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ABSTRACT

Turbulent fluids laden with small, heavy particles are common in nature.
Prominent examples of such turbulent suspensions are water droplets in
warm clouds, as well as particulate matter or living organisms in the tur-
bulent upper layer of oceans. Because of their inertia, heavy particles tend
to distribute inhomogeneously over phase-space, and over configuration
space. This phenomenon is referred to as clustering, and it is believed to
have a strong impact on the rate of collisions between particles. The collision
dynamics, in turn, is crucial for the time evolution of turbulent suspensions,
as collisions enable the particles to grow in size.

In this thesis, I study the phase-space distribution of heavy particles in
turbulence in terms of a simplified, statistical model that qualitatively cap-
tures the particle dynamics on the smallest length scales of turbulence. I use
methods from dynamical systems theory, and the theory of large deviations,
to describe the long-time behaviour of the particle distribution. In most
parts of the thesis, I investigate suspensions of identical particles, and study
statistical observables that characterise clustering in phase-space, and in
configuration space.

For these ‘mono-disperse’ suspensions I analyse phase-space clustering
in a one-dimensional limit by computing the large-deviation statistics of
phase-space finite-time Lyapunov exponents, and the phase-space Renyi
dimensions. Spatial clustering is studied by projecting the phase-space
dynamics to configuration space. I show how the large-deviation statistics
of spatial finite-time Lyapunov exponents is affected by this projection, and
the effects it has on the spatial correlation dimension.

Finally, I extend the analysis to particle suspensions of two different sizes.
I show that this ‘poly-dispersity’ has a strong effect on the phase-space dis-
tribution of particles, where it leads to a plateau in the distribution of sepa-
rations and relative velocities.
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PART I

INTRODUCTION

Fluids often carry small particles that are much denser than the fluid itself.
The air in clouds, for instance, carries large amounts of water, in the form of
small water droplets [2, 3, 4]. Furthermore, the water of rivers, lakes and the
oceans are full of small impurities, such as particulate soil, but also living
organisms [5, 6].

Most fluids are in a state of complicated motion, called turbulence, in
which the fluid velocity and pressure fluctuate chaotically as functions of
space and time. In fluids with low viscosity, gases in particular, turbulent
motion is rather the rule than the exception. The fluid motion accelerates
the particles, and enables them to detach from the flow. This detachment
is believed to play an important role in cloud physics [2, 3, 4, 7] because it
increases the probability of collisions [8, 9, 10, 11, 12, 13] between the water
droplets, thus facilitating the formation of rain. The same effect is relevant
in the turbulent water of the upper layers of oceans where it is believed to
enhance collisions of solid particulate matter, making it stick together and
sink as marine snow [14]. Detachment is a result of particle inertia, that arises
because the particles are denser (or ‘heavier’) than the fluid [15, 16, 17].

Mathematically, the dynamics of heavy particles takes place in the higher-
dimensional phase space, which consists of both the positions and the ve-
locities of the particles. Viscous friction between the particles and the fluid
makes the dynamics dissipative [18, 19, 20]meaning that phase-space vol-
umes of particles must contract over time [17]. This has important impli-
cations for the physics of these systems. Dissipation in chaotic dynamics
leads to particle aggregation, so-called clustering [17]. Clustering increases
the probability of particles to come close together, and thus to interact with
each other [8].
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1 What this thesis is about

This thesis is concerned with the phase-space distribution of heavy particles
in turbulence. Due to clustering, heavy particles tend to distribute inhomo-
geneously over phase-space so that large regions of phase space are entirely
void of particles while other regions show large particle concentration.

For many practical purposes, however, the spatial particle distribution
is of interest, too. The reason is that most kinds of particle interactions,
collisions [9, 10, 11, 12, 13] for example, require spatial proximity to take
place. In order to obtain the spatial particle distribution from the phase-
space distribution we must project the phase-space distribution to the lower-
dimensional configuration space, the space of positions. This projection has
mathematical singularities that lead to interesting and physically relevant
effects. We call these singularities caustics [21, 22, 23, 24], because of their
similarity with partial focusing of light in optics [25].

Caustics have two important effects. First, they result in divergencies
in the spatial probability distribution (density) of particles [17, 22], which
is the direct analogue of the diverging light intensity due to partial focus-
ing in optics. Therefore, it is expected that inhomogeneities in the spatial
distribution of particles may be even larger than those of the phase-space
distribution. Second, caustics allow spatially close particles to approach
each other, and thus collide, at high relative velocities [13, 23, 24]. This effect
has no direct analogue in optics, but it is not less important. The relative
velocity in particle collisions affects collision rates and collision outcomes
[8, 9].

The phase-space particle distribution is the main object of study in this
thesis, and in the appended research papers. To understand how this distri-
bution evolves as a function of time, I consider a simplified model. This is
necessary, since heavy particles in turbulence are a non-linear, multi-scale
system, whose general analysis poses formidable challenges [17]. The sim-
plified model is intended to explain the most important physical effects of
the particle system. The first main simplification that I employ in this thesis
is to mimic the turbulent fluctuations of the fluid velocity, and of the pres-
sure, by a simpler, random fluid-velocity field [17]. Secondly, I assume an
effective equation of motion for the particles, known as Stokes law [26, 27].
Stokes law models the force on the particles for a given fluid-velocity field. It
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neglects the complex back-reaction of the particles onto the fluid, as well as
other effects, e.g., due to the finite size of the particles or the history of their
motion. The third major simplification that I apply in most of the thesis, is
to consider suspensions of identical particles. This approximation is relaxed
in the last part of this thesis, when I discuss the relative particle dynamics of
suspensions of particles of different sizes [11, 28]. Finally, whenever possible,
I reduce the dimensionality of the system to one spatial dimension, and thus
to a two-dimensional phase space.

By construction, the models I study are only caricatures, and we do not
expect them to quantitatively describe droplets in clouds or algae in the
ocean. Their strength is their simplicity, which allows us to mathematically
quantify their phase-space dynamics, and, more importantly, to understand
why they behave the way they do. To assess the value of the models, we
must compare their predictions with the results of numerical simulations
[11, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37], and with experiments [38, 39, 40, 41,
42, 43, 44, 45].

As I show in this thesis, the mathematical analysis of these ‘statistical mod-
els’ is by no means simple but requires advanced methods of non-equilibrium
statistical physics. More importantly, the models explain, albeit their sim-
plicity, important properties of the particle dynamics such as clustering in
phase-space and in configuration space, and the formation of caustics [17].
As simplified models do, the statistical models fail sometimes [17]. When
and how they fail is of no less interest, as it enables us to critically evaluate
our assumptions, and thus to improve our understanding of the physically
relevant mechanisms.

Outline

The remainder of my thesis is divided into five parts. You are now reading part
one which consists of two chapters, a general introduction and a chapter
about the statistical model that I use in the rest of my work. The second
part is about the mathematical methods that I employ to study the model.
In this part I define the phase-space density of particles (Chapter 3), and
explain how to extract measurable numbers, so-called observables from it
(Chapter 4). In part three I discuss my own work, and the contents of the
papers A-C (Chapters 5-8). In the fourth part I draw conclusions and outline
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how the studies described in part three could be extended (Chapters 9-10).
Part five contains the three research papers A-C.
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2 Modelling heavy particles in turbulence

The basis of all further investigations in this thesis is a statistical model [17] for
the dynamics of heavy particles in turbulence. This simplified model intends
to mimic important aspects of the dynamics of both the turbulent fluid and
of the particles, and to combine them in a set of equations of motion. To
arrive at the final model in Section 2.5, a number of modelling assumptions
are required that I motivate in the first sections of this chapter.

2.1 Turbulence

There is no general definition of turbulence that everybody agrees on. Tur-
bulence does, however have characteristic properties that enable us to dis-
tinguish a fluid that is turbulent from one that is not. First of all, turbulence
describes the state of a fluid. Hence, it would be wrong to say, “Water is tur-
bulent”, because it can be found in both turbulent and non-turbulent states.
What people usually mean when they say that a fluid is turbulent, is that the
fluid motion is complicated, and seems unpredictable. This complicated
fluid motion is accompanied by excellent mixing properties [46, 47, 48]. Ev-
erybody who enjoys milk in their coffee likes to stir after adding the milk, and
to let the resulting turbulence complete the work of mixing the two fluids. As
a working definition, I will call a fluid turbulent if it is strongly mixing, and
moves in a complicated way.

A simple way to think about turbulence is as a composition of eddies of
different sizes. When we stir the coffee-milk mixture in our cup, we bring
energy into the fluid by generating eddies of the size of the spoon. If we now
remove the spoon again and let the fluid move by itself, the larger eddies
partly disintegrate and are soon accompanied by smaller eddies of different
sizes. The fluid motion acquires a finer and finer spatial structure until it
eventually comes to rest.

Scientists call this process a cascade [46, 47, 48] that transports energy
from large length scales (size of the spoon) to small scales. A cartoon of
this energy cascade is shown in Fig. 2.1. Energy is injected at rate εin into
the large eddies of size ` by, for instance, mechanical stirring. Due to fluid-
mechanical instabilities [48], larger eddies are unstable and disintegrate into
many smaller ones. These smaller eddies, in turn, break up into an even
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εininjection scale

inertial range

Bachelor regime ε
ηK

`

Figure 2.1: Cartoon of the energy cascade in turbulence. The different-size
eddies are shown as the blue circles with arrows. Energy is injected into the
largest eddies at rate εin at length scales `, and flows through the inertial range.
At the Kolmogorov scale ηK, the energy is dissipated at rate ε.

larger number of still smaller ones, and so on. The cascade stops eventually
at a small scale ηK, the Kolmogorov scale [49]. Eddies of size ηK are so small
that they dissipate their kinetic energy into heat rather than generating even
smaller eddies. We call the rate of energy dissipation ε. At scales much
smaller than ηK, there is no eddy structure and the fluid-velocity field is
spatially smooth. This regime is called the dissipation range or Batchelor
regime [50]. Through energy dissipation at the smallest scales, the fluid
transforms the energy that we injected at the largest scales in to thermal
energy. This explains why the fluid comes to rest after some time when we
stop stirring.

If we do not stop stirring, on the other hand, we sustain a non-equilibrium
stationary state in which energy is constantly injected at scale `, flows through
the energy cascade, and dissipates at scale ηK. In this stationary state, the
rate of energy injection must equal the rate of energy dissipation εin = ε.
This kind of sustained turbulence is present in clouds [2]where large-scale
temperature and pressure gradients constantly feet energy into the large
eddies.

An important question is: when does a fluid become turbulent? The
answer depends on the typical velocity u0 of the fluid at the length scale
L of the fluid disturbance, and upon the kinematic viscosity ν of the fluid.
The kinematic viscosity determines the ‘thickness’ of a fluid, compared to its
density. For most gases and many liquids, the kinematic viscosity ν is small,
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while it is large for viscous fluids such as honey or tar. From u0, L and ν, we
can define a single dimensionless number

Re=
u0L

ν
, (2.1)

called the Reynolds number. The size of the Reynolds number is an indicator
of whether or not the fluid motion is turbulent. If Re is much smaller than
unity, Re � 1, the fluid is typically not turbulent [26, 27]. Turbulent fluid
motion requires Reynolds numbers that are much larger than unity [46, 47,
48]. It is an easy task to estimate the Reynolds number for our coffee cup
example. The kinematic viscosity of water is of the order of ν∼ 10−6 m 2/s .
The typical velocity u0 of stirring is roughly 0.1m/s , and as length scale L
we take the diameter of the cup, say 0.1 m . Eq. (2.1) then gives the estimate
Re≈ 104, which is much larger than one. Hence, this simple estimation of
the Reynolds number Re makes a strong prediction (turbulence in the coffee
cup) that is verified by the result of our (gedanken-)experiment.

2.2 Navier-Stokes equations

The motion of a fluid is described by a fluid-velocity field u (x , t ) and a pres-
sure field p (x , t ). The fluid-velocity field u (x , t ) assigns a velocity vector u to
each point (x , t ) in space and time. Given u (x , t ), we know how fast and in
which direction the fluid moves at position x and at time t . The fluid-velocity
field and the pressure field can, in principle, be calculated by solving a set of
non-linear differential equations, the Navier-Stokes equations [46, 47, 48].
For an incompressible, Newtonian fluid with ∇ ·u (x , t ) = 0 and constant
density ρf, the Navier-Stokes equations read

ρf {∂t u (x , t ) + [u (x , t ) ·∇]u (x , t )}=−∇p +ρfν∆u (x , t ) + f (x , t ) , (2.2)

Equipped with appropriate initial and boundary conditions, the Navier-
Stokes equations are believed to describe every aspect of fluid motion, in-
cluding turbulence.

Equation (2.2) describes the conservation of momentum of a small fluid
element. Neighbouring fluid elements collide with each other inelastically,
meaning that although momentum is conserved, energy is not. This is a
consequence of the viscosity of the fluid, and is described by the viscous term
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ρfν∆u (x , t ). The external force density f (x , t ) corresponds to the stirring
on large scales, and thus keeps the fluid in motion.

In order to see how the Reynolds number arises in the Navier-Stokes equa-
tions, we de-dimensionalise Eqs. (2.2) according to t → (L/u0)t , x → Lx ,
u → u0u , p → (ρfu0ν/L )p and f → (ρfu0ν/L 2) f . We obtain the dimension-
less equation

Re{∂t u (x , t ) + [u (x , t ) ·∇]u (x , t )}=−∇p +∆u (x , t ) + f (x , t ) . (2.3)

The Reynolds number appears of the left-hand side of Eq. (2.3). It controls
the size of the inertial terms ∂t u (x , t ) + [u (x , t ) ·∇]u (x , t ). These terms, in
particular the non-linear term [u (x , t ) ·∇]u (x , t ), are responsible for the
interaction between different-sized eddies in the fluid, and thus for its turbu-
lent motion. When the Reynolds number is small enough, one can neglect
the left-hand side of Eq. (2.3), so that the fluid motion is not turbulent. For
Re� 1 the non-linearity in the equations leads to chaotic fluctuations of the
solutions in space and time.

2.3 Stokes law

Heavy particles immersed in the turbulent fluid are the central objects of
our study. The turbulent motion of the fluid leads to forces that accelerate
the particles. The correct way of calculating these forces is to solve the
Navier-Stokes equation with appropriate (no-slip) boundary conditions on
the particle surface. Even on today’s largest computers this is in general
impractical for suspensions of many particles. In our model, we simplify the
problem drastically by using a solution of Eqs. (2.2) that is valid only in a strict,
limiting case. The price we pay is that the corresponding effective equation
for the forces on the particles is valid only under strong assumptions on the
particle shape, size, density and velocity. The effective equation we use is
called Stokes law [26, 27]. For a spherical particle of radius a it gives the force

F = 6πνρfa [u (x t , t )−vt ] . (2.4)

Here ρf is the density of the fluid and ν its kinematic viscosity. The fluid-
velocity field u (x t , t ) is that of the undisturbed fluid evaluated at the position
x t of the particle. Water droplets in turbulent clouds or particulate matter
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in the ocean are subject to not only forces from the turbulent fluid, but also
gravitational forces that cause the particles to settle. In particular for the
larger particles, the relative settling speed compared to smaller particles is
believed to be a main driving force for particle collisions [2, 8]. We neglect
these contributions in our model which can be justified in regions of intense
turbulence, where settling is negligible.

