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ABSTRACT 

Ovarian cancer is a collective name for multiple malignancies deriving from or involving 
the ovary, mainly comprising five histotypes of epithelial origin (clear-cell (CCC), 
endometrioid (EC), high-grade serous (HGSC), low-grade serous (LGSC), and mucinous 
carcinomas (MC)) with varying clinical (e.g. risk factors, survival outcome, response to 
therapy) and molecular behavior (e.g. origin, genetic characteristics). Despite known 
differences in disease states, the majority of ovarian carcinomas are still treated as one 
entity with surgery, followed by chemotherapy. This treatment regimen is not adequate, 
which is reflected in relatively poor 5-year overall survival rates (55%) for ovarian cancer 
patients. Hence, there is a strong need for novel biomarkers for improved stratification of 
ovarian carcinoma patients based on a combination of individual molecular tumor 
characteristics and conventional clinicopathological features, which can further form the 
basis for the future development of novel targeted treatment options for ovarian cancer 
histotypes. 

This doctoral thesis focuses on early-stage (stage I and II) ovarian carcinomas for which 
limited information is available regarding molecular profiles associated with the diagnosis 
and prognosis of the different histotypes. In the first work, novel mutation and gene 
signatures were associated with histotype, overall survival (e.g. the tumor suppressor 
MTUS1), ovarian cancer (e.g. gene expression patterns for the long non-coding RNA 
MALAT1), and tumor aggressiveness (e.g. COL3A1). In the second and third works, 
histotype-specific prognostic gene signatures were validated on the protein level using 
immunohistochemistry identifying 20 prognostic biomarkers (11 CCC-associated 
biomarkers (ARPC2, CCT5, GNB1, KCTD10, NUP155, PITHD1, RPL13A, RPL37, SETD3, 
SMYD2, and TRIO), three EC-associated biomarkers (CECR1, KIF26B, and PIK3CA), five 
MC-associated biomarkers (CHEK1, FOXM1, GPR158, KIF23, and PARPBP), and COL3A1 
for the main histotypes). In the fourth work, a multi-omics approach (genome- and 
transcriptome-wide analyses) integrating DNA methylation, DNA copy number alteration, 
and RNA sequencing data was applied to identify novel putative oncogenes and tumor 
suppressor genes associated with the CCC, EC, HGSC and MC histotypes. 

Taken together, the current doctoral thesis presents novel insights into molecular features 
associated with early-stage ovarian carcinoma that may improve patient stratification and 
subclassification based on histotype and clinical outcome.  

Keywords: ovarian carcinoma, histotype-specific diagnosis and prognosis, molecular 
biomarker, outcome prediction, integrative analysis  
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SAMMANFATTNING PÅ SVENSKA 

Äggstockscancer är ett samlingsnamn för ett stort antal maligniteter som härstammar från 
eller involverar äggstocken, och delas huvudsakligen in i fem histotyper som utvecklas från 
epitelial vävnad (klarcelligt (CCC), endometrioidt (EC), höggradigt seröst (HGSC), 
låggradigt seröst (LGSC) och mucinöst karcinom (MC)), med varierande kliniska (t.ex. 
riskfaktorer, överlevnad, behandlingssvar) och molekylära särdrag (t.ex. härkomst, 
genetiska särdrag). Trots mångårig vetskap om variabelt kliniskt utfall hos de olika 
undergrupperna, kvarstår i stort sett samma behandlingsstrategi med kirurgi följt av 
cellgiftsbehandling. För vissa tumörgrupper är denna behandling effektiv men för andra 
är den mindre verksam, vilket avspeglas i den relativt ringa 5-årsöverlevnaden för 
äggstockscancer på 55%. Bakgrunden till de olika behandlingssvaren är intensivt studerat 
men har ännu inte till fullo klarlagts. Det finns därför ett stort behov av nya biomarkörer 
som bättre kan stratifiera patienter med äggstockskarcinom baserat på en kombination av 
individuella molekylära särdrag hos tumören och traditionella kliniska och patologiska 
särdrag. Biomarkörerna kan vidare utgöra en kunskapsgrund för utvecklingen av nya 
framtida inriktade behandlingsalternativ för äggstockscancer. 

Denna doktorsavhandling avser tidiga stadier (stadium I och II) av äggstockskarcinom för 
vilka det finns begränsat med information avseende molekylära profiler som förknippas 
med diagnos och prognos av de olika histotyperna. I det första arbetet sammankopplas 
nya mutations- och gensignaturer med histotyp, total överlevnad (t.ex. 
tumörsuppressorgenen MTUS1), äggstockscancer (t.ex. genuttryck för MALAT1 som är ett 
långt ickekodande RNA), och tumöragressivitet (t.ex. COL3A1). I det andra och tredje 
arbetet validerades histotyp-specifika prognostiska gensignaturer på proteinnivå med 
hjälp av immunohistokemi, varvid 20 prognostiska biomarkörer identifierades (elva CCC-
associerade biomarkörer (ARPC2, CCT5, GNB1, KCTD10, NUP155, PITHD1, RPL13A, 
RPL37, SETD3, SMYD2, och TRIO), tre EC-associerade biomarkörer (CECR1, KIF26B, och 
PIK3CA), fem MC-associerade biomarkörer (CHEK1, FOXM1, GPR158, KIF23, och 
PARPBP), samt COL3A1 för de mest förekommande histotyperna). I det fjärde arbetet 
integrerades data från flera olika typer av analyser (heltäckande genomiska och 
transkriptomiska analyser) som innefattade data från DNA-metylering, DNA-avvikelser 
och RNA-sekvensering för att identifiera nya möjliga onkogener och 
tumörsuppressorgener som är förknippade med histotyperna CCC, EC, HGSC och MC.  

Sammantaget ger denna doktorsavhandling ökad förståelse kring molekylära särdrag som 
förknippas med tidiga stadier av äggstockskarcinom som kan förbättra klassificering och 
indelning i undergrupper baserat på histotyp och överlevnad.   
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VIII 
 INTRODUCTION  1 

INTRODUCTION 

CANCER 

Cancer initiation and progression are multi-step processes involving the 
accumulation of genetic alterations in the descendants of a single somatic cell 1. 
Cancer development may, therefore differ between individuals depending on 
their genetic predisposition (inherited mutations), differences in acquired 
somatic mutations, and exposure to environmental and/or stochastic factors. 
Hence, cancer is  a genetically complex disease, wherein multiple genes interact 
and different genes can give rise to the malignant tumor 2. Cancer can be classified 
into approximately 200 different cancer types according to the tissue of origin, 
e.g. skin cancer starts in the cells of the skin 3. Moreover, cancer is defined by its 
abnormal cell growth, local invasiveness and ability to spread to other parts of 
the body than the site of origin 4. 
 
Worldwide, cancer is the first or second leading cause of death in the majority of 
countries (134/183 countries), with an estimated 9.6 million deaths in 2018 5,6. 
Both cancer incidence (number of new cases) and mortality (number of deaths) 
are increasing due to e.g. aging, improved detection, a growing population and 
exposure to cancer risk factors due to socioeconomic development. Lung cancer 
has the highest incidence (11.6% of all cancers) and mortality (18.4% of all 
cancers) in both sexes, followed by female breast cancer, and prostate cancer in 
view of incidence, and colorectal cancer, and stomach cancer in view of mortality 
5. In females, breast cancer has the highest incidence and mortality followed by 
colorectal and lung cancer (incidence) and inversely for mortality. In males, lung 
cancer remains as the most commonly diagnosed cancer and the main cause of 
death, followed by prostate and colorectal cancer for incidence and liver and 
stomach cancer for mortality 5. However, cancer statistics may differ substantially 
between countries. Furthermore, it is important to keep in mind that the 
worldwide cancer incidence and mortality rates are to some extent estimates due 
to lack of high quality national incidence and mortality data for many countries, 
e.g. only 34/194 (17.5%) and 68/134 (50.7%) of the WHO member states provide 
high quality national incidence and mortality data, respectively 7. In Sweden, the 
highest overall cancer incidence is reported for prostate cancer (16.3%) followed 
by breast cancer (14%) 8. 
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Cancer genetics and epigenetics 
During cancer development and progression, significant genetic aberrations, e.g. 
point mutations, deletions, inversions, translocations, copy number alterations 
(CNA) or epigenetic modification, tend to affect three main types of genes, namely 
proto-oncogenes (e.g. ERBB2 (HER2/neu)), tumor suppressor genes (e.g. TP53), 
and DNA repair genes (e.g. BRCA1, BRCA2) 9,10. Proto-oncogenes are involved in 
driving normal cell growth and division; overexpression via mutations, structural 
rearrangement or DNA amplification can result in the activation of proto-
oncogenes to oncogenes, i.e. a gene that lead to uncontrolled cell growth and 
resistance to cell death. Tumor suppressor genes are involved in inhibiting cell 
growth and division and if mutated may result in inactivation of the gene, which 
may lead to uncontrolled cell growth. DNA repair genes are involved in repairing 
the DNA of damaged cells. If they become mutated they tend to be genetic drivers 
of carcinogenesis, and since their repairing ability is disabled it may result in 
additional mutations in other genes 9,10. There are two main groups of mutations 
associated with cancer, namely driver mutations and passenger mutations. 
Driver mutations are mutations that tend to give cells a selective growth 
advantage, whereas tumor-associated genomic instability gives rise to passenger 
mutations that are bystanders and do not influence tumor progression. A typical 
tumor is reported to comprise two to eight driver mutations 11,12. The total 
number of mutations in different cancer types depend on e.g. patient age and cell 
division rates in different cell types (a higher cell division rate results in a higher 
accumulative risk of acquiring additional mutations) 13.  
 
Epigenetic modifications are heritable alterations that do not alter the DNA 
sequence, but nevertheless have an effect on gene expression levels (enhanced or 
reduced) by altering chromatin organization and gene accessibility for the 
transcriptional machinery 14. One type of epigenetic modulation is DNA 
methylation, whereby methyl groups are added or removed from DNA CpG sites, 
i.e. sites rich in CG nucleotides. In cancer, hypermethylation (more DNA 
methylation than normal) often occurs in promoter regions of tumor suppressor 
genes, resulting in gene silencing, whereas hypomethylation (less methylation 
than normal) often occurs in oncogenes, leading to increased expression thereof 
15. The complex cancer landscape of somatic structural rearrangements may 
accumulate over time in a multistep process or as recently described through one 
single catastrophic event called chromothripsis (2-3% in cancer). Chromothripsis 
refers to the shattering of chromosomes, which results in massive gene 
reshuffling followed by random reassembly characterized by DNA copy number 
status changes. The exact cause of chromothripsis is not known, but may be due 
to ionizing radiation 16,17. 

