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Erlang as an alternative to a non-functional language for communication in a fault-
tolerant IoT sensor network
Jimmy Holdö
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

This thesis compares a C++ prototype and an Erlang prototype for an Internet of
Things application. Internet of Things applications are difficult to program because
they consist of a distributed environment of heterogeneous devices, where each device
can have limited resources and connectivity technologies. Erlang is a high-level
distributed functional language, which can help solve these problems, but an Erlang
program may use more resources than an equivalent C++ program.

In this thesis one C++ prototype and one Erlang prototype were developed to
handle the communication between sensors in a Wireless Sensor Network using the
ZigBee communication technology. These prototypes were evaluated against each
other based on power consumption, memory utilization, CPU utilization and lines
of code.

The result of the evaluation was unexpected: The Erlang prototype used less mem-
ory and CPU in most cases. Therefore, one process in the C++ prototype was
further investigated to see why this was the case and it was found that much of the
resources required by the C++ prototype came from using dbus for inter-process
communication. Without dbus included the C++ prototype would use less resources
compared to the Erlang prototype.

The recommendations that can be derived from the investigation in this thesis are
that Erlang should be used if the point is to use as little memory as possible and
that as long as more than one data packet per second is sent Erlang uses less CPU.
Even if the packet rate is less than one per second it can be worth considering the
use of Erlang because the code is significantly shorter. Therefore, an Erlang solution
should have fewer bugs and fewer security problems.

Keywords: Internet of Things, Wireless Sensor Network, Erlang, IEEE 802.15.4,
ZigBee, Network topology.
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1
Introduction

The number of devices connected to the Internet has been growing impressively for
some time and it is predicted that by 2020 there will be around 50 billion devices
connected to the Internet (Bello et al., 2017). More and more of these devices
are physical objects, such as sensors and actuators. The phenomenon of Internet-
connected physical objects is known as the Internet of Things (IoT).

There are many unsolved problems in the field of Wireless Sensor Networks (WSNs).
One such problem is the complexity of designing, coding, and testing Wireless Sensor
Network (WSN) applications. The problem arises because of the distributed envi-
ronment of heterogeneous devices in a WSN, where each device may have limited
resources and the communication between devices may have many specific require-
ments, e.g. the full TCP/IP stack may be missing (Sivieri and Cugola, 2012).

One possible approach to solve some of these problems is to use the Erlang language
which was designed in the 1980s at Ericsson by Armstrong, Williams, and Virding.
At first Erlang was developed for embedded telecommunication systems but it has
continued to grow over time and now it is a complete platform with many libraries
that offer functionality for a wide range of different applications (Erlang, 2019).

Erlang was developed as a high-level functional language for hiding distribution with
facilities such as:

• Support for building software with guaranteed fault tolerance.

• Support for binaries as a data type which in turn allows pattern matching on
bit-streams.

• A lightweight concurrency model.

• A virtual machine, which allows the same code to be run on heterogeneous
devices.

• Distributed programming, with support for high-level communication primi-
tives.

• Support for transparent resolution of process names over a network.

1



1. Introduction

These features should make it possible to achieve reliable and fault-tolerant com-
munication between nodes in a WSN and because of this Erlang seems to be a good
fit for a developing WSN applications (Sivieri and Cugola, 2012; Sivieri, 2012).

1.1 Internet of Things

The concept of IoT is to connect every network-enabled device to the Internet thus
creating a "smart world", where our everyday objects can connect to each other
to share data with the aim of enhancing our lives. There are many examples of
applications that can enhance life in areas such as healthcare, smart buildings, social
networks, environment monitoring, transportation and logistics, etc. Every IoT
application depends on data collected from a network-enabled device or devices and
there exist many different data collection devices and systems, e.g. RFID, sensors
and wireless sensor networks (WSNs) (Yang, 2014).

1.2 Aim

The goal of this thesis was to evaluate the performance of using Erlang to manage
the communication in a WSN. In this case the WSN application is based on an
idea of a product from the affiliated company, where video-based sensors should
communicate data to a control system. In order to evaluate the performance two
prototypes modelling the communication in this application were developed, one
with the low-level language C++ and the other one with the high-level language
Erlang. The performance was measured by comparing the number of lines of code,
to investigate the effort of implementation for the different prototypes, and the usage
of CPU, RAM and power for different rates of sending messages.

In a WSN it is often required that the devices are power-efficient and that devices
can communicate directly with each other. This is something that the standard
Erlang distribution does not implement and a connection to a suitable networking
protocol that can manage device-to-device communication must therefore also be
implemented as part of the thesis.

For the resulting thesis to be considered successful the following points should be
achieved:

• A C++ prototype that uses a suitable network protocol for energy-efficient
device-to-device communication.

• An Erlang prototype that uses the same protocol as the C++ prototype. Be-
cause of this some connection to this protocol must be implemented as part
of the Erlang prototype.

2



1. Introduction

• An analysis of data collected from the prototypes presented so as to give
someone who wants to use Erlang for the communication between nodes in a
WSN a guideline for the hardware requirements.

1.3 Limitations

There are many network protocols and multiple variants of some of them. Because
of the limited time for the project only one of these protocols and variants is going
to be investigated.

The communication requirements for WSN applications vary because the amount
of data that needs to be sent can be very different from application to application.
The prototypes in this thesis are designed so that each sensor processes its own
data and only sends the result, which can be represented with short messages. This
matches the expected behaviour of the video-based sensor network. Therefore, WSN
applications that send huge amounts of data are not investigated in this thesis.

1.4 Affiliation

The thesis work was carried out at the company Cipherstone Technologies AB. The
company is currently in the first stages of developing a new WSN product. This
product is planned to be a video-based sensor network where each sensor processes
images and then sends results to a control system. The company wants to investigate
possible communication solutions for this network.

3



2
Background

2.1 IoT

As mentioned in Section 1.1 IoT is the concept of connecting all things to create a
“smart world”. The release of IPv6 has encouraged the development of IoT because
of the huge address space that is now available. According to Leibson (2008): “So
we could assign an IPV6 address to EVERY ATOM ON THE SURFACE OF THE
EARTH, and still have enough addresses left to do another 100+ earths. It isn’t
remotely likely that we’ll run out of IPV6 addresses at any time in the future”.

A device can therefore be connected to the Internet without any limitations. The
challenge is instead found in the complexity of developing an IoT application and
the ensuing security problems because of this complexity (Sivieri and Cugola, 2012).

IoT applications often have concurrent event sources and unreliable communication
between devices but they still need to work reliably in the presence of these prob-
lems. According to Armstrong (2010) functional programming languages are good
for writing highly concurrent application with many processes that at the same time
are fault-tolerant in a reliable manner. Functional languages could therefore be a
candidate for writing IoT applications (Haenisch, 2016).

Functional languages can also easily describe the functionality of data processing.
The data in an application is usually only processed once and this is when it is
created. At this time the data is often evaluated in some manner, e.g. for detecting
errors. The algorithms for processing data in an application can therefore be seen as
a set of mathematical functions operating on a stream of values, where each function
creates a new stream of values that can be used in another function to process the
data (Haenisch, 2016).

In IoT applications the need for security varies from application to application and
applications can be hard to update. Therefore, it is a good idea to use techniques
that minimize security risks. The use of a functional language like Erlang could
reduce some security risks, as described below.

There does not exist any formal proof for the assumption that a functional language
produces more concise code but there is some anecdotal evidence, for example Car-
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2. Background

mack (2013), that suggests that functional languages reduce code size. It is a good
idea to minimize the code size of an application as much as possible, because as Ray
et al. (2014) show, more concise code tends to have fewer errors. This in turn leads
to a reduction of security risks.

Security risks that may arise in an application because of errors in the code include
buffer overruns and data races. These risks are eliminated by the use of Erlang.
Buffer overruns are impossible because all buffer accesses are bounds-checked and
data races are avoided because Erlang processes communicate using message passing
instead of shared memory.

One final advantage of using a functional language over an imperative language is
that it reduces side effects. The reduction of side effects by using “pure” functions
in a functional language in an IoT application results in fewer bugs and therefore
the security of the application increases (Haenisch, 2016).

2.2 WSN

WSNs are the next evolution of sensor and actuator networks, which have been
around for decades. They solve what is commonly known as the last meter problem
in sensor and actuator networks. The problem is that the installation process of
such a network is often expensive and complicated and connectors and cables can
with time become loose, lost, misconnected or the hardware can even break (Yang,
2014).

When talking about “wireless sensor and actuator networks” people have adopted
the shorter name “wireless sensor networks” instead. A WSN is a set of sensor nodes,
where a sensor is a low-cost package that integrates wireless communications, sensors
and signal processing. A challenge in a network of sensors in a WSN is that a sensor
is often required to have low energy consumption and specific coverage requirements
and that it is bound by latency (Essameldin and Harras, 2016; Yang, 2014).

In the past the expansion of WSNs has been limited because of the lack of stan-
dardization of technologies for communication in the network and at the application
level. Communication with higher data throughput has been the main focus in the
industry and this has resulted in short-range wireless connectivity techniques being
left behind (Gutierrez et al., 2004).

There are many areas where WSNs can be used but an important feature that is
required of a WSN is that that it is easy to connect sensors to the network, because
a network can consist of a large number of sensors (Gutierrez et al., 2004). Yang
(2014) lists some example application areas of WSNs:

• Continuous sensing for environmental and condition monitoring.

• Event detection for disaster response.

5



2. Background

• Location sensing for mobile target tracking and localization.

• Local control for home automation, industrial automation etc.

In all these application areas there are some high-level issues that need to be con-
sidered when designing and implementing a WSN (Gutierrez et al., 2004): power
consumption, range, availability of frequency bands, network topology and self-
organization.

Applications sometimes require that the power consumption should be very small.
Sometimes, they use batteries as a power source with completely untethered RF
transceivers. Since a WSN should be easy to install and low-maintenance it is not
practical to require that batteries be replaced. To solve this problem, the usual
solution is instead to use power cycling. If the duty cycle is of less than 0.2% then
an AAA battery with a capacity of 750mAh can power a normal short-range radio
transceiver, with a active current of 10mA, for at least five years.

To transmit data between a transmitter and receiver they need to be inside range of
each other. Because of implementation costs and governmental regulation the RF
power output in a wireless system operating in unlicensed bands normally ranges
from 0 dBm to 20 dBm. This has the consequence of limiting the possible range
between a transmitter and receiver. To side-step this issue, WSNs use multihop
network protocols with a suitable routing algorithm.

Another issue is the availability of frequency bands. The RF spectrum is a scarce
resource so is often regulated by governments with a set of rules that need to be
followed. The most commonly used bands in WSNs are the following:

• 868.0 – 868.6 MHz: Available in most European countries.

• 902 – 928 MHz: Available in North America.

• 2.40 – 2.48 GHz: Available in most countries worldwide.

• 5.7 – 5.89 GHz: Available in most countries worldwide.

Another issue that arises because of the limited band space is that incompatible
technologies share the same band. This result in different technologies competing
to gain and maintain access to the network, which leads to several performance
problems.

The network topologies used by WSNs are designed to solve the problems of limited
range and that the network needs to be low maintenance. The limited range problem
is solved by using multihop network topologies that form a communications mesh.
To solve the requirement for a low-maintenance network, the network should be
designed so each sensor in the network can be developed with a low duty cycle
operation.

The last high-level issue for designing and implementing a WSN is that the network
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2. Background

needs to be self-organizing. Each sensor in the network should be able to start
participating in the network without any configuration from a second party and a
suitable routing protocol should be used in the network to determine an appropriate
message path from a source to a destination.

2.3 Erlang

Erlang was developed at Ericsson from 1987 with the aim of improving the devel-
opment of telephony applications. The first version of Erlang was implemented in
Prolog but this interpreter was far too slow. So, in 1992 the development of the
BEAM was started and it now compiles Erlang code to bytecode that can then be
executed on the BEAM virtual machine (Armstrong, 1997).

The Erlang language was developed to support distribution, concurrency and fault-
tolerance and it is a general-purpose, concurrent, functional programming language.
It also has a garbage-collected runtime system (Armstrong, 1996).

To avoid side effects the Erlang language only supports single assignment variables
and immutable data. Like other functional languages recursive functions are used
instead of loop constructs. Erlang is also a declarative language, where instead of
saying how something should be computed, the programmer describes what should
be computed. An example of declarativity in the language is the use of pattern
matching to distinguish between message types.

One distinctive characteristic of pattern matching in Erlang is that even though it
is a high-level language it is possible to pattern match on binary data. This feature
was included because the language was designed for embedded systems and it makes
it possible to implement high-level descriptive functions for packet manipulation or
the design of low-level communication protocols (Sivieri, 2012).

Another characteristic feature of Erlang is that an Erlang process is lightweight.
This means that very little computational power is needed to create and destroy a
process. In the Erlang language there are primitives that makes it easy to spawn new
processes and because processes do not correspond directly with system processes or
threads but are handled by the VM, it is possible to run many thousands of processes
at the same time without degrading the performance of the system (Armstrong,
2003).

Each process in Erlang has a share-nothing semantics. This means that there is
no memory sharing between CPUs, nodes do not share storage and the only way
to communicate is by message passing. Each process has a mailbox that receives
messages when a process sends a message to the pid of that process. These messages
are also the only way to achieve synchronization between processes in an Erlang
program (Armstrong, 2003). By not having any shared data it is easy to create a
distributed program by assigning a parallel process to another machine and the code

7
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can be highly efficient because no semaphores or mutexes are needed (Armstrong,
2003).

By using a mechanism that is called process linking it is easy to make a system fault-
tolerant. Process linking is when a process spawns a new process and a bidirectional
relation is established between the processes. Then if one of the processes exits
a special kind of message called a exit message is propagated over the link to the
other process. If the exit message is an error message the process that observes a
linked process can perform error recovery (Armstrong, 2003). The observing process
that performs the error recovery procedure is called a supervisor and every observed
process can be defined with a specific restart behaviour to handle error recovery
(Armstrong, 2003; Sivieri, 2012).

Erlang also supports hot code swapping. This allows Erlang models to be updated
on the fly without the need to stop the system while making sure that the old code
terminates gracefully (Sivieri, 2012).

2.4 IEEE 802.15.4

The communication standard that is usually used in the Internet is the TCP/IP
architecture. The architecture consists of five functional layers: the physical, data-
link, network, transport and application layers. When data is passed between these
layers extra framing and control data is added to the main data. This added data
requires extra processing power and memory capacity and even more memory and
processing power are consumed because of buffering of packets between the different
layers (Bello et al., 2017).

One additional limitation of the TCP/IP protocol is that it is not designed to manage
device-to-device communication. It has no support for the high level of scalability,
high amount of traffic and mobility that can be found in WSNs (Bello et al., 2017).

One of the most commonly used communication standards to solve this problem is
the IEEE 802.15.4 standard (Yang, 2014). The IEEE 802.15.4 standard was first
published in the year 2003 as a low-rate Wireless Personal Area Network and it was
developed to provide wireless connectivity in a low-complex, low-cost and low-power
manner.

2.4.1 Components

An IEEE 802.15.4 network consists of two types of devices, full-function devices
(FFDs) and reduced-function devices (RFDs). The personal area network (PAN)
coordinator is a FFD device that has been assigned to serve as the central device
in a network and is responsible for starting and managing the network. An FFD
device can freely communicate with all devices within range. The RFD device is
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2. Background

a restricted device and can only communicate with its parent FFD device (Yang,
2014).

