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Network modeling and integrative analysis of
high-dimensional genomic data

Jonatan Kallus
Division of Applied Mathematics and Statistics

Department of Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Abstract
Genomic data describe biological systems on the molecular level and are, due
to the immense diversity of life, high-dimensional. Network modeling and
integrative analysis are powerful methods to interpret genomic data. However,
network modeling is limited by the requirement to select model complexity and
due to a bias towards biologically unrealistic network structures. Furthermore,
there is a need to be able to integratively analyze data sets describing a wider
range of different biological aspects, studies and groups of subjects. This thesis
aims to address these challenges by using resampling to control the false discovery
rate (FDR) of edges, by combining resampling-based network modeling with a
biologically realistic assumption on the structure and by increasing the richness
of data sets that can be accommodated in integrative analysis, while facilitating
the interpretation of results. In paper I, a statistical model for the number of
times each edge is included in network estimates across resamples is proposed,
to allow for estimation of how the FDR is affected by sparsity. Accuracy is
improved compared to state-of-the-art methods, and in a network estimated for
cancer data all hub genes have documented cancer-related functions. In paper
II, a new method for integrative analysis is proposed. The method, based on
matrix factorization, introduces a versatile objective function that allows for the
study of more complex data sets and easier interpretation of results. The power
of the method as an explorative tool is demonstrated on a set of genomic data.
In paper III, network estimation across resamples is combined with repeated
community detection to compensate for the structural bias inherent in common
network estimation methods. For estimation of the regulatory network in human
cancer, this compensation leads to an increased overlap with a database of gene
interactions. Software implementations of the presented methods have been
published. The contributed methods further the understanding that can be
gained from high-dimensional genomic data, and may thus help to devise new
treatments and diagnostics for cancer and other diseases.

Keywords: graphical modeling, biomolecular interactions, sparsity, model selec-
tion, resampling, stability selection, community detection, matrix factorization,
Euler parametrization, bi-clustering
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Nätverksmodellering och integrativ analys av
högdimensionell genomikdata

Jonatan Kallus
Avdelningen för tillämpad matematik och statistik

Institutionen för matematiska vetenskaper
Göteborgs universitet och Chalmers tekniska högskola

Sammanfattning
Genomikdata beskriver biologiska system på molekylär nivå och är, i och med
livets enorma mångfald, högdimensionell. Nätverksmodellering och integrativ
analys är kraftfulla verktyg för att tolka genomikdata. Dessa metoder begränsas
dock av att modellkomplexiteten måste bestämmas och av en tendens att skatta
nätverk som har en biologiskt orealistisk struktur. Dessutom finns behov av att
kunna analysera en större bredd av data som beskriver olika biologiska aspekter,
studier och grupper av subjekt på ett integrativt sätt. Den här avhandlingens
syfte är att möta dessa utmaningar genom att använda stickprovsupprepning
för kontroll av andelen felaktiga länkar i skattade nätverk, kombinera nät-
verksmodellering baserad på stickprovsupprepning med ett biologiskt realistiskt
strukturantagande samt öka variationsrikedomen hos datamängder som är möj-
liga att analysera integrativt och samtidigt underlätta tolkningen av resultaten.
I artikel I föreslås en statistisk modell för antalet upprepade stickprov i vilka re-
spektive länk ingår i nätverksskattningen. Detta för att möjliggöra skattning av
hur andelen felaktiga länkar i skattade nätverk påverkas av modellens gleshet.
Därmed reduceras skattningsfelet jämfört med existerande metoder i forsk-
ningens framkant, och i ett nätverk skattat för cancerdata har alla hubbgener
dokumenterade cancerrelaterade funktioner. I artikel II föreslås en ny metod för
integrativ analys. Metoden, som baseras på matrisfaktorisering, inför en flexibel
målfunktion som gör det möjligt att analysera mer komplexa datamängder och
underlättar tolkningen av resultaten. Metodens användbarhet för utforskande
analys demonstreras på genomikdata. I artikel III kombineras nodklustring
med nätverksmodellering baserad på stickprovsupprepning för justera populära
metoder så att de skattar nätverk med en mer biologiskt realistisk struktur. Vid
skattning av regleringsnätverket för mänsklig cancer leder detta till ökad över-
ensstämmelse med tidigare information om biologiska molekylära interaktioner.
Programvaruimplementationer för metoderna som presenteras har publicerats.
Metoderna som presenteras ökar förståelsen av högdimensionell genomikdata
och har därigenom potential att bidra till utvecklingen av nya behandlingar och
ny diagnostik för cancer och andra sjukdomar.

Nyckelord: grafmodellering, biomolekylära interaktioner, gleshet, modellval,
stickprovsupprepning, stabilitetsselektion, nodklustring, matrisfaktorisering,
Eulerparametrisering, biklustring
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1 Introduction

This thesis focuses on the development of statistical methods to increase the
understanding of high-dimensional genomic data. Such data reflect biological
systems on the molecular level and can provide insight into diseases and other
aspects of living cells. From a statistical point of view, a key goal is to be able to
make inference regarding the relation between covariates (i.e. transcripts or other
biological compounds) and the relevance of these relations for the biological
processes within the studied organism. The nature of genomic data pose
challenges. First, genomic data are high-dimensional – such data can contain
tens of thousands of measurements, due to the great number of biological
compounds taking part in the processes of living cells. The high dimensionality
poses statistical and computational challenges in itself. Secondly, due to the
technical challenges in collecting such measurements, data are noisy and may
suffer from unwanted variation caused by differences in laboratory procedures.
Thirdly, complex interactions between covariates, such as feedback loops and
non-linear dependencies caused by physical interactions between the biological
compounds, calls for rich statistical models, exacerbating the challenge of
high-dimensionality.

Two different, but highly related, approaches to the analysis of high-dimensional
genomic data are addressed here. Network modeling aims to identify directly
associated pairs of covariates among a large number of potentially confounding
covariates. In this sense network modeling is an approach with a local focus.
However, the focus can be shifted to the whole data set by considering the
global structure of estimated networks. In contrast, integrative analysis based
on low-rank matrix decomposition, instead, focuses directly on global patterns
of variation in a data set. As we will see in section 2.1.3, network modeling is
related to the smallest eigenvalues of the sample covariance matrix of a data
set, while low-rank matrix decomposition is related to the largest eigenvalues.

New statistical methods have the potential to contribute to the understanding
of the systems biology of living cells. Associations discovered in genomic data
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2 1. Introduction

are used to form hypotheses for biomarkers for improved disease diagnosis or
the development of disease treatments. For statistical results to be useful as
a guide for biological research it is important that they are accompanied by
estimates of variance and accuracy. At the same time, the complicated structure
of genomic data calls for new methods for explorative analysis, even if rigorous
statistical theory regarding the properties of these methods does not yet exist.

This thesis is structured as follows. The next chapter gives, first, a brief
background of genomic data; what it is and why it is interesting to collect and
analyze. Thereafter, the challenge posed by high-dimensional data is introduced.
Lastly, methods for finding associations in genomic data are reviewed, both pair-
wise associations through network modeling and associated groups of variables
through low-rank matrix decomposition. The third chapter defines the aims of
the thesis. Chapter 4 reviews resampling-based methods for network modeling
to introduce the context of papers I and III. Chapter 5 introduces integrative
analysis based on low-rank matrix decomposition to provide context for paper
II. Chapters 4 and 5 also include methodological results not included in the
papers. Chapter 6 summarizes the results of the included papers. The papers
and their supplementary material are included in the thesis. Chapter 7 describes
the software packages that were published along with the papers, and their
capabilities and implementations are discussed. The final chapter concludes by
summarizing the main contributions of the thesis.



2 Background

The diversity of living organisms, and life’s ability to subsist and adapt through
evolution, are astonishing. It is well known that DNA transfers information
about the constitution of an organism between parent and offspring. But why
are cells within a multi-cell organism so different, when they contain the same
DNA? How is the information in DNA put to use? How do cells respond to
changes in their environment and what has gone wrong when a cancerous cell
starts to divide uncontrollably? All of these questions relate to the biochemical
processes taking place within the cell, from DNA transcription to protein
synthesis and function (Smith and Szathmary, 2000). Genomic data consist
of measurements of the abundance of molecular components taking part in
these processes. Measurements are made on samples of biological tissue, on cell
colonies cultured in laboratories, or, more recently on single cells.

The central dogma of molecular biology (Crick, 1970) is the theory that genetic
information is primarily transferred in the cell 1) from DNA to DNA through
replication, 2) from DNA to RNA through transcription and 3) from RNA
to protein through translation. Proteins are complex and diverse molecules
responsible for most of the functions within cells. Figuratively, DNA is the
blueprint for making proteins. Due to the role of RNA as a messenger, the
abundance of a specific RNA molecule corresponds to how actively a specific
piece of DNA is being transcribed, and a specific protein is being constructed.
A piece of DNA that gets transcribed as a single RNA molecule is called a gene,
thus gene expression is measured by RNA abundance (Smith and Szathmary,
2000).

In addition to gene expression data, several other types of genomic data can be
collected. Variation in DNA between organisms of the same species, or between
samples within the same organism, can be measured in terms of, for example,
single nucleotide polymorphisms (SNP, variation at a single base-pair in the
DNA), short insertions or deletions (indels), and copy number variations (CNV,
longer DNA regions missing or being repeated). Epigenetic marks, such as

3



4 2. Background

DNA methylation, responsible for the vast differences between different cell
types despite containing identical DNA, are measured by a technique called
chromatin immunoprecipitation (ChIP). ChIP measurements can be used to
capture the type and genomic location of chemical interactions in connection to
the DNA. Proteomics, the direct study of protein abundances, is challenging
and cannot be conducted with satisfying quality at a genome-wide scale using
current technology. It is, however, a fast-growing field (Richardson et al., 2016).
The definition of genomic data, or genomics, used here is wide and includes
types of data that are sometimes, more specifically, called e.g. transcriptomics
(measurements of RNA abundance) or epigenomics (measurements of epigenetic
marks).

For roughly two decades it has been possible to collect gene expression data
on a massive scale. First, primarily through microarrays (Schena et al., 1995)
and later through bulk RNA-Seq (Wang et al., 2009) and single-cell RNA-Seq
(Hwang et al., 2018). Briefly, microarrays give a more crude estimation of
the RNA abundance for a predefined set of base-pair sequences, compared to
RNA-Seq which records base-pair sequences in a sample and matches them to
genes afterward. RNA-Seq also has a higher dynamic range, meaning that it
is able to measure both very low and very high concentrations with greater
accuracy. Microarrays and bulk RNA-Seq give a measurement of the average
state across all cells in a sample, whereas single-cell RNA-Seq can capture
the distribution of cellular states in a sample. Human gene expression data
contain measurements of the concentrations in a sample of biological tissue for
about 20,000 genes. RNA is known to exhibit complex interactions with other
RNA molecules and with the DNA, enabling e.g. the expression of one gene
to inhibit or amplify the expression of other genes. The cancer genome atlas
(TCGA) (The Cancer Genome Atlas Research Network et al., 2013) is a publicly
available set of gene expression data and other genomic data from thousands
of cancer patients. Covering measurements for several types of genomic data
across many cancer types, TCGA allows for the comparison of different cancer
types and the search for correlations between the different types of genomic
data. Since it became available, the data set has often been used as an example
in computational biology research. Due to the richness of the data set, methods
that can be used to analyze and explore it have potential to be useful also for
genomic data sets from a wide range of other scientific studies.