INTRODUCTION  3 

Personalized diagnosis and treatment 
Traditionally, similar treatment regimens have generally been administered to 
patients exhibiting similar clinicopathological characteristics. However, two 
patients with similar characteristics may respond differently to the same 
treatment. Therefore, the development in recent years has moved towards 
establishing patient-specific diagnosis and treatment strategies to determine 
which patients would most benefit from a specific therapy to reduce tumor 
burden and optimize survival outcomes, while minimizing side effects. The 
advancements in high-throughput technologies covering e.g. genome- and 
transcriptome-wide analyses make it possible to characterize molecular tumor 
profiles of individual patients, which in combination with clinicopathological 
features used in the clinic, could improve correct diagnosis. Such profiles may 
further contribute to novel molecular findings, which may be the basis for novel 
targeted treatment options in the future 18,19. 
 

OVARIAN CANCER 

Ovarian cancer is a group of malignancies that derives from the ovary, fallopian 
tube or the peritoneum. In 2016, 541 women were diagnosed with ovarian cancer 
in Sweden 20. Worldwide, ovarian cancer is the eighth most common cause of 
death among women, with an estimated 295,414 new cases (corresponding to 
3.4% of all cancers in women) in 2018 6. Due to its asymptomatic disease 
progression and lack of effective screening strategies, ovarian cancer is often 
referred to as a silent killer with 62% of ovarian cancers diagnosed at late stages 
(stage III and IV) in Sweden 20. This is further reflected in an overall unfavorable 
prognosis of ovarian cancer with 5-year survival rates of 55% 8. Both incidence 
and mortality rates vary by region, with e.g. the highest incidence rates in Europe 
and the lowest in Africa 21. 
 

Pathologic classification 
There are over 30 different subtypes of primary ovarian cancer, mainly 
distributed in three subcategories depending on its cell of origin: epithelial 
(carcinomas, >90%), sex-cord stromal (5-6%), and germ cell ovarian cancers (2-
3%) 22. Epithelial cells line the surface (outer layer) of the ovary, stromal cells 
mainly have a supportive and hormone producing (theca cells) function, and 
germ cells produce eggs. Ovarian carcinomas are further subdivided into 
histotypes, wherein the five main histotypes constitute more than 95% of ovarian 
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carcinomas, namely  clear-cell (CCC), endometrioid (EC), high-grade serous 
(HGSC), low-grade serous (LGSC) and mucinous ovarian carcinomas (MC) 23. 
Ovarian carcinomas also include e.g. undifferentiated carcinomas and malignant 
Brenner tumors. The main histotypes may also be stratified into two groups 
based on their level of cell differentiation, i.e. how well they correspond to a 
normal differentiated cell. HGSC, which is poorly differentiated, is referred to as 
type II ovarian carcinoma and the remaining four histotypes are generally well 
differentiated (type I) 24.  
 
Historically, it was thought that all ovarian carcinomas originated from the 
ovarian surface epithelium, which is the least common cell type in the ovary. This 
fact made researchers question the actual biological origin of ovarian carcinomas.  
In recent years, it has then been shown that ovarian cancers primarily originate 
from outside of the ovary and involve the ovary in secondary events. For example, 
a large proportion of HGSCs (up to 70%) originate from fallopian tube epithelium 
25. Furthermore, EC and CCC may derive from endometriosis tissue that originates 
in endometrial epithelial cells, whereas it is not currently known from where MC 
originates 6. It is being hypothesized that MCs derive from colorectal mucosa or 
the tubal peritoneal junction 22. There are different theories from where LGSC 
originates, e.g. ovarian surface epithelium or fallopian tube 26. 
 

Risk factors 
Similar to other cancer forms, age is a significant risk factor. Moreover, the 
number of menstrual cycles during a female’s lifetime is an established risk factor 
for ovarian cancer, which is associated with increased cell division and number 
of spontaneous mutations due to the repair of the surface epithelium after each 
ovulation 27. Further, ovulation may also contribute to ovarian cancer initiation 
by the release of cytokines and growth factors due to inflammation 28. Factors that 
reduce the number of menstrual cycles, such as the use of contraceptives, 
pregnancies and young age at menopause, also reduces the risk of ovarian cancer 
29. The risk differs when stratified by histotype, wherein the use of oral 
contraceptives (>5 years, >10 years) has been linked to a lower risk (14-15%, 36-
49%) of developing CCC, EC and serous ovarian carcinomas (SC, HGSC and LGSC), 
but not for MC. The largest reduction of risk due to parity (e.g. the number of 
pregnancies carried 20 weeks or longer) has been found for CCC and EC (about 
50-65%), while a slightly lower reduction was found for MC (44%) and the lowest 
risk reduction for SC (about 20%). A further risk reduction of about 15% was 
found for each further full-term pregnancy. A 5-year later menopause was also 
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shown to be associated with increased risk for developing CCC, EC and SC, but not 
for MC. Smoking is a significant risk factor for developing MC 27. 
 
Family history based on the genetic predisposition, i.e. the likelihood to develop 
ovarian cancer based on the heritable characteristics, is one of the most 
important risk factors for ovarian cancer with an elevated risk for all histotypes 
except for MC 30. Germline BRCA1 and BRCA2 mutations, i.e. BRCA1 and BRCA2 
mutations in germ cells that are inherited by offspring, constitute an increased 
risk of developing ovarian and breast cancer. These germline mutations are found 
in up to 15% of ovarian cancers and up to 23% in HGSC 31,32. Although the risk of 
developing ovarian cancer may vary by mutation type and location within the 
BRCA gene. BRCA1 and BRCA2 are tumor suppressor genes that normally protect 
the genome from DNA-damage and therewith ensure stability of the genetic 
material. BRCA1 mutation carriers have an increased risk (16-68%) of developing 
ovarian cancer, and 11-30% for BRCA2 mutation carriers. Moreover, a family 
history of breast cancer is further associated with an increased risk of ovarian 
cancer 33. Endometriosis, a condition in which endometrium grows outside of the 
uterus, e.g. on the ovaries or fallopian tubes, has been shown to increase the risk 
of developing CCC, EC and LGSC 34. Moreover, Lynch syndrome has been found to 
result in an increased risk of developing EC and CCC due to germline mutations 
in DNA mismatch repair genes (e.g. MLH1, MSH2, MSH6, PMS2) 35. 
 

Screening strategies 
Many ovarian cancer patients are diagnosed at late stages. Incidence rates vary 
significantly among the different stages, with 27% of all ovarian cancer patients 
are diagnosed at stage I, 9% at stage II, 46% at stage III, and 16% at stage IV (2% 
at an unknown stage) in Sweden 20. Prognosis is more favorable for patients 
diagnosed at an early stage, but unfortunately there are currently no effective 
screening strategies available for early detection of ovarian cancer. To date, 
screening strategies are based on transvaginal ultrasound imaging in 
combination with blood-based biomarkers, such as CA125. However, this 
screening combination has shown no significant reduction in mortality 36-38. In 
order to improve diagnostics for ovarian cancer, recent research has focused on 
examining samples collected closer to the ovaries, e.g. from the uterine cavity by 
uterine lavage or with Pap smears from the cervix. More specifically, samples 
were screened for known mutations associated with ovarian cancer using 
sequencing technologies with a 60% and 41% detection rate, respectively 39,40. 
Another study combined the examination of circulating tumor DNA from a liquid 
biopsy taken from blood with a Pap smear resulting in a detection rate of 63% 41. 
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Risk of malignancy index (RMI) is a diagnostic tool used in the clinic prior to 
surgery to determine the likelihood whether an adnexal mass is benign or 
malignant. The index is based on three variables; CA125, menopause status and 
ultrasound points (based on e.g. size of mass, ascites, bilateral tumors, 
metastasis) 20. 
 

Prognosis 
Ovarian cancer holds the highest mortality rates among gynecological cancers. 
Since the 1980s, a modest improvement in overall survival rates has been 
achieved, wherein the 5-year overall survival rates for ovarian cancer have 
increased from about 38% to 55% and 10-year survival rates from about 32% to 
43% in Sweden 8. Tumor stage at the time of diagnosis is currently the most 
important prognostic factor used in the clinic, wherein 5-year survival rates 
stratified by stage are 89% for stage I, 71% for stage II, 41% for stage III, and 20% 
for stage IV in the USA 42,43. Furthermore, a more favorable prognosis is seen if 
the patient is macroscopically tumor-free after surgery 42,44. According to the 
American Cancer Society, 5-year survival rates stratified by histotype were 
lowest for SC (43%; typically diagnosed at an advanced stage) and significantly 
better survival rates for CCC (66%), EC (82%) and MC (71%) (typically diagnosed 
at an early stage). A recent report examining the prognostic relevance for early-
stage ovarian carcinomas further supports these findings with EC being the most 
favorable histotype, whereas HGSC and LGSC had the most unfavorable 
prognoses 45. Patients with EC or MC histotype in stage Ia and Ib have also been 
reported to have a very favorable prognosis (10-year disease-specific survival 
(DSS) ≥ 95%) 46. In the clinic, the only prognostic biomarkers that are currently 
used are for defects in homologous recombination deficiency (HRD), i.e. when the 
cell is unable to repair DNA double-stranded breaks using homologous 
recombination, e.g. caused by BRCA1 or BRCA2 mutations. Patients with HRD are 
eligible to be treated with Poly ADP ribose polymerase (PARP) inhibitors, which 
have been shown to prolong ovarian cancer survival, especially in HGSC patients 
that to a large extent (about 50%) have been reported to harbor mutations in the 
HR pathway 47,48. 
 

Staging 
Ovarian cancer is staged according to tumor size and/or metastatic spread of the 
cancer. Stage has treatment implications and may help in the prognostication of 
the disease. As stated above, a lower stage usually indicate a better prognosis 
with a more favorable patient outcome. There are currently two staging systems 
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available for gynecological cancer, i.e. The International Federation of Gynecology 
and Obstetrics (FIGO) and the American Joint Committee on Cancer (AJCC) TNM 
(Tumor, Nodes, Metastasis) staging system. In the TNM system, the tumor is 
classified separately for primary tumor (T) size and organ extension, spread to 
the lymph nodes (N) and distant metastasis (M), whereas the FIGO system 
summarizes these three parameters into stage I to IV with further stratification 
into substages (Figure 1) 22,49. For gynecological cancers, the FIGO system is the 
most commonly used 20,50.  If possible, the primary site of the tumor, i.e. where the 
malignant tumor originated, is determined. Furthermore, the histotype should be 
determined at the time of staging 49.  
 