2.4.2 Network topologies

The IEEE 802.15.4 standard defines two network topologies, a star topology and a
peer-to-peer topology. Both topologies are shown in Figure 2.1 and both topologies
needs to have a PAN coordinator (Kohvakka et al., 2006).

Figure 2.1: IEEE 802.15.4 topologies

The difference between a star network and a peer-to-peer network is that in a star
network the PAN coordinator is the master node. All slave nodes of the network can
only communicate with this master node (Kohvakka et al., 2006). This is achieved
when an FFD device is initiated as a PAN coordinator and a unique PAN identifier
in the current radio range is selected. When other devices associate with the net-
work, they get the same PAN identifier and can only communicate with the PAN
coordinator of the network with the same PAN identifier (Institute of Electrical and
Electronics Engineers, Inc., 2003).

In a peer-to-peer network all devices are allowed to communicate with any other de-
vice in the network. This is suitable for networks where self-organizing, self-healing
and large coverage by allowing multiple hops to route messages is an advantage.
A disadvantage is that the network latency increases due to the message relaying
(Kohvakka et al., 2006).
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2. Background

2.4.3 Architecture

The IEEE 802.15.4 standard defines the two first layers in the network stack, the
Physical (PHY) and Medium Access Control (MAC) layers.

PHY layer The PHY layer contains the radio frequency transceiver and the low-
level mechanisms that are needed to operate the transceiver. It has two different
modes. One mode operates in the frequency range 868 – 868.6 MHz in Europe or
902 – 928 MHz in America and the other mode at 2.4 GHz worldwide (Institute of
Electrical and Electronics Engineers, Inc., 2003; ZigBee Alliance, 2012). The second
mode has the most potential for WSNs, because it has a higher data rate which
leads to a reduced frame transmission time and a reduced energy per transmitted
and received bit (Kohvakka et al., 2006).

IEEE Computer Society (2016) defines the features of the PHY layer as follows:

• Activation and deactivation of the radio transceiver.

• Energy detection within the current channel.

• Link quality indicator for received packets.

• Clear channel assessment for carrier sense multiple access with collision avoid-
ance (CSMA-CA).

• Channel frequency selection.

• Data transmission and reception.

• Precision ranging for ultra-wide band PHYs.

MAC layer

Two services are provided by the MAC layer. The first is the MAC data service
which provides functionality that makes it possible to transmit and receive MAC
protocol data units across the PHY data service. The second service is the MAC
management service. It provides an interface to the MAC sublayer management
entity (MLME) service access point (IEEE Computer Society, 2016).

IEEE Computer Society (2016) defines the features of the MAC layer as follows:

• Beacon management.

• Channel access.

• GTS management.

• Frame validation.
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• Acknowledged frame delivery.

• Association, and disassociation.

• Hooks for implementing application-appropriate security mechanisms.

2.5 ZigBee

On top of the IEEE 802.15.4 standard are built the most commonly used protocols in
WSN applications, 6LoWPAN and ZigBee. 6LoWPAN gives sensors the possibility
of being accessed from the Internet, whereas ZigBee cannot do this because it lacks
native IP stack processing. The protocol stack for 6LoWPAN and ZigBee can be
seen in Figure 2.2.

Figure 2.2: 6LoWPAN stack and ZigBee stack on top of the IEEE 802.15.4 stack
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One feature of ZigBee is that it is designed to be a low-power wireless technology. To
give an overview of this Table 2.1 shows a comparison of the characteristics between
ZigBee, Bluetooth and WiFi.

Table 2.1: ZigBee, Bluetooth, and WiFi comparison (DIGI, 2019; Yang, 2014;
ZigBee Alliance, 2019)

ZigBee (IEEE
802.15.4)

Bluetooth (IEEE
802.15.1)

WiFi (IEEE
802.11)

Application Control and
monitoring

Cable
replacement

Wireless
LAN

Frequency bands 2.4 GHz, 868 and
915 MHz

2.4 GHz 2.4 GHz

Battery life in days 100–700 1–7 0.1–5

Nodes per network 65,000 7 30

Bandwidth 20–250 kbps 1 Mbps 2–100 Mbps

Range in m 1–300 1–10 1–100

Outdoor line-of-sight
range in meters

3200

Topology Star, tree, cluster
tree, mesh

Tree Tree

Standby current in
Amps

3 ∗ 10−6 200 ∗ 10−6 20 ∗ 10−3

Memory in KB 32–60 100 100

2.5.1 Network topology

The network topologies available in ZigBee are based on the star and peer-to-peer
topologies specified in IEEE 802.15.4. Based on these topologies the NWK layer of
the ZigBee stack supports star, tree and mesh topologies (Farahani, 2011).

The star topology is the simplest topology to form. When an FFD device that is
programmed to be a PAN coordinator starts, it establishes a network. Every device
that wants to join the network must join the network through the PAN coordinator.
Because of this the star topology is not suitable for applications that require a larger
area than the radio range of the PAN coordinator (Yang, 2014).
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Figure 2.3: ZigBee network topologies

The peer-to-peer topology allows for various network shapes. In a tree topology
(see Figure 2.3) a PAN coordinator creates the network, FFDs form the branches
of the tree and RFDs are the leaves. The difference between a tree topology and a
mesh topology (see Figure 2.3) is that a tree topology restricts the communication
between FFDs, but in a mesh topology every FFD can communicate with all other
FFDs in radio range. Figure 2.4 shows how a peer-to-peer topology can extend the
range of the network and even circumvent barriers (Farahani, 2011).

Figure 2.4: A ZigBee network topology with a barrier.
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2.5.2 Architecture

The architecture of ZigBee can be seen as a set of blocks, which are usually called
layers. Each layer is tasked with performing a specific service for the layer above;
lower layers have no knowledge about upper layers. Between each layer there are
two Service Access Points (SAPs) that isolate the layer. One of these SAPs provides
a data transmission service and the other provides a management entity service
that controls all other services in the attached layer by exposing an interface for the
layer above (Gislason, 2008; ZigBee Alliance, 2012). An image that represents the
architecture of the ZigBee stack can be found in Figure 2.5.

Figure 2.5: Image of the ZigBee stack architecture based on ideas from Gislason
(2008); Yang (2014); ZigBee Alliance (2012).

Application layer (APL)

The APL consists of the Application Support Sublayer (APS), ZigBee Device Object
(ZDO) and manufacture-defined application objects (ZigBee Alliance, 2012).
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The APS is the layer above the Network (NWK) Layer and provides the NWK layer
with an interface to the APL. The APS’s task is to filter out packets whose endpoints
do not exist, manage transmission retries with end-to-end acknowledgment, maintain
the local binding table which handles the connection of an endpoint on the current
node with one or more endpoints on other nodes, maintain the local groups table
which makes it possible to send group-addressed frames to endpoints associated with
the same group and maintain the local address map which handles the association
between a 64-bit MAC address and a ZigBee 16-bit network address (Gislason, 2008;
ZigBee Alliance, 2012).

The ZDO is an application that runs on endpoint 0 on every ZigBee device. It
includes the ZigBee Device Profile, which is a specialized application profile that is
responsible for discovering, configuring and maintaining ZigBee devices and services
on a network. The ZDO application also directly interacts with the NWK layer, by
controlling when to create a network or join a network and when to leave a network
(Gislason, 2008).

Manufacture-defined application objects reside in the Application Framework (AF).
The AF also contains the ZigBee Cluster library and the task of this library is to
provide a framework for running applications where each application has a unique
endpoint (Gislason, 2008).

Network (NWK) layer

The task of the NWK layer is to connect the above layers with the MAC sub-layer.
To connect with the APL, the NWK layer, like all other layers, also provides two
SAPs as described in Section 2.5.2. These SAPs are responsible for (Farahani, 2011;
ZigBee Alliance, 2012):

• Transporting protocol data units to their intended recipients.

• Providing security that ensures both the authenticity and the confidentiality
of a transmission.

• Self-configuration of the stack for either starting a network as a ZigBee coor-
dinator or joining a network.

• Creating a new network.

• Making it possible for devices to join, rejoin and leave a network. This also
includes the ability for a ZigBee coordinator or router to request that another
device leave the network.

• Address assignment of a device by a ZigBee coordinator or router.

• Discovering, recording and reporting information about devices directly neigh-
bouring to the current device.
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• Discovering and recording paths for sending messages.

• Controlling when the recipient device is active and for how long and hence
enabling MAC sub-layer synchronisation or direct reception.

• Providing routing mechanisms such as unicast, broadcast, multicast and many
to one to exchange data in the network efficiently.

Security service provider

The security service provider is responsible for services that provide encryption for
data confidentiality, device and data authentication and replay protection. These
security measures are optional, and it is up to the developer to chose if they should
be used (Farahani, 2011).

2.6 Further recommended reading

This section presents related work about a variety of other topics: how to modify
the Erlang runtime system for WSN applications, comparisons between Erlang-
based languages and other languages, how functional languages can reduce security
risks, different device-to-device communication techniques, the power consumption
of ZigBee, and how a functional language can be used to generate nesC code.

Sivieri and Cugola (2012) and Sivieri et al. (2016) investigate how the Erlang runtime
system could be modified for WSN applications. Sivieri and Cugola (2012) write
that WSN-Erlang gives a higher level of programming abstraction which makes it
easier to produce more reusable, maintainable code and makes it easier to test code
that may run on heterogenous networks. They also strip the runtime system of
unnecessary libraries and facilities to reduce the memory, storage and processing
requirements.

Sivieri et al. (2016) is in some ways a continuation of the work done in Sivieri and
Cugola (2012). The development platform ELIoT is presented and a comparison is
performed between a C implementation, a Java implementation and an ELIoT im-
plementation of a smart-home application. They find that ELIoT makes it possible
to develop more concise and readable code that is easier to test and debug. They
also show that CPU and memory consumption are accaptable for their application.

Fedrecheski et al. (2016) compare the performance of a Swarm Broker implemen-
tation in Java and Elixir. Elixir is a language with the goal of leveraging all the
abstractions of Erlang, whilst at the same time adding new features from other
programming languages (Thomas, 2018). They conclude that the Java implementa-
tion of the Swarm Broker application uses slightly less CPU. However, Elixir shows
better memory usage and the number of lines of code is markedly less.
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Haenisch (2016) investigates the use of functional languages for improving the se-
curity of IoT applications. The paper shows that the use of functional languages
or functional techniques can reduce the code size and complexity of an application,
resulting in fewer bugs and fewer security problems.

In this thesis ZigBee was used for device-to-device communication but there are
alternatives to this solution. Essameldin and Harras (2016) and Militano et al.
(2015) investigate different techniques for device-to-device communications in the
field of IoT. Militano et al. (2015) also discuss the main challenges and the coming
research directions that need to be investigated to reach what is expected to be
the reality for IoT, a device-oriented Anything-as-a-Service ecosystem, in the fifth
generation (5G) cellular systems.

The performance of the IEEE 802.15.4 low-rate wireless personal area networks is
another field that has been investigated. Kohvakka et al. (2006) analyze the IEEE
802.15.4 standard MAC protocol to investigate the network performance and energy
efficiency.

Mainland et al. (2008) show that there are other approaches than the one presented
in this thesis to make it possible to use functional programming for devices with a
constrained availability of resources in a WSN scenario. The paper presents Flask,
a domain specific language embedded in Haskell that generates nesC (a dialect of
C) code for the operating system TinyOS.
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Methods

In order to evaluate the performance of using Erlang to communicate in a WSN two
prototypes were developed and data was collected from them. The data was then
analysed in order to show when Erlang can be an alternative to a low-level language
in a WSN.

3.1 Setup

The prototypes that have been developed are prototypes of a video-based sensor
network. A basic idea of how the network has been constructed can be seen in
Figure 3.1. This figure shows how the network looks for the experiments performed
in this thesis, but the network design of the final product may not necessarily look
like this.

Figure 3.1: The design of the video-based sensor network for this experiment.

There can be arbitrarily many sensor nodes in the network but there is no need for
the network to be bigger than the one shown in Figure 3.1 for the investigation in
this thesis. This is because the sensor that has been investigated both receives data
from another sensor and sends data to another device, both of which are performed
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by the middle sensor node in this setup. All measurements presented in this thesis
are from the node in the middle of Figure 3.1.

The hardware used for the sensor node is a Freescale i.MX 6Quad SABRE Develop-
ment Board with a 1GHz ARM Cortex A9 core and 1 GB DDR3 SDRAM with up
to 533 MHz memory (NXP, 2012). The investigation does not focus on the other
devices in the network and therefore there are no specific requirements on these
devices except that they need to be fast enough to keep up with the sensor node.
Therefore, the control system node and end sensor node were simulated using two
computers.

To achieve communication between the devices in the network ZigBee was used. The
i.MX 6 board does not have built in support for the IEEE 802.15.4 standard so there-
fore a module was needed to add support to the i.MX 6 board. The experiments in
this thesis used modules from the XBee ZigBee Mesh Kit (XKB2-Z7T-WZM). This
kit consists of three XBee ZigBee modules and three Grove development boards. By
mounting the Xbee ZigBee modules in the Grove development boards and connect-
ing the boards by USB to the processing unit, the processing unit can communicate
with the connected XBee ZigBee module.

There are many possible choices of operating system for the prototype. Because
the company uses a basic Debian distribution in their other products and wants to
continue using it, this operating system was chosen.

3.2 Prototypes

In order to compare Erlang against a low-level language for implementing the com-
munication between sensors in a WSN, two prototypes were implemented. The first
prototype was developed in C++ and the second was developed in Erlang.

The first step in the prototypes’ development process was to decide on a design:
how the sensors in the network should communicate and how the prototypes should
be structured. For example, should a sensor ask for its child sensor’s data or should
the child sensor pass data to its parent without being asked for it? For the C++
prototype, the choice was made to follow the company’s intended design for the
final product: multiple processes communicating over D-Bus. The Erlang prototype
followed the same design except that it used message passing instead of D-Bus.

After this first decision was made both prototypes were developed iteratively with
features being added until the prototypes were realistic enough to perform the final
comparison. This iterative approach was chosen to give the possibility of catching
problems early and to only implement as much of the communication code as was
needed to carry out the evaluation.
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3.2.1 C++ prototype

The C++ prototype is divided into three processes. The task of the first process,
the Writer process, is to receive the data produced by the other two processes and to
send it to the ZigBee module for transmission to the correct recipient. The second
process, the Datagen process, simulates the generation of data and the last process,
the Reader process, is responsible for collecting incoming data from another device
in the network. The reason why the Writer process exists and the other processes
do not directly write the data to the ZigBee module is twofold. Firstly, the Datagen
process is going to be vastly different in the final product, perhaps even run on a
FPGA unit. Secondly, only one process is allowed to write to the serial port at a
time.

The prototype and ZigBee module communicate through a serial port and the set-
tings that the port needs to be configured with can be found in the implementations
of the C++ prototype found in Section A.4.

The Datagen and Reader process communicate data to the Writer process using
D-Bus. D-Bus is a software bus that provides inter-process communication and a
remote procedure call mechanism that allows processes to communicate with each
other. D-Bus provides two daemons, a system daemon that handles events sush as
when a device is added to the system and a per-user-login-session daemon that han-
dles general inter-process communication between applications. The Writer process
implements functionality that listens to incoming messages from the Datagen and
Reader processes. The implementation of these processes can be seen in Appendix A.