Stokes law (2.4) is derived from the so-called Stokes equation [26, 27]
which neglects the left-hand side of Eqs. (2.2), and which is valid when the
fluid disturbance caused by the particle can be disregarded. Therefore, cor-
rections to Eq. (2.4) may arise when either of the two inertia terms ∂t u (un-
steady fluid inertia) and (u · ∇)u (convective fluid inertia) are of the same
order as the terms on right-hand side of Eqs. (2.2). In order for Stokes law
to be a valid approximation of the particle dynamics, we require that the
particle is small, so that a � ηK, and that the particle Reynolds number
Rep = u0a/ν is much smaller than unity. Here, u0 is the typical relative (‘slip’)
velocity [26, 27] between the particle and the fluid [17]. Furthermore, the
density ratio ρp/ρf must be large, so that buoyancy effects can be neglected.
This is why, for our model, we need to assume that the particles are heavy.

Eq. (2.4) is a so-called one-way coupling [51], which means that the fluid
motion is modelled to act upon the particle, but not the other way round. This
means in particular that when we consider suspensions of many particles in
the same fluid, hydrodynamical interactions are neglected. This assumption
requires that the suspensions that we consider are dilute.

For clouds, the radii of the droplets are of the order of a ≈ 10−6m , and the
Kolmogorov length scale is about a millimeter ηK, so that a � ηK [2]. The
density ratio of water to air is about one thousand ρp/ρf ≈ 103, and thus
much larger than one. The density of droplets is about 108 per cubic meter
[2], so there is on average less than one droplet per η3

K. This would suggest
that the use of Stokes law is a good approximation for raindrops in clouds,
as long as individual droplet pairs do not come too close and the particle
Reynolds number Rep stays small.

Stokes law leads to the following equation for the velocity vt for a particle
of mass mp

d
dt vt = F /mp = γ [u (x t , t )−vt ] . (2.5)

From Eq. (2.4) the damping coefficient γ is given by γ= 9νρf/(2ρpa 2). For
a steady fluid-velocity field u (x , t ) = u , Eq. (2.5) has the solution vt = u +
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e−γt vt=0. Hence, Stokes law describes an exponential relaxation of the parti-
cle velocity to the fluid velocity u . The characteristic damping time γ−1 is
also called ‘Stokes time’, and it is denoted by τp.

2.4 Gaussian fluid-velocity fields

The use of Stokes law (2.4) for the force on a particle requires a spatially
smooth fluid-velocity field u (x , t ). In turbulence, u (x , t ) is smooth up to
scales of about ten times the Kolmogorov length scale ηK [17]. Particles that
are much smaller than ηK are advected by the larger eddies, so that, as far as
the particle dynamics is concerned, we expect only the turbulent fluctuations
of u (x , t ) at scales of the order of ηK to matter [17].

The transport of energy through the inertial range destroys most of the
information contained in the forcing (or stirring) that excites the turbulence
[47]. When the turbulence is strong, this implies that we can assume the
statistics of the fluid-velocity field in at scales of the order of ηK and below to
be statistically homogeneous and isotropic [47]. Furthermore, under steady
forcing, turbulence reaches a non-equilibrium steady state, so that u (x , t ) is
statistically homogeneous in time.

The statistical properties of homogenous and isotropic turbulence on
small scales put strong constraints on the mean and the correlation func-
tion of u (x , t ). We mimic these statistical properties of turbulence with a
Gaussian fluid-velocity field. The underlying assumption is that the most
important aspect of the turbulent flow u (x , t ) for the particle dynamics are
the correlation functions 〈ui (x , t )u j (x ′, t ′)〉, and, in particular, the spatial
smoothness of the turbulent fluid-velocity field on small scales. That u (x , t )
is turbulent, and a solution to Eqs. (2.2), is disregarded.

A particularly simple choice of random flow is to model u (x , t ) by a spa-
tially smooth, Gaussian random function. Gaussian random functions have
the advantage that their mean and correlation function determine all higher
moments. For instance, for a Gaussian distributed field u (x , t ) with zero
mean, all odd moments vanish. The higher even moments are expressed
in terms of sums over correlation functions using Wick’s rule [47, 52]. In
turbulence, the statistics of u (x , t ) can be shown to have non-Gaussian tails
at small scales [47]. The reason is that the Navier-Stokes equations give rise to
intermittent outbursts of strong fluctuations that do not appear in a Gaussian
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model. We neglect these intermittency effects.
We generate the random fluid-velocity field u (x , t ) from Gaussian ran-

dom potentials. Although the turbulence in rain clouds or the oceans is
incompressible, the fluid-velocity fields experienced by, for instance, parti-
cles floating on the surfaces of fluids may be compressible [53, 54]. Therefore,
we allow for compressibility of the fluid-velocity field u (x , t ) in our model.
To this end, it is convenient to separate the fluid-velocity field u (x , t ) into a
solenoidal and a potential part. The solenoidal part is incompressible and
is generated from a tensor potential. In d dimensions, the tensor potential
is an antisymmetric tensor field of rank d −2 and, hence, a vector potential
A(x , t ) in d = 3, a scalar potential ψ(x , t ) in d = 2 and zero in d = 1. The
potential part of the random flow u (x , t ) is compressible but rotation-free,
and it is the gradient of a scalar potential φ(x , t ). The flow field u (x , t ) in
d = 1, 2, 3 reads in terms of the tensor and scalar potentials [17]

u (x , t ) = ∂xφ(x , t ) , (2.6a)

u (x , t ) =
�

1−℘
�1/2

�

∂xψ(x , t ) ,
−∂yψ(x , t )

�

+℘1/2

�

∂xφ(x , t )
∂yφ(x , t )

�

, (2.6b)

u (x , t ) =
�

1−℘
2

�1/2

∇× A(x , t ) +℘1/2∇φ(x , t ) . (2.6c)

In Eqs. (2.6), the solenoidal part of u (x , t ) is generated by the vector potential
A(x , t ) in d = 3, and by the scalar potentialψ(x , t ) in d = 2. The potential part
of u (x , t ) is the gradient of a scalar potential, which we denote byφ(x , t ). The
relative magnitude of the solenoidal and potential parts of u (x , t ) is deter-
mined by the compressibility degree ℘ [55]. Hence, u (x , t ) is incompressible
(solenoidal) for ℘= 0, and fully compressible (potential) for ℘= 1. In d = 1,
the flow field u (x , t ) is scalar and thus always fully compressible. We take
all individual components of the potential fields A(x , t ),ψ(x , t ) andφ(x , t )
to be statistically independent functions with zero mean and with identical
correlation functions given by [17]

C (x , t ; x ′, t ′) =
u 2

0η
2

d
exp

�

−|x −x ′|2/(2η2)− |t − t ′|/τc

�

. (2.7)

The parameters η and τc are the correlation length and the correlation time,
respectively, while u0 determines the typical velocity of the fluid at the small
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scales. The correlation function (2.7) is stationary in time, as well as homo-
geneous, isotropic and smooth in space. This ensures that by Eq. (2.6), also
the correlation function of u (x , t ) has the desired statistical properties.

In numerical simulations, we equip the Gaussian random potentials with
periodic boundary conditions in a box of edge length L = 10η. The potentials
can then be expressed as independent Fourier sums of the form

u0ηp
d

�p
2π

L

�d /2
∑

k

ck (t )exp[i k ·x −k 2η2/4] . (2.8)

The sum is taken over the wave vectors k = (2π/L )n with n ∈Zd with Fourier
components ck . The latter are independent, complex-valued Ornstein-
Uhlenbeck processes, with zero mean and correlations [17, 56]

〈ck (t )c̄k ′ (t
′)〉=δk k ′ exp(−|t − t ′|/τc) . (2.9)

We take independent Ornstein-Uhlenbeck processes for ck , because they
are the simplest stationary Gaussian processes with finite correlation time
[52]. The exponential time correlation in Eq. (2.9) leads to the exponential
time correlation (2.7) of the random potentials. Since the smooth regime
in turbulence extends to about ten times ηK, and because u (x , t ) is smooth
over the periodic box of length L = 10η, we take the correlation length η to
be of the order of ηK.

For |x −x ′| �η, the Gaussian, random fluid-velocity field u (x , t ) then has
the correlation

〈ui (x , t )u j (x
′, t ′)〉 ∼

u 2
0

d

�

δi j −Ki j

�

x −x ′
��

exp
�

−|t − t ′|/τc

�

, (2.10)

where tensor Ki j (x ) in Eq. (2.10) reads

Ki j (x ) =
�

d +1−2℘

d −1

�

x 2

2η2
δi j +

�

℘d −1

d −1

� xi x j

η2
. (2.11)

The equations for the correlation functions (2.10) and (2.11) are valid for
general dimension d . A little care must be taken when considering the case
d = 1. As one-dimensional flows are always fully compressible, one must
first take the limit ℘→ 1 before setting the dimensionality to unity.



STATISTICAL MODEL 13

2.5 Statistical model

We have now collected all the ingredients we need to put together the statis-
tical model for heavy particles in turbulence. As the last step I replace the
turbulent fluid-velocity field in Eq. (2.5) with our Gaussian model for u (x , t ),
and add the equation d

dt x t = vt for the particle position. The equations of
motion for a single particle at position x t and with velocity vt then read

d
dt x t = vt , d

dt vt = γ [u (x t , t )−vt ] . (2.12)

Equations (2.12) complete the statistical model. Because the random fluid-
velocity field u (x , t ) is a non-linear function of x , the equations of motion
(2.12) are non-linear. The motion of the particles is therefore potentially
chaotic, even though u (x , t ) is not a turbulent solution to Eqs. (2.2).

In their present form, Eqs. (2.12) are dimensional. Different dimension-
less formulations are convenient to better understand the behaviour of the
dynamics in limiting cases. I describe the dimensionless parameters that are
characteristic for the dynamics of the statistical model in the next section.

2.5.1 Dimensionless parameters

In systems that depend on several dimensional parameters, it is often conve-
nient to construct dimensionless numbers that control the dynamics. The
use of dimensionless coordinates reduces the number of quantities that need
to be considered, and it reflects a kind of universality of the dynamics. That
is, for all combinations of dimensional parameters that lead to the same
dimensionless numbers, the statistical model should behave in the same
way. We have already observed this for the Navier-Stokes equations, where
the Reynolds number is the characteristic dimensionless number.

For the statistical model, the particle equations of motion (2.12) depend
on a single time scale, the Stokes time τp = γ−1, as mentioned in Section 2.3.
Additionally, the random flow u (x , t ) depends on one dimensionless parame-
ter, the compressibility℘, and three dimensional parameters: the correlation
lengthη, the root-mean-square velocity u0 and the correlation timeτc. From
η and u0 we can construct another time scale, τa =η/u0 which we call the
advection time. The advection time τa is the typical time a fluid element
takes to travel by one correlation lengthη. The statistical model therefore has
three characteristic time scales, τp, τc and τa, and one characteristic length
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scaleη. From the three time scales we can form three different dimensionless
numbers, two of which are independent. We have

St=
τp

τc
, Ku=

τc

τa
, K =

τp

τa
. (2.13)

The first dimensionless parameter, St, is called the Stokes number. It is
the ratio of the particle relaxation time τp and the flow correlation time τc.
Hence, it is a measure of the importance of particle inertia. The Kubo number,
Ku, is the ratio of the two fluid time scales τc and τa, and a measure for the
persistence of the flow. K is another inertia parameter, which measures how
different the particle dynamics is from the dynamics of a fluid element. For
historical reasons, K is the analogue of the Stokes number for particles in the
turbulence literature. In turbulence, the only microscopic fluid time scale
is the analogue of τa, the Kolmogorov time scale τK =

p

ν/ε. Hence, the
only inertia parameter is τp/τK, called the Stokes number in the turbulence
literature [17].

The three dimensionless parameters in Eq. (2.13) are not independent, but
connected by the relation St Ku= K . This shows that, in fact, the statistical
model depends on only two dimensionless numbers. Most frequently Ku
and St are taken as the independent parameters [17]. When comparing to
the results of the statistical model to numerical simulations of turbulence,
on the other hand, one must consider the case τc�τa so that the relevant
parameter is K [17].

Let us now see how the dimensionless parameters in Eq. (2.13) enter
the equations of motion. This depends on the way we de-dimensionalise
the equations of motion (2.12) of the statistical model. I focus here on one
particular de-dimensionalisation scheme and refer to Ref. [17] for a different
one. The scheme I use in this thesis is

t →τpt , x t →ηx t , vt →ητ−1
p vt , u →ητ−1

p u . (2.14)

Note that all variables on the right-hand sides of the arrows in Eq. (2.14) are
dimensionless. In terms of these dimensionless variables the equations of
motion (2.12) are parameter-free:

d
dt x t = vt , d

dt vt =u (x t , t )−vt . (2.15)
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The dependence on the parameters Ku and St is contained in the flow corre-
lation functions. The correlation function (2.7) of the de-dimensionalised
potentials reads

C (x , t ; x ′, t ′) =
Ku2St2

d
exp

�

−|x −x ′|2/2−St|t − t ′|
�

. (2.16)

Accordingly, the correlation function for the dimensionless random flow
u (x , t ) is now given by

〈ui (x , t )u j (x
′, t ′)〉 ∼

Ku2St2

d

�

δi j −Ki j

�

x −x ′
��

exp
�

−St|t − t ′|
�

, (2.17)

for |x −x ′| � 1, with dimensionless Ki j (x ) given by

Ki j (x ) =
�

d +1−2℘

d −1

�

x 2

2
δi j +

�

℘d −1

d −1

�

xi x j . (2.18)

Because of the inter-relation between the dimensionless numbers (2.13) one
can, instead of expressing the equations in terms of Ku and St, use K together
with either Ku or St. Fig. 2.2 shows a sketch of the Ku-St parameter space [17].
For fixed ℘, any combination of (Ku, St) defines a point in the plane and thus
a different behaviour of the statistical model. The dimensionless numbers
(2.13) are useful for constructing limiting cases, or for using perturbation
theory [17] when one or both of the parameters are small. In the next two
sections, I present two limiting cases of Ku and St in which the dynamics can
be simplified. These limits are the white-noise limit and the persistent limit.

2.5.2 White-noise limit

In the so-called white-noise limit the fluid velocity field u (x , t ) turns into
a white-noise signal. This allows to use diffusion approximations for the
equations of motion (2.15). The white-noise limit requires a separation
between the time scales in which the Stokes time τp is the largest of all time
scales, and the advection time τa is much larger than the correlation time
τc, so that τp � τa � τc. In other words, the white-noise limit describes
the dynamics of very heavy particles (τp is large) in a quickly fluctuating
velocity field (τa and τc are small). In terms of Ku and St, the white-noise
limit amounts to taking the following limit:

Ku→ 0 , St→∞ , so that Ku2 St= constant . (2.19)
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log Ku

log St

Figure 2.2: Sketch of the Ku-St parameter space. The red lines show the regime
close to the white-noise limit. The blue dotted region is the regime close to
the persistent limit. The double arrows indicate the direction along which the
limits are approached.

In this limit, the time dependence in the correlation function (2.17) of u (x , t )
tends to a delta function. To see this, we observe that

lim
St→∞

St exp
�

−St|t − t ′|
�

= 2δ(t − t ′) . (2.20)

The constant in Eq. (2.19) can take any value. It determines the relative
magnitude of St and Ku−2 when the limit is taken. We call this constant the
‘white-noise parameter’ ε, and define it as

ε2 =
Ku2St

d

�

1+2℘
�

. (2.21)

This choice for ε in terms of Ku and St is convenient, since it makes the radial
diffusion constant for the separation of particles identical to ε2 [17]. The
white-noise parameter ε is the inertia parameter in the white-noise limit,
because it plays a similar role as the Stokes number when St and Ku are finite
[17]. In Fig. 2.2 the regime where the dynamics can be approximated by the
white-noise limit is shown by the red lines. The direction of approach of the
white-noise limit, Eq. (2.19), is shown by the arrow.

