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ABSTRACT 
Altered gut microbiota configurations have been linked to human diseases. To 

identify mechanistic links between altered gut microbiota and disease states, 
definitions of the healthy gut microbiota need to be established. Therefore, in this 
thesis, we investigated how the gut microbiota develops in Swedish children up to 5 
years of age and characterized dynamics of the adult gut microbiota in a normal 
Swedish population. Using a longitudinal design to study the gut microbiota in both 
the Swedish children and adults, we identified complex sets of bacteria acquired by the 
children during their development and compared them to the gut microbiota of the 
adult population. We identified features of the gut microbiota that were associated to 
richness at different stages of a child’s gut microbiota development. 

In the adult Swedish population, we analyzed how the composition and functional 
potential of the gut microbiota fluctuate over the course of a year in normal population 
aged 50-64 years. We characterized the total variability of the gut microbiota and 
determined to which extent gut microbiota variability between individuals is due to 
intra-individual variability over time. We observed large fluctuations in abundance of 
facultative anaerobes and in potential bacterial functions, identified from metagenomic 
analysis, linked to these bacteria. Interestingly, large fluctuations of the facultative 
anaerobes were indicative of highly variable individual gut microbiota composition.  

In the third study in this thesis, we investigated the gut microbiota in relation to 
obesity and insulin resistance. Here we characterized the gut microbiota in morbidly 
obese individuals with the genetic Prader-Will syndrome and in obese people matched 
for fat mass composition. Less insulin resistance and healthier blood lipid in the 
individuals with Prader-Willi were associated with a less heterogeneous gut microbiota 
composition as well as higher diversity, which are important ecological features of a 
stable and resilient microbial community. Importantly, these potentially beneficial 
microbes were also observed to link to community richness in the children and adult 
Swedish populations. In summary, we identified gut microbes that associate to 
community stability and community richness in children as well as adults, and that 
may play a key role for metabolic health. 
Keywords: dynamics, ecology, gut microbiome, gut microbiota development, 
microbiota, richness, Prader-Willi Syndrome, stability, variation 
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 SAMMANFATTNING PÅ SVENSKA 
De mikroorganismer som växer och samverkar i en specifik miljö kallas för 
mikrobiota. Vi har mikroorganismer, till största delen bakterier, både på och i 
våra kroppar, på huden, i munnen samt i våra tarmar, överallt där vår kropp 
möter omvärlden. De flesta bakterierna finns i våra tarmar, även kallad 
tarmmikrobiotan och utgör 1–1,5 kg av vår kroppsvikt. I livmodern har fostret 
inga bakterier, men koloniseras under födseln och de närmsta dagarna. 
Sammansättningen av bakterier har utvecklats tillsammans med oss, till 
exempel av den kost vi äter, och bidrar till att vi håller oss friska och mår bra. 
Tarmmikrobiotan producerar vitaminer och utbildar immunsystemet samt 
bryter ner fibrer i vår kost som vår egen kropp inte kan bryta ner. Beroende på 
sammansättningen av olika bakterier, och vilka ämnen de producerar när de 
växer, påverkar de inte bara tarmen utan dessa ämnen kan även transporteras 
med blodet till andra delar av vår kropp. 

Forskningen har kunnat koppla en förändrad sammansättning av 
tarmmikrobiota från patienter jämfört med friska. En förändrad 
tarmmikrobiota har setts i flera olika sjukdomar så som inflammatoriska 
tarmsjukdomar, kardiovaskulära sjukdomar och typ-2 diabetes. Däremot är det 
inte känt om detta beror på att den förändrade tarmmikrobiotan kan orsakar 
sjukdom eller om sjukdomen i sig förändrar tarmmikrobiotans 
sammansättning. 

Efter födseln och den första koloniseringen har vi en väldigt enkel tarmflora 
som är anpassad för att bryta ner bröstmjölk, vilket är den föda vi främst får i 
oss under vårt första levnadsår. I takt med att vi börjar äta mer och mer fast 
föda börjar vår tarmmikrobiota utvecklas och utökas med flera olika typer av 
mikroorganismer som kan utföra mer komplexa uppgifter. Mitt arbete har visat 
att friska barn genomgår den här förändringen med olika hastighet. Fram till 
nu har man trott att barn har en vuxen tarmmikrobiota vid 3 års ålder men vi 
visar att barn som är 5 år fortfarande har en tarmmikrobiota som är enklare, 
med lägre artrikedom än en vuxens tarmmikrobiota. Femåriga barn har 
dessutom lägre halter än vuxna av vissa mikroorganismer som vi såg 
introduceras sent i tarmmikrobiotans utveckling. 

Jämfört med barns tarmmikrobiota förändras vuxnas tarmmikrobiota betydligt 
mindre över tid. Även om tarmmikrobiotan har samma uppgifter i oss alla så 
kan dessa utföras av olika bakterier i dig och mig. När vi undersöker 
tarmmikrobiotan studerar vi oftast sammansättningen av bakterier i vår 
avföring som även i friska individer kan se väldigt olika ut. Detta är väldigt 
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viktigt att ta hänsyn till när man skall försöka identifiera vad som karaktäriserar 
en sjuk tarmmikrobiota. 

Vår tarmmikrobiota är som vilket annat ekosystem, till exempel en blandskog 
eller ett korallrev. Dessa gör sitt bästa för att anpassa sig och återhämta sig 
efter potentiella förändringar, likt skogar om våren eller efter en skogsbrand. 
För att lyckas med detta har alla arter i ekosystemet olika roller för att 
tillsammans utföra ekosystemets viktiga funktioner. Om förändringen blir för 
stor, eller om små förändringar tar död på arter, så tappar ekosystemet sin 
förmåga att återställa sig, likt den korallblekning vi ser i runt om i världens 
hav. För att identifiera ett sjukt ekosystem behöver vi särskilja mellan de 
förändringar som, till exempel återkommande årstiderna utgör, från de 
förändringar som ger ekosystemet bestående men. På motsvarande sätt utsätts 
tarmmikrobiotan av olika förändringar i miljön. Beroende på vad vi äter, om 
vi tar antibiotika eller andra läkemedel, samt förändringar i kroppen när vi blir 
sjuka förändras förutsättningarna för tarmmikrobiotan. För att förstå hur en 
sjuk tarmmikrobiota reagerar mot förändringar behöver vi till en början veta 
hur en frisk tarmflora reagerar. I arbete inkluderade i den här avhandlingen har 
vi tittat på hur mycket tarmmikrobiotan förändras i friska individer, i åldrarna 
50–64 år, genom att studera deras tarmflora vid 4 tillfällen under ett år. Vi såg 
att varje individ har en egen specifik sammansättning och förändringen mellan 
varje individs prov är betydligt mindre än mellan individers. Vi noterade även 
att olika bakterier varierar olika mycket över tid. Vissa bakterier har samma 
nivå i alla 4 prover medan andra varierar lika mycket inom en individ som 
nivån mellan individer. För att kunna använda människors tarmmikrobiota för 
att utvärdera sjukdom och hälsa måste markörer undvikas som har en stor 
variation inom friska individer.  

I det tredje arbete i den här avhandlingen jämförde vi individer med ett 
genetiskt syndrom, kallat Prader-Willi syndrom vilket leder till fetma, och 
individer med fetma orsakad av livsstil. Dessa individer med Prader-Willi 
syndrom har, trots sin fetma, färre följdsjukdomar. Vi såg att deras 
tarmmikrobiota var mer homogen, vilket skulle kunna vara ett tecken på en 
mer stabil tarmmikrobiota. Dessa individer hade även en högre artrikedom, 
vilket är kopplat till en frisk tarmmikrobiota i flertal studier. Vi såg även att 
mikroorganismer kopplat till färre följdsjukdomar till fetman samt hög 
artrikedom var bland de mikroorganismer som introduceras sent i barns 
tarmmikrobiotautveckling. 
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DEFINITIONS IN SHORT 
Alpha diversity Measurement of within sample diversity. 

Richness or evenness of microorganism within a 
sample 

Beta diversity Measurement of between sample diversity. How 
similar or different the microbial composition in 
one sample is compared to another 

Community types Clusters of samples with similarities in relative 
abundance of different genera 

Conditionally rare taxa Rare microbial taxa that occasionally become 
very abundant. Defined by Shade et al. in  2014 

Core microbiota Microorganisms in a microbiota shared by a 
large majority of individuals 

Enterotype Community types in adults as defined by 
Arumugam et al. in  2011   

Functional potential Encoded functions present in a metagenome 

Gene richness Measure of within sample diversity. Number of 
genes, with more than one count, within a 
sample. Defined by Le Chatelier et al. in 2013 

Keystone species Microorganisms performing a key function for 
the ecosystem in the microbiota 

Metagenome The collective genetic content from 
microorganism in a specific environment 

Microbiome Microorganisms, their genomes and specific 
conditions in an environment 

Microbiota Collection of all microorganisms present in a 
specific environment 

Lisa Olsson 

1 

1 INTRODUCTION 
In this thesis I will discuss different types of dynamics in the gut microbiota, 
the microorganism that live in our gastrointestinal tract. Dynamics that will be 
addressed are how the gut microbiota is assembled during the gut microbiota 
development in childhood but also fluctuations in the gut microbiota in 
adulthood, when the composition has stabilized. Since the gut microbiota is an 
ecological system that constantly is exposed to environmental fluctuations, for 
example from what we eat and do, we need to understand how the gut 
microbiota vary in the context of non-disease in order to understand the gut 
microbiota in disease.  

1.1 THE MICROBIOTA 
We live in symbiosis with diverse communities of microbes. The number of 
microbes on our bodies correspond to at least the number of human cells 
(Sender et al., 2016). These microbes colonize almost all surfaces of our body, 
ours skin, teeth, airways and our gastrointestinal tract (Human Microbiome 
Project, 2012) but also the stomach (Nardone and Compare, 2015) and the 
vagina (Greenbaum et al., 2019). A microbiota is defined as the community 
living in a specific environment. Thus, each body site has its unique microbiota 
that can be affected by environmental factors and has the potential to interact 
with the host.  

During normal pregnancy the fetus is considered sterile while still in the womb 
(de Goffau et al., 2019). After birth the newborn is immediately exposed to 
bacteria, originating from the mother and the environment. During the first 
weeks the microbiota expands and diversifies and at 6 weeks of age body site-
specific microbiotas can be differentiated (Chu et al., 2017).  

The adult gut harbors the largest and most complex community on the human 
body. The microbial density in the gastrointestinal tract increases from the 
stomach to the distal end and comprise a biomass of 1.5-2kg. The gut 
microbiota is dominated by anaerobic Bacteria and Archaea. Eukarya and 
viruses are also present. However, knowledge about their influence on 
composition and human health is limited and will not be addressed in this 
thesis. The vast majority of the around 1000 bacterial and archaeal species in 
the gut microbiota belong to 5 phyla (Firmicutes, Bacteroidetes, 
Actinobacteria, Proteobacterium and Verrucomicrobia) (Qin et al., 2010). 
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DEFINITIONS IN SHORT 
Alpha diversity Measurement of within sample diversity. 

Richness or evenness of microorganism within a 
sample 

Beta diversity Measurement of between sample diversity. How 
similar or different the microbial composition in 
one sample is compared to another 

Community types Clusters of samples with similarities in relative 
abundance of different genera 

Conditionally rare taxa Rare microbial taxa that occasionally become 
very abundant. Defined by Shade et al. in  2014 

Core microbiota Microorganisms in a microbiota shared by a 
large majority of individuals 

Enterotype Community types in adults as defined by 
Arumugam et al. in  2011   

Functional potential Encoded functions present in a metagenome 

Gene richness Measure of within sample diversity. Number of 
genes, with more than one count, within a 
sample. Defined by Le Chatelier et al. in 2013 

Keystone species Microorganisms performing a key function for 
the ecosystem in the microbiota 

Metagenome The collective genetic content from 
microorganism in a specific environment 

Microbiome Microorganisms, their genomes and specific 
conditions in an environment 

Microbiota Collection of all microorganisms present in a 
specific environment 
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1 INTRODUCTION 
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living in a specific environment. Thus, each body site has its unique microbiota 
that can be affected by environmental factors and has the potential to interact 
with the host.  

During normal pregnancy the fetus is considered sterile while still in the womb 
(de Goffau et al., 2019). After birth the newborn is immediately exposed to 
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body. The microbial density in the gastrointestinal tract increases from the 
stomach to the distal end and comprise a biomass of 1.5-2kg. The gut 
microbiota is dominated by anaerobic Bacteria and Archaea. Eukarya and 
viruses are also present. However, knowledge about their influence on 
composition and human health is limited and will not be addressed in this 
thesis. The vast majority of the around 1000 bacterial and archaeal species in 
the gut microbiota belong to 5 phyla (Firmicutes, Bacteroidetes, 
Actinobacteria, Proteobacterium and Verrucomicrobia) (Qin et al., 2010). 



Development and dynamics of the normal gut microbiota 

2 

These microbes found on human bodies encode a diverse range of genes and 
this collective genetic potential is called the metagenome. 

1.2 THE GUT MICROBIOTA FUNCTIONS 
The gut microbiota plays critical roles for the development and physiology of 
the host (Sommer and Bäckhed, 2013). Through interaction and co-
development with the host it affects maturation of the immune system (Belkaid 
and Hand, 2014). It also influences the innate immune system and provides 
protection against pathogenic organisms (Kamada et al., 2013). The presence 
of bacteria also affects local physiology in the gut such as proliferation of host 
cells and vascular remodeling (Reinhardt et al., 2012). Normal colonic 
epithelial differentiation requires metabolism through the nuclear receptor 
PPARg, for which the microbial derived short chain fatty acid (SCFA) butyrate 
is a substrate (Byndloss et al., 2017). 

An non-leaky intestinal barrier with efficient tight junctions between epithelial 
cells is important to avoid that bacteria or bacterial products translocate to the 
circulation (Ghosh et al., 2020). For example, increased levels of inflammatory 
microbial products, such as lipopolysaccharide (LPS), in the blood give rise to 
metabolic endotoxemia, which is linked to metabolic complications (Caesar et 
al., 2012; Cani et al., 2007). The colonic mucin layers are also part the of the 
physical barrier between the gut bacteria and epithelial cells. Different 
bacterial composition affects both the penetrability and growth rate of the 
mucin layers, which prevents microbes from reaching the epithelium 
(Schroeder et al., 2018).  

The gut microbiota affects the host’s metabolism through several mechanisms. 
For example, it contributes to energy harvest by producing Short-chain fatty 
acids (SCFA) from carbohydrates that cannot be digested by the host. Thus, 
the absence of a gut microbiota give rise to lower body fat and increased energy 
excretion in the feces. To compensate for the energy loss germ free mice have 
increased food intake (Bäckhed et al., 2004; Bäckhed et al., 2007).  

Metabolites from the gut microbiota can also influence systemic metabolism 
by acting as signaling molecules. By translocating from the gut to the systemic 
circulation metabolites can affect distant organs directly. Alternatively they 
can stimulate hormone secretion and neural signaling (Schroeder and Bäckhed, 
2016). For example, SCFAs can regulate host metabolism through the release 
of GLP-1 from intestinal L-cells by binding to G-protein-coupled receptors. 
Microbial regulated GLP-1 has been shown to affect gut transit, insulin release 
and energy intake (Greiner and Bäckhed, 2016). In addition, SCFAs can also 
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alter histone modifications, resulting in changes in transcription, in different 
tissues (Krautkramer et al., 2016).  