The final consideration in the development of the C++ prototype was fault-tolerance.
If one of the processes crashes it should be restarted automatically. This is achieved
using systemd, a system and service manager and initialization system which is com-
monly used on Linux. By turning the processes into services, systemd can restart
them following the provided specifications, which can be seen in Appendix A.5.

3.2.2 Erlang prototype

According to the Erlang documentation it is very hard to implement a new driver
for the distribution carrier and therefore for this thesis the choice for the connection
between Erlang and a ZigBee module was between implementing a port and a port
driver (Ericsson AB, 2019a).

Ports, port drivers, C nodes and Native Implemented Functions (NIFs) are different
methods that are provided by Erlang for applications to run C code. The difference
between these methods is in how they are loaded. For example, NIFs are dynamically
linked into the emulator process and port drivers are loaded as a shared library.
Therefore, these methods of loading the C code cause the emulator to crash if the
C code terminates. On the other hand, a port is loaded into a separate process and
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if it crashes the emulator does not crash. A depiction of the difference between a
port and a port driver can be seen in Figure 3.2 (Ericsson AB, 2019b).

Figure 3.2: The difference between a port and a port driver.

Since a port driver crashing causes the emulator to crash, the choice was made to
use a port. For the implementation of the port much of the code from the C++
prototype could be reused and the full implementation can be seen in Appendix B.1.

The Erlang prototype has a similar structure to the C++ prototype, consisting
of a Writer, Reader and Datagen process. One difference is that instead of using
systemd for restarting crashed processes, the built-in supervisor behaviour of Erlang
is used instead. By building a supervisor tree it is possible to specify how to restart
the system when if a process crashes. A model of the supervisor tree is shown in
Figure 3.3 and the full implementation of the prototype can be seen in Appendix B.
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Figure 3.3: The structure of the Erlang prototype.

The behaviour that was wanted of the prototype was to restart all processes if the
Writer process crashes and only restart the crashed process if it is not the Writer
process. With this supervisor tree and by specifying the restart procedures for the
supervisor nodes it is possible to get the desired behaviour.

The specified restart procedure for the root supervisor is that if one of the processes
crashes all processes are restarted. This choice was made for two reasons. Firstly, if
the Writer process has crashed the work done by the Reader and Datagen process
is wasted because there is no recipient for the data they send out. Secondly, to
send messages to the Writer process the other processes need to know the process
id of the process. To achieve this, the Writer process registers its process id in the
global process registry so that it can be addressed by name. If a process tries to
send a message to the Writer’s registered process id when the Writer has crashed it
also crashes. The second supervisor only supervises children that have no dependent
processes. Therefore, the restart strategy is to only restart the child that has crashed.

3.3 Data collection

Data was collected from the two prototypes for the purpose of evaluating the perfor-
mance of using Erlang in a WSN. The collected data was in all instances quantitative
data.

For the Erlang prototype some virtual machine flags were used to minimize the
memory use. The used flags were:

• +P 1024: set the maximum number of processes to 1024.
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• +Q 1024: set the maximum number of number of simultaneously existing
ports to 1024.

• +L: turn off the loading of source filenames and line numbers.

• -noshell: starts the runtime system without a shell.

• +Mea min: use one global memory allocator instead of multiple ones.

To count lines of code, the SLOCCount tool created by David A. Wheeler was used.
The tool counts physical Source Lines of Code (SLOC), defined as a line of code that
contains at least one non-whitespace non-comment character (Wheeler, 2019). This
means that comments and empty lines are not included in the count. By counting
the lines of code data was collected that was used to do a quantitative evaluation of
the implementation effort of each prototype.

Static code size of the prototypes was measured by using the ls -l "filename" com-
mand and the static code size of the Erlang runtime system was measured by using
the Erlang function erlang:memory(code).

To measure the memory and CPU usage of the prototype a C program was imple-
mented. For the full implementation of the program see Appendix C. This program
executes each prototype ten times for all data generation rates, where each gener-
ated data packet has a size of 10 bytes. As described in Section 1.3, each sensor is
not intended to send huge amounts of data. Therefore, data packets of 10 bytes are
realistic in this case. Each time a prototype is executed it runs for two minutes and
a measurement is performed each second.

The measurement code performs the measurements by using the Linux command ps
and free and the file /proc/[pid]/stat. By using these commands data was collected
about memory and CPU usage of the prototypes.

The ps command was used to collect resident set size (RSS) and virtual memory size
(VSZ) usage of each prototype for all data generation rates. The measurements was
performed multiple times and the average value of these results was used to show
memory usage. RSS memory is the most interesting value of these two because it
represent the amount of used RAMmemory. This value can be somewhat misleading
because shared libraries are only loaded once but counted in the RSS of all processes
that use them. VSZ is not as important as the RSS value because it is the total
accessible address space of a process and that includes memory that is swapped out,
allocated memory that is not used, and memory from shared libraries.

The ps command was also used to collect information about the CPU usage. The
CPU value that is reported by the ps command is the average CPU usage from the
time the program started to the point of the measurement. Therefore, only the last
collected CPU value is used.

The free command also reports on memory use but in a different manner. The
reported values that are used in this thesis are:
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• Free, a value that reports the free memory of the system.

• Used, a value that reports the used physical memory of the system excluding
kernel buffers, page cache and slab memory.

• Available, a value that represents an estimation about how much memory is
available for starting a new process in the system.

Finally, CPU usage information was read from the file /proc/[pid]/stat. This infor-
mation was read multiple times with one second between two measurements during
the whole execution of a prototype. The fields that record CPU usage are called
utime and stime. Utime shows how much scheduled time a process has had in user
mode and stime shows how much scheduled time the process has had in kernel mode.
By using the following formula with two subsequent measurements it is possible to
calculate how much CPU time a process uses between two measurements:

((utime − old_utime) + (stime − old_stime))/(time − old_time)

The average of these values was then used to calculate a CPU usage value for the
whole running time of the prototype. The CPU usage is a relevant measure of
performance in this case because the data generation rate is constant. As long as
the data generation rate is constant and the CPU usage is below 100%, the CPU
usage indicates how much time is needed to process the packets generated during
one second.

Lastly, data was collected about the power consumption of the prototype. This was
done by placing a multimeter between the board and the power supply. Then for
each execution of a prototype, for each data generation rate, a measurement was
collected every five seconds for two minutes.

3.4 Evaluation

The collected data was analysed as follows to show when Erlang can be used for
communication in a WSN.

• Calculate the percentage of how much capacity is lost or gained by using
Erlang. How many messages can be sent with an Erlang solution compared
to a C++ solution if the power budget, RAM usage and CPU usage is fixed
respectively or if more than one hardware resource is fixed at the same time?

• Compare the power consumption, RAM usage and CPU usage of the C++
prototype from the performed measurements against the Erlang prototype, in
order to find the minimum hardware requirements for running the application
part of the sensor and at which data generation rates each prototype performs
better than the other.
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These analyses give someone who wants to develop the communication between
nodes in a WSN with Erlang a guideline for hardware requirements. For example,
if someone wants to develop an WSN application and they have a fixed amount of
RAM and some other process already running on the system, they can see if there
is enough RAM for Erlang to be used for communication.
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4
Results

This chapter contains the results of the comparison of the C++ and Erlang proto-
types. The first five sections contain results about the number of lines of code, static
code size, memory use, CPU usage and power consumption of the two prototypes.
In the last section of this chapter some experiments are presented that explain a
surprising result.

4.1 Lines of code

The C++ prototype has 352 lines of code and the Erlang prototype has 317 lines of
code. This means that the C++ prototype has 10% more lines of code in total. This
total percentage value is somewhat misleading because each prototype has parts that
do not exist in the other prototype. Therefore, it is more interesting to look at each
corresponding part of the prototypes separately.

The prototypes mainly consist of the Writer, Reader and Datagen processes. This
part of the C++ prototype has 167 lines of code and in the Erlang prototype it has
45 lines of code. This part of the C++ prototype therefore has nearly three times
more lines of code than the Erlang prototype.

To restart a process if it crashes, the C++ prototype uses scripts to turn the pro-
cesses into systemd services and these scripts consist of 34 lines of code. The Erlang
prototype instead uses the built-in supervisor behaviour. The code needed for set-
ting up this functionality consists of 45 lines of code. The C++ prototype therefore
uses 25% less code.

The communication with the ZigBee module is done over a serial port. The C++
prototype implements this functionality using 150 lines of normal C++ code but the
Erlang prototype uses a port, implemented with 105 lines of code. This means that
the C++ prototype has 50% more lines of code for this part. It should be noted
that most of the extra lines of code in the C++ prototypes come from the header
file.

The final part of the program is the code that implements the port functionality of
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the Erlang prototype. This part does not have any corresponding part in the C++
prototype. In total this part consists of 106 lines of code where 32 lines are Erlang
and 74 are C.

4.2 Static code size

Measuring the static code size as described in Section 3.3, the C++ prototype has a
static code size of 50kB and the Erlang prototype has a static code size of 2138kB.
Much of the static code size of the Erlang prototype comes from the code that is
needed to load the runtime system, which in this case amounts to 2121kB. One thing
to mention is that the runtime system can be modified by stripping unnecessary
parts, for example unused modules from the standard library, to decrease the static
code size. This was not investigated in this thesis.

In this case it is hard to do a fair comparison between the C++ prototype and the
Erlang prototype because much of the static code size of the Erlang prototype comes
from the implementation of the port that provides functionality to communicate with
a ZigBee module. If the port is not included in the calculation the static code size
for the BEAM files is only 7kB. This shows that if there are many more processes or
the processes are bigger, there could be a point where the static code size becomes
larger if C++ is used instead of Erlang.
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4.3 Memory usage

Figure 4.1 shows the resident set size (RSS), which measures physical memory use,
of both the C++ prototype and the Erlang prototype. The data shows that the
Erlang prototype uses less physical memory for all data generation rates.
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Figure 4.1: Data about physical memory usage collected with the ps command.
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Figure 4.2 shows the average virtual memory size (VSZ) for the processes C++ and
Erlang prototypes.
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Figure 4.2: Data about virtual memory usage of the C++ and Erlang prototypes
collected with the ps command.
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Figures 4.1 and 4.2 show that the Erlang prototype uses less physical and virtual
memory for all data generation rates. Figure 4.3 shows how many times greater the
memory usage is for the Erlang prototype. If the value is below 1 it means that the
Erlang prototype uses less of that type of memory than the C++ prototype.
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Figure 4.4 compares the values reported by the free command (used, free, and avail-
able) for the two prototypes. For each measurement, the value reported was sub-
tracted by the value when the system was idle. As in Figure 4.3, a value below 1
means that the Erlang prototype has a lower figure for that type of memory.

0.5 1 2 3 4 5 6 7 8 9

0.5

1

1.25

1.5

1.75

2

2.25

2.5

Packets/s

Er
la
ng

va
lu
e
/
C
+
+

va
lu
e

Memory usage from free command

More used memory

More free memory

More available memory

Figure 4.4: Ratio of Erlang to C++ memory use as reported by the free command.
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4.4 CPU usage

The CPU usage was measured in two different ways. The first was with the ps com-
mand which gives the average CPU usage over the total execution of the program.
This data can be seen in Figure 4.5.
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Figure 4.5: Collected data about CPU usage from the ps command.
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The second way the CPU usage was measured was to take multiple samples with
one second between samples and then calculate how much CPU time had been used
between the samples. The result of this calculation can be seen in Figure 4.6. One
interesting thing to notice is that the CPU usage for the C++ prototype results
in a much straighter line than the Erlang prototype in both Figures 4.5 and 4.6.
A possible explanation for this is that the Erlang runtime system uses garbage
collection and this introduces unpredictability in how much work needs to be done.
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Figure 4.6: Data collected about CPU usage as described in Section 3.3.

33



4. Results

Figure 4.7 compiles the data to show how much more the Erlang prototype uses the
CPU. A value below 1 means that the Erlang prototype uses the CPU less than the
C++ prototype.
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Figure 4.7: Data collected about CPU usage as described in Section 3.3.
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4.5 Power consumption

By using a multimeter to measure amperes and volts for each data generation rate
of a prototype every five seconds an average power consumption value was attained.
Figure 4.8 presents these values and Figure 4.9 shows how many times greater the
power consumption is for the Erlang prototype.
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Figure 4.8: Data collected about the power consumption of the prototypes.
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Figure 4.9: Diagram showing how much more power Erlang consumes.

Figure 4.9 shows that there is no clear difference between the power consumption of
the prototypes. Therefore, the next step was to investigate the confidence of that
the data is a representation of real data.

The data collection process revealed that the board seemed to have two states of
power consumption, one high and one low. Therefore, it is possible to ask the
question: what is the probability that the board is in a high-power state at any
given time?

The Wilson procedure answers this question by calculating a confidence interval
(Wilson, 1927). If this procedure is used on the values collected from the Erlang
prototype with the data generation rate of ten packets per second it results in a 95%
confidence interval of 52.02 ± 19.65% that the board is in a high-power state during
the execution of the prototype. The meaning of the 95% confidence interval is that
the true mean of the power consumption is 95% likely to be inside the interval.
In this case, the number of observations is too few to give statistically significant
results for any separate data generation rate.

An alternative is to collect all the measurements from each prototype into one data
set. This models the situation where the data generation rate varies at random.
This gives the confidence interval 65.92 ± 5.72% for the Erlang prototype and the
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confidence interval 61.75±5.87% for the C++ prototype that the board is in a high-
power state. Because the intervals overlap, the test still does not give any significant
information about the power consumption data.

4.6 Analysis of the results

The results show that the Erlang prototype uses less memory and CPU than the
C++ prototype. This is perhaps surprising since C++ is a language known for its
efficiency while Erlang is not. Therefore, the prototypes were investigated to see
where the performance difference came from.

Two main differences were found: The Erlang prototype uses a port to communi-
cate with a ZigBee module while the C++ prototype communicates directly with
the ZigBee module, and the C++ prototype uses D-Bus to communicate data be-
tween processes while the Erlang prototype uses message passing inside the virtual
machine. The first difference could immediately be discarded as an explanation of
the performance results, because adding something extra compared to the C++
prototype could not possibly result in less memory and CPU usage. Therefore, the
one remaining reason that the C++ prototype uses more memory and CPU is that
the C++ prototype uses D-Bus to communicate between processes.

To show the impact that D-Bus has on performance the Reader process was selected
to perform some more experiments on. The same data collection program that had
been used to measure the complete prototypes was modified to run only the Reader
process, and data was collected about the impact D-Bus had on the memory and
CPU usage.
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4.6.1 Memory use of the Reader process

These experiments were performed on a version of the Reader process that had
all D-Bus functionality included and on a version that had all D-Bus functional-
ity removed. The results for memory usage from these experiments is shown in
Figures 4.10 and 4.11.
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Figure 4.10: Data about physical memory usage for the Reader process.

38



4. Results

0 0.5 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Packets/s

M
B

VSZ values for the Reader process

Average VSZ values with D-Bus

Average VSZ values without D-Bus

Figure 4.11: Data about virtual memory usage for the Reader process with D-Bus
included and without D-Bus included.
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The diagrams in Figures 4.10 and 4.11 show the amount of each type of memory
the Reader process uses. Figure 4.12 uses this information to show how many times
more memory the process uses with D-Bus included.

