u(τ), v(τ), θ)

dv

dτ
= g(u(τ), v(τ), θ)

u(0) = u0 and v(0) = v0.

(2.5)

In a similar manner, the RD-models in (2.2) can be rendered dimensionless.

20See [94] for how the Hill-equation is bounded mathematically.
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Here, it is often the case that a particular non-dimensionalisation is imple-
mented so as to give rise to the following exact structure of the models (2.6)

∂u

∂τ
= γf(u(x, τ), v(x, τ), θ) + ∆f, x ∈ Ω, τ ∈ R+

∂v

∂τ
= γg(u(x, τ), v(x, τ), θ) + d∆g, x ∈ Ω, τ ∈ R+

u(x, 0) = u0(x) and v(x, 0) = v0(x), x ∈ Ω

∇uTn = h1(u(x, τ), v(x, τ)), x ∈ Γ, τ ∈ R+

d∇vTn = h2(u(x, τ), v(x, τ)), x ∈ Γ, τ ∈ R+.

(2.6)

Here, the crucial parameters are the relative reaction strength γ and the relative
diffusion rate d [75, 76]. By implementing a non-dimensionalisation giving rise
to this exact structure, the relative magnitude of these parameters indicate
if the dynamics of the system is dominated by the involved reactions or dif-
fusion. Now that the technique for constructing models has been explained,
mathematical tools for analysing the solutions to the models will be explained
subsequently.

2.2.2 Solutions of linear systems of ODEs and linear stability

One of the few cases in which the exact solutions to a system of ODEs is known
is in the case of a linear system. More precisely, assume that the reaction terms
are of the form f(u, v) = c1u+ c2v and g(u, v) = c3u+ c4v. Then, the system
of ODEs in (2.5) can be written as follows (2.7)

d

dτ

(
u
v

)
︸︷︷︸

=u

=

(
c1 c2
c3 c4

)
︸ ︷︷ ︸

=A

(
u
v

)
︸︷︷︸

=u

⇔ du

dτ
= Au. (2.7)

Moreover, assume that the matrix A ∈ R2×2 is diagonisable, i.e. that there exists
two matrices D,P ∈ C2×2 of the following type

D =

(
λ1 0
0 λ2

)
& P =

(
v1 v2

)
where λ1, λ2 ∈ C are the eigenvalues of A and v1,v2 ∈ C2 are the correspond-
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ing eigenvectors21 so that AP = PD ⇔ D = P−1AP . Then, the coordinate
change22 given by y = P−1u⇔ u = Py yields the following calculations

dy

dτ
= P−1 du

dτ
= P−1Au

= P−1APy = Dy

=⇒ ẏ = D · y

⇔ d

dτ

(
y1(τ)
y2(τ)

)
=

(
λ1 0
0 λ2

)(
y1(τ)
y2(τ)

)
=

(
λy1(τ)
λ2y2(τ)

)

which results in two separable ODEs with respect to the states in y. The
corresponding solutions are given by y1(τ) = C1e

λ1τ and y2(τ) = C2e
λ2τ

for some arbitrary constants C1, C2 ∈ R. Lastly, by transforming back to the
original states using u = Py, it is possible to show that the solutions of (2.7) is
given by a linear combination of the eigenvectors

u(τ) = C1v1e
λ1 τ + C1v1e

λ2 τ . (2.8)

Next, we define the concept of a steady state which will subsequently allow us
to define the concept of linear stability. A steady state u? =

(
u? v?

)T ∈ R2
+ is

a vector satisfying

du?

dτ
= 0

and sinceA is diagonisable it is also invertible. This implies that there exist only
one steady-state to (2.7) namely the trivial vector u? = 0. Now, the concept
of linear stability means that the trajectories of the solutions to (2.7) converge
to the steady state after a long time, i.e. lim

τ→∞
u(τ) = u? = 0. By the explicit

formula for the solutions in (2.8), this implies that the original system in (2.7)
is stable (in the sense of linear stability) if and only if the real parts of the
eigenvalues are negative, i.e. Re(λ1),Re(λ2) < 0. In addition, it can be shown
that the eigenvalues23 of the matrix A in (2.7) are given by

21An eigenvector v ∈ C2 to a matrix A ∈ R2 is a non-trivial vector such that Av = λv where
the scalar λ ∈ C is called the eigenvalue of A

22This change of coordinates is well-known, but can be found in [42].
23The eigenvalues are, in general, given by solving the characteristic equation det(A− λI) = 0
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λ1,2 =
1

2

(
Tr(A)±

√
Tr(A)2 − 4 det(A)

)
(2.9)

where Tr(A) = c1 + c4 is the trace and det(A) = c1c4− c2c3 is the determinant of
the matrix A. This implies that the system (2.7) is stable, or that the steady state
u? = 0 is a stable node, if the conditions Tr(A) < 0 and det(A) > 0 hold. Other
common types of dynamics are an unstable node corresponding to Tr(A) > 0
and det(A) > 0 and a saddle point corresponding to det(A) < 0 [23].

Although most of the systems encountered in kinetic modelling are not linear,
the same type of mathematics can be implemented for analysing the stability
of non-linear systems.

2.2.3 Linear stability analysis of non-linear systems

A linear stability analysis of a non-linear system (2.5) or (2.6) is local with
respect to the steady-states. In the case of the non-linear systems, a steady-
state u? =

(
u? v?

)T ∈ R2
+ is a solution to the equations given by f(u∗, v∗) =

g(u∗, v∗) = 0. Furthermore, the first order Taylor expansion of these functions
around the steady states are given by

f(u, v) = f(u∗, v∗)︸ ︷︷ ︸
=0

+
∂f

∂u

∣∣∣∣
(u,v)=(u?,v?)

· (u− u?) +
∂f

∂v

∣∣∣∣
(u,v)=(u?,v?)

· (v − v?)

+O
((

u− u?
v − v?

)2
)

⇔ f(u, v) =
(
∇f |(u,v)=(u?,v?)

)T
·
(
u− u?
v − v?

)
+O

((
u− u?
v − v?

)2
)

where I ∈ R2×2 is the identity matrix. In the particular case of a two dimensional system, the
characteristic polynomial is a second order polynomial with the corresponding solutions given by
(2.9).
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and

g(u, v) = g(u∗, v∗)︸ ︷︷ ︸
=0

+
∂g

∂u

∣∣∣∣
(u,v)=(u?,v?)

· (u− u?) +
∂g

∂v

∣∣∣∣
(u,v)=(u?,v?)

· (v − v?)

+O
((

u− u?
v − v?

)2
)

⇔ g(u, v) =
(
∇g|(u,v)=(u?,v?)

)T
·
(
u− u?
v − v?

)
+O

((
u− u?
v − v?

)2
)
.

Now, let us introduce the following local coordinate

w =

(
u− u?
v − v?

)
.

Then, a simple calculation allows us to rewrite the time derivatives

du

dτ
=

du

dτ
− du?

dτ︸︷︷︸
=0

=
d (u− u?)

dτ
and similarly

dv

dτ
=

d (v − v?)
dτ

which shows that du/dτ = dw/dτ . All of these expressions can be summarised
by equation (2.10) which is the linearisation24 of (2.5) around a steady state.

d

dτ

(
u− u?
v − v?

)
︸ ︷︷ ︸

=w

=

 ∂f
∂u

∣∣∣
(u,v)=(u?,v?)

∂f
∂v

∣∣∣
(u,v)=(u?,v?)

∂g
∂u

∣∣∣
(u,v)=(u?,v?)

∂g
∂v

∣∣∣
(u,v)=(u?,v?)


︸ ︷︷ ︸

=J(u?,v?)

(
u− u?
v − v?

)
︸ ︷︷ ︸

=w

⇔ dw

dτ
= J(u?, v?)w

(2.10)

Here, the matrix J is called the Jacobian matrix and the concept of linear
stability applies locally to non-linear systems in proximity of the steady states.

24By linearisation we mean the truncated (i.e. higher order terms are omitted) first order Taylor
expansion.
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Thus, we can summarise how a linear stability analysis of a non-linear system
of ODEs as in (2.5) is conducted in a three part recipe:

1. Calculate the steady states (u?, v?) of the system by solving the equations,
f(u?, v?) = g(u?, v?) = 0,

2. Derive the Jacobian matrix J(u, v) in (2.10) as a function of the states u
and v,

3. Plug in each steady state into the Jacobian matrix, and analyse the stability
properties of the resulting matrices J(u?, v?).

Specifically with regards to the spatial RD models in (2.6) on page 22, there
is a particularly interesting phenomena called diffusion-driven instability [75].
This corresponds to the fact that the homogeneous25 system of (2.6) with the
following linearisation

dw

dτ
= γJ(u?, v?)w

is stable. This implies that (u?, v?) is a stable node and here the parameter γ,
which is common in numerous dimensionless RD-models, is the strength of
the reaction term. Furthermore, the linearisation of the inhomogeneous system
in (2.6) given by

dw

dτ
= γJ(u?, v?)w − k2Dw where D =

(
1 0
0 d

)

is unstable implying that (u?, v?) is an unstable node for the latter system
where k2 is the wave number26. In other words, the introduction of diffusion
changes the stability of the system from a stable to an unstable node and hence
the name diffusion-driven instability. This phenomena was originally proposed
by Alan Turing [108] in order to model morphogenesis but it is also used to
model for example pattern formation in the context of animal coatings [75].

A linear stability analysis allows modellers to predict the long term behaviour
of a dynamic system in terms of the involved kinetic parameters. However, to
find the solution of a model in order to generate particular simulations of a
given system it is common to resort to numerical methods.

25By the homogeneous system of (2.6), we mean the ODE-system neglecting the terms corre-
sponding to diffusion.

26The wave numbers are the eigenvalues of the Laplace operator ∆.
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2.2.4 Numerical methods for solving differential equations

There are two major methodologies for solving differential equations, namely
finite differences (FD) and the finite element method (FEM). In the context of this
thesis, FD based methodologies are used to solve the ODE based model in (2.5)
and to discretise the time derivatives in the RD models in (2.6). Moreover, in
this thesis the FEM is used to discretise the spatial aspects of the RD models in
(2.6).

The FD based methodologies are based on approximating derivatives with
differences. To exemplify this approach, consider the first order ODE

du

dτ
= f(u(τ)), u(0) = u0

with reaction term f and initial condition u0. Then, the first step of all FD
based numerical schemes is to discretise the time line into discrete nodes. For
example, a discretisation of the interval [0, T ] for some end time T ∈ R+ with
n ∈ N+ nodes is Tk := {ti = i · k, with i = 0, 1, . . . , n+ 1 and k = T/n} where
a homogeneous step size k is implemented. After this, the time derivatives are
approximated by finite differences as follows

du

dτ

∣∣∣∣
t=ti

≈ u(ti)− u(ti−1)

k
.

The different solution algorithms associated with these methods calculate the
concentration u(ti) at the current time node ti from the known previous con-
centrations u(ti−1) at the previous time node ti−1. In this way, FD algorithms
entail the construction of a time-stepping scheme in which the numerical scheme
“jumps forward” along the nodes in Tk. Moreover, what classifies a FD based
method is how the reaction term in the right hand side is approximated. The
two major approaches are the explicit27 or the implicit28 FD method.

u(ti)− u(ti−1)

k
=

{
f(u(ti−1)), Explicit
f(u(ti)), Implicit

The former method is cheaper and thereby faster to compute than the latter
as the non-linear reaction function is evaluated at the “known” previous time

27Also called the forward Euler method.
28Also called the backward Euler method.
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node. However, the explicit method has worse stability properties than the
implicit approach as it is merely conditionally stable for small values of k
while the implicit approach is unconditionally stable [13, 46]. In addition, for
certain problems with a particular dynamics it is beneficial from a performance
perspective to use a non-homogeneous step size k in the discretisation Tk.