Another group of microbially modified metabolites that can affect host 
physiology are bile acids (Wahlstrom et al., 2016). Primary bile acids are 
released by the host in the small intestine after a meal. Members of the gut 
microbiota can modify primary bile acids through de-conjugation in the small 
intestine. Those that have not been reabsorbed are further transformed in the 
colon resulting in a variety of secondary bile acids. These bile acids have 
different ability to activate or inhibit the nuclear receptor farnesoid X receptor 
(FXR) and the membrane bound G-coupled receptor (TGR5), which both 
regulate host metabolism. 

Finally, amino acid-derived metabolites produced by the gut microbiota can 
affect host physiology. For example, the gut microbiota of type-2-diabetes 
patients have altered histidine metabolism compared to healthy subjects, 
resulting in the histidine derived metabolite imidazole propionate. Imidazole 
propionate has recently been shown to impair insulin signaling through 
reduction of insulin receptor substrate in the liver (Koh et al., 2018).  

1.3 THE NORMAL GUT MICROBIOTA 
The micro-organisms on and inside our body have been studied for centuries. 
Antonie van Leeuwenhoek was the first to describe ‘animalcules’ in the 
1670’s, which he found in his own and other people’s mouth and feces (Dunn 
and Jones, 2004). Before the 1990’s studies of the human gut microbiota were 
dependent on culturing methods. Since the majority of microorganisms in our 
gut are challenging to culture the diversity of the communities had been 
underestimated (Eckburg et al., 2005). In the 1990’s studies using molecular 
methods were introduced. Sequencing of marker genes was initially performed 
using Sanger sequencing but through the introduction of massively paralleled 
sequencing (MPS), in the beginning of this millennium, it has been possible to 
study the human microbiota in much larger scale.  

1.3.1 GUT MICROBIOTA ESTABLISHMENT 
From birth the gut microbiota co-develops together with the rest of the 
physiology of the child and the maturity of the immune system (Gensollen et 
al., 2016) and other metabolic and physiological processes (Belkaid and Hand, 
2014). The early development of the gut microbiota is a dynamic process 
which are strongly influenced by maternal microbiome transmission (Ferretti 
et al., 2018; Korpela et al., 2018) and external factors, such as mode of birth 
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(Dominguez-Bello et al., 2010; Dominguez-Bello et al., 2016; Reyman et al., 
2019; Shao et al., 2019). After the first weeks, the development of the 
microbiota is linked to macronutrient intake and thus breastfeeding has 
significant effects on the gut microbiota compared to formula feeding 
(Baumann-Dudenhoeffer et al., 2018; Bokulich et al., 2016), by for example 
increase abundance of Bifidobacterium. The infant gut microbiota is 
characterized by a low community richness and heterogenous microbiota. 
Facultative anaerobes are the first colonizers followed by more oxygen 
sensitive bacteria such as Bacteroides and Bifidobacterium (Bäckhed et al., 
2015; Eggesbo et al., 2011; Mackie et al., 1999).  

It has been shown that the gut microbiota in children matures into an adult-like 
configuration after 2-3 years (Bergstrom et al., 2014; Koenig et al., 2011; 
Yatsunenko et al., 2012). Indeed, in infancy, species richness of the gut 
microbiota is low and its overall composition is highly heterogeneous, as 
estimated by dissimilarity indexes of beta diversity (e.g., Bray-Curtis and 
UniFrac). However, with the introduction of solid foods, and cessation of 
breastfeeding, community richness and complexity of the microbiota increase 
and with that an altered bacterial functional potential (Bäckhed et al., 2015; 
Yatsunenko et al., 2012). However, the knowledge about the assemble of an 
adult-like microbiota after the introduction of solid food and after the first 2-3 
years of life is much more limited compare to the microbiota in infancy 
(Derrien et al., 2019).   

Continuous sampling of healthy children from Bangladesh (Subramanian et 
al., 2014), Malawi (Blanton et al., 2016) and United States (Planer et al., 2016) 
until 24 to 36 months of age,  have provided models of the gut microbiota 
maturity and identified important age-discriminatory taxa for normal gut 
microbiota development. Models based on the individual cohorts across 
geographical locations have several age-discriminatory taxa in common and 
the model based on the children from United States performed consistently 
across the three different cohorts (Planer et al., 2016), suggesting similar 
dynamics independent of geography. Among the age-discriminatory taxa, 
consistent between cohorts, they observed different Bifidobacterium taxa 
dominated in the young ages whereas Faecalibacterium, Ruminococcus and 
Clostridium increased with age. Using these models, they connected a less 
mature gut microbiota with undernourished growth phenotypes with a lower 
age-adjusted alpha diversity observed in severe malnourished children 
(Subramanian et al., 2014). By administering diets designed to promote age-
discriminatory taxa, which is underrepresented in children with acute 
malnourished children, the gut microbiota development could be improved in 
malnourished children (Gehrig et al., 2019). 
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There are several factors affecting the composition of the gut microbiota, and 
these factors differ during the different stages of human life. Factors at birth 
usually have strong effect on the gut microbiota composition during the first 
year of life, such as mode of birth (Dominguez-Bello et al., 2010; Dominguez-
Bello et al., 2016; Reyman et al., 2019; Shao et al., 2019) and maternal 
microbiome transmission (Ferretti et al., 2018; Korpela et al., 2018). Other 
factors in infancy such as feeding type (breast milk or formula feeding) also 
affect the developing gut microbiota during infancy (Bäckhed et al., 2015; 
Bokulich et al., 2016). Additional factors which affect the gut microbiota 
development are antibiotic use (Bokulich et al., 2016; Korpela et al., 2016). 
Korpela et al. observed a long-term effect of antibiotic on the gut microbiota 
use in 7-year-old children. However, in this study it was not clear if it was early 
exposure during important periods of development or multiple treatment in the 
first 4 years which were the most contributing factor. Together with the 
development of the immune system these factors affect the microbiota 
assembly, the order of species arrival and the timing of their arrival (also called 
priority effects) during the first years of life (Sprockett et al., 2018). 

1.3.2 GUT MICROBIOTA VARIATION 
In recent years several studies have sought to characterize the human gut 
microbiota and its metagenome. In particular the bacterial components of the 
gut microbiota, their structure and function in healthy adult subjects. 

From large studies, mainly from American, European and Chinese 
populations, we know that there is a large variation in composition between 
individuals (Falony et al., 2016; Human Microbiome Project, 2012; Qin et al., 
2010). The effect size of different factors on compositional variation have been 
studied and medication and stool consistency have been identified as the most 
contributing factors (Falony et al., 2016). Genetic ancestry in a population with 
similar lifestyles was identified to have a minor contribution to the 
compositional variation  (Rothschild et al., 2018). Other environmental factors, 
such as diet, medications and anthropometric measurements (such as BMI) 
were responsible for around 20% of the compositional variation between 
individuals. Although individual taxa, which contributes to the total 
composition to lesser extent, have been identified as heritable (Goodrich et al., 
2016; Goodrich et al., 2014). Large regional differences in the gut microbiota 
composition have been found. These differences are present both between 
regions in the same country and between different ethnic backgrounds in the 
same city (Deschasaux et al., 2018; He et al., 2018b). Immigration from 
southeast Asia to the United States have also been found to have large effects 
on the gut microbiota (Vangay et al., 2018). Regional differences have been 
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found to explain more inter-individual variation than disease, highlighting the 
importance of local baselines (He et al., 2018b).  

To understand fundamental properties of the gut microbiota and identify 
species that are essential for gut microbiota function, efforts in identification 
of a core microbiota have been done (Qin et al., 2010). From one study of a 
European population the core microbiota, which was defined as taxa shared 
between 95% of the individuals, consisted of 35 genera (Falony et al., 2016). 
These genera contributed, in median, to 90% of the total abundance in this 
population. When extending the population to also including other western 
populations this core microbiota decreased to 17 genera with a median core 
abundance of 72%. When further extending the population to include samples 
from Papa New Guinea, Peru and Tanzania the core microbiota was further 
reduced to 14 genera. 

1.3.3 GUT MICROBIOTA DYNAMICS 
In contrast to the gut microbiota composition in children the gut microbiota 
composition in adults are considered stable over time. This has been seen in a 
number of studies where the composition is on average more similar between 
samples from the same individual compare to samples from other individuals 
(Caporaso et al., 2011; Costello et al., 2009; Faith et al., 2013; Rajilic-
Stojanovic et al., 2012; Schloissnig et al., 2013; Zoetendal et al., 1998). This 
is seen over the course of a year up to 10 years (Rajilic-Stojanovic et al., 2012).  

Due to the stability of the gut microbiota composition it has been suggested 
that individuals can be distinguished by stable and unique fingerprints based 
on their microbiota profile. Franzosa et al. constructed codes from variation in 
clade-specific marker genes from which individuals could be identified when 
repeatedly sampled in more than 80% of the time. The codes were based on 
stable features that positively correlated with features abundance and 
prevalence. They found gene-level codes to be more stable compared to taxon-
level codes (Franzosa et al., 2015). Schloissing et al. also conclude that 
individuals can be distinguished based on variation patterns of the genomic 
content in the metagenome but not on abundance on species level (Schloissnig 
et al., 2013).  

Low abundant species that occasionally become abundant member of a 
community have been defined as conditionally rare taxa (CRT) (Shade et al., 
2014). In other environments, these CRTs have been seen to affect over all 
community composition (Shade and Gilbert, 2015). In the human gut many of 
the CRT are facultative anaerobes (Gibbons et al., 2017). Two types of 
different dynamics have been proposed in the human gut microbiota based on 
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densely sampled time-series (Gibbons et al., 2017). The first dynamics was 
characterized by day-to-day variation that cannot be predicted from previous 
samples, these effects are most likely due to external factors such as diet. The 
second dynamics was observed for abundances that were predictable from 
previous samples, which was followed by large deviations in composition. 
This dynamic involved bloom of facultative anaerobes, followed by re-
establishment of strict anaerobes. The pattern of blooms was different in the 4 
individuals from which these time-series came from. In one time-series no 
blooms were seen while in another they were frequent, all 4 time-series were 
from healthy individuals.  

1.3.4 FUNCTIONAL REDUNDANCY 
Although large variation in species abundance between individuals in normal 
populations the variation in functional potential is in general small (Human 
Microbiome Project, 2012; Turnbaugh et al., 2009). This observation indicate 
that the microbiome includes specific functional processes, which are 
important for the host, but can be performed by different microbial 
constellations under different conditions. This is called functional redundancy, 
or functional response diversity, and is suggested to be important for ecological 
stability of a microbial community (Lozupone et al., 2012). Functional 
redundancy is acquired already during the development of the gut microbiota. 
Intra-individual compositional variation responsible for functions increases 
from infancy up to 3 years of age along with the overall community richness 
of the microbiota and the richness of taxa responsible for functions (Vatanen 
et al., 2019). This ‘minimal gut genome’ consists of functions that are present 
in all bacteria, such as functions of microbial reproduction and structural 
components, but also functions which are potentially specific for the gut. 
Among the functions in the ‘minimal gut genome’, which are potentially gut 
specific, more than 70% are not known. In the known fraction of gut-specific 
functions are the majority within potential for degradation of sugar or complex 
polysaccharides from the diet or mucosa lining Examples are degradation and 
uptake of pectin, sorbitol, mannose, fructose, cellulose and sucrose (Qin et al., 
2010). Thus it has been suggested that characterization of a “healthy” gut 
microbiome should be focused on functions necessary to fulfil all functional 
niches in the ecosystem (Gibbons, 2019).  

It has been suggested that the inter-individual functional stability on pathway 
level has been overestimated partly due to methodology biases but also due to 
that genes that are invariable within pathways masks variation in other genes. 
This is potentially important for detecting altered functionality in 
metagenomes (Manor and Borenstein, 2017). When studying variable genes 
within the gut microbiota, compared to functional pathways, it has been 
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densely sampled time-series (Gibbons et al., 2017). The first dynamics was 
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observed that the majority of the variable genes can be assigned to the phylum 
Proteobacteria (Bradley and Pollard, 2017). 

1.3.5 COMMUNITY RICHNESS 
Increased alpha diversity, the community richness within a sample, is 
considered an important marker of a healthy gut ecosystem (Bäckhed et al., 
2012; Lloyd-Price et al., 2016). The ecological concept alpha diversity can 
describe the richness of taxa, and the evenness of the composition of taxa 
present in a sample, using different indices (Lozupone et al., 2012). The 
richness of genes in the metagenome is also a measurement found linked to 
more healthier phenotypes (Le Chatelier et al., 2013).  In ecology, diversity is 
a fundamental property and are in general used as an indicator of a community 
function, productivity and stability (Naeem et al., 1994).  The ‘insurance 
hypothesis’ implies that biodiversity maintains the functionality of the 
ecosystem. High diversity is suggested to be linked to a more stable gut 
microbiota that is more resistant to change as well as more resilience to 
perturbation (Lozupone et al., 2012). The community richness of the gut 
microbiota is suggested to be influenced by several factors. Niche availability 
and variation in substrates for growth are factors that would increase richness. 
Whereas environmental factors which limit growth, such as temporal 
disturbances or chronically extreme conditions, would have negative influence 
on community richness (Reese and Dunn, 2018). Our industrialized society has 
been suggested to have a strong negative impact on our gut microbiota 
diversity (Sonnenburg and Sonnenburg, 2019). We know that use of antibiotics 
has short-term effects on the richness of the gut microbiota (Dethlefsen et al., 
2008; Palleja et al., 2018). However, depending on when in life antibiotics are 
used could also have long-term effects (Blaser, 2016).  

Our sanitary improvements and the use of antibiotics have saved lives. 
However, extensive limitation to microbial exposure can, along with the 
hygiene hypothesis, affect the function and regulation of our immune system  
(Sonnenburg and Sonnenburg, 2019). We also have altered dietary patterns in 
our industrialized society, with the major alteration being less diverse and more 
refined diet that is depleted in fiber (Sonnenburg and Sonnenburg, 2014). 
Increased gut microbiota richness is observed in communities with more 
traditional lifestyles and a more diverse diet, rich in fiber, compared to 
westernized societies (Clemente et al., 2015; Schnorr et al., 2014). These 
differences in community richness between lifestyles are also observed in 
children, over 3 year of age (De Filippo et al., 2010; Yatsunenko et al., 2012).  
Decreased in community richness is also seen in the gut microbiota of 
individuals originating from southeast Asia after immigration to the United 
States (Vangay et al., 2018). Many of these changes has occurred in parallel 
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with the increase in non-communicable inflammatory and  metabolic disease 
(Sonnenburg and Sonnenburg, 2019).  

In metabolic diseases a decreased gene richness has been associated with more 
adiposity, insulin resistance and dyslipidemia (Le Chatelier et al., 2013). In a 
mixed obese and non-obese population, the number of genes in the 
metagenomes were counted. The distribution of number of genes was 
bimodally distributed and, when the population was divided into high and low 
gene richness, they found 46 genera significant different between individuals 
with high and low gene richness. Individuals with low gene richness had higher 
relative abundance of Bacteroides, Ruminococcus torques, Ruminococcus 
gnavus and Campylobacter. Whereas, individuals with high gene richness had 
higher relative abundance of Faecalibacterium, Bifidobacterium, 
Lactobacillus and Methanobrevibacter. When searching for genes that 
contributed to this difference Le Chatelier et al. also observed genes from 
opportunistic pathogens such as Clostridium bolteae, Clostridium symbiosum 
and Clostridium clostridioforme in individuals with low gene richness. They 
observed negative correlations between gene richness and parameters of 
insulin resistance and dyslipidemia but no significant correlation with BMI and 
weight. Gene richness was also found to have an impact on the improvement 
of metabolic parameters over a dietary intervention (Cotillard et al., 2013). 
Individuals with low gene richness had not only worse parameters relating to 
adiposity, adipose tissue inflammation and systemic inflammation from the 
start but they also had lower likelihood of normalizing these parameters at the 
end of the intervention.  