0.5 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6
7

9

11
13
15

Packets/s

D
bu

s
pr
oc
es
s
/
pr
oc
es
s

Times more Reader memory usage

Times more VSZ usage

Times more RSS usage

Figure 4.12: Diagram showing how many times more memory the Reader process
uses when D-Bus is included.
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4.6.2 CPU usage of the Reader process

Figures 4.13 and 4.14 show that the Reader process uses significantly more CPU
when D-Bus is included. The two figures correspond to the two methods of measur-
ing CPU usage described in Section 3.3.
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Figure 4.13: Data about the CPU usage of the Reader process collected from the
ps command.
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Figure 4.14: Data about the CPU usage of the Reader process collected as de-
scribed in Section 3.3.
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Figures 4.13 and 4.14 show that the use of D-Bus to communicate messages between
processes significantly increases the CPU usage. Figure 4.15 shows how much more
the D-Bus version of the Reader process uses the CPU.
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Figure 4.15: Diagram showing how much more CPU the Reader process uses when
D-Bus is included.
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4.6.3 Comparison with Erlang prototype

The figures above quantify the effect of using D-Bus on the Reader process’s per-
formance. Since the Reader, Writer and Datagen processes are quite similar the
assumption was made that D-Bus has a similar performance effect on all of them,
and it was used to estimate the performance of a hypothetical prototype that does
not use D-Bus.

This estimate is done by multiplying the C++ prototype’s performance values with
the performance factor gained by removing D-Bus from the Reader process. Fig-
ure 4.16 shows how many times more memory and CPU the Erlang prototype uses
compared to the hypothetical C++ prototype.

0.5 1 2 3 4 5 6 7 8 9

0.5

0.75

1

1.5

2
2.5

3

4
5
6
7
9

11
13

Packets/s

Er
la
ng

va
lu
e/
H
yp

ot
he

tic
al

C
+
+

va
lu
e Memory and CPU usage

Times more CPU usage from ps

Times more CPU usage

Times more VSZ usage

Times more RSS usage

Figure 4.16: Diagram showing how many times more memory and CPU the Erlang
prototype require compared to a hypothetical C++ prototype.
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4.7 Summary of the results

Table 4.1 summarises the results of this chapter. The values for the memory usage
are an average value over all data generation rates and the CPU values are computed
from the gradient of the trend line equation.

The values in the hypothetical C++ prototype are derived by assuming that D-
Bus would have the same performance impact on every process. This does not
give a working prototype because there is now no method to communicate between
processes but it gives an estimate of what the values could be if all process were
bundled together using shared memory and threads instead. However, using shared
memory is not a good solution because the complexity of the program becomes much
higher and the robustness of the program is worse. The chance of mistakes increases
and it can lead to for example data races when accessing the shared memory.

Table 4.1: Summary of the results from the investigation.

Erlang
prototype

C++
prototype

Hypothetical C++
prototype

Physical memory usage in MB 8.95 14.44 2.79

Virtual memory usage in MB 80 105.29 7.5

CPU ms per packet from
ps command

2.2 7.5 0.7

CPU ms per packet 2.3 7.4 0.9

Lines of code in total 317 352 -

Lines of code, only the processes 45 167 -

Static code size in kB with the
Erlang runtime system included

2138 50 -

Static code size in kB without
the Erlang runtime system
included

17 50 -
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Conclusion

This thesis compares C++ and Erlang for the task of communication in a WSN,
by implementing and evaluating one prototype in each language. The design of the
prototypes corresponds with the product that the affiliated company Cipherstone
Technologies is considering to develop. The evaluation has been done on one node
in the network and the purpose of the evaluation was to investigate the performance
impact of using Erlang instead of C++ to handle the communication with ZigBee
in the network.

5.1 Discussion of results

The evaluation showed that the Erlang prototype uses less memory and less CPU
if more than one data packet is sent per second. This result was at first glance a
bit surprising: The expected result was that the Erlang prototype should use more
memory and CPU than the C++ prototype.

Further experiments revealed that the reason for this was the use of D-Bus. A
C++ version of the Reader process in which D-Bus has been removed used much
less memory and much less CPU than the Erlang prototype, in all cases. The D-
Bus functionality was made available in the prototype by including the glib library.
Therefore, if some alternative method that require less resources to achieve inter-
process communication can be found it is a possibility that a C++ prototype can
be developed that use less resources compared to the Erlang prototype.

When the implementation effort was measured by counting the lines of code, the
difference was not so great if the whole prototypes was compared. If instead only the
corresponding parts of the C++ prototype are compared with the Erlang prototype
with all C code removed the difference was significantly greater. In that case, the
C++ prototype uses around three times more lines of code compared to the Erlang
prototype.

The measurements of power consumption were inconclusive because the method
used was not appropriate to collect data with any significance. Much more data
was needed before it would show anything of significance. An automatic collection
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procedure is recommended for this, because it was already tiring to collect the data
and if more data was collected in the same manner the risk for human errors would
increase.

Lastly, the data presented in this thesis comes from running the prototypes for each
data generation rate 10 times. Each time the prototype is run for two minutes and
a sample of CPU and memory usage is taken each second. This is quite a small data
set for each data generation rate and prototype. Therefore, if some unforeseen noise
impacted any of the executed data collection processes it is possible that it would
have had a significant impact on the results. The optimal approach would be to run
many more iterations of data collection to counter possible noise in the data and
possibly give a more accurate data about power consumption but because of time
limitations this has not been possible.

5.2 Final statements

The work done in this thesis has shown that Erlang can be an alternative to C/C++
in developing WSN applications. Comparing results from the two prototypes show
that the Erlang prototype requires less code, uses less memory and CPU in most
cases. Data about CPU usage collected with the ps command shows that the C++
prototype use less CPU only if no more than 0.5 packets are sent per second. The
CPU usage also increases more rapidly as the data generation rate increases for the
C++ prototype compared to the Erlang prototype. Therefore, more is gained by
using Erlang if the system needs to send data at a higher rate.

The investigation into the requirements of using D-Bus showed that D-Bus accounted
for a large part of the resource usage. Therefore, it would be easy to conclude
that if D-Bus is not used the C++ prototype would use less resources but this
is something that can not be concluded from in this thesis because, by removing
the D-Bus functionality and not replacing it with something else the hypothetical
C++ prototype is not a working prototype. It only gives approximate values for
an alternative solution where the resource cost of moving data between processes is
zero. Furthermore, as the paper by Sivieri (2012) it is also possible to reduce the
memory usage of the Erlang runtime system by removing unnecessary functionality
and features.

In application similar to the one in this thesis, where the performance is the most
important aspect then Erlang should be used as long as the data generation rate is
higher than two packets per second. The Erlang prototype also uses less memory
and it would therefore be recommended as the solution in a system where it is
required that the memory usage is as small as possible.

The final consideration is how important the security and implementation effort are.
The Erlang prototype uses less lines of code and the chance for security risks in the
code is therefore less. If an application generates data at a rate less than one packets

47



5. Conclusion

per second a position must be taken about what is more important, the security of
the application or the performance.

5.3 Future work

The high memory and CPU usage of the C++ prototype in this thesis was caused by
the use of the D-Bus inter-process communication functionality from the glib library.
Therefore, one obvious question is if there are any other alternatives that can achieve
better performance and what the reason for the higher resource requirements are.

In the Erlang prototype a port was implemented to connect the Erlang part of
the prototype to C code that managed the communication with other nodes in the
network over ZigBee. This connection could for example be done with a port driver
instead or something else. It would therefore be interesting to to implement these
alternatives and investigate if any of them would reduce the memory usage, CPU
usage and the power consumption of the prototype.

Another direction that could be interesting to investigate is if there are other tech-
niques that can achieve the same communication requirements with the same or
lower power consumption. If there exists such a technique, the next step would be
to investigate how to communicate between it and Erlang and to measure if it would
require more or less memory and CPU usage.

48



Bibliography

Armstrong, J. (1996). Erlang—a Survey of the Language and its Industrial Appli-
cations. In Proc. INAP, Volume 96.

Armstrong, J. (1997). The development of Erlang. In ACM SIGPLAN Notices,
Volume 32, No. 8, pp. 196–203. ACM.

Armstrong, J. (2003). Concurrency oriented programming in Erlang. https:
//guug.de/veranstaltungen/ffg2003/papers/ffg2003-armstrong.pdf [Ac-
cessed: 2019-04-25].

Armstrong, J. (2010). Erlang. Communications of the ACM 53 (9), 68–75.

Bello, O., S. Zeadally, and M. Badra (2017). Network layer inter-operation of Device-
to-Device communication technologies in Internet of Things (IoT). Ad Hoc Net-
works 57, 52 – 62. Special Issue on Internet of Things and Smart Cities security,
privacy and new technologies.

Carmack, J. (2013). John Carmack Keynote - Quakecon 2013. Youtube. https:
//www.youtube.com/watch?v=Uooh0Y9fC_M [Accessed: 2018-11-30].

DIGI (2019). DIGI XBEE® AND DIGI XBEE-PRO® ZIGBEE. Digi International
Inc. https://www.mouser.se/datasheet/2/111/ds_xbee_zigbee-1019686.
pdf [Accessed: 2019-02-09].

Ericsson AB (2019a). Erlang Run-Time System Application (ERTS) - 6 How to
Implement an Alternative Carrier for the Erlang Distribution. Erlang.org. http:
//erlang.org/doc/apps/erts/alt_dist.html [Accessed: 2019-05-01].

Ericsson AB (2019b). Erlang/OTP 21.2. Erlang.org. http://erlang.org/doc/
index.html [Accessed: 2019-01-18].

Erlang (2019). Erlang programming language. http://www.erlang.org/ [Accessed:
2019-05-13].

Essameldin, A. and K. Harras (2016). Device-to-Device Communication in the
Internet of Things QSIURP Report. http://www.contrib.andrew.cmu.edu/
~aeahmed/device-device-communication%20(1).pdf.

Farahani, S. (2011). ZigBee wireless networks and transceivers. Newnes. ISBN:
9780080558479.

49

https://guug.de/veranstaltungen/ffg2003/papers/ffg2003-armstrong.pdf
https://guug.de/veranstaltungen/ffg2003/papers/ffg2003-armstrong.pdf
https://www.youtube.com/watch?v=Uooh0Y9fC_M
https://www.youtube.com/watch?v=Uooh0Y9fC_M
https://www.mouser.se/datasheet/2/111/ds_xbee_zigbee-1019686.pdf
https://www.mouser.se/datasheet/2/111/ds_xbee_zigbee-1019686.pdf
http://erlang.org/doc/apps/erts/alt_dist.html
http://erlang.org/doc/apps/erts/alt_dist.html
http://erlang.org/doc/index.html
http://erlang.org/doc/index.html
http://www.erlang.org/
http://www.contrib.andrew.cmu.edu/~aeahmed/device-device-communication%20(1).pdf
http://www.contrib.andrew.cmu.edu/~aeahmed/device-device-communication%20(1).pdf


Bibliography

Fedrecheski, G., L. C. Costa, and M. K. Zuffo (2016). Elixir programming language
evaluation for IoT. In Consumer Electronics (ISCE), 2016 IEEE International
Symposium on, pp. 105–106. IEEE.

Gislason, D. (2008). ZigBee wireless networking. Newnes. ISBN: 9780080558622.

Gutierrez, J. A., E. H. Callaway, and R. L. Barrett (2004). Low-rate wireless personal
area networks: enabling wireless sensors with IEEE 802.15.4. IEEE Standards
Association.

Haenisch, T. (2016). A case study on using functional programming for internet of
things applications. Athens Journal of Technology & Engineering 3 (1), 29–38.

IEEE Computer Society (2016). IEEE Standard for Low-Rate Wireless Networks.
IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011).

Institute of Electrical and Electronics Engineers, Inc. (2003). IEEE Standard for In-
formation Technology — Telecommunications and Information Exchange between
Systems — Local and Metropolitan Area Networks — Specific Requirements —
Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs). IEEE
Std 802.15.4-2003. New York: IEEE Press. https://www.iith.ac.in/~tbr/
teaching/docs/802.15.4-2003.pdf [Accessed: 2019-01-17].

Kohvakka, M., M. Kuorilehto, M. Hännikäinen, and T. D. Hämäläinen (2006). Per-
formance analysis of IEEE 802.15. 4 and ZigBee for large-scale wireless sensor
network applications. In Proceedings of the 3rd ACM international workshop on
Performance evaluation of wireless ad hoc, sensor and ubiquitous networks, pp.
48–57. ACM.

Leibson, S. (2008). IPV6: How Many IP Addresses Can Dance on the Head of
a Pin? EDN Network. https://www.edn.com/electronics-blogs/other/
4306822/IPV6-How-Many-IP-Addresses-Can-Dance-on-the-Head-of-a-Pin-
[Accessed: 2018-11-30].

Mainland, G., G. Morrisett, and M. Welsh (2008). Flask: Staged functional pro-
gramming for sensor networks. In ACM Sigplan Notices, Volume 43, No. 9, pp.
335–346. ACM.

Militano, L., G. Araniti, M. Condoluci, I. Farris, and A. Iera (2015). Device-to-
Device Communications for 5G Internet of Things. EAI Endorsed Transactions
on Internet of Things 1 (1), e4.

NXP (2012). SABRE Board for Smart Devices Based on the i.MX 6 Se-
ries. Document number: IMX6SABRESDBFS REV 3. https://www.nxp.
com/files-static/32bit/doc/fact_sheet/RDIMX6SABREBRDFS.pdf [Accessed:
2019-01-24].

Ray, B., D. Posnett, V. Filkov, and P. Devanbu (2014). A large scale study of pro-
gramming languages and code quality in Github. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
155–165. ACM.

50

https://www.iith.ac.in/~tbr/teaching/docs/802.15.4-2003.pdf
https://www.iith.ac.in/~tbr/teaching/docs/802.15.4-2003.pdf
https://www.edn.com/electronics-blogs/other/4306822/IPV6-How-Many-IP-Addresses-Can-Dance-on-the-Head-of-a-Pin-
https://www.edn.com/electronics-blogs/other/4306822/IPV6-How-Many-IP-Addresses-Can-Dance-on-the-Head-of-a-Pin-
https://www.nxp.com/files-static/32bit/doc/fact_sheet/RDIMX6SABREBRDFS.pdf
https://www.nxp.com/files-static/32bit/doc/fact_sheet/RDIMX6SABREBRDFS.pdf


Bibliography

Sivieri, A. (2012). Erlang meets WSNs: a functional approach to WSN pro-
gramming. In Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2012 IEEE International Conference on, pp. 562–563. IEEE.

Sivieri, A. and G. Cugola (2012). WSN-Erlang: a Functional, High Level Approach
to WSN Development. In 9th European Conference on Wireless Sensor Networks
(EWSN 2012), pp. 27–28.

Sivieri, A., L. Mottola, and G. Cugola (2016). Building Internet of Things software
with ELIoT. Computer Communications 89, 141–153.

Thomas, D. (2018). Programming Elixir≥ 1.6: Functional|> Concurrent|> Prag-
matic|> Fun. Pragmatic Bookshelf. ISBN: 978-1-68050-299-2.

Wheeler, D. A. (2019). SLOCCount. https://dwheeler.com/sloccount/ [Ac-
cessed: 2019-05-01].

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical
inference. Journal of the American Statistical Association 22 (158), 209–212.

Yang, S.-H. (2014). Internet of Things. In Wireless Sensor Networks: Principles,
Design and Applications. Springer London. ISBN: 978-1-4471-5505-8.