Histology and molecular characteristics 
The largest histotype group comprises HGSCs (about 70%), followed by EC (about 
10%), CCC (5-10%), MC (about 3-4%) and LGSC (<5%) within epithelial ovarian 
cancers in Sweden 20. Within early-stage ovarian cancers in a Canadian cohort, 
fewer samples were classified as HGSC (35.5%), whereas EC (26.6%), CCC 
(26.2%) and MC (7.5%) had higher incidence rates, and LGSC (1.9%) was 
relatively unchanged, in comparison with the overall incidence rates for stage I-
IV 51. There are further regional variations across the histotypes, e.g. in Japan, 
there was a lower overall proportion of SC (40.8%) and a higher proportion 
specifically for CCC (26.9%), but also for EC (19.2%) and MC (13.1%), in 
comparison to other regions 52. As previously described, survival outcomes 
(prognosis) and genetic predisposition in terms of germline mutations differ 
between histotypes. Furthermore, the histotypes are histologically and 
molecularly distinct diseases with diverse genetic changes, e.g. somatic mutations 
(mutations that occur in any of the cells of the body besides the germ cells and 
are hence not inherited by offspring), DNA CNA, and epigenetic changes (Figure 
2).  
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Figure 1. Illustration of ovarian cancer staging according to The 
International Federation of Gynecology and Obstetrics (FIGO) system. Sketch 
of a healthy female reproductive system (uterus, fallopian tubes and ovaries) (a). 
The location of the primary tumor and metastatic spread (malignant tumor is 
illustrated in blue) for the different FIGO stages I to IV (b). In stage I, the cancer is 
confined to one or both ovaries/fallopian tubes. Malignant cells may also be found 

INTRODUCTION  9 

in the ascites, i.e. abnormal fluid in the peritoneal cavity. Ovarian cancer stage II 
implies metastatic spread to the uterus, fallopian tubes and/or other pelvic 
intraperitoneal tissues. Apart from one or both ovaries/fallopian tubes, the cancer 
can in stage III also be found in the peritoneum outside of the pelvis. The cancer may 
have also metastasized to the retroperitoneal lymph nodes (illustrated in green 
(healthy) and blue (cancerous)). In stage IV, the cancer has metastasized to distant 
organs, e.g. liver, lungs. 

 

HGSC is characterized by frequent mutations in the TP53 gene (96%). Low 
prevalence of recurrent somatic mutations in nine additional genes e.g. BRCA1, 
BRCA2, RB1 and CDK12, have also been identified 53. Apart from mutations in 
these genes, additional recurrent somatic mutations in oncogenes or tumor 
suppressor genes are relatively uncommon for HGSC. Instead HGSC is defined by 
genomic instability caused by e.g. widespread DNA CNA gains and losses such as 
in CCNE1 (cyclin E1) (present in about 15% of HGSC) 53,54. CNAs in CCNE1 are 
reported to be an early event in HGSC tumorigenesis 55. As previously described, 
about 50% of HGSCs are deficient in the HR DNA repair pathway 53. This may be 
caused by germline, somatic and/or epigenetic aberrations in genes related to the 
HR pathway, such as BRCA1 or BRCA2. HGSC may further constitute defects in 
genes of the Notch signaling pathway (about 22%), which is involved in multiple 
cellular processes such as cell proliferation, differentiation and apoptosis 54,56. 
HGSC have been subdivided in four molecular types based on their gene 
expression profiles, namely C1/mesenchymal, C2/immune, C4/differentiated 
and C5/proliferative with differing clinical outcomes 53,57.  
 
LGSCs are more stable and genomically homogeneous compared to HGSCs, and 
are characterized by mutations in the KRAS, ERBB2 and BRAF oncogenes 20. 
Moreover, the BRAF mutation has been reported to be a favorable prognostic 
factor for LGSCs 58. In MC, KRAS mutations are commonly (40-50%) identified. 
Furthermore, TP53 mutations (16-50%) and HER2/neu amplifications (20-30%) 
are also found. No association between MCs and BRCA1 or BRCA2 mutations has 
been reported 59. EC and CCC are characterized by inactivating mutations 
(resulting in a gene product with less or no function) in ARID1A (about 30% and 
50%, respectively), activating mutations (resulting in a gene product with 
enhanced function) in PIK3CA or inactivating mutations in PTEN 60. In addition, 
EC may comprise KRAS mutations. Both EC and CCC have few TP53 mutations and 
relatively stable genomes 6,20,23. 
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Figure 2. Eosin and hematoxylin stained tumor slides showing differences in 
molecular morphology representative for each of the main histotypes (CCC, 
EC, HGSC, LGSC, MC) with 100 x magnification (left column) and 300 x 
magnification (right column). The cytoplasm surrounding the nucleus appears 
clear and white in CCC (a). Atypical irregular glandular structures are significant 
for EC (b). A zoom-in on tubule and cribriform structures is further shown for 300 x 
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magnification. HGSC is characterized by a high nucleus/cytoplasm ratio, i.e. the 
nucleus is relatively large in comparison to the surrounding cytoplasm, with high 
mitotic activity (c). This HGSC does not comprise any papillary or glandular 
structures. LGSC is defined by a low nucleus/cytoplasm ratio with less mitotic 
activity in comparison with HGSC (d). Mucin producing hollows are typical for the 
MC histotype (e). 

 

Treatment 
Although the ovarian carcinoma histotypes are considered to be distinct diseases, 
the majority of all ovarian carcinoma patients are still treated with debulking 
surgery followed by platinum/taxane-based chemotherapy. To date, no 
alternative treatment regimens have alone proven superior to conventional 
therapy 61,62. Treatment with PARP inhibitors is the first successful attempt to 
personalize therapy for ovarian carcinoma patients based on individual tumor 
characteristics 60. PARP inhibitors are used in the clinic as a form of maintenance 
therapy for cancers deficient in the HR pathway, e.g. with BRCA1 or BRCA2 
mutations 63. PARP inhibitors block PARP enzymatic function, resulting in an 
accumulation of single-stranded breaks. This leads to the production of double-
stranded breaks, which requires the HR pathway to repair DNA damage. Hence, 
cells deficient in the HR repair pathway die, while healthy cells survive 64. 
Unfortunately, there are currently no other targeted therapies available in the 
clinic today for other ovarian carcinoma subgroups. 
 
As previously described, HGSC are often poorly differentiated, and respond well 
to platinum/taxane-based chemotherapy. Nevertheless, patients with HGSC often 
relapse and treatment resistance occurs in 80 to 90% of patients that were 
initially diagnosed with metastatic disease, resulting in unfavorable outcomes 54. 
CCNE1 amplification, which has been associated with HGSC, has also been 
reported to contribute to chemotherapy resistance 65. Furthermore, HGSCs show 
widespread HR deficiency, leading to eligibility for maintenance treatment with 
PARP inhibitors 66. Overall, EC, LGSC and MC tend to be more well-differentiated 
and are less sensitive to chemotherapy, although with a more favorable prognosis 
in comparison with HGSC 6. CCC also has a low response rate to chemotherapy, 
with intermediate survival outcome 6,67. Despite the relative chemoresistance 
among LGSC patients, prognosis is favorable due to the tumor indolence and slow 
tumor growth. There are currently no targeted therapies available for LGSC. 
Recent clinical trials have however reported prolonged survival in some 
recurrent LGSC patients (15%) after treatment with MEK inhibitors 58. EC and 
CCC may harbor mutations resulting in HRD, but not to the same extent as HGSC. 
The PTEN gene has for example been reported to confer HRD 62.
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AIMS 

The overall aim of this doctoral thesis was to provide novel insights into 
molecular features associated with early-stage ovarian carcinomas that may 
improve patient stratification and subclassification based on histotype and 
clinical outcome.  
 
The specific aims were: 
 
Paper I 
To identify novel genetic biomarkers that may be of diagnostic and prognostic 
importance in early-stage ovarian carcinogenesis. 
 
Paper II and III 
To identify prognostic histotype-specific gene signatures and assess their clinical 
significance on the protein level in early-stage ovarian carcinomas. 
 
Paper IV 
To characterize genetic and epigenetic features for early-stage ovarian carcinoma 
histotypes, and identify putative oncogenes and tumor suppressor genes using an 
integrated multi-omics approach.
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MATERIALS AND METHODS 

PATIENTS AND TUMOR SAMPLES 

The patient cohorts in Paper I-IV comprised early-stage primary invasive 
ovarian carcinoma patients, chosen for inclusion based on stage (I and II) and 
survival data (short-term survivors: 0-2 years, 2-5 years, 5-10 years; long-term 
survivors: >10 years). In Paper II and III inclusion criteria was further based on 
histotype (for FFPE samples not corresponding with the fresh-frozen samples 
used in Paper I and IV). The patients were diagnosed between 1994 and 2006 to 
enable at least ten years of follow-up time. Fresh-frozen tumor samples and 
formalin-fixed paraffin-embedded (FFPE) tumor blocks were retrieved from the 
tumor bank at the Sahlgrenska University Hospital Oncology lab (Gothenburg, 
Sweden) and the Departments of Clinical Pathology at hospitals in Western 
Sweden, respectively, in accordance with ethical approval (Regional Ethical 
Review Board, Gothenburg, Sweden, case number 767-14). Clinicopathological 
data corresponding to the tumor samples were obtained from the Cancer Registry 
at the National Board of Health and Welfare (Stockholm, Sweden) and the 
National Quality Registry at the Regional Cancer Center West (Gothenburg, 
Sweden).  
 
Pathologists at Sahlgrenska University Hospital reclassified all tumors, using 
hematoxylin and eosin stained tumor slides, in accordance with current WHO 
criteria 22. Paper I included 96 fresh-frozen tumor samples (17 CCC, 17 EC, 50 
HGSC, 1 LGSC, 11 MC), 206 FFPE samples (95/206 FFPE samples corresponding 
with fresh-frozen tumor samples included in Paper I; 37 CCC, 46 EC, 94 HGSC, 29 
MC) in Paper II, 112 FFPE samples (45/111 FFPE samples corresponding with 
fresh-frozen tumor samples included in Paper I; 37 CCC, 46 EC, 29 MC) in Paper 
III, and 96 fresh-frozen tumor samples (17 CCC, 17 EC, 51 HGSC, 11 MC) in Paper 
IV (Table 1). Tumor content (percentage of neoplastic cells in view of all cells 
present) were evaluated using representative imprints from fresh-frozen tumors 
stained with May-Grünwald Giemsa (Chemicon). Tumor samples comprising at 
least 50% neoplastic cell content were included in the analyses. 
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Table 1. Clinicopathological patient data for fresh-frozen (n=97) and FFPE (n=111) 
early-stage ovarian carcinoma samples. Percentages of the number of patients are 
specified in the parentheses. Significant P values are marked in bold. 