Gut microbiota richness has also been linked to stool consistency and colonic 
transit time. These factors, along with diet, contribute to the nutrient 
availability for the microbiota during transit. Slow transit time can shift 
microbial metabolism from saccharolytic to more proteolytic fermentation and 
niche differentiation with increase richness (Falony et al., 2018). Therefore, 
Falony et al. emphasize the importance of viewing the fecal sample as a snap 
shot at the end of a dynamic system and that a high richness instead could be 
an indicator of gut ecosystem age, without any large perturbation, and not 
necessarily of a stable community in the lumen. 

1.3.6 MICROBIOTA VARIATION AND DIET 
The gut microbiota metabolizes dietary components that reach the distal gut 
unabsorbed and undigested. The potential for degradation of proteins and fats 
is less understood but start to be explored and understood  (Koh et al., 2018). 
The largest family of undigested carbohydrates are glycans, consisting of 
carbohydrates such as resistant starch, inulin, lignin, pectin, cellulose and 
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fructo-oligosaccharides from the diet. The collective genomic potential from 
the gut microbiome can encode tens of thousands of carbohydrate active 
enzymes (Cantarel et al., 2012). Due the large variation in potential for these 
enzymes, and the resulting effects on host, the gut microbiota diet interaction 
has thus been extensively studied in relation to health and disease (Makki et 
al., 2018; Oliphant and Allen-Vercoe, 2019; Salonen et al., 2014; Sonnenburg 
and Bäckhed, 2016). The intake and degradation potential of fibers has been 
suggested to be the main driver of the compositional differences between 
individuals, defined as the enterotypes by Arumugam et al. in 2011. Gut 
enterotypes have been described as a result of long-term eating habits (Wu et 
al., 2011).  The Prevotella enterotype was associated to diets rich in fibers 
while the Bacteroides enterotype was associated to diets rich in animal 
products. However, in large population studies diet has not been identified as 
a large contributing factor to variation in the human gut microbiota 
composition (Falony et al., 2016; Rothschild et al., 2018). In a longitudinal 
study 34 healthy individuals was followed over 17 days with daily samplings 
together with records of daily dietary intake. They observed that change in diet 
was associated with changes in gut microbiota. However, these diet-microbiota 
interactions were individual specific. They could predict the gut microbiota 
composition in a sample based on previous sample’s composition and dietary 
record but failed to use the same model across individuals (Johnson et al., 
2019). However, in other short-term longitudinal studies that introduce 
extreme changes in diets, such as complete exclusion of primary 
carbohydrates, show consistent alterations in the gut microbiota among 
individuals (David et al., 2014b; Mardinoglu et al., 2018).  

An important observation from several studies is that different individuals 
respond differently, to both dietary interventions and probiotics, with specific 
changes in microbiota composition as well as host physiology (Korem et al., 
2017; Kovatcheva-Datchary et al., 2015; Krumbeck et al., 2018). Because of 
this, the relationship between gut microbiota variation and diet have been 
studied to develop a personalized nutrition approach (Kolodziejczyk et al., 
2019). Using the knowledge about inter-individual variation, of both gut 
microbiota composition and glucose response to food components, individual 
specific diets can be designed, which can control a person’s glucose response 
after meals (Mendes-Soares et al., 2019; Zeevi et al., 2015). 

1.4 SHORT-CHAIN FATTY ACIDS 
Through anaerobic fermentation of mainly carbohydrates, the gut microbiota 
generates short-chain fatty acids (SCFA), which are one major group of 
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metabolites from microbial metabolism. Dietary polysaccharides can be 
constructed in diverse and complex configurations. The capacity to degrade 
and utilize this diversity of substrates is an important function for the gut 
microbiota reflected by the large number of carbohydrate-active enzymes 
found in the human metagenome (Bhattacharya et al., 2015). The gut 
microbiota efficiently degrades substrates, humans thus relay on the gut 
microbiota for harvesting the energy from the remaining complex 
carbohydrates (Singh et al., 2017). The main SCFAs are acetate, propionate 
and butyrate. These SCFAs are rapidly absorbed by the large intestine and are 
estimated to provide humans with 6-10% of the total daily energy requirement 
(Mcneil, 1984). Acetate is the most abundant SCFA followed by propionate 
and butyrate. The proportion of acetate are though increasing from the gut 
lumen, via portal vein and circulation. Butyrate is the main energy source for 
the host epithelium (Donohoe et al., 2011) and most of the butyrate is 
consumed by the epithelium and 75% propionate is  metabolized in the liver 
(Cummings et al., 1987). SCFAs can act locally, or be transported to the 
circulation, and function as signaling molecules through interaction with 
receptors or regulate gene expression levels (Koh et al., 2016).  

The metabolism of complex carbohydrates to SCFAs, is performed through an 
interplay between different species with different functional capacity. The first 
step, primary degradation, is the rate limiting step in which polysaccharides 
are degraded into monosaccharide or oligosaccharides. Although the gut 
microbiome have been described as a system with high functional redundancy 
this function has been highlighted to be performed by a few keystone species 
(Ze et al., 2013). After primary degradation, resulting sugars can quickly be 
consumed by other members of the gut microbiota, for energy generation 
through glycolytic pathways. From these pathways pyruvate is produced and 
used in different fermentation processes, where Acetyl-CoA is a central 
molecule (Wolfe, 2015). Through these pathways can end-products, such as 
acetate and lactate, be used as substrates for other bacterial species and, 
through cross-feeding, produce end-products such as butyrate.  

In the fermentation process the fermentation products need to be removed for 
the process to proceed. SCFAs and alcohols are rapidly absorbed by the host 
but gaseous fermentation products, such as carbon dioxide and hydrogen, are 
mainly utilized as substrates trough cross-feeding by other members of the 
microbiota (Miceli et al., 2016). Three strategies of utilizing hydrogen are 
known in the human gut (Smith et al., 2019). Reductive acetogenesis; where 
acetate is produced from carbon dioxide and hydrogen through the Wood-
Ljungdahl pathway. The second strategy is methanogenesis; where carbon 
dioxide and hydrogen are converted to methane by Archaea such as 
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Methanobrevibacter. Lastly, dissimilatory sulfate reduction; where hydrogen 
and sulfate, either from the diet or host mucin, is converted to hydrogen sulfide 
by sulfate reducing bacteria such as Desulfovibrio. 

1.5 MICROBIOTA, HEALTH AND DISEASE 
The number of studies investigating how the gut microbiota composition 
relates to different diseases have rapidly increased during the past 10 years. 
The gut microbiota has been associated with a large number of diseases ranging 
from a variety of physiological processes; metabolically, inflammatory and 
neurological (Lynch and Pedersen, 2016). However, it is still not established 
any mechanistic links of structures and functions to a healthy gut microbiota 
(McBurney et al., 2019).  

1.5.1 MICROBIOTA AND DISEASE 
The altered composition of the gut microbiota associated to different diseases 
has by large parts of the field been stated as dysbioitic. This term comes from 
the concepts dysbiosis, which is the altered state that could be corrected by 
targeted interventions and return to the state of eubiosis (Brussow, 2020). The 
use of this concept has had some criticism (Brussow, 2020; Olesen and Alm, 
2016). The main criticism is that identification of dysbiosis alone is not a useful 
result. Majority of studies identifying a dysbiotic microbiota are cross-
sectional and thus it is not established if the dysbiotic community state is the 
cause, consequence or a combination of physiological alterations in disease. 
There are also few causal hypotheses in studies identifying dysbiosis, which 
would be necessary if information of the microbiota would add value in 
diagnosis or be used in interventions.  

This dysbiotic gut microbial state has mainly been described in inflammatory 
conditions (Byndloss and Baumler, 2018). Meta-analysis has identified that the 
majority of signal between disease individuals and controls are not specific for 
one disease but rather common to different disease  (Duvallet et al., 2017). This 
common disease-associated gut microbiota signal is characterized by 
decreased abundance of obligate anaerobes, such as butyrate producers, and 
increased abundance of facultative anaerobes. A dysbiotic microbiota is also 
associated to a microbiota with reduced diversity (Kriss et al., 2018). Similar 
patterns are also observed in metabolic diseases (He et al., 2018a; Le Chatelier 
et al., 2013) and insulin resistance (Khan et al., 2014).  

Identifying a state of the gut microbiota specifically associated to a certain 
disease is also problematic when we do not have a definition of a healthy 
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microbiota. Due to the large inter-individual variation in gut microbiota 
composition it is not possible to define one healthy community configuration. 
Ideas so far about what characterizes a healthy microbiota is ecological 
stability, which is defined as resistance to change and resilience to recover 
from a perturbation (Bäckhed et al., 2012).  

Since the gut microbiota is a dynamic system and responds to changes in the 
environment, we need to continue to build on the knowledge from cross-
sectional studies. Through longitudinal studies we would gain more 
information about these dynamics and how stability and dynamics could be 
altered in disease. If we aim to be able to therapeutically alter the microbiota 
to sustain health or treat disease we need to understand the health-associated 
dynamics of gut microbiota in the short-term as well as in the long-term and 
the following functional microbiome variation (McBurney et al., 2019).  

1.5.2 METABOLIC DISEASE AND PRADER-WILLI SYNDROME 
Common metabolic diseases associated with obesity are acquired diseases such 
as type-2-diabetes, cardiovascular disease and liver steatosis. Risk factors for 
these metabolic diseases are often summarized into the metabolic syndrome, 
where obesity is one of the risk factors. The metabolic syndrome also include 
dyslipidemia which imply an altered ratio of low to high-density lipoproteins 
and/or increased triglycerides in the circulation. High blood pressure and 
changes in glucose metabolism are also risk factors to the metabolic syndrome 
(Mendrick et al., 2018).  

Prader-Willi syndrome is the most common genetic syndrome linked to 
development of severe obesity. The syndrome is caused by lack of expression 
of the paternal allele on chromosome 15, due to different genetic alterations, 
where deletions in the paternal allele is the most common (Butler, 2011). 
Individuals with Prader-Willi syndrome develop hyperphagia and often have a 
rapid weight gain. They are shorter and develop altered body composition 
characterized by altered distribution of adipose tissue, including reduced 
visceral fat and increased ratio of excess body fat mass to lean body mass 
(Goldstone et al., 2001; Lacroix et al., 2015). Although often being severely 
obese, individuals with Prader-Willi syndrome have a phenotype with fewer 
metabolic complications from obesity (Talebizadeh and Butler, 2005). 

Obese children with Prader-Willi syndrome have lower fasting insulin 
(Lindgren et al., 1999) and higher insulin sensitivity compared to BMI-
matched children (Haqq et al., 2007; Haqq et al., 2011; Schuster et al., 1996). 
Adult individuals with Prader-Willi syndrome have been found to have lower 
insulin resistance and lower fasting insulin (Talebizadeh and Butler, 2005) and 
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microbiota. Due to the large inter-individual variation in gut microbiota 
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reduced insulin release in intra-venous glucose tolerance test (Schuster et al., 
1996). The complete picture of the mechanisms contributing to the improved 
glucose metabolism in individuals with Prader-Willi syndrome are not known 
but the differences in body distribution of adipose tissue to more subcutaneous 
and less visceral fat storage, with decreased adipose tissue inflammation as 
well as increased levels of the insulin sensitive hormone adiponectin could 
contribute (Lacroix et al., 2015). There is one previous study of the gut 
microbiota in individuals with Prader-Willi syndrome, this study was in 
children (Zhang et al., 2015). In this study they found no differences in the gut 
microbiota between children with Prader-Willi syndrome compare to children 
with simple obesity. There was neither any differences in the response to a 
dietary intervention.    

Lisa Olsson 

15 

2 AIMS 
The aims of this thesis are to investigate the temporal dynamics in the gut 
microbiota in normal populations, without clinical evidence of disease, at 
different stages of life. Also, to identify characteristics of the normal gut 
microbiota that could contribute to the gut microbiota’s resistance to disease. 

 The specific aims of this thesis are: 

1. Identify how the gut microbiota is established and developed 
in young children and how they compare to adults  
(Paper I).  
 

2. Determine the normal variation of the gut microbiota within 
an individual and identify different patterns of variability for 
both gut microbiota species and functional potential 
(Paper II).  
 

3.  Characterize features of the gut microbiota that can be linked 
to metabolic health (Paper III). 
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3 METHODOLOGICAL CONSIDERATIONS 
This section includes general discussion about the methodology used in the 
papers included in my thesis. A more detailed description about the methods 
can be found in the Method sections for each individual paper.  

3.1 STUDY THE GUT MICROBIOME USING 
MOLECULAR METHODS 

There has been, and there still are, a debate about the vocabulary when 
describing an environment and its associated microbial community. The 
following terminology has been used within the studies of this thesis (Marchesi 
and Ravel, 2015). Microbiota is used when referring to the composition of 
different microorganisms which are present in an environment. In contrast, the 
microbiome is used when referring to the microorganism, their genomes and 
the environmental conditions they are in. The gut microbiome has been 
referred to as an organ (Baquero and Nombela, 2012), an ecological system 
that interacts with the host, and the collective genomes of the microbiome, the 
metagenome, is thought of as the genetic potential of this organ. A shift in the 
metagenome functional potential does not fully represent changes in what the 
metagenome actually transcribes, it reflects a shift in functions that a 
metagenome has the potential to transcribe.  

The majority of the microorganisms in the gut are challenging to isolate and 
culture in vitro. Therefore, the development of molecular methods, and 
especially high-throughput sequencing and bioinformatics analyzes, has 
increased the number and size of microbiome studies dramatically in the past 
years and provided a deeper understanding of the composition of the gut 
microbiota. The majority of these studies in humans have characterized 
microbial communities through the analysis of DNA extracted from fecal 
samples. Today, three main culture-independent methods, using molecular 
biology, are commonly used for studying the microbiota. (1) The first method 
is the taxonomical profiling of microbial communities by sequencing the 
hyper-variable regions of marker genes, which for bacteria usually is the 16S 
ribosomal RNA (16 rRNA) gene (Hamady and Knight, 2009). (2) The second 
method is whole-genome metagenome sequencing of the extracted DNA, 
where the collective genomic DNA extracted from a fecal sample is sequenced. 
Whole-genome metagenome sequencing provides information not only on 
microbial taxonomic composition but also on the functional genetic potential 
of the metagenomes, and if sequencing is sufficiently deep, it may also allow 
recovery of individual genomes.  
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When studying the gut microbiome there are several layers of factors which 
affect a correct representation of the community of a sample. In this thesis I 
have only studied fecal samples and I will only discuss factors affecting 
microbiota composition in these samples (Figure 1).  

Figure 1. Overview of molecular methods used to study the gut microbiota. 