ZigBee Alliance (2012). Document 053474r20; ZigBee Specification. ZigBee Stan-
dards Organization.

ZigBee Alliance (2019). ZigBee is the only complete loT solution, from the
mesh network to the universal language that allows smart objects to work to-
gether. ZigBee Alliance. https://www.zigbee.org/zigbee-for-developers/
zigbee-3-0/ [Accessed: 2019-01-13].

51

https://dwheeler.com/sloccount/
https://www.zigbee.org/zigbee-for-developers/zigbee-3-0/
https://www.zigbee.org/zigbee-for-developers/zigbee-3-0/


Appendix A
C++ prototype

A.1 Writer

1 #include <iostream>
2 #include " . . / cpp_ser ia l / S e r i a l P o r t . h "
3 #include <unis td . h>
4 #include <g l i b . h>
5 #include <gio / g io . h>
6 #include <s t r i n g . h>
7
8 using namespace std ;
9 S e r i a l P o r t port ;

10
11 /∗ t h i s f unc t i on w i l l g e t c a l l e d everyt ime a c l i e n t a t tempts to

connect ∗/
12
13 gboolean incoming_cal lback ( GSocketService ∗ s e r v i c e ,
14 GSocketConnection ∗ connect ion ,
15 GObject ∗ source_object ,
16 gpo in t e r user_data )
17 {
18 // g_print ( " Received Connection from c l i e n t ! \ n " ) ;
19 GInputStream ∗ i s t ream = g_io_stream_get_input_stream (

G_IO_STREAM ( connect ion ) ) ;
20 gchar message [ 1 0 2 4 ] ;
21 g_input_stream_read ( istream ,
22 message ,
23 1024 ,
24 NULL,
25 NULL) ;
26 char dataStr [ 1 1 ] ;
27 s p r i n t f ( dataStr , "%s " , message ) ;
28 port . setData ( dataStr ) ;
29 std : : cout << " Writer : " << dataStr << std : : endl ;
30
31 int n = port . write_to_zigbee ( ) ;
32 i f (n == −1){
33 std : : cout << " Could not wr i t e ! " << std : : endl ;
34 }
35 return FALSE;
36 }
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37
38 int main ( )
39 {
40 while ( port . getPort ( ) == −1){
41
42 port . open_port_ser ia l ( " /dev/ttyUSB0 " ) ;
43
44 i f ( port . getPort ( ) == −1){
45 p r i n t f ( " Error opening s e r i a l port /dev/ttyUSB1 \n" ) ;
46 }
47 else
48 {
49 p r i n t f ( " S e r i a l Port /dev/ttyUSB1 i s Open\n" ) ;
50 i f ( port . i n i t p o r t ( ) == −1)
51 {
52 p r i n t f ( " Error I n i t i a l i z i n g port " ) ;
53 port . u n i n i t i a l i z e ( ) ;
54 return 0 ;
55 }
56 }
57 }
58
59 GError ∗ e r r o r = NULL;
60
61 /∗ c r ea t e the new s o c k e t s e r v i c e ∗/
62 GSocketService ∗ s e r v i c e = g_socket_service_new ( ) ;
63
64 /∗ connect to the por t ∗/
65 g_socket_listener_add_inet_port ( ( GSocketListener ∗) s e r v i c e ,
66 1500 , /∗ your por t goes here ∗/
67 NULL,
68 &e r r o r ) ;
69
70 /∗ don ' t f o r g e t to check f o r e r ro r s ∗/
71 i f ( e r r o r != NULL)
72 {
73 g_error ( e r ror −>message ) ;
74 }
75
76 /∗ l i s t e n to the ' incoming ' s i g n a l ∗/
77 g_signal_connect ( s e r v i c e ,
78 " incoming " ,
79 G_CALLBACK ( incoming_cal lback ) ,
80 NULL) ;
81
82 /∗ s t a r t the socke t s e r v i c e ∗/
83 g_socket_serv ice_start ( s e r v i c e ) ;
84
85 /∗ en ter mainloop ∗/
86 g_print ( " Waiting f o r c l i e n t ! \ n " ) ;
87 GMainLoop ∗ loop = g_main_loop_new(NULL, FALSE) ;
88 g_main_loop_run ( loop ) ;
89
90 return 0 ;
91 }
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A.2 Reader

1 #include <iostream>
2 #include " . . / cpp_ser ia l / S e r i a l P o r t . h "
3
4 #include <s t r i n g . h>
5 #include <unis td . h>
6 #include <cstdde f >
7 #include <cstd io >
8 #include <g l i b . h>
9 #include <gio / g io . h>

10
11 int main ( )
12 {
13 S e r i a l P o r t port ;
14
15 while ( port . getPort ( ) == −1){
16
17 port . open_port_ser ia l ( " /dev/ttyUSB0 " ) ;
18
19 i f ( port . getPort ( ) == −1){
20 p r i n t f ( " Error opening s e r i a l port /dev/ttyUSB2 \n" ) ;
21 }
22 else
23 {
24 p r i n t f ( " S e r i a l Port /dev/ttyUSB2 i s Open\n" ) ;
25 i f ( port . i n i t p o r t ( ) == −1)
26 {
27 p r i n t f ( " Error I n i t i a l i z i n g port " ) ;
28 port . u n i n i t i a l i z e ( ) ;
29 return 0 ;
30 }
31 }
32 }
33
34 while (1 ) {
35
36 i f ( port . read_from_zigbee ( ) > 0)
37 {
38 char dataStr [ 1 1 ] ;
39 port . getData ( dataStr ) ;
40 const char ∗ s t r = ( const char ∗) dataStr ;
41 std : : cout << s t r << std : : endl ;
42
43 GError ∗ e r r o r = NULL; /∗ i n i t i a l i z e g l i b ∗/
44
45 /∗ c r ea t e a new connect ion ∗/
46 GSocketConnection ∗ connect ion = NULL;
47 GSocketCl ient ∗ c l i e n t = g_socket_client_new ( ) ;
48
49 /∗ connect to the hos t ∗/
50 connect ion = g_socket_client_connect_to_host
51 ( c l i e n t ,
52 ( gchar ∗) " l o c a l h o s t " ,
53 1500 , /∗ your por t goes here ∗/
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54 NULL,
55 &e r r o r ) ;
56 /∗ use the connect ion ∗/
57 //GInputStream ∗ i s t ream =

g_io_stream_get_input_stream (G_IO_STREAM (
connect ion ) ) ;

58 GOutputStream ∗ ostream =
g_io_stream_get_output_stream (G_IO_STREAM (
connect ion ) ) ;

59 g_output_stream_write ( ostream ,
60 s t r , /∗ your message goes here

∗/
61 s t r l e n ( s t r ) , /∗ l e n g t h o f your

message ∗/
62 NULL,
63 &e r r o r ) ;
64
65 g_io_stream_close ( ( GIOStream∗) connect ion , NULL, NULL) ;
66 /∗ don ' t f o r g e t to check f o r e r ro r s ∗/
67 i f ( e r r o r != NULL)
68 {
69 g_error ( e r ror −>message ) ;
70 }
71 }
72 }
73 return 0 ;
74 }

A.3 Datagen

1 #include <iostream>
2 #include <g l i b . h>
3 #include <gio / g io . h>
4 #include <unis td . h>
5 #include <time . h>
6 #include <s t r i n g . h>
7
8 using namespace std ;
9

10 int main ( int argc , char ∗ argv [ ] )
11 {
12 std : : cout << " DataGen s t a r t e d " << std : : endl ;
13 struct t imespec t s ;
14 t s . tv_sec = a t o i ( argv [ 1 ] ) ;
15 t s . tv_nsec = a t o i ( argv [ 2 ] ) ∗1000∗1000; //250000000L ;
16
17 int counter = 0 ;
18 while (1 ) {
19
20 std : : s t r i n g text = " 1 Msg : " ;
21 text += std : : to_st r ing ( ( counter % 899) +100) + " \n" ;
22 counter++;
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23 const char ∗ s t r = text . c_str ( ) ;
24 std : : cout << s t r << std : : endl ;
25
26 GError ∗ e r r o r = NULL; /∗ i n i t i a l i z e g l i b ∗/
27
28 /∗ c r ea t e a new connect ion ∗/
29 GSocketConnection ∗ connect ion = NULL;
30 GSocketCl ient ∗ c l i e n t = g_socket_client_new ( ) ;
31
32 /∗ connect to the hos t ∗/
33 connect ion = g_socket_client_connect_to_host
34 ( c l i e n t ,
35 ( gchar ∗) " l o c a l h o s t " ,
36 1500 , /∗ your por t goes here ∗/
37 NULL,
38 &e r r o r ) ;
39 /∗ use the connect ion ∗/
40 //GInputStream ∗ i s t ream = g_io_stream_get_input_stream (

G_IO_STREAM ( connect ion ) ) ;
41 GOutputStream ∗ ostream = g_io_stream_get_output_stream (

G_IO_STREAM ( connect ion ) ) ;
42 g_output_stream_write ( ostream ,
43 s t r , /∗ your message goes here ∗/
44 s t r l e n ( s t r ) , /∗ l e n g t h o f your

message ∗/
45 NULL,
46 &e r r o r ) ;
47 /∗ don ' t f o r g e t to check f o r e r ro r s ∗/
48 i f ( e r r o r != NULL)
49 {
50 g_error ( e r ror −>message ) ;
51 }
52 g_io_stream_close ( ( GIOStream∗) connect ion , NULL, NULL) ;
53 nanos leep(&ts , NULL) ;
54 }
55 return 0 ;
56 }

A.4 Serial port

1 #ifndef SERIALPORT_H_INCLUDED
2 #define SERIALPORT_H_INCLUDED
3
4 #include <termios . h>
5 #include <i n t ty p e s . h>
6
7 #include <st r ing >
8
9 #include <sstream>

10
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11 #include <f c n t l . h>
12 #include <errno . h>
13 #include <unis td . h>
14
15 #include <cstdde f >
16 #include <cstd io >
17 #include <s t d i o . h>
18
19 class S e r i a l P o r t
20 {
21 public :
22
23 void open_port_ser ia l ( std : : s t r i n g s t r ) ;
24 int i n i t p o r t ( ) ;
25 int s e tB lock ing ( int should_block ) ;
26 int getPort ( ) ;
27 void s e tPort ( int i ) ;
28 void getData ( char∗ outStr ) ;
29 void setData ( char∗ i nS t r ) ;
30 int read_from_zigbee ( ) ;
31 int write_to_zigbee ( ) ;
32
33 void u n i n i t i a l i z e ( ) ;
34
35 ~ S e r i a l P o r t ( ) ;
36
37 private :
38 void append ( int i , int n , char∗ indata ) ;
39 int s e r i a l _ f d = −1;
40 char data [ 1 1 ] ;
41
42 } ;
43
44 #endif // SERIALPORT_H_INCLUDED

1 #include " S e r i a l P o r t . h "
2 #include <iostream>
3 #include <sstream>
4 #include <stdexcept>
5
6 #include <f c n t l . h>
7 #include <errno . h>
8 #include <unis td . h>
9 #include <s t r i n g . h>

10 #include <time . h>
11
12 using namespace std ;
13
14
15 void S e r i a l P o r t : : open_port_ser ia l ( std : : s t r i n g s t r )
16 {
17 int fd ; /∗ F i l e d e s c r i p t o r f o r the por t ∗/
18 fd = open ( s t r . c_str ( ) , O_RDWR | O_NOCTTY | O_NONBLOCK) ;
19 s e r i a l _ f d = fd ;
20 }
21

VI



A. C++ prototype

22 // I n i t i a l i z e s e r i a l por t
23 int S e r i a l P o r t : : i n i t p o r t ( )
24 {
25 int po r t s t a tu s = 0 ;
26
27 struct termios opt ions ;
28
29 // Get the current op t i ons f o r the por t . . .
30 t c g e t a t t r ( s e r i a l_ fd , &opt ions ) ;
31
32 // Set the baud r a t e s to 9 6 0 0 . . .
33 c f s e t i s p e e d (&opt ions , B9600 ) ;
34 c f s e t o s p e e d (&opt ions , B9600 ) ;
35
36 // Enable the r e c e i v e r and s e t l o c a l mode . . .
37 opt ions . c_cf lag |= (CLOCAL | CREAD) ;
38
39 opt ions . c_cf lag &= ~PARENB;
40 opt ions . c_cf lag &= ~CSTOPB;
41 opt ions . c_cf lag &= ~CSIZE ;
42 opt ions . c_cf lag |= CS8 ;
43 // op t i ons . c_c f lag |= Se r i a lD a t aB i t s In t e rp (8) ; /∗ CS8 −

S e l e c t s 8 data b i t s ∗/
44 opt ions . c_cf lag &= ~CRTSCTS; // Disab l e

hardware f l ow c o n t r o l
45 opt ions . c _ i f l a g &= ~(IXON | IXOFF | IXANY) ; // Disab l e

XON XOFF ( fo r t ransmi t and r e c e i v e )
46 // op t i ons . c_c f lag |= CRTSCTS; /∗ Enable

hardware f l ow c o n t r o l ∗/
47
48 opt ions . c_cc [VMIN] = 1 ; //Minimum charac t e r s to be read
49 opt ions . c_cc [VTIME] = 2 ; //Time to wai t f o r data ( t e n t h s o f

seconds )
50 opt ions . c_of lag &=~OPOST;
51 opt ions . c _ i f l a g &=~(ICANON | ECHO | ECHOE | ISIG ) ;
52 // Set the new op t i ons f o r the por t . . .
53 t c s e t a t t r ( s e r i a l_ fd , TCSANOW, &opt ions ) ;
54
55 // Set the new op t i ons f o r the por t . . .
56 t c f l u s h ( s e r i a l_ fd , TCIFLUSH) ;
57 i f ( t c s e t a t t r ( s e r i a l_ fd , TCSANOW, &opt ions ) == −1)
58 {
59 pe r ro r ( "On t c s e t a t t r : " ) ;
60 po r t s t a tu s = −1;
61 }
62 else
63 po r t s t a tu s = 1 ;
64
65 return ( po r t s t a tu s ) ;
66 }
67
68 int S e r i a l P o r t : : s e tB lock ing ( int should_block )
69 {
70 struct termios t ty ;
71 memset (&tty , 0 , s izeof t ty ) ;
72 i f ( t c g e t a t t r ( s e r i a l_ fd , &tty ) != 0)
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73 {
74 p r i n t f ( " e r r o r %d from t g g e t a t t r \n " , e r rno ) ;
75 }
76
77 tty . c_cc [VMIN] = should_block ? 1 : 0 ;
78 t ty . c_cc [VTIME] = 10 ; // 1 seconds read t imeout
79
80 i f ( t c s e t a t t r ( s e r i a l_ fd , TCSANOW, &tty ) != 0)
81 p r i n t f ( " e r r o r %d s e t t i n g term a t t r i b u t e s \n " , e r rno )

;
82 }
83
84 int S e r i a l P o r t : : getPort ( )
85 {
86 return s e r i a l _ f d ;
87 }
88
89 void S e r i a l P o r t : : getData ( char∗ outStr )
90 {
91 for ( int i =0; i < 11 ; ++i ) {
92 outStr [ i ] = data [ i ] ;
93 }
94 }
95
96 void S e r i a l P o r t : : setData ( char∗ i nS t r )
97 {
98 strncpy ( data , inStr , 1 0 ) ;
99 }