For so called stiff problems, it is advantageous to use an adaptive step size. Such
an ODE is stable where the dynamics is dominated by one of the eigenvalues
which is large and negative implying that the system will reach a steady-state.
A consequence of this is that the dynamics is characterised by a quick change
in concentrations initially while the change is very small for larger times close
to when the steady state is reached. For this type of problems, which are very
common in mechanistic modelling in mathematical and systems biology, it is
computationally beneficial to use a small time step k for small times while it
the step size can be increased for larger times without loosing computational
accuracy. An adaptive step size, which numerous algorithms specialised for
solving stiff problems use, is based on an approximation of the residual which is
a measure of how the big the error between the actual solution and the current
approximation is. Given this setting, these types of algorithms increase the
step size k when the residual is small and decreases the step size when the
residual is large. Examples of adaptive methods are the various Runge-Kutta
(RK) methods [13, 46] where the RK45 method, for example, uses a fourth and
fifth order Taylor approximation in order to estimate the residual which is used
as a basis for choosing the adaptive step size. For spatial problems such as the
RD models in (2.6), it is common to implement a FEM to discretise the spatial
aspects of the model.

The FEM is based on distribution theory within functional analysis [18, 43, 59].
To illustrate its implementation, consider the one-species RD-model in (2.6) (i.e.
g = h2 = v0 = 0) with Neumann boundary conditions, i.e. h1 = 0. Then, we
multiply the PDE with a test function φ ∈ C1

0(Ω) and integrate over the domain

〈∂τu, φ〉 = γ〈f(u), φ〉+ 〈∆u, φ〉 (2.11)

where “〈·, ·〉”29 means the L2-inner product defined by

〈f, g〉 =

∫
Ω

f(x)g(x) dx =⇒ 〈f, f〉 = ‖f‖2

29The proper notation would be “〈·, ·〉L2(Ω)”.
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for two functions f, g such that the integral over Ω is defined30. Here, as is the
case with all inner products, a norm denoted “‖ · ‖”31 is induced. Further, in
similarity to integration by parts, it is possible to define the weak derivative of a
L2(Ω)-function v by

Dαv(φ) = (−1)|α|
∫

Ω

vDαφdx for

D
αφ =

∂|α|φ

∂xα1
1 ∂xα2

1 . . . ∂xαnn

α =
(
α1 α2 . . . αn

)
, |α| = ∑n

i=1 αi

which means that the (spatial) derivatives fall on the “nice” (i.e. infinitely
differentiable) test function. Then, we can define a Sobolov space [59, 18] as
follows

Hk(Ω) :=
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω) for |α| ≤ k

}
for any k ≥ 1 and it is in this type of function spaces that the solution u should
lie. Note here that it is not assumed that the solution u is differentiable in the
sense of regular functions but rather in terms of weak derivatives, and function-
als defined by the integral of an integrand composed of a test function are the
subject of distribution theory32. Nevertheless, for the purpose of illustrating
the methodology, we think of the solution as a regular function, i.e u ∈ C2(Ω).

Next, we rewrite the diffusive term in (2.11) using Green’s identity [59] which
in the case of Neumann boundary conditions becomes 〈∆u, φ〉 = −〈∇u,∇φ〉.
This yields the classical variational formulation (VF) which is a reformulation of
the original problem

Find u ∈ H1(Ω) such that

〈∂τu, φ〉+ 〈∇u,∇φ〉 − γ〈f(u), φ〉 = 0 ∀φ ∈ H1(Ω).

(2.12)

Note here that if u ∈ C2(Ω) and satisfies (2.12) it is exactly the classical solution
to the original problem. However, the number of objects33 u that solves (2.12)
is larger than the functions u ∈ C2(Ω) solving the original problem, and this

30In fact, this type of integral defines the well-known L2(Ω)-vector space defined as

L2(Ω) :=
{

Functions f(x),x ∈ Ω : ‖f‖2L2(Ω)
= 〈f, f〉L2(Ω) <∞

}
.

31The proper notation would be “‖ · ‖L2(Ω)”.
32For further reading, see [18, 43].
33Specifically, these objects are distributions.
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mathematical framework captured by distribution theory expands the notion
of differential equations to a larger set of, for example, discontinuous objects
which often occur in applications34.

The method proceeds by discretising the spatial domain implying the genera-
tion of a mesh. Then, a space of discrete test functions Vh is employed and this
space typically consists of piecewise continuous linear functions on the mesh
and it is in this space35 that the approximation lies. More precisely, the approxi-
mate solution based on the FEM to the original problem is the projection, in
the sense of the L2-inner product, of the VF onto the discrete space Vh.

Now, that the methodology for simulating kinetic models is presented, these
simulations can be used in order to calibrate a model using experimental data.

2.2.5 Model validation, estimation of kinetic parameters (PE),
numerical identifiability (NI) and selection of models

Assume that an ODE based model as in (2.5) is to be validated using exper-
imental data in the form of a time series36. More precisely, assume that the
observed output in the time series is theoretically described by the function ŷ
and thus adding this to the model yields the following equation

du

dτ
= f(u(τ), v(τ), θ)

dv

dτ
= g(u(τ), v(τ), θ)

ŷ(τ, θ) = o(u(τ), v(τ), θ)

u(0) = u0 and v(0) = v0

(2.13)

where the simulated output ŷ is determined by some37 function o of the two
states. Moreover, using the standard statistical approach based on a maximum
likelihood derivation, the validation of the model entails finding the kinetic rate
parameters θ ∈ Rp+, p ∈ N+ giving rise to the simulations that best describe
the measured data. Accordingly, the concept of validating a model implies

34Two such examples are the Heaviside function and the Dirac delta, see [18]. The former is
common in control theory when modelling an input of a system.

35Sometimes the approximate solution lies in a slightly different space called the trial space.
36For an idea of the experimental techniques used for generating the time series, see subsection

2.1.4 on page 14.
37This function could for example be the quotient of the two states, i.e. o(u(τ), v(τ)) =

u(τ)/v(τ).
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estimating the kinetic parameters which means that the validation of models
and parameter estimation (PE) are closely connected.

To this end, assume that some output yi = y(τi) has been measured at N + 1
time points denoted τi where i ∈ {0, . . . , N} (Tab 2.1).

Table 2.1: Example of experimental data in the form of a time series.

Time, τ Output, y(τ)

t0 = 0 y0 = 8
t1 = 5 y1 = 22
t2 = 15 y2 = 31
t3 = 25 y3 = 36

...
...

tN = . . . yN = . . .

Here, the corresponding simulated output with the given parameters are de-
noted ŷi(θ) = ŷ(τi, θ). Given this notation, we assume that the model corre-
sponds to the true underlying process where the error between the simulated
and measured output is normally distributed with zero mean and variance σi
(2.14)

ei(θ) = yi − ŷi(θ)
ei(θ) ∼ N (0, σi)

}
, for i ∈ {0, . . . , N} . (2.14)

Now, given the normality assumption (2.14), the following density function
describes the probability of the model describing the data point (τi, yi) [90]

p(ei(θ)) =
1√

2πσ2
i

exp

(
−ei(θ)

2

2σ2
i

)
.

Furthermore, assuming that the measurements are independent and identically
distributed (IID) the joint probability distribution is given by the products of
these densities [90]

P =

N∏
i=0

p(ei(θ)) =

N∏
i=0

1√
2πσ2

i

exp

(
−ei(θ)

2

2σ2
i

)
.

Substituting the expression in (2.14) for the errors ei in terms of the measured
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and simulated output (i.e. yi and ŷi respectively) yields

P (θ) =

N∏
i=0

1√
2πσ2

i

exp

(
− (yi − ŷi(θ))2

2σ2
i

)

and by defining the loglikelihood as

L(θ) = −ln(P (θ))

it is given by the following expression

L(θ, σ̃) =
1

2

N∑
i=0

ln(2πσ2
i ) +

N∑
i=0

(
(yi − ŷi(θ))2

2σ2
i

)
where ~σ =

(
σ0 σ1 . . . σN

)T
.

(2.15)

Now, the parameters are obtained using a maximum likelihood approach
which can be formulated as follows

Find (θ, σ̃) = argminL(θ, σ̃). (2.16)

In the case of constant variance, i.e.

σi = σ ∀i ∈ {0, . . . , N}

the maximum likelihood approach (2.16) reduces to the classical least square
problem

Find θ = argmin LS(θ) := argmin

N∑
i=0

(yi − ŷi(θ))2
. (2.17)

In other words, the estimation of parameters implies selecting the kinetic pa-
rameters that minimise the Euclidian distance between the measured data and
the simulated output in (2.16) and (2.17). In order to solve these optimisation
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problems, the numerical methods described in the previous section in order to
simulate the output ŷi must be implemented in combination with an optimisa-
tion algorithm. Commonly, a local continuous algorithm is used and closely
connected to this type of algorithm is the concept of numerical identifiability (NI).
To describe this more concretely, consider the least square problem in (2.17)
and given this situation the algorithm proceeds as follows [3].

Algorithm 1: A continuous local optimisation algorithm in the context
of PE

Output: The optimal parameter θ solving (2.17);
Input: An initial guess of the parameters, i.e. θ ← θ0 ∈ Rp+;

1 while Termination criteria is not satisfied do
2 Descent direction: Find a descent direction p ∈ Rp+;
3 Line search: Calculate a step length α such that LS(θ + αp) < LS(θ);
4 Update: Set θ ← θ + αp;
5 end

The crucial step in Algorithm 1 is to compute a so called descent direction on
line 2. Consider the linearisation of LS(θ) around the point “θ + p”

LS(θ + p) = LS(θ) + ∇LS|Tθ p =⇒ LS(θ + p)− LS(θ) = ∇LS|Tθ p .

Now, since a minimisation problem is solved it is desirable to have a negative
left hand side, i.e. LS(θ + p) − LS(θ) < 0 =⇒ LS(θ + p) < LS(θ), implying
that the cost function decreases in each step of the algorithm. Accordingly, a
descent direction is defined as a vector p ∈ Rp+ satisfying ∇LS|Tθ p < 0. The so
called steepest descent algorithm chooses the descent direction according to the
assignment “p←

(
− ∇LS|Tθ

)
” [3]. The advantage of this algorithm is that the

descent direction is cheap to compute, but the drawback is that the overall
algorithm converges slowly to the minima. An alternative algorithm which is
computationally expensive but converges faster to the minima is the so called
Newton-Raphson algorithm [3]. This algorithm uses the second order Taylor
expansion

LS(θ + p) = LS(θ) + ∇LS|Tθ p +
1

2
pTH(θ)p

where H(θ) is the so called Hessian matrix where its elements are the second
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order partial derivatives, e.g.

Hi,j(θ) =
∂2

∂ci∂cj
LS(θ) for i, j ∈ {0, . . . , p}

where the rate parameters are denoted θ =
(
c1 c2 . . . cp

)T . As was previ-
ously stated, this algorithm converges faster than the steepest descent coun-
terpart due to the fact that it takes the curvature of the parameter space into
account. The corresponding descent direction38 in the case of the Newton-
Raphson algorithm is given by solving

H(θ)p = − ∇LS|θ =⇒ “p← H−1(θ) (− ∇LS|θ)” .

However, the Hessian matrix is typically computationally expensive, so there-
fore it is common to use a so called quasi Newton-Raphson method which ap-
proximates the Hessian matrix using first order derivatives. In this way, the
descent direction step of the algorithm is much faster than the original Newton-
Raphson method but, simultaneously, it converges faster to the minima com-
pared to the steepest descent algorithm. The approximation of the Hessian
matrix is based on the so called sensitivity matrix S [19]

S =



∂ŷ
∂c1

∣∣∣
t=t0

∂ŷ
∂c2

∣∣∣
t=t0

. . . ∂ŷ
∂cp

∣∣∣
t=t0

∂ŷ
∂c1

∣∣∣
t=t1

∂ŷ
∂c2

∣∣∣
t=t1

. . . ∂ŷ
∂cp

∣∣∣
t=t1

...
...

. . .
...