3.1.1 FECAL SAMPLES 
The majority of gut microbiota studies are based on the fecal microbiota 
composition, which practically is a representation of what is leaving the 
gastrointestinal system. However, the microbiota composition varies along the 
intestinal tract (Eckburg et al., 2005). There is also a compositional gradient 
with different niches in the lumen compared to close to the mucosal lining. For 
example, the abundance for some bacterial communities close to the mucosal 
lining, which grow on host-derived substrate such as mucins, are independent 
of dietary changes (Donaldson et al., 2016). Thus, when analyzing the 
microbiota composition in fecal samples we might not have a correct 
representation of the microbes with closest proximity to the host or in the small 
intestine, which need to be acknowledged when hypothesizes of the microbiota 
are generated.  
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We also study the genetic material in the fecal samples and do not know if the 
bacteria are viable or not. Almost all studies that have been performed so far 
are not quantitative, which means that the features in the data table are not 
independent but proportional to the unknown total amount. Suggested methods 
are available to generate quantitative abundance (Vandeputte et al., 2017).  

3.1.2 DNA EXTRACTION 
Extraction of microbial DNA from samples has been identified as the most 
important step in the sample processing and different extraction methods 
generate the largest bias in metagenomic analysis (Costea et al., 2017). It is 
thus important when comparing samples and cohorts that the samples have 
been processed with the same protocol. Due to the different cell wall properties 
in different bacteria, it is challenging to lyse all bacteria without damaging the 
DNA of more easily lysed bacteria, thus maintaining the representation of the 
sample. A combination of chemical and mechanical, in form of repeated bead-
beating, lysis protocols have been found to generate the largest diversity in 
samples and was also important for recovery of bacteria from Clostridium 
cluster IV and Archaea (Salonen et al., 2010). Furthermore, bead-beating was 
required for detection of Bifidobacterium in samples obtained from infants 
(Walker et al., 2015). For all samples in this thesis genomic DNA has been 
extracted using double bead-beating protocols adapted from Salonen et al., 
2010.  

3.1.3 16S rRNA GENE PROFILING 
16S rRNA gene profiling has been the dominating method in large studies until 
recent years, and is still widely used in clinical studies. However, 16S rRNA 
gene profiling has several limitations such as the restriction to the phylogenetic 
characterization of microbial communities based on small genomic regions and 
the presence of technical bias, as well as choice of region (Gohl et al., 2016). 
In Paper I and Paper III the microbiota was studied using 16S rRNA gene 
sequencing after amplification of the V4 region using primers previously 
described (Kozich et al., 2013). This region has been reported to have sufficient 
resolution for all phyla present in the human gut and, in contrast to V1-2 
regions, can identify the genus Bifidobacterium from the phylum 
Actinobacteria, which is an important genus in the gut of infants and children 
(Sim et al., 2012). Using the V4 region alone, compared to using V3 and V4 
combined, the shorter region makes it possible to fully cover the region twice 
using paired-end sequencing. By constructing a consensus sequence from the 
two reads, and thus reducing the influence of low sequence quality, there is a 
limit to the introduction of spurious OTUs  (Bokulich et al., 2013; Kozich et 
al., 2013). In Paper I and Paper III generated sequences were merged into a 
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consensus sequence and clustered into OTUs (operational taxonomic units) at 
a 97% identify threshold using an open-reference method in UCLUST (Edgar, 
2013) and the Greengenes database (DeSantis et al., 2006)(13_8 release). All 
sequences that failed to cluster against the Greengenes database were used to 
cluster OTUs de novo based on their pairwise similarities. 

Traditionally, a threshold of 97% identity over the 16S rRNA marker gene 
sequence has been used to define a operational taxonomical unit (OTU) for 
taxa on species level (Schloss and Handelsman, 2005). In recent years, new 
methods have been developed that aim to increase the threshold of identity for 
species definition to 100% (Callahan et al., 2017; Edgar, 2018). Technical 
noise is filtered out from biological variation in the marker gene sequences, 
denoising, which results in identification of exact sequence variants (ESV). 
Similar methodology identifies amplicon sequence variants (ASV) using 
DADA2 (Callahan et al., 2016) and ZOTU using UNOISE (Edgar, 2016).  

Both OTU and ESV methods have advantages and disadvantages and should 
perhaps be seen as different methods rather than one method being better than 
the other. In my work in Paper I and Paper III I have not compared the 
different methods. However, due to the lack of knowledge on how the 
differences in methods affect distributions of individual taxa among samples 
and how these new methodologies affect the possibility to detect differences 
between groups I could not assume that the biological interpretations from the 
two methods would be the same. I made the decision to use similar 
methodology used in previous literature, which I wanted to relate my results 
to, since the moment there at are no clear disadvantages of using operational 
taxonomical units (OTU). 

Independent of method used for identification of taxa, the next critical step is 
the taxonomic classification. For this step, there are also different methods 
available but the taxonomic classification is only as good as the database that 
is used. Databases such as RDP, Greengenes and Silva are databases frequently 
used in metagenomics studies. Factors such as updates and database curation 
vary between the databases (Hugerth and Andersson, 2017).   

3.1.4 WHOLE-GENOME METAGENOME SEQUENCING 
In Paper II, the method for profiling of the gut microbiota was whole genome 
metagenomic sequencing, in which the total DNA extracted is sequenced. 
Compared to other sequencing applications using DNA, here quantification of 
sequences is also important, similar to RNA sequencing. Thus, it is important 
to prepare libraries that keep the representation of the DNA and do not skew 
the composition of the sample. Also, since many bacteria that have biological 
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methodology used in previous literature, which I wanted to relate my results 
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is used. Databases such as RDP, Greengenes and Silva are databases frequently 
used in metagenomics studies. Factors such as updates and database curation 
vary between the databases (Hugerth and Andersson, 2017).   

3.1.4 WHOLE-GENOME METAGENOME SEQUENCING 
In Paper II, the method for profiling of the gut microbiota was whole genome 
metagenomic sequencing, in which the total DNA extracted is sequenced. 
Compared to other sequencing applications using DNA, here quantification of 
sequences is also important, similar to RNA sequencing. Thus, it is important 
to prepare libraries that keep the representation of the DNA and do not skew 
the composition of the sample. Also, since many bacteria that have biological 
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importance often are present in low abundance, the amount of input DNA need 
to be sufficient to capture the full complexity of the sample. The sequencing 
depth, together with the amount of DNA, and PCR bias was sequencing 
associated factors which have been found to influence results in whole genome 
metagenomics studies (Jones et al., 2015). In Paper II the extracted DNA was 
prepared for sequencing using a PCR-free protocol to reduce the influence of 
GC-bias and duplication rate. This protocol also uses 1000 time more genomic 
DNA compared to other commonly used protocols in metagenomic studies, for 
example Illumina Nextera XT.  

After quality filtering and removal of sequences originating from the human 
DNA or the host, several different approaches can be applied for analyzing 
taxonomy and functional potential. For taxonomy there are both reference 
based methods that use reference genomes but also reference free methods. In 
Paper II sequences were aligned to a non-redundant species catalogue using 
Bowtie2 (Langmead and Salzberg, 2012) as described by Karlsson et al. 
(Karlsson et al., 2014). In other strategies sequences are aligned to marker 
genes as in Metaphlan (Segata et al., 2012) or to generate mOTUs (Sunagawa 
et al., 2013). Using these methods, data analysis can be made on species, or in 
some cases, strain level. Compared to aligning to the whole genomes, 
strategies of aligning to marker genes are less sensitive for low abundant 
genomes and require more reads per sample.  

In reference free approaches sequences are assembled into genomes, or parts 
of genomes (contigs), using several available metagenomic adapted assemblers 
(Vollmers et al., 2017). Assembly is followed by gene prediction and 
functional annotation. Using the fact that the abundance of different genomes 
varies between individuals, strategies have been developed for grouping or 
binning contigs into genomes based on, for example, correlation of gene 
abundance among individuals (Nielsen et al., 2014) or clustering contigs into 
genomes based on sequence composition and abundance (Alneberg et al., 
2014). 

Functional annotation can be assigned to contigs or raw sequences using a wide 
range of tools available and to gene annotation from databases such as KEGG, 
COG, PFAM or GO. More specialized databases for microbial functions are 
also available, such as the database of enzymes for carbohydrate degrading 
enzymes; CAZy (Lombard et al., 2014). Irrespective of the database used, the 
functional annotations of metagenomes are strongly dependent on the 
functions that are available in the reference databases. Although large 
sequencing efforts have increased the number of genes in databases, a large 
portion of the functions encoded in the metagenomes remains unknown and 
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more than 50% of microbial genes are not found in databases (Abubucker et 
al., 2012).  

In Paper II functional potential and responsible taxonomy was assessed using 
the method Humann2 (Franzosa et al., 2018). In this method, sequences are 
first used to assign taxonomy using Metaphlan, where sequences are mapped 
to a database of marker genes of known species. For the identified species, 
functional potential is retrieved by mapping sequences to functionally 
annotated pangenomes. Unmapped sequences are aligned to protein databases, 
in Paper II to a version of Uniprot, with nonredundant protein sequences with 
more than 90% identity. Uniprot annotation was then collapsed to Uniprot gene 
families and associated to metaCyc enzymatic reactions followed by pathway 
reconstruction (Caspi et al., 2018). Since the aim of the analysis in Paper II 
was to describe an overview of the variability pattern of microbial functions in 
the metagenomes, the broadly described gene families in metaCyc was the 
method chosen instead of analyzing more detailed levels. This method was also 
chosen for the assignment of taxonomy to the functional potential. Although a 
low percentage of function could be assigned a taxonomy, and the taxonomy 
assigned has a bias towards the content in databases, this method provides an 
idea of which taxa are responsible for stable and variable functions. 

3.2 HUMAN MICROBIOTA-ASSOCIATED MICE 
MODEL 

In order to functionally test direct influence of the microbiota on host 
physiology, we used human microbiota-associated mouse models in Paper III. 
In this model, fecal material from human patients is transferred into mice 
models lacking bacteria (germ-free).  

The mouse is a widely used experimental model for studies of metabolism and 
can be easily be rederived as germ-free and maintained in plastic isolators. 
However, mouse experimental models have limitations. Although there is 
similarity in physiology between mice and humans, there are also significant 
differences in for example the immune system, which results in differences 
between responses to mouse and human microbiota (Ivanov et al., 2009). Large 
proportion of the taxa in the human gut microbiota fail to transfer into mice 
(Zhang et al., 2017) and also to induce immunological responses (Ivanov et al., 
2009). The microbes which do transfer do not assemble into communities 
which completely resemble the donor community (Staley et al., 2017). Many 
strains of bacteria are either found in mice or human, which makes them host 
specific. This limits the transfer between hosts (Ley et al., 2005). Compared to 
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molecular methods that detect the genomic material of both live and dead 
microbial cells, establishment of a microbial community into a mouse model 
is influenced by the viability of the microbes that are transplanted. Storage, 
anaerobic preparation and solutions for the preparation of slurries used in the 
transfer of samples, are important factors that can affect transfer success. The 
environmental factors, such as diet, lifestyle or physiological or genetic 
predisposal, which also could have caused the changes in gut microbiota in the 
donors, are not replicated in this type of experiment (Arrieta et al., 2016). Due 
to the large intra-individual variation of the human microbiota, it is important 
to use sufficient number of donors to be able to conclude causality and also to 
report the negative results. To be able to draw conclusions based on results 
from transfers, it is also important to perform the analysis of the microbiota on 
the donors and mice, to address which features in the donors’ microbiota can 
be transferred to the mice (Walter et al., 2020).  

Despite the limitations described above, transfer of human gut microbiota into 
germ-free mice is the best models to study the effects of donors’ phenotypes 
on physiology. We do need to adapt the questions we aim to answer using this 
method, with a focus on individual bacterial effects on the host, rather than 
effects from ecological changes (Arrieta et al., 2016). 

3.3 STATISTICAL CONSIDERATIONS 
Due to large intra-individual variation, metagenomics data is in general sparse 
and individual bacteria have for biological reasons different distributions.  

Since number of raw reads in a sample do not reflect a biological meaning, 
only how well that sample was quantified in the sequenced pool, data need to 
be normalized before statistical testing. Number of reads from an undefined 
amount of extracted DNA biased by PCR should not be considered quantitative 
but need to be related to all observed taxa and thus metagenomic data is always 
compositional. This implies that, although the theoretical absolute abundance 
is constant, the relative abundance of a taxa can be expected to change due to 
changes in other taxa.  

Due to the non-normality of the majority of microbial taxa, hypothesis testing 
and correlation of individual taxa in papers in this thesis were made using non-
parametric methods based on rank, such as Wilcoxon rank-test, Wilcoxon 
signed-rank test and Spearman’s correlation.  

Since community data is high dimensional compositional differences between 
samples (beta diversity) is in ecology traditionally described using different 
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dissimilarity measurements. Euclidean distance is not appropriate for 
compositional and sparse datasets and for this type of data other distances are 
used. In this thesis the Bray-Curtis dissimilarity was used and, when 
phylogenetic relationship between taxa was available, the Unifrac distance was 
used (Lozupone and Knight, 2005).  

In order to simplify the complexity of the data, and unsupervised explore 
differences between samples, clustering methods based on the relative 
abundance of features rather than dissimilarity measures have been included in 
this thesis. This is a widely used method to understand compositional 
structures in the field. Almost ten years ago the adult gut microbiota 
configuration, due to its community stability, was considered as three discrete 
states. These were called enterotypes and identified using k-mer clustering 
(Arumugam et al., 2011). These enterotypes were differentiated by the sample 
relative abundance of the dominant genera Ruminococcus, Bacteroides and 
Prevotella. This approach has later been disputed and these three enterotypes 
of the normal gut microbiota are no longer considered discrete but instead 
considered influenced by gradients of genera abundances (Costea et al., 2018; 
Knights et al., 2014). With improved methodology using Dirichlet 
Multinomial Mixtures a fourth enterotype in the adult gut microbiota have been 
found, by using Laplace approximation of the model fit (Ding and Schloss, 
2014; Holmes et al., 2012; Vieira-Silva et al., 2019). Using the same approach, 
I investigated the stability of the enterotypes in the adult population over the 
course of a year in Paper II. To simplify the complexity of the microbial 
communities, I have also used the same approach to cluster the samples from 
different ages, in Paper I, into community types to understand how children 
travel through several community configurations during the gut microbiota 
development. Since the microbiota configurations in the children are different 
from the enterotypes originally defined by Arumugam et al. in 2011 I have 
chosen to call them community types.  
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4 RESULTS AND DISCUSSION 

4.1 GUT MICROBIOTA DYNAMICS IN 
CHILDREN 

In Paper I, we investigated how the gut microbiota develops from birth, and 
during the first 5 years of age, in a Swedish birth cohort sampled 
longitudinally, with a stronger focus on the development from 12 months to 5 
years, to expand our previous study (Bäckhed et al., 2015). We also 
investigated how a 5-year-old microbiota compares to the microbiota of the 
mothers and an adult normal population age 50-64 years (S3WP adults). We 
observed, as others before us, that as the child grow the microbiota complexity, 
measured as the alpha diversity, increases and the children become less 
heterogenous, measured as beta diversity. At 5 years the compositional 
differences to the S3WP adults, measured as the weighted unifrac distance, had 
decreased compare to the children at younger ages and the adults. However, 
there was still a significant difference in the composition between the children 
and adults. The children also had a lower alpha diversity, measured as Faith’s 
phylogenetic diversity. 