100
101 S e r i a l P o r t : : ~ S e r i a l P o r t ( )
102 {
103 u n i n i t i a l i z e ( ) ;
104 }
105
106 void S e r i a l P o r t : : u n i n i t i a l i z e ( )
107 {
108 i f ( s e r i a l _ f d >= 0)
109 {
110 c l o s e ( s e r i a l _ f d ) ;
111 s e r i a l _ f d = −1;
112 }
113 }
114
115 int S e r i a l P o r t : : read_from_zigbee ( )
116 {
117 struct t imespec t s ;
118 t s . tv_sec = 0 ;
119 t s . tv_nsec = 95∗1000∗1000;
120
121 int n1 = 0 ;
122 char indata [ 1 1 ] ;
123 while ( n1 < 1 | | ( n1 != 10) ) {
124 se tB lock ing (1 ) ;
125 int n = read ( s e r i a l_ fd , indata , 10−n1 ) ;
126 // s t d : : cout << n << s td : : end l ;
127 se tB lock ing (0 ) ;
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128 i f (n == 10) {
129 strncpy ( data , indata , 10) ;
130 return n ;
131 } else i f (n != −1){
132 append ( n1 , n , indata ) ;
133 n1 = n1+n ;
134 }
135 i f ( n1 < 1 | | ( n1 != 10) ) {
136 nanos leep(&ts , NULL) ;
137 }
138 }
139 return n1 ;
140 }
141
142 void S e r i a l P o r t : : append ( int i , int n , char∗ indata )
143 {
144 for ( int j =0; j<n ; j++){
145 data [ i+j ] = indata [ j ] ;
146 }
147 }
148
149 int S e r i a l P o r t : : write_to_zigbee ( )
150 {
151 return wr i t e ( s e r i a l_ fd , &data , 10) ;
152 }

A.5 Systemd

1 [ Unit ]
2 Desc r ip t i on=wr i t e r s e r v i c e
3 S ta r tL im i t In t e rva lS e c=0
4
5 [ S e rv i c e ]
6 Type=simple
7 Restart=always
8 RestartSec=1
9 User=user

10 ExecStart=/usr / bin /env bash / w r i t e r
11
12 [ I n s t a l l ]
13 WantedBy=multi−user . t a r g e t
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Appendix B
Erlang prototype

B.1 Port

1 #define _GNU_SOURCE
2 #include <s t d i o . h>
3 #include <s t r i n g . h>
4 #include <unis td . h> /∗ UNIX standard func t i on d e f i n i t i o n s ∗/
5 #include <f c n t l . h> /∗ F i l e c o n t r o l d e f i n i t i o n s ∗/
6 #include <errno . h>
7 #include <termios . h> /∗ POSIX termina l c o n t r o l d e f i n i t i o n s ∗/
8 #include <s i g n a l . h>
9 #include <s t d l i b . h>

10 #include <sys /mman. h>
11 #include <sys / types . h>
12 #include <sys / wait . h>
13 #include <sys / f i l e . h>
14 #include <sys / s t a t . h> /∗ For mode cons tan t s ∗/
15 #include <sys / ipc . h>
16 #include <sys /shm . h>
17 #include <time . h>
18
19 // I n i t i a l i z e s e r i a l por t
20 int i n i t p o r t ( int fd )
21 {
22 int po r t s t a tu s = 0 ;
23
24 struct termios opt ions ;
25
26 // Get the current op t i ons f o r the por t . . .
27 t c g e t a t t r ( fd , &opt ions ) ;
28
29 // Set the baud r a t e s to 9 6 0 0 . . .
30 c f s e t i s p e e d (&opt ions , B9600 ) ;
31 c f s e t o s p e e d (&opt ions , B9600 ) ;
32
33 // Enable the r e c e i v e r and s e t l o c a l mode . . .
34 opt ions . c_cf lag |= (CLOCAL | CREAD) ;
35
36 opt ions . c_cf lag &= ~PARENB;
37 opt ions . c_cf lag &= ~CSTOPB;
38 opt ions . c_cf lag &= ~CSIZE ;
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39 opt ions . c_cf lag |= CS8 ;
40 // op t i ons . c_c f lag |= Se r i a lD a t aB i t s In t e rp (8) ; /∗ CS8 −

S e l e c t s 8 data b i t s ∗/
41 opt ions . c_cf lag &= ~CRTSCTS; // Disab l e

hardware f l ow c o n t r o l
42 opt ions . c _ i f l a g &= ~(IXON | IXOFF | IXANY) ; // Disab l e

XON XOFF ( fo r t ransmi t and r e c e i v e )
43 // op t i ons . c_c f lag |= CRTSCTS; /∗ Enable

hardware f l ow c o n t r o l ∗/
44
45 opt ions . c_cc [VMIN] = 1 ; //Minimum charac t e r s to be read
46 opt ions . c_cc [VTIME] = 2 ; //Time to wai t f o r data ( t e n t h s o f

seconds )
47 opt ions . c_of lag &=~OPOST;
48 opt ions . c _ i f l a g &=~(ICANON | ECHO | ECHOE | ISIG ) ;
49 // Set the new op t i ons f o r the por t . . .
50 t c s e t a t t r ( fd , TCSANOW, &opt ions ) ;
51
52 // Set the new op t i ons f o r the por t . . .
53 t c f l u s h ( fd , TCIFLUSH) ;
54 i f ( t c s e t a t t r ( fd , TCSANOW, &opt ions ) == −1)
55 {
56 pe r ro r ( "On t c s e t a t t r : " ) ;
57 po r t s t a tu s = −1;
58 }
59 else
60 po r t s t a tu s = 1 ;
61
62 return ( po r t s t a tu s ) ;
63 }
64
65 int open_port_ser ia l ( char ∗ s t r )
66 {
67 int fd ; /∗ F i l e d e s c r i p t o r f o r the por t ∗/
68 fd = open ( s t r , O_RDWR | O_NOCTTY | O_NONBLOCK) ;
69
70 return fd ;
71 }
72
73 void append ( int i , int n , char∗ content , char∗ indata )
74 {
75 for ( int j =0; j<n ; j++){
76 content [ i+j ] = indata [ j ] ;
77 }
78 }
79
80 void se t_block ing ( int fd , int should_block )
81 {
82 struct termios t ty ;
83 memset (&tty , 0 , s izeof t ty ) ;
84 i f ( t c g e t a t t r ( fd , &tty ) != 0)
85 {
86 p r i n t f ( " e r r o r %d from t g g e t a t t r \n " , e r rno ) ;
87 return ;
88 }
89
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90 tty . c_cc [VMIN] = should_block ? 1 : 0 ;
91 t ty . c_cc [VTIME] = 10 ; // 1 seconds read t imeout
92
93 i f ( t c s e t a t t r ( fd , TCSANOW, &tty ) != 0)
94 p r i n t f ( " e r r o r %d s e t t i n g term a t t r i b u t e s \n " , e r rno )

;
95 }
96
97 int read_from_zigbee ( int s e r i a l_ fd , char ∗ content )
98 {
99 struct t imespec t s ;

100 t s . tv_sec = 0 ;
101 t s . tv_nsec = 95∗1000∗1000;
102
103 int n1 = 0 ;
104 char indata [ 1 1 ] ;
105 while ( n1 < 1 | | ( n1 != 10) ) {
106 // se t_b l o ck ing ( s e r i a l_ fd , 1) ;
107 int n = read ( s e r i a l_ fd , indata , 10−n1 ) ;
108 // se t_b l o ck ing ( s e r i a l_ fd , 0) ;
109 i f (n == 10) {
110 strncpy ( content , indata , 10) ;
111 return n ;
112 } else i f (n != −1){
113 append ( n1 , n , content , indata ) ;
114 n1 = n1+n ;
115 }
116 i f ( n1 < 1 | | ( n1 != 10) ) {
117 nanos leep(&ts , NULL) ;
118 }
119 }
120 return n1 ;
121 }
122
123 int write_to_zigbee ( int s e r i a l_ fd , char ∗ content )
124 {
125 int n = wr i t e ( s e r i a l_ fd , content , 10) ;
126 i f (n < 0)
127 {
128 p r i n t f ( " wr i t e ( ) o f %ld bytes f a i l e d ! \ n " , s izeof (∗ content ) ) ;
129 return 0 ;
130 }
131 return 1 ;
132 }

1 /∗ erl_comm . c ∗/
2
3 typedef unsigned char byte ;
4
5 int read_cmd ( byte ∗ buf )
6 {
7 int l en ;
8
9 i f ( read_exact ( buf , 2) != 2)

10 return(−1) ;
11 l en = ( buf [ 0 ] << 8) | buf [ 1 ] ;
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12 return read_exact ( buf , l en ) ;
13 }
14
15 int write_cmd ( byte ∗buf , int l en )
16 {
17 byte l i ;
18
19 l i = ( l en >> 8) & 0 x f f ;
20 write_exact(& l i , 1) ;
21
22 l i = l en & 0 x f f ;
23 write_exact(& l i , 1) ;
24
25 return write_exact ( buf , l en ) ;
26 }
27
28 int read_exact ( byte ∗buf , int l en )
29 {
30 int i , got =0;
31
32 do {
33 i f ( ( i = read (0 , buf+got , len−got ) ) <= 0)
34 return ( i ) ;
35 got += i ;
36 } while ( got<len ) ;
37
38 return ( l en ) ;
39 }
40
41 int write_exact ( byte ∗buf , int l en )
42 {
43 int i , wrote = 0 ;
44
45 do {
46 i f ( ( i = wr i t e (1 , buf+wrote , len−wrote ) ) <= 0)
47 return ( i ) ;
48 wrote += i ;
49 } while ( wrote<len ) ;
50
51 return ( l en ) ;
52 }

1 /∗ por t . c ∗/
2 #include <s t r i n g . h>
3 #include <s t d i o . h>
4
5
6 typedef unsigned char byte ;
7
8 int main ( ) {
9 int fn , arg , r e s ;

10 byte buf [ 1 0 0 ] ;
11
12 while ( read_cmd ( buf ) > 0) {
13 fn = buf [ 0 ] ;
14 arg = buf [ 1 ] ;
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15
16 i f ( fn == 1) {
17 r e s = i n i t p o r t ( arg ) ;
18 buf [ 0 ] = r e s ;
19 write_cmd ( buf , 1) ;
20 } else i f ( fn == 2) {
21 char ∗ps = buf ;
22 ps++;
23 r e s = open_port_ser ia l ( ps ) ;
24 buf [ 0 ] = r e s ;
25 write_cmd ( buf , 1) ;
26 } else i f ( fn == 3) {
27 char content [ 1 1 ] ;
28 r e s = read_from_zigbee ( arg , content ) ;
29 for ( int i = 0 ; i < 10 ; i++){
30 buf [ i ] = ( byte ) ( content ) [ i ] ;
31 }
32 write_cmd ( buf , 10) ;
33 } else i f ( fn == 4) {
34 char ∗ps = buf ;
35 char sendStr [ 1 1 ] ;
36 char tempdata [ 9 ] ;
37 for ( int i =0; i <10; i++){
38 tempdata [ i ] = ps [ i +2] ;
39 }
40 s p r i n t f ( sendStr , "%s%s " , tempdata , " \n " ) ;
41 r e s = write_to_zigbee ( arg , sendStr ) ;
42 buf [ 0 ] = r e s ;
43 write_cmd ( buf , 1) ;
44 }
45 }
46 }

1 −module( s e r i a l p o r t ) .
2
3 −export ( [ open_port_ser ia l /2 , i n i t p o r t /2 ,
4 read_from_zigbee /2 , write_to_zigbee /2 , stop /1 ] ) .
5
6 open_port_ser ia l ( Pid , Portname ) −>
7 decode ( ca l l_por t ( Pid , {open_port_ser ia l , Portname} ) ) .
8
9 i n i t p o r t ( Pid , P o r t i n i t ) −>

10 ca l l_por t ( Pid , { i n i t p o r t , P o r t i n i t } ) .
11
12 read_from_zigbee ( Pid , Msg) −>
13 ca l l_por t ( Pid , {read_from_zigbee , Msg} ) .
14
15 write_to_zigbee ( Pid , Msg) −>
16 ca l l_por t ( Pid , {write_to_zigbee , Msg} ) .
17
18 ca l l_por t ( Pid , Msg) −>
19 proce s s_ f l ag ( trap_exit , true ) ,
20 Pid ! { s e l f ( ) , {command , encode (Msg)}} ,
21 receive
22 {Pid , {data , Data}} −>
23 Data ;
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24 { 'EXIT ' , Port , _} −>
25 stop ( Port ) ,
26 exit ( port_terminated )
27 end .
28
29 stop ( Port ) −>
30 Port ! { s e l f ( ) , c l o s e } ,
31 receive
32 {Port , c l o s e d } −>
33 exit ( normal )
34 end .
35
36 encode ({ i n i t p o r t , X} ) −> [ 1 , X] ;
37 encode ({open_port_ser ia l , Y} ) −> [ 2 , Y, 0 ] ;
38 encode ({read_from_zigbee , Z} ) −> [ 3 , Z ] ;
39 encode ({write_to_zigbee , Msg} ) −> [ 4 , Msg ] .
40
41 decode ( [ Int ] ) −> Int .

B.2 Writer

1 −module( wr i t e r ) .
2
3 −export ( [ s t a r t /2 ] ) .
4
5 s t a r t (Arg , ExtPrg ) −>
6 %er lang : ga r bag e_co l l e c t ( s e l f ( ) ) ,
7 %io : format ( " s u p e r v i s o r s t a r t e d w r i t e r ! Arg=~s ~p~n " ,
8 % [ Arg , e r l ang : process_in fo ( s e l f ( ) ,memory) ] ) ,
9 Pid = spawn_link ( fun ( ) −> i n i t (Arg , ExtPrg ) end) ,

10 register ( wr i t e r l oop , Pid ) ,
11 {ok , Pid} .
12
13 i n i t (Arg , ExtPrg ) −>
14 PortWriter = open_port ({spawn_executable , ExtPrg} , [ {packet , 2}

] ) ,
15 Se r i a l_ fd = s e r i a l p o r t : open_port_ser ia l ( PortWriter , Arg ) ,
16 case Se r i a l_ fd of
17 255 −> exit ( normal ) ;
18 _ −> s e r i a l p o r t : i n i t p o r t ( PortWriter , Se r i a l_ fd ) ,
19 loop ( PortWriter , Se r i a l_ fd )
20 end .
21
22 loop ( PortWriter , Se r i a l_ fd ) −>
23 receive
24 {msgToWriter , Msg} −>
25 i o : format ( "~s~n " , [Msg ] ) ,
26 s e r i a l p o r t : write_to_zigbee ( PortWriter , [ Ser ia l_fd , Msg ,

0 ] )
27 end ,
28 loop ( PortWriter , Se r i a l_ fd ) .
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B.3 Reader

1 −module( reader ) .
2
3 −export ( [ s t a r t /2 ] ) .
4
5 s t a r t (Arg , ExtPrg ) −>
6 %er lang : ga r bag e_co l l e c t ( s e l f ( ) ) ,
7 %io : format ( " s u p e r v i s o r s t a r t e d reader ! ~p~n " , [ e r l ang :

process_in fo ( s e l f ( ) ,memory) ] ) ,
8 Pid = spawn_link ( fun ( ) −> i n i t (Arg , ExtPrg ) end) ,
9 {ok , Pid} .