CCC EC HGSC LGSC MC CCC EC HGSC MC
(n=17) (n=17) (n=51) (n=1) (n=11) P  value (n=20) (n=29) (n=44) (n=18) P  value

Patient age NA 0.31
Mean 63 64 63 78 61 66 61 65 60
Range 42-84 25-83 32-86 - 39-80 51-84 29-81 22-88 30-82

Overall Survival 0.11 0.14
0-2y 2 (12) 1 (6) 2 (4) 1 (100) 3 (27) 3 (15) 2 (7) 5 (11) 3 (17)
2-5y 3 (18) 5 (29) 17 (33) - 2 (18) 7 (35) 4 (14) 9 (20) 1 (6)
5-10y 7 (41) 5 (29) 19 (37) - 3 (27) 1 (5) 2 (7) 10 (23) 4 (22)
˃10y 5 (29) 6 (35) 13 (25) - 3 (27) 9 (45) 21 (72) 20 (45) 10 (56)

Cause of death 0.024 0.043
Ovarian carcinoma 10 (59) 3 (18) 33 (65) 1 (100) 2 (18) 9 (45) 4 (14) 21 (48) 3 (17)
Other cancer 0 (0) 3 (18) 7 (14) - 3 (27) 2 (10) 3 (10) 1 (2) 2 (11)
Other 6 (35) 6 (35) 5 (10) - 4 (36) 1 (5) 4 (14) 5 (11) 5 (28)
Not available 1 (6) 0 (0) 0 (0) - 0 (0) 0 (0) 1 (3) 2 (5) 1 (6)
Alive 0 (0) 5 (29) 6 (12) - 2 (18) 8 (40) 17 (59) 15 (34) 7 (39)

Stage 0.12 0.029
I 14 (82) 11 (65) 29 (57) - 9 (82) 17 (85) 21 (72) 22 (50) 13 (72)
II 3 (18) 6 (35) 22 (43) 1 (100) 2 (18) 3 (15) 8 (28) 22 (50) 5 (28)

Tumor grade EC NA NA
FIGO grade I NA 2 (12) NA - NA NA 9 (31) NA NA
FIGO grade II NA 9 (53) NA - NA NA 18 (62) NA NA
FIGO grade III NA 6 (35) NA - NA NA 2 (7) NA NA

Dualistic model <0.001 <0.001
Type I 17 (100) 17 (100) 0 (0) 1 (100) 11 (100) 20 (100) 29 (100) 0 (0) 18 (100)
Type II 0 (0) 0 (0) 51 (100) - 0 (0) 0 (0) 0 (0) 44 (100) 0 (0)

CA125 0.13 0.041
˂35 6 (35) 7 (41) 9 (18) - 5 (45) 8 (40) 6 (21) 9 (20) 5 (28)
35-65 1 (6) 0 (0) 29 (57) - 2 (18) 7 (35) 7 (24) 31 (70) 6 (33)
˃65 10 (59) 10 (59) 13 (25) 1 (100) 4 (36) 5 (25) 15 (52) 4 (9) 7 (39)
Not available 0 (0) 0 (0) 0 (0) - 0 (0) 0 (0) 1 (3) 0 (0) 0 (0)

Ploidy 0.14 0.28
Near diploid 1 (6) 7 (41) 15 (30) - 2 (18) 4 (20) 10 (34) 7 (16) 5 (28)
Aneuploid 16 (94) 9 (53) 36 (71) 1 (100) 8 (73) 14 (70) 17 (59) 34 (77) 11 (61)
Not available 0 (0) 1 (6) 0 (0) - 1 (9) 2 (10) 2 (7) 3 (7) 2 (11)

Chemotherapy NA NA
Yes 17 (100) 17 (100) 49 (96) 1 (100) 11 (100) 20 (100) 25 (86) 42 (95) 16 (89)
No 0 (0) 0 (0) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Not available 0 (0) 0 (0) 2 (4) - 0 (0) 0 (0) 4 (14) 2 (5) 2 (11)

FFPE samples (n=111)Fresh-frozen samples (n=97)
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EXTERNAL COHORTS 

A total of 30 normal samples were chosen from The Cancer Genome Atlas (TCGA) 
ovarian carcinoma cohort and used in Paper I and IV. Raw sequencing data 
(whole exome sequencing) from these patient samples were collected from the 
Genomic Data Commons Data Portal (GDC Data Portal) with approval through the 
database of Genotypes and Phenotypes (dbGaP; project #11044). The RNA 
sequencing (RNA-seq) analyses, including the analysis of the control samples, 
required large data capacity and were thus performed on external computational 
resources at Uppsala Multidisciplinary Center for Advanced Computational 
Science (UPPMAX, project number: b2015239). To be able to compare our data 
with the control samples, the raw data for the control samples were converted 
and compressed to FASTQ gzip format with the BEDTools (v. 2.25.0) and gzip 
module, and subsequently subjected to the same analyses as for our ovarian 
carcinoma samples (see below). In Paper II and III, Affymetrix gene expression 
microarray data for 1,657 ovarian carcinoma patients (HGSC n=1,232, EC n=62) 
was used to evaluate the clinical significance (overall survival) of putative 
histotype-specific prognostic biomarkers in the web-based Kaplan-Meier (KM) 
plotter tool (https://kmplot.com/analysis/; see below). 
 

DATA ANALYSIS 

Whole-transcriptome RNA sequencing analysis 
Transcriptome-wide analysis was performed on a HiSeq2000 sequencer 
(Illumina, San Diego, CA, USA) and applied in Paper I and IV to identify genetic 
variants, fusion events, and changes in gene expression of early-stage ovarian 
carcinomas. 

Principle 
RNA-seq is a powerful tool that can provide an extensive overview of the 
transcriptome, i.e. information regarding RNA type (e.g. mRNA, non-coding RNAs 
or small RNAs) and quantity of transcript sequences that may be used to 
determine differences in gene expression between various conditions or sample 
groups, splicing patterns, and post-transcriptional modifications. Extracted and 
purified RNA (e.g. total RNA, mRNA) is converted into cDNA. Thereafter, the cDNA 
is fragmented, and adapter sequences are added to each fragment. The 
fragmented cDNA is subsequently sequenced on a high-throughput sequencer 
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EXTERNAL COHORTS 

A total of 30 normal samples were chosen from The Cancer Genome Atlas (TCGA) 
ovarian carcinoma cohort and used in Paper I and IV. Raw sequencing data 
(whole exome sequencing) from these patient samples were collected from the 
Genomic Data Commons Data Portal (GDC Data Portal) with approval through the 
database of Genotypes and Phenotypes (dbGaP; project #11044). The RNA 
sequencing (RNA-seq) analyses, including the analysis of the control samples, 
required large data capacity and were thus performed on external computational 
resources at Uppsala Multidisciplinary Center for Advanced Computational 
Science (UPPMAX, project number: b2015239). To be able to compare our data 
with the control samples, the raw data for the control samples were converted 
and compressed to FASTQ gzip format with the BEDTools (v. 2.25.0) and gzip 
module, and subsequently subjected to the same analyses as for our ovarian 
carcinoma samples (see below). In Paper II and III, Affymetrix gene expression 
microarray data for 1,657 ovarian carcinoma patients (HGSC n=1,232, EC n=62) 
was used to evaluate the clinical significance (overall survival) of putative 
histotype-specific prognostic biomarkers in the web-based Kaplan-Meier (KM) 
plotter tool (https://kmplot.com/analysis/; see below). 
 

DATA ANALYSIS 

Whole-transcriptome RNA sequencing analysis 
Transcriptome-wide analysis was performed on a HiSeq2000 sequencer 
(Illumina, San Diego, CA, USA) and applied in Paper I and IV to identify genetic 
variants, fusion events, and changes in gene expression of early-stage ovarian 
carcinomas. 

Principle 
RNA-seq is a powerful tool that can provide an extensive overview of the 
transcriptome, i.e. information regarding RNA type (e.g. mRNA, non-coding RNAs 
or small RNAs) and quantity of transcript sequences that may be used to 
determine differences in gene expression between various conditions or sample 
groups, splicing patterns, and post-transcriptional modifications. Extracted and 
purified RNA (e.g. total RNA, mRNA) is converted into cDNA. Thereafter, the cDNA 
is fragmented, and adapter sequences are added to each fragment. The 
fragmented cDNA is subsequently sequenced on a high-throughput sequencer 
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with either single-end sequencing (sequencing of short sequences from one end) 
or paired-end sequencing (sequencing of short sequences from both ends) using 
a read depth of commonly 10-30 million reads per sample, yielding short 
sequences of ca 30-400 bp in length 68,69. 

Method 
RNeasy Lipid Tissue Mini Kit (Qiagen) was used to isolate total RNA from fresh-
frozen tumor samples (n=96). The RNA concentration was measured using 
Nanodrop ND-1000 (Nanodrop Technologies) and QuBit (ThermoFisher 
Scientific), while RNA integrity was determined using the RNA 6000 Nano 
LabChip Kit with Agilent 2100 Bioanalyzer (Agilent Technologies). Total RNA 
from samples having an RNA integrity number greater than 6 were processed at 
the Science for Life Laboratory (National Genomics Infrastructure, Stockholm). A 
HiSeq2000 sequencer (Illumina) generated TruSeq strand-specific RNA libraries 
(Ribosomal depletion using RiboZero human) comprising 125 bp paired-end 
reads for each sample with approximately 10-22 million aligned reads per 
sample.  

Computational analysis 
The RNA-seq analyses in Paper I were performed on external computational 
resources at UPPMAX. Quality checks were performed with FastQC (default 
settings, v. 0.11.2) prior to and after removal of low quality bases and adapter 
sequences with TrimGalore (v. 0.4.0). Trimmed reads were thereafter aligned to 
the human reference genome hg19 with STAR aligner (v.2.5.0c) with 1-pass and 
2-pass modes, respectively. Raw read counts (number of sequences mapped to 
the human reference genome hg19 assembly) were calculated with the htseq 
module (v. 0.6.1) on name sorted aligned reads (1-pass mode).  
 