4.1.1 MICROBIAL GENERA TRAJECTORIES 
To identify how microbial genera are incorporated into the developing gut 
microbiota, we clustered genera based on their change in abundance over time. 
To this end we used infants with complete sample series from 4 months to 5 
years. We identified 4 different trajectories that the genera followed (Figure 
2). The first trajectory included genera dominating the infant gut microbiota 
but decreased over time. The second trajectory, was characterized by genera 
with the highest abundance at 12 months. The third trajectory was dominated 
by genera such as Prevotella, Akkermansia, and several Clostridiales such as 
Faecalibacterium, Ruminococcus, Blautia, Lachnospira, Roseburia and 
Coprococcus. These genera were highly abundant in adults and the majority of 
them are considered part of the core microbiota in adults (Falony et al., 2016). 
These genera also had higher abundance at 12 months, compared to 4 months 
old infants, but the abundance continued to increase up to 3 years of age when 
the abundance stabilized. We also identify a fourth trajectory dominated by 
genera that had low prevalence and low abundance in infancy and at 12 months 
but had increased average abundance at 3 years, which continued to increase 
until 5 years of age. However, they still had reduced abundance at 5 years 
compared to an adult population.  
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Figure 2. Trajectories which genera followed during gut microbiota development 
from 4 months to 5 years.  

Among the late ‘bloomers’ of the fourth trajectory were hydrogen consumers, 
such as the Archaea Methanobrevibacter and the Proteobacteria Desulfovibrio, 
the Firmicutes family Christensenellaceae and also genera within the 
Coriobacteriaceae family of the Actinobacteria phylum, such as Collinsella 
and Adlercreutzia. As well as unspecified genera within the orders ML615J-
28 and RF39 in the Tenericutes phylum.   

Methanobrevibacter is the most common Archaea in the human adult 
(Goodrich et al., 2016) and child gut (van de Pol et al., 2017). Consistent with 
our findings lower abundance is observed in school children compared to 
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adults (Zhong et al., 2019) and with lower prevalence in children compared to 
adults (Stewart et al., 2006). Archaea, such Methanobrevibacter, as  has been 
detected in fecal samples (Dridi et al., 2009; Stewart et al., 2006) and from 
gastric juice in infants and are thought to be acquired from the mother (Grine 
et al., 2017). However, using 16S rRNA profiling in Paper I, 
Methanobrevibacter have been detected at low prevalence and low abundance 
during infancy. The same age discriminatory observation has been observed in 
rats, where Methanobrevibacter was first observed after weaning suggesting 
that fermentation is a prerequisite for colonization with this taxa (Maczulak et 
al., 1989). Increased redox potential, lower bacterial load and depletion of 
Methanobrevibacter has been observed in fecal samples from children with 
severe acute malnutrition (Million et al., 2016). These children have previously 
been identified with an immature gut microbiota, characterized with lower 
abundance of obligate anaerobes dominating the adult microbiota 
(Subramanian et al., 2014). Since methanogenesis is a process which requires 
a strongly reduced environment (Hirano et al., 2013), and requires hydrogen 
for growth, this data indicates that establishment of obligate anaerobes and a 
fully reduced gut environment is required for hydrogen consumption through 
methanogenesis. 

The species Desulfovibrio piger is also a hydrogen consuming bacterium, 
although through dissimilatory sulfate reduction. This bacterium requires a 
source of sulfate for sulfate reduction, and although this can be available 
through diet, most comes from sulfated glycans in the host mucosa (Tailford 
et al., 2015). This can be accessible through degradation of host mucin by 
species encoding sulfatases such as Bacteroides thetaiotaomicron (Rey et al., 
2013). 

In the TwinUK population Tenericutes as phylum, unclassified genera within 
RF39 and Christensenellaceae together with Methanobrevibacter were found 
heritable and positively associated to alpha diversity. In repeated sampling the 
levels of these taxa were considered stable within an individual (Goodrich et 
al., 2016). Christensenellaceae and Methanobrevibacter have been found to 
co-occur and to cross-feed in vitro (Goodrich et al., 2014; Ruaud et al., 2020). 

4.1.2 INDIVIDUAL DEVELOPMENT PACE 
By clustering the samples from the children, based on the abundance of 
individual genera, we observed that the children pass through different 
community types through the development of their microbiota. The samples 
from newborn and at 4 months classified into community types that were 
mostly seen in samples from these ages. The majority of samples from the older 
ages, 3 years and 5 years, classified into community types dominated with 
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samples from 3 and 5-year-old children. The large majority of the adult 
samples formed an adult community type with few samples from children.  

The age specific community types we observed at 12 months indicated that the 
children go through a transitional phase. The 12 months specific community 
types were also observed in samples from 3- and 5-year old children, the 
frequency of samples in these community types though decreased over time. 
This transition phase has previously been described as the period between 15 
and 30 months in where all five phyla change abundance and alpha diversity 
continues to increase (Stewart et al., 2018). The phase after 30 months has been 
defined as the stable phase where phyla abundance or alpha diversity do not 
change. In contrast to the study of Stewart et al., all children in Paper I had 
the same chronological age but at 12 months. We identified children in 
community types seen both in mostly 4-month-old, 12-month-old children and 
children 3 years and older, indicating that at this age children were at different 
stages within the transitional phase. This suggest that children in a normal 
population have an individual pace in their transition and maturation of their 
gut microbiota development. We identified an association between the alpha 
diversity in the children at 12 months and the alpha diversity in their 5-year 
microbiota, indicating a connection with the microbiota established at 12 
months and the continuing development of the gut microbiota up to 5 years. 
This need to be accounted for when investigating factors which can affect gut 
microbiota maturation.  

4.1.3 GUT MICROBIOTA IN TRANSITIONAL PHASE 
The prevalence of facultative anaerobes before the introduction of solid food 
indicates a higher redox potential in the infant gut compared to adults (Stark 
and Lee, 1982). The high abundance of Eubacterium, Veillonella and 
Megasphaera at 12 months, several were among the genera following the 
second trajectory with peak abundance at 12 months, indicates high availability 
of lactate. These genera include species which have the ability to convert 
lactate to acetate.  Megasphaera and Eubacterium hallii have also been shown 
to produce butyrate from lactate, whereas other highly abundant butyrate 
producers in the adult gut microbiota, such as Roseburia intestinalis, 
Eubacterium rectale and Faecalibacterium prausnitzii have no, or limited, 
lactate utilization (Duncan et al., 2004). 

Bifidobacterium is one of the primary degraders in the human gut, degrading 
resistant starch to acetate and lactate (Macfarlane and Englyst, 1986). Two 
routes of cross-feeding have been suggested between degradation of starch and 
fructo-oligosaccharides, by Bifidobacterium adolescentis, to butyrate forming 
bacteria in the gut (Belenguer et al., 2006). The first was through cross-feeding 
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adults (Zhong et al., 2019) and with lower prevalence in children compared to 
adults (Stewart et al., 2006). Archaea, such Methanobrevibacter, as  has been 
detected in fecal samples (Dridi et al., 2009; Stewart et al., 2006) and from 
gastric juice in infants and are thought to be acquired from the mother (Grine 
et al., 2017). However, using 16S rRNA profiling in Paper I, 
Methanobrevibacter have been detected at low prevalence and low abundance 
during infancy. The same age discriminatory observation has been observed in 
rats, where Methanobrevibacter was first observed after weaning suggesting 
that fermentation is a prerequisite for colonization with this taxa (Maczulak et 
al., 1989). Increased redox potential, lower bacterial load and depletion of 
Methanobrevibacter has been observed in fecal samples from children with 
severe acute malnutrition (Million et al., 2016). These children have previously 
been identified with an immature gut microbiota, characterized with lower 
abundance of obligate anaerobes dominating the adult microbiota 
(Subramanian et al., 2014). Since methanogenesis is a process which requires 
a strongly reduced environment (Hirano et al., 2013), and requires hydrogen 
for growth, this data indicates that establishment of obligate anaerobes and a 
fully reduced gut environment is required for hydrogen consumption through 
methanogenesis. 

The species Desulfovibrio piger is also a hydrogen consuming bacterium, 
although through dissimilatory sulfate reduction. This bacterium requires a 
source of sulfate for sulfate reduction, and although this can be available 
through diet, most comes from sulfated glycans in the host mucosa (Tailford 
et al., 2015). This can be accessible through degradation of host mucin by 
species encoding sulfatases such as Bacteroides thetaiotaomicron (Rey et al., 
2013). 

In the TwinUK population Tenericutes as phylum, unclassified genera within 
RF39 and Christensenellaceae together with Methanobrevibacter were found 
heritable and positively associated to alpha diversity. In repeated sampling the 
levels of these taxa were considered stable within an individual (Goodrich et 
al., 2016). Christensenellaceae and Methanobrevibacter have been found to 
co-occur and to cross-feed in vitro (Goodrich et al., 2014; Ruaud et al., 2020). 

4.1.2 INDIVIDUAL DEVELOPMENT PACE 
By clustering the samples from the children, based on the abundance of 
individual genera, we observed that the children pass through different 
community types through the development of their microbiota. The samples 
from newborn and at 4 months classified into community types that were 
mostly seen in samples from these ages. The majority of samples from the older 
ages, 3 years and 5 years, classified into community types dominated with 
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samples from 3 and 5-year-old children. The large majority of the adult 
samples formed an adult community type with few samples from children.  

The age specific community types we observed at 12 months indicated that the 
children go through a transitional phase. The 12 months specific community 
types were also observed in samples from 3- and 5-year old children, the 
frequency of samples in these community types though decreased over time. 
This transition phase has previously been described as the period between 15 
and 30 months in where all five phyla change abundance and alpha diversity 
continues to increase (Stewart et al., 2018). The phase after 30 months has been 
defined as the stable phase where phyla abundance or alpha diversity do not 
change. In contrast to the study of Stewart et al., all children in Paper I had 
the same chronological age but at 12 months. We identified children in 
community types seen both in mostly 4-month-old, 12-month-old children and 
children 3 years and older, indicating that at this age children were at different 
stages within the transitional phase. This suggest that children in a normal 
population have an individual pace in their transition and maturation of their 
gut microbiota development. We identified an association between the alpha 
diversity in the children at 12 months and the alpha diversity in their 5-year 
microbiota, indicating a connection with the microbiota established at 12 
months and the continuing development of the gut microbiota up to 5 years. 
This need to be accounted for when investigating factors which can affect gut 
microbiota maturation.  

4.1.3 GUT MICROBIOTA IN TRANSITIONAL PHASE 
The prevalence of facultative anaerobes before the introduction of solid food 
indicates a higher redox potential in the infant gut compared to adults (Stark 
and Lee, 1982). The high abundance of Eubacterium, Veillonella and 
Megasphaera at 12 months, several were among the genera following the 
second trajectory with peak abundance at 12 months, indicates high availability 
of lactate. These genera include species which have the ability to convert 
lactate to acetate.  Megasphaera and Eubacterium hallii have also been shown 
to produce butyrate from lactate, whereas other highly abundant butyrate 
producers in the adult gut microbiota, such as Roseburia intestinalis, 
Eubacterium rectale and Faecalibacterium prausnitzii have no, or limited, 
lactate utilization (Duncan et al., 2004). 

Bifidobacterium is one of the primary degraders in the human gut, degrading 
resistant starch to acetate and lactate (Macfarlane and Englyst, 1986). Two 
routes of cross-feeding have been suggested between degradation of starch and 
fructo-oligosaccharides, by Bifidobacterium adolescentis, to butyrate forming 
bacteria in the gut (Belenguer et al., 2006). The first was through cross-feeding 
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of lactate utilized by E. hallii for butyrate production and the second was 
through degradation of partial breakdown of fructo-oligosaccharides, which 
species such as Roseburia sp. can use for butyrate production.  

In a study of children’s microbiota at 9 months in Denmark the abundance of 
Megasphaera, Veillonella and Haemophilus was associated with exclusively 
breastfeeding the first 6 months (Laursen et al., 2016). In this study they did 
not see associations between how early or late solid food was introduced in 
complement to breastmilk. Instead the age when exclusively breastfeeding 
ceased had significant effects on the microbiota at 9 months of age. This reflect 
observations form the metagenome study of a subset of the children in the 
cohort in Paper I from their first year (Bäckhed et al., 2015) where the duration 
of breastfeeding affects their gut microbiota composition at 12 months. In 
Paper I we observed that the subset of children still breastfeeding at 12 months 
had a significant different gut microbiota with higher abundance of 
Bifidobacterium. We did however not observe any significant differences in 
alpha diversity in their microbiota and they are not overrepresented in any of 
the community types seen at 12 months. The differences observed in 
community types at 12 months, with higher alpha diversity in the community 
types characterized by higher abundance of unclassified Ruminococcaceae, 
Faecalibacterium and Roseburia and lower abundance of facultative 
anaerobes, have previously been linked to progression toward family food and 
introduction of more fiber and protein rich food (Laursen et al., 2016). 

To summarize, the development of the children’s gut microbiota from a low 
diverse gut microbiota dominating of Bifidobacterium and facultative 
anaerobes, in our study exemplified by the samples from the children at 4 
months, and into an adult like gut microbiota, exemplified by the microbiota 
composition in mainly 3-years and 5-years samples, passes an altered state 
exemplified by the samples from the children at 12 months. How factors such 
as breast feeding and different dietary components shape the community to 
prepare for acquiring abundant adult core microbes is still not known. This 
acquisition also seems necessary for gaining low abundant species, with 
specific functions in the gut, which have been found linked to a high 
community richness and healthy phenotypes in adults. 

4.2 GUT MICROBIOTA DYNAMICS IN ADULTS 
In Paper II we investigate dynamics in the gut microbiota by longitudinal 
sampling during a time period of a year in a normal population (S3WP), age 
50-64 years, using whole genome metagenomics. In addition to investigation 
of compositional variability and different types of variability pattern in the gut 
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microbiota we also identified factors that are associated with high and low 
variability.  

4.2.1 COMPOSITIONAL VARIABILITY 
The core microbiota can be defined in different ways, that depend on the 
taxonomical levels but also the percentage of individuals who present the taxa, 
as well as the methodology used. In Paper II we elaborated our results with 
respect to the results of previous large cross-sectional population studies as 
well as results of longitudinally densely sampled time-series, which generally 
contained small number of subjects. Overall, we observe that the core taxa 
identified in the majority of samples is only a fraction of all taxa present in the 
combined samples (Caporaso et al., 2011; David et al., 2014a). In our study of 
individuals sampled four times over a year we observed that the core 
microbiota is increased if the criteria of temporally presence was used. Adding 
this information implies that temporal dynamics for many taxa is part of the 
normal gut microbiota. This is also observed in studies with consistent seasonal 
fluctuations, due to seasonal dietary patterns in individuals within the Hadza 
hunter-gatherers in Tanzania (Smits et al., 2017). In our Swedish population 
there was no such strict seasonal dietary pattern and we thus did not find any 
seasonal variation. 

In Paper II we could demonstrate, using whole genome metagenomics, that 
the gut microbiota compositional variability is an individual feature in an adult 
population. Some individuals, within a normal population without known 
diseases, had similar microbiota composition between repeated samplings, 
whereas other individuals were almost as different between their repeated 
samplings as they were to other individuals. This has previously been observed 
using 16S rRNA gene profiling (Flores et al., 2014). In their study Flores at al. 
demonstrated that increased alpha diversity was associated with increased 
compositional stability. Although the gut microbiota is considered stable over 
time in adult individuals, the intra-individual compositional variability in our 
study accounted for 23% of the total variation between samples. We could not 
link any metabolic and inflammatory markers or measurable dietary patterns 
to intra-individual variability. Individuals with a more stable composition had 
higher abundance of Faecalibacterium prausnitzii and several Bifidobacterium 
species as well as a trend for higher gene richness.  