∂ŷ
∂c1

∣∣∣
t=tN

∂ŷ
∂c2

∣∣∣
t=tN

. . . ∂ŷ
∂cp

∣∣∣
t=tN


(2.18)

which consists of the so called sensitivities “∂ŷ/∂ci” for i ∈ {1, . . . , p}which
correspond to the change in the output with respect to a specific parameter

ci. Using this matrix, the Hessian is approximated by the matrix H̃ = STWS

where W ∈ R(N+1)×(N+1) is a weight matrix39 corresponding to the variance
in the data [19]. Also, the so called covariance matrix C can be approximated40

using the sensitivity matrix S [19] according to

38This is only true if the Hessian matrix is positive definite, that is if pTH(θ)p > 0∀p ∈ Rp+.
39In certain cases, the weight matrix is set to “W = (1/s2)I” where “s2 = (1/N)

∑N
i=0(yi−y)2”

is the overall variance in the data and I ∈ R(N+1)×(N+1) is the identity matrix [19].
40This follows from the fact that H̃ approximates the Fisher information matrix (FIM) and FIM is

related to the covariance matrix C by the Cramer-Rao Inequality [19].
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C = cov(H̃) = H̃−1

and this enables us to define the notion of NI. Since the diagonal elements
of the covariance matrix, denoted Cii, corresponds to the variance of the ith

parameter one can study the coefficient of variation [19]

σci =

√
Cii
ci

where the variance of the parameter is scaled by the value of the parameter
itself. It is also possible to calculate the correlation matrix from the covariance
matrix C, and using this matrix in combination with the coefficient of variation
σci it is possible to define NI. More precisely, a parameter ci is said to be
numerically identifiable if it has a low coefficient of variation, i.e. a low value
of σci , and if it has low correlations with the other parameters. Another, more
intuitive, way to think about identifiability is in terms of the sensitivities. Since
the covariance matrix is calculated by taking the inverse of the Hessian matrix
and since the Hessian matrix is directly approximated by the sensitivity matrix
it follows that small values of the sensitivities result in a large coefficient of
variation. In other words, if a parameter does not change the observed output,
i.e. “∂ŷ/∂ci ≈ 0” for i ∈ {1, . . . , p} then the parameter will not be (numerically)
identifiable.

Thus, the concept of model validation is closely connected to the terms PE
and NI. In other words, two closely related questions that are often of interest
when validating a model are “which parameters describe the data well?” (PE)
and “given the observed data, which parameter can we actually estimate with
precision?”(NI). Additionally, model validation combines three major fields of
applied mathematics, namely statistics, optimisation and differential equations.
A slightly different notion than the validation of models is that of model selection
which is important if multiple candidate models are available. In this case, it
is not only how well the models fit the data that is used as a basis for model
selection but also the complexity of the models at hand.

Model selection can be done using two very well known information criteria.
These are the Akaike Information Criteria (AIC) [6, 11, 31, 54, 103] and the
corresponding information criteria based on Bayesian model selection called
BIC [11, 31, 44, 54, 62, 103]. These can be formulated as follows [11]

AIC = L(θ, ~σ) + σ̃2 2p

N + 1
and BIC = L(θ, ~σ) + p

ln(N + 1)

N + 1
(2.19)
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where σ̃2 is the variance of the experimental noise and p is the number of
parameters. In the case of multiple time series, denote the number of time
series by m, then the variance σ̃2 is calculated using a classic estimator of the
variance, namely s̃2 =

(∑m
i=1(y − y)2

)
/(m − 1). The model with the lowest

selection criterias, i.e. the lowest values of AIC and BIC respectively, is chosen.
Thus, it is not only a good fit implying a low value of L(θ, ~σ) that is selected,
but also a small model in terms of the number of parameters p. Consequently,
the simplest model structure that best describes the data is selected using the
statistical approach of model selection.

Besides this very data-driven way of describing the notion of identifiability,
it is also possible to define this notion from a purely theoretical standpoint.
Nevertheless, to be able to do this, mathematical concepts from differential
geometry and group theory that are rarely used in data-driven sciences, such
as systems biology, must be introduced. To this end, we will proceed by
describing a theoretical tool for analysing differential equations, namely so
called symmetry methods (subsection 2.2.6), which will subsequently enable
us to mathematically analyse the identifiability of a given model (subsection
2.2.7).

2.2.6 Symmetry methods for differential equations

Symmetry methods use a geometrical approach41 to analyse differential equa-
tions. This is way of thinking about these types of equations is quite unfamiliar
for numerous researchers within mathematical and systems biology. Therefore,
let us introduce the topic with an example.

Classically, when differential equations are studied, we tend to think about
them from the perspective of analysis. In other words, we are interested in the
functions that solve a particular differential equation and in this subsection
we restrict ourselves to ODEs. Moreover, when studying models consisting of
differential equations, it is of interest to find the solutions analytically through,
for example, intergrating factors or various transforms, or the focus is on
determining the long term asymptotic behaviour of the solutions using linear
stability analysis. As an example, consider the following ODE

du

dτ
=
u

τ
(2.20)

where the solution is the function u(τ) and τ is the variable. Now, the solution
41More precisely, it uses mathematics stemming from group theory, representation theory, and

differential geometry.
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to (2.20) is quite straightforward to calculate as the ODE is separable

du

dτ
=
u

τ
=⇒ du

u
=

dτ

τ
=⇒

∫
du

u
=

∫
dτ

τ
=⇒ log (u(τ)) = C̃ + log (τ)

which leads to the following solution

u(τ) = Cτ

for some arbitrary constant C = exp
(
C̃
)
∈ R determined by the initial condi-

tion. Thus, one way of viewing the solutions to (2.20) is as lines through the
origin (Fig 2.4), and these are sometimes also referred to as “rays”.

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

τ

u

u(τ) = τ, C = 1

u(τ) = −τ, C = −1
u(τ) = 2τ, C = 2

u(τ) = −2τ, C = −2
u(τ) = 3τ, C = 3

u(τ) = −3τ, C = −3

Figure 2.4: Solutions to the ODE du/dτ = u/τ . We see that the classic rotation map-
ping as well as reflections through the τ - and u-axes are symmetries of the ODE in
question.

Now, it is also possible to study (2.20) from a geometrical perspective by
analysing the graph of the solutions. More precisely, we are interested in lines
corresponding to sets of points P ∈ R2 of the following kind

LC :=

{
P =

(
τ
u

)
∈ R2 : u = Cτ, for a fixed C ∈ R

}
and we are then, in general, interested in the entire set of solutions S being the
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union of all these lines given by

S :=
⋃
C∈R

LC . (2.21)

From this perspective it is reasonable to use mathematics from linear algebra
and geometry. In introductory courses about vector spaces, one considers
various mappings and specifically operators, such as the rotational operator
Tθ : R2 7→ R2 defined as

Tθ(P ) = Tθ

((
τ
u

))
=

(
cos (θ) − sin (θ)
sin (θ) cos (θ)

)
·
(
τ
u

)
(2.22)

where Tθ rotates the point P counterclockwise with an angle θ. In fact, as
the operator Tθ maps planar objects to planar objects, and since the set of
solutions in (2.21) covers the whole of R2 as the constant C is arbitrary, that
is S = R2, it follows that Tθ maps solutions of (2.20) to other solutions. It is
this key property of operators, namely that they preserve the structure of the
objects they act upon, that is the defining feature of so called symmetries. Let
us, from now on, adopt the notation by Hydon [45] where symmetries are
operators Γε : (τ, u) 7→ (τ̂(ε), û(ε)) where the transformation is a function of
the transformation variable ε ∈ R. Given this notation, the rotation mapping in
(2.22) is the following

ΓRot
ε : (τ, u) 7→ (τ cos(ε)− u sin(ε), τ sin(ε) + u cos(ε)). (2.23)

Two other examples of, perhaps, familiar geometrical transformations are
reflections through the τ -axis

ΓRef
ε : (τ, u) 7→ (τ,−u) (2.24)

and the translation transformation corresponding to translations in the τ -
direction

ΓTrans
ε : (τ, u) 7→ (τ + ε, u). (2.25)

By considering the initial example, it is visually clear (Fig 2.4) that both the ro-
tation mapping in (2.23) and the operator corresponding to reflections through
the τ -axis in (2.24) are symmetries of (2.20), while the translations in (2.25) are
not. Specifically, a symmetry is a transformation satisfying three conditions

(S1) The transformation preserves structure,

(S2) The transformation is a diffeomorphism. More precisely, it is a C∞ diffeo-
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morphism meaning that it is a smooth invertible mapping whose inverse
also is smooth,

(S3) The transformation maps the object to itself (e.g. it maps S to S).

It is the third condition (S3), called the symmetry condition, that is key for finding
the actual symmetries. To generalise this, consider the first order ODE (i.e.
g = v0 = 0 in (2.5))

du

dτ
= f(u) (2.26)

and let S be the set of solution to (2.26). Then, the condition (S3) implies that
the symmetry maps solutions of (2.26) to other solutions. Accordingly, it is
possible to express the symmetry condition mathematically as follows

dû

dτ̂
= f(û) when

du

dτ
= f(u).

Now, since both τ̂ and û are functions of the transformations parameter ε, the
symmetry condition can be expressed more succinctly (by using the chain rule
and the total derivative Dτ = ∂τ + u′∂u + u′′∂u′ + . . .) as follows [45]

∂τ û+ f(û)∂uû

∂τ τ̂ + f(û)∂uτ̂
= f(û). (2.27)

It is this condition that defines all symmetries and it is key for finding them.

Moreover, as our initial example illustrated, there are often numerous sym-
metries to the same ODE. Also, we have that symmetries can be written as
combinations of each other since

ΓRot
π/2

(√
2

2 ,
√

2
2

)
= ΓRot

−π

(
ΓRef
ε

(√
2

2 ,
√

2
2

))
=
(
−
√

2
2 ,
√

2
2

)
which means that if the point

(√
2/2,
√

2/2
)

is rotated with π/2 radians counter-
clockwise to the point

(
−
√

2/2,
√

2/2
)

the same result is obtained if the initial
point is reflected through the τ -axis and thereafter rotated clockwise with π
radians. In fact, the set of symmetries of a given ODE can be classified into a
group structure. One says that the infinite set of symmetries Γε is an example
of a one parameter Lie group. This entails that it satisfies the following four
conditions

(L1) Γ0 is the trivial symmetry so that t̂ = t and ŷ = y when ε = 0,
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(L2) Γε is a symmetry for every ε in the neighbourhood of zero,

(L3) ΓδΓε = Γδ+ε for every δ, ε sufficiently close to zero,

(L4) Each transformed coordinate t̂ can be represented as a Taylor series in ε
(in some neighbourhood of ε = 0).

Here, it is also the last condition (L4) which is the most important one as it
allows for the construction of a theoretical framework. It is namely the case that
the original symmetry condition is typically a non-linear, due to the reaction
term f , PDE of two variables τ and u which renders it hard to use. To this
end, we make use of the fact that each component of the transformation can be
expanded in a Taylor series around ε = 0, and using this fact it is possible to
simplify the symmetry condition. Before this is done, we will derive a number
of useful concepts from the same expansion, and luckily for a first order ODE
as in (2.26) these have a geometrical interpretation. It follows that the Taylor
series for the Lie group action is [45]

τ̂ = τ + ξ(τ, u) · ε+O(ε2)

û = u+ η(τ, u) · ε+O(ε2)
(2.28)

where the tangent to the orbit at (τ, u) is given by the vector v1

v1 =
(
ξ(τ, u) η(τ, u)

)T
=
(

dτ̂
dε

∣∣
ε=0

dû
dε

∣∣
ε=0

)T
. (2.29)

Similarly, the tangent to the solution travels with with the vector v2 (Fig 2.5)
defined by

v2 =
(
1 u′

)T
at (τ, u) and using these two vectors it is possible to construct the following
matrix

M =
(
v1 v2

)
=

(
1 ξ(τ, u)
u′ η(τ, u)

)
.

Then, we define the characteristic as follows

Q(τ, u, u′) = det(M) = η(τ, u)− u′ξ(τ, u)

and using the fact that u′ = f(u) we can define the reduced characteristic

Q(τ, u) = det(M) = η(τ, u)− f(u)ξ(τ, u).
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This property allows us to mathematically describe the action of a symmetry
on a particular solution of an ODE. This follows from the interpretation of the
determinant which is the area of the parallelogram spanned by the two vectors v1

and v2. If it is zero it means that the two vectors (e.g. v1 and v2) are parallel.
Thus, by using the reduced characteristic we can mathematically define the
terms an invariant solution and the trivial symmetry as follows [45]

• Q(τ, u) = 0 =⇒ The solution is invariant under the action of the symmetry
meaning that the symmetry maps points to the same solution,

• Q(τ, u) ≡ 0 =⇒ The symmetry is trivial implying that all solutions are
invariant.

Now, we have arrived at the point where the Taylor expansions in (2.28) can be
used to simplify the symmetry condition in (2.27). Thus, what one does is to
linearise this condition by substituting the Taylor expansions of τ̂ and û into
the symmetry condition in order to obtain

f(u) + ε {ητ + f(u)ηu}+O(ε2)

1 + ε {ξτ + f(u)ξu}+O(ε2)
= f(u+ εη +O(ε2)).