Genetic variants, i.e. mutations, were identified in Paper I following the Genome 
analysis toolkit (GATK) (v. 3.6) best practices (Broad Institute). In short, GATK 
SplitNCigarReads tool removed false positive calls and the HaplotypeCaller 
identified genetic variants from aligned reads (2-pass mode), and resulting 
genetic variants were subjected to filtering steps (e.g. quality by depth<2 were 
removed). Thereafter, the filtered genetic variants were annotated using 
ANNOVAR and common genetic variants in the human population were then 
removed by filtering against the 1000 Genomes Project dataset and dbSNP 
(minor allele frequency threshold=0.01), and matched with the Catalogue of 
Somatic Mutations in Cancer (COSMIC) database to identify known cancer-
associated genetic variants 70-72. Recurrent deleterious variants, i.e. harmful 
variants (resulting in increased likelihood of developing ovarian cancer) present 
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in at least 30% of the histotype or survival groups were identified and compared 
with normal controls. 
 
Differentially expressed genes (DEGs) associated with survival (Paper I) and 
histotypes (Paper IV) were identified by comparing raw read counts for patients 
belonging to different survival groups (short-term survivors (0-2, 2-5, 5-10 
years) in comparison with long-term survivors (>10 years)) and histotype groups 
(CCC vs MC, EC vs CCC, EC vs MC, HGSC vs CCC, HGSC vs EC, and HGSC vs MC) using 
DESeq2 (v. 1.14.0) in R/Bioconductor 73. Fusion transcripts were identified in 
Paper I using FusionCatcher (v. 0.99.5a) with associated aligners (Bowtie, BLAT, 
STAR, Bowtie2) and annotation databases (ENSEMBL, UCSC, RefSeq). High 
probable false positive fusion transcripts were removed (marked with high or 
very high probability) and the oncogenic potential of identified fusion transcripts 
were determined with the Oncofuse tool 74. Ingenuity Pathway Analysis (IPA) 
(Ingenuity Systems, Redwood City, USA) was employed in Paper I to associate 
identified genetic variants, fusion transcripts and DEGs with known cancer-
related biological functions linked with cancer. 
 

Fluorescence in situ hybridization analysis 
Fluorescence in situ hybridization (FISH) analysis was used in Paper I to validate 
commonly identified fusion transcripts involving the long non coding RNA 
MALAT1. 

Principle 
FISH is a cytogenetic technique to detect locus-specific chromosomal 
abnormalities and it can be used to locate specific DNA sequences on 
chromosomes, e.g. to evaluate possible gains, amplifications, deletions, inversions 
or translocations, such as fusions. Fluorescent DNA probes are synthesized and 
hybridized to the target DNA sequence of interest. The DNA probe is thereafter 
hybridized to a slide containing metaphase chromosome preparations and 
fluorescent signals can be observed on the chromosome(s) and in the cell nuclei 
to which the DNA probe has bound using a fluorescence microscope 75.  

Method  
Interphase FISH with two color-detection system (green/red) was used to 
identify commonly identified fusion transcripts involving the long-non coding 
(lnc) RNA MALAT1. More specifically, suitable bacterial artificial chromosome 
(BAC) clones covering each fusion partner were chosen using the University of 
California Santa Cruz (UCSC) Genome Browser and purchased from BACPAC 
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California Santa Cruz (UCSC) Genome Browser and purchased from BACPAC 
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Resources Center (Children's Hospital Oakland Research Institute, CA, USA). Each 
BAC clone was tested on normal metaphase chromosomes to ensure the correct 
chromosomal location. The bacteria comprising the BAC clones were cultivated 
and the BAC DNA was subsequently extracted (Qiagen Plasmid Maxi kit), and 
separately labeled with biotin and digoxigenin using nick translation (Roche 
Diagnostics, Mannheim, Germany). Microscope slides with touchprints of 
corresponding fresh-frozen tumors were prepared. The labeled BAC DNA was 
hybridized to denatured interphase nuclei. The probes were detected using FITC 
avidin (green fluorescence color) and Rhodamine anti-dioxigenin (red 
fluorescence color) and subsequently counterstained with DAPI and mounted 
using an antifade solution (Vectashield DAPI, Vector Laboratories, Burlingame, 
CA, USA). A fluorescent microscope (Leica DMRA2, Leica Microsystems, Wetzlar, 
Germany) with attached camera (ORCA Hamamatsu CCD) was used for 
evaluation and image retrieval. A fusion transcript was indicated by a yellow 
hybridization signal, i.e. wherein the green-labeled and red-labeled BAC DNA are 
bound to the same specific chromosomal location.   
 

Whole-genome Single nucleotide polymorphisms analysis 
Genome-wide Single nucleotide polymorphisms (SNP) genotyping was 
performed in Paper I using Infinium HumanOmni2.5-8 Beadchips (Illumina, San 
Diego, CA, USA) to identify allelic imbalance and DNA copy number gains and 
losses. 

Principle 
Whole-genome SNP genotyping can identify structural changes in DNA, e.g. 
gains/losses on parts or whole chromosomes, and genetic variants. It is also 
possible to analyze allele-specific genetic alterations. Illumina genotyping 
BeadChips use one bead type with a two-color detection approach that can 
genotype between hundreds and millions of SNPs per sample. In this detection 
method, purified DNA is amplified, subsequently fragmented using enzymes, and 
precipitated and resuspended. Further, the DNA sample is hybridized to the 
BeadChip followed by enzymatic base extension, fluorescent staining, and 
detection of fluorescence intensities 76. 

Method  
DNA from nine tumor samples, comprising a verified fusion transcript using FISH, 
was extracted with the Wizard genomic DNA extraction kit (Promega) and 
subjected to phenol-chloroform purification. Purified DNA was processed at the 
Genomics DNA microarray resource center (SCIBLU, Department of oncology, 
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Lund University) using Infinium HumanOmni2.5-8 (v.1.3) with approximately 2.4 
million markers corresponding to SNPs identified in the 1000 Genomes Project 
(Minor allele frequency (MAF)>2.5%) 77. The analysis identified allelic 
imbalances and regions of DNA copy number gains and losses that could be 
compared with the identified genetic variants and fusion transcripts in Paper I. 

Computational analysis 
The circos package (v. 0.66) in UPPMAX was used to visualize SNP genotyping 
data (DNA copy number gains and losses) in view of RNA-seq data (genetic 
variants, fusion transcripts) 78.  
 

Cox proportional hazard models 
Candidate biomarkers with prognostic significance were identified in Paper II 
and III using Cox proportional hazard models associating RNA-seq read counts 
with survival data. 

Principle 
The association between survival time (overall (OS, the time from initial 
diagnosis to death from any cause) and disease-specific survival (DSS, the time 
from initial diagnosis to ovarian cancer-related death)) and raw RNA-seq counts 
(log2-values) can be analyzed with Cox proportional hazard regression models. 
The model follows the hazard function denoted by ℎ1(𝑡𝑡𝑡𝑡) = ℎ𝑜𝑜𝑜𝑜 (𝑡𝑡𝑡𝑡)𝑒𝑒𝑒𝑒∑𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽, which 
express the risk of dying at time t. 𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 denotes the effect of individual probes, 
wherein patients with 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽<0 correspond to patients with favorable prognosis and 
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽>0 with unfavorable prognosis. 

Method  
Univariable Cox proportional hazard models with Benjamini-Hochberg adjusted 
false discovery rates (P value<0.05) were applied to raw RNA-seq read counts for 
95/96 patients stratified by histotype (CCC, EC, HGSC, and MC) from Paper I to 
associate histotype-specific gene expression data with survival data (OS and DSS). 
Time-dependent Area under the receiver operating characteristics curve 
[(AUC(t)] values were used to assess the predictive power, i.e. how well each 
regression model correlated with survival 79. A concordance index (C-index) was 
determined for each biomarker that gave a measure on how well the biomarker 
could predict patient outcome. The C-index varied between 0.5 (no correlation 
between RNA-seq counts and survival) and 1 (perfect correlation between RNA-
seq counts and survival). 
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Computational analysis 
Candidate biomarkers for Paper II and III were selected among statistically 
significant genes with the highest C-index or log2 ratio, and with gene expression 
levels that could possibly be detected using immunohistochemistry (IHC). 
 

Immunohistochemical analysis and evaluation 
IHC on full-face FFPE sections and tissue microarrays (TMAs) were implemented 
in Paper II and III respectively, to validate the protein expression levels of 
candidate biomarkers with identified prognostic significance on the RNA level. 

Principle 
IHC is a method to detect proteins in cells of a tissue section. It is possible to detect 
whether a protein of interest is expressed or not and to what extent, i.e. the 
percentage of cells that express the protein, as well as the location of the protein, 
e.g. in the nuclei, membrane or cytoplasm of the cell. In combination with 
histopathological analysis of tumor morphology, IHC can be used to assist in 
determining accurate cancer diagnoses. The technique is based on the specific 
binding between monoclonal (specificity for a single epitope, i.e. a single segment 
of a protein) or polyclonal (specificity for several epitopes) antibodies and 
antigens present on the surface of the protein of interest. The antibodies are 
commonly labeled with a chromogen, which can be detected as a specific color 
(e.g. brown staining) upon antibody binding to the antigen. The resulting protein 
staining pattern in the tissue section is evaluated using a light microscope or 
digital pathology, i.e. evaluating a scanned image of the tissue section on the 
computer 80,81. 

Method 
In Paper III, TMAs were prepared for all tumors in the patient cohort. More 
specifically, a pathologist marked regions containing tumor tissue on 
hematoxylin and eosin stained FFPE sections for each tumor. Triplicate core 
biopsies (1 mm in diameter) from corresponding areas were then punched out, 
organized on a paraffin tumor block, and the tumor block was subsequently 
baked for one hour at 45°C. Four micrometer sections from full-face (Paper II) 
and TMA (Paper III) tumor blocks were prepared on microscope slides (FLEX 
IHC, Dako, Sweden). Suitable antibodies for each biomarker to be tested were 
primarily selected from the Human Protein Atlas. Each antibody was optimized 
on full-face FFPE sections to determine the proper antibody concentration and a 
positive control sample. Tumor sections were pretreated with the Dako PTLink 
system (pH 9), and immunostained with the respective antibodies with Dako 

MATERIALS AND METHODS   23 

Autostainer Plus (Agilent Technologies) using DAB (3,3’-diaminobenzidine, 
brown color) as chromogen and hematoxylin (blue color) as counterstain. Lastly, 
the immunostained FFPE sections were rinsed (deionized water), dehydrated 
(ethanol series), cleared (xylene) and mounted. The IHC slides were evaluated by 
a board certified pathologist (two pathologists for Paper II), which did not have 
any knowledge about survival times. An H-score (immunoreactive score) was 
determined for each slide/TMA core, based on both the percentage of stained 
tumor cells and the staining intensities thereof (weak = 1, moderate = 2, strong = 
3) 82. The H-score for each tumor on the TMAs were based on the mean of 
triplicate cores. 
 