In statistics, a high-dimensional data set is a data set where the number of
covariates (variables measured for each observation) is far greater than the
number of observations. An example is RNA-Seq gene expression data for the
cancer type glioblastoma multiforme in TCGA. It contains measurements for
20,530 genes (covariates) in 172 tumor tissue samples from human patients
(observations). The statistical analysis of such data sets has become increasingly
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important due to the increased ability to collect, store and transfer vast numbers
of measurements. Genomics and other areas in computational biology are
important examples. For the modeling of a high-dimensional data set, even
the simple linear model (section 2.1.1) is too complex. Thus, the complexity of
the linear model needs to be reduced further, e.g. by discarding covariates or
otherwise constrain the linear model (Hastie et al., 2009).

2.1 Finding associations in genomic data

Associations in genomic data can be represented as a network, where each
gene is represented by a node and nodes are connected by a link if the genes
they represent are associated. Such network representations aim to raise the
focus from the local associations between pairs of genes to systemic or global
properties of the whole group of genes and their interactions. Low-rank matrix
factorization, such as singular value decomposition or principal component
analysis, is another way to model genomic data. Matrix factorization finds
linear combinations of genes or of biological samples. These linear combinations
can be used to find genes or samples that behave in some way that is typical in
the data set or to find related groups of genes or samples. Matrix factorization
can also be used to summarize high-dimensional data in fewer dimensions, to
enable data exploration, through, for example, visualization.

2.1.1 Networks of pair-wise associations

Network models of human gene expressions have proven useful for the clas-
sification of cancer patients as well as for finding potential target genes for
cancer therapies (Pe’er and Hacohen, 2011). Features at the network level that
are of biological importance include genes that serve as network hubs and the
network distance between them, as well as the betweenness-centrality of nodes
(i.e. network bottlenecks). Such features can be predictive of survival time in
cancer patients or be cancer-type specific (Jörnsten et al., 2011; Kling et al.,
2015).

Network modeling of genetic networks concerns the estimation, from a genomic
data set, of the edge set of a graph where the graph’s set of nodes consists of
all covariates in the data set. A graph is defined by a set of vertices V and
a set of edges E, where each edge in E is a pair of vertices in V . The terms
from applied fields (network, node, link) and corresponding mathematical terms
(graph, vertex, edge) are used interchangeably in this thesis. The estimation
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of the edge set of a graph connects to multiple hypothesis testing since high
statistical power and asymptotically correct error control is desirable. The
estimation problem also connects to lasso linear regression (linear regression
that is constrained so that many parameters are exactly zero) since procedures
based thereupon are computationally tractable. Lasso and multiple hypothesis
testing are introduced in the coming subsections.

The estimation of the edge set is a high-dimensional model selection problem.
Each potential edge corresponds to a parameter in a statistical model. To set a
parameter to zero corresponds to not selecting the variable or edge. The lasso
and related l1-norm penalized methods are computationally and performance-
wise efficient when sparsity can be assumed. Penalized methods rely on a
choice of the amount of penalization, an inherently hard problem. The optimal
amount of penalization depends on the number of observations and variables
as well as several unknown quantities such as noise, true sparsity and variable
interdependence structure. It also depends on the intended use for the network
model. The choice of amount of penalization corresponds to the choice of
model complexity in general model selection. The following sections provide a
statistical background for network modeling and review methods for estimation
of interaction networks.

Linear regression

Linear regression assumes the model y = Xβ + ε, where the response y and the
error ε are n-dimensional vectors, the parameter β is a d-dimensional vector and
X ∈ Rn×d is a matrix of n observations and d covariates. The elements in ε are
independent, identically distributed, independent of X and have expectation
equal to zero. We can think of y as the gene expression of one gene and X as
the gene expression of all other genes. Then β captures association between the
gene represented in y and all other genes. With the most popular estimation
method least squares, β is estimated by minimizing the sum of squared residuals
(y −Xβ)T (y −Xβ). When d ≤ n, X and y uniquely determines an estimate of
β (assuming that X is full rank). In the high-dimensional case, however, the
problem of estimating β is underdetermined. There exist infinitely many β such
that y = Xβ and a single solution does not say anything about the relation
between X and y (Hastie et al., 2009).

To reduce model complexity, a constraint can be imposed on β. Common
constraints include the l2-constraint in ridge regression

∑d
i=1 β

2
i < R (Hoerl

and Kennard, 1970) and the l1-constraint in lasso
∑d
i=1 |βi| < R (Tibshirani,

1996). Lasso has the advantage that admissible β that minimize the sum of
squared residuals are, in general, such that many elements in β are equal to
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zero. This property of excluding less relevant covariates from the model is
useful for the estimation of relevant covariates in genomic data sets. The lasso
optimization is often formulated in the equivalent Lagrangian form

min
β

(
(y −Xβ)T (y −Xβ)/2 + λ

d∑
i=1
|βi|

)

with the l1-constraint changed into an l1-regularization term. The regularization
parameter λ corresponds to the constraining parameter R (Hastie et al., 2009).
Compared to unconstrained least squares, lasso has drawbacks. First, the lasso
estimate of β depends on a parameter λ. Secondly, the lasso estimation accuracy
for β is less well understood (Bühlmann and van de Geer, 2011).

Graphical lasso

Assume that observations follow a multivariate Gaussian distribution, i.e. Xi ∼
N(µ,Σ) ∀i, where Xi is the ith row of X, µ is the mean vector and Σ is the
covariance matrix. Then, if a pair of covariates are conditionally independent
given all other covariates, the corresponding element in the precision matrix Σ−1

is zero. This allows for the modeling of gene expression data as a graph, where
two genes are connected by an edge if their partial correlation is significantly
non-zero. The meaningfulness of exact zeros suggests the construction of an
estimator of Σ−1 that tends to estimate elements to be exactly zero using a
lasso penalty. The log-likelihood for Θ = Σ−1, partially maximized with respect
to µ, is given by log det Θ− tr(SΘ), where S is the empirical covariance of X
and tr is the trace operator. The graphical lasso estimates a sparse graph by
solving

Θ̂ = arg max
Θ�0

(log det Θ− tr(SΘ)− λ||Θ||1)

where the constraint Θ � 0 means that Θ is constrained to be positive semidef-
inite and ||Θ||1 is the sum of the absolute values of the elements in Θ. The
maximization problem is convex and computationally tractable, although con-
siderably slower to use than the method that is reviewed next (Friedman et al.,
2008; Banerjee et al., 2008).

Neighborhood selection

Neighborhood selection was proposed before graphical lasso but is considerably
faster and can be understood as an approximation of graphical lasso. It models
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each covariate a with all other covariates using lasso

β̂a = arg min
{β:βa=0}

(
1
n

(Xa −Xβ)T (Xa −Xβ) + λ

d∑
i=1
|βi|

)

where Xa is column a of X. Compared to graphical lasso, the optimization
problem of neighborhood selection is computationally simpler. It is a drawback
that it does not impose symmetry in gene associations directly in the optimiza-
tion problem, i.e. that β̂ij = β̂ji . Symmetry is instead enforced after β̂ has been
computed, by letting the set {(i, j) : β̂ij 6= 0∨ β̂ji 6= 0} be the estimated edge set
(Meinshausen and Bühlmann, 2006).

Multiple hypothesis testing

In mathematical statistics, decision problems are approached using hypothesis
testing. When deciding if data support an association between the expression of
two genes, the alternative hypothesis that the association is supported is posed
against the null hypothesis that it is not. If the probability of the observed
data, or a more extreme observation, under the null hypothesis is below some
threshold the null hypothesis is rejected. This probability is called the p-value
and the threshold is commonly 0.05 (Rice, 2006). When multiple tests are
performed, such as testing the association between a gene and all other genes
or even the association between all pairs of genes, the classical framework is
unsatisfactory. Since the probability of failing to reject a specific hypothesis is
0.05 (if the threshold is 0.05 and the null hypothesis is true), we have to expect
that 5% of all unassociated genes will be falsely deemed as associated. There
is thus a risk that correctly rejected null hypotheses are lost among a large
number of falsely rejected null hypotheses. Instead of focusing on the error
probability in a single test it is relevant to control the total number of errors.
The family-wise error rate (FWER) is the probability that at least one null
hypothesis is falsely rejected. The false discovery rate (FDR) is the expected
proportion of rejected null hypotheses that are falsely rejected (Hastie et al.,
2009).

Parametric hypothesis testing relies on an assumption of the distribution of the
test statistic under the null hypothesis. In large-scale multiple testing problems,
where the proportion of alternative cases is typically less than 10%, parametric
hypothesis tests can be improved by using an empirical null distribution. Em-
pirical null distributions are generally overdispersed relative to a theoretical null
distribution, for the following reasons: the existence of unobserved covariates,
correlations that are not accounted for in the theoretical null distribution and
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the existence of many real but uninterestingly small effects. The use of an
empirical null distribution makes an important difference in multiple testing,
and rich null distributions (in comparison to commonly used theoretical null
distributions) are needed to capture overdispersion (Efron, 2004).

When controlling the false discovery rate, a measure of statistical significance
called the q-value (Storey and Tibshirani, 2003) is useful. While performing
multiple hypothesis significance tests, q-values are assigned to each alternative
hypothesis so that if all alternative hypotheses with q < 0.05 were called
significant, an FDR of approximately 0.05 would be achieved. Thus, q-values
have the same relation to FDR as p-values have to false positive rate.

2.1.2 Low-rank matrix factorization

Matrix factorization is a type of exploratory analysis. It aims to reveal dominant
trends in a data set rather than to answer specific questions that have been
formulated beforehand. Singular matrix decomposition (SVD) factorizes a
matrix X ∈ Rn×p into orthonormal (pairwise orthogonal columns of unit `2-
norm) matrices U ∈ Rn×n and V ∈ Rp×p and a non-negative diagonal matrix
D ∈ Rn×p such that X = UDV T . The diagonal elements of D, called singular
values, are commonly sorted in descending order (and the columns of U and V
are sorted accordingly). The matrix product UDV T can also be we written as
a sum

X =
min(n,p)∑
i=1

DiiUiV
T
i ,

whereDii are elements ofD and Ui, Vi are columns of U and V . This formulation
emphasizes the possibility to view SVD as a decomposition of X into a sum
of rank-one matrices, called components, of varying importance (given by the
magnitude of Dii). By disregarding all but the first k components, a rank k
approximation ofX is given byX ≈ UDV T with matrix sizes instead U ∈ Rn×k,
D ∈ Rk×k and V ∈ Rp×k for k ≤ min(n, p). In fact, this approximation of X is
optimal in the `2 sense, i.e. there is no matrix X̂ of rank k or less such that the
sum of squared elements of X − X̂ is smaller than that of X − UDV T (Golub
and Van Loan, 1996). Due to this result, the SVD can be found by solving a
constrained optimization problem

arg min
U,D,V

||X − UDV T ||F

such that the columns of U and V have unit `2-norm and D is diagonal and
non-negative, where || · ||F is the Frobenius norm, i.e. the square root of the
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sum of squared elements. Orthogonality of columns of U and V is not necessary
as a constraint, since the optimal solution has orthogonal columns due to the
optimality of SVD.