The white-noise limit is convenient for analytical computations because
the particle motion becomes a diffusion process. This allows to express the
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particle phase-space density as a solution of a Fokker-Planck equation. A sec-
ond important simplification is that the single-particle dynamics decouples
from the relative dynamics of several particles.

2.5.3 Persistent limit

Similarly to the white-noise limit, the persistent limit requires a separation of
time scales. In the persistent limit, however, the correlation time is the largest
of all time scales. The flow fields u (x , t ) becomes persistent, compared to
the dynamics of fluid elements and the dynamics of the particles. We require
τc�τa,τp, where the ratio of τa and τp can take any value. In a sense, the
persistent limit is opposite to the white-noise limit, where τc is the smallest
of all time scales. The persistent limit describes inertial particles in a very
persistent flow, and is obtained by letting

Ku→∞ , St→ 0 , so that K = constant . (2.22)

The vicinity of this limit is shown as the blue, dotted region in Fig. 2.2, the
arrow indicates the direction in which the persistent limit is approached. In
the persistent limit, the correlation function (2.17) of the fluid-velocity field
loses its time dependence, since

lim
St→0

exp
�

−St|t − t ′|
�

= 1 . (2.23)

This means that the flow field u (x , t ) is constant in a fixed frame of refer-
ence, compared to particle dynamics, and to the dynamics of fluid elements.
Therefore, we can approximate u (x , t ) as stationary [57], u (x , t )≈u (x ) for a
single realisation. The inertial particles do, however, still move through the
flow, and experience a changing fluid field u (x t ) along their paths.

We denote the inertia parameter in the persistent limit as κ. The latter is
typically defined in terms of the fluid-velocity gradient matrix A(x , t )with
components Ai j = ∂ ui (x , t )/∂ x j . In terms of Ku and St, we choose κ as [17]

κ2 = Tr



A(x , t )A(x , t )T
�

= (d +2)Ku2St2 . (2.24)

The particle dynamics in the persistent limit becomes particularly simple
when the flow field u (x , t ) is sufficiently compressible. In this case, the
particles are trapped in compressible flow regions for times ≈τc. I discuss
this in more detail in Chapter 7, and in Paper B.
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I close this chapter by briefly summarising and discussing the main points.
I introduced the statistical model for heavy particles in turbulence, the topic
of this work. The model mimics the particle dynamics of heavy particles in
turbulence at the smallest scales. It is intended to be as simple as possible,
but to still grasp the most important aspects of the particle dynamics. The
arguably most drastic simplification is to replace the turbulent fluctuations
by a Gaussian velocity field u (x , t ) with appropriate correlation functions
(2.10). This Gaussian model neglects some characteristic aspects of actual
turbulence, such as intermittency, as I mentioned in Section 2.4. Another
important fact that we neglect is the dissipative nature of the Navier-Stokes
equations, which leads to the time-irreversible stretching of vortices [48], and
makes any solution of the Navier-Stokes equations (2.2) asymmetric under
time-reversal. The Gaussian fluid-velocity field that we use in the model, on
the other hand, is time-reversal symmetric [17, 58].

The great asset of the model is its simplicity, which makes the problem
mathematically tractable, and even allows for analytical results in the white-
noise limit and in the persistent limit. As I show in the next part of this thesis,
however, the analysis of the model is by no means simple, and requires a
wide range of tools from theoretical physics.
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PART II

BACKGROUND

In the second part of my thesis, I describe the methods used to study the
statistical model. These methods are required to analyse suspensions of
many particles that are immersed in the same fluid-velocity field u (x , t ). At
this stage, we consider suspensions of identical particles. This assumption is
relaxed in later, in Chapter 8.

The second part of the thesis is organised as follows. In Chapter 3, I
define the phase-space (probability) density of particles, the main object
of our further studies. This density is a function of the realisation of the
random fluid-velocity field u (x , t ). In Chapter 4, I explain how we extract
fixed quantities, so called observables, from this density, by taking ensemble
averages over realisations of u (x , t ), or by averaging over long times.

3 Suspensions of identical particles

Physical systems such as water droplets in turbulent clouds, sprays, or fine
dust in combustion engines contain not just a single particle, but typically a
large number of them. In this chapter, I explain how we study suspensions of
identical heavy particles, in which all particles have the same Stokes number.
Suspensions of identical particles, so called ‘mono-disperse’ suspensions,
are, of course, an idealisation. Particle suspensions in nature typically con-
tain particles of a range of different sizes, which makes their study more
complicated. The study of mono-disperse suspensions is, however, an im-
portant first step towards the modelling of more realistic systems. In order
to study these systems mathematically I introduce here some methods and
quantities that I refer to in Chapters 5-8.

In a dilute suspension of identical particles, we can assume that all indi-
vidual particles obey the single-particle equations of motion (2.15), which I
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restate here in the dimensionless form

d
dt

�

x t , vt

�

= Ft (x t , vt ) , Ft (x , v ) =
�

v , u [x , t ]−v
�

. (3.1)

I call Ft (x , v ) the phase-space velocity field. It is a smooth function of the
phase-space coordinates, so that Eq. (3.1) has a unique solution for a given
(smooth) realisation u (x , t ) and for a given set of initial conditions (x t0

, vt0
)

at initial time t0. In other words, the trajectories of particles do not cross in
phase space.

3.1 Phase-space density

Globally, the dynamics of Eq. (3.1) is described by the time evolution of
the phase-space probability distribution (or density) %t ,t0

(x , v ) of particles.
The phase-space probability density determines the probability of finding
a particle at (x , v ) at time t . As the number of particles is conserved, the
density must be normalised,

∫

V

dx dv%t ,t0
(x , v ) = 1 . (3.2)

Here V denotes the entire of phase space, which we assume to be bounded,
so that its total volume V =Vol(V )<∞, is finite. At time t0, we take as the
initial condition for%t ,t0

a homogeneous particle distribution in phase-space
%t0,t0

(x , v ) = 1/V . Using the equations of motion (3.1), we can calculate %t ,t0

numerically by evolving a fine grid of initial trajectories at time t0, sampled
from the initially homogeneous density, to time t > t0. Figure 3.1 shows
a snapshot of the particle density %t ,t0

in d = 1 at different ∆t = t − t0 in
two-dimensional phase space. Fig. 3.1(a), (b) and (c) correspond to∆t = 1,
3 and 5, respectively. The darker red colours in the figure correspond to
regions where the phase-space density is larger. White regions correspond
to low particle density. The colour coding is logarithmic to improve visibility.
Already at∆t = 1 [Fig. 3.1(a)], we observe that %t ,t0

is inhomogeneous. As
∆t increases [Figs. 3.1(b) and (c)], the density is concentrated onto a smaller
and smaller subset of the phase space. The region where the particle density
is non-zero attains a thin and curved shape.

This phenomenon is known as phase-space clustering [17]. The phase-
space volume occupied by the particles decreases as a function of time, as a
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Figure 3.1: Evolution of the phase-space particle density %t ,t0
for the one-

dimension statistical model from a uniform distribution at finite times∆t =
t − t0. The particle density is simulated in the white-noise limit with ε = 1.5
using 107 particles. The position is plotted horizontally, the velocity vertically.
The logarithmic colour coding shows the magnitude of %t ,t0

. (a) ∆t = 1. (b)
∆t = 3. (c)∆t = 5.

consequence of the dissipative dynamics. Because the phase-space velocity
field Ft (x , v ) is compressible, div Ft (x , v ) =−d , the phase-space volume of
particles decreases exponentially [59]

Vt =Vt0
e−d (t−t0) . (3.3)

For finite∆t , the phase-space contraction leads to a transient state, in which
the phase-space volume approaches zero. The phase-space density %t ,t0

within the volume Vt , on the other hand, must diverge, due to the normali-
sation condition (3.2).

We define the infinite-time density %̄t (x , v ) by taking the limit

%̄t (x , v ) = lim
t0→−∞

%t ,t0
(x , v ) . (3.4)

The density %̄t (x , v ) corresponds to the evolution of an initially uniform
density in the infinite past, to finite time t . Fig. 3.2(a) shows%t ,t0

for∆t = 50,
and thus an approximation of %̄t . The magnifications in Fig. 3.2(b) and
(c) show that for large∆t , %̄t acquires a filamentary, small-scale structure.
The filamentary structure structure extends to scales much smaller than the
correlation length η= 1 of the fluid-velocity field u (x , t ).

The set that particles approach in the long-time limit is called an ‘attractor’.
In principle, attractors can be any subset of the phase-space. They can be
points, lines or (hyper-surfaces), but also more complicated sets with fractal
properties, sometimes called ‘strange attractors’ [18, 19, 20]. For our system,
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Figure 3.2: Fractal structure of the phase-space particle density %t ,t0
for the

one-dimension statistical model at∆t = 50, simulated in the white-noise limit
with ε = 1.5 and 107 particles. (a)%t ,t0

≈ %̄t without magnification. The position
is plotted horizontally, the velocity vertically. The logarithmic colour coding
shows the magnitude of %̄t . (b) Magnification of the black box in subfigure (a).
(c) Magnification of the black box in subfigure (b).

the red region in Fig. 3.2 is the finite-time approximation of a time-dependent
attractorFt of the dynamics (3.1). We defineFt as the set of points, where
the infinite-time density is finite, %̄t (x , v )> 0:

Ft = {(x , v ) ∈V |%̄t (x , v )> 0} . (3.5)

The density %̄t is time dependent because it is a function of the realisation of
the time-dependent fluid-velocity field u (x , t ). Therefore, also the attractor
Ft changes a function of time, and its detailed shape depends on the entire
history of the fluid-velocity field u (x , t ). For this reason Ft is sometimes
called a ‘dynamically evolving attractor’ [11, 17]. That the phase-space vol-
ume Vt along trajectories tends to zero in the long-time limit implies that
the attractorFt has zero phase-space volume

∫

Ft
dx dv = 0. Hence,Ft can

occupy at most a sub-volume of the phase space. AlthoughFt is a function
of time, we can define fixed statistical quantities (fractal dimensions) that
characterise the attractor, and the properties of the infinite-time density
%̄t , by averaging over realisations of u (x , t ). I discuss these ‘observables’ in
Section 4.1.

Fig. 3.2 shows that %t ,t0
becomes a singular object for long times, so that

the limit in Eq. (3.4) is possibly mathematically ill-defined. It is therefore use-
ful to consider a so-called measure µt which gives the probability contained
in arbitrary subsetS of phase space. We define

µt (S ) =
∫

S
dµt (x , v )≡ lim

t0→−∞

∫

S
dx dv%t ,t0

(x , v ) , (3.6)
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assuming that the limit exists. The differential of the measure, dµt (x , v ),
gives the probability contained in an infinitesimal, 2d -dimensional volume
element dx dv located at (x , v ). We write it as

dµt (x , v ) = %̄t (x , v )dx dv , (3.7)

so that %̄t is the density associated with measure µt . If the long-time limit
is singular, the equality in Eq. (3.7) must be interpreted in a distributional
sense and thus inside an integral as in Eq. (3.6). The measure µt , however,
remains finite.

3.2 Local phase-space dynamics

The global evolution of the phase-space density %t ,t0
is difficult to describe

mathematically. Oftentimes, a local description based on the deformation
of small neighbourhoods of particles around a reference trajectory is more
appropriate. The phase-space velocity field Ft (x , v ) stretches and contracts
particle neighbourhoods as time evolves. The long-time statistics of these
deformations allows us eventually to compute important properties of the
global long-time phase-space density %̄t .

The relative motion of particles in the neighbourhood around a trajectory
is described by the so-called tangent flow [55]. The equation of motion for
the tangent flow is derived by linearising the equation of motion (3.1). We
consider the separation δx t and relative velocity δvt between a reference
trajectory (x t , vt ), and a second trajectory (x ′t , v ′t ) that is infinitesimally close
to the first one. We write R t = (δx t ,δvt )T = (x t −x ′t , vt −v ′t )

T. That the phase-
space separation is infinitesimal requires that Rt = |R t | � 1. The phase-
space separation R t = (δx t ,δvt )T is then a tangent vector in the tangent
space of the system at (x t , vt ). From Eq. (3.1) one obtains the equation of
motion for R t , the tangent flow of (x t , vt ):

d
dt R t =Wt (x t )R t , Wt (x t ) =

�

0d×d 1d×d

A(x t , t ) −1d×d

�

. (3.8)

Here 0d×d and 1d×d are the d -dimensional zero and identity matrices, re-
spectively. Furthermore, A(x , t ) is the fluid-velocity gradient matrix with
components Ai j = ∂ ui (x , t )/∂ x j . The fluid-velocity gradient matrix is a
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random, matrix-valued function of x and t with zero mean. From Eqs. (2.17)
and (2.18) it follows that A(x , t ) has the correlation function [7, 17]

〈Ai k (x , t )A j l (x , t ′)〉=
Ku2St2

d
Ci j k l exp(−St|t − t ′|) , (3.9)

with

Ci j k l =
�

d +1−2℘

d −1

�

δi jδk l +
�

℘d −1

d −1

�

(δi kδ j l +δi lδ j k ) . (3.10)

The tangent flow (3.8) needs to be evaluated together with the equation of
motion (3.1) of the reference trajectory.

Since Eq. (3.8) is linear in R t , its solution can be expressed as a Green
function Jt ,

R t = Jt R t0
, Jt =T exp

�

∫ t

t0

dt ′Wt ′ (x t ′ )

�

, (3.11)

with initial conditionJt0
= 12d×2d . The functionT exp(. . .) is the time-ordered

exponential. Time ordering is required, since the argumentWt in the inte-
gral is a matrix, which does not in general commute for different times. Note
that Jt depends on the whole trajectory (x t ′ , vt ′ )t0≤t ′≤t , which is a solution
of the equation of motion (3.1) with initial condition (x t0

, vt0
) at time t0. The

formal expression for Jt in Eq. (3.11) is therefore difficult to solve in general.
The Green function Jt determines how infinitesimal neighbourhoods are

deformed and rotated by the phase-space velocity field Ft (x , v ). Therefore, Jt

is sometimes called ‘deformation matrix’ [17]. Important information about
the dynamics of the neighbourhood around the reference trajectory at time
t is contained in the eigenvalues of Jt . By the polar decomposition theorem
we can express Jt as the combination of a rotationRt and a symmetric left
or right stretch matrix, Vt or Ut , respectively [19]:

Jt =VtRt =RtUt . (3.12)

Equation (3.12) says that a phase-space neighbourhood of particles, char-
acterised by a 2d -dimensional, orthonormal coordinate system at time t0

is rotated by Rt and stretched along the eigendirections of Vt or Ut . As a
result, an orthogonal set of vectors is sheared under the action of Jt , and
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ê1

ê2
Jtê1

Jtê2

Figure 3.3: Illustration of the deformation and rotation of a phase-space
neighbourhood by the deformation matrix Jt . The orthogonal vectors (ê1, ê2)
at (x t0

, vt0
) are mapped to (Jt ê1,Jt ê2) at (x t , vt ), and are not orthogonal any

more. The dotted lines are the main axes of the deformed ellipse with lengths

e%
(1)
t > e%

(2)
t . The yellow dash-dotted line shows the phase-space reference tra-

jectory.

the orthogonality of the coordinate system is not in general conserved. The
symmetric matrices Vt and Ut are given by the matrix square-roots

Vt = (Jt JTt )
1/2 , Ut = (JTt Jt )

1/2 . (3.13)

This implies thatVt andUt have the same eigenvalues, but different eigenvec-
tors. Because Jt can be written as the time-ordered exponential in Eq. (3.11),
the eigenvalues ofVt andUt typically grow or contract exponentially in time.