Now, if we further expand each side of the above (or if we multiply both
the numerator and denominator with the complement of the denominator
“1− ε {ξτ + f(u)ξu} − O(ε2)”) we obtain

f + ε
{
ητ + (ηu − ξτ )f − ξuf2

}
+O(ε2) = f + ε {ηfu}+O(ε2).

Lastly, by equating the O(ε) terms we obtain what is known as the linearised
symmetry condition [45]

ητ + (ηu − ξτ )f − ξuf2 = ηfu. (2.30)

It is (2.30) that is used in many applications as it is simpler than the original
symmetry condition. In fact, it is possible to write (2.30) in terms of the reduced
characteristic Q. This is true since the following calculations hold
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ϵ
?

Solution
1 So

lu
tio

n
2

? (τ̂ (ϵ ), û(ϵ ))

(τ , u)
ϵ = 0 v1

v2

v1 =
(
ξ (τ , u)
η(τ , u)

)

v2 =
(
1
u′
)

Figure 2.5: The action of a symmetry. The action of the symmetry Γε : (τ, u) 7→
(τ̂(ε), û(ε) is illustrated. At the point (τ, u) corresponding to ε = 0, the tangent vector of
the transformation is v1 =

(
ξ(τ, u) η(τ, u)

)T while the tangent to the solution travels
with the vector v2 =

(
1 u′

)T .
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ητ + (ηu − ξτ )f − ξuf2 = ηfu

=⇒

ητ − ξτf︸︷︷︸
=∂τ (fξ)

+ ηuf − ξuf2 − fξfu = ηfu − fξfu

=⇒ ∂τ [η − fξ] + f [ηu − (fξu + fuξ)] = fu(η − fξ)
=⇒ ∂τ [η − fξ] + f∂u[η − fξ] = fu(η − fξ).

and by inserting the reduced characteristic Q = η − fξ we obtain

Qτ + fQu = fuQ.

Next, by using the total derivative Dτ = ∂τ + u′∂u = ∂τ + f∂u we see that the
left hand side above can be rewritten as follows

DτQ = fuQ. (2.31)

This is the linearised symmetry condition in terms of the reduced characteristic
Q, and it is important to emphasise that (2.30) and (2.31) are equivalent.

Furthermore, a key concept within symmetry methods is that of the canonical
coordinates. These are coordinates (r, s) = (r(τ, u), s(τ, u)) on which symmetries
have a particularly simple action, namely symmetries merely translate the
canonical coordinates in the s-direction (recall the translation symmetry ΓTrans

ε

in (2.25))
(r̂, ŝ) = (r, s+ ε).

From a linear algebra point of view, this corresponds to a change of coordinates
with the following property(

rt ry
st sy

)(
ξ(τ, u)
η(τ, u)

)
=

(
0
1

)
.

The characteristic equations to find the s-coordinate are [45]

dτ

ξ(τ, u)
=

du

η(τ, u)
= ds
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where the r-coordinate is a first integral of the following ODE [45]

du

dτ
=
η(τ, u)

ξ(τ, u)

and r is thus found by solving the above ODE. Usually, one starts by finding
r = r(τ, u) as a function of the original coordinates and then the s coordinate is
obtained by one of the characteristic equations above, for example [45]

s =

(∫
dτ

ξ(τ, u(r, τ))

)∣∣∣∣
r=r(τ,u)

.

The canonical coordinates can be used to find solutions of ODEs as well as
finding the symmetries themselves, and thus a key step in symmetry methods
is to transform the original coordinates (τ, u) to the canonical counterparts.
Using these coordinates, it is now possible to define the concept of a generator
which allows us to generalise the framework.

Utilising the tangents in combination with the canonical coordinates, we can
now develop a rigorous methodology for finding symmetries. This can be
achieved by using the following partial differential operator

X = ξ(τ, u)∂τ + η(τ, u)∂u (2.32)

which is called the infinitesmal generator of the Lie group. As we will soon show,
this can be used to generate the Lie group, that is to generate the symmetries. A
particular appealing property of the canonical coordinates is that this generator
reduces to

X = ∂s =
∂

∂s
. (2.33)

Now, consider the transformation τ̂ and imagine that it can be rewritten in
canonical coordinates using the smooth and infinitely continuously differen-
tiable function F as follows

τ = F (s, r) ⇐⇒ τ̂ = F (ŝ, r̂).
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Then, by applying Taylor’s theorem to expand F , we obtain

τ̂ = F (ŝ, r̂) = F (s+ ε, r) =

∞∑
j=0

εj

j!

∂j

∂sj︸︷︷︸
=Xj

(F (s, r))

=

∞∑
j=0

εj

j!
Xj

︸ ︷︷ ︸
eX

F (s, r) = eXF (s, r) = eXτ

where we in the last step define the exponential map

eX =

∞∑
j=0

εj

j!
Xj .

Thus, the symmetries are generated by the infinitesmal generator X using the
exponential map as follows

τ̂ = eXτ (2.34)

û = eXu. (2.35)

Note here that X is a differential operator, and thus the meaning of the terms
“Xj” for an arbitrary index j is not to “take the jth power of X” but rather
to apply X , which is the generator, j times in a recursive manner. It is this
generator that allows us to generalise the symmetry framework to higher order
ODEs and thereby systems of ODEs.

Consequently, consider a higher order ODE of the following form

u(n) = f(u, u′, . . . , u(n−1)), u(k) =
dku

dτk
. (2.36)

Thus, we are interested in symmetries of the following kind

Γε : (τ, u, u′, . . . , u(n)) 7→ (τ̂ , û, û′, . . . , û(n))

where

û(k) =
dkû

dτ̂k
, k = 1, . . . , n.

Note that, in similarity to the case of first order ODEs, the symmetries for
higher order ODEs can be understood from a geometrical perspective. In other
words, the ODE in (2.36) defines a high dimensional geometrical object called
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a manifold [45, 79] in Rn+1 where each derivative u(k) can be thought of as a
spatial direction42. In this high dimensional and general context, it is hard to
use intuition in order to grasp the meaning of the various concepts and for an
interpretation of the various concepts it advised to refer back to the planar case
(τ, u) corresponding to the geometrical view of the first order ODEs in (2.26).
Interestingly enough, the solution u(τ) of (2.36) from a function perspective is
the projection of (τ, u, u′, . . . , u(n)) onto the (τ, u)-plane.

To formulate the linear symmetry condition, we remind ourselves that the
derivatives of the symmetries are determined by

û(k) =
dû(k−1)

dτ̂
=
Dτ û

(k−1)

Dτ τ̂
, û(0) ≡ û

where the total derivative is defined as Dτ = ∂τ + u′∂u + u′′∂u′ + . . .. Then, we
define the symmetry condition for a higher order ODE as follows

û(n) = f(û, û′, . . . , û(n−1)) when (2.36) holds. (2.37)

Again, we can calculate the Taylor expansions of the transformations as follows

τ̂ = τ + εξ +O(ε2)

û = u+ εη +O(ε2)

û(k) = u(k) + εη(k) +O(ε2), k ≥ 1.

Then, substituting the corresponding linearisations into (2.37) and then setting
the O(ε) terms equal yields the linearised symmetry condition

η(k) = ξωτ + ηωu + η(1)ωu′ + . . .+ η(n−1)ωu(n−1) when (2.36) holds. (2.38)

The functions η(k) are calculated recursively and it is possible to show [45] that
all these terms can be calculated using the so called prolongation formula

η(k)(τ, u, u′, . . . , u(k)) = Dτη
(k−1) − u(k)Dτξ. (2.39)

Again, these derivatives are calculated in a recursive fashion. Also, it is possible
to expand the notion of a generator by introducing the prolonged infinitesmal
generator

X(n) = ξ∂τ + η∂u + η(1)∂u′ + . . .+ η(n)∂u(n)

42For a more rigorous exposition on the theory of differential geometry and the application of
Lie groups to differential equations, see [79].
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and using this formula we can reformulate the linearised symmetry condition
as follows [45]

X(n)(u(n) − f(u, u′, . . . , u(n−1))) = 0 when (2.36) holds.

Moreover, let L̃ denote the set of all infinitesmal generators of one-parameter
Lie groups of point symmetries of an ODE of order n ≥ 2. Now, since the
linearised symmetry condition is linear in ξ and η and so

X1 +X2 ∈ L̃ =⇒ c1X1 + c2X2 ∈ L̃, ∀c1, c2 ∈ R.

Therefore, L̃ is a vector space. The dimension of this vector space is the number
of arbitrary constants that appear in the general solution to the linearised symmetry
condition [45]. Consequently, every X ∈ L̃ can be written as X =

∑R
i=1 ciXi for

ci ∈ R where {X1, . . . , XR} is a basis of L̃. At this point, it is reasonable to pose
the question of how higher order ODEs as in (2.36) relate to systems of ODEs
which is the focus of this thesis?

In fact, all systems of ODEs can be written as a higher order ODE and vice
versa. To exemplify this, consider the second order ODE from elementary
mechanics in the context of damped oscillations in a spring

mx′′︸︷︷︸
Newton’s 2nd law

= − bx′︸︷︷︸
Damping force

− kx︸︷︷︸
Hooke’s law

.

The solution x(t) describes the position of a mass, e.g. a weight, which through
a spring is (vertically) attached to a rigid support, e.g. the roof, and this solution
is a function of the time t. By introducing the pseudo-state y = x′ we can write
this as the following matrix system

d

dt

(
x
y

)
=

(
0 1
− k
m − b

m

)(
x
y

)
.

This holds true in general as well, as any higher order ODE

u(n) = f(u, u′, u′′, . . . , u(n−1))
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can be converted into a n-dimensional system of ODEs as follows

u′1 = u2

u′2 = u3

...
u′(n−1) = un

u′n = f(u1, u2, u3, . . . , un−1, un).

This demonstrates that the theory concerning symmetry methods for higher or-
der ODEs also describes the symmetries of systems of ODEs which is the focus
of this thesis. The geometrical interpretation of symmetries for a higher order
ODE as in (2.36) is that each derivative y(k) corresponds to a “spatial direction”
in a high dimensional manifold. Accordingly, as the states in a system of ODEs
correspond to a derivative in a higher order ODE, this implies that the various
states of a system of ODEs can also be viewed, from a geometrical point of
view, as a “direction” in a high dimensional manifold corresponding to the
state space. On this note, this allows us to summarise the entire background by
introducing the last concept which is a theoretical version of the identifiability
analysis described in subsection 2.2.5 in the light of this geometrical perspective
of differential equations.

2.2.7 Structural identifiability (SI)

Now, we return to the concept of identifiability which was introduced in
subsection 2.2.5. To this end, consider the model in (2.13) on page 30 with the
output ŷ and initial conditions u0 and v0 respectively given by

du

dτ
= f(u(τ), v(τ), θ)

dv

dτ
= g(u(τ), v(τ), θ)

ŷ(τ, θ) = o(u(τ), v(τ), θ)

u(0) = u0 and v(0) = v0.

Recall, that we are interested in the following question: given the observed
output ŷ and the initial conditions (u0, v0) which parameters in the parameter
vector θ ∈ Rp+, p ∈ N+ can be identified? In this theoretical scenario, no time
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series is available, and the properties of the system that can be considered to be
“known” are the initial conditions u0 and v0 as well as the kinetic parameters
θ. Now, in order to answer the previously posed question theoretically in the
absence of data, the time evolution of the output ŷ is required.

In the context of the geometrical perspective, it is possible consider the phase
portrait, which is the state space determined by (u, v), as a (two dimensional)
manifold. Given this notation, the generator of the time evolution of the system
in (2.13), analogous to the infinitesmal generator of the Lie group in the context
of symmetry methods, is the following

X = f
∂

∂u
+ g

∂

∂v
.