The statistical method principal component analysis (PCA) is closely related
to SVD. It is used for dimension reduction of a data matrix, commonly for
visualizing the data as a scatter plot in two or three dimensions. PCA constructs
new variables that are linear combinations of the original variables, such that
each new variable has maximum variance while having zero covariance with
the other new variables. The new variables are given by the V matrix of the
SVD. The columns of V are called loadings in PCA. The SVD matrices U and
D are combined with multiplication to a matrix T , called scores, such that
X ≈ UDV T = TV T . For PCA truncated to rank k, the k loadings hold the
coefficients for constructing the new variables from the original variables and the
score matrix holds the observations in terms of the k new variables. In computer
science, the score matrix is often called an embedding, and observations are
referred to as being embedded in a k-dimensional space.

The low-rank SVD minimizes the `2 error. Statistically, this corresponds to an
assumption that each element in the data matrix has an independent normally
distributed error. Rank k SVD in itself corresponds to an assumption that
each variable is a linear combination of k unobserved variables. These model
assumptions lead to the view of SVD as a decomposition of data into the first k
components, sometimes called the signal, systematic variation or patterns, and
the error, often called noise.

2.1.3 Large and small eigenvalues

The sample covariance matrix S = XTX/(n − 1) is central to both network
modeling and matrix factorization. It is assumed here that the columns of
X have mean zero, which is natural to do since the focus is on covariance,
and covariance is unaffected by mean shifts. In the least squares method, the
optimal estimate of β is given by (XTX)−1XT y. If X is high-dimensional, then
XTX is not invertible, (XTX)−1 is undefined and some eigenvalues of XTX
are zero. In lasso, ridge regression and graphical lasso the imposed constraints
can be thought of as ways to find an inverse of an approximation of S, since
the inverse of S does not exist. For an invertible matrix A, the inverse of
the eigenvalues of A are equal to the eigenvalues of A−1. In the constrained
methods for linear regression and graphical modeling, the focus is on β or Θ
which depend on (XTX)−1 and thus on the smallest eigenvalues of XTX. By
imposing constraints, an inverse is instead found to a matrix which is similar
to S, where similarity is implicitly defined by the type of constraints. The
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focus of these methods is local in the sense that they estimate an association
between the response and each covariate, or between each pair of covariates. In
matrix factorization, on the other hand, the focus is global in the sense that
large groups (linear combinations) of variables are estimated. Correspondingly,
in matrix factorization the focus is on the largest eigenvalues. In SVD, V
holds the first k eigenvectors of XTX, U holds the first k eigenvectors of
XXT and D holds the square roots of the k largest eigenvalues of XTX, or
equivalently of XXT . To summarize this paragraph, matrix factorization uses
the eigenvalues that can be stably calculated in high-dimensional data to capture
global properties of the data but it can not well describe properties of individual
pairs of covariates. Network modeling perturbs high-dimensional data to be
able to estimate small eigenvalues (indirectly by approximating (XTX)−1) and
to capture local properties of the data. In this regard, both classes of methods
are necessary to gain maximum understanding from high-dimensional data.

There are several shortcomings in existing methods for network modeling and
matrix factorization, that limit their usefulness in the analysis of genomic
data. One example is the choice of model complexity, i.e. λ in graphical
modeling and k in matrix factorization, which is difficult. Traditional methods
for selecting model complexity, cross-validation and information criteria, are
prone to overfit and are sensitive to outliers (Jörnsten et al., 2011). When the
goal of graphical modeling is interpretation (e.g. biomarker identification or
mechanistic understanding) an accurate control of the rate of falsely discovered
edges (FDR) is typically more important than maximizing stability or likelihood
(Storey and Tibshirani, 2003). The selection of model complexity in network
modeling such that the FDR is controlled at a specific level is addressed in
paper I. Existing methods for integrative analysis using matrix factorization
are limited in the complexity of data relations that they can accommodate,
their results are difficult to interpret and/or they do not specifically address
the choice of model complexity. Matrix factorization has long been used for the
analysis of single data matrices. Genomic data, however, come in the form of
multiple related data matrices. These matrices contain information of different
groups of studied subjects, each group described in terms of multiple, and not
necessarily the same, types of genomic data. These needs are addressed in
the method for integrative analysis that is developed in paper II. Integrative
analysis, the use of matrix factorization for the simultaneous analysis of multiple
related matrices, is an active area of research, and there is a strong need for
new statistical methods (Richardson et al., 2016). The assumption of network
sparsity is central in graphical modeling. However, the `1-penalty that is used
to impose the assumption has the side-effect of promoting networks with a
structure that is unlikely for biological networks (Tan et al., 2014). Paper III
addresses this side-effect, while still allowing for control of the FDR.
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3 Aims

This thesis aims to further develop statistical methodology for the understanding
of high-dimensional genomic data sets by means of graphical modeling and
integrative analysis. These approaches can elucidate several aspects of high-
dimensional data; from local associations between pairs of covariates, to global
patterns in a high-dimensional matrix and even associations between patterns in
different data matrices. The high dimensionality and heterogeneity of genomic
data pose statistical challenges, and a balance needs to be struck between
richness and simplicity of methods. On one hand, methods need to be rich
enough to be able to handle genomic data sets and to answer biological and
medical questions. On the other hand, methods need to be simple enough to
allow for a statistical understanding of the results produced, in order to ensure
that drawn conclusions are not too strong nor too weak given the available data.
More specifically the aims are:

• To develop and evaluate a new statistical model for edge selection counts
in resampling-based network modeling, in order to more accurately control
the false discovery rate of network edges (paper I).

• To enhance integrative analysis based on matrix factorization in order
to analyze more complex data sets, and, at the same time, facilitate the
choice of model complexity and the interpretation of results (paper II).

• To unify resampling-based network modeling with a biologically realistic
assumption on the global structure of estimated networks, in order to
increase accuracy while controlling the false discovery rate of network
edges (paper III).

In all, the overarching aim of the thesis is to increase the potential to gain
understanding from heterogeneous high-dimensional genomic data.

13
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4 Resampling-based
network modeling

To what extent can a network estimate be trusted? Are some or all edges strongly
influenced by a few of the observations in the data set or are they representative
of an entire population? To what extent can specific properties of the estimated
network, or specific locations in it, be trusted? The methods reviewed in section
2.1.1 are estimators of edge sets of graphs. Given a data set X ∈ Rn×d and
regularization parameter λ they make an estimate Ŝλ(X) ∈ {0, 1}p of an edge
set. With an indexing over all pairs of covariates in X, Ŝλi (X) = 1 means
that the ith pair of covariates is in the estimated edge set. It follows that the
number of potential edges is p = d(d− 1)/2. When using network estimates for
making biological hypotheses it is beneficial to have an understanding of the
distribution of such estimates. The field of statistical inference concerns the
distribution of estimates such as Ŝλ(X).

A common way to estimate the distribution of Ŝλ is using bootstrap or other
resampling methods. Bootstrap uses the sample X to form new samples with
approximately the same distribution as X. A bootstrap sample R(X) consists
of n rows drawn randomly among the rows of X, with replacement. The
distribution of the estimator Ŝλ can then be approximated by applying it to
several resamples R(X). In addition to getting an understanding of a specific
estimator, this procedure can be used to compare different estimators (i.e.
different levels of regularisation for a specific method or different methods).
Furthermore, all of the bootstrap estimates Ŝλ(Ri(X)), where Ri is the ith
resample, constitutes a new data set that can be used for estimating the network.
This route has the potential to improve error control and to improve robustness
by decreasing sensitivity to single observations in X.

Paper I contributes a new method for resampling-based network estimation that
has more exact FDR control than existing methods and is also considerably

15
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more robust to the randomness introduced by resampling than one of the state-
of-the-art methods. Paper III presents a new resampling-based method that is
able to impose an assumption that networks have a community structure. In
order to get a broader perspective, this chapter reviews two existing resampling
based network estimators that are state-of-the-art in terms of control of the
false discovery rate (FDR). This chapter also discusses how network modeling
can be improved by making a biologically realistic assumption on the network
structure.

Assume that bootstrap is used with B resamples. Then, estimating a graph for
each bootstrap sample yields B graphs, with equal sets of nodes but different
sets of edges. Thus, each potential edge i will have appeared Wλ

i times,
Wλ
i ∈ {0, . . . , B},

Wλ
i =

B∑
j=1

Ŝλi (Rj(X)).

Wλ
i is thus the selection count for edge i at regularization λ. Figure 4.1, where

the selection count of individual edges is plotted against different levels of
regularization, shows how individual edges respond to varying regularization.
Figure 4.2, where a histogram shows how many edges that were selected k times
for a specific λ, shows the empirical distribution of edge selection counts at one
level of regularization.

4.1 Edge-wise control of the false discovery rate

Simple ways to estimate a network using selection counts Wλ would be to
include all edges with Wλ

i > 0 (edges selected in at least one resample) or edges
with Wλ

i = B (edges consistently selected in all resamples) or something in
between (e.g. edges selected in a majority of resamples). Stability selection
(section 4.1.1), bootstrap inference for network construction (BINCO, section
4.1.2) and resampling of penalized estimates (ROPE, sections 4.1.3, 6.1 and
paper I) are, however, more sophisticated. Stability selection focuses on the
maximum selection count of each edge, maxλWλ

i . BINCO fits a decreasing
function to a part of the edge selection histograms. ROPE models the sequence
Wλ
i for each fixed λ with a probability distribution. All three methods address

the problem of selecting the level of regularization λ by using several Wλ

corresponding to a range of λ values.
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4.1.1 Stability selection

Stability selection uses the maximum selection count for each edge over the
entire range of λ values, maxλWλ

i . Meinshausen and Bühlmann (2010) derive
an upper family-wise error rate (FWER) bound for a threshold kt where all
edges for which maxλWλ

i > kt are selected (figure 4.1). It is shown in paper I
that the achieved FWER is, in many cases, far below the FWER bound. This
method results, thus, in too conservative choices of kt and, in turn, too sparse
network estimates.

Complementary pairs stability selection (Shah et al., 2013) introduces a less con-
servative choice of kt. The method proposes complementary pairs subsampling,
which means that subsampling is performed, without replacement, with two
non-overlapping random subsamples at a time, each of size bn/2c. Due to the
subsamples being non-overlapping, the two subsamples constitute independent
estimates of the population distribution. This independency is used to derive
an improved FWER upper bound.

4.1.2 BINCO

BINCO (Li et al., 2013) estimates the null hypothesis distribution of edge
selection counts for each value of λ (figure 4.2). The histogram estimates the
distribution of edge counts, but it contains both null and alternative edges. In
order to estimate a distribution that only includes potential edges that should
not be included in a good network estimate, a range of selection counts is chosen
that is dominated by such edges. The choice of such a range is based on the
histogram having an approximate U-shape.