Therefore, it is convenient to write the eigenvalues as (exp[ρ(1)t ], . . . , exp[ρ(2d )
t ]).

The time-dependent exponents ρ(1)t , . . . ,ρ(2d )
t are called ‘stretching expo-

nents’ [7, 55, 60]. We order the eigenvalues according to their magnitude so
that

ρ(1)t ≥ρ
(2)
t ≥ . . .≥ρ(2d )

t . (3.14)

How the deformation matrix maps tangent vectors is shown schematically
for a two-dimensional phase space in Fig. 3.3: The initial tangent space at
(x t0

, vt0
) is spanned by the two vectors (ê1, ê2). The deformation matrix maps

these vectors to the non-orthogonal vectors (Jt ê1,Jt ê2) at (x t , vt ), spanning
the tangent space at (x t , vt ). The axes lengths of the ellipsoidal neighbour-

hood at time t are given by the eigenvalues of eρ
(1)
t > eρ

(2)
t , corresponding to

the lengths of the dotted lines in Fig. 3.3.
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The dynamics of infinitesimal phase-space volumes is particularly simple.
Infinitesimal volume changes are given by the determinant of Jt and thus
by the product of the eigenvalues of the stretch matrices. The determinant
detJt obeys the simple equation of motion

d
dt detJt = Tr [Wt (x t )]detJt , (3.15)

with solution detJt = e−d (t−t0). This result is the local analogue of Eq. (3.3),
implying an exponential contraction of local phase-space volumes along
trajectories. As a result of this contraction, the 2d phase-space stretching

exponents ρ(i )t are related by the sum rule

2d
∑

i=1

ρ(i )t =−d (t − t0) , (3.16)

so that only 2d −1 of the stretching exponents are independent.

3.2.1 Cauchy-Green tensors

The deformation matrix Jt describes the rotation and the shearing of neigh-
bourhoods of particles in phase-space. Studying Jt directly has two main
disadvantages: First, Jt need not be symmetric, so that its eigenvectors and
eigenvalues are in general complex. Second, due to the residual rotations in
the polar decomposition (3.12), the deformation matrix Jt does not converge
in the long-time limit.

It turns out to be convenient to introduce the symmetric left and right
Cauchy-Green tensors Bt and Ct , respectively, defined by

Bt = Jt JTt , Ct = JTt Jt . (3.17)

Both the left Cauchy-Green tensor Bt and the right Cauchy-Green tensor Ct

are symmetric so that their eigenvectors form an orthogonal basis, and their
eigenvalues are real. A comparison with Eq. (3.13) shows that Bt =V2

t and
Ct =U2

t . Hence, just as the stretch matricesVt andUt , the Cauchy-Green ten-

sorsBt andCt have identical eigenvalues, given by (exp[2ρ(1)t ], . . . , exp[2ρ(2d )
t ]).

Furthermore, the left Cauchy-Green tensor Bt has the same eigenvectors as
the left stretch matrix Vt , while the right Cauchy-Green tensor Ct has the
same eigenvectors as the right stretch matrixUt . The eigenvectors of Bt and
Vt are, however, different from the eigenvectors of Ct and Ut .
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The most important property of the right Cauchy-Green tensorCt is its
convergence

lim
t→∞

1

2(t − t0)
logCt =L , (3.18)

ensured by the ‘multiplicative ergodic theorem’ [55, 61, 62].
That the time-rescaled logarithm of Ct converges to the fixed matrix

L has two major implications. First, time-rescaled stretching exponents

ρ(i )t /(t − t0) converge to fixed limits as t →∞. These limits define the ‘Lya-
punov exponents’, which are characteristic for the long-time behaviour of
particle neighbourhoods. When the largest Lyapunov exponent is positive,

limt→∞ρ
(1)
t /(t − t0) > 0, the particle dynamics is often chaotic [18, 19, 20],

and depends sensitively on the initial conditions. I discuss the Lyapunov
exponents in more detail in the Section 4.2. Second, the eigenvectors of Ct

must converge to fixed orthogonal vectors. Hence, the orthogonal matrix Õt

that diagonalises Ct converges in the long-time limit, Õt → Õ.
The convergence property (3.18) holds only for the right Cauchy-Green

tensor Ct . To understand the relation between the left and right Cauchy-
Green tensor, we write the deformation matrix Jt as

Jt =RtUt =RtC
1/2
t =Rt Õt diag

�

eρ
(1)
t , eρ

(2)
t , . . . , eρ

(2d )
t

�

ÕT
t . (3.19)

For the left Cauchy-Green tensor Bt = Jt JTt , on the other hand we have Jt =
VtRt = B

1/2
t Rt , so that B1/2

t = JtRT
t = RtC

1/2
t RT

t . Together with Eq. (3.19)
this leads to

B1/2
t =Rt Õt diag

�

eρ
(1)
t , eρ

(2)
t , . . . , eρ

(2d )
t

�

ÕT
t R

T
t . (3.20)

Hence, the combined rotationOt =Rt Õt diagonalises both the left Cauchy-
Green tensor Bt and the left stretch matrixVt . In other words, the eigenvec-
tors of Bt determine the orientation of the main axes of the particle neigh-
bourhood, shown as the dotted lines in Fig. 3.3. In that sense, Bt contains
additional information about the dynamics of phase-space neighbourhoods.

A very convenient property of the left Cauchy-Green tensor is its time
evolution. By taking a time derivative of Bt = Jt JTt and using d

dt Jt =Wt Jt

we find that Bt obeys the closed evolution equation

d
dt Bt =WtBt +BtWT

t . (3.21)
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Starting from Eq. (3.21), we use a method described in Ref. [60] to obtain

stochastic differential equations for the eigenvectors e (i )t of Bt , and for the

stretching exponents ρ(i )t . After an initial transient, one finds [60]:

d
dt e (i )t =Wt e (i )t −

�

e (i )t ·Wt e (i )t

�

e (i )t −
∑

j<i

�

e ( j )t · [Wt +WT
t ]e

(i )
t

�

e ( j )t , (3.22a)

d
dt ρ

(i )
t = e (i )t ·Wt e (i )t . (3.22b)

Equations (3.22), together with with the equation of motion (3.1) for the
reference trajectory provide a useful tool for the local analysis of the phase-
space dynamics of particles. Equations (3.22) determine both the orientation
[Eq. (3.22a)], and the lengths [Eq. (3.22b)] of the main axes of the phase-space
neighbourhood. Note that Eqs. (3.22a) are decoupled from Eq. (3.22b). This
decoupling happens after an initial transient, provided that the stretching
exponents are all different [60].

As we have seen, the right and left Cauchy-Green tensors,Ct andBt , have
complementary properties. The convergence property (3.18) of Ct allows to
prove the multiplicative ergodic theorem. This theorem ensures the conver-

gence of the rescaled phase-space stretching exponents ρ(i )t /(t − t0). The left
Cauchy-Green tensor Bt has the same eigenvalues as Ct . Furthermore, the

eigenvectors e (i )t of Bt determine the orientation of main axes of the phase-
space neighbourhood, shown as the dotted lines in Fig. 3.3. This orientation
is important when we consider projections of particle neighbourhoods in

Chapter 6. The eigenvectors e (i )t ofBt and the stretching exponentsρ(i )t obey
the closed evolution equations (3.22). I use these equations in Chapters 5
and 6, and in Paper C, to calculate the long-time statistics of the stretching
exponents.

Note that althoughBt gives the orientation of the particle neighbourhood,
its eigenvectors are not identical to the eigenvectors of Jt . The eigenvectors
and eigenvalues of the deformation matrix Jt are in general complex, since
Jt is not in general symmetric. In the generic case, the real parts of the
eigenvalues of Jt are identical to the eigenvalues of Ut and Vt [19]. Counter
examples, however, can be constructed when the stretching exponents are
degenerate [63].



LOCAL PHASE-SPACE DYNAMICS 29

3.2.2 White-noise limit

In the white-noise limit, the evolution of infinitesimal neighbourhoods sim-
plifies considerably. Recall from Section 2.5.2 that the white-noise limit is
taken by letting Ku→ 0 and St→∞ such that the white-noise parameter
ε2 = Ku2Std−1

�

1+2℘
�

stays constant. In this limit, both the fluid-velocity
field u (x , t ) and fluid-velocity gradients A(x , t ) become white-noise signals.
More importantly, the statistics of the fluid-velocity field u (x t , t ) and of the
fluid-velocity gradient matrixA(x t , t ) become independent of the particle
position x t . As a consequence, the dynamics of the particle neighbourhood
(3.8) becomes independent of the dynamics of the reference trajectory (3.1)
[17]. This is the great simplification of the white-noise limit. The dynamics
of infinitesimal phase space separations R t simplifies to

d
dt R t =Wt R t , Wt =

�

0d×d 1d×d

At −1d×d

�

. (3.23)

In distinction to Eq. (3.8),Wt in Eq. (3.23) is independent of the particle
position x t . The matrix-valued, Gaussian white-noise processAt has zero
mean and correlation function:

〈Ai k (t )A j l (t
′)〉=

2ε2

1+2℘
Ci j k lδ(t − t ′) , (3.24)

with tensor Ci j k l given in Eq. (3.10). The white-noise limit allows for ana-
lytical calculations, since the tangent flow Eq. (3.23) constitutes a so-called
Markov system [52, 64]. This means that the increments of the phase-space
separation R t and of the deformation matrix Jt depend only on the states of
R t and Jt at time t , respectively, and thus not on the past.

To conclude, I introduced in this chapter several important quantities
and concepts which allow for a systematical study of the statistical model
of heavy particles in turbulence. The global dynamics is characterised by
the phase-space particle density %t ,t0

. This quantity tends to the singular
density %̄t , with associated measure µt , in the long-time limit. In this limit,
the phase-space density is supported by a time-dependent, fractal attractor
Ft . A general concept that I use throughout this thesis is to study the local
deformations of particle neighbourhoods instead of the global dynamics.
These deformations are determined by the properties of the deformation
matrix Jt , evaluated along a reference trajectory. How Jt stretches and rotates
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infinitesimal phase-space neighbourhoods is, in turn, quantified by the

stretching exponents ρ(i )t , with corresponding eigenvectors e (i )t of the left
Cauchy-Green tensor Bt = Jt JTt . Intuitively it might be reasonable that
the local deformation of neighbourhoods has implications for the global
dynamics in the long-time limit. The precise connection between the two
formulations is made in Chapter 4.

Phase-space clustering of the kind observed in this chapter is particular to
mono-disperse particle suspensions. In more realistic systems with particles
of different sizes, the particles react differently to the same fluid-velocity
field u (x , t ). In which way the results for mono-disperse suspensions can
be applied to particle systems in nature is, a priori, unclear. In Chapter 8,
and in Paper A, I discuss how the present picture needs to be adjusted for
systems of non-identical particles.
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4 Observables

A systematic analysis of the distribution of heavy particles in turbulence
requires statistical observables that can be compared. For the analysis of
the phase-space density in the statistical model, such observables can be
defined globally, or locally. Globally defined observables require, at least
approximately, the knowledge of the dynamics on the entire phase space.
Local observables, on the other hand, rely only on the dynamics of phase-
space neighbourhoods. Therefore, it is often easier to reliably compute local
observables than global ones. Sometimes, the precise knowledge of the local
dynamics allows to compute global observables.

In this chapter, I discuss two commonly used sets of phase-space ob-
servables, the Renyi dimensions and the finite-time Lyapunov exponents
(FTLEs). The standard methods for calculating the Renyi dimensions are
global, and they are thus hard to obtain numerically. I review these meth-
ods in the first section of the chapter. The FTLEs determine the statistics
of stretching and compression of local phase-space neighbourhoods. They
are computed using the tangent flow, and are thus intrinsically local. In
phase-space, the FTLEs have convenient mathematical properties in the
long-time limit, which I review in the second section. In the last section, I
describe how the statistics of FTLEs are connected to the Renyi dimensions.

4.1 Phase-space Renyi dimensions

The Renyi dimension Dq with q ∈R is a one-parameter family of numbers
that provide information about the small-scale structure of the phase-space
measure µt [65, 66, 67, 68]. The perhaps most well-known representative
of Dq is the ‘box counting dimension’ D0. The box-counting dimension
quantifies, how much the fractal attractorFt fills out phase-space. When
the attractor is not a fractal set but a smooth set, then D0 agrees with the
topological dimension, the number of parameters needed to parametrise the
set. That is, ifFt is a smooth curve, then D0 = 1, for a surface one has D0 = 2
and so on. When D0 is not an integer, on the other hand, the attractor is said
to be a fractal. For 1<D0 < 2, for instance, the fractal is more space-filling
than a line, but less space-filling than a surface.

For q 6= 0, the Renyi dimensions describe characteristics of the measureµt
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supported by the attractorFt . They characterise how (in-)homogeneously
the fractal attractorFt is sampled by the dynamics (3.1). The physically most
relevant [9] Renyi dimension is D2, the correlation dimension [69], which
gives the probability scaling of the phase-space separationRt ≡ |R t |between
two particles:

P (Rt ≤δ)∝δD2 , δ� 1 . (4.1)

For general q , we define the Renyi dimension Dq in terms of the statistics of
the probability (‘mass’)Mδ(x , v ) contained in a small box or a ball of varying
size δ around a phase-space point (x , v ). For small δ, the moments 〈M n

δ 〉
have a power-law scaling in δ of the form [66, 67, 68]

〈M n
δ 〉∝δξn , δ� 1 . (4.2)

Here, the exponent ξn , called the singularity spectrum [70], is a function
of the order of the mass moment n ∈ R. The average in Eq. (4.2) must be
taken both over the phase-space measure µt and over realisations of the
fluid-velocity field u (x , t ). Since we allow n to take negative values we always
need to exclude from the average in Eq. (4.2) the points (x , v ) in phase space
for whichMδ(x , v ) = 0.

The Renyi dimension [65]Dq are obtained from the singularity spectrum
ξn by

Dq =
ξq−1

q −1
. (4.3)

When the phase-space measure µt of particles can be written in terms of a
non-singular density, all Renyi dimensions are equal to the dimensionality 2d
of phase-space, Dq = 2d [71]. In other words, the phase-space density must
be singular in order to obtain Dq 6= 2d . When Dq is constant but not equal
to 2d , the measure µt is said to be (mono-)fractal, with fractal dimension
Dq =D0. For ‘multifractal’ measures, Dq is a non-trivial and non-increasing
function of q [72].