Using this operator, the derivative of any order of the states u(τ) and v(τ) can
be expressed according to

u(j)(0) = Xjf(u, v, θ)
∣∣
u=u0,v=v0

v(j)(0) = Xjg(u, v, θ)
∣∣
u=u0,v=v0

}
, j ∈ {1, . . . ,∞}

which are the terms in a Taylor expansion around τ = 0 corresponding to
the (known) point (u0, v0) in the phase portrait given by the initial conditions.
Similarly, the time evolution of the output ŷ is determined by this operator is

ŷ(j)(0) = Xjo(u, v, θ)
∣∣
u=u0,v=v0

, j ∈ {1, . . . ,∞} (2.40)

and it is this equation that is key in structural identifiability analysis. In other
words, the derivatives ŷ(j) in (2.40) completely determine the time evolution of
the output ŷ close to the time τ = 0 and accordingly identifiability analysis is
based on solving the equations in (2.40). However, as the Taylor expansion is
infinite, there are infinitely many equations to solve in (2.40) which, of course,
is an impossible task to accomplish. Luckily, it has been shown that only the
first ν = n + p − 1 = p + 1, where n = 2 is the number of states and p is the
number of parameters, equations in (2.40) must be solved in order to determine
the evolution of ŷ locally around τ = 0. This is on account of the fact that all of
the higher order derivatives can be algebraically expressed in terms of the first
ν derivatives [4, 99].

Accordingly, we can gather all the first ν derivatives ŷ(j)(0), j ∈ {1, . . . , ν} in
a column vector [53] denoted Y given by

Y = Y(u0, v0, θ).
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Then, the task could be re-formulated as calculating Y provided that the initial
conditions u0 and v0 as well as the parameters θ are known. Again, it is worth
noting that the parameters (as well as the states) are included as “dimensions”
in the geometrical context as we are interested in investigating whether or not
certain parameters in θ can be identified with the observed output ŷ uniquely
determined by Y . Given this setting, the so called rank test for structural identifi-
ability [84] states that the vector Y can be uniquely calculated if and only if the
Jacobian matrix43

J(u0, v0, θ) =
∂Y(u, v, θ̃)

∂(u, v, θ̃)

∣∣∣∣∣
u=u0,v=v0,θ̃=θ

(2.41)

has full rank [53]. Note that the Jacobian matrix corresponds to the first term in
the Taylor expansion, where the parameters “θ̃” are included as “dimensions”,
of ŷ around τ = 0. Moreover, this matrix has full rank if its columns are linearly
independent and the entries of the Jacobian matrix are given by [53]

∂

∂u
Xio(u, v, θ̃)

∣∣∣∣
u=u0,v=v0,θ̃=θ

,
∂

∂v
Xio(u, v, θ̃)

∣∣∣∣
u=u0,v=v0,θ̃=θ

and

∂

∂θ̃j
Xio(u, v, θ̃)

∣∣∣∣∣
u=u0,v=v0,θ̃=θ

, for j ∈ {1, . . . , p} , i ∈ {1, . . . , ν} .

where the function o determines the output ŷ. If the Jacobian has full rank,
the model is referred to as structurally identifiable and thus this defines the
concept of structural identifiability (SI).

Interestingly, the concept of SI can be understood similarly to the interpretation
of the sensitivities in (2.18) in the context of NI. As previously described, if
a sensitivity “∂ŷ/∂ci” is small for a certain parameter ci within NI-analysis,
then this parameter will not be possible to identify with the observed data ŷ.
Analogously, this is what the entries of the Jacobian matrix in (2.41) captures
as well but in the context of SI. In fact, the connection between SI and NI
is straightforward: SI can be thought of as NI when the errors between the
observed and simulated outputs vanish, i.e. in the limit ei = yi − ŷi → 0∀ i ∈
{0, . . . , N} in (2.14) on page 31. In other words, SI corresponds to a situation
without noise where the output ŷ is completely determined by the function

43Note that this is a slightly different Jacobian matrix than that encountered in linear stability
analysis, see subsection 2.2.3.
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o. Therefore, a model as in (2.13) on page 30 that is structurally identifiable
can still turn out not to be numerically identifiable, while if a model is not
numerically identifiable it can never be structurally identifiable (Fig 2.6).

Another interesting observation from the Jacobian matrix (2.41), is that it can
be used for reducing large models. In a situation with many more states, i.e.
more proteins than just u and v, the derivatives with respect to all states are
included in the Jacobian matrix and thereby contributing to the identifiability
analysis. By identifying which states, denote these ui, that do not change the
output, i.e. small values of “∂Y/∂ui”, it is possible to remove these from the
model in order to reduce it.

In practice, it is common to start with an analysis of the SI of a model before
proceeding with the NI. In fact, it is even advisable to investigate the SI before
the data is collected as such an analysis can indicate which parameters that
can be estimated with the given output from a theoretical perspective. In this
way, the SI analysis can be part of the experimental design before the model
validation, PE and NI anlysis are conducted.

Structural
Identifiability

(SI )

Numerical
Identifiability

(NI )

Figure 2.6: The relation between structural identifiability, SI, and numerical identifi-
ability, NI. The set of numerically identifiable models is a subset of the set of structurally
identifiable models.
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3 Large time scale: Modelling
of the entire life span of bud-
ding yeast on a single cell and
population level

Mathematical modelling of unicellular ageing has been successfully imple-
mented. Specifically, certain models of particular interest describe the accu-
mulation of damage as a consequence of cell growth, they include the counter
measures of repair and degradation and they involve the retention of damage
as well as the degree of asymmetry in the cell division. In Paper II, we con-
structed such a model that simulated the entire life span of single yeast cells
and a novelty here was that the RLS of individual cell was calculated. This
allowed us to quantify, using simulations, the effect of changing the previously
mentioned properties, e.g. the formation, repair and retention of damage, on
the RLS. Also, we derived three theoretical results under the assumptions
that a cell needs a minimum amount of functioning proteins in order to live.
These were a theoretical upper limit on the maximum degree of asymmetry
with which a cell can divide, that symmetrically dividing cells such as bacteria
cannot retain damage and we derived an upper bound on the maximum pro-
portion of damage that a mother cell can retain as a function of its resilience to
damage. In this chapter, we focus on a small aspect of this article concerning
the model validation using experimental data as this is an overall theme of the
thesis.

Moreover, using this type of framework it is possible to simulate the distribu-
tion of damage among vast numbers of cells in order to elucidate strategies that
can improve the overall fitness of the population. More precisely, these models
allow for the systematic investigation of the precise effect on the population
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fitness of changing individual forces such as an increase in the capacity to
retain damage and an example of such a population level analysis is conducted
in Paper III. In addition, these large scale simulations can be run for multiple
generations enabling the evolutionary study of damage accumulation. It is
worth noting that this is currently not possible or at least highly complicated
as well as time consuming to study experimentally which makes the prospects
of this type of modelling particularly appealing.

In order to cope with the large time scales as well as the vast number of cells,
the structure of these models is rather simple. Within this framework, each cell
is assumed to consist of merely two components, namely intact proteins P and
damage D, implying that these models view the cell from a holistic perspective
where the processes involved in the overall cellular activity are simplified. In
other words, the level of detail where it is possible to describe the dynamics
of specific proteins is sacrificed for the capacity to model the entire life span
of single cells as well as studying whole populations. The dynamics of the
accumulation of damage is determined by the ODE-model in (3.1)

dP

dτ
= f (P,D, θ, τ)

dD

dτ
= g (P,D, θ, τ)

P (0) = fP (s, re)

D(0) = fD (s, re)

ŷ(θ, τ) = P (θ, τ) +QD(θ, τ).

(3.1)

Here, the non-linear reaction terms f and g respectively determine the for-
mation of intact proteins and damage where the kinetic rate parameters are
gathered in the vector θ. Furthermore, there are two functions which determine
the initial concentrations, namely fP for the intact proteins and fD for the
damage. These depend on two parameters, the size proportion s ∈ [1/2, smax]
for smax(Q) ∈ (1/2, 1) which determines whether the cell divides symmetri-
cally, e.g. s = 1/2, or asymmetrically, s > 1/2, and the retention coefficient
re ∈ [0, remax(s,Q,D)] for remax(s,Q,D) ∈ (0, 1) corresponding to the pro-
portion of damage that the mother cell retains. Another key property is the
parameter Q corresponding to the resilience to damage of an individual cell
which is the amount of damage that a cell can cope with before undergoing
cell death. This parameter determines the upper bound on the size proportion
smax(Q), the upper bound on the retention coefficient remax(s,Q,D) and it can
also be interpreted, from an empirical point view, as the increase in volume
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of an individual cell over the course of its lifespan. This follows from the
fundamental assumption of the model (i.e. that the cell merely consists of
intact proteins and damage) stating that the total protein content, denoted by
ŷ = P +QD, is proportional to the volume of the cell. Now, as an increase in
cell size is indicative of ageing in yeast cells it is possible using this output to
validate and possibly select among candidate models using experimental data
as is described in Paper II.

To select among candidate models, the models were fitted to time series data
of the size of the cell (Tab 3.1). To obtain the ageing aspect of the validation
procedure, the models were fitted to an “average”, in the sense that a statistical
average of multiple growth curves were used, yeast cell both when it was
young1 and when it was old2. The three candidate models that were calibrated
to the measured data was our model in Paper II compared to the models in
[25] and [16].

Table 3.1: Candidate models of damage accumulation. The reaction terms f and g
in (3.1) as well as the fit in terms of the least square LS to the experimental data is
displayed. The compared models are our model in Paper II, the model in [25] and the
model in [16].

Model f (P,D, θ, τ) g (P,D, θ, τ) LS(θ)

Paper III P (g −D)− k1P + k2QD
(
k1/Q

)
P − k2D 0.20

Erjavec et al. α
(

P
KM+P+QD

)
− k1P

k2

Q
P − k3D 0.46

Clegg et al. (1− β)P
(

P
P+QD

)
− k1P + k2D

(
P

βP+QD

)
k1
Q P −

β
µ D

(
P

βP+QD

)
0.43

Consequently, our model would be favoured over the rivals which we conclude
in Paper II. Not only is the fit in terms of the least square value LS(θ) lower
but also the model structure is much simpler both in terms of the number of

1By young we mean damage free daughter cell.
2By old we mean a mother cell growing until the last cell division before cell death occurs.
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parameters as well as the complexities of the non-linearities. Thus, the model
in Paper II is both simple in terms of the structure and it describes the experi-
mental data well which motivated further investigation of the model. However,
despite the fact that our model is selected based on the statistical guidelines, it
is not evident that it is the correct description of damage accumulation.

Although one of the three candidates describes the data best, there is no guar-
antee that it actually is correct. First of all, the output ŷ in (2.5) measures the
increase in size over time indicating that a model that fits the data well has
the ability to replicate a growth curve which in fact all three models have, at
least from a visual perspective, since the models can capture the trend in the
data (see Fig S3 in the supplementary material of Paper II). In the context of
ageing, this entails that the other more crucial parameters corresponding to
formation and repair of damage do not affect the model calibration significantly
which is reflected in the low numerical identifiability, NI3, of these parameters
(see Tab S3 in the supplementary material of Paper II). One way to improve
the identifiability is to alter the observed output and, in this specific case,
a suitable candidate would be to follow a damage marker over time which
would corresponds to the output ŷ(θ, τ) = D(τ). Even if a change of output4

ameliorates the identifiability of the ageing related parameters, it is still pos-
sible that there exists a fourth candidate model structure, i.e. two additional
functions f and g respectively, that would yield a better fit to the data than the
presented candidates (Tab 3.1). The situation described above is fairly common
in mechanistic modelling especially within systems biology where a good fit
to experimental data can give modellers a false sense of security regarding
the model structure. An undesirable consequence of validating or selecting a
faulty mechanistic model, is that it can subsequently be used for extrapolation
in terms of forecasting novel outcomes.

By selecting the wrong mechanistic model, false predictions regarding unicel-
lular ageing can be drawn. To this point, the previously described candidate
models (Tab 3.1) make fairly different predictions regarding how the RLS is
changed due to a change in the resilience to damage of an individual yeast cell
(see Fig S4 in the supplementary material of Paper II). In fact, all the predictions
regarding strategies for prolonging the RLS of individual cells made in Paper
II as well as the analytical results should be interpreted as indications5 or hy-
potheses rather than statements of facts. Similarly, the same conclusion extends

3If a parameter has low NI, we mean that this parameter does not influence the simulated
output ŷ. Accordingly, the value of this parameter can be set to any value based on the measured
data and it is therefore not identifiable.

4A crucial improvement would also be the addition of outputs, e.g. ŷ1, . . . , ŷi, i ∈ N+.
5That is various claims should always be read as follows “Under the assumption that the model

is true, we see that...”.