F. prausnitzii in one of the most abundant species in the normal gut microbiota 
and was the most abundant species in our cohort in Paper II. It produces 
butyrate via butyryl coenzyme A (CoA):acetate-CoA transferase primarily 
from acetate (Duncan et al., 2002). It is an obligate anaerobe but it has the 
possibility to grow under low oxygen tension, in the presence of reduced 
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of lactate utilized by E. hallii for butyrate production and the second was 
through degradation of partial breakdown of fructo-oligosaccharides, which 
species such as Roseburia sp. can use for butyrate production.  

In a study of children’s microbiota at 9 months in Denmark the abundance of 
Megasphaera, Veillonella and Haemophilus was associated with exclusively 
breastfeeding the first 6 months (Laursen et al., 2016). In this study they did 
not see associations between how early or late solid food was introduced in 
complement to breastmilk. Instead the age when exclusively breastfeeding 
ceased had significant effects on the microbiota at 9 months of age. This reflect 
observations form the metagenome study of a subset of the children in the 
cohort in Paper I from their first year (Bäckhed et al., 2015) where the duration 
of breastfeeding affects their gut microbiota composition at 12 months. In 
Paper I we observed that the subset of children still breastfeeding at 12 months 
had a significant different gut microbiota with higher abundance of 
Bifidobacterium. We did however not observe any significant differences in 
alpha diversity in their microbiota and they are not overrepresented in any of 
the community types seen at 12 months. The differences observed in 
community types at 12 months, with higher alpha diversity in the community 
types characterized by higher abundance of unclassified Ruminococcaceae, 
Faecalibacterium and Roseburia and lower abundance of facultative 
anaerobes, have previously been linked to progression toward family food and 
introduction of more fiber and protein rich food (Laursen et al., 2016). 

To summarize, the development of the children’s gut microbiota from a low 
diverse gut microbiota dominating of Bifidobacterium and facultative 
anaerobes, in our study exemplified by the samples from the children at 4 
months, and into an adult like gut microbiota, exemplified by the microbiota 
composition in mainly 3-years and 5-years samples, passes an altered state 
exemplified by the samples from the children at 12 months. How factors such 
as breast feeding and different dietary components shape the community to 
prepare for acquiring abundant adult core microbes is still not known. This 
acquisition also seems necessary for gaining low abundant species, with 
specific functions in the gut, which have been found linked to a high 
community richness and healthy phenotypes in adults. 

4.2 GUT MICROBIOTA DYNAMICS IN ADULTS 
In Paper II we investigate dynamics in the gut microbiota by longitudinal 
sampling during a time period of a year in a normal population (S3WP), age 
50-64 years, using whole genome metagenomics. In addition to investigation 
of compositional variability and different types of variability pattern in the gut 
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microbiota we also identified factors that are associated with high and low 
variability.  

4.2.1 COMPOSITIONAL VARIABILITY 
The core microbiota can be defined in different ways, that depend on the 
taxonomical levels but also the percentage of individuals who present the taxa, 
as well as the methodology used. In Paper II we elaborated our results with 
respect to the results of previous large cross-sectional population studies as 
well as results of longitudinally densely sampled time-series, which generally 
contained small number of subjects. Overall, we observe that the core taxa 
identified in the majority of samples is only a fraction of all taxa present in the 
combined samples (Caporaso et al., 2011; David et al., 2014a). In our study of 
individuals sampled four times over a year we observed that the core 
microbiota is increased if the criteria of temporally presence was used. Adding 
this information implies that temporal dynamics for many taxa is part of the 
normal gut microbiota. This is also observed in studies with consistent seasonal 
fluctuations, due to seasonal dietary patterns in individuals within the Hadza 
hunter-gatherers in Tanzania (Smits et al., 2017). In our Swedish population 
there was no such strict seasonal dietary pattern and we thus did not find any 
seasonal variation. 

In Paper II we could demonstrate, using whole genome metagenomics, that 
the gut microbiota compositional variability is an individual feature in an adult 
population. Some individuals, within a normal population without known 
diseases, had similar microbiota composition between repeated samplings, 
whereas other individuals were almost as different between their repeated 
samplings as they were to other individuals. This has previously been observed 
using 16S rRNA gene profiling (Flores et al., 2014). In their study Flores at al. 
demonstrated that increased alpha diversity was associated with increased 
compositional stability. Although the gut microbiota is considered stable over 
time in adult individuals, the intra-individual compositional variability in our 
study accounted for 23% of the total variation between samples. We could not 
link any metabolic and inflammatory markers or measurable dietary patterns 
to intra-individual variability. Individuals with a more stable composition had 
higher abundance of Faecalibacterium prausnitzii and several Bifidobacterium 
species as well as a trend for higher gene richness.  

F. prausnitzii in one of the most abundant species in the normal gut microbiota 
and was the most abundant species in our cohort in Paper II. It produces 
butyrate via butyryl coenzyme A (CoA):acetate-CoA transferase primarily 
from acetate (Duncan et al., 2002). It is an obligate anaerobe but it has the 
possibility to grow under low oxygen tension, in the presence of reduced 
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compounds such as riboflavin, cysteine and glutathione (Khan et al., 2012). 
Through this property F. prausnitzii can possibly exploit a niche for growth in 
proximity of the colonic wall, where oxygen can diffuse from the circulation. 
The oxygen consumption in F. prausnitzii is accompanied with decreased 
butyrate production, so it appears to come with a cost.  

In the validation population from the extended Human microbiome program 
(Lloyd-Price et al., 2017) we did not observe any species linked to 
compositional variability and potentially representing a stability factor in the 
fecal communities. However, this population is more heterogeneous in the 
range of age and in the time intervals of samplings. In another longitudinally 
sampled American population, aged of 20-40 years, the authors identified that 
different Alistipes species and Bacteroides uniformis were positively 
correlated to compositional stability (Johnson et al., 2019). We observed 
differences between the Swedish population and the American population with 
higher abundances of species within the phylum Bacteroidetes in the American 
population, which also has been observed when compared to other European 
populations (Falony et al., 2016). Potentially, the same stabilizing functions 
could be represented by different species in different populations.  

4.2.2 VARIABILITY PATTERNS IN THE GUT MICROBIOTA 
In Paper II we also investigated different variability pattern of microbial 
species in the gut. We observed, as others have seen before us, that the ranges 
of abundances of individual bacterial species vary between individuals 
(Human Microbiome Project, 2012; Turnbaugh et al., 2009). Some species had 
high abundance with a small range, while other species had lower abundance 
and small ranges. However, there were also species that could be detected at 
high abundances in some individuals but low abundances in others, with a 
bimodal distribution. We could validate these results in the extended Human 
microbiome project. Next, we investigated if these large spans in abundance 
were due to actual large differences between individuals or due to fluctuations 
within the individuals over time (Figure 3).  

Among the species with most stable abundance within individuals, we found 
species with the potential to produce butyrate but also many Clostridium 
species and Ruminococcus gnavus. In general, high abundant species were less 
variable, which has previously been observed in other longitudinal studies 
(Mehta et al., 2018). However, we observed also low abundant species with 
very consistent abundance within individuals over time. Among these we 
observed Clostridium scindens, which can dehydroxylate primary bile acids 
into secondary bile acids in the large intestine (Kitahara et al., 2000).   
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Figure 3. Examples of species with different variability patterns. Randomly 
subsampled from data from Paper II. Each line is one person’s abundances at 4 visits. 

Species such as Prevotella copri was identified as a stable species with most 
of the variation between individuals. This species was prevalent among the 
species containing microbial ‘codes’ from which individual’s microbiomes 
could be recognized (Franzosa et al., 2015). Methanobrevibacter smithii was 
also identified as the most variable species where most of the variability was 
due to inter-individual variation. Species that are stable within an individual 
but with large differences between individuals suggest that they may be 
interesting biomarkers in longitudinal or intervention studies. However, their 
large inter-individual variation requires large observed effect sizes to be 
powered in cross-sectional settings.   
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compounds such as riboflavin, cysteine and glutathione (Khan et al., 2012). 
Through this property F. prausnitzii can possibly exploit a niche for growth in 
proximity of the colonic wall, where oxygen can diffuse from the circulation. 
The oxygen consumption in F. prausnitzii is accompanied with decreased 
butyrate production, so it appears to come with a cost.  

In the validation population from the extended Human microbiome program 
(Lloyd-Price et al., 2017) we did not observe any species linked to 
compositional variability and potentially representing a stability factor in the 
fecal communities. However, this population is more heterogeneous in the 
range of age and in the time intervals of samplings. In another longitudinally 
sampled American population, aged of 20-40 years, the authors identified that 
different Alistipes species and Bacteroides uniformis were positively 
correlated to compositional stability (Johnson et al., 2019). We observed 
differences between the Swedish population and the American population with 
higher abundances of species within the phylum Bacteroidetes in the American 
population, which also has been observed when compared to other European 
populations (Falony et al., 2016). Potentially, the same stabilizing functions 
could be represented by different species in different populations.  

4.2.2 VARIABILITY PATTERNS IN THE GUT MICROBIOTA 
In Paper II we also investigated different variability pattern of microbial 
species in the gut. We observed, as others have seen before us, that the ranges 
of abundances of individual bacterial species vary between individuals 
(Human Microbiome Project, 2012; Turnbaugh et al., 2009). Some species had 
high abundance with a small range, while other species had lower abundance 
and small ranges. However, there were also species that could be detected at 
high abundances in some individuals but low abundances in others, with a 
bimodal distribution. We could validate these results in the extended Human 
microbiome project. Next, we investigated if these large spans in abundance 
were due to actual large differences between individuals or due to fluctuations 
within the individuals over time (Figure 3).  

Among the species with most stable abundance within individuals, we found 
species with the potential to produce butyrate but also many Clostridium 
species and Ruminococcus gnavus. In general, high abundant species were less 
variable, which has previously been observed in other longitudinal studies 
(Mehta et al., 2018). However, we observed also low abundant species with 
very consistent abundance within individuals over time. Among these we 
observed Clostridium scindens, which can dehydroxylate primary bile acids 
into secondary bile acids in the large intestine (Kitahara et al., 2000).   
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Figure 3. Examples of species with different variability patterns. Randomly 
subsampled from data from Paper II. Each line is one person’s abundances at 4 visits. 

Species such as Prevotella copri was identified as a stable species with most 
of the variation between individuals. This species was prevalent among the 
species containing microbial ‘codes’ from which individual’s microbiomes 
could be recognized (Franzosa et al., 2015). Methanobrevibacter smithii was 
also identified as the most variable species where most of the variability was 
due to inter-individual variation. Species that are stable within an individual 
but with large differences between individuals suggest that they may be 
interesting biomarkers in longitudinal or intervention studies. However, their 
large inter-individual variation requires large observed effect sizes to be 
powered in cross-sectional settings.   
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In Paper II we could show that species with large variation and with the 
majority of variation due to fluctuation within an individual were mostly 
facultative anaerobes, such as species from the Proteobacteria and particularly 
Enterobacteriaceae family, but also lactic acid producing bacteria such as 
Lactobacillus. The abundances of Enterobacteriaceae could be measured 
within the whole range of detection in the Swedish normal population. This 
was also validated in the extended human microbiome project population. 
Intra-individual compositional variation was weakly associated with higher 
average abundance of several facultative anaerobes in this normal population. 
Nevertheless, we observed negative correlations between changes in F. 
prausnitzii and Enterobacteriaceae such as Escherichia coli, Escherichia 
albertii and Citrobacter youngae. We thus concluded that these blooms of 
facultative anaerobes such as Enterobacteriaceae are part of the normal 
dynamics of the gut microbiota and occurs when F. prausnitzii levels are 
reduced. This has also been seen in densely sampled time series of healthy 
individuals (Gibbons et al., 2017).  

It is important to keep a low oxygen tension, or a low redox potential, to 
maintain the abundance of strict anaerobes and butyrate producing bacteria, 
thus maintaining normal gut microbiota functions. Host-bacteria interactions 
are suggested to be responsible for maintaining low redox potential and 
sustained butyrate production in the colon (Byndloss et al., 2018). A low redox 
potential is necessary for growth of obligate anaerobes and the production of 
fermentation products such as butyrate, which is the major nutrient source for 
the colonocytes. Oxygen from the circulation that is passively diffusing 
through the intestinal epithelium increases the redox potential in the gut lumen 
(Albenberg et al., 2014; Espey, 2013). Butyrate activates epithelial PPRAg 
which shifts energy metabolism in the epithelium towards oxygen consuming 
beta-oxidation (Byndloss et al., 2017). This process reduces the influx of 
oxygen from the circulation to the intestinal lumen, thus maintaining the low 
oxygen environment that is required for sustained butyrate production. 
Increased oxygen, or higher redox-potential in the gut lumen is associated with 
a shift from obligate anaerobes to facultative anaerobes (Rivera-Chavez et al., 
2017). This loss of hypoxia in the gut is suggested to contribute to the signals 
of increase abundance of facultative anaerobes, such as Proteobacteria, and has 
negative effects on host epithelial function (Litvak et al., 2017).  

Since blooms in facultative anaerobes is part of a normal dynamics of the gut 
microbiota, changes in these dynamics in disease can only be determined 
through repeated samplings of individuals with and without disease. Repeated 
sampling is required to determine if blooms of facultative anaerobes are 
potentially more frequent in a disease gut microbiota.  
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We did not find any significant correlations between dietary intake, or change 
in dietary intake on macronutrient level, and compositional variability in the 
participants in Paper II. This could be due to individuality in response to diet. 
In a study of daily sampled individuals along with investigating dietary records 
the authors could predict the gut microbiota composition based on the dietary 
intake with one day lag (Johnson et al., 2019). However, this prediction was 
individual-specific and could not be applied to other individuals. This indicates 
that the effects of diet composition are highly dependent on the individual gut 
microbiota composition. In this study it was also observed that individual food 
items had better prediction compared to if they were summarized into micro- 
and macronutrients. These results suggest that components in the diet, which 
influences the gut microbiota, are not included in these tools or that categories, 
such as fiber, are too general to have resolution for the gut microbiota 
variability. The lack of associations found between diets and gut microbiota 
dynamics in Paper II most likely were due to lack of consistent response to 
diet and limitations in tools used for dietary records.  

4.2.3 VARIATION IN MICROBIOME FUNCTION 
In Paper II we observed that the total variation for functional gene families in 
the metagenomes was much smaller compared to variation of microbiota 
species, which is not surprising since functional redundancy is an important 
feature of the normal gut microbiota. However, we observed that the majority 
of variation in gene families was due to intra-individual fluctuation. This is 
consistent with longitudinal multi-omics studies with healthy individuals 
(Zhou et al., 2019).  

Among the functions with low variation were functions within the ‘minimal 
gut genome’ (Qin et al., 2010). Pathways involved in butyrate production from 
carbohydrate metabolism (CENTFERM-PWY: pyruvate fermentation to 
butanoate and PWY-5676: acetyl-CoA fermentation to butanoate II) were not 
among the least variable but had low fluctuation within individuals over time. 
Whereas, pathways of butyrate production from amino acids (PWY-5022: 4-
aminobutanoate degradation V and P163-PWY: L-lysine fermentation to 
acetate and butanoate) had a large component of within individual fluctuation. 
Butyrate production from amino acid is just a limited fraction of the total 
potential for butyrate production in the human gut but has been found increased 
in disease populations, such as type-2-diabetes (Vital et al., 2017). 