There are two commonly used algorithms to calculate the Renyi dimen-
sion Dq . The first method is to calculate the scaling of the mass moments in
Eq. (4.2) by discretising the whole phase space by a sequence of box-grids
with decreasing grid size δm , so that δm → 0 as m→∞ [66, 67]. In general,
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(a)

δ

(b)

δ

(c)

δ

Figure 4.1: Successive covering of the phase-space fractal with boxes of de-
creasing size δm . The fractal measure is shown is red. The covering boxes
are shown in blue, its darkness represents the measure (mass) contained in
the corresponding box. (a) δm = 1/5, Nm = 21. (b) δm = 1/10, Nm = 75. (c)
δm = 1/20, Nm = 260. For this realisation of the fractalFt , and the measure µt ,
the Renyi dimension Dq takes for q = 0, 1, 2 the values D0 ≈ 1.20, D1 ≈ 1.18 and
D2 ≈ 1.05.

only a subset of the boxes of the grids overlap with the fractal attractorFt

at time t . Therefore, only a small fraction of the boxes are non-empty and
contribute to the average in Eq. (4.2). The probabilityMδm ,i contained in
the i -th non-empty box Nδm ,i of side length δm is given by

Mδm ,i =µt (Nδm ,i ) =

∫

Nδm ,i

dµt (x , v ) . (4.4)

At grid level m , we denote by Nm the total number of non-empty boxes with
Mδm ,i > 0. The singularity spectrum ξn is then defined in the limit m→∞
by

ξn = lim
m→∞

1

logδm
log

®Nm
∑

i=1

M n+1
δm ,i

¸

u

. (4.5)

Here the sum is taken over the non-empty boxes. Note that the measure µt

and the massesMδ are discretised equally in this construction. Therefore,
the average over the phase-space measure in Eq. (4.2) is replaced by the sum
over non-empty boxes, and the exponent ofMδm ,i is n +1. The discretised

measure µt is normalised at each level m , so that
∑Nm

i=1Mδm ,i = 1 for all m .
The average 〈. . .〉u in Eq. (4.5) is taken over realisations of the fluid-velocity
field u (x , t ).

Fig. 4.1 shows the covering of the fractal attractor by a sequence of boxes
for a two-dimensional phase-space, and for a single realisation of the fluid-
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velocity field u (x , t ). The fractal attractor is shown in red, the non-empty
boxes are shown in blue. The colour-code for the boxes is chosen such that
darker boxes correspond to larger phase-space massMδm ,i .

Choosing q = 0 in Eq. (4.3) and evaluating the sum in Eq. (4.5) for n =−1
explains why D0 is called the box-counting dimension: D0 gives the rate
at which the number of non-empty boxes diverges as m →∞. Note that
D0 is blind to the measure µt on the fractal attractorFt , sinceMδm ,i does
not appear in the sum in Eq. (4.5) for n = −1. Hence, D0 only provides
information about the geometry of the fractal attractor Ft itself, and not
about how densely the particles accumulate in different regions of it. Varying
q , on the other hand, changes the weight given to large masses compared to
small ones. For q > 0 large masses are given more weight than low masses,
and vice versa for q < 0.

The grid-based discretisation scheme has the disadvantage that the whole
phase-space needs to be covered with boxes. This is numerically expensive
as for fractal attractors with D0 < 2d , a large fraction of the boxes are empty
as δn → 0.

Another commonly used, but computationally more efficient method
samples the probability massesMδ directly from the fractalFt in order to
avoid non-empty boxes. In this ‘point-based’ construction [68], the masses
Mδ(x t , vt ) are chosen to be spheres of radius δ, centered at positions (x t , vt )
of particles that have been evolved with the dynamics (3.1). In the long-time
limit, the particles themselves sample the phase-space measure µt , so that
the probability thatMδ(x t , vt ) = 0 is small, when the number of simulated
particles is sufficient. We define the point-centered massesMδ(x t , vt ) by

Mδ(x t , vt ) =µt [Sδ(x t , vt )] =

∫

Sδ(x t ,vt )
dµt (x

′, v ′). (4.6)

Here, Sδ(x , v ), is a phase-space ball of radiusδ, centered at (x t , vt ). In numer-
ical simulations, we evolve a large number Np � 1 of particles for a long time
∆t = t − t0. In the limit Np →∞, the probability massMδ,i at the position

(x (i )t , v (i )t ) of the i -th particle can be written as [20, 71]

Mδ,i = lim
Np→∞

1

Np −1

Np
∑

i 6= j

θ
h

δ−
�

�

�

�

x (i )t −x ( j )t , v (i )t −v ( j )t

�

�

�

�

i

. (4.7)
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The Heaviside step function θ (x ) ensures that only particles in the phase-

space ball Sδ(x
(i )
t , v (i )t ) contribute to the so-called ‘correlation sum’ [69] in

Eq. (4.7). We now write the point-centered estimator of the singularity spec-
trum ξn as

ξn = lim
δ→0

1

logδ
log

*

lim
Np→∞

1

N̄p

N̄p
∑

i=1

M n
δ,i

+

u

. (4.8)

As in the previous case, the sum must be restricted to the non-empty phase-
space balls withMδ,i > 0, whose total number we denote as N̄p ≤Np . Since
the phase-space locations of the massesMδ,i are, by construction, sampled
from µt , the exponent in Eq. (4.8) is n , instead of n +1 in Eq. (4.5).

Regardless of the method, the Renyi dimensions require knowledge of
the entire phase-space dynamics. In particular, it is difficult to obtain good
statistics for the average over realisations 〈. . .〉u in both Eqs. (4.5) and (4.8)
[73]. A notable exception is the correlation dimension D2. As we can see from
Eq. (4.1), D2 is determined by the probability scaling of infinitesimal phase-
space separations, which can be obtained from the tangent flow. Therefore,
D2 can typically be calculated to much higher accuracy. This is particularly
useful in the white-noise limit [17, 23, 24, 74, 75].

4.2 Phase-space (finite-time) Lyapunov exponents

Local observables, evaluated along particle trajectories often allow for pre-
cise numerical calculations, and in some cases even for analytical solu-
tions. In Section 3.2 we have encountered the stretching exponents ρt =
(ρ(1)t , . . . ,ρ(2d )

t )which determine the deformation of phase-space neighbour-
hoods. After long times, the vector ρt grows linearly in time. This motivates

us to define the corresponding ‘stretching rates’σt = (σ
(i )
t , . . . ,σ(2d )

t ) by

σ(i )t =
ρ(i )t

t − t0
, (4.9)

also called finite-time Lyapunov exponents (FTLEs). The phase-space FTLEs
determine the rates at which phase-space neighbourhoods are stretched or
contracted by the deformation matrix Jt . As stretching exponents ρt are
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1
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etσ
(1)
t

etσ
(2)
t

Figure 4.2: Schematic drawing of a two-dimensional phase-space neighbour-
hood of particles. The finite-time Lyapunov exponents determine the stretching
of small particle neighbourhoods (grey shaded area) around a reference trajec-
tory (orange, dash-dotted curve). Because the FTLEs are in general different,
an initial circle is deformed into an ellipse.

ordered by to their magnitude, Eq. (3.14), so are the phase-space FTLEsσt ,

σ(1)t ≥σ
(2)
t ≥ . . .σ(2d )

t . (4.10)

The sum rule Eq. (3.16) for the stretching exponents requires that the sum of
all phase-space FTLEs is constant and negative for all t :

2d
∑

i=1

σ(i )t =−d . (4.11)

Fig. 4.2 shows schematically how the phase-space FTLEs deform local phase-
space neighbourhoods. An infinitesimal neighbourhood at time t0 is de-

formed into an ellipse with axis lengths (etσ(1)t , etσ(2)t ). For a non-degenerate
spectrum of FTLEs, the axis lengths are all different, so that an initial sphere
is deformed into an ellipse at time t > t0.

In order to get a better understanding of the role played by the phase-
space FTLEs, consider a 2d -dimensional, infinitesimal phase-space neigh-
bourhood of particles around a reference trajectory at time t0. For t > t0, the
particle neighbourhood is deformed and rotated by the deformation matrix
Jt . Typical phase-space separationsRt ≡ |R t | within the neighbourhood
obey

Rt =
Ç

R T
t0
JTt Jt R t0

=
Ç

R T
t0
Ct R t0

. (4.12)



PHASE-SPACE (FINITE-TIME) LYAPUNOV EXPONENTS 37

Note that the right Cauchy-Green tensor Ct = JTJ = U2
t appears naturally

in Eq. (4.12) when considering separations. The eigenvalues of Ct grow or

shrink as ∼ e2(t−t0)σ
(i )
t . For long enough times, the largest phase-space FTLE,

σ(1)t , becomes dominant. By dividing with the initial separation, we find for
typical separations

Rt

Rt0

=
Ç

n T
t0
Ct n t0

∼ e(t−t0)σ
(1)
t

h

1+O
�

e(t−t0)[σ
(2)
t −σ

(1)
t ]
�i

, (4.13)

where n t0
is a unit vector in the direction of R t0

. Eq. (4.13) says that for long

enough time, typical separations grow as ∼ e(t−t0)σ
(1)
t .

Now consider an infinitesimal areaAt0
at time t0 given by the area of

the square spanned by two orthogonal vectors. As time evolves, one of the

vectors must, according to Eq. (4.13), grow as ∼ e(t−t0)σ
(1)
t . The second vector,

on the other hand, lies in the subspace perpendicular to the first one. Its
growth or contraction is dominated by the second largest FTLEσ(2)t . Hence,
similar to (4.13), we can write for the evolution of the areaAt

At

At0

∼ e(t−t0)[σ
(1)
t +σ

(2)
t ]
h

1+O
�

e(t−t0)[σ
(3)
t −σ

(2)
t ]
�i

. (4.14)

This construction can be continued to higher dimensional (sub-)volumes

in the same way. In general, the cumulative sums
∑n

i=1σ
(i )
t determine the

rate of expansion or contraction of n-dimensional (sub-)volumes spanned
by n +1 infinitesimally close trajectories in phase space.

So far, we have only considered finite times, for which the phase-space
FTLEsσt depend on time and, in general, on the initial conditions (x t0

, vt0
)

at time t0. The convergence property (3.18) of the right Cauchy-Green tensor
Ct [61, 62] ensures that the phase-space FTLEs attain fixed limits for t →∞:

lim
t→∞

σ(i )t =λi . (4.15)

Hereλi are the Lyapunov exponents of the particle dynamics (3.1). A positive
largest Lyapunov exponentλ1 > 0 signifies that phase-space separations grow
exponentially fast as t →∞. The system is then said to depend sensitively
on the initial conditions. Positivity of at least one of the Lyapunov exponents
is often used as a definition of chaotic systems [18]. For the statistical model
it follows from Eq. (4.11) that

∑2d
i=1λi = −d , so that λ1 > 0 implies that at
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Figure 4.3: Phase-space Lyapunov exponents λi in the white-noise limit in
spatial different dimensions d , as functions of the white-noise parameter ε.
(a) One-dimensional case, d = 1. λ1 and λ2 are shown in orange, as the solid
and dashed line, respectively. (b) Two-dimensional case, d = 2: λ1 (orange,
solid), λ2 (green, solid), λ3 (green, dashed) and λ4 (orange, dashed). (c) Three-
dimensional case d = 3: λ1 (orange, solid), λ2 (green, solid), λ3 (blue, solid), λ4

(blue, dashed), λ5 (green, dashed) and λ6 (orange, dashed).

least one other Lyapunov exponent is negative. In this case, a phase-space
neighbourhood is, in the infinite-time limit, stretched along (at least) one
axis and compressed along (at least) one other axis. This is why the phase-
space attractorFt attains a filamentary, fractal shape, as shown in Figs. 3.2
and 4.1, when λ1 > 0.

The phase-space Lyapunov exponents λi have been studied extensively
both in the white-noise limit [54, 76, 77, 78, 79] and for finite Ku and St [17, 80].
In Fig. 4.3(a), (b) and (c) the white-noise limit results [81] for the Lyapunov
exponents λi , i = 1, . . . ,2d in d = 1, 2 and 3 are summarised. For d = 2 and
d = 3, the fluid-velocity field is incompressible℘= 0. In the one-dimensional
case, on the other hand, the fluid-velocity field is always fully compressible,
so that ℘= 1. In the one-dimensional case shown in Fig. 4.3(a), the leading
Lyapunov exponent λ1 is negative for small ε and changes sign at εpc ≈ 1.33
[76, 77]. The change of sign of λ1 marks a phase transition from an ordered
to a chaotic behaviour as ε passes the critical value εpc. This phenomenon is
called ‘aggregation-disorder transition’ [76] or ‘path-coalescence transition’
[77]. When λ1 < 0 all Lyapunov exponents are negative, and the phase-space
volume Vt eventually contracts to a point. That λ1 is negative for ε < εpc

is due to the compressibility of the fluid-velocity field u (x , t ) in one spatial
dimension. It can be observed in higher dimensional compressible fluid-
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velocity fields with ℘> 0 as well [77, 78]. For incompressible u (x , t ) in d > 1,
the largest Lyapunov exponent λ1 [orange, solid line in both Fig. 4.3(b) and
(c)] is positive, λ1 > 0 for all ε. A similar behaviour is observed for finite Ku
and St, where the Stokes number St essentially takes the role of the white-
noise parameter ε. This shows that the statistical model for heavy particles in
turbulence is chaotic in d > 1 when the underlying fluid-velocity field u (x , t )
is incompressible. In all dimensions we can observe the pairing property of
the Lyapunov exponents established in Ref. [82], λi =−1−λ2d+1−i .

For finite time, on the other hand, the phase-space FTLEs σt , depend
in general on the initial conditions (x t0

, vt0
), and on the realisation u (x , t ).

Hence, the phase-space FTLEs σt ≡ (σ
(1)
t , . . . ,σ(2d )

t ) are random variables
with probability density Pt (σt = s ). The limit (4.15) implies that

lim
t→∞

Pt (σt = s ) =δ(s −λ) . (4.16)

At large large but finite times the dependence on the initial conditions is lost,
and the FTLEsσt fluctuate around the most probable value λ= (λ1, . . . ,λ2d ).
In this transient state,σt obeys a large-deviation principle [83, 84, 85]which
means that the probability density Pt (σt = s ) takes a characteristic exponen-
tial form given by [29, 60, 86]

Pt (σt = s )∝ 1
σ(1)t ≥...≥σ(2d )

t
δ

�

2d
∑

i=1

σ(i )t +d

�

exp [−t I (s )] . (4.17)

Here the indicator function 1 ensures the ordering (4.10) of FTLEs, while
the delta function enforces the sum rule (4.11). Eq. (4.17) implies that the
phase-space FTLEsσt approach the Lyapunov exponents λ exponentially
fast in distribution. The exponential rate of approach is determined by the
‘rate function’ I (s ) in Eq. (4.17). The rate function I (s ) has a single minimum
at s =λwhere it vanishes, I (λ) = 0. This is consistent with the convergence of
the density Pt (σ = s ) to the delta function in Eq. (4.16). Due to the sum rule

(4.11) we can remove the dependence onσ(2d )
t in Eq. (4.17) by integration.

We therefore need to consider only the first 2d −1 components ofσt , and

we take from now onσt = (σ
(1)
t , . . . ,σ(2d−1)

t ) and s = (s1, . . . , s2d−1).
To establish the large-deviation principle (4.17), it is often useful to con-

sider the scaled cumulant-generating function (SCGF) of σt defined as



40 OBSERVABLES

[83, 84, 85, 87]

Λ(k ) = lim
t→∞

1

t − t0
log 〈exp [(t − t0)k ·σt ]〉 , (4.18)

where k = (k1, . . . , k2d−1). The existence of the SCGF Λ(k ) ensures, under
certain conditions [83, 84, 85, 87], the large deviation principle (4.17) forσt .
The rate function I (s ) given by the Legendre transform of Λ(k )

I (s ) = sup
k∈R2d−1

{s ·k −Λ(k )} . (4.19)

This link between Λ(k ) and I (s ) is provided by the Gärtner-Ellis theorem
[64, 88]. Note that for d = 1, k = k is a scalar, and the range of Λ(k )must
be differentiable in order for Eq. (4.19) to hold [83, 84, 85, 87]. For non-
convex rate functions, the Legendre transform (4.19) gives the ‘convex hull’
which may differ from the actual rate function [85]. One therefore needs
to be careful when applying Eq. (4.19) for SCGFs that are not differentiable,
because the Legendre transform may not give the correct result for the rate
function.