57

to the simulations (using the model in Paper II as a basis) on the population
level presented in Paper III where strategies to increase the overall population
fitness are investigated by altering the involved parameters. This problem links
back to the initial discussion of this chapter about using models as a means
to simulate population level aspects of ageing in an evolutionary context. On
account of the difficulty of constructing, validating and selecting the ”true”
mechanistic model combined with the fact that the large scale simulations of
the damage accumulation models are hard to validate, the predictions of these
models should be viewed as hypotheses or suggestions rather than undisputed
evidence.

The presented modelling framework consists of an overview picture of unicel-
lular ageing but it lacks chemical details of specific proteins. In other words,
these models describing the dynamics of bulk proteins involve the major forces
including cell growth as well as formation, degradation, repair and retention
of damage but the framework cannot account for kinetic reaction rates of indi-
vidual proteins involved in any of these larger processes. To this end, the focus
of the thesis will subsequently be “zoomed-in” on a detailed reaction scheme
within the first phase of the cell division in budding yeast.
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4 Short time scale: Modelling
of Cdc42 mediated cell polari-
sation in budding yeast

The fascination of modelling the dynamics of Cdc42 comes from a particularly
intriguing phenomena [15, 20, 21, 32, 34, 35, 49, 50, 61, 71, 81, 95, 107, 109].
More precisely, the concentration profile of the active component of Cdc42,
which evolves inhomogeneously, is modelled by diffusion driven instability [75]
originally proposed by Alan Turing [108]. Given a spatiotemporal RD model
composed of a coupled system of PDEs, it is possible to simulate the aggre-
gation of active Cdc42 at a specific spatial location called the pole1 over time.
However, as spatial models are not part of the classic systems biology cycle
entailing the validation of model predictions using data, the results of these
models often given by a linear stability analysis combined with simulations
are highly difficult to validate. Also, as PDEs are generally more complex to
analyse than ODEs, these models often approximate the spatial domain by a
one-dimensional line, which further complicates the task of interpreting the
obtained results as the geometric description of the cell is too simple. To gener-
ate more realistic models, newer attempts have included a three-dimensional
spatial description of the cell where both the cytosol and the membrane are
included.

In Paper IV, we developed a model of Cdc42-mediated cell polarisation which
is realistic in two respects. On the one hand, the underlying reaction scheme is
well-motivated by the literature where each parameter has a clear meaning in
terms of biology and on the other hand the description of the morphology of
the cell adds to its validity. On the latter point, the implemented mathematical
framework belongs to a relatively new class of RD models called the bulk-

1The pole is where the new cell grows out, i.e. the location of the bud in S.cerevisiae.
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surface models [17, 87, 88]. Here, the geometry of the cell is described by a
three-dimensional ball whose interior corresponds to the cytosol and where
the two-dimensional surface, i.e. the sphere, corresponds to the membrane.
In addition, the cytosol is viewed as a bulk in which the cytosolic GDI-bound
component of Cdc42 diffuses and through transfer reactions the system is
further coupled to the membrane where the reactions governing activation
and inactivation of Cdc42 occur. Moreover, as the linear stability analysis of
diffusion driven stability has been generalised to this more realistic geometrical
description [87, 88] it is possible to derive analytical results which can be used to
guide the simulations. To this end, we ensured appropriate stability properties
of our model by means of a mathematical theorem and conducted a thorough
investigation of the parameter space in order to map out various types of
diffusion-driven instability in terms of the kinetic parameters. Besides, as the
use of this type of modelling is not widespread, it has not been implemented
in a systematic fashion to investigate the effect of model parameters on cell
polarisation.

Since spatial data with high resolution is lacking, the study of cell polarisation
is highly dependent on spatiotemporal simulations. In the case of the three-
dimensional bulk-surface models, this requires high performance algorithms to
be able to solve these RD equations efficiently, especially if the aim is to render
the simulations more quantitative. Thus far, the bulk-surface models have
focused more on capturing the qualitative behaviour of cell polarisation using
simulations which entails the formation of an inhomogeneous concentration
profile of Cdc42 where the active state forms a pole. This is often achieved
by running the simulations with kinetic rate parameters satisfying the Turing
conditions for diffusion driven instability [75] and often merely a few simulations
are run to validate that a pole evolves. To render this kind of simulations more
quantitative where the effect of altering individual rate parameters such as the
activation rate of GAP2 on the polarisation process, an efficient algorithm for
solving the RD system is required. To this end, we developed an algorithm
combining Finite Differences (FD) in time and the Finite Element Method (FEM) in
space which generated the spatiotemporal simulations of cell polarisation. To
increase the performance, this combined FD-FEM approach uses an adaptive
step size in time and it also contains a termination criteria which stops when a
pole is formed. The latter part of the program enables us to measure specific
properties such as the time to polarisation, the area of the pole and the max-
imum concentration of active Cdc42 in the pole which thus produces much
more quantifiable simulations. In a sense, these spatiotemporal simulations
replace the function of the time series data in Chapter 3 where the desired
result is to form a single pole as oppose to some other type of “pattern” in the

2For more information on the activation of Cdc42, see the background in section 2.1.3.
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concentration profile and it is this that is used as a validation of the models.

In Paper IV, we set out to formulate a quantitative formulation of Cdc42-
mediated cell polarisation. The structure of the model, orignally proposed in
[87], is the following

∂V

∂τ
= D∆V , x ∈ Ω, t ∈ R+

−D
[
(∇V )Tn

]
= γq(u, v, V ), x ∈ Γ, t ∈ R+

∂u

∂τ
= γf(u, v) + ∆Γu

∂v

∂τ
= γ (−f(u, v) + q(u, v, V )) + d∆Γv

, x ∈ Γ, t ∈ R+.

(4.1)

In (4.1), Ω corresponds to the cytosol and Γ corresponds to the membrane. The
three states are the cytosolic GDI-bound Cdc42 V , the inactive GDP-bound
Cdc42 v and the active GDT-bound Cdc42 u where the last two states are
restricted to the membrane.

Moreover, the reactions are determined by the two non-linear functions q and f
respectively. The cytosolic flux to the membrane as well as the dissociation from
the membrane to the cytosol is determined by the function q. The reactions
occurring in the membrane corresponding to the activation and inactivation of
Cdc42 are determined by the function f . As we can see, the former function
q is almost3 the same in both models in Tab 4.1 while the latter function f is
substantially simpler in our model compared to the one in [87, 88]. As argued
for in Paper IV, this simpler model structure is not only more biologically
realistic in addition to having easily interpretable parameters but from a model
selection perspective it is preferable due to its relative simplicity. Hence, if our
model can generate biologically realistic simulations it could be argued that it
should be favoured over the alternative model.

3The function q is the same but the non-dimensionalisation procedure differs between the
two models. The states in the model in [87, 88] are scaled by the parameter cmax and thus this
parameter is not present in the dimensionless version of the model. In our model in Paper IV, we
use another non-dimensionalisation related to the one used in [96].
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Table 4.1: Candidate models of Cdc42-mediated cell polarisation. The reaction terms
f and q in (4.1). The compared models are our model in Paper IV and the model by
Rätz and Röger [87, 88]

Model f(u, v) q(u, v, V )

Paper IV c2v − u+ u2v c1V (cmax − (u+ v))− c−1v

Rätz and Röger
(
a1 + (a3 − a1) u

a2+u

)
v − a4

u
a5+u c1V (1− (u+ v))− c−1v

Our model in Paper IV reliably produces biologically realistic simulations
in terms of a single pole of active Cdc42, u. These results are qualitatively
similar for different sets of kinetic parameters while quantitative measures
such as the time to polarisation and the size of the pole differ. In the given
situation where data is lacking, it is possible to argue for the selection of our
model as it can reproduce the qualitative behaviour of Cdc42 and its structure
is simpler than the other candidate. However, there is of course even larger
difficulties regarding differentiating between the alternative mechanisms in
this situation compared to the situation of the RLS models in Chapter 3 where
times series data was available. Also, the two different mechanisms encoded
in the respective models probably answer detailed questions differently. These
questions can, for example, be how a specific decrease in the efficiency of the
GEFs, reflected in the parameters a1 and c2 respectively, affects properties such
as the polarisation time.

In summary, a reoccurring problem in mechanistic modelling both on the short
(Chapter 4) and the long (Chapter 3) time scale is the validation of models. An
attempt to tackle this problem is described in the subsequent chapter which
describes a mathematical tool called symmetry methods, see subsection 2.2.6, in
the context of constructing mechanistic models.



5 Towards the key to under-
standing complex biological
systems: symmetries in the
construction of mechanistic
models

Thus far, we have established that there exists no unambiguous way of con-
structing and validating mechanistic models. Currently, the statistical criteria1

states that the description with the least number of assumptions that best
describes the data is in some sense reasonable. The underlying fairly old2

philosophical principle behind this model selection criteria is perhaps most
famously known as Occam’s razor [41] originally formulated as “do not multiply
entitites beyond necessity”. Later, a succinct reinterpretation of this proposition
was made by the physicist Albert Einstein [86]

“Everything should be made as simple as possible, but not simpler.”

Throughout the history of science this doctrine has been implemented, and to
highlight its importance let us consider an anecdote3 from the encounter be-
tween the physicist Pierre-Simon de Laplace4 and the french emperor Napoleon

1For the details of the statistical criteria, see (2.19) on page 35.
2In fact, the principle is medieval. Further, it is named after the English philosopher and

theologian William of Ockham (sometimes spelled Occam).
3See [41] for a more exhaustive description of the story of Laplace and the emperor Napoleon.
4Yes, this is the same physicist who has given name to the Laplace operator in the reaction

diffusion models, see (2.6) on page 22.
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Bonaparte. When Laplace presented his model of the solar system the inquisi-
tive emperor asked why he could not find God in Laplace’s work. The response
from Laplace to the emperor was “je n’ai pas besoin de cette hypothèse” which
translates to “I have no need for this hypothesis”. In light of this, the criteria for
constructing models relies on simplicity combined with accuracy with respect
to empirical evidence.

Provided this standard, there are two ways of constructing mechanistic models.
Either the construction procedure starts from a large5 initial model which
subsequently is reduced or it starts from a small simple model which then is
expanded. In this thesis, it is the latter approach that has been implemented
to construct the presented models. By the terms “simple” and “complex”
model structures, one refers to the mathematical properties of the reaction
terms6. Specifically, a simple model consists of linear reaction terms while a
slightly more complex structure involves polynomial non-linearities and lastly
an even more complex structure involves the quotient based non-linearities
found in enzyme kinetics (e.g. (2.4) on page 21). Although this statistical
criteria for model selection provides a “rule of thumb” when constructing
mechanistic models, it is often not sufficient in order to conclusively find
the correct underlying mechanism as there are generally multiple plausible
models of the system at hand. In particular, this has been evident in both
the case of the models describing the replicative life span of yeast on a large
time scale (Chapter 3) as well as in the case of the models of Cdc42-mediated
cell polarisation on a small time scale (Chapter 4). The first step in finding a
methodology for constructing models in an unambiguous and non-arbitrary
fashion is to identify reasons for why it is often the case that numerous different
models cannot be distinguished.

One potential cause of the described problem is the fundamental assumption of
the statistical methodology. It is namely the case that multiple statistical criteria
originate from the field of parameter estimation which entails estimating the
kinetic parameters in a given model that best replicate the data. However,
the key assumption of parameter estimation is given that the presented model
is true one wishes to find the parameters that minimise the distance between
the simulated and measured outputs. Moreover, as this typically implies
solving an ill-posed optimisation problem7 there are often numerous kinetic
parameters that can replicate the data independent of the model structure.

5A “large” model usually refers to the number of states.
6The reaction terms are determined by the functions f and g respectively in (2.5) and (2.6) on

page 22.
7More specifically, the optimisation problem is commonly expressed as in (2.16) or (2.17) on

page 32. By ill-posed we mean that the problem has multiple local optima whereas well-posed
means that the problem has one unique solution.
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Thus, the parameter estimation approach is more interested in using the model
as a tool for connecting inputs to outputs (Fig 1.1) as oppose to finding the
adequate model structure for the system of interest. To illustrate the problem
occurring in the context of statistically based model selection, consider the
analogy of the “blind men and the elephant” (Fig 5.1) [40]. Imagine that
two blind men touch the trunk of an elephant where one of them correctly
assumes that he touches a trunk and the other assumes that he touches a
snake. Then given the observed output, that is the touch of the trunk, it is
impossible to differentiate between the two models, that is the elephant trunk
versus the snake. However, the actual description of the model is essential in
order to draw correct conclusions about the system at hand. This is exactly
the nature of the presented problem and as mechanistic modellers we are all
blind men describing a complex system. The inability to deduce the correct
mechanism decreases the reliability of the predictions of the models and it
limits the capacity to extrapolate from the model in order to discover unknown
properties of the system at hand. Therefore, it is highly desirable to find a more
rigorous methodology for constructing mechanistic models.