Genome-wide DNA methylation and DNA copy number 
alteration analyses 
Infinium MethylationEPIC BeadChips (Illumina, San Diego, CA, USA) were used in 
Paper IV to characterize genome-wide DNA methylation and DNA CNA patterns. 

Principle 
Illumina Infinium MethylationEPIC BeadChips is a comprehensive method to 
evaluate the DNA methylation status across the genome. It covers more than 
850,000 CpG sites with single-nucleotide resolution. The DNA methylation 
detection method depends on bisulfite converted DNA, wherein the methylation 
state is transformed to a detectable genetic SNP difference, i.e. an unmethylated 
C is converted into a T and a methylated C remains a C. The CpG site detection on 
the array includes a combination of Infinium type I and II probes (each about 50 
bases in length), wherein type I comprises two probes per CpG site binding to 
methylated or unmethylated sites, respectively, and type II comprises one probe 
binding to the CpG site relying on red and green fluorescent color detection 83,84. 
Using computational analysis, it is also possible to retrieve DNA CNA information 
from the DNA methylation data. 

Method 
DNA from 91 tumor samples was extracted and purified (see SNP analysis above). 
Purified DNA with 260/280 ratios greater than 1.8 (Nanodrop ND-1000 
spectrophotometer, Nanodrop Technologies) was sent to SNP&SEQ Technology 
Platform (Uppsala, Sweden), for analysis on the EPIC array (MethylationEPIC v. 
1.0, genomic build, v. 37).  
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Computational analysis 
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detection method depends on bisulfite converted DNA, wherein the methylation 
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bases in length), wherein type I comprises two probes per CpG site binding to 
methylated or unmethylated sites, respectively, and type II comprises one probe 
binding to the CpG site relying on red and green fluorescent color detection 83,84. 
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Method 
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1.0, genomic build, v. 37).  
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Computational analysis 
The package ChAMP (v. 2.14.0) in R/Bioconductor (v. 3.6.0) was used to perform 
the DNA methylation analyses 85,86. The ratio of methylation, i.e. the β intensity 
values, were generated from IDAT files for each tumor sample. The intensity 
values were filtered using ChAMP default filtering steps, normalized with BMIQ 
normalization method to correct for probe type (I and II) bias and corrected for 
batch effects (array, slide) with the myCombat function in ChAMP. The intensity 
values for each CpG site were thereafter merged with probe information e.g. gene, 
type of region surrounding the CpG island and genomic regions (probe.features 
in ChAMP) and enhancer information (MethylationEPIC_v-1-0_B4_Manifest 
File.csv). Density plots of beta value distribution were made in ChAMP to examine 
the methylation data to identify possible outliers among the tumor samples. The 
β intensity values were filtered according to variance to identify the 1000 most 
variable probes within the data set, and visualized according to histotype in a Raw 
data, Descriptive, Inference statistics (RDI) plot with the yarr package (v. 0.1.5) 
and in a heatmap using pheatmap (v. 1.0.12) 87,88. Hierarchical clustering was 
performed with the Ward’s method and the Canberra distance measure (distance 
between samples), wherein a shorter distance indicated higher similarity. 
Histotype-specific differentially methylated probes (DMPs) were identified using 
both the limma (v. 3.40.2) and ChAMP packages, with Benjamini-Hochberg 
adjusted P value<0.05 and additionally>1.5 fold-change in the limma package 89. 
 
The conumee package (v. 1.18.0) in R/Bioconductor was utilized to extract 
unsegmented CNA data for each probe and normalized using CNA data from 
healthy individuals (n=52, CopyNumber450kData, v. 1.8.0.) 90. One part of the 
CNA analysis was performed in Nexus Copy Number (BioDiscovery, v. 7.5) with 
the Rank segmentation algorithm using default settings to identify genomic 
regions containing CNAs, i.e. homozygous loss/deletion (loss of two gene copies, 
log2 ratio≤-1), heterozygous loss (loss of one gene copy, log2 ratio<-0.3), and gain 
(≥3 gene copies, log2 ratio>+0.3). Recurrent significant CNAs were identified in 
at least 35% of the tumor samples (P value<0.05). Another part of the CNA 
analysis focused on evaluating genetic instability in the form of chromothripsis-
like patterns (CTLPs) using the web-based CTLPScanner (http://cgma.scu. 
edu.cn/CTLPScanner/) with default settings. The input data (segmented CNA 
data) for this analysis was retrieved with ChAMP.  
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RESULTS AND DISCUSSION 

Paper I  
RNA sequencing and SNP genotyping data reveal novel genetic features in 
early-stage ovarian carcinoma associated with histotype and survival 

Ovarian cancer is the most lethal of all gynecological cancers, and in 2016, the 
overall 5-year survival rate in Sweden was only 55% 8. FIGO early-stage (stage I 
and II) ovarian carcinoma tumors are considered to be less aggressive with a 
more favorable prognosis (5-year survival rates above 71%), whereas late-stage 
(stage III and IV) tumors are more aggressive 43. However, around 16% of stage I 
and II ovarian carcinomas behave aggressively, leading to the patient's death 
within five years. Since these patients are diagnosed with a tumor stage 
associated with generally good clinical outcome, they may be given inadequate 
treatment. In our patient cohort, we chose to only include early-stage ovarian 
carcinomas, since the genetic profiles of early-stage tumors are generally less 
complex compared to the later stages. This makes it possible to classify early 
events in ovarian carcinoma tumorigenesis, and to identify specific genomic 
alterations related to ovarian carcinoma. In recent years, it has been shown that 
ovarian carcinoma is not a single disease entity, but rather a group of diseases 
with different origins, genetic alterations, prognosis and clinicopathological 
features. This resulted in a reclassification of ovarian carcinoma into five distinct 
histotypes, namely HGSC, LGSC, EC, MC and CCC carcinomas 23,91. The patients in 
our study cohort were diagnosed with ovarian carcinoma between 1994 and 
2006. Hence, all patients were classified according to the older WHO classification 
systems from 1973 and 2003 92,93. It was therefore necessary to reclassify all 
tumors in the patient cohort according to current WHO criteria to determine 
histotypes according to the most recent stratification system 22. It is further 
important to keep in mind that the patients included in our study cohort were 
diagnosed before it was praxis (year 2012) in Sweden to examine all patients for 
tumor spreading to the lymph nodes at the time of staging. Hence, we cannot say 
with 100% certainty that all patients were in fact in stage I or II, since a possible 
spreading to the lymph nodes were at the time not investigated, and if present, 
would have staged the patient in stage III.  
 
In order to improve the survival rates of ovarian cancer, there is a need to identify 
novel biomarkers. Ideally, to enhance the ratio of benefit vs toxicity of the 
administered drug a selection of therapeutic drugs would be available for 
different types of ovarian cancer based on 1) the patient’s clinicopathological 
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features and 2) the molecular features of the tumor. Unfortunately, few 
prognostic biomarkers and personalized treatment strategies are to date 
available in the clinic that can assist in the diagnosis and treatment of ovarian 
carcinomas. In Paper I, we used transcriptome- and genome-wide RNA-seq 
(n=96) and SNP (n=9/96) analyses to identify genetic variants, fusion transcripts, 
SNP genotyping and gene expression patterns associated with histotype and 
survival for early-stage ovarian carcinomas. SNP analysis was not performed for 
all samples in the patient cohort due to cost. Deleterious genetic variants, i.e. 
genetic variants that cause a change or loss in protein function, were identified 
among the tumor-specific coding variants (found in exonic regions). Mutation 
signatures comprising 38 and 49 deleterious variants were present in at least 
30% (defined as recurrent deleterious variants) of the samples in either histotype 
group (CCC, EC, HGSC, MC) or survival group (0-2, 2-5, 5-10, >10 years), 
respectively. Few of the recurrent deleterious variants were found in normal 
ovarian tissue indicating tumor-specificity and those variants that were identified 
in normal tissue significantly differed in mutation rates. Hence, these variants 
could be used for diagnostic purposes. Furthermore, the majority of deleterious 
variants had not previously been linked to cancer (COSMIC database) indicating 
their novelty.   
 
Fusion events may be strong driver mutations in tumorigenesis and may further 
promote genomic instability resulting in a high frequency of mutations 94. It may 
be advantageous to therapeutically target a fusion gene if the fusion results in the 
oncogenic activation or repression of tumor suppressor genes. For example, BCR-
ABL is an oncogenic fusion gene in chronic myelogenous leukemia, wherein 
inhibition of BCR-ABL resulted in improved clinical outcome 95. A total of 3,344 
fusion transcripts (1,503 unique fusion transcripts) were identified, wherein 
fusions between genes located on different chromosomes (interchromosomal 
fusions) were more common in comparison with fusions between genes located 
on the same chromosome (intrachromosomal fusions). Interestingly, the long 
non-coding (lnc) RNA MALAT1 was involved in multiple fusion events. Further, 
MALAT1 expression levels were significantly higher in tumors in the patient 
cohort compared to normal ovarian tissue. This is in line with previous reports 
demonstrating MALAT1 overexpression with higher cell proliferation and 
invasion 96,97. A recent report further confirmed the high occurrence of MALAT1 
in ovarian carcinoma-associated fusion genes, wherein MALAT1 was reported to 
be involved in more than 60% of fusion genes identified in a cohort of HGSC and 
triple-negative breast cancer patients 98. 
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The genomic rearrangements of coding genetic variants, fusion events and CNAs 
were visualized in circos plots for each tumor (Figure 3a). All nine samples used 
in the SNP genotyping analysis comprised at least one fusion gene (as verified by 
FISH, Figure 3b). As expected, DNA breakpoints were often found on 
corresponding chromosome positions where a fusion gene was identified using 
RNA-seq. Moreover, DNA breakpoints may increase the risk of further mutations, 
which may for example be seen as a peak of exonic variants on chromosome 11 
at the position of MALAT1 which is involved in multiple fusions for sample OV155 
(Figure 3a) 99. Large CNAs have previously been associated with HRD. Whether a 
tumor is deficient in HR is of importance since it can have implications for clinical 
treatment, such as sensitivity to PARP inhibitors and platinum- and taxane-based 
chemotherapy 100,101. 