It is a good sign when edge selection counts are U-shaped. In an ideal case,
where the network estimator estimates an identical network for each bootstrap
sample, each edge will get a selection count of either 0 or B. In a slightly less
ideal case, edges will be selected either a small number of times or almost B
times, resulting in a U-shaped histogram. It is often the case that the mode for
the distribution of false edges is larger than zero. Therefore, an assumption of
U-shape in the entire range is too strong. Instead histograms are assumed to
be U-shaped in a range {c, . . . , B}, 0 ≤ c < B.

Li et al. (2013) states the assumption of approximate U-shape precisely as
the proper condition. The proper condition is satisfied when the empirical
probability density function for edge selection counts is U-shaped in the limit
B →∞, i.e. that when restricting the function to this interval, the function has
local maxima at its endpoints, a global minimum in the interior of its domain
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Figure 4.1: Edge selection counts k after 500 bootstraps over varying penalty
parameter λ. A random subset of all edges is shown. The stability selection threshold
is shown with a dashed red line. Stability selection selects all edges whose count is
above a threshold kt for at least one λ.
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Figure 4.2: Edge selection count histogram after 500 bootstraps corresponding to
one λ. The red line shows the null hypothesis distribution as estimated by BINCO.
kt shows the threshold by BINCO corresponding to an estimated FDR of 0.05. v2
is the location of the minimum of the asymptotic distribution function estimated by
BINCO.
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and no other extrema. They show that the proper condition is satisfied by
selection procedures for which the selection probability tends to one uniformly
for alternative edges and has a limit superior strictly less than one for null edges,
as n→∞. Li et al. (2013) also show that the condition is satisfied by selection
procedures that are based on resampling of consistent selection procedures, such
as the lasso when the irrepresentable condition (Zhao and Yu, 2006) is satisfied.

Approximate U-shape is a condition for both BINCO and ROPE. This condition
excludes problems where the generating network is either extremely sparse in
relation to the variance in network estimates caused by resampling, or where
several different edge sets with small mutual overlap captures the data similarly
well.

BINCO estimates the parameters of a modified decreasing beta-binomial density
function to fit the null hypothesis distribution of edge selection counts. The
modification of the density function is made to allow for overdispersion. This
overdispersion may be caused by dependencies between selection counts for
different edges and other reasons (see section 2.1.1). To minimize influence from
edges in the alternative distribution, only the decreasing part of the histogram
is used. Using the estimated null distribution and the empirical distribution,
the FDR can be estimated for each threshold kt. This procedure is repeated for
a range of regularization levels. Thus, a threshold kt is calculated for every λ,
each corresponding to the same estimated FDR. To make its network estimate,
BINCO uses the edge selection counts from the regularization level λ for which
most edges are selected. That is, λ is selected to maximize the estimated power.

There are drawbacks in using only the decreasing range of the histogram
to estimate parameters of the null distribution. Depending on the shape
of histograms, thresholds corresponding to relevant false discovery rates are
often located outside the range used to fit the model. When that is the case,
extrapolation of the fitted model gives an unnecessarily large variance in choice
of threshold. Furthermore, the presence of the alternative population in the
decreasing range, especially its rightmost part, can cause an erroneous estimate
of the null distribution.

4.1.3 Joint modeling across regularization levels

Instead of modeling the edge selection counts for each regularization level inde-
pendently, modeling can be improved by modeling jointly across regularization
levels, due to three facts and assumptions. First, it is reasonable to assume that
the distribution of edge selection counts changes smoothly when the amount
of regularization is changed. Secondly, an increase in regularization leads to a
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sparser network. Thus the mean of the distribution of edge selection counts de-
creases when regularization increases. Thirdly, the proportion of potential edges
that should be included in a correct network is fixed. By switching to a such
global model, variance in the estimation of model parameters that is caused by
the finiteness of the number of bootstraps and observations is decreased. These
three relationships between selection counts and regularization are illustrated
in figure 4.3. The figure also illustrates the relationship between histograms
and how the curves of individual edges change as functions of regularization.

Numerical likelihood maximization for such a global model is challenging.
Challenges include the large number of model parameters and a sound and
efficient formulation of constraints that enforce smoothness in distribution
change. The large number of potential edges and the possibility to perform
many bootstraps ensures that there is much selection count data available to fit
local models at each regularization level. This suggests that gains from enforcing
smoothness across regularization levels are small. In ROPE we enforce the fact
that the proportion of edges that should be included in the network are fixed
regardless of λ. It is demonstrated in paper I that this constraint decreases bias
and increases robustness.

4.2 Assumptions on network structure

The discussed methods for network estimation all rely on a sparsity assumption.
The sparsity assumption is local in the sense that it affects the estimation of
each edge individually and independently, only indirectly affecting the entirety
of estimated networks. This section treats the imposition of an assumption on
network structure, a kind of assumption that directly affects whole network
estimates. The structure of a network refers to its overall shape, i.e. how
nodes and edges tend to be configured in the network. Some typical network
structures are represented by scale-free networks, hub networks, networks with
communities and uniformly random networks. Specific networks may have
a structure more or less similar to these representative networks, or have a
resemblance to several of them or other structures. Network structure can most
precisely be described by probabilistic generative models. In the generative
model for uniformly random networks, called the Erdős-Rényi model, a random
decision is made independently, and with equal probability, for each pair of
nodes to be either connected or not. Scale-free networks are generated by the
Barabási-Albert model, which considers nodes one at a time and connects the
considered node to previously considered nodes randomly such that more highly
connected nodes are preferred. Hub networks have some nodes, hub nodes,
which are more highly connected than other nodes. In networks with community



4.2. Assumptions on network structure 21

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

● ●
●

●

● ● ●

●
●

● ● ● ●
●

● ● ● ● ●
● ● ● ●

● ●
● ● ●

●

●

●
●

●
●

● ●
●

● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ●
● ●

●

●
●
●

●●
●●

●

λ = 0.06

(A) 200 1000

0
0.

00
02

k

p

0.05 0.20
20

0
10

00
(B)

λ

k

λ

k

p

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● edge count histogram
estimated null pop.
edge presence count (C)

Figure 4.3: Combined two-dimensional histogram of edge selection counts and
penalization parameter values, along with estimated null population density (C). Edge
selection counts for some individual edges are shown as functions of the penalization
parameter (B, C). If all individual edges were shown, the density of curves would
have corresponded to the height of the histogram. This figure shows the relationship
between selection count histograms (A) and curves (B). It also shows how histograms
changes smoothly with λ. (k: edge presence count, p: frequency, λ: regularization
level.)
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structure, nodes are partitioned into groups, called communities, and nodes
within the same group are more highly interconnected than nodes in different
groups.

It has been observed that genetic networks tend to have a structure similar to
scale-free, hub or community networks, or a combination thereof (Eisen et al.,
1998; Albert, 2005; Hao et al., 2012). Uniformly random networks, on the other
hand, do not have a structure that is likely for genetic networks. Inappropriately
for estimation of genetic networks, methods for network estimation which put
an individual sparsity penalty on each potential edge, such as graphical lasso
and neighborhood selection (section 2.1.1), implicitly make the assumption that
the estimated network has a uniformly random structure (Tan et al., 2014).
Due to the small number of observations that are typically available (in relation
to the large number of parameters to be estimated in network modeling) when
estimating genetic networks, relevant assumptions are important. Statistically,
an assumption of a particular network structure increases the likelihood for
networks of that structure. This is, of course, beneficial if the unknown true
network is of such structure.

4.2.1 Community detection

The attempt to find communities in a given network is called community
detection. In contrast to network modeling, methods for community detection
do in general treat the network as an observed truth. Community detection in a
network is similar to cluster analysis of observations in a data set. Both depend
on the subjective choice of a function for comparing candidate communities
or clusters, based on e.g. density of network edges within the community or
of observations within the cluster. Both also require a strategy for selecting
the number of communities or clusters. Louvain (Blondel et al., 2008) is a
method for community detection that is fast for large networks. The method
uses modularity, a function of the partitioning of the nodes of a network,
that increases with the edge density inside communities and decreases with
the edge density between communities. Global optimization of modularity is
not computationally tractable. Blondel et al. (2008) proposed a heuristic for
approximately maximizing the modularity. Their algorithm iterates over all
nodes repeatedly. Initially each node is in its own community. If a node has
neighbors in other communities, it is moved to the neighboring community
which most increases the modularity. When no move exists that increases
modularity, each community is merged into a single node and the algorithm
is applied again to the new smaller network. Moves and mergers are iterated
until modularity no longer increases. In addition to the computational efficiency
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of the algorithm, which is due to its quick reduction of the problem size, the
algorithm does not require a choice of the number of communities beforehand.

4.2.2 Consensus clustering

Consensus clustering (Monti et al., 2003) is a method for the estimation of
stable clusters. It is highly similar to stability selection (section 4.1.1), but
is used for clustering rather than network estimation or other problems of
variable selection. In consensus clustering, any method for cluster analysis is
applied repeatedly to random subsamples of a set of observations. The results
from all repetitions are summarized in a consensus matrix. The matrix is
symmetric and has the same number of rows and columns as the number of
observations in the initial data set. For each pair of observations, it holds the
proportion of repetitions in which these observations were estimated to be in the
same cluster. The repeated cluster analyses are summarized into a consensus
clustering by using the consensus matrix as an observation similarity matrix.
The purpose of consensus clustering is twofold. First, it aims to estimate the
stable clusters, i.e. a clustering that is robust to sampling variability. Secondly,
it proposes a procedure for selecting the number of clusters. In paper III,
we adapt consensus clustering for use in community detection. A difference
between clustering and community detection, when used in resampling-based
procedures is that resampling is performed on observations, to achieve robustness
to sampling variability, for both clustering and community detection, while
clustering estimates a partitioning of observations and community detection
estimates a partitioning of variables.

4.2.3 De-biasing of edge selection counts

The method structure-adaptive stability selection (SASS), proposed in paper III,
performs consensus community detection on estimated networks and reduces
the edge selection counts for edges between nodes of different communities.
Thereby, the assumption of uniformly random networks inherent in methods for
the estimation of sparse networks is replaced by an assumption of community-
structured networks. Compared to ROPE, the histograms of edge selection
counts are central to both methods. The main differences are in the different
aims of the methods and in the different ways to model the histograms. Where
ROPE is a novel way to control FDR in edge selection, SASS is a novel
enhancement of stability selection in network modeling to enable the inclusion
of a structural assumption on the estimated network. Where ROPE specifies
a mixture distribution to model the histograms, SASS uses kernel density
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estimation to make smooth estimates of the histograms.

In addition to using the repeated resampling to perturb network estimates, the
repeated resampling is also used, in SASS, to perform consensus community
detection. Using the consensus matrix, the method decides if communities seem
to be present in the estimated network and, if so, divides all node pairs into pairs
estimated to belong to the same community and pairs estimated to belong to
different communities. This stratification of potential edges is used to construct
two histograms of edge selection counts, one for within community edges and one
for between community edges. The bias of methods for sparse network modeling
toward a homogeneous edge density in all parts of networks is manifested by
different shapes of the two histograms. Edge selection counts for between-
community edges are reduced to make up for this shape difference. Previously
existing methods for imposing structure assumptions in network modeling rely
on modifying objective functions or estimation procedures of existing methods
for sparse network modeling. SASS instead combines complementary pairs
stability selection and consensus community detection with existing methods
for sparse network modeling.