Functions with the largest total variation also had a large component of intra-
individual variation and were dominated by functions for catabolism of sugars, 
fermentative processes (e.g., production of lactate, acetate, propionate and 
butyrate), glyoxylate cycle, TCA and modified TCA cycles. Biosynthesis of 
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In Paper II we could show that species with large variation and with the 
majority of variation due to fluctuation within an individual were mostly 
facultative anaerobes, such as species from the Proteobacteria and particularly 
Enterobacteriaceae family, but also lactic acid producing bacteria such as 
Lactobacillus. The abundances of Enterobacteriaceae could be measured 
within the whole range of detection in the Swedish normal population. This 
was also validated in the extended human microbiome project population. 
Intra-individual compositional variation was weakly associated with higher 
average abundance of several facultative anaerobes in this normal population. 
Nevertheless, we observed negative correlations between changes in F. 
prausnitzii and Enterobacteriaceae such as Escherichia coli, Escherichia 
albertii and Citrobacter youngae. We thus concluded that these blooms of 
facultative anaerobes such as Enterobacteriaceae are part of the normal 
dynamics of the gut microbiota and occurs when F. prausnitzii levels are 
reduced. This has also been seen in densely sampled time series of healthy 
individuals (Gibbons et al., 2017).  

It is important to keep a low oxygen tension, or a low redox potential, to 
maintain the abundance of strict anaerobes and butyrate producing bacteria, 
thus maintaining normal gut microbiota functions. Host-bacteria interactions 
are suggested to be responsible for maintaining low redox potential and 
sustained butyrate production in the colon (Byndloss et al., 2018). A low redox 
potential is necessary for growth of obligate anaerobes and the production of 
fermentation products such as butyrate, which is the major nutrient source for 
the colonocytes. Oxygen from the circulation that is passively diffusing 
through the intestinal epithelium increases the redox potential in the gut lumen 
(Albenberg et al., 2014; Espey, 2013). Butyrate activates epithelial PPRAg 
which shifts energy metabolism in the epithelium towards oxygen consuming 
beta-oxidation (Byndloss et al., 2017). This process reduces the influx of 
oxygen from the circulation to the intestinal lumen, thus maintaining the low 
oxygen environment that is required for sustained butyrate production. 
Increased oxygen, or higher redox-potential in the gut lumen is associated with 
a shift from obligate anaerobes to facultative anaerobes (Rivera-Chavez et al., 
2017). This loss of hypoxia in the gut is suggested to contribute to the signals 
of increase abundance of facultative anaerobes, such as Proteobacteria, and has 
negative effects on host epithelial function (Litvak et al., 2017).  

Since blooms in facultative anaerobes is part of a normal dynamics of the gut 
microbiota, changes in these dynamics in disease can only be determined 
through repeated samplings of individuals with and without disease. Repeated 
sampling is required to determine if blooms of facultative anaerobes are 
potentially more frequent in a disease gut microbiota.  

Lisa Olsson 

33 

We did not find any significant correlations between dietary intake, or change 
in dietary intake on macronutrient level, and compositional variability in the 
participants in Paper II. This could be due to individuality in response to diet. 
In a study of daily sampled individuals along with investigating dietary records 
the authors could predict the gut microbiota composition based on the dietary 
intake with one day lag (Johnson et al., 2019). However, this prediction was 
individual-specific and could not be applied to other individuals. This indicates 
that the effects of diet composition are highly dependent on the individual gut 
microbiota composition. In this study it was also observed that individual food 
items had better prediction compared to if they were summarized into micro- 
and macronutrients. These results suggest that components in the diet, which 
influences the gut microbiota, are not included in these tools or that categories, 
such as fiber, are too general to have resolution for the gut microbiota 
variability. The lack of associations found between diets and gut microbiota 
dynamics in Paper II most likely were due to lack of consistent response to 
diet and limitations in tools used for dietary records.  

4.2.3 VARIATION IN MICROBIOME FUNCTION 
In Paper II we observed that the total variation for functional gene families in 
the metagenomes was much smaller compared to variation of microbiota 
species, which is not surprising since functional redundancy is an important 
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of variation in gene families was due to intra-individual fluctuation. This is 
consistent with longitudinal multi-omics studies with healthy individuals 
(Zhou et al., 2019).  

Among the functions with low variation were functions within the ‘minimal 
gut genome’ (Qin et al., 2010). Pathways involved in butyrate production from 
carbohydrate metabolism (CENTFERM-PWY: pyruvate fermentation to 
butanoate and PWY-5676: acetyl-CoA fermentation to butanoate II) were not 
among the least variable but had low fluctuation within individuals over time. 
Whereas, pathways of butyrate production from amino acids (PWY-5022: 4-
aminobutanoate degradation V and P163-PWY: L-lysine fermentation to 
acetate and butanoate) had a large component of within individual fluctuation. 
Butyrate production from amino acid is just a limited fraction of the total 
potential for butyrate production in the human gut but has been found increased 
in disease populations, such as type-2-diabetes (Vital et al., 2017). 

Functions with the largest total variation also had a large component of intra-
individual variation and were dominated by functions for catabolism of sugars, 
fermentative processes (e.g., production of lactate, acetate, propionate and 
butyrate), glyoxylate cycle, TCA and modified TCA cycles. Biosynthesis of 
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components for electron transfer chains (e.g., phylloquinol, menaquinones and 
demethylmenaquinones) as well as potential functions for the synthesis of 
amino acids (e.g., arginine, tyrosine and tryptophan) and for production of co-
factors, such as vitamin K, biotin and folate were also among the functions 
with large intra-individual variation. We found that these functions were linked 
to less redundancy in the metagenomes and with larger intra-individual 
variation in the taxa with these functions. The main contributors to these 
pathways were often Gammaproteobacteria, such as E. coli and Citrobacter 
freundii. This suggests that intra-individual fluctuation in functional potential 
could reflect more intra-individual variation in facultative anaerobes such as 
Enterobacteriaceae.  

Since a stable functional potential in the gut microbiome characterizes a 
healthy microbiome (Bäckhed et al., 2012; Gibbons, 2019), altered variability 
in functional potential could be seen in diseases.  More variation in functional 
potential of metagenomes was observed in populations with type-2-diabetes 
and prediabetes compare to a normal population (Bradley and Pollard, 2017). 
Due to intra-individual variation repeated measurements have been 
recommended for accurate prediction of taxonomic and functional potential 
abundance (Poyet et al., 2019). Poyet et al. concludes that the variance of 
estimation was greatly reduced when including 5 to 9 longitudinal samples. 

4.3 FEATURES OF A HEALTHY GUT 
MICROBIOTA 

In PaperIII we investigated the gut microbiota of obese individuals with the 
genetic syndrome Prader-Willi syndrome (PWS) and compared it to the gut 
microbiota of fat mass matched individuals with simple obesity (OC), as well 
as a non-obese group (PWS-parents). Since less metabolic complications have 
been observed in individuals with Prader-Willi syndrome compared to 
individuals with simple obesity, we hypothesized that PWS may have features 
in the gut microbiota linked to metabolic health.  

4.3.1 HEALTHY ECOLOGICAL SYSTEM 
In ecology theory, a stable ecological system is characterized by a community 
in equilibrium that is resistant to effects from perturbations and high resilience 
to recover after a perturbation (Sommer et al., 2017). Complex ecosystems, 
such as the microbial community in the gut, are thought to exist in limited 
number of stable states (Beisner et al., 2003). When a perturbation is too large, 
or the resilience limited, the community may adopt a new compositional state 
(Holling, 1973). This is a proposed explanation for the gut microbiota 
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compositional differences seen in disease (Sommer et al., 2017). However, this 
explanation is also debated. Particularly, current studies are not sufficient to 
determine whether the shift in disease occur from a healthy stable state to a 
new altered stable state that characterizes the disease, or whether disease 
communities may originate from a variety of less stable states, stochastically 
determined (Zaneveld et al., 2017). For the latter scenario, the ‘Anna Karenina 
principle’ is one alternative explanation to the disease microbiota 
configuration. From Tolstoy’s “all happy families are alike but each unhappy 
family is unhappy in its own way”, the Anna Karenina principle applied to 
microbial communities states that gut microbiota composition of individuals 
with a disease is more heterogenous compared to the composition of controls 
(Diamond, 1997). This mean that the gut communities of healthy people are 
more similar, measured by lower beta-diversity metrics between samples, than 
among individuals within a disease group. The Anna Karenina effect is the 
result of microbial communities’ responses to stress or perturbations and the 
communities’ possibilities to regulate community composition. In ordination 
representation of  beta diversity measurements, these effects result in that 
disease individuals form more heterogenous groups overlapping with healthy 
controls rather than forming new groups separated from healthy controls 
(Zaneveld et al., 2017).  

Consistent with that individuals with PWS are more metabolically healthy 
compared to subjects with OC, we found compositional differences in the gut 
microbiota between the PWS group and OC but not between the PWS and 
PWS-parents. The heterogeneity of the samples in the OC group was also 
larger compared to the other two groups, measured as larger beta diversity 
between the samples within the OC group compared to samples within the 
other two groups. These results indicate that the homogeneous composition 
observed in the individuals with PWS was a feature of the more metabolically 
healthy obese state. The composition in the gut communities in the OC group 
was different from the PWS and non-obese group but this difference was due 
to the larger dispersion of OC samples rather than formation of a new group 
representing the composition of OC samples, which suggested a more instable 
composition according to the Anna Karenina principle. 

Differences in composition, due to heterogeneity among disease individuals 
rather than complete shift in composition, has also been observed in 
individuals with inflammatory bowel disease (Pascal et al., 2017; Ryan et al., 
2020). In the work by Halfvarson el al. they define a ‘healthy plane’ in the 
ordination representation and follow patients with different types of 
inflammatory bowel disease over time (Halfvarson et al., 2017). They observed 
that healthy individuals move within this ‘healthy plane’ but that patients with 
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inflammatory bowel disease occasionally move outside of this plane. The 
compositional variability outside of the healthy plane was associated to 
increase in Enterobacteriaceae and decrease in Prevotella copri and 
Faecalibacterium prausnitzii suggesting that fluctuations of abundance in 
these species affect the gut microbiota composition and that the variation in 
abundance of these species is outside of normal variation.  

Similar conclusions have also been made when clustering samples using 
Dirichlet multinomial mixtures (Holmes et al., 2012). In this study they found 
that samples from obese individuals distributed differently in clusters than 
samples from lean controls. However, the clusters observed in lean and obese 
were the same. The obese individuals also formed a less homogenous group in 
the ordination representation compared with the lean controls. These 
observations could either imply that the gut microbiota is not affected by the 
obesity status in all obese individuals or that the gut microbiota in obese 
individuals is less stable. The same is also observed in individuals with 
inflammatory bowel disease (Vieira-Silva et al., 2019). They also identified 
four clusters of samples, here called enterotypes, overlapping with the three 
enterotypes originally defined by Arumugam et al. in 2011. Distribution in the 
four enterotypes was different for samples from patients with inflammatory 
bowel disease and a normal population. The highest frequency of samples 
within the new enterotype B2 was observed from samples originating from 
patients with Crohn´s disease.  However, the enterotypes were overlapping and 
there was no new compositional configuration without samples from controls. 
This B2 ‘enterotype’ has also, apart from inflammatory bowel disease, been 
associated to depression status (Valles-Colomer et al., 2019). In Paper II we 
investigated the stability of the community types in adults, often called 
enterotypes. We could identify three enterotypes in the Swedish normal 
population, missing the enterotype named B2. This is most likely due to lack 
of enough samples which would cluster into this configuration, due to the 
healthy status of the individuals in this population. In our population 45% of 
the individuals changed enterotype over the course of a year. This indicates 
that all three enterotypes could be associated to healthy gut microbiota and that 
enterotypes should not be used as a predictive tool. Instead it can be used as a 
way to understand how different gut microbiota configurations are distributed 
among different groups. 

In a study investigating the effects of a dietary intervention in children with 
Prader-Willi syndrome and simple obesity the authors did not find any 
differences in the gut microbiota between patients with and without the 
syndrome (Zhang et al., 2015). The patients in Paper III were adults and the 
discrepancy in results between our results and the results in the children could 
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be due to age. The effects on the microbiota due to increased adiposity could 
either develop over time and might not be observed in younger ages. The range 
of ages in the Zhang et al. study is also quite large and the heterogeneity of 
ages could also contribute to the lack of result.   

4.3.2 COMMUNITY RICHNESS 
Since community richness is a consistent marker in the gut microbiota found 
linked to health in cross-sectional studies we also investigated taxa linked to 
alpha diversity, measured as Faith’s phylogenetic diversity (Faith, 1992), as 
well as to metabolic parameters in the obese individuals in Paper III. We 
found correlations between taxa and Faith’s phylogenetic diversity, fasting 
insulin, plasma triglycerides as well as to HOMA-IR, a measurement of insulin 
resistance in fasting state. We found positive correlations between increased 
alpha diversity, as well healthier metabolic values, and the taxa annotated as 
the Archaea Methanobrevibacter, Oscillospira, Coprococcus, taxa from the 
Christensenellaceae family and several taxa from the Ruminococcaceae 
family. Negative correlations where sparser but among them where the 
correlation to taxa annotated as Ruminococcus gnavus, which was positively 
correlated with increase fasting insulin and increase plasma triglycerides. 
Lower community richness is a consistent marker found in metabolic diseases 
such as the metabolic syndrome (Le Chatelier et al., 2013), glucose 
deregulation (Allin et al., 2018; Forslund et al., 2015) and obesity (Aron-
Wisnewsky and Clement, 2014; Cotillard et al., 2013) but also in inflammatory 
disease such as inflammatory bowel disease (Duvallet et al., 2017).   

Using fecal microbiota transplantations into germ-free mice we could verify 
that the richness phenotype that discriminated communities of obese 
individuals with Prader-Willi and simple obesity was transferred in the mice 
and influenced the physiology, especially on the insulin sensitivity.  

Since alpha diversity is acquired over time in the developing gut microbiota 
we also correlated alpha diversity to taxa in the children at the different ages, 
as well as in the adults, in Paper I. At 12 months taxa with high identity to 
Faecalibacterium and Eubacterium rectale associated to increase alpha 
diversity. These are taxa, which in studies of children up to 2 years of age, 
contributed to an increased maturity of the gut microbiota and associated to 
age-adjusted richness (Blanton et al., 2016; Subramanian et al., 2014). In the 
children at the older ages, at 3 years and 5 years and in the adults, we found 
different taxa correlating to alpha diversity. Increased alpha diversity 
correlated to taxa with unspecific species classification from the Firmicutes 
phylum and the families Ruminococcaceae, Lachnospiraceae and 
Christensenellaceae as well as Methanobrevibacter. In Paper I 
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Methanobrevibacter and Christensenellaceae were among the late blooming 
genera, following the fourth trajectory of genera, which increasing abundance 
between 3 year and 5 year and with significant higher abundance in the adult 
community types compared to communities dominated by 3-year and 5-year-
old children. Within all ages we found taxa with high identity to Ruminococcus 
gnavus negatively correlating to alpha diversity. These taxa decreased in 
abundance from 12 months to 5 year in Paper I.  