Although the phase-space Lyapunov exponents are well understood, much
less is known about the statistics of the phase-space FTLEs. Most studies
are restricted to the small-Stokes limit St� 1 [70, 86], where the FTLEs have
Gaussian statistics, so that the rate function I (s ) is parabolic [1]. The small-
Stokes regime corresponds to the small-ε regime ε� 1 of the white-noise
limit of the statistical model [17]. For finite ε and d = 1, I (s ) and Λ(k ) have
been studied in Refs. [89, 90] using similar methods to those I describe in
Chapter 6 and Paper C. These studies show that I (s ) is not parabolic for
finite ε. Instead, large fluctuations of the FTLEs are much more likely than
expected from the Gaussian approximation, with important implications for
the fractal structure of the natural measure.

4.3 Relations between Renyi dimensions and FTLEs

The evolution of a local particle neighbourhood around a reference trajec-
tory can be connected to the global properties of the fractal measure µt .
The underlying assumption is ergodicity: The phase-space measure µt of
any subset S of phase-space, is equal to the fraction of time a trajectory
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initialised at t0→−∞ spends inS . Put differently, even a single trajectory
and its neighbourhood, whose evolution is averaged for long enough time,
may, in an ergodic system sample, the global properties of the measure µt

[19].
The probably most well-known connection between the Renyi dimen-

sions and the local properties of phase-space neighbourhoods is provided
by the Kaplan-Yorke formula [91, 92]. The Kaplan-Yorke formula relates the
so called ‘information dimension’ D1 of a measure generated by a dynami-
cal system to the Lyapunov exponents λi of the underlying dynamics. The
Kaplan-Yorke formula reads

D1 = k +

∑k
i=1λk

|λk+1|
. (4.20)

Here k is the largest integer for which the sum in Eq. (4.20) is positive. The
idea behind Eq. (4.20) is quite simple. The cumulative sum

∑n
i=1λi deter-

mines the rate at which n-dimensional (sub-)volumes of phase-space expand
or contract in the infinite-time limit. Generically, any of these sums is either
positive or negative for different n . The number k in Eq. (4.20) is a lower
bound for a fractal dimension in which the cumulative sum of Lyapunov ex-
ponents is zero. An upper bound, on the other hand, is provided by the sum
∑k+1

i=1 λi . The Kaplan-Yorke formula says that the information dimension D1

is given by linearly interpolating between the upper bound and the lower
bound (k +1−D1)

∑k
i=1λi + (D1−k )

∑k+1
i=1 λi = 0. Equation (4.20) is known

to hold for generic deterministic dynamical systems [18], and it has been
proven for a broad class of random dynamical systems [93].

Note that according to Eq. (4.20), D1 depends only on the Lyapunov ex-
ponents λ which have fixed values. More information is contained in the
rate function I (s ), which provides the detailed statistics of the transient
fluctuations of the FTLEs σt around λ for long but finite time t . The sin-
gularity spectrum ξn in Eq. (4.2) is obtained from the moments the phase-
space massesMδ. The idea pursued in Ref. [70] is to interpret the phase-
space massMδ(x t , vt ) as the volume of a phase-space neighbourhood that
was transported along a trajectory (x t , vt ), and deformed by the phase-
space FTLEs. Since trajectories do not cross in phase-space, the mass con-
tained in Mδ(x t , vt ) at time t must be the same as that contained in an
initial phase-space ellipsoid, whose main axes had the different lengths
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(δe(t0−t )σ(1) , . . . ,δe(t0−t )σ(2d )
)at initial time t0. Using this, the authors of Ref. [70]

derived a relation between the rate function I (s ) of phase-space FTLEs and
the singularity spectrum ξn for two-dimensional dynamical systems. By
adjusting their method to our system, we obtain two relations for ξn in one
spatial dimension:

sup
s≥−1/2

{(ξn −2n )s − I (s )}=−(ξn −n ) , |ξn | ≥ |n | (4.21a)

sup
s≥−1/2

{−ξn s − I (s )}= 0 , |ξn | ≤ |n | . (4.21b)

These relations can be conveniently rewritten as explicit equations for ξn

ξn =

¨

inf0≤y<2{n y + J (y )} , |ξn | ≥ |n |
inf0≤y<1

¦

J (y )
1−y

©

, otherwise .
(4.22)

where

J (y ) = I
�

y −1

2− y

�

(2− y ) . (4.23)

Equations (4.22) and (4.23) show that ξn can be computed directly from the
rate function of phase-space FTLEs, and thus from the local properties of
transient stretchings or compressions of phase-space neighbourhoods at
large but finite times. Note that for small n , the first condition in Eq. (4.22)
for ξn reduces to ξn ∼ n ymin, where J (ymin) = 0. Using Eq. (4.23), we infer for
n � 1

ξn ∼ n
�

1+
λ1

λ1+1

�

= n
�

1+
λ1

|λ2|

�

. (4.24)

Together with Eq. (4.3) this implies that D1 = 1+λ1/|λ2| in d = 1. This shows
that one recovers the Kaplan-Yorke formula (4.20) for D1 from Eqs. (4.21).

To conclude, the small-scale properties of the phase-space measureµt are
characterised by the Renyi dimension Dq . The commonly used numerical
methods to determine Dq are global. This means that they require, at least
approximately, the knowledge of the phase-space measure µt in the entire
phase-space. Local observables, relying on the evaluation of the tangent
flow along trajectories can be computed more efficiently. The phase-space
FTLEs determine the transient statistics of stretchings or contractions of
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phase-space neighbourhoods. Interestingly, the rate function I (s ) of phase-
space FTLEs allows to compute the Renyi dimension. Unfortunately, the rate
function I (s ) is often still hard to compute numerically, because it depends
sensitively on large fluctuations of σt whose probability is exponentially
suppressed. In Chapter 5 and Paper C, I show that in the one-dimensional
white-noise limit, one can compute I (s ) accurately by an operator method.
Equation (4.22) is then a valuable tool, that enables us to compute Dq with
high accuracy.
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PART III

MY WORK

In this third part of my thesis, I give a summary of the work that I have done
in the course of four years as a doctoral student. Most of my research is on the
statistical model for heavy particles in turbulence in one spatial dimension.

I present the main contents of the papers A-C. Apart from these articles,
I have (co-)authored two additional papers that I discuss in my Licentiate
thesis [1]. I have split up the discussion of the papers A-C into four chapters,
ordered not chronologically but according to how their content fits into the
thesis. The third part of the thesis is organised as follows:

Chapter 5 contains my work on the Renyi dimensions in the one-dimen-
sional white-noise model. This chapter contains results from papers A and C.
I show how to compute the rate function I (s ) of the phase-space FTLEs intro-
duced in Section 4.2. From this rate function, I obtain the Renyi dimensions
using Eqs. (4.22) and (4.3). After that, I discuss the non-analytical structure
of the phase-space correlation dimension D2 in the limit of small white-noise
parameter, ε� 1.

In Chapter 6, I explain how spatial clustering is affected by folds of the
phase-space distribution over configuration space. The results of this chapter
are contained in Paper C. I show how the spatial projection of local phase-
space neighbourhoods is applied in order to compute the rate function Î (s )
of the spatial FTLE in one spatial dimension. This spatial rate function Î (s ) is
partly identical to the phase-space rate function I (s ) calculated in Chapter 5,
but acquires a universal linear part for negative parameter values.

Chapter 7 deals with the one-dimensional persistent limit of the statistical
model. This chapter describes the results of Paper B. I discuss how particles
accumulate in the vicinity of long-lived traps in this limit. This trapping
allows us to solve the model analytically in one spatial dimension.

Finally, I describe in Chapter 8 the relative dynamics of suspensions of
heavy particles with different Stokes numbers, the subject of Paper A. In this
chapter, I show that the particle dispersion in phase-space of a particle pair
with different Stokes numbers exhibits two different regimes. The first regime



46 PHASE-SPACE RENYI DIMENSIONS

is diffusive and leads to a plateau in the steady-state distribution of phase-
space separations. In the second regime, the relative particle dynamics is that
of a pair of identical particles, with an effective Stokes number S̄t. This leads
to a power-law scaling of the steady-state distribution at large phase-space
separations.

5 Phase-space Renyi dimensions

As a substantial part of my work, I used operator methods to study the fractal
small-scale structure of the phase-space measure µt in the one-dimensional
white-noise limit. In Paper C, I employed the relation (4.22) between the rate
function I (s ) of phase-space FTLEsσt and the singularity spectrum ξn , to
compute the Renyi dimension Dq to high precision. In Paper A I applied a
matched asymptotic expansion to derive an asymptotic, non-analytic ex-
pression for the phase-space correlation dimension D2 for small white-noise
parameter ε� 1. I summarise these results in this chapter, and give a little
more detail in places where the corresponding explanations in the papers
are brief.

5.1 Phase-space rate function

In the one-dimensional white-noise limit, the closed evolution equations
Eqs. (3.22) for the eigenvectors and eigenvalues of the left Cauchy-Green ten-
sor Bt allow us to compute the rate function I (s ) explicitly. I now summarise
how this calculation is carried out.

In the white-noise limit, the dynamics of the phase-space neighbourhood
(the tangent flow) is independent of the dynamics of the reference trajectory.
The matrixWt in Eq. (3.23) takes the simple form

Wt =

�

0 1
At −1

�

. (5.1)

Here, the one-dimensional fluid-velocity gradient matrix At is given by a
scalar Gaussian white-noise At with zero mean and correlation function

〈At At ′〉= 2ε2δ(t − t ′) . (5.2)
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Furthermore, because the phase-space is two-dimensional in d = 1, the
phase-space eigenvectors e (1)t and e (2)t ofBt can be parameterised by a single
angle αt . We write

e (1)t =

�

cosαt

sinαt

�

, and e (2)t =

�

−sinαt

cosαt

�

. (5.3)

Using the evolution equations (3.22) one obtains the following stochastic

equations for αt and for the phase-space FTLEσ(1)t :

d
dt αt =−sinαt (sinαt + cosαt )+ cos2αt At , (5.4a)

σ(1)t =
1

t − t0

∫ t

t0

dt ′ tanαt ′ +
1

t − t0

∫ t

0

dαt ′ tanαt ′ , (5.4b)

σ(2)t =−σ
(2)
t −1 . (5.4c)

The stochastic differential equation (5.4a) and the stochastic integral in
Eq. (5.4b) must be interpreted in the Stratonovich sense. Because the dynam-
ics of αt is invariant under the shift αt → αt +kπ, k ∈Z, we equip αt with
periodic boundary conditions on [−π/2,π/2). Equations (5.4) parameterise
the evolution of a local phase-space neighbourhood in the one-dimensional
white-noise limit. The parameterisation is shown in Fig. 5.1, see also Fig. 4.2.

The two phase-space FTLEsσ(1)t andσ(2)t determine the deformation of the
neighbourhood along their main axes, the angle αt gives the orientation of
the major axis with respect to configuration space.

From Eqs. (5.4) we can calculate the rate function I (s ) of the phase-space
FTLEσ(1)t . To this end, we first transform the process for the angleαt into the
new process Zt = tanαt =δvt /δxt , known as the particle-velocity gradient
[17]. This process has been studied extensively in the context of heavy parti-
cles in turbulence [21, 78, 94, 95], but also in acoustics [96]. The infinitesimal
generatorL of the particle-velocity gradient Zt is given by

d
dt 〈 f (Zt )〉= 〈L f (z )〉 . (5.5)

The generatorL is a differential operator, acting on functions of the process
Zt . It is the adjoint of the Fokker-Planck operatorL †. Explicitly,L andL †

read

L = (z + z 2) d
dz + ε

2 d2

dz 2 , and L † =− d
dz (z + z 2) + ε2 d2

dz 2 . (5.6)
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Figure 5.1: Evolution of a two-dimensional phase-space neighbourhood. An
initial disc is deformed and rotated into an ellipse with axis lengths given by
the phase-space FTLEsσ(1)t andσ(2)t . The main axis is rotated by the angle αt .
The vectors e (1)t and e (2)t denote the eigenvectors (5.3) of the left Cauchy-Green
tensor Bt . The reference trajectory is shown as the orange, dash-dotted line.

The generatorL and its adjointL † determine the time-evolution of statis-
tical averages of the process Zt , such as its density and the moments. The
generatorL is in general not Hermitian, so that its left and right eigenfunc-
tions do not coincide.

The tilted generatorLk [97, 98], on the other hand, is associated with sta-
tistical quantities of observables of the process Zt . In general, an observable
At of Zt is defined in terms of the integrals [97, 98, 99]

At =
1

t − t0

∫ t

t0

dt ′ f (Zt ′ ) +
1

t − t0

∫ t

t0

dZt ′g (Zt ′ ) , (5.7)

where f and g are functions of the process Zt . As before, the stochastic inte-
gral in Eq. (5.7) must be interpreted according to the Stratonovich convention
[52, 64]. In the case we consider here, the observable is the phase-space FTLE
given in Eq. (5.4b). By transforming Eq. (5.4b) into an equation for Zt , and by
comparison with Eq. (5.7), we find that f (z ) = z and g (z ) = z/(z 2+1). Using
the so-called Feynman-Kac formula [100], one can then show [97] that the
moment generating function G (z , t ) = 〈e(t−t0)k At |Zt0

= z 〉, conditioned on
the initial value Zt0

= z of the process Zt , obeys the differential equation

∂t G (z , t ) =Lk G (z , t ) , (5.8)
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whereLk is the tilted generator. The form of the tilted generator depends on
the functions f and g in Eq. (5.7), and on the underlying process. Its general
form can be found in Refs. [97, 98]. For the particle-velocity gradient Zt with
observable (5.4b) the tilted generatorLk is given by

Lk = (z
2+1)k/2L (z 2+1)−k/2+k z . (5.9)

Note that for k = 0 we recover the generator of the process,Lk=0 =L . Simi-
larly to the generatorL , the tilted generatorLk is not Hermitian. For long
times, G (z , t ) grows exponentially with the largest eigenvalue ofLk . Impor-
tantly, by comparison with Eq. (4.18) we find that this largest eigenvalue of
Lk must be equal to the scaled cumulant-generating function (SCGF) Λ(k )
of the phase-space FTLEσ(1)t [97, 98]:

Λ(k ) = lim
t→∞

1

t − t0
log

D

ek (t−t0)σ
(1)
t

E

. (5.10)

Hence, the SCGF Λ(k ) can be obtained by computing the leading eigenvalue
of the tilted generator (5.9). This link provides a powerful tool for calculating
the SCGF Λ(k ). The tilted generator approach admits the use of analytic
methods such as perturbation theory, and different numerical methods, to
calculate Λ(k ). Once Λ(k ) is obtained, the rate function I (s ) can be obtained
by a Legendre transform, as described in Section 4.2. The tilted generator is
not Hermitian, so we need to consider the two eigenvalue equations

Lk lk (z ) =Λ(k )lk (z ) , L †
k rk (z ) =Λ(k )rk (z ) , (5.11)

where lk (z ) and rk (z ) are the left and right eigenfunctions ofLk , respectively.
The leading eigenvalue Λ(k ) is typically unique and real. In Paper C we
solved the eigenvalue equations (5.11) numerically by a shooting method
[23, 24]. The results of this method are shown in Figure 6 of that paper. An
important property of the phase-space rate function I (s ) and of the scaled
cumulant-generating function Λ(k ) are the relations

Λ(k −1)−Λ(−k −1) =−k , (5.12a)

I (s −1/2)− I (−s −1/2) =−2s . (5.12b)

These equations can be derived directly from a symmetry of the tilted gener-
ator, as explained in Appendix D of Paper C. They follow from a hidden time-
reversal invariance of the equation of motion Zt , as described in Appendix E
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of Paper C. In non-equilibrium statistical mechanics, relations like Eqs. (5.12)
are called ‘fluctuation relations’ [101, 102, 103, 104, 105, 106, 107, 108]. In
recent years, there has been growing interest in fluctuation relations since
they are some of the few exact results that can be formulated for general
classes on non-equilibrium systems.