5 Integrative analysis

Integrative analysis, as the term is used in this thesis and generally in the field
of high-dimensional statistics, is the simultaneous analysis of multiple data
matrices with the intent to be more informative than separate analyses of each
matrix. A prerequisite for this to be possible is that the different matrices
contain information that is somehow related. For example, two matrices may
contain measurements for the same set of features (e.g. expression levels for a
set of genes) for two different groups of observations (e.g. two patient cohorts
stratified by disease type). The aim of integrative analysis is to identify structure
that is consistent across multiple data matrices, and also to use similarities
between matrices to increase statistical power to identify structure that is
present only in individual matrices. The identified structure may subsequently
be used to e.g. find clusters of variables or observations or to identify differences
or similarities between the given groups of variables or observations. Ideally,
integrative analysis of heterogeneous matrices should not obscure structure that
is not present in all analyzed matrices. Compared to data analysis in general,
which uses a model to separate the structure from the random noise, integrative
analysis further separates the structure according to which matrices it is present
in.

In this thesis, the focus is on integrative analysis by means of matrix factor-
ization. Such analysis is based on the simultaneous factorization of multiple
data matrices so that each matrix is approximated by a sum of low-rank ma-
trices. Each low-rank matrix is, in turn, a product of two matrices (called
factors). The decomposition is made such that identical factors take part in
the approximation of different data matrices. The pattern in which factors
influence the approximation holds information of which data matrices that
have a similar structure and how the structure is similar. In addition to this
pattern of similarities between data matrices, integrative analysis by means
of matrix factorization also yields the understanding that can be gained by
ordinary methods for matrix factorization of a single data matrix, such as PCA

25
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or SVD.

The term integrative analysis is sometimes used with different meanings than
the one that is used here. In particular, within systems biology the term is
often used to refer to any methods or procedures developed for the analysis of
data regarding different aspects of the same set of subjects. In contrast to the
approaches discussed in this thesis, such methods are often specialized for a
specific problem or type of data.

5.1 Applications

Many scientific fields have use for the analysis of multiple related high-dimen-
sional data matrices with complex relations between groups of observations and
groups of variables. In the last decades, however, methods for integrative analysis
have primarily been used and developed within chemometrics, systems biology,
computer science and statistics (see references in table 2 in the supplementary
material to paper II).

Within systems biology, much focus on integrative analysis has been driven by
the aim to use the data set released by The Cancer Genome Atlas (TCGA)
to improve our understanding of cancer biology. TCGA is a project aimed at
compiling and publishing large sets of data that describe cancer genetics and
the cell biology of cancer on a molecular level. The released data consist of
thousands of biological samples of cancerous tissue, sometimes matched with
samples of normal tissue. The biological samples are divided into 33 different
types of cancer. Multiple aspects of the cellular biology are measured, e.g.
gene expressions, mutations and methylation, as well as clinical data regarding
the patients, their disease type, their treatment and the disease progression.
Integrative analysis of this data set has the potential to reveal connections
between the different types of measurements that may be mechanistic, and thus
have relevance for the development of new therapies and improved methods for
diagnosis. It also has the potential to find subsets of patients that may benefit
from particular types of treatments, due to e.g. biological mechanisms that are
active in that specific group. A hypothetical example is shown in figure 5.1,
which illustrates six matrices, where the three matrices to the left measure copy
number variations (CNV), a type of mutation, at a number of chromosomal
locations and the three matrices to the right measure expression levels for a
number of genes (RNA). The two top matrices regard biological samples from
patients diagnosed with the cancer type glioblastoma multiforme (GBM), the
two middle matrices regard samples from healthy patients and the two bottom
matrices regard patients diagnosed with breast cancer (BRCA). The colored
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bars within matrices illustrate columns of factor matrices that the matrices have
been decomposed into by an integrative approximation. White bars illustrate
columns of factor matrices that are individual to only one matrix and colored
bars illustrate columns of factor matrices that capture structure that is common
to at least two matrices. This example will be made more concrete in section
5.2. The figure shows structure that is shared between CNV and RNA data
for two of the patient groups (purple and green bars), suggesting a connection
between the two data types that are present for GBM and healthy patients,
but not for breast cancer patients. RNA structure is similar for the two cancer
types (blue bars), and could be cancer-related. CNV structure is similar for all
groups of observations (red bars), but there is also structure that is individual
to the healthy patients. This is an illustrative example to describe the potential
for integrative analysis and is not informative for the biology of cancer.

The division of variables (or observations) into distinct groups facilitates inter-
pretation and enables analysis of data sets where entire sets of variables are
missing for some groups of observations. In systems biology, it is natural to
treat data regarding different biological components or laboratory platforms
(gene expression, mutations, methylation etc.) as distinct groups of variables.
This is both because there is reason to believe that data quality (in terms of
signal-to-noise ratio) differs and because it is of interest to focus analysis on
covariation between specific groups of variables rather than between individual
variables. Covariation between groups of variables can in some cases be used
to form hypotheses of mechanistic influence based on the central dogma of
molecular biology (section 2). For similar reasons, it is useful to divide observa-
tions (e.g. biological samples) into groups by disease type or other important
properties.

Integrative analysis is also used in other fields. Within computer science,
integrative analysis has mainly been used in so-called recommender systems.
Typically, recommender systems are used to predict to which extent each
individual in a group of users would enjoy each item in a set of items, in order
to automatically recommend items to users. A simple example involves three
matrices: one containing features of each user, one containing features of each
item and the third containing grades that users have given to items that they
have already experienced. The third matrix would have missing data for each
element that corresponds to an item that the user has not yet experienced, and
the recommender system would be used to impute the missing data. This focus
on prediction by imputation is in contrast to the focus, in other fields, on the
interpretation of shared structure and the pattern in which it is shared.
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Figure 5.1: Example for illustrative purposes. Six data matrices that are vertically
or horizontally related. Integrative analysis can identify structure that is shared
between data matrices (colored bars) and structure that is specific to an individual
data matrix (white bars)
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Figure 5.2: Example of vertical integrative analysis of a low-dimensional data set.
Data consist of three groups of observations (black, red and blue). Colored lines show
dominating directions of variation for each associated group. One of the directions
describes variation in both the red and the black group. An individual PCA of each
data set would not have aligned one of the black lines with the red line.
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5.2 Integrative low-rank decomposition

SVD (section 2.1.2) can be utilized for integrative analysis by simultaneously
decomposing multiple related matrices while enforcing similarity between the
decompositions. A simple setting is when all matrices describe the same set of
observations. The convention in statistics is to have data matrices with one row
for each observation and one column for each variable. Thus, in this setting,
all matrices have the same number of rows, and similarity between U -matrices
of each decomposition can be enforced. This is called horizontal integrative
analysis. Analogously, it is called vertical integrative analysis when multiple
matrices describing the same set of variables for multiple groups of observations
are analyzed. In vertical integrative analysis, similarity between V -matrices
is instead enforced. Figure 5.2 shows a simple example of vertical integrative
analysis. It shows three groups of observations (colored black, red and blue) in
three variables (x, y and z). The loadings (columns of V -matrices) are depicted
by colored lines. The observations of the blue and red groups lie approximately
along two lines, one for each group, and the directions of their first loadings
are not much affected by noise. The observations of the black group are spread
in the vicinity of a disc. These observations are described approximately as
well by any two diagonal loadings as long as they are in the same plane as the
observations. The direction of the first loading for the black group is highly
dependent on random noise. In the example, an integrative analysis has found
that the red group can be well described by a loading that also captures much
variability in the black group. The blue group, on the other hand, is spread
along a line that is not shared with any other group. This example shows why
an integrative analysis can not, in general, be performed by first performing
SVD on each group separately and then searching for similarities of scores and
loadings. An individual decomposition of the black group could very well have
found loadings quite far from the loading of the red group. Similar difficulties
are exacerbated in data sets of higher dimension.

Bi-directional integrative analysis combines horizontal and vertical integrative
analysis. Figure 5.1, discussed previously, shows an example. With the concepts
from this section, the meaning of the colored bars in the figure can be made
more concrete. The matrix holding CNV data for healthy patients has been
approximated by an SVD of rank two. The other matrices are approximated by
rank one SVD, since they have only one horizontal and one vertical bar each.
Out of the two U -columns for healthy CNV data one is equal to the single
U -column for healthy RNA data, since they share the same color. Augmented
multi-view data (AMD), introduced by Klami et al. (2014), is more general
than bi-directional data. In bi-directional data, each set of entities (e.g. genes
or patients) must be associated with either rows or columns of matrices. In
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AMD, the same set of entities can instead be associated with rows of some
matrices and columns of other matrices. For example, a matrix that holds
information on how closely related variables of different groups are, such as
the chromosomal distance between gene locations and the location of probes
for measurement of methylation, would have rows associated with one group
of variables and columns associated with another group of variables. AMD is
the most general setting for CMF (section 5.5.2) and MM-PCA (section 5.5.3).
AMD is treated in section 6.2 and in paper II (see in particular figure 1D in
paper II). A related setting is data in tensor form. Where a data matrix holds
relationships between two sets of entities, a data tensor holds relationships
between an arbitrary number of sets of entities. Tensors can be analyzed with
horizontal or vertical integrative analysis, but doing so disregards that both
the columns of each tensor slice describe the same set of entities and the rows
of each tensor slice describe the same set of entities. Methods for low-rank
decomposition of single tensors exist, but no general method exists that can
analyze multiple related tensors integratively without disregarding any of the
given relations.

5.3 Interpretation

Methods for integrative analysis all result in estimated matrices U , D and
V , or similar decompositions, and an estimation of the structure in which
these matrices are equal for different data matrices. These results need to
be interpreted. This section describes two strategies for interpretation. First,
results can be interpreted similarly to the results of a PCA. Such interpretation,
which focuses on scores and loadings, is enriched by the structure in which
these scores and loadings are shared among data matrices. Secondly, results
can be interpreted as a general dimension reduction of data and focus on e.g.
clustering.

As in PCA, loadings describe linear combinations of variables that show the
most variation over the observations, and scores describe the direction and
magnitude of variation for each observation in terms of each such combination.
For a matrix of gene expressions, for example, the loadings (each column of V )
can be thought of as a virtual gene that is made up of a linear combination of
the genes in the data set. These virtual genes are sometimes called eigengenes,
due to the loadings being the eigenvectors of the data matrix’ sample covariance.
In addition to PCA-like interpretation, interpretation of integrative analysis
also focuses on the structure in which scores and loadings are shared between
data matrices. Different methods make different kinds of assumptions on how
structure is shared. Trivially, the two extremes, no shared structure or all
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structure globally shared, correspond to making an individual analysis of each
matrix or to concatenate all matrices and analyze the concatenated matrix. The
first is a too weak assumption and would lead to methods that are unable to use
or find patterns that are shared between matrices. The latter is a too strong
assumption and would lead to methods that miss patterns that are specific
to some matrices. Several methods (section 5.5.1, supplementary material to
paper II) make the assumption that patterns are either individual or globally
shared between all matrices, so that each matrix is approximated by a sum
of individual components, globally shared components and noise. This is still
a strong assumption, especially for the analysis of many matrices, as it is
enough for patterns to be missing in only one matrix to force the patterns to be
approximated individually for each matrix. CMF (section 5.5.2) and MM-PCA
(section 5.5.3) can find patterns that are shared between subsets of matrices.
Thus, these methods address the more difficult problem of finding the structure
in which patterns are shared, as opposed to merely separating and estimating
individual and globally shared structure. The structure in which scores and
loadings are shared between matrices is not a binary relation where structure
is either shared or not. The amount of structure that is shared is described
both by the number of components that are shared and the weights of these
components in proportion to weights of other components and noise.