10
11 i n i t (Arg , ExtPrg ) −>
12 PortReader = open_port ({spawn_executable , ExtPrg} , [ {packet , 2

} ] ) ,
13 Se r i a l_ fd = s e r i a l p o r t : open_port_ser ia l ( PortReader , Arg ) ,
14 case Se r i a l_ fd of
15 255 −> exit ( normal ) ;
16 _ −> s e r i a l p o r t : i n i t p o r t ( PortReader , Se r i a l_ fd ) ,
17 loop ( PortReader , Se r i a l_ fd )
18 end .
19
20 loop ( PortReader , Se r i a l_ fd ) −>
21 Msg = s e r i a l p o r t : read_from_zigbee ( PortReader , Se r i a l_ fd ) ,
22 w r i t e r l o o p ! {msgToWriter , Msg} ,
23 loop ( PortReader , Se r i a l_ fd ) .

B.4 Datagen

1 −module( datagen ) .
2
3 −export ( [ s t a r t /1 ] ) .
4
5 s t a r t ( [ Time ] ) −>
6 %er lang : ga r bag e_co l l e c t ( s e l f ( ) ) ,
7 %io : format ( " s u p e r v i s o r s t a r t e d datagen ! ~p~n " , [ e r l ang :

process_in fo ( s e l f ( ) ,memory) ] ) ,
8 Pid = spawn_link ( fun ( ) −> loop (0 , Time) end) ,
9 {ok , Pid} .

10
11 loop (N, Time) −>
12 w r i t e r l o o p ! {msgToWriter , ( " 1 Msg : " ++ integer_to_list (N+100) )} ,
13 t imer : s l e e p (Time) ,
14 loop ( ( (N+1) rem 899) , Time) .

B.5 Supervisors
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1 −module( worker_sup ) .
2 −behaviour ( s u p e r v i s o r ) .
3
4 −export ( [ s t a r t_ l i n k /3 , s t a r t /1 ] ) .
5 −export ( [ i n i t /1 ] ) .
6
7 s t a r t (Time) −>
8 s t a r t _ l i nk ( " /dev/ttyUSB0 " , " r e ade rwr i t e rp rg " , Time) .
9

10 s t a r t _ l i nk (Arg , ExtPrg , Time) −>
11 s u p e r v i s o r : s t a r t _ l i n k ({ l o c a l , ?MODULE} , ?MODULE, [ Arg , ExtPrg ,

Time ] ) .
12
13 i n i t ( [ Arg , ExtPrg , Time ] ) −>
14 SupFlags = {one_for_all , 1 , 5} ,
15 Chi ldSpecs = [ {wri ter ,
16 {wri te r , s t a r t , [ Arg , ExtPrg ] } ,
17 permanent ,
18 1000 ,
19 worker ,
20 [ wr i t e r ] } ,
21 {subworker_sup ,
22 {subworker_sup , s ta r t_ l ink , [ Arg , ExtPrg , Time ] }

,
23 permanent ,
24 1000 ,
25 superv i so r ,
26 [ subworker_sup ] } ] ,
27 {ok , {SupFlags , Chi ldSpecs}} .

1 −module( subworker_sup ) .
2 −behaviour ( s u p e r v i s o r ) .
3
4 −export ( [ s t a r t_ l i n k /3 ] ) .
5 −export ( [ i n i t /1 ] ) .
6
7 s t a r t _ l i nk (Arg , ExtPrg , Time) −>
8 s u p e r v i s o r : s t a r t_ l i n k ({ l o c a l , ?MODULE} , ?MODULE, [ Arg , ExtPrg ,

Time ] ) .
9

10 i n i t ( [ Arg , ExtPrg , Time ] ) −>
11 SupFlags = {one_for_one , 1 , 5} ,
12 Chi ldSpecs = [ { reader ,
13 { reader , s t a r t , [ Arg , ExtPrg ] } ,
14 permanent ,
15 1000 ,
16 worker ,
17 [ reader ] } ,
18 {datagen ,
19 {datagen , s t a r t , [ Time ] } ,
20 permanent ,
21 1000 ,
22 worker ,
23 [ datagen ] } ] ,
24 {ok , {SupFlags , Chi ldSpecs}} .
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Appendix C
Data collection program

1
2 #include <s t d l i b . h>
3 #include <s t r i n g . h>
4 #include <time . h>
5 #include <unis td . h>
6 #include <s t d i o . h>
7
8 int runps ( char ∗arg , char ∗ drs , char ∗ r s s )
9 {

10 FILE ∗ fp ;
11 char path [ 1 0 3 5 ] ;
12
13 char command [ 1 0 0 ] ;
14 s p r i n t f (command , " ps v −p %s " , arg ) ;
15
16 /∗ Open the command fo r read ing . ∗/
17 fp = popen (command , " r " ) ;
18
19 i f ( fp == NULL)
20 {
21 p r i n t f ( " Fa i l ed to run command\n" ) ;
22 e x i t (1 ) ;
23 }
24
25 char seps [ ] = " " ;
26 char ∗ token ;
27 int t e s t = 0 ;
28 /∗ Read the output a l i n e at a time − output i t . ∗/
29
30 while ( f g e t s ( path , s izeof ( path ) −1, fp ) != NULL)
31 {
32 // p r i n t f ("%s " , path ) ;
33
34 i f ( t e s t == 1)
35 {
36 int i = 0 ;
37 token = s t r t o k ( path , seps ) ;
38 while ( token != NULL )
39 {
40 /∗ While t he r e are tokens in " s t r i n g " ∗/
41 // p r i n t f ( " %s \n " , token ) ;
42 i f ( i == 6) {
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43 const char ∗ ptr = token ;
44 s t r cpy ( drs , ptr ) ;
45 } else i f ( i == 7) {
46 const char ∗ ptr = token ;
47 s t r cpy ( r s s , ptr ) ;
48 }
49 /∗ Get next token : ∗/
50 token = s t r t o k ( NULL, seps ) ;
51 i ++;
52 }
53
54 } else {
55 t e s t = 1 ;
56 }
57 }
58 /∗ c l o s e ∗/
59 pc l o s e ( fp ) ;
60 return 0 ;
61 }
62
63 int runps2 ( char ∗arg , char ∗cpu , char ∗mem, char ∗ vsz )
64 {
65 FILE ∗ fp ;
66 char path [ 1 0 3 5 ] ;
67
68 char command [ 1 0 0 ] ;
69 s p r i n t f (command , " ps u −p %s " , arg ) ;
70
71 /∗ Open the command fo r read ing . ∗/
72 fp = popen (command , " r " ) ;
73
74 i f ( fp == NULL)
75 {
76 p r i n t f ( " Fa i l ed to run command\n" ) ;
77 e x i t (1 ) ;
78 }
79
80 char seps [ ] = " " ;
81 char ∗ token ;
82 int t e s t = 0 ;
83 /∗ Read the output a l i n e at a time − output i t . ∗/
84
85 while ( f g e t s ( path , s izeof ( path ) −1, fp ) != NULL)
86 {
87 // p r i n t f ("%s " , path ) ;
88
89 i f ( t e s t == 1)
90 {
91 int i = 0 ;
92 token = s t r t o k ( path , seps ) ;
93 while ( token != NULL )
94 {
95 /∗ While t he r e are tokens in " s t r i n g " ∗/
96 // p r i n t f ( " %s \n " , token ) ;
97 i f ( i == 2) {
98 const char ∗ ptr = token ;
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99 s t r cpy ( cpu , ptr ) ;
100 } else i f ( i == 3) {
101 const char ∗ ptr = token ;
102 s t r cpy (mem, ptr ) ;
103 } else i f ( i == 4) {
104 const char ∗ ptr = token ;
105 s t r cpy ( vsz , ptr ) ;
106 }
107 /∗ Get next token : ∗/
108 token = s t r t o k ( NULL, seps ) ;
109 i ++;
110 }
111
112 } else {
113 t e s t = 1 ;
114 }
115 }
116 /∗ c l o s e ∗/
117 pc l o s e ( fp ) ;
118 return 0 ;
119 }
120
121 int run f r e e ( char ∗used , char ∗ f r e eva r , char ∗ a v a i l a b l e )
122 {
123 FILE ∗ fp ;
124 char path [ 1 0 3 5 ] ;
125
126 /∗ Open the command fo r read ing . ∗/
127 fp = popen ( " f r e e " , " r " ) ;
128
129 i f ( fp == NULL)
130 {
131 p r i n t f ( " Fa i l ed to run command\n" ) ;
132 e x i t (1 ) ;
133 }
134
135 char seps [ ] = " " ;
136 char ∗ token ;
137 int t e s t = 0 ;
138 /∗ Read the output a l i n e at a time − output i t . ∗/
139
140 while ( f g e t s ( path , s izeof ( path ) −1, fp ) != NULL)
141 {
142 // p r i n t f ("%s " , path ) ;
143
144 i f ( t e s t == 1)
145 {
146 int j = 0 ;
147 token = s t r t o k ( path , seps ) ;
148 while ( token != NULL )
149 {
150 /∗ While t he r e are tokens in " s t r i n g " ∗/
151 // p r i n t f ( " %s \n " , token ) ;
152 i f ( j == 2) {
153 const char ∗ ptr = token ;
154 s t r cpy ( used , ptr ) ;
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155 } else i f ( j == 3) {
156 const char ∗ ptr = token ;
157 s t r cpy ( f r e eva r , ptr ) ;
158 } else i f ( j == 6) {
159 const char ∗ ptr = token ;
160 s t r cpy ( ava i l ab l e , ptr ) ;
161 }
162
163 /∗ Get next token : ∗/
164 token = s t r t o k ( NULL, seps ) ;
165 j++;
166 }
167 t e s t = 0 ;
168 }
169 else
170 {
171 t e s t = 1 ;
172 }
173 }
174 /∗ c l o s e ∗/
175 pc l o s e ( fp ) ;
176 return 0 ;
177 }
178 int uptime ( char ∗ va l )
179 {
180 FILE ∗ fp ;
181 char path [ 1 0 3 5 ] ;
182
183 /∗ Open the command fo r read ing . ∗/
184 fp = popen ( " cat / proc /uptime " , " r " ) ;
185
186 i f ( fp == NULL)
187 {
188 p r i n t f ( " Fa i l ed to run command\n" ) ;
189 e x i t (1 ) ;
190 }
191
192 char seps [ ] = " " ;
193 char ∗ token ;
194 int stop = 0 ;
195 while ( ( f g e t s ( path , s izeof ( path ) −1, fp ) != NULL) && stop == 0)
196 {
197 // p r i n t f ("%s " , path ) ;
198
199 int j = 0 ;
200 token = s t r t o k ( path , seps ) ;
201 while ( token != NULL )
202 {
203 /∗ While t he r e are tokens in " s t r i n g " ∗/
204 // p r i n t f ( " %s \n " , token ) ;
205 i f ( j == 0) {
206 const char ∗ ptr = token ;
207 s t r cpy ( val , ptr ) ;
208 stop = 1 ;
209 break ;
210 }
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211
212 /∗ Get next token : ∗/
213 token = s t r t o k ( NULL, seps ) ;
214 j++;
215 }
216 }
217 /∗ c l o s e ∗/
218 pc l o s e ( fp ) ;
219 return 0 ;
220 }
221
222 int proct ( char ∗pid , char ∗ value , char ∗ value2 )
223 {
224 FILE ∗ fp ;
225 char path [ 1 0 3 5 ] ;
226
227 char command [ 1 0 0 ] ;
228 s p r i n t f (command , " cat / proc/%s / s t a t " , pid ) ;
229 /∗ Open the command fo r read ing . ∗/
230 fp = popen (command , " r " ) ;
231
232 i f ( fp == NULL)
233 {
234 p r i n t f ( " Fa i l ed to run command\n" ) ;
235 e x i t (1 ) ;
236 }
237
238 char seps [ ] = " " ;
239 char ∗ token ;
240
241 while ( f g e t s ( path , s izeof ( path ) −1, fp ) != NULL)
242 {
243 // p r i n t f ("%s " , path ) ;
244
245 int j = 0 ;
246 token = s t r t o k ( path , seps ) ;
247 while ( token != NULL )
248 {
249 /∗ While t he r e are tokens in " s t r i n g " ∗/
250 // p r i n t f ( " %s \n " , token ) ;
251 i f ( j == 13) {
252 const char ∗ ptr = token ;
253 s t r cpy ( value , ptr ) ;
254 } else i f ( j == 14) {
255 const char ∗ ptr = token ;
256 s t r cpy ( value2 , ptr ) ;
257 break ;
258 }
259
260 /∗ Get next token : ∗/
261 token = s t r t o k ( NULL, seps ) ;
262 j++;
263 }
264 }
265 /∗ c l o s e ∗/
266 pc l o s e ( fp ) ;

XXII



C. Data collection program

267 return 0 ;
268 }
269
270 int cpuUsage ( int argc , char ∗ argv [ ] , char ∗ r e s2 )
271 {
272 struct t imespec t s ;
273 t s . tv_sec = 1 ;
274 t s . tv_nsec = 0 ;
275 double utime=0, ctime =0, o_utime=0, o_ctime=0;
276 char ut imest r [ 2 0 ] , c t ime s t r [ 2 0 ] , o_utimestr [ 2 0 ] , o_ctimestr

[ 2 0 ] , time [ 2 0 ] , time2 [ 2 0 ] ;
277 for ( int j =0; j<argc ; j++){
278 proct ( argv [ j ] , o_utimestr , o_ctimestr ) ;
279 o_utime += a t o f ( o_utimestr ) ;
280 o_ctime += a t o f ( o_ctimestr ) ;
281 }
282 uptime ( time ) ;
283 nanos leep(&ts , NULL) ;
284
285 for ( int j =0; j<argc ; j++){
286 proct ( argv [ j ] , ut imestr , c t ime s t r ) ;
287 utime += a t o f ( ut imest r ) ;
288 ctime += a t o f ( c t ime s t r ) ;
289 }
290 uptime ( time2 ) ;
291 double r e s = ( ( utime − o_utime )+(ctime − o_ctime ) / ( a t o f ( time2

)−a t o f ( time ) ) ) ;
292 s p r i n t f ( res2 , "%l f " , r e s ) ;
293 return 0 ;
294 }
295
296 void f e t c h I d s ( char ∗ wr i te r Id , char ∗ readerId , char ∗ datagenId )
297 {
298 char path1 [ 1 0 3 5 ] , path2 [ 1 0 3 5 ] , path3 [ 1 0 3 5 ] ;
299
300 FILE ∗p1 = popen ( " ps −A | grep wr i t e r " , " r " ) ;
301 f g e t s ( path1 , s izeof ( path1 ) −1, p1 ) ;
302 const char ∗ ptr = s t r t o k ( path1 , " " ) ;
303 s t r cpy ( wr i t e r Id , ptr ) ;
304 p r i n t f ( "%s w r i t e r Id \n " , wr i t e r I d ) ;
305
306 FILE ∗p2 = popen ( " ps −A | grep reader " , " r " ) ;
307 f g e t s ( path2 , s izeof ( path2 ) −1, p2 ) ;
308 const char ∗ ptr2 = s t r t o k ( path2 , " " ) ;
309 s t r cpy ( readerId , ptr2 ) ;
310 p r i n t f ( "%s reader Id \n " , r eader Id ) ;
311
312 FILE ∗p3 = popen ( " ps −A | grep datagen " , " r " ) ;
313 f g e t s ( path3 , s izeof ( path3 ) −1, p3 ) ;
314 const char ∗ ptr3 = s t r t o k ( path3 , " " ) ;
315 s t r cpy ( datagenId , ptr3 ) ;
316 p r i n t f ( "%s datagenId \n " , datagenId ) ;
317
318 pc l o s e ( p1 ) ;
319 pc l o s e ( p2 ) ;
320 pc l o s e ( p3 ) ;
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321 }
322
323 void f e t c h I d s E r l ( char ∗ e r t s , char ∗ ch i ld , char ∗ r eade rwr i t e r1 , char