Taxa within Christensenellaceae are identified as among the most heritable 
bacteria. The abundance of taxa within Christensenellaceae family are linked 
genetic traits but not vertical transmitted or inherited from parent to child. In 
the same study, and replicated in other populations, Christensenellaceae was 
also associated to lower BMI (Goodrich et al., 2014; Waters and Ley, 2019). 
Methanobrevibacter has also been identified as heritable (Goodrich et al., 
2014) and in twin studies found with higher concordance in monozygotic twins 
(Hansen et al., 2011).  In a following study in 1313 twins within the TwinUK 
study the authors associated higher abundance of these heritable taxa and 
higher alpha diversity to less visceral fat and other measurements of adiposity 
(Beaumont et al., 2016). Others have also seen negative association between 
Christensenellaceae and trunk and android fat (Hibberd et al., 2019). 
Christensenellaceae have also been linked to a more healthier lipid profile, 
lower plasma triglycerides and reduced in individuals with metabolic 
syndrome (Fu et al., 2015; He et al., 2018a; Hibberd et al., 2019) and to healthy 
glucose metabolism (Lim et al., 2017; Lippert et al., 2017). Oscillospira is an 
uncultured bacterial genus, belonging to the Ruminococcaceae family, which 
is frequently detected in the human gut microbiota using 16S rRNA gene 
profiling and has been linked to leanness and health (Konikoff and Gophna, 
2016).  

In a meta-analysis of individuals with inflammatory bowel disease including a 
total of 3000 individuals, in 28 studies of patients with Crohn’s disease, 
ulcerative colitis and pseudomembranous colitis compared with controls, the 
most consistent signal among studies was a decrease in alpha diversity, 
depletion of Christensenellaceae and unclassified Ruminococcus and an 
increase in facultative anaerobes (Mancabelli et al., 2017). In a large study of 
individuals with inflammatory bowel disease they also observe that patients 
with Crohn’s disease have a less stable microbiota with a reduced diversity and 
identify a signature of lower abundance of Faecalibacterium, an unknown 
Peptostreptococcaceae, Anaerostipes, Methanobrevibacter, an unknown 
Christensenellaceae and Collinsella, but an increased abundance of 
Fusobacterium and Escherichia (Pascal et al., 2017). 
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5 SUMMARY AND CONCLUSIONS 
In Paper I we followed a large cohort of children longitudinally from birth to 
the age of 5 years. Children at 5 years of age, although displaying a more adult-
like microbiota than at younger ages, still had a less diverse microbiota and 
altered composition compared to an adult Swedish population, suggesting that 
the microbiota is still developing at the age of 5.  

The microbiota at 12 months represented the transitional phase of the gut 
microbiota from infant to an adult lite microbiota. We observed that the speed 
of transition through this phase was different in different children.  

 In Paper I we observed that bacterial genera followed different trajectories 
during the succession of the gut microbiota. We identified a group of late 
bloomers which increased in prevalence and abundance after the establishment 
of adult core microbiota species. Several of these we found associated with 
increased richness in children and in adults, and still at 5 years significantly 
lower in abundance compared to adults. We also found these associated do 
reduced insulin resistance, healthier lipid profiles and microbiota richness in 
obese individuals in Paper III. 

In Paper II we investigated the dynamics of the gut microbiota in a normal 
adult population and identified species following different variability patterns. 
We found that large fluctuations in facultative anaerobes such as the 
Enterobacteriaceae family, both on functional and taxonomical level, were part 
of the normal gut microbiota dynamics. This expansion may be buffering 
increased oxygen influx in the gut to maintain the ecosystem. This observation 
also indicates that aerobe respiration and a dysbiosis-associated microbiota 
based on the expansion of Proteobacteria, (Litvak et al., 2017), might be 
misleading, as large fluctuations in Proteobacteria normally occur also in the 
absence of diseases.  

However, the environmental conditions do not only result in taxonomic 
alterations they can also cause changes in the metabolism of species in the 
microbiota (Yoo and Byndloss, 2020). Kitamoto et al. suggests that in an 
inflammatory environment the metabolic pathways for Escherichia coli LF82 
is reprogramed to adapt to these conditions which results in a shift in 
metabolism to a catabolize L-serine for maximizing growth. However, L-
serine catabolism had very limiting effect on the fitness in the healthy gut 
(Kitamoto et al., 2020). This show that it is not only important to understand 
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5 SUMMARY AND CONCLUSIONS 
In Paper I we followed a large cohort of children longitudinally from birth to 
the age of 5 years. Children at 5 years of age, although displaying a more adult-
like microbiota than at younger ages, still had a less diverse microbiota and 
altered composition compared to an adult Swedish population, suggesting that 
the microbiota is still developing at the age of 5.  

The microbiota at 12 months represented the transitional phase of the gut 
microbiota from infant to an adult lite microbiota. We observed that the speed 
of transition through this phase was different in different children.  
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during the succession of the gut microbiota. We identified a group of late 
bloomers which increased in prevalence and abundance after the establishment 
of adult core microbiota species. Several of these we found associated with 
increased richness in children and in adults, and still at 5 years significantly 
lower in abundance compared to adults. We also found these associated do 
reduced insulin resistance, healthier lipid profiles and microbiota richness in 
obese individuals in Paper III. 

In Paper II we investigated the dynamics of the gut microbiota in a normal 
adult population and identified species following different variability patterns. 
We found that large fluctuations in facultative anaerobes such as the 
Enterobacteriaceae family, both on functional and taxonomical level, were part 
of the normal gut microbiota dynamics. This expansion may be buffering 
increased oxygen influx in the gut to maintain the ecosystem. This observation 
also indicates that aerobe respiration and a dysbiosis-associated microbiota 
based on the expansion of Proteobacteria, (Litvak et al., 2017), might be 
misleading, as large fluctuations in Proteobacteria normally occur also in the 
absence of diseases.  

However, the environmental conditions do not only result in taxonomic 
alterations they can also cause changes in the metabolism of species in the 
microbiota (Yoo and Byndloss, 2020). Kitamoto et al. suggests that in an 
inflammatory environment the metabolic pathways for Escherichia coli LF82 
is reprogramed to adapt to these conditions which results in a shift in 
metabolism to a catabolize L-serine for maximizing growth. However, L-
serine catabolism had very limiting effect on the fitness in the healthy gut 
(Kitamoto et al., 2020). This show that it is not only important to understand 
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which bacteria are there but also how different environmental states affect their 
metabolism. 

Facultative anaerobes in the microbial community of infants and adults might 
have different roles. In a model of late-onset sepsis in mice Lactobacillus sp. 
and Escherichia coli were required for development of the intestinal 
microbiota to prevent expansion of species causing late-onset sepsis (Singer et 
al., 2019). The authors also identified that decreased oxygen levels in the gut 
is a major driver of beneficial colonization dynamics.  

However, similarities in gut microbiota observed in healthy children and adults 
with disease could reflect similarities in gut environment. A disease associated 
microbiota in cross-sectional settings share similarities to a low-diverse infant 
microbiota (younger than 2 years) and literature suggest a re-succession after 
perturbations which are similar to the succession in children (Kriss et al., 
2018). A secondary succession, with bloom of facultative anaerobes, could 
help restore abundance of obligate anaerobes and diversity. Facultative 
anaerobes are also identified as the first responder in recovery of an antibiotic 
treatment in adults (David et al., 2015; Dethlefsen et al., 2008; Jakobsson et 
al., 2010; Palleja et al., 2018). Shortly after antibiotic treatment, an increase in 
redox potential was observed in the gut in mice followed by a bloom of 
Enterobacteriaceae before returning to normal redox potential (Reese et al., 
2018). Therefore, these results suggest that the dynamics of Enterobacteriaceae 
is important for maintaining redox homeostasis in the adult gut.  

We also concluded that repeated sampling is required to account for temporal 
variation, when searching for functional relationships between the gut 
microbiota and disease. To correctly capture all dynamics, both stable and 
variable features, analysis of 5-9 samples spaced out 3-5 days apart is 
necessary in order to be able to correctly estimate the abundance of any given 
microbial taxa in a fecal sample (Poyet et al., 2019). 

In Paper III we found a more heterogenous gut microbiota composition in 
obese controls compared to obese individuals with Prader-Willi syndrome, 
with less insulin resistance and a healthier lipid profile, which, according to 
the Anna Karenina principle, indicate a more variable gut microbiota 
composition. Among the differently abundant taxa, between obese controls and 
individuals with Prader-Willi syndrome, in Paper III, we observed the 
majority decreased in obese controls. Similarly, we observed a sparse number 
of negative correlations to richness. This indicates that loss of microbial taxa 
constituted a consistent signal in the obese controls. However, other non-
consistent variation must also be present which can explain the larger 
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compositional variation we observed in the obese controls. During the blooms 
of conditional rare taxa (CRT) in healthy individuals Gibbons et al. also 
observed a temporal decrease in alpha diversity (Gibbons et al., 2017). This 
raises the question if the average lower alpha diversity observed in cross-
sectional studies of health and disease is due to an altered dynamic, with more 
prevalent blooms of CRT? Alpha diversity explained a large part of the 
compositional variation in Paper III but we did not observe any negative 
correlations between alpha diversity and facultative anaerobes. However, this 
does not necessarily mean that there were no associations between alpha 
diversity and blooms of CRT. An alternative explanation could be that the taxa 
blooming is not consistent in the obese controls but different in different 
individuals. The Anna Karenina principle states that heterogenous disease 
microbiota is due to stochastic alterations and these differences are thus not 
detected in correlation analysis. 

However, R. gnavus was one of the few taxa observed as negatively correlated 
to alpha diversity in Paper III. We also saw a clear relationship with R. gnavus 
and alpha diversity in Paper I, both between different ages and within the ages 
in the children and within the adults. This species is also seen frequently 
associated increased in inflammatory bowel disease (Png et al., 2010) and seen 
bloom in abundance corresponding to disease periods (Hall et al., 2017). Hall 
et al. also characterized strains of R. gnavus in patients and found them more 
resistant to oxidative stress. Functional potential for handling oxidative stress 
was also seen associated to low gene richness (Le Chatelier et al., 2013). 
Compared to the high intra-individual variation of facultative anaerobes 
observed in Paper II we identified R. gnavus as a stable feature in the gut 
microbiota, which could explain why this is a more robust marker of a low 
diverse community in a potentially less reduced environment. 
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6 FUTURE PERSPECTIVES 
In this thesis I have studied the dynamics of the normal gut microbiota in the 
view of what we know today is different in a disease gut microbiota. In the 
future we need to understand what differentiates disease dynamics from 
healthy and which functional changes characterize a disease-associated gut 
ecology. After this we can start to detangle if these changes are the cause or 
consequence of disease.  

To validate if there is more heterogeneity in a disease gut microbiota, compare 
to a non-disease due to less stable gut microbiota composition, repeated 
sampling in disease or pre-disease cohorts need to be performed to detect 
changes in dynamics. This is seen in the context of inflammatory bowel disease 
(Halfvarson et al., 2017) but could potentially be true in other disease, such as 
type-2-diabetes and other metabolic diseases.  

We observe, in line with a large amount of literature, a correlation between 
high gut microbiota richness and absence of disease. We also find Bacteria and 
Archaea associated with a high richness microbiota but we do not know which 
conditions are needed for these to grow in the community. We also do not 
know if they are just associated to a microbiota in a certain state or if or how 
they also contribute to this healthy state and to positive effects on the host 
physiology. 

For more reliable results in microbiota studies, towards the functional 
understanding of the microbiota in relation in disease and potential clinical and 
therapeutically implementations, we need to continue study the gut microbiota 
as an ecological system with a focus on stable markers.  

The microbial community changes along with the environment it lives in. By 
studying similarities in the gut microbiota during succession, where there is a 
decrease in redox-potential over time, and the gut microbiota in disease we 
could learn about environmental conditions that are key to gut microbiota 
stability and resilience. With in-vitro studies in gut simulators, we might be 
able to investigate how gut communities are affected by small changes in redox 
potential and identify key microbial homeostatic mechanisms. Important 
questions to answer will be whether the gut microbiota itself has the capacity 
to return to a reduced state, and which factors affect this process.  
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7 ETHICAL CONSIDERATIONS 
The Swedish research council guide to good research practice (2017) covers 
all aspect of how research should be guided and performed according to 
different ethical codes, guidelines and legal regulations. A central part in 
research ethics is how research participants are handled and one of the most 
central ethical codes are that no research should cause harm. A second central 
aim is that research should be useful and transparent. In 2016 the European 
union decided that the member states should implement open science for 
publicly funded research, which include open access of both publications and 
research data, following the FAIR-principles (2018). According to the FAIR-
principles the research data should be Findable, Accessible, Interoperable and 
Reusable. This to ensure optimal research integrity, open access of research 
publication and reuse of research data generated.  

In this thesis research data, in form of metagenomic data, has been generated 
from several human studies, all with approved ethical applications including 
informed consent from participants or legal guardian (ethical applications can 
be found in each individual paper). This data, will be submitted to public 
databases for nucleotide sequencing information (European Nucleotide 
Archive, ENA). This is important for the continued development of knowledge 
about the gut microbiota and disease and also provide another scientists 
opportunity to validate our analysis. This is especially important for normal 
populations to be used as a reference for how the gut microbiota are distributed 
in disease population. The datasets in this thesis, include cohorts with repeated 
samples, which are rare among published datasets of the gut microbiota. 
However, due to the data protection regulation (EU GDPR) 2016/679 only 
limiting amount of information together with the data will be available open 
access. This will limit the reusability of the data since the value of the data, in 
terms of for example the possibility to draw conclusion, adjust for co-varying 
factors and find associations, increase with the amount of additional data.  

According to General Data Protection Regulation (EU GDPR) 2016/679 for 
research on sensitive personal data require voluntarily informed consent, 
approved ethical application and that the research have fulfil general interest. 
Among the definitions of sensitive personal data are information about health, 
genetic data and biometric data which can be used to uniquely identify a 
person. This type of data is very valuable additional data to metagenomic data. 
The question is how valuable the open accessible data is without this data 
which due to the GDPR cannot be open access? To fulfill the larger goal of 
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open research accessibility to sensitive personal data but due to regulations of 
personal integrity (GDPR) is limited.   

Metagenomic data, even whole genome sequencing from all DNA extracted 
from samples as in Paper II, is today not classified as sensitive personal data. 
While other types of human genetic material have this classification. This 
discrepancy is for me a bit unclear.   

In article 4(13) GDPR ‘genetic data’ is defined as “personal data relating to the 
inherited or acquired genetic characteristics of a natural person which give 
unique information about the physiology or the health of that natural person 
and which result, in particular, from an analysis of a biological sample from 
the natural person in question”. ‘genetic data’ contain unique information 
about the individual which can differentiate them from other individuals.   

In fecal samples the amount of DNA from the human genome is quite low, 
around 1%, but in individual samples this can vary up to 20%. From data 
deposited to public databases researches have been able to access enough host 
genomic material to cover 5-20x of the host genome (Blekhman et al., 2015). 
In this study the metagenome data is from other body sites, containing larger 
amounts of host DNA in the samples, and not fecal sample. This however show 
that metagenomic samples may fulfill the requirement as ‘genetic data’. For 
this reason, the data deposited for Paper II have host data been filtered out.  
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