The dimension reduction performed with integrative analysis is useful for making
sense of high-dimensional data. It can be used for visual exploration, for example
by making scatter plots in two or three dimensions. A decomposition of data
into signal and noise allows for focusing on what is estimated to be noise-free
signal. Methods that allow for missing data in data matrices can be used to
impute the missing values. Clustering is closely related to dimension reduction.
Joint and individual clustering (JIC) (Hellton and Thoresen, 2016) uses the
results of JIVE by performing k-means clustering on the JIVE scores. This
allows for integrative clustering, where clusters of observations can be found and
associated with values of specific sets of variables or with all sets of variables,
globally. Lee et al. (2010) showed how scores and loadings of sparse SVD,
where solutions with exact zeros in scores and loadings are encouraged, can
be used to perform bi-clustering of an individual data matrix. This is utilized
in MM-PCA to perform integrative bi-clustering. Bi-clustering simultaneously
clusters both variables and observations, such that elements that belong to
the same combination of variable cluster and observation cluster are similar.
Integrative bi-clustering is bi-clustering where clusters may be equal across
multiple matrices or specific to one matrix.
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5.4 The Euler parametrization

In MM-PCA, we use a parametrization of orthonormal matrices that has not
previously been used to solve optimization problems stemming from integra-
tive analysis. The parametrization, called generalized Euler parametrization
(Hoffman et al., 1972), is defined in paper II. Here, an efficient algorithm for
computing an orthonormal matrix given the generalized Euler parameters is
presented, after a brief description of the parametrization. The objective func-
tion of MM-PCA is based on the objective function from the formulation of
SVD as an optimization problem (section 2.1.2). When the SVD objective
function is modified, as is done in MM-PCA, the optimal matrices U and V
are no longer guaranteed to be orthogonal. Thus, orthogonality needs to be
enforced. Orthogonality constraints are, however, difficult to handle efficiently
in numerical optimization. Therefore, we use the generalized Euler parametriza-
tion, which allows us to formulate an unconstrained optimization problem that
still optimizes over the space of orthonormal matrices. At the same time, the
parametrization reduces the number of parameters of the optimization problem.

The generalized Euler parametrization expresses any orthonormal matrix V ∈
Rp×k, p ≥ k, in m = pk − k(k + 1)/2 parameters ξ1, . . . , ξm as a product of
m matrices R1(ξ1), . . . , Rm(ξm) and a matrix Ipk, i.e., V (ξ) = R1(ξ1)R2(ξ2) · · ·
Rm(ξm)Ipk, where Ipk is the first k columns of the p-dimensional identity matrix.
The matrices Ri(ξi) are called Givens rotations and are matrices of the form

Ri(ξi) =


I 0 0 0 0
0 cos ξi 0 − sin ξi 0
0 0 I 0 0
0 sin ξi 0 cos ξi 0
0 0 0 0 I

 ,
where I and 0 are identity matrices and zero matrices of varying sizes, such
that each Givens rotation affects a unique pair of dimensions.

Naively calculating V by matrix multiplication from left to right would require
(m− 1)p3 + p2k scalar multiplication operations: (m− 1) matrix multiplications
of p×p-size matrices and one matrix multiplication of a p×p-size matrix with a
p×k-size matrix. Using the definition ofm, this is a time complexity in p ofO(p4).
A simple improvement is to calculate V by matrix multiplication starting instead
with the right-most matrix product. This requires mp2k scalar multiplication
operations, time complexity O(p3), a substantial improvement since p >> k in
practice. Further major improvements can be achieved by utilizing the sparsity
and structure of Givens rotation matrices. In the implementation of MM-PCA
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the following algorithm is used (here in C-like pseudo-code):

for (j = k-1; j >= 0; j--) {
for (i = p-1; i >= j+1; i--) {

cx = cos(xi[i, j]);
sx = sin(xi[i, j]);
for (a = j; a < k; a++) {

tmp = v[i, a];
v[i, a] = -sx * v[j, a] + cx * v[i, a];
v[j, a] = cx * v[j, a] + sx * tmp;

}
}

}

Variables p and k hold the values of p and k, xi is a p × k-size matrix of
parameters of which the diagonal and the upper triangular part are not used
and v is initialized before the algorithm to be equal to Ipk. After the algorithm
has been run, v holds the orthonormal matrix V . To my knowledge, this
algorithm has not been presented before, nor have more efficient algorithms.
The algorithm requires less than 4k2p scalar multiplication operations, a time
complexity of O(p).

Similar algorithms for the inverse of V (ξ) and for the derivatives of the MM-PCA
objective function, involving the derivatives of V , are used in the published
implementation of MM-PCA.

5.5 Methods

A review of methods for integrative analysis is given in the supplementary
material to paper II. Here, MM-PCA is briefly introduced along with two
other methods which influenced the development of MM-PCA and several other
methods for integrative analysis.

5.5.1 JIVE

Joint and individual variation explained (JIVE) (Lock et al., 2013) has gained
some popularity in the field of systems biology. It addresses horizontal inte-
grative analysis (one group of observations and an arbitrary number of groups
of variables) and decomposes each data matrix into individual components,
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components with globally shared scores and noise. The model is estimated
iteratively by performing rank k SVD individually for each matrix without
the global components, followed by estimating the k global components given
the individual components. This is repeated until convergence. The rank k is
selected using an approach based on permutation testing. The simplicity of
the model eases interpretation, but the assumption that patterns are either
individual or global is unreasonably inflexible when analyzing more than a few
matrices.

5.5.2 Group-wise sparse CMF

Group-wise sparse collective matrix factorization (CMF) (Klami et al., 2014)
addresses AMD, and can identify structure that is shared between subsets of
data matrices. CMF specifies a Bayesian model with prior distributions for
loadings, scores and noise. Each set of observations or variables has one matrix
that encodes its scores or loadings in all data matrices concerning that set. A
data matrix of relations between set i and set j is modeled as Xij = UiU

T
j + εij ,

where Ui, Uj and εij are matrices with normally distributed elements. A prior
distribution called the automatic relevance determination (ARD) prior is used
for scores and loadings. It causes some columns of each U to be active (non-zero)
in only a subset of its associated data matrices. Thereby, a structure of shared
patterns is estimated for the analyzed matrices.

The model of CMF can identify components that are individual to one data
matrix, shared globally by all data matrices or shared by other subsets of data
matrices. The model can, however, not identify any subset of data matrices
with a shared component, as shown by the following counterexample. Consider
four data matrices, two groups of variables and two groups of observations. Let
the observation groups have indices 1 and 2, and the groups of variables have
indices 3 and 4. Then, the four data matrices are X13, X14, X23 and X24. We
need only consider the norm of columns of the U -matrices and a model of rank
one. Let ui be the norm of the only column of Ui. If all ui are non-zero, then the
only component in this example is shared by all data matrices. The component
can be specific to one data matrix, for example if u1 and u3 are non-zero while
u2 and u4 are zero. It can be specific to the matrices associated with one group
of variables or observations, for example if u1 is zero while u2, u3 and u4 are
non-zero. It can, however, not be shared by three of the four data matrices,
since no u1, u2, u3, u4 exist such that exactly one of the following products is
zero: u1u3, u1u4, u2u3, u2u4.
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5.5.3 MM-PCA

Multi-group and multi-view principal component analysis (MM-PCA) is pre-
sented in paper II, and summarized in section 6.2. In the paper, an objective
function based on the singular value decomposition for each group is defined.
Its optimum corresponds to low-rank orthonormal bases for the row or col-
umn space for each group of observations or variables. The generalized Euler
parametrization (section 5.4) is used to reduce the number of parameters of the
optimization problem and to eliminate the need for orthogonality constraints.
Like CMF, MM-PCA addresses AMD and can identify structure that is shared
between subsets of data matrices. In contrast to CMF, the MM-PCA model
is specified as an objective function rather than with a Bayesian model. The
objective function combines the loss (size of the approximation error) of the
model with penalty terms that facilitate the use of MM-PCA and the interpre-
tation of its results. One penalty term fills the same function as the ARD prior
of CMF. Additional penalty terms encourage sparse loadings and scores, and
perform selection of the rank of the model.
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6 Summary of papers

This chapter summarizes the three papers included in this thesis. The problem
that each paper addresses is described, and the proposed solutions are outlined.

6.1 Paper I

In paper I, we introduce the method resampling of penalized estimates (ROPE)
for robust network modeling with false discovery rate (FDR) of edges controlled
at a desired level. The use of network modeling to estimate genetic networks is
hampered by estimation instability, due to a relatively small sample size, and
a strong dependency on the level of regularization, which is difficult to select.
With ROPE, these problems are addressed by the use of a statistical model
for the number of times each edge is estimated to be present across bootstraps.
Like stability selection and BINCO, our method uses bootstrap samples of data
to produce multiple network estimates for several values of the regularization
parameter. These estimates are aggregated to selection frequencies for all
edges and simultaneously analyzed across all levels of sparsity. Unlike previous
methods, this global modeling approach is based on a joint beta-binomial
mixture of edge selection frequencies. The edge false discovery rate estimates
are based on the regularization parameter value that best separates the mixture
components (“true” and “false” edges) as well as information about the true
level of sparsity obtained from a range of regularization levels. We show that
ROPE outperforms state-of-the-art methods in terms of FDR control and robust
performance across data sets. The evaluation is performed on simulated data
sets and on glioblastoma tumor gene expression data from TCGA.

We propose a statistical model for selection counts, and enable a simultaneous
interpretation of selection counts for different levels of regularization. The
sequence {Wλ

i : i = 1, . . . , p} is modeled as coming from a mixture of beta-

37
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Figure 6.1: Edge selection counts histogram after 500 bootstraps corresponding to
one regularization level λ. A mixture distribution with two components is estimated
by ROPE. The red line shows the component that estimates the null hypothesis
distribution. The green line shows the component that estimates the alternative
hypothesis distribution. While only the null distribution is needed to estimate the
FDR of a selection threshold, having a model that captures both populations decreases
bias and avoids several model estimation difficulties.
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Figure 6.2: Illustration of procedure to choose which level of regularization to
use for edge selection. The left panel shows the model fitted to a histogram for
one level of regularization. It also shows kacc, the selection count threshold that
maximizes accuracy. Assuming the fitted model as truth, the right panel shows the
difference between numbers of correctly and incorrectly selected edges. The difference
has been normalized to have maximum 1. The procedure estimates how separated
(non-overlapping) the two distributions are.
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binomial distributions, with components capturing either the population of null
edges or the population of alternative edges. Fitting this distribution makes it
straight forward to choose a threshold kt ∈ [0, B] corresponding to a given false
discovery rate such that edges i with Wλ

i > kt are declared significant. A range
of regularization is chosen to minimize the overlap of mixture components. In
this range, the ratio of alternative edges is constrained to be constant (for any
regularization λ).