∗ r e ade rwr i t e r 2 )
324 {
325 char path1 [ 1 0 3 5 ] , path2 [ 1 0 3 5 ] , path3 [ 1 0 3 5 ] ;
326
327 FILE ∗p1 = popen ( " ps x | grep bin /beam" , " r " ) ;
328 f g e t s ( path1 , s izeof ( path1 ) −1, p1 ) ;
329 // p r i n t f ("%s " , path1 ) ;
330 // s t r t o k ( path1 , " " ) ;
331 const char ∗ ptr = s t r t o k ( path1 , " " ) ;
332 s t r cpy ( e r t s , ptr ) ;
333 p r i n t f ( "%s e r t s \n " , e r t s ) ;
334
335 FILE ∗p2 = popen ( " ps x | grep e r l _ c h i l d " , " r " ) ;
336 f g e t s ( path2 , s izeof ( path2 ) −1, p2 ) ;
337 const char ∗ ptr2 = s t r t o k ( path2 , " " ) ;
338 s t r cpy ( ch i ld , ptr2 ) ;
339 p r i n t f ( "%s e r l _ c h i l d \n " , c h i l d ) ;
340
341 FILE ∗p3 = popen ( " ps x | grep r eade rwr i t e rp rg " , " r " ) ;
342 f g e t s ( path3 , s izeof ( path3 ) −1, p3 ) ;
343 // p r i n t f ("%s " , path3 ) ;
344 const char ∗ ptr3 = s t r t o k ( path3 , " " ) ;
345 s t r cpy ( r eaderwr i t e r1 , ptr3 ) ;
346 p r i n t f ( "%s r eade rwr i t e r 1 \n " , r e ade rwr i t e r 1 ) ;
347 f g e t s ( path3 , s izeof ( path3 ) −1, p3 ) ;
348 // p r i n t f ("%s " , path3 ) ;
349 const char ∗ ptr4 = s t r t o k ( path3 , " " ) ;
350 s t r cpy ( r eaderwr i t e r2 , ptr4 ) ;
351 p r i n t f ( "%s r eade rwr i t e r 2 \n " , r e ade rwr i t e r 2 ) ;
352
353 pc l o s e ( p1 ) ;
354 pc l o s e ( p2 ) ;
355 pc l o s e ( p3 ) ;
356 }
357
358 int main ( int argc , char ∗ argv [ ] )
359 {
360 struct t imespec t s ;
361 t s . tv_sec = 5 ;
362 t s . tv_nsec = 100 ;
363 struct t imespec t s2 ;
364 t s2 . tv_sec = 1 ;
365 t s2 . tv_nsec = 0 ;
366
367 char f i l ename [ 5 0 ] ;
368
369 int i = 0 ;
370 char cpust r [ 2 0 ] , memstr [ 2 0 ] , v s z s t r [ 2 0 ] , d r s s t r [ 2 0 ] , r s s s t r

[ 2 0 ] , used [ 2 0 ] , f r e e [ 2 0 ] , a v a i l a b l e [ 2 0 ] , cpuproc [ 2 0 ] ;
371 i f ( a t o i ( ( argv ) [ 1 ] ) == 1)
372 {
373 char ∗ f i l e A r r [ ] = { " 10 s " , " 5 s " , " 2 s " , " 1 s " , " 750ms" , " 500ms" , "

350ms" , " 250ms" , " 200ms" , " 175ms" , " 150ms" , " 125ms" , " 100ms" } ;
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374 int timeSArr [ ] = {10 , 5 , 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
375 int timeMsArr [ ] = {0 , 0 , 0 , 0 , 750 , 500 , 350 , 250 , 200 ,

175 , 150 , 125 , 100} ;
376
377 int timeErlMsArr [ ] = {10000 , 5000 , 2000 , 1000 , 750 , 500 ,

350 , 250 , 200 , 175 , 150 , 125 , 100} ;
378
379 for ( int x=0; x<10; x++)
380 {
381 p r i n t f ( " I t e r a t i o n x=%d\n" , x ) ;
382 for ( int y=0; y<13; y++)
383 {
384 FILE ∗pp = popen ( " . / . . / c l i e n t s e r v e r / c l i e n t " , " r " ) ;
385 pc l o s e (pp) ;
386
387 i =0;
388 s p r i n t f ( f i l ename , " . . / f i l e s /%darm_cpp_%s . txt " , x ,

f i l e A r r [ y ] ) ;
389 FILE ∗ f = fopen ( f i l ename , "w" ) ;
390 i f ( f == NULL)
391 {
392 p r i n t f ( " Error opening f i l e ! \ n " ) ;
393 e x i t (1 ) ;
394 }
395 f p r i n t f ( f , "CPUProc\ t \ t \tCPU \ t \ t \tMEM \ t \ t \tVSZ

\ t \tDRS \ t \tRSS \ t \tUSED \ t \tFREE \ t \
tAVAILABLE\ t \n " ) ;

396 f c l o s e ( f ) ;
397 FILE ∗p1 = popen ( " . / . . / cpp_prototype/ w r i t e r ; " , " r "

) ;
398 nanos leep(&ts , NULL) ;
399 FILE ∗p2 = popen ( " . / . . / cpp_prototype/ reader " , " r " ) ;
400
401 char command2 [ 1 0 0 ] ;
402 s p r i n t f (command2 , " . / . . / cpp_prototype/ datagen %d %d

" , timeSArr [ y ] , timeMsArr [ y ] ) ;
403 FILE ∗p3 = popen (command2 , " r " ) ;
404
405 char w r i t e r I d [ 2 0 ] , r eader Id [ 2 0 ] , datagenId [ 2 0 ] ;
406 f e t c h I d s ( wr i t e r Id , readerId , datagenId ) ;
407
408 char ∗ idsP [ ] = { wr i t e r Id , readerId , datagenId } ;
409
410 while ( i < 120)
411 {
412 p r i n t f ( " c p p I t e r a t i o n %d\n" , i ) ;
413 int d r s i n t =0, r s s i n t =0, v s z i n t = 0 ;
414 double cpuvalue = 0 , memvalue = 0 ;
415 for ( int j =0; j <3; j++){
416 runps ( idsP [ j ] , d r s s t r , r s s s t r ) ;
417 runps2 ( idsP [ j ] , cpustr , memstr , v s z s t r ) ;
418 d r s i n t += a t o i ( d r s s t r ) ;
419 r s s i n t += a t o i ( r s s s t r ) ;
420 cpuvalue += a t o f ( cpust r ) ;
421 memvalue += a t o f ( memstr ) ;
422 v s z i n t += a t o i ( v s z s t r ) ;
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423 }
424 run f r e e ( used , f r e e , a v a i l a b l e ) ;
425
426 cpuUsage (3 , idsP , cpuproc ) ;
427 FILE ∗ f f = fopen ( f i l ename , " a " ) ;
428 i f ( f f == NULL)
429 {
430 p r i n t f ( " Error opening f i l e ! \ n " ) ;
431 e x i t (1 ) ;
432 }
433 f p r i n t f ( f f , " %.3 f \ t \ t \ t %.3 f \ t \ t \ t %.3 f \ t \ t \ t%d

\ t \ t%d \ t \ t%d \ t \ t%s \ t \ t%s \ t \ t%s \ t \n
" , a t o f ( cpuproc ) , cpuvalue , memvalue , vsz int ,

d r s in t , r s s i n t , used , f r e e , a v a i l a b l e ) ;
434 f c l o s e ( f f ) ;
435 i ++;
436 }
437 FILE ∗p11 = popen ( " p k i l l −f datagen " , " r " ) ;
438 pc l o s e ( p11 ) ;
439 FILE ∗p21 = popen ( " p k i l l −f r eader " , " r " ) ;
440 pc l o s e ( p21 ) ;
441 FILE ∗p31 = popen ( " p k i l l −f w r i t e r " , " r " ) ;
442 pc l o s e ( p31 ) ;
443
444 pc l o s e ( p1 ) ;
445 pc l o s e ( p2 ) ;
446 pc l o s e ( p3 ) ;
447
448 FILE ∗pp1 = popen ( " . / . . / c l i e n t s e r v e r / c l i e n t " , " r " ) ;
449 pc l o s e ( pp1 ) ;
450
451
452 s p r i n t f ( f i l ename , " . . / f i l e s /%darm_erl_%s . txt " , x ,

f i l e A r r [ y ] ) ;
453
454
455 char appFi le [ 3 0 0 ] ;
456 s p r i n t f ( appFile , " { app l i c a t i on , app , [ { vsn ,

\ " 1 . 0 . 0 \ " } , {modules , [ app , worker_sup ,
subworker_sup , wr i te r , reader , datagen ,
s e r i a l p o r t ] } , { r e g i s t e r , [ app ] } , {mod , {app , [%d
] } } ] } . " , timeErlMsArr [ y ] ) ;

457 char f i l ename3 [ 3 0 ] ;
458 s p r i n t f ( f i l ename3 , " . . / Erl_prototype2 /app . app " ) ;
459 FILE ∗ f 3 = fopen ( f i l ename3 , "w" ) ;
460 i f ( f 3 == NULL)
461 {
462 p r i n t f ( " Error opening f i l e ! \ n " ) ;
463 e x i t (1 ) ;
464 }
465 f p r i n t f ( f3 , "%s " , appFi le ) ;
466 f c l o s e ( f 3 ) ;
467 FILE ∗ f 2 = fopen ( f i l ename , "w" ) ;
468 f p r i n t f ( f2 , "CPUProc\ t \ t \tCPU \ t \ t \tMEM \ t \ t \tVSZ

\ t \tDRS \ t \tRSS \ t \tUSED \ t \tFREE \ t \
tAVAILABLE\ t \n " ) ;
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469
470 i f ( f 2 == NULL)
471 {
472 p r i n t f ( " Error opening f i l e ! \ n " ) ;
473 e x i t (1 ) ;
474 }
475 f c l o s e ( f 2 ) ;
476 char command3 [ 1 0 0 ] ;
477 s p r i n t f (command3 , " cd . . / Erl_prototype2 ; e r l −

n o s h e l l −eva l \" a p p l i c a t i o n : s t a r t ( app ) \" +P 1024
+Q 1024 +Mea min +L" ) ;

478 FILE ∗p4 = popen (command3 , " r " ) ;
479 nanos leep(&ts , NULL) ;
480 char e r t s [ 2 0 ] , c h i l d [ 2 0 ] , r e ade rwr i t e r 1 [ 2 0 ] ,

r e ade rwr i t e r 2 [ 2 0 ] ;
481 f e t c h I d s E r l ( e r t s , ch i ld , r eade rwr i t e r1 ,

r e ade rwr i t e r 2 ) ;
482
483 char ∗ idsP2 [ ] = { er t s , ch i ld , r eade rwr i t e r1 ,

r e ade rwr i t e r 2 } ;
484 i = 0 ;
485 while ( i < 120)
486 {
487 p r i n t f ( " e r l l I t e r a t i o n %d\n" , i ) ;
488 int d r s i n t =0, r s s i n t =0, v s z i n t = 0 ;
489 double cpuvalue = 0 , memvalue = 0 ;
490 for ( int j =0; j <4; j++){
491 runps ( idsP2 [ j ] , d r s s t r , r s s s t r ) ;
492 runps2 ( idsP2 [ j ] , cpustr , memstr , v s z s t r ) ;
493 d r s i n t += a t o i ( d r s s t r ) ;
494 r s s i n t += a t o i ( r s s s t r ) ;
495 cpuvalue += a t o f ( cpust r ) ;
496 memvalue += a t o f ( memstr ) ;
497 v s z i n t += a t o i ( v s z s t r ) ;
498 }
499 run f r e e ( used , f r e e , a v a i l a b l e ) ;
500 cpuUsage (4 , idsP2 , cpuproc ) ;
501 FILE ∗ f 3 = fopen ( f i l ename , " a " ) ;
502 f p r i n t f ( f3 , " %.3 f \ t \ t \ t %.3 f \ t \ t \ t %.3 f \ t \ t \ t%d

\ t \ t%d \ t \ t%d \ t \ t%s \ t \ t%s \ t \ t%s \ t \n
" , a t o f ( cpuproc ) , cpuvalue , memvalue , vsz int ,

d r s in t , r s s i n t , used , f r e e , a v a i l a b l e ) ;
503 f c l o s e ( f 3 ) ;
504 i ++;
505 // nanos leep(&ts , NULL) ;
506 }
507 char command [ 2 0 ] ;
508 s p r i n t f (command , " k i l l %s " , e r t s ) ;
509 FILE ∗p41 = popen (command , " r " ) ;
510 s p r i n t f (command , " k i l l %s " , c h i l d ) ;
511 FILE ∗p42 = popen (command , " r " ) ;
512 s p r i n t f (command , " k i l l %s " , r e ade rwr i t e r 1 ) ;
513 FILE ∗p43 = popen (command , " r " ) ;
514 s p r i n t f (command , " k i l l %s " , r e ade rwr i t e r 2 ) ;
515 FILE ∗p44 = popen (command , " r " ) ;
516
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517 pc l o s e ( p4 ) ;
518 pc l o s e ( p41 ) ;
519 pc l o s e ( p42 ) ;
520 pc l o s e ( p43 ) ;
521 pc l o s e ( p44 ) ;
522 }
523 }
524 }
525 else
526 {
527 s p r i n t f ( f i l ename , " . . / f i l e s /arm_%s . txt " , " no_prg " ) ;
528 p r i n t f ( "No prg\n " ) ;
529 FILE ∗ f = fopen ( f i l ename , "w" ) ;
530 f p r i n t f ( f , "CPUProc\ t \ t \tCPU \ t \ t \tMEM \ t \ t \tVSZ \ t \tDRS

\ t \tRSS \ t \tUSED \ t \tFREE \ t \tAVAILABLE\ t \n " ) ;
531
532 i f ( f == NULL)
533 {
534 p r i n t f ( " Error opening f i l e ! \ n " ) ;
535 e x i t (1 ) ;
536 }
537 while ( i < 120)
538 {
539 p r i n t f ( " I t e r a t i o n : %d\n" , i ) ;
540 run f r e e ( used , f r e e , a v a i l a b l e ) ;
541 char s [ 1 0 ] = " " ;
542 f p r i n t f ( f , "%s \ t \ t%s \ t \ t%s \ t \ t%s \ t \ t%s \ t \ t%s \ t \ t%s \ t \ t%

s \ t \ t%s \ t \n " , s , s , s , s , s , s , used , f r e e ,
a v a i l a b l e ) ;

543 i ++;
544 nanos leep(&ts2 , NULL) ;
545 }
546 f c l o s e ( f ) ;
547 }
548 p r i n t f ( " F i l e i s c r ea ted \n" ) ;
549 return 0 ;
550 }
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