Figure 5.1: The blind men and the elephant. The cartoon initially presented in [40]
was drawn by Renee Guzlas. The authors of the article Jonathan Himmelfarb, Alp
Ikizler and Hakim Raymond as well as the sister of the artist Rebecca Wingard have
personally granted me permission to use the figure through e-mail correspondence.
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Ideally, the construction of models would be based on estimating structures
from measured data. Thus, instead of assuming that the model is true in
order to estimate its kinetic parameters which is classically done in model
selection, the underlying assumption would be to find structures in the data
which subsequently are used to construct models. If this is possible, this would
not only render the procedure for constructing models more rigorous it would
also increase the reliability of the models and increase the likelihood of finding
the true mechanism of the system of interest. Nonetheless, these structures
that are to be found in the data must be encoded mathematically in order to
be able to formalise such a framework for constructing mechanistic models.
In my experience, this can be achieved by a specific mathematical tool called
symmetry methods, see subsection 2.2.6. Symmetries are particular mathematical
objects8 which capture the “physical laws” that a system obeys such as energy
and mass conservation or rotational invariance. This type of mathematical
tool has been used with enormous success in fundamental physics where a
specific example of the usage of symmetry methods is the standard model of
elementary particle physics [113, 120]. In mathematical biology, these methods
are much more uncommon (see [33] for examples) and currently the focus is on
finding analytical solutions to models in order to analyse their mathematical
properties. Nonetheless, in analogy with the problem of statistical model
selection, it is mainly interesting to analyse the mathematical properties of a
mechanistic model if the model actually is true in some sense. To this end, the
idea is to use these methods to construct mechanistic models that satisfy various
physical properties concealed in experimental data which can be revealed by
the symmetries.

In Paper V, we showcase the power of symmetry methods in addressing a min-
imal problem of model selection in the context of enzyme kinetics. Particularly,
we propose a symmetry based framework for selecting different candidate
models that fit (in the least square sense) time series data approximately equally
well. The major conclusion from Paper V is that when the statistically based
methodology for model selection is inconclusive, symmetries can in fact find
the underlying mechanism of a system and also reject faulty model structures.
These results indicate that symmetries can reveal the properties that govern a
system which can subsequently be used to construct reliable models. Further,
this will increase the reliability of the predictions made by specific models
which has a huge potential in the context of mechanistic modelling.

The vision of implementing symmetries in mechanistic modelling is to increase
the validity of the models. By estimating the symmetries that govern a system

8Symmetries are operators that preserve structure. In the context of differential equations,
symmetries map solutions to other solutions (see section 2.2.6 on page 36).
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Figure 5.2: The vision of symmetries in mechanistic modelling.

from experimental data, it is possible to construct models directly9 from the
symmetries. This theoretical “bottom-up” approach will sidestep the current
ambiguity associated with the construction of models and most importantly
it will increase the validity of the structure of the model at hand. In turn, this
will increase the accuracy of the predictions and this framework can naturally
be coupled to the currently well-known systems biology cycle [56, 57]. The
workflow of this “top down” approach consists of constructing models which
are calibrated by experimental data, then novel experiments are conducted
which are subsequently used to modify the models and this is repeated in a
cyclic fashion. The coupling of these two approaches (Fig 5.2) entailing the
introduction of symmetries into mechanistic modelling will greatly enhance
the impact of mathematical models in biology. This is due to the fact that, in
this scenario, the underlying physical properties of biological systems can be
captured by the models, allowed by the use of symmetries, in a manner that
currently is not possible.

In this way, the models will not only be more realistic than they currently are,

9Variational symmetries occur in variational problems which entail the maximisation or min-
imisation of a functional with a corresponding integrand called the Lagrangian [45, 79]. In this
context, an ODE, i.e. a model, can be derived directly from a variational principle [45, 79].
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but they will also encode information about the system that is not accessible by
standard means. Consequently, the construction and analysis of models will
not only be a matter of engaging in an interesting mathematical exercise, but
the models will be essential in revealing fundamental properties of biological
systems similar to the role that modelling plays in physics. Thus, the focus of
mathematical modelling in biology will be switched from merely reproducing
experimental data to actually analysing the structure of the models in order to
capture the underlying mechanisms. Thereby, the understanding of the system
of interest will increase which, in turn, will greatly enhance the relevance
of models in numerous applications. Finally, given a correct mechanistic
model, a single simulation corresponds to an actual experiment which (in times
of immense computational capabilities) will vastly increase the capacity to
understand diseases and potentially finding cures to illnesses.



6 Summary of papers

6.1 Paper I - Systems Biology of Ageing

The ambition of the work was to showcase how the integration of data into
modelling can lead to novel insights about the ageing phenomena. In this book
chapter, an overview of both the mathematical models used in research related
to ageing and the relevant biology including numerous evolutionary theories
are described. Furthermore, four small kinetic models of damage accumulation
corresponding to distinct ageing strategies were proposed corresponding to
different means of ageing that an individual cell can undergo. In particular,
these strategies were defined by two traits, namely by cells having or lacking
a capacity to repair damage and by cells which could retain or not retain
damage. Based on these strategies, we speculated that the environment of the
cell determines which strategy that is beneficial and based on this we suggested
that cells could principally switch between different strategies determined by
the environmental conditions so as to increase the growth rate or improve the
overall fitness of the population.

6.2 Paper II - Synergistic effects of repair, resilience
and retention of damage determine the condi-
tions for replicative ageing

The purpose was to build a model of replicative ageing focusing on the major
factors involved in the accumulation of damaged proteins in the budding
yeast S. cerevisiae. To this end, a comprehensive single cell description, based
on ODEs, of the accumulation of damaged proteins involving the forces cell
growth, formation and repair of damage was constructed. Additionally, the cell
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division entailing the generation of two cells from one and the inheritance of
damage was described by a discrete part which was coupled to the continuous
part corresponding to the formation of damage due to cell growth. Importantly,
we introduced a threshold value on the accumulated damage determining
when cell death occurs, and this enabled ut to investigate the effect of altering
individual parameters on the replicative life span of individual cells. Using
non-dimensionalisation, we introduced the key property of resilience to damage
that could empirically be measured by the increase in volume of an individual
cell over the course of its life-span. Using experimental data consisting of
growth curves we could not only validate the model but also show that it
outperforms other candidate models. Also, using mathematical analysis of
the properties of the model, we could derive two theoretical upper bounds on
the degree of asymmetry in the cell division as well as the maximum amount
of damage a mother cell can retain. Lastly, using simulations we were able
to compare different strategies for prolonging the life span of individual cells
such as reducing the formation of damage or increasing the capacity to repair
damage as well as comparing the effect of dividing symmetrically, e.g. the
bacteria E.coli, with dividing asymmetrically, e.g. the budding yeast S. cerevisiae.

6.3 Paper III - Selective benefits of producing daugh-
ter cells of unequal reproductive potential in
the population of a unicellular organism

Building from the model in Paper II, we expanded the focus to include how
factors on the single cell level affect an entire population of cells. To this end,
we firstly took the individuality of the single cells into account by introduc-
ing non-linear mixed effects in the rate parameters corresponding to the rate
of repair and rate of damage formation. Also, a novel more realistic repair
profile, which declines with high age and that corresponds to an efficient re-
pair machinery early in life, was introduced. By simulating the growth of the
population as well as monitoring all the various lineages of cells, a compu-
tational framework for investigating the well-being of the entire population
was introduced. The quantitative measures of this well-being included known
metrics such as average generation time, growth rate, distribution of damage
throughout the population, the replicative life span and population size but
we also introduced a novel metric called the health span. The latter property
corresponds to the proportion of the life time of an individual cell which it
spent as “healthy” meaning that it had less damage than a specified threshold
value. Using large scale simulations, we determined that the novel repair
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profile resulted in shorter generation times and longer health spans compared
to a constant repair profile. Furthermore, we saw that populations of mother
cells with retention had less variability in terms of the replicative life span and
the health span compared to populations without. Finally, this difference in
variability could be traced back through the lineages where this finding was
explained by the fact that in populations with retention the mother cells are
more similar to their daughters compared to populations without retention.

6.4 Paper IV - Cell polarisation in a bulk-surface
model can be driven by both classic and non-
classic Turing instability

In this paper, we focus our attention on the details of the cell polarisation by
modelling the dynamics of the protein Cdc42. More precisely, Cdc42 is shuffled
between its active and inactive state in the membrane where the active state
aggregates at a specific spatial location called the pole where the budding
occurs. There is also a transport of inactive Cdc42 from the cytosol, i.e. from
within the cell, to the membrane and thus accounting for both the cytosol and
the membrane in the spatial description of the model is crucial. However, this
is something that numerous previous models of Cdc42 have neglected where
they solely focus on the aggregation of active Cdc42 in the membrane (i.e. a
two dimensional domain) which is achieved by the mathematical phenomena
diffusion driven instability. To this end, we constructed a so called bulk-surface
model entailing a three dimensional description of the cell including both
the cytosol and the membrane. Further, we proved the existence of a unique
solution to the proposed RD model in global time as well as that the proposed
model can undergo diffusion driven instability through both classic and so
called non-classic Turing instability. Also, a thorough numerical investigation
of the parameter space was conducted in order to elucidate the parameters that
allow for pattern formation in the concentration profile which, in this context,
entails the formation of a single pole of active Cdc42 in the membrane. From
the mapping of the parameter space, we were able to relate the classic case
of Turing instability, which requires that the active form diffuses slower than
the inactive form corresponding to a relative diffusion of d > 1, to the more
recent non-classic case in which both forms can diffuse with the same rate, e.g.
d = 1. In fact, we proposed that the non-classic case corresponds to the classic
counterpart in the limit d → 1. Subsequently, we validated these theoretical
results by means of simulations where we showed that the model can simulate
cell polarisation. Lastly, we conducted quantitative simulations (which is rare
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for PDE models which require substantial computational power) in order to
investigate the effect of changing kinetic parameters and the size of the cell on
measurable outcomes such as the size of the pole, the time to polarisation and
the number of poles formed.

6.5 Paper V - Symmetry structures in dynamic models
of biochemical systems.

The intention of this paper was to provide a minimal example of how symme-
tries relate to the structure of ODE models in systems biology. To this end, we
studied a simple chemical reaction where a substrate is converted to a product
catalysed by an enzyme, and specifically merely one time-series of substrate
concentration was available. Moreover, three candidates models based on the
famous Hill-Langmuir equation corresponding to one, two and three active
sites respectively were fitted to a time-series where one of the three candidate
models was used to generate the data, i.e. was the correct one. Then, in a
situation where the experimental noise was large relative to the intrinsic noise
between different models, regular model fitting in terms of the “least-squares”
could not distinguish between the various candidates. To achieve this task,
we proposed a symmetry based methodology for selecting the correct model
where the starting point was that symmetries that were unique to each candidate
model were derived. Then, the methodology proceeded in four steps: (1) trans-
form the time-series using the symmetry, (2) fit in the sense of “least squares”
the candidate to the model to the transformed time series, (3) transformed the
fitted model “back” using the inverse transform and (4) compare the inversely
transformed model to the original time series. If the candidate model generated
the data it should be invariant under the action of the symmetry, while in the
case that the candidate model did not underlie the data the corresponding
transformation would have distorted the time series and thereby reduced the
fit. Lastly, we showed that that our symmetry based methodology outperforms
the classic “least square” methodology as the correct model was selected in
all investigated cases. This demonstrates that symmetries can reveal “hidden”
structures that cannot be detected using statistical methods in situations where
data is scarce and the experimental error is large enough.



7 Conclusions and outlook

The progress of the increasingly interdisciplinary life sciences relies on bridging
the gap between the simplicity of models and the complexity of biology. From
a mathematical point of view, the sentiment that “models should be as simple
as possible” has its merit. On the one hand, this principle results in models
without superfluous details, captured by the term identifiability (see subsection
2.2.5 and 2.2.7), which enables researchers to distil the important components
of a studied system. On the other hand, it renders the models manageable in
the sense that they can be analysed which, in the best case scenario, reveals
fundamental properties of, for example, a studied protein being integral to the
progress of a particular disease. However, from the experimental point of view,
the objection to this perspective is that the complexity of biology is vast and the
simplicity of numerous models results in theoretical descriptions that have no
or little bearing on reality.