The mixture model

z|π ∼ Bernoulli(π)
yj |µj , σj ∼ Beta(µj , σj), j = 0, 1
Wλ
i |y, z ∼ Bin(B, yz)

is fitted to edge counts for each level of regularization λ. The model has
five parameters: π the proportion of true edges, µ1, σ1 the mean and standard
deviation of the probability of true edges to be selected and µ2, σ2 corresponding
mean and standard deviation for false edges. An example of the two components
of the mixture model can be seen in figure 6.1. This model is extended to allow
for overdispersion, for details see paper I.

Using the fitted models for each λ, we estimate how separated the two compo-
nents are. The estimate g(λ) is based on the difference between the number of
correctly and falsely selected edges, under the fitted model.

g(λ) =
B∑

k=kacc

(fa(k)− fn(k))

where fa and fn are the estimated distributions for alternative and null edges
respectively and kacc is the threshold that maximizes accuracy, given these
distributions (figure 6.2).

In contrast to BINCO, ROPE uses a statistical model for the whole range of
selection counts while BINCO fits a curve only to the range where the frequency
of selection counts is decreasing. The approach used in ROPE has the benefit
that the subsequently estimated selection count threshold is always in the
modeled range, while it is typically outside of the range that is used in BINCO.
Thus, the threshold estimated with ROPE will not be based on an extrapolation,
in contrast to that estimated with BINCO. Furthermore, BINCO requires an
intermediate estimate of the range where the frequency of selection counts is
decreasing, an extra step that increases the variability of estimated networks.

ROPE, BINCO and stability selection are evaluated with extensive simulation
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studies under a range of different variable interdependence structures. Results
show consistently far more correct FDR control for simulated problems, com-
pared to BINCO and stability selection. In a scale-free network with 500 nodes
and 200 observations (figure 2 in paper I), ROPE has an actual FDR that differs
with at most 0.025 compared to the targeted FDR, across three targeted FDR
levels (0.05, 0.1 and 0.15), the number of resamples ranging from 50 to 1000
and 20 random repetitions for each simulation setting. The network estimation
accuracy of ROPE is in the range 0.6 to 0.8 depending on the FDR target.
In the same settings, the achieved FDR of stability selection is around 0.025
regardless of the FDR target, resulting in an accuracy in the range 0.55 to 0.65
depending on the FDR target. Thus, stability selection is less accurate due to
an edge selection that is more conservative than what is targeted. In the same
settings, results of BINCO are highly unstable across random repetitions and
are strongly affected by the number of bootstrap resamples that are performed.

The methods are also compared on public gene expression data from TCGA (The
Cancer Genome Atlas Research Network et al., 2013). Selected network sizes
and the difference between estimates for different subsets of the gene expression
data suggest that BINCO fails to control FDR while stability selection is
too conservative. Across 20 resamples, the agreement between networks is
consistently about 0.9 for ROPE over a range of targeted FDR levels (figure 6
in paper I). For BINCO the agreement is between 0.75 and 0.6. For stability
selection, an FDR of at least 0.25 needs to be targeted for the method to
estimate a non-empty network, while the estimated number of edges increases
linearly with the FDR target for ROPE. In the network selected by ROPE
at an estimated FDR of 0.15, we found all hub genes to have documented
cancer-related functions.

Lastly, in the supplementary material to paper I, we apply ROPE for clas-
sification of gene expression profiles according to their primary cancer type,
illustrating that ROPE can also be applied to some variable selection problems
other than graphical models. There, a multinomial logistic regression model
with group lasso penalty is utilized.

6.2 Paper II

In paper II we propose the method multi-view and multi-group principal compo-
nent analysis (MM-PCA) for integrative analysis of several related data matrices.
The method is based on ordinary singular value decomposition (SVD), just
like principal component analysis (PCA), but a novel penalty term promotes
equality between singular vectors of different matrices. Existing similar methods
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can be divided into two groups. First, O2-PLS (Trygg, 2002), DISCO (Schoute-
den et al., 2013), JIVE (Lock et al., 2013) and other methods (see paper II)
are based on iteratively performing SVD on all matrices together and on the
individual residuals of each matrix. The methods model data as a combination
of globally joint information and information that is specific to each individual
matrix. They cannot capture information that is joint between an arbitrary
subset of matrices, and they are less flexible in the types of matrix relations that
they allow for. Second, Bayesian methods, such as CMF (Klami et al., 2014)
and MOFA (Argelaguet et al., 2018), have a flexibility similar to MM-PCA, but
their results are difficult to interpret since they, in contrast to MM-PCA, lack
penalties that induce sparsity, achieve variable selection and/or achieve model
rank selection.

The most general set of relations that can be handled with MM-PCA was termed
augmented multi-view data (AMD) by Klami et al. (2014). Data matrices in
general relate the set of entities that is associated with the rows of the matrix
to the set of entities that is associated with its columns. The generality of AMD
allows MM-PCA to integratively analyze sets of entities and data matrices
where each matrix captures a relation between any two of the sets of entities.
Figure 1D in paper II shows an example and compares it to less general settings.

The MM-PCA solution is given by the lower-triangular matrices ξi, one for each
set of entities, and the diagonal matrices Di, also one for each set of entities,
that minimizes the loss function

∑
(i,j)∈S

||Xij − V (ξi)DiDjV (ξj)T ||2F +
4∑
c=1

λcPc(ξ,D), (6.1)

where S is the set of pairs of entity sets that are related, Xij is the data matrix
that relates entity set i with entity set j, V (·) is the function from angle-matrix
to orthonormal matrix, ξi is the lower-triangular matrix of angles for entity set
i, Di is the diagonal matrix of norms for entity set i, || · ||F is the Frobenius
norm, λc is the penalty parameter for penalty c and Pc(·, ·) is penalty function
c. The first sum constitutes the error, i.e. the difference between data and
the MM-PCA low-rank approximation of the data. The second sum consists
of penalty functions, described below, that promote solutions that are more
easily interpreted. The terms of the first sum are inspired by the formulation of
truncated SVD as an optimization problem.

The four penalty functions in (6.1) promote 1) data integration, 2) low-rank
approximation, 3) sparsity of loadings and scores and 4) variable selection. The
promotion of these properties is aimed at achieving an interpretable model of the
data. The function V (·) is the Euler parametrization discussed in section 5.4. It



42 6. Summary of papers

is a parametrization of orthonormal matrices (matrices with pairwise orthogonal
columns of unit Euclidean norm). The Euler parametrization decreases the
number of parameters in the optimization problem (6.1) and eliminates the
need to explicitly enforce orthonormality in it.

The optimal matrices ξi and Di, i = 1, . . . , nv, (where nv is the number of
entity sets) hold a condensed encoding of the data. First, interpretation can be
focused on each matrix individually. Like in PCA, the decomposition of Xij

into a low-rank approximation V (ξi)DiDjV (ξj)T expresses the data in terms of
rank-one components which are composed of scores and loadings. Secondly, the
exact zeros on the diagonals of matrices Di, i = 1, . . . , nv, holds information
of which scores and loadings that are shared between data matrices. A zero
element on the diagonal of Di means that the associated scores or loadings do
not participate in the approximation of a matrix Xij . That set of scores or
loadings is thus shared among the other matrices X·j .

SVD can be used for clustering, by dividing observations (or variables) according
to the signs of the associated scores (or loadings). Hierarchical clustering is
achieved by dividing, first, based on the most important component, and then
based on the following components in order of importance. Since this clustering
can be done for both the rows and the columns of a matrix simultaneously, it
can be used for so-called bi-clustering. By combining this method of clustering
with information of which scores and loadings that are shared between data
matrices, MM-PCA can be used to perform integrative bi-clustering. That is,
bi-clustering where some clusters are equal across several matrices.

The method is evaluated in three simulation studies and its use is demonstrated
in an analysis of gene expression and methylation data from cancer patients.
The first simulation study focuses on the ability to find loadings that are shared
among a subset of four matrices. It shows a better performance for MM-PCA
than for CMF in terms of finding which loadings that are shared among which
matrices. The second simulation study is simpler, in order to enable comparison
with the popular method JIVE. The goal is to find scores that are common to all
matrices, in the presence of noise and scores that are individual to each matrix.
A range of settings, where the size of data matrices and the strength of the
shared scores are varied, are studied. The experiment shows a consistently good
performance for MM-PCA, while CMF and JIVE perform better in some settings
and worse in other settings. The third simulation study demonstrates the ability
of MM-PCA to estimate the correct rank and the correct exact zeros in scores
and loadings, in the presence of noise. In the majority of simulations, MM-PCA
finds the correct rank while CMF consistently overestimates it. Accuracy in
correctly finding the non-zero positions of scores and loadings is also higher
for MM-PCA compared to CMF. The integrative analysis of genomic data
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demonstrates the use of MM-PCA in a realistic setting. It distinguishes several
components that correlate significantly with clinical parameters, which were not
used as input to the analysis. For example, it finds components that separate
normal tissue from tumorous tissue and that separate female patients from
male patients. A non-trivial structure of components shared between different
subsets of matrices is revealed.

The supplementary material to paper II contains an extensive literature review
and a deeper study of the Euler parametrization. Integrative analysis of several
data matrices has been studied in several scientific fields. The review relates and
contextualizes methods proposed in chemistry, in genomics and in data science,
where the concept is often called recommender systems. A proof is given that
the Euler parametrization, V (·), parametrizes all orthonormal matrices, and
only orthonormal matrices. The inverse of the Euler parametrization is also
supplied.

6.3 Paper III

In paper III we propose structure-adaptive stability selection (SASS), a method
that enables the incorporation of structural assumptions in stability selection-
based network estimation. In high-dimensional genomics, assumptions are
needed to make network estimation feasible. Network sparsity is a very common
assumption. However, the sparsity assumption in popular methods is applied
independently to each potential edge in the network, leading to an implicit
structural assumption that the probability for each edge to exist is independent
of the existence of other edges. This implicit assumption is not feasible for
biological networks, and thus negatively impacts the estimation of such networks.
With SASS, we aimed to enhance stability selection, a method for stable network
estimation, with the biologically feasible structural assumption that networks
have a community structure with higher edge density within communities than
between communities.

SASS is based on, first, repeatedly estimating networks based on random
subsets of the available data (similarly to ROPE, paper I). Next, a method
for community detection is repeatedly applied to the estimated networks, in
order to find a stable estimate of network communities. As the third step, two
separate edge selection count histograms are used: one for pairs of nodes that
are estimated to be members of the same community and one for pairs of nodes
that are not. These histograms are used to estimate the influence of the sparsity
assumption on the network structure and to compensate for the structural bias
it causes. In the paper, we also propose extensions to SASS to 1) estimate
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the strengths of network connections (not only the binary decision of which
edges that are present) and to 2) make a stable estimate of the hierarchical
community structure of the estimated network.