In the present case, the relations (5.12) describe a symmetry between the
occurrences of positive and negative phase-space FTLEs. That is, there is

a strict relation between the probabilities of stretching along the e (1)t direc-

tion (σ(1)t > 0, σ(2)t < −1), and stretching along the e (2)t direction (σ(1)t < −1,

σ(2)t > 0). In Eq. (5.12b) we see that I (s ) has an inflection point at s =−1/2
[82], which marks the case of isotropic contraction of the phase-space neigh-

bourhood along both directions σ(1)t = σ
(2)
t = −1/2. In Paper C, we show

that the inflection point in the rate function I (s ) occurs at zero when the
dynamics is conservative.

5.2 Renyi dimensions

The tilted generator approach allows us, in principle, to obtain the rate func-
tion I (s ) to arbitrary accuracy. Once I (s ) is calculated, we can use the link
between I (s ) and ξn discussed in Section 4.3 to compute the singularity
spectrum ξn , and thus the phase-space Renyi dimension Dq . This way, we
circumvent the global numerical methods that I described in Section 4.1,
and obtain Dq very accurately. To determine ξn , we first compute J (y ) given
in Eq. (4.23),

J (y ) = I
�

y −1

2− y

�

(2− y ) , (5.13)

and then calculate ξn from Eq. (4.22):

ξn =

¨

inf0≤y<2{n y + J (y )} , |ξn | ≥ |n |
inf0≤y<1

¦

J (y )
1−y

©

, otherwise .
(5.14)

The result for ξn is shown in Fig. 5.2(a), and in Figure 7(a) of Paper C. We
observe that ξn is a concave function that levels off to ξ∞ at a critical value
ncrit. For small ε the transition from the increasing part to the saturation is
non-smooth. For larger ε, on the other hand, the transition is smooth and
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Figure 5.2: Singularity spectrum ξn and Renyi dimension spectrum Dq in the
one-dimensional white-noise model for ε = 2,4,8, plotted as the solid, dash-
dotted and dashed lines, respectively. (a) Singularity spectrum ξn plotted as a
function of n . The light grey lines show ξn = 0 and ξn = n . (b) Renyi dimension
Dq plotted as a function of q . The light grey line shows Dq = 1.

occurs earlier, at ncrit < n . These two regimes are separated by a critical value
εcrit ≈ 4.548.

The Renyi dimension Dq is computed from ξn using Eq. (4.3). The results
are shown in Fig. 5.2(b). As expected, Dq is a non-increasing function of
q [72]. The non-smooth transition of ξn at ncrit manifests itself in a non-
smooth transition of Dq from Dq > 1 to Dq < 1. This transition occurs at
the light grey line in Fig. 5.2 when ε < εcrit. The results for ξn and Dq in
Fig. 5.2 confirm that phase-space clustering of inertial particles in the one-
dimensional statistical model is multifractal. This was conjectured on the
basis of numerical simulations [59], and because of the discrepancy between
the Renyi dimensions D1 and D2 [17, 74, 75].

Our results for the phase-space fractal dimensions of the one-dimensional
statistical model in the white-noise limit show that the phase-space measure
µt has an intricate, multifractal structure. The methods that I described in
this section allow to compute the Renyi dimension Dq which characterise
µt to high accuracy.

5.2.1 Correlation dimension for small ε

The correlation dimension D2 is of particular importance for the physical
applications, because it determines the scaling of the probability (4.1) of
finding two particles close-by in phase-space. In Paper A we consider the
scaling (4.1) for small white-noise parameter ε � 1. So far, we have inter-
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preted all Renyi dimensions as properties of the phase-space measure µt . In
order for the attractorFt to be a fractal, the dynamics needs to be chaotic,
and thus to have a positive largest Lyapunov exponent λ1 > 0. As I explained
in Section 4.2, λ1 is negative in one-dimensional white-noise model for
ε < εpc ≈ 1.33, within the path-coalescence regime [76, 77]. In this regime,
the phase-space dynamics contracts to a point, and the Renyi dimensions
are therefore, strictly speaking, all equal to zero, Dq = 0. One can, however,
adopt a somewhat wider definition of the correlation dimension D2 which
allows it to be negative when λ1 < 0.

Assume there exists a small-scale cutoff Rc which prevents the phase-
space dynamics from contracting to a point. Physically, this cutoff can be
provided by, e.g., Brownian motion [86], but also by a finite particle size
or, as in Paper A, a difference in the Stokes numbers between two particle
species. The idea is to consider, in the presence of the cutoff Rc , the scaling
of the cumulative probability distribution P (Rt ≤δ) of phase-space sepa-
rationsRt = |R t | in the intermediate regime Rc �δ� 1. The scaling in the
intermediate regime is of the form (4.1) so that one finds two scaling regimes

P (Rt ≤δ)∼

¨

δ2d , δ�Rc ,

δD2 , Rc �δ� 1 ,
(5.15)

Interestingly, the correlation dimension D2 can be defined in this way both
for λ1 > 0 and λ1 < 0. In the latter case, D2 becomes negative [109]. Equa-
tion (5.15) shows that even a negative Dq can be physically relevant as it
describes the scaling of separations in an intermediate regime.

After this discussion, I now outline how we calculate D2 in one spatial
dimension in the limit ε→ 0. More details on the precise asymptotic expan-
sion can be found in the supplemental material of Paper A. Note again that
λ1 < 0 for ε� 1, so that D2 should be negative. Similarly to Λ(k ) in Eq. (5.11)
we can express D2 as the generalised eigenvalue of the generatorL of Zt

[23, 24], defined in Eq. (5.6):

L l (z ) =D2z l (z ) , and L †r (z ) =D2z r (z ) . (5.16)

The functions l and r are the generalised left and right eigenfunctions, re-
spectively. The standard strategy to solve these equations for small ε is to
rescale the z -coordinate, z → εz , and expand l , r and D2 perturbatively in ε.
More precisely, one makes the ansatz l = l (0)+ εl (1)+ . . ., r = r (0)+ εr (1)+ . . .
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and D2 =D (0)2 +εD (1)2 + . . . and solves the corresponding equations iteratively,
order for order in ε. This standard approach, however, fails for Eqs. (5.16)
[74, 75, 109]. The standard perturbation theory gives D (0)2 =−1, and D (n )2 = 0
for all n > 0, leading to the perturbative result

D2 ∼−1 , (5.17)

to all perturbative orders in ε. First of all, this result suggests that the cor-
relation dimension is negative in the limit ε→ 0. The negative correlation
dimension gives the scaling of the probability P (Rt ≤ δ) in the presence
of a cutoff R0 in the intermediate regime R0� δ� 1, as given in Eq. (5.15).
Since the correlation dimension D2 must be positive for ε > εpc, Eq. (5.17)
can clearly not be the solution for D2 for all ε.

The reason for this discrepancy is that the perturbation problem in Eqs.
(5.16) is singular, and it needs to be solved with methods of singular pertur-
bation theory [110]. Singular perturbation theory allows for solutions of the
generalised eigenvalue D2, that are non-perturbative, and thus do not have
the form of a series expansion in powers of ε.

The starting point for the method that we use in Paper A is to note that
there exists an exact solution to Eqs. (5.16) for D2 =−1 that is valid for all ε.
This solution, however, does not satisfy the required boundary conditions for
the generalised eigenfunctions l and r . Using this solution, we reduce second
order differential equations in Eqs. (5.16) to first order differential equations,
using the method of reduction of order [110]. The next step is to expand
D2 = −1+δD2, where δD2 → 0 as ε→ 0. The crucial third step is to make
a regular perturbative expansion of the generalised eigenfunctions in δD2.
Requiring that these eigenfunctions satisfy the boundary conditions then
determines δD2. To lowest non-vanishing order we find δD2 ∼π−1e−1/(6ε2),
and thus

D2 ∼−1+
1

π
e−1/(6ε2) . (5.18)

Apart from the actual result, the calculation leading to Eq. (5.18) shows that
we need to take into account the algebraic tails of the generalised eigen-
functions l and r , that are related to the caustic escapes Zt →−∞ in the
Zt -dynamics. I discuss these events in more detail in Chapter 6. These tails
are absent in the standard perturbative expansions of l and r . This suggests
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that the non-perturbative contribution in Eq. (5.18) is related to occurrence
of caustics in the dynamics.

The result (5.18) allows an insight into the non-analytical structure of the
correlation dimension D2 at small ε. The eigenvalue splitting δD2 between
the unphysical solution with D2 =−1 and the physical solution with Eq. (5.18)
is reminiscent of the instanton contributions to the energy splitting of a quan-
tum particle in a double-well potential [111]. In this case, the energies are
given by a so-called trans-series expansion [112] in terms of the perturba-
tion parameter, thus generalising the standard perturbation expansion. In
Paper A, see also [113], we speculate that D2 may also have a representation
in terms of such a trans-series, in which caustics play a similar role as the
instantons in the quantum mechanical double-well.

5.3 Implications of the results

All the results that I presented in this chapter were obtained for the one-
dimensional statistical model in the white-noise limit. Therefore, they are
probably not particularly interesting from an experimental point of view. In
my opinion, however, these results showcase the complexity of the phase-
space dynamics in one spatial dimension. From a technical perspective
they show the power of operator methods for the calculation of the Renyi
dimensions in the statistical model. Physically, the result (5.18) show that
the caustic excursions Zt →−∞ play an essential role in the dynamics, and
that they have an impact on clustering in phase space. The non-perturbative
nature of these caustics makes it difficult to deal with them in perturbative
expansions. I discuss this aspect in detail in Chapter 6. In higher dimensions,
it was shown that perturbative expansions fail to describe numerical results
for the phase-space correlation dimension D2 at finite inertia parameters
[17, 74, 75, 79]. The reason could be non-perturbative contributions similar
to that in Eq. (5.18).
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6 Fractal catastrophes

Phase-space clustering is an important property of the statistical model
of heavy particles in turbulence. As I explained in Secs. 3.1 and 4.2, the
dissipative nature of the phase-space dynamics (3.1) together with chaotic
dynamics (λ1 > 0) leads to the formation of a fractal attractor Ft that is
sampled inhomogeneously by the phase-space dynamics. The small-scale
properties of the phase-space measure µt are quantified by the phase-space
Renyi dimension Dq . The inhomogeneous distribution of heavy particles in
phase-space is known as phase-space clustering.

If we want to measure phase-space clustering in an experiment, we must
determine the phase-space density %t ,t0

(x , v ) of particles in the long-time
limit. This is often not possible if an experimental apparatus, for instance,
only allows us to make time-isolated snapshots of the positions of particles,
with no reference to momentary velocities. An illustration of such a case is
shown in Fig. 6.1. The subfigures (a)-(c) show snapshots of the evolution of
the particle density in two spatial dimensions d = 2, obtained from statistical
model simulations. In d = 2, phase-space is four dimensional, but the snap-
shots are taken only of the two-dimensional spatial domain. Figures 6.1(a),
(b) and (c) correspond to snapshots at times∆t = t − t0 = 1, 3, 5, respectively.

In cases like this, we only have access to the spatial distribution of particles,
determined by the spatial density %̂t ,t0

(x ), the marginal density of the phase-
space density %t ,t0

:

%̂t ,t0
(x ) =

∫

dv%t ,t0
(x , v ) , (6.1)

We can interpret the spatial density %̂t ,t0
as arising from the projection of the

phase-space locations of particles to configuration space, (x , v ) 7→ x . The
projection is not in general one-to-one, because any position in configuration
space may be occupied by many particles, with very different velocities. This
observation has interesting consequences for the spatial density %̂t ,t0

: In
Fig. 6.1(a), we observe an increased particle density on line-like sets that
emerge from singular points. These singularities are the consequence of the
spatial projection of folds in the phase-space particle distribution, known
as caustics. In optics, caustics are singularities in the light intensity arising
from random, partial focussing of rays. On the bottom of a swimming pool
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(a)

η

(b)

η

(c)

η

Figure 6.1: Spatial particle density %̂t ,t0
for the two-dimensional statistical

model in the white-noise limit with ε = 1.5 and ℘= 0 at different times∆t =
t − t0. The density is obtained from evolving 2 ·107 particles. (a) %̂t ,t0

for∆t = 1.
(b) %̂t ,t0

for∆t = 3. (c) %̂t ,t0
for∆t = 5.

on a sunny day [22, 25], light is diffracted randomly by the water surface and
focused on line-like sets [25], similar to the ones we see in Fig. 6.1(a).

In Paper C we ask the question how these caustic folds affect the spatial
density %̂t ,t0

, and thus the spatial clustering of particles. It is generally as-
sumed that caustics increase spatial clustering [21], but it is not precisely
clear how to quantify this expectation. In Paper C we quantify the effect of
caustics in terms of the projection of local spatial neighbourhoods. In the
following, I review our analysis of spatial clustering in Paper C.

6.1 Spatial density

The spatial density is obtained from integrating the phase-space density%t ,t0

over the velocities, Eq. (6.1). If the maximum Lyapunov exponent is positive
λ1 > 0, the dynamics is chaotic and we expect %t ,t0

to approach the singular
phase-space density %̄t , with associated phase-space measureµt in the limit
t0→−∞. Similarly to the discussion in Section 3.1 we define the limiting
(and possibly singular) spatial density

ˆ̄%t (x ) = lim
t0→−∞

∫

dv%t ,t0
(x , v ) . (6.2)

The associated spatial measure µ̂t of an arbitrary spatial set Ŝ reads

µ̂t (Ŝ ) =
∫

Ŝ
dµ̂(x )≡ lim

t0→−∞

∫

Ŝ
dx

∫

dv%t ,t0
(x , v ) . (6.3)
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(a)

(b)
x

v

x

%̂t,t0

Figure 6.2: Comparison of the phase-space density%t ,t0
and the spatial density

%̂t ,t0
in d = 1 for ∆t = t − t0 = 50, obtained from simulations of the one-

dimensional white-noise limit with ε = 1.5 and 107 particles. (a) Phase-space
density %t ,t0

. The position is plotted horizontally, the velocity vertically. The
logarithmic colour coding shows the magnitude of %t ,t0

. (b) Corresponding
spatial density %̂t ,t0

(x ) plotted against the position x . Large spatial particle
concentrations can be observed in the vicinity of folds, exemplified by the
dotted lines.