 

Figure 3. Genomic rearrangements for ovarian carcinoma sample OV155, 
and FISH validated fusion transcript. Circos plot (a) showing the genomic 
rearrangements (coding genetic variants, copy number alterations, fusion genes) 
identified in ovarian carcinoma sample OV155. Chromosome 11 is shown as a 
legend with chromosome cytobands (Track 1), exonic genetic variants (Track 2, 
shown as dark gray bars) identified with RNA-seq data, B allele frequency (Track 3) 
and log R ratio of SNP genotyping data (Track 4), and  fusion transcripts (Track 5) 
identified with RNA-seq data. Copy number gains are shown in green and losses in 
red. A total of 43 fusion genes were identified in OV155 with 16 intrachromosomal 
gene fusions (shown in red), and 27 interchromosomal gene fusions (shown in blue). 
FISH analysis image (b) illustrating evidence of a fusion gene (yellow) between 
MALAT1 gene (green) and COL1A2 gene (red) for OV336 sample. In a normal cell, 
MALAT1 gene is located on chromosome 11 and COL1A2 gene on chromosome 7. 
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The gene expression analysis in Paper I was mainly focused on evaluating 
differences in gene expression patterns between the survival groups (0-2, 2-5, 5-
10, >10 years) across the entire patient cohort (regardless of the tumor 
histotype) to identify genes associated with differences in the tumor 
aggressiveness. The analysis identified 23 genes that were differentially 
expressed between at least two survival groups. Few studies have previously 
been performed for early-stage ovarian carcinomas in view of histotype and 
clinical outcome. Therefore, Paper I presents an important addition to current 
research, wherein novel genetic profiles relating to mutations, fusion genes, CNA, 
and gene expression profiles were identified.  
 

Paper II and III  
Immunohistochemical validation of histotype-specific biomarkers for 
improved prognostication of early-stage ovarian carcinoma 

Historically, ovarian carcinoma has been diagnosed and treated as one disease, 
but in recent years it has been shown that ovarian carcinoma can be subdivided 
into five main histotypes (CCC, EC, HGSC, LGSC, and MC) that significantly differ 
from one another 23,27,91. HGSC is the most commonly diagnosed histotype, 
corresponding to about 70% of all ovarian cancers, which is also reflected by it 
being the most well-studied histotype 20,53. In the clinic, determination of 
histotype is mainly done by histopathological analysis of tumor morphology. The 
protein expression of a panel of five biomarkers, namely Pax8, WT1, ER, PGR and 
p53, may further assist in accurate classification of the different histotypes using 
IHC 22. It may in some cases be difficult to distinguish between EC and HGSC 
histotypes. WT1 may be helpful in these cases, although it does not perfectly 
discriminate between the histotypes since some EC tumors express WT1, 
whereas some HGSC lack in WT1-expression (Table 2). In addition to the patient 
cohort used in Paper I, additional tumor samples were included in the patient 
cohorts used in Paper II and III to increase the number of tumor samples within 
each histotype group and therewith improve the statistical power of the analyses. 
The number of tumor samples more than doubled from 95 to 206 samples in 
Paper II and from 45 to 112 samples in Paper III. The additional tumors were 
also diagnosed between 1994 and 2006, and hence reclassified according to 
current WHO stratification 22.  
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Table 2. Biomarkers for histotype-classification that are routinely used in the clinic. 
Protein expression patterns of tumors (values shown in percentages) expressing each protein 
(Pax8, WT1, ER, PGR, and p53) 22. The majority of histotypes (about 90%) can however be 
determined using solely microscopic evaluation by a pathologist. 

  

In the clinic, the most important prognostic clinicopathological factor at the time 
of diagnosis is tumor stage 42. The 5-year survival rate for ovarian carcinoma 
patients (all epithelial subtypes) differs radically from 89% of the patients 
surviving at least 5 years with stage I disease, to only 20% with stage IV disease 
43. Histotype also has prognostic significance with differences in 5-year survival 
rates (serous 43%, EC 82%, MC 71%, CCC 66%). In an early-stage patient cohort, 
it has been reported that patients with EC and MC tumors in stage Ia or Ib have 
the most favorable prognosis with 10-year DSS of equal to or over 95% 46. To date, 
few prognostic ovarian carcinoma biomarkers are implemented in the clinic. 
Within standard care, ovarian carcinoma patients with BRCA-mutated tumors can 
be treated with PARP inhibitors that may lead to prolonged survival 47. Recent 
clinical trials have further shown increased survival for patients with HRD in 
general and not only HRD caused by BRCA-mutations 48. Apart from testing the 
tumor for BRCA mutation status and HRD, no other prognostic biomarkers have 
been implemented for routine-testing in the clinic. 
 
The biomarkers that were selected for protein expression analysis in Paper II 
and III were primarily selected from gene lists generated with Cox proportional 
hazard models that correlated RNA expression values (raw RNA-seq counts) with 
survival (OS/DSS) for tumors belonging to the same histotype group (CCC, EC, 
HGSC, MC). Due to lack of samples in the MC histotype group, Cox regression could 
only be performed for OS. Moreover, the RNA sequenced patient cohort (n=96) 
comprised only one LGSC sample, and it was hence excluded from these analyses. 
In Paper II and III, promising biomarkers (n=27 for Paper II, n=29 for Paper III) 
were chosen for IHC validation among significant genes with the highest C-index 
or highest log2 ratio. MTUS1 and COL3A1 that were identified in Paper I were 
further selected for validation in Paper II, leading to 29 biomarkers tested in each 
paper. IHC was chosen as validation method since it is presently used as a 

Histotype Pax8 WT1 ER PGR p53
CCC 99 0 13 6 12
EC 84 4 86 72 11
HGSC 98 92 80 30 93
LGSC 100 100 96 50 0
MC 50-60 0 6 0 50
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standard method in the clinic for examining protein expression of specific 
biomarkers, which may enable easier implementation of testing novel 
biomarkers in the clinic. For a relatively large portion of the biomarkers (17/29) 
in Paper II, an optimized antibody dilution could not be determined, due to weak 
protein staining. To improve the number of biomarkers with detectable protein 
expression using IHC, biomarkers with overall higher RNA expression levels 
(RNA-seq counts>150) were selected in Paper III, which is e.g. reflected by the 
number of biomarkers with determined optimal antibody dilutions (28/29). The 
fact that not all biomarkers could be optimized may also depend on unsuitable 
antibodies and/or potential differences between RNA and protein expression 
levels due to e.g. chemical changes when a pre mRNA is converted to a mature 
mRNA and protein 102,103.  
 
Paper II resulted in validation of the prognostic significance of COL3A1 protein 
expression with shorter OS in ovarian carcinoma (for all main histotypes), 
GPR158 expression with shorter OS in MC patients and PITHD1 expression with 
longer OS and DSS in CCC patients. However, PITHD1 protein expression did not 
correspond with its RNA expression, wherein PITHD1 RNA expression correlated 
with shorter survival outcome. This discrepancy may be due to differences in 
measuring the expression levels, i.e. IHC only takes the expression levels of tumor 
cells into account, whereas RNA-seq measures the expression of all cells (e.g. 
tumor and stromal cells).  
 
In Paper III, TMA were constructed with triplicate cores for each tumor sample 
in the patient cohort. It was cheaper and less time-consuming to perform IHC on 
TMAs in comparison with IHC on full-face FFPE sections, especially when testing 
multiple potential biomarkers on the same patient cohort. This may however only 
comply for research purposes. In the clinic, it may still be easier to use full-face 
FFPE sections for rapid diagnosis and prognosis, since it saves the step of 
constructing a TMA. Moreover, it is important to keep in mind that core biopsies 
from a tumor block only comprise selected areas of the entire tumor and not the 
full tumor section. In Paper III, we focused on identifying prognostic biomarkers 
for the CCC, EC, and MC histotypes. Potential biomarkers identified in HGSC were 
excluded due to relatively low prognostic potential in the Cox proportional 
hazard models. Ultimately, the prognostic significance of 17/29 proteins (10 CCC-
associated biomarkers (ARPC2, CCT5, GNB1, KCTD10, NUP155, RPL13A, RPL37, 
SETD3, SMYD2, and TRIO), three EC-associated biomarkers (CECR1, KIF26B, and 
PIK3CA), four MC-associated biomarkers (CHEK1, FOXM1, KIF23, and PARPBP)) 
was validated on the protein level (Figure 4). 
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Figure 4. Protein expression of NUP155 using TMA. TMA slide (a) for protein 
staining of NUP155 for 37 CCC samples with triplicate TMA cores. Representative 
IHC staining intensities for weak (b, c) and strong (d, e) NUP155 protein staining 
shown on a TMA core (60 x magnification, middle column; 300 x magnification, 
right column). The top section of the weakly stained TMA core (b) comprised of 
necrotic tissue, the left section with tissue that also stretches into the right section 
of the TMA core was comprised of stromal cells and the right section was comprised 
of tumor cells. The strongly stained TMA section (d) comprised of large glandular 
structures of stained tumor cells (brown color) and stromal cells (blue color) in 
between the stained tumor cells. 

 

It was revealed that all validated biomarkers (n=20) in Paper II and III could 
better predict the patients’ survival time when combining the protein expression 
of the biomarkers with established clinicopathological parameters (age, stage, 
CA125, ploidy, and/or histotype) in comparison with models comprising only the 
established clinicopathological parameters. This further highlights the 
importance of these biomarkers. The KM plotter online tool was used to validate 
our findings in an external dataset on the RNA expression level. Unfortunately, 
KM plotter only comprises a few EC ovarian carcinoma samples and no CCC or MC 
samples. To date, there are no other public databases with CCC or MC expression 
data linked to survival data. A predictive model comprising the combined 
expression results from Paper II and III (GPR158 + MC-associated biomarkers, 
PITHD1 + CCC-associated biomarkers) in combination with established clinical 
parameters could even better predict the patient outcome. 
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In our models, the combination of individual biomarkers lead to an overall 
improved predictive power. However, it is important to keep in mind that in the 
clinic, immunohistochemical evaluation of multiple biomarkers may be too labor-
intensive to perform and evaluate. Therefore, its clinical utility may therefore be 
hindered in daily pathology practice. In addition, some of the antibodies may not 
be widely available. The histotype-specific biomarker panels presented here may 
for these reasons need further testing to optimize and reduce the number of 
biomarkers in each panel, especially the panel with CCC-associated biomarkers 
in Paper III that contains the highest number of biomarkers. To the best of our 
knowledge, the protein expression of the biomarkers in Paper II and III have not 
previously been associated with prognosis in early-stage ovarian carcinomas.  
 