The method is evaluated in simulation experiments and in the estimation
of a genetic regulatory network from gene expression data. The simulation
experiments show that SASS better estimates networks for which the assumption
of community structure is correct (accuracy 0.825), compared to another method
that makes a similar community assumption (accuracy 0.481) and compared
to stability selection (accuracy 0.817). The improvement is both in terms of
accuracy and in terms of structural bias. When the assumption of community
structure is incorrect, the cost of making the assumption is reduced by SASS
often being able to detect the lack of community structure. The lack of
community structure is detected 73 or 82 times out of 100 depending on
the underlying method used for network estimation. For estimation of the
regulatory network in human cancer patients we show an increased overlap with
a manually curated and peer-reviewed database of gene-gene interactions in 81
out of 100 repetitions on random subsamples of the data, compared to stability
selection.

The proposed method adds the ability to make biologically relevant structural
assumptions to stability selection, a widely used method for network estimation.
The improved performance on gene expression data suggests both usefulness
of SASS and biological relevance of the assumption of community structure.
This enhancement of stability selection may improve the understanding of
high-dimensional genomic data.



7 Software packages

Implementations of the methods presented in this thesis are publicly available,
two of them as R software packages. The additional work to prepare software
to be conveniently useful for other scientists is important both to enable the use
of the methods in applied research and to enable evaluation of the methods by
other statisticians. The following sections briefly describe the software packages,
how they were implemented and how they can be used.

7.1 Model selection with FDR control of
selected variables

An implementation of the method ROPE is made available as an R package. The
package gives support in choosing a regularization range, using visualizations and
a heuristic for automatically deciding if histograms are U-shaped. The statistical
model is fitted at each regularization step using numerical optimization of the
log-likelihood function. In a second round of fitting the model, information
from the optimal regularization range is used to make an estimate of mixture
component sizes, based on counts from several regularization levels. The
package contains several visualizations to examine the goodness of model fit.
The package is available at The comprehensive R archive network https:
//cran.r-project.org/package=rope.

The main function in the package is called rope, which performs all steps of
the method. Given a matrix of variable selection counts (one column for each
variable and one row for each penalization level) it computes variable selections
at the requested FDR levels and q-values (section 2.1.1) for each variable.
The function rope is accompanied by a few auxiliary functions. The function
explore fits the mixture model for each penalization level separately in order
to facilitate the choice of penalization range, without needing to run the entire
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ROPE procedure. The functions ropegraph and exploregraph, corresponding
to rope and explore, allow for input in the form of adjacency matrices, which
may be more convenient for some users. The function plotrope facilitates
visualization of the output from rope (or ropegraph).

The ROPE procedure includes fitting a mixture model to the selection counts for
each penalization level twice: first separately and then with a constraint on the
size of the mixture components across all penalization levels. The same internal
function is used both times. It includes the implementation of the log-probability
mass function of the mixture model and uses the standard R optimizer and
its implementation of the L-BFGS-B optimization method. L-BFGS-B is a
modification of the quasi-Newton method Broyden-Fletcher-Goldfarb-Shanno
that allows for box-constraints. Constraints are needed due to the log-likelihood
not being defined for arbitrary parameters and to avoid numerical instability.
The function isoreg, included in R, is used to perform monotonously increasing,
non-parametric regression, in order to make a conservative estimate of the
proportion of edges in the alternative component (corresponding to truly existing
edges) of the mixture model. Finally, the package includes code to interpret
the mixture model parameters in terms of q-values and FDR-controlled variable
selections.

The following is an example in the R programming language of how to use the
software package. The example assumes that x is a data matrix with one column
per variable and one row per observation, and that net_est is a function that
outputs a network estimate in the form of an adjacency matrix. First, bootstrap
is used to estimate 500 networks.

lambda <- seq(0.05, 0.5, 0.025)
B <- 500
n <- nrow(x)
p <- ncol(x)
W <- lapply(lambda, function(l) matrix(0, p, p))
for (i in 1:B) {

bootstrap <- sample(n, n, replace=TRUE)
for (j in 1:length(lambda)) {

selection <- net_est(cov(x[bootstrap, ]), lambda[j])
W[[j]] <- W[[j]] + selection

}
}

Then, selection counts are input to the function ropegraph and the estimated
q-values are used to make a variable selection at the FDR level 0.1.
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result <- rope::ropegraph(W, B)
selected_edges <- result$q < 0.1

The matrix selected_edges now is an adjacency matrix for the estimated
network. The documentation included in the package contains further usage
details.

7.2 Integrative analysis of several related data
matrices

An implementation of the method MM-PCA is made available as an R package.
The package finds a set of components that approximate the given data matrices,
using numerical optimization. The package can also select values for the penalty
parameters by performing cross-validation. The package is available at The
comprehensive R archive network https://cran.r-project.org/package=
mmpca.

The package has one function, mmpca, which takes three mandatory arguments.
First, it takes a list of matrices that hold the data to analyze. Second, an integer
matrix of width two describes how the data matrices are related to each other.
For each data matrix in the list, the corresponding row in the integer matrix
gives the index of entity set that is associated with the rows (first column)
and columns (second column) of the data matrix. Third, an integer gives the
maximum allowed number of components in the estimated approximation of
the given data matrices. There are also several optional arguments, that are
described in detail in the documentation that is included in the software package.
The optional arguments can be used to limit the hyperparameter search space,
to enable parallelized computation or to enable caching of partially finished
computations.

The analysis of several high-dimensional matrices is a highly demanding task
computationally. Therefore, the central part of the computation, the numerical
optimization, was implemented in the programming language C++, which is
more efficient for iterative computation than R. The C++ code is compiled
and made available for use within the MM-PCA R software package. Within
C++, the implementation of the Broyden-Fletcher-Goldfarb-Shanno algorithm
for quasi-Newton optimization in the GNU Scientific Library (Galassi and
Gough, 2009) was used. The MM-PCA objective function and its gradient
(including the Euler parametrization, penalty functions, the loss function and
their gradients) were implemented in C++ using Eigen (Guennebaud et al.,

https://cran.r-project.org/package=mmpca
https://cran.r-project.org/package=mmpca
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2010), a library for linear algebra. Functionality not used within optimization,
and therefore less critical for computational efficiency, was implemented in R.
This includes code for heuristic choice of initial values for numerical optimization,
handling of missing values in the input data, calculating the inverse of the Euler
parametrization and performing cross-validation. The mathematical details of
the implementation are given in the supplementary material to paper II.

The following example of the use of mmpca shows an analysis of six data matrices.
Their configuration is the same as in figure 5A in paper II. There are two kinds
of measurements: gene expression and methylation. There are three groups of
patients defined by the kinds of data that are available for each patient. Matrix
e1 contains gene expressions for patient group 1. Group 1 consists of patients
for which expression data are available but not methylation data. Matrices e2
and m2 contain gene expressions and methylation measurements, respectively,
for group 2. Group 2 consists of patients for which both kinds of data are
available. Matrix m3 contains methylation data for group 3. Group 3 consists
of patients for which only methylation data are available. Finally, matrices
c12 and c23 contain similarities between groups 1 and 2 and groups 2 and 3,
respectively. The similarities are in the form of a priori covariance matrices.
All matrices are assumed to have been preprocessed to have zero mean and
variances of comparable magnitudes. First, all data matrices are added to a
list x and the integer matrix inds is constructed to encode the relationships
between the data matrices.

x <- list(e1, e2, m2, m3, c12, c23)
inds <- rbind(c(1, 4),

c(2, 4),
c(2, 5),
c(3, 5),
c(1, 2),
c(2, 3))

Next, mmpca is called. The maximum rank is set to 40. If cross-validation does
not estimate the rank to be less than 40 it is advisable to call the function again
with a higher maximum rank.

result <- mmpca::mmpca(x, inds, 40)

A list of estimated loading matrices is now available in result$solution$V
and the associated norms are available in result$solution$D.



8 Conclusion

This work has contributed three practically useful new statistical methods for the
analysis of high-dimensional genomic data, along with software implementations.
In paper I we show that the method ROPE outperforms state-of-the-art methods
in terms of FDR control and in terms of robust performance across a range
of simulation settings. It does so by using a novel statistical model for edge
selection counts. The method accurately estimates the trustworthiness of each
individual estimated network edge. In a set of gene expressions from cancer
tumors, the method finds several connections that are known to have relevance
for cancer progression. It is, thus, illustrated how ROPE can be used for
principled model selection in order to find genomic associations to study further,
in search of regulatory interactions.

In paper II we propose MM-PCA, a method for integrative analysis that al-
lows for structure in data to be shared across subsets, unknown beforehand,
of analyzed data matrices. A review of previously existing methods for inte-
grative analysis based on low-rank matrix factorization is contributed in the
supplementary material to paper II. Compared to existing methods, MM-PCA
improves interpretability by imposing sparsity and facilitating the choice of
model complexity. The imposed sparsity also enables interpretation in terms of
an integrative bi-clustering of the analyzed data. In terms of method develop-
ment, paper II makes two key contributions. First, it introduces a new use for
the Euler parametrization, which has not previously been used to solve opti-
mization problems stemming from integrative analysis. Secondly, it introduces a
framework based on penalized optimization for the integrative analysis of high-
dimensional data with complex interactions. Such integration has previously
only been addressed with Bayesian methods. In a set of gene expression and
methylation data from cancer tumors, MM-PCA finds scores and loadings that
correlate with several relevant clinical features without having access to these
features. In integrative genomics, such components shared between different
data types and groups of observations can have relevance for the development
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of new therapeutic solutions.

In paper III we propose a way to incorporate the biologically relevant assumption
that regulatory genetic networks have a community structure, with stability
selection. In a set of gene expression data from cancer tumors, the proposed
method, SASS, estimates networks with a higher overlap with a human-curated
database of gene interactions, compared to stability selection. Thus, the method
increases the potential to gain understanding from high-dimensional data sets,
such as from large-scale genomics.

For the methods presented in this thesis, practical usefulness for gaining bio-
logical understanding and the ability to facilitate the complexity of real data
have been prioritized over other properties that would also be desirable. In
particular, the methods are computationally heavy. Although fast solutions from
e.g. closed-form expressions are helpful in research, there is a great availability
of computational power both in personal computers and in computer clusters
commonly available at research facilities. Thus, computer-intensiveness is a cost
often worth paying when it enables a deeper understanding of more complex
data. Likewise, in order to present a deeper theoretical understanding of the
methods, in terms of e.g. the statistical distributions of all estimators, it would
have been required to greatly simplify the methods and to limit the richness of
data that can be analyzed with them. The modeling assumptions that have
been made – most prominently the assumption that data have a Gaussian
distribution after transformations and the assumption of independence of edge
selection counts – have been evaluated to ensure that they do not substantially
worsen estimates in real or realistic settings.

In summary, the work in this thesis has contributed three novel and useful
methods for the exploration and understanding of high-dimensional genomic
data. The focus of the methods span from the local (pairwise interactions) to
whole data matrices (network structure and principal components) and further
on to structure that is common between several data matrices. Such study
of genomic data may help to devise new tools for treatment and diagnosis of
cancer and other diseases, both by hypothesis generation in general and, more
specifically, by the identification of unknown molecular interactions that are
causing diseases or symptoms. After experimental validation, such interactions
could, for example, be targeted in disease treatment or lead to new biological
indicators of disease progression.
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