One answer to this objection by the theoreticians, which obstructs interdis-
ciplinarity, is to ignore it. This entails that models of biological systems are
constructed for the sake of modelling due to, for instance, an interest in their
exciting mathematical properties where the validity of the models in terms
of biology is neglected or not prioritised. A concrete example reflecting this
mentality is the vast number of mathematical models produced of the activity
of Cdc42 [15, 20, 21, 32, 34, 35, 49, 50, 61, 71, 81, 95, 107, 109] largely driven by
the captivating mathematical phenomena called Turing instability where the
biological relevance of the models arguably is not the focus. Personally, I think
the objection by the experimentalists is completely valid and that theoreticians
should focus on the relevance of their models. However, the response by the
experimentalists in turn should not be the literal opposite of the simplicity
based value of mechanistic modelling, namely that “(biological) models should
be as complex as possible”. In my opinion, it is a version, perhaps not as
vulgarly put, of the latter statement that is the cause of another worrying trend
in the field of systems biology in particular.
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Alternatively, the answer to biological complexity is complexity in the models.
Accordingly, in order to capture as much details of a biological system as pos-
sible, the answer from a modelling point of view is to construct very large
models in terms of the number of states and parameters. An objection from
the modellers to this approach relates to issues of identifiability, where models
including too many, i.e. in the range 10-100, kinetic parameters will, in practice,
be impossible to identify. Another one, is that these extensive models are
virtually impossible to analyse and validate which implies that the power of
mathematical modelling entailing the capacity to propose novel mechanisms
as well as making predictions of unknown outcomes is lost. One answer to
this objection by the experimentalists, which again obstructs interdisciplinarity,
is to ignore these objections and only focus on the capacity of the models to
reproduce data. The expression of this trend is exemplified by numerous works
in which large models of, for example, intracellular signalling pathways of
proteins are merely evaluated based on their capacity to reproduce data but
where properties of the models such as stability or identifiability is wholly
neglected. This is somewhat in the vein of statistical modelling (Fig 1.1 on page
2) where models are viewed as a tool for connecting some (explanatory) vari-
ables or inputs to an observed output, as oppose to a theoretical framework for
understanding the underlying mechanisms of a biological system. Moreover, a
problem with this approach is that the explanatory capacity of these models
are often restricted to the data they are validated by and thus they cannot be
used in order to explain other properties, than the experimentally observed
ones, of the system of interest. Also, it is often not possible to differentiate
between candidate models, especially not if the models have too many states
and parameters, and thus it is not possible in this case to deduce fundamental
properties of the studied system.

I think the future of mechanistic modelling should take a golden middle way be-
tween these two perspectives. On the one hand, the theoretical models should
be better motivated by biological knowledge, more focused on explaining
experimental data and they should ultimately involve more detail, i.e. become
larger. On the other hand, the structure and the mathematical properties of the
models should be analysed as this can elucidate the underlying mechanisms
of the studied biological system. In relation to experimental data, the focus
should be to extract structural information used to construct models and not
only to use the models in order to reproduce an observed output. Thus, the
focus should not necessarily be to generate more, in terms of quantity, data but
to develop methodologies enabling the extraction of more information in the
data which can be used to validate the structure of the models. I believe that a
part of the answer to both of these challenges can be provided by symmetry
methods (see subsection 2.2.6 and Paper V). When it comes to the first chal-
lenge of constructing more biologically relevant models as well as increasing
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their size, the starting point could be to deduce which physical properties that
biological systems obey and how to encode these in symmetries. Then, models
could be derived directly from these symmetries and also, in contrary to model
reduction, a framework for scaling up models could be implemented based
on the properties encoded in symmetries. Regarding the second challenge of
extracting structural information from empirical data, a procedure of “model
structure estimation” similar to that of parameter estimation (see subsection
2.2.5) could be implemented based on symmetries. This would preferably be
formulated as an optimisation problem where the optimal solution corresponds
to the symmetries that describe patterns or structures in the data. Given these
symmetries, it would then be possible to derive an appropriate model of the
studied system. Currently, numerical approaches for finding model structures
in dynamical modelling [104] including reaction diffusion models in the con-
text of Turing instability [98] are based on machine learning where a script
(blindly) evaluates, through simulations, numerous different candidate models.
Despite the capacity of modern high performance computing platforms, the set
of possible model structures is, most likely, so enormous that the probability
of finding a “true” model structure by, essentially, guessing is stupendously
low. In the context of parameter estimation, this would be consistent with
an algorithm that generates different parameter guesses in order to calibrate
a model and then the corresponding optimal set of parameters that is saved
would be the guess resulting in the best fit.

The key to accomplish this task is to automate the above procedure. The sym-
metry based framework for both extracting information about model structures
from experimental data as well as analysing large models using symmetries
rely on the development of efficient computer based algorithms. A source
of inspiration in this respect could be the software developed by Karlsson
et al. [53] which conducts a structural identifiability analysis (see subsection
2.2.7) of a provided dynamic model using symbolic calculations. In conclusion,
novel theoretical tools for constructing, validating and analysing mathematical
models in biology must be implemented in order to cope with complexity
as well as obtaining a deeper understanding of the inner workings of living
organisms.
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8 Glossary of fundamental
biological terms

Here follows, in my opinion, the fundamental terms necessary for understand-
ing the biological aspects of the thesis. For further reading, the book entitled
“Molecular Biology of The Cell” by Alberts et al. [2] is recommended and it is
this source that the descriptions of the terms below are based on.

Polymer

A large molecule which links numerous smaller identical units, called monomers,
together. The monomers are connected through so called “covalent bonds”
which are a strong type of chemical bond. Two important classes of polymers
are the polynucleotides, e.g. DNA and RNA, and the proteins.

Monomer

A small molecules which constitutes the building blocks or subunits of larger
molecules called polymers.

DNA

Deoxyribonucleic acid (DNA) is a polymer where the monomers are called de-
oxyribonucleotides. The monomers consist of three components: a nitrogen base,
a sugar molecule and phosphate groups. The nitrogen bases are further di-
vided into two classes, purines and pyrimidines. The purines are called adenine
(A) and guanine (G) while the pyrimidines of DNA are called cytosine (C) and
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thymine (T). The sugar molecule in DNA is called deoxyribose and together
with the phosphate group it can bind covalently to other nucleotides forming
what is referred to as the “backbone” of the DNA molecule. On the backbone,
there are numerous bases attached and together with the backbone they form a
strand of DNA. Moreover, the nitrogen bases can bind to other bases through
hydrogen bonds enabling the connection of two different strands of DNA, and
such DNA molecules are referred to as double stranded. Regarding the binding
of the nitrogen bases, the purines can bind to the pyrimidines according to the
following rules: A binds to T and G bind to C. Also, a list of the hydrogen bases
on a strand, e.g. “ATGTCCGTAGAC”, is called a DNA sequence and it is in
the form of these sequences that the information about all essential functions
of the cell is encoded. Another key property of DNA is that the chemical bonds
between the bases of two different strands are weaker than the bonds between
the phosphate groups and the sugar molecules in the backbone. Consequently,
it is possible to separate strands of DNA without breaking the backbone and the
chemical properties of this polymer also determine its physical configuration.

The three dimensional shape of the DNA molecule is a consequence of its
electrochemical properties. The interior of the cell is mostly filled with water,
H2O, which is a so called dipolar molecule. Although this type of compound has
no net charge if one take the whole molecule into account, more electrons, in
the case of water, are located by the oxygen atom resulting in a partial negative
charge while the hydrogen atoms yield a partial positive charge. In addition, a
fundamental property of chemistry is that charged molecules are often called
“hydrophilic” as they can interact with water while uncharged molecules that
avoid water are called “hydrophobic” implying that they do not react with
water. In the context of DNA, the hydrogen bases are hydrophobic and the
backbone is hydrophilic due to the phosphate group. A striking fact about the
phosphate groups is that they are very negatively charged which is used in
experimental techniques when, for example, the sizes of a DNA fragments are
measured1. Moreover, the negative charge of the backbone results in the fact
that it is often, in a charged media such as water, faced outwards towards the
media while the uncharged and flat nitrogen bases are faced inwards. Due to
this difference in electrical charge, the well-known structure of the DNA in
many eukaryotes is called the double helix, initially proposed by Watson and
Crick [112]. There are also other shapes that DNA polymers can take on, and
one of them is the circular shape of a plasmid (see subsection 2.1.4 on page 14)
found in, among other organisms, bacteria.

1For instance, in the case of an agarose gel sugar molecules form a network structure in which
one can insert DNA fragments. If an electrical current is applied over the gel, the DNA molecules
will move towards the positive node and larger molecules will move slower through the gel which
enables researchers to measure the size of the DNA molecules.
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RNA

Ribonucleic acid (RNA) is a polymer where the monomers are called Ribonu-
cleotides and it differs from DNA in three respects. Firstly, the sugar molecule
in RNA is called ribose as oppose to deoxyribose in DNA. Secondly, RNA has a
nitrogen base called uracil (U) which replaces the thymine (T) in DNA. Thirdly,
RNA molecules can be single stranded unlike DNA molecules (at least most
of the time). There are three important types of RNA called messenger RNA
(mRNA), tranfer RNA (tRNA) and ribosomal RNA (rRNA). The mRNA’s convey
the information encoded in the DNA, the tRNA’s act as an interface between
the mRNA and the particle called the ribosome (read more under “translation”
below) and the rRNA’s are constituents of the ribosomes.

Proteins

Proteins are polymers where the monomers are called amino acids. There are
21 amino acids which render them more numerous than the four types of
monomers defining the polynucleotides. Furthermore, each amino acid has
different chemical properties such as electrical charge which, in turn, implies
that the overall structure of a protein as well as its reactivity in terms of binding
to other molecules are largely determined by the amino acids that make up
the specific protein of interest. Also, the amino acids are linked together by so
called peptide bonds in order to form a sequence which identifies the protein
in question. Due to these bonds, they are also referred to as polypeptides and
they do not only constitute the building blocks of the cell but they also execute
the majority of its functions. As previously mentioned, an important aspect of
the protein is its three dimensional shape which is determined by the sequence
of amino acids due to the different chemical properties of each amino acid. If
a protein looses its shape, it also looses its function and an accumulation of
this type of “damaged” proteins is often a symptom of ageing in numerous
organisms. A particularly important class of proteins are the enzymes.

The central dogma of molecular biology

The process by which the information encoded in DNA gets executed by
proteins is called the central dogma of molecular biology. It is central to all forms
of life and includes three major steps: the replication, the transcription and the
translation. The flow of information from DNA to proteins goes through an
intermediary step using RNA.
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Replication

The replication is the process resulting in the copying or duplication of DNA.
The particular protein which aids this process is called DNA polymerase which
synthesises a new DNA molecule by joining together nucleotides based on the
information encoded in an existing DNA polymer which is used as a template.

Transcription

The transcription of a DNA strand is the creation of a complementary RNA
sequence. This process is aided by a protein called RNA polymerase which joins
ribonucleotides together in order to form a RNA polymer by using DNA as a
template.

Translation

The translation of a mRNA sequence entails the construction of a protein. This
is achieved after numerous amino acids have been joined together which is
a process that occurs on the ribosomes. The ribosomes are particles made of
various proteins and rRNAs which catalyse the synthesis of proteins from
mRNA.

Gene

A gene is a sequence of DNA which is transcribed as a single unit to either a
single protein or a single RNA molecule. Thus, it is the genes that contain the
hereditary information encoded in DNA. In other words, a gene corresponds
to a piece of “code” corresponding to a single or several functions in the cell.

Enzyme

An enzyme is a protein which acts as a catalyst of specific chemical reactions.
In other words, it takes part in the reaction by increasing the reaction rate
without being consumed itself. The molecule which an enzyme acts on is
called the substrate which is subsequently converted into another molecule
called the product of the enzyme. The substrate binds in to a specific part of the
enzyme called the active site where the reaction occurs. From the point of view
of nomenclature, the names of most enzymes end with the suffix “-ase” and
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examples are the polymerases involved in the replication and transcription
described above.
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