Paper IV  
Genomic and epigenomic features associated with early-stage ovarian 
carcinoma histotypes drive transcriptomic deregulation 

Sequencing technologies, such as next-generation sequencing (NGS), have 
revolutionized our understanding of the mechanisms behind cancer formation 
and progression through genome-scale analyses 19. Cancer was long thought to 
be mainly based on genetic alterations, such as point mutations, CNA, as well as 
insertions and deletions. In recent years, it has however been shown that 
epigenetic changes also have a large impact on oncogenic transformation, and 
that genetic and epigenetic alterations may cooperatively influence 
carcinogenesis through e.g. mutations in epigenetic regulators 104. Hence, the sum 
of genetic and epigenetic events may drive tumorigenesis 19. Multi-omics 
approaches integrating various genome-wide sequencing techniques, such as 
DNA methylation and RNA-seq to study the entire genome (study all genes and 
their combined interactions in a single experiment), epigenome (study epigenetic 
regulation of all genes) and transcriptome (study the expression of all genes and 
their combined expression) enable us to a greater extent characterize individual 
tumors, or specific subtypes 105. Multi-omics analyses have been suggested as a 
key to advancing personalized medicine into the clinic 105. Along with affordable 
large-scale omics-wide approaches, widespread implementation in clinical 
practice may also be enabled, thereby allowing personalized treatment-decisions 
to be further based on the combination of tumor-associated genomic, 
transcriptomic and epigenomic features. Based on this knowledge, individualized 
treatment regimens may be available in the future 106.  
 

RESULTS AND DISCUSSION   33 

In Paper IV, the aim was to better understand the mechanisms behind genetic, 
epigenetic and transcriptomic alterations that make up the disease state of early-
stage ovarian carcinoma histotypes (CCC, EC, HGSC, MC). This paper comprises a 
comprehensive characterization of molecular histotype-specific features based 
on DNA methylation, DNA CNA and RNA-seq data, which may provide an 
important basis for further research advancing our understanding of various 
molecular aspects of the development and progression of individual ovarian 
carcinoma histotypes. More specifically, the RNA-seq data set (n=96) presented 
in Paper I was further analyzed in Paper IV to assess differences in gene 
expression patterns between different histotypes (CCC, EC, HGSC, and MC). Paper 
IV further presents a unique approach by integrating the RNA-seq data with DNA 
methylation and CNA data (n=91/96 of the RNA sequenced tumors in Paper I 
with sufficient tumor material remaining in the tumor bank), using the same 
patient cohort. 
 
In general, the DNA methylation analysis revealed that highly methylated CpG 
sites were more common than unmethylated probes in the ovarian carcinoma 
cohort. In line with previous DNA methylation reports, CpG sites in regions 
related to gene expression regulation were generally unmethylated 107. More 
specifically, unmethylated CpG sites were commonly identified in genomic 
regions, e.g. promoter, enhancer and exon regions, as well as in CpG islands and 
shores. A comparison of significant (Benjamini-Hochberg adjusted P value<0.05) 
differentially methylated probes (DMPs), i.e. differential probe-specific ratios of 
methylation, in different histotypes (CCC, EC, HGSC, and MC as case group vs the 
remaining histotype groups) revealed histotype-specific methylation patterns. 
Herein, CCC was generally found to be hypermethylated with beta intensity 
values greater than 0.8 in all histotype comparisons for all genomic regions as 
well as for regions surrounding CpG islands, and EC was more hypermethylated 
compared to MC and HGSC (Figure 5). HGSC and MC were mostly hypomethylated 
in all histotype comparisons. Similar promoter DNA methylation patterns have 
previously been shown for CCC, EC, and HGSC, but DNA methylation patterns in 
MC are less studied 108. 
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Figure 5. Histotype-specific DNA methylation patterns. Column charts 
displaying the distribution of differentially methylated CpG sites in the different 
histotype comparisons, subdivided by regions surrounding CpG islands and genomic 
regions. In column chart (a) CCC, (b) EC, (c) HGSC, and (d) MC are compared with 
the other histotypes. The regions surrounding CpG islands includes CpG islands 
(defined as a genomic region being >200bp in length with >50% G and C nucleotide 
content), CpG shores (0-2kb from CpG islands), CpG shelves (2-4kb from CpG 
islands), and open sea (>4kb from CpG islands). The genomic regions include the 
promoter region, which is found 200bp-1500bp upstream of transcriptional start 
sites, comprising the 1st exon and 5’ untranslated region (5’ UTR). The genomic 
region further includes enhancers, gene bodies, intergenic regions (IGRs), 3’ UTRs, 
and exons. 3’ UTR and exons follow the right y-axis, whereas the remaining follow 
the left y-axis. Hypermethylated differentially methylated probes (DMPs) are 
defined as beta values ≥0.2 (shown in blue and gray) and hypomethylated DMPs are 
defined as beta values ≤-0.2 (shown in orange and yellow). 

 

Genome-wide DNA CNA profiles were evaluated in BioDiscovery Nexus Copy 
Number using single probe resolution CNA data extracted from the DNA 
methylation data with the conumee package. The normal CNA profile comprises 
two copies of a gene (one maternal and one paternal gene). In the CNA profile, the 
nucleus may comprise more copies than normal (CNA gain) or less copies than 
normal (CNA loss) 109. A total of 51 recurrent copy number gains and 10 recurrent 
copy number losses were identified in at least 35% of the patient samples. 
Chromosome ideograms of chromosomes 1 to 22 revealed recurrent gains on all 
autosomal chromosomes except for chromosomes 9, 11 and 19, as well as 
prominent recurrent losses on chromosome arms 4q, 5q, 6p, 8p, 10-12p, 12q, 13q 
and 19q (Figure 6). The average number of CNAs per patient was significantly 
higher in HGSC compared to EC patients (Wilcoxon P value<0.05), which is 
supported by previous reports highlighting a high frequency of CNAs in HGSC 110. 
No significant difference was found between the other histotypes. 
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Figure 6. Genome-wide CNA changes in early-stage ovarian carcinoma. 
Chromosome ideograms of chromosomes 1 to 22 showing genome-wide CNA 
changes in the patient cohort as a whole (all histotypes). Genomic gains and losses 
are shown in blue and red, respectively. 

 

The extent of chromothripsis-like patterns (CTLPs), wherein a single catastrophic 
event may have shattered one or more chromosomes, thereby generating 
genomic rearrangements of the shattered chromosome pieces when the cell 
attempts to repair the damage, was evaluated using the CTLPScanner with CNA 
segments as input data (derived from ChAMP) 17. The CTLPs identified here 
comprised more than 20 CNA status changes, e.g. changes from gain to normal or 
normal to loss with a log2 ratio difference of at least 0.3. A total of 64 CTLPs, all 
of which were genomic gains, were identified. The CTLPs were most commonly 
found on chromosomes 1, 3, 17 and 19 (Figure 7). 

 
Figure 7. Genomic imbalance in early-stage ovarian carcinomas 
demonstrated by chromothripsis-like events. Representative DNA CNA zoom-in 
plots (a-d) showing chromothripsis-like patterns (CTLPs) on chromosomes 1, 3, 17 
and 19 comprising the highest frequency of CTLPs. Red boxes highlight the CTLP 
region, which is also specified in the parentheses. Genomic gains and losses are 
shown in green and red, respectively. The centromere dividing the p-arm (left of 
centromere) and q-arm (right of centromere) is shown as a vertical dashed line.  

RESULTS AND DISCUSSION   37 

RNA expression analysis generally showed lower expression in ovarian 
carcinoma in comparison with normal ovarian tissue, as well as expression 
patterns specific to the different histotypes (CCC, EC, HGSC, MC). If a gene has 
been found to be altered in cancer tissue through multiple mechanisms, e.g. 
altered gene expression, DNA methylation profiles and/or DNA CNA, it may 
suggest that the gene is important in the initiation or progression of cancer 
growth 111. These molecular mechanisms may work together, e.g. to make sure 
the gene is enhanced/silenced. In cancer, oncogenes that promote abnormal cell 
growth are often overexpressed, and tumor suppressor genes that slow down cell 
growth may be underexpressed and can thereby contribute to cancer 
development 112. Here, we identified 46 putative oncogenes that were 
overexpressed, hypomethylated and showed genomic gain, and three putative 
tumor suppressor genes that were underexpressed, hypermethylated and 
showed genomic loss. Functional studies, e.g. overexpression of the candidate 
gene and knock-out studies, need to be performed in order to validate the 
identified oncogenes and tumor suppressor genes.  
 
Despite newly developed techniques for comprehensive omics-wide analyses, 
surprisingly few integrative analyses have been performed in the field of ovarian 
cancer research. A report from 2019 investigated DNA methylation patterns in 
different histotypes. For a subgroup of patients (n=47/162), CNA data was also 
analyzed, and gene expression analysis for 512 genes using NanoString assay was 
performed for HGSC patients (n=61/162), with only 13 patients analyzed with all 
three methods 113. Hence, Paper IV is unique in which it analyses early-stage 
ovarian carcinomas (n=96) using multiple analysis methods on the same patient 
cohort (with the exception of five samples). This study presents novel ovarian 
carcinoma histotype-specific data on not only the most commonly occurring and 
well-studied HGSC histotype, but also the rarer histotypes (CCC, EC, and MC), 
further restricting the analysis to early-stage tumor.
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CONCLUSIONS AND FUTURE PERSPECTIVE 

Overall, this doctoral thesis presents novel insights into molecular characteristics 
associated with early-stage ovarian carcinoma that may improve patient 
stratification and subclassification based on histotype and clinical outcome. 
Valuable knowledge is provided for a relatively large patient cohort considering 
the rarity of the disease and the fact that early-stage tumors are less commonly 
diagnosed than late-stage tumors. The identified genetic and epigenetic 
aberrations (e.g. genetic variants, fusion genes, CNA, gene expression profiles, 
DNA methylation patterns, oncogenes, and tumor suppressor genes) may help to 
better classify ovarian carcinomas by histotype and stratify patients by prognosis 
using not only clinicopathological features but also molecular tumor features. 
Furthermore, the identified genetic and epigenetic aberrations may help to 
determine which patients are in most need of more aggressive treatment 
regimens and/or targeted therapy. Additional studies need to be performed to 
validate the clinical significance of the identified aberrations in relation to the 
stratification and subclassification of the ovarian carcinoma patients using e.g. 
immunohistochemistry and functional studies. 
 
Prognostic signatures relating to individual histotypes were also identified on the 
transcriptomic level and validated on the protein level. We provide evidence for 
improved outcome prediction in view of conventional clinicopathological 
features used in the clinic. The identified signatures may improve our 
understanding of ovarian tumor progression and may help with prognostication 
at the time of diagnosis. The prognostic signatures may further assist in the 
development of future individualized therapeutic strategies for ovarian 
carcinoma patients. However, additional testing needs to be performed using 
larger cohorts, and cohorts further comprising late-stage tumors, to further 
confirm our findings. Moreover, the number of proteins to be tested in each 
histotype-specific biomarker panel needs to be optimized further and reduced to 
enable more practical implementation in the clinic.
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