The spatial density ˆ̄%t (x ) is then the density associated with the differential
spatial measure dµ̂t (x )

dµ̂t (x ) = ˆ̄%t (x )dx , (6.4)

interpreted in the sense of distributions.
Figure 6.2 illustrates the connection between the phase-space density

%t ,t0
and the spatial density %̂t ,t0

in one spatial dimension after a long time.
Here, %t ,t0

and %̂t ,t0
are approximations of the infinite-time densities %̄t

and ˆ̄%t , respectively. Fig. 6.2(a) shows the phase-space density of the one-
dimensional model, Fig. 6.2(b) shows the corresponding %̂t ,t0

. We observe
that the spatial density %̂t ,t0

is strongly inhomogeneous, similarly to the
phase-space density. Furthermore, the spatial density exhibits peaks in
regions where the phase-space density folds over configuration space. This
is exemplified by the dotted lines in Fig. 6.2. At the edges of these folds,
the integral in Eq. (6.1) accumulates infinitesimal neighbourhoods of the
phase-space density in single points in configuration space. This leads to the
divergencies in %̂t ,t0

, which are the caustics in the one dimensional statistical
model.

Comparing Fig. 6.2 to Fig. 6.1 we note that the caustic singularities in
d = 1 are singular points instead of lines emerging from points in d = 2.
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For all finite times, this can be explained in terms of catastrophe theory
[114, 115]. In catastrophe theory, the folds observed in d = 1 and d = 2 are
called catastrophes, which can be categorised into so-called normal forms
according to their co-dimension. In d = 1 and d = 2 only the so-called
cuspoids [25, 114] are structurally stable. Cuspoids have co-dimension one,
so they are one dimensional (fold lines) in d = 2 and zero dimension (single
points) in d = 1. The fold lines in d = 2 emerge from singular points, so-called
cusp points [114], as we observe in Figs. 6.1(a). For longer times [Figs. 6.1(b)
and (c)], caustics have led to the formation of many branches of particles in
phase space, which makes it harder to identify new caustics in these figures.
This is analogous to the one-dimensional case in Fig. 6.2(a), where we observe
a large number of phase-space branches lying on top of each other.

After long times, the phase-space density is supported by a fractal set, and
the associated folds are the folds of a fractal attractor. In Paper C we therefore
call these folds ‘fractal catastrophes’, due to their fractal nature in the long-
time limit. Figures 6.1 and 6.2 seem to suggest that fractal catastrophes lead
to an increase in the spatial density.

6.2 Projection formula for spatial Renyi dimension

The small-scale structure of spatial measure µ̂t can be characterised by a
family of spatial Renyi dimensions D̂q . We can estimate the spatial Renyi
dimensions numerically by using the box-counting methods that I described
in Section 4.1. As the spatial natural measure is obtained from a projection,
however, it is tempting to use known results for the projection of fractals
[116] to compute the fractal properties of the spatial measure µ̂t from the
phase-space measureµt . Projection formulas relate the Renyi dimension Dq

of a multifractal measure in a higher-dimensional space (phase-space) to the
corresponding D̂q in the lower dimensional projected space (configuration
space). It was shown in Refs. [117], that for generic multifractal measures the
projected Renyi dimension D̂q obeys the formula

D̂q =min{Dq , d } , (6.5)

for q ∈ [0, 2]. Equation (6.5) holds for ‘typical’ projections of the measure to
lower-dimensional subspaces. Since our dynamics, Eq. (3.1), is non-isotropic
in phase-space, there is, a priori, no reason to believe that the projection
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to configuration space is typical. Therefore, it is not clear if we can use the
projection formula Eq. (6.5) to compute the spatial Renyi dimension D̂q from
their phase-space counter parts Dq . In Paper C and in Section 6.5 we show
that (6.5) does, in fact, hold for q = 2.

6.3 Spatial particle neighbourhoods and their collapse

For the analysis of the fractal structure of the phase-space measure µt in
Chapter 5, it proved useful to analyse the local behaviour of phase-space
neighbourhoods. It may therefore appear natural to do the same for the anal-
ysis of the spatial measure µ̂t in configuration space. To this end, we must
project local phase-space neighbourhoods to configuration space. In this
section I show how this projection is carried out. The dynamics of stretch-
ing or compression of the projected neighbourhoods is determined by d

spatial finite-time Lyapunov exponents (spatial FTLEs) σ̂t = (σ̂
(1)
t , . . . ,σ̂(d )t ).

Analogously to the analysis in phase-space, the cumulative sums
∑n

i=1 σ̂
(i )
t

determine the transient fluctuations of the evolution of n-dimensional spa-
tial (sub-)volumes. In particular, the evolution of d -dimensional spatial
volumes V̂t is, by definition, determined by

V̂t

V̂t0

= e(t−t0)Ŝt , with Ŝt =
d
∑

i=1

σ̂(i )t . (6.6)

At initial time t0 an infinitesimal d -dimensional spatial volume V̂t0
is charac-

terised by d orthogonal unit vectors, that lie entirely in configuration space.
As I explained in Section 3.2, each of these vectors is stretched and rotated
by the (phase-space) deformation matrix Jt . In the long-time limit, any d -

dimensional volume must align with the first d eigenvectors e (i )t , i = 1, . . . , d
of the left Cauchy-Green tensor Bt , defined in Section 3.2.1. Hence for t > t0,
the initial spatial volume V̂t0

evolves through phase-space, with phase-space

volume∼ exp[(t − t0)
∑n

i=1σ
(i )
t ]. In configuration space, however, we observe

the projection V̂t of the volume. In Paper C we show that this projection
leads to a factorisation of the spatial volume V̂t into a spatial volume factor
and a phase-space volume factor. We find

V̂t

V̂t0

= |detO(d )t |e
(t−t0)

∑d
i=1σ

(i )
t . (6.7)
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Figure 6.3: Rate of caustic formation J in the white-noise limit for different
dimensions [81]. The cases d = 1, d = 2 and d = 3 are shown in orange, green
and blue, respectively.

Here |detO(d )t | is the spatial volume factor given in terms of the d × d di-
mensional spatial sub-matrix of the matrix Ot of eigenvectors of Bt . We
have

O(d )i j = e (i )t · ê j , 1≤ i , j ≤ d , (6.8)

where êi , i = 1, . . . , d are the Cartesian unit vectors spanning configuration

space. We call exp[(t − t0)
∑d

i=1σ
(i )
t ] in Eq. (6.7) phase-space volume factor

because it describes the evolution of d -dimensional volumes in phase-space.
The spatial volume factor |detO(d )t | is smaller than or equal to unity. It de-
scribes the collapse of spatial volumes V̂t → 0, when two of the projected

vectors of the spatial volume become collinear, so that |detO(n )t | → 0.
This collapse of spatial volumes is the local signature of the caustic sin-

gularities in the spatial density. The rate J at which caustics form along
trajectories was calculated in the white-noise limit in Refs. [21, 77, 79]. The
results for J in d = 1,2 and 3 are shown in Fig. 6.3 as the orange, green
and blue lines, respectively [81]. In all cases, J is an increasing function of
the white-noise parameter ε. For small ε, J shows an activated behaviour
J ∝ e−S/ε2

, where S = 1/6 is a constant that was conjectured to be indepen-
dent of d [17]. Outside the white-noise limit, for finite Ku and St, J shows a
similar activated behaviour as a function of the Stokes number St [118], but
with an Ku-dependent exponent S [118].

That J has the form J ∝ e−S/ε2
implies that J is non-analytic at ε = 0.

Hence, perturbation expansions around the ε = 0-limit do not capture the
effects of caustics. The non-perturbative nature of the caustics complicates
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their theoretical description. This is one of the reasons why the quantitive
contribution of the rate of caustic formation to spatial clustering is poorly un-
derstood. The activated behaviour of J as a function of St has been observed
not only in the statistical model, but also in direct numerical simulations of
heavy particles in turbulence [119].

Using Eq. (6.6) and (6.7) we find an expression for Ŝt in Eq. (6.6) given by

Ŝt =
d
∑

i=1

σ(i )t +
1

t − t0
log |detO(d )t | (6.9)

When the spatial volume collapses, detO(d )t → 0, Ŝt escapes to negative infin-
ity. After the collapse, the spatial volume must become finite again, so that
Ŝt jumps instantaneously from −∞ to∞.

6.4 Neighbourhoods in one spatial dimension

In one spatial dimension we study the spatial FTLE σ̂t , the one-dimensional
analogue of Ŝt . It describes the statistics of the transient stretching or con-
traction of one-dimensional spatial volumes, which are simply line elements.
After an initial transient, a spatial line element aligns with the leading eigen-

vector of the leading phase-space FTLE e (1)t , parameterised by the angle αt

[see Eq. (5.3) and Fig. 5.1]. In the one-dimensional version of Eq. (6.9), the

spatial volume factor is simply det |O(1)t |= cosαt . Figure 6.4(a) shows a typi-
cal trajectory of αt as a function of time. We observe that αt moves to −π/2
and reappears at π/2 at time tc. In the event αt =π/2, the eigenvector e (1)t is
perpendicular to configuration space, and the spatial volume factor vanishes,
cosαt = 0.

The evolution equation for the spatial FTLE σ̂t is obtained from Eq. (5.4b),
and from Eq. (6.9) withO(1)t = cosαt . We find

σ̂t =
1

t − t0

∫ t

t0

dt ′ tanαt ′ . (6.10)

Assume αt → −π/2, at the caustic time tc . In the vicinity of tc , we can
approximate σ̂t by σ̂t ∼ log(|t − tc |). This shows that σ̂t escapes to −∞ at
t = tc and returns to finite values for t > tc . The blue curve in Fig. 6.4(b)
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Figure 6.4: Typical trajectories of αt and the FTLEs for the same realisation
of the (white-in-time) fluid-velocity gradient At , obtained from evaluating
Eqs. (5.4). (a) Trajectory for αt for ε = 2. At the caustic time tc, αt jumps from
−π/2 to π/2. In the vicinity of tc, αt is linear in time, αt ∼±π/2+ tc− t (black,
dashed line) (b) Typical trajectory of the phase-space FTLEs σ(1)t (red), σ(2)t

(green), and of the spatial FTLE σ̂t (blue) corresponding to the values of αt in
(a). At the caustic time tc, the spatial FTLE σ̂t escapes to −∞ and returns. In
the vicinity of tc, we haveσt ∼ log |t − tc|−1(black, dashed line).

shows a typical trajectory of the spatial FTLE σ̂t , obtained from evaluating
Eq. (6.10) with the realisation of αt given in Fig. 6.4(a). The black dashed line
shows the asymptotic behaviour around the caustic time tc . The red and

green lines in Fig. 6.4(b) show the evolution the phase-space FTLEsσ(1)t and

σ(2)t , respectively, obtained from Eqs. (5.4b) with the same realisation of αt .
While the spatial FTLE σ̂t escapes to negative infinity at the caustic time tc ,
the phase-space FTLEs stay finite.

In order to understand why the divergence observed for spatial FTLE

σ̂t does not occur for phase-space FTLEs σ(1)t and σ(2)t , we consider their
equations of motion (5.4b) and (5.4c) in the vicinity of the caustic time tc . I
restate Eqs. (5.4b) and (5.4c) here for convenience:

σ(1)t =
1

t − t0

∫ t

t0

dt ′ tanαt ′ +
1

t − t0

∫ t

0

dαt ′ tanαt ′ , (6.11a)

σ(2)t =−σ
(1)
t −1 . (6.11b)

Whenα→−π/2, the individual integrands in the equation forσ(1)t , Eq. (6.11a),
diverge. However, as we see from Eq. (5.4a), dαt =−dt at αt =−π/2, so that
αt transitions deterministically from −π/2 to π/2 with angular velocity −1.
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The deterministic transition of αt is shown as the dashed line in Fig. 6.4(a).
This shows that the two divergencies in the integrands of Eq. (6.11a) cancel
so that the phase-space FTLEs stay finite for all times.

In Paper C we show that these caustic escapes of σ̂t leave a universal
signature in the spatial rate function. I review our main results for the spatial
rate function in the next section.

6.5 Large deviations of spatial FTLE

The spatial FTLE obeys a large-deviation principle with spatial rate function
Î (s ). Analogously to the phase-space rate function I (s ), the spatial rate
function Î (s ) derives from the large-deviation form

Pt (σ̂t = s )∝ e−t Î (s ) , (6.12)

after a large but finite time t . The spatial SCGF Λ̂(k ) is defined by

Λ̂(k ) = lim
t→∞

1

t − t0
log




e(t−t0)σ̂t
�

. (6.13)

In Paper C we show that the caustic divergencies of σ̂t shown in Fig. 6.4(b)
lead to a linear part in the spatial rate function. Where exactly this linear
part emerges may depend on the statistical properties of the fluid-velocity
gradient At . In the white-noise limit, we find

Î (s ) =

¨

I (s ) s >−1/2 ,

−s −Λ(−1/2) s ≤−1/2 .
(6.14)

The general case is discussed in Paper C. Equation (6.14) shows that the
spatial rate function Î (s ) in Eq. (6.14) coincides with the phase-space rate
function I (s ) for s > −1/2. For s ≤ −1/2 the rate function is linear, as a
consequence of the caustic divergencies of σ̂t . In Paper C we show that
although the location of the onset of the linear part in Î (s )may depend on
the characteristics of At , and on whether or not the dynamics is dissipative,
the linear form is independent of these factors.

That the linear part of Î (s ) has a universal form can be understood by

noting that σ̂t and σ(1)t in Eqs. (6.10) and (6.11a) agree up to the term (t −
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t0)−1
∫

t0
dαt ′ tanαt ′ , which has the form of a total derivative

1

t − t0

∫ t

t0

dαt ′ tanαt ′ =
1

t − t0
log |cosαt | . (6.15)

This shows that in the limit t →∞ only the divergent part cosαt → 0 of the
extra term (6.15) may contribute to the large deviation form of the density
(6.12). Since the excursions αt →−π/2 are deterministic and independent
of the details of At , these contributions must be deterministic.

The linear part in the spatial rate function Î (s ) and the divergence of
Λ̂(k ) have important consequences that I summarise in the following. More
details can be found in Paper C.

First, the spatial SCGF Λ̂(k ) diverges for k ≤ −1 and is identical to the
phase-space SCGF for k >−1:

Λ̂(k ) =

¨

Λ(k ) , k >−1 ,

∞ , k ≤−1 .
(6.16)

Second, the distribution of spatial separations P (|δxt |=δ) is constant for
δ < e−t /2. This is in distinction to the finite-time distribution of phase-space
separationsRt , where P (Rt = 0) vanishes for all finite times. This finding
implies that the projection lets spatial separations become zero in finite
time. In phase-space on the other hand, particles come close because of the
dissipative nature of the dynamics, which leads to an exponential, and thus
asymptotic, approach of particles.

Third, the linear part in Î (s ) allows to prove the projection formula for D2

from the linear part of the spatial rate function Î (s ). We find

D̂2 =min{D2, 1} . (6.17)

Our detailed analysis in Paper C shows that the saturation of the spatial
correlation dimension D̂2 is due to the divergence of Λ̂(k ) for k ≤ −1 in
Eq. (6.16), which is a result of caustics in the dynamics. If and how caustics
influence the projection formula for the Renyi dimension Dq with q 6= 2 is
an open question.
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6.6 Implications of the results and generalisations

The results described in this chapter and detailed in Paper C show how the
projection from phase-space to configuration space affects the statistics of
spatial FTLEs. The main result is the linear part in the spatial rate function
Î (s ), and the corresponding divergence of the spatial SCGF Λ̂(k ). The linear
part was shown to be a consequence of finite-time singularities in the spatial
FTLE σ̂t .

First of all, the result shows the close connection between clustering in
phase-space, and in configuration space. That is, the spatial rate function
Î (s ) agrees with the phase-space rate function I (s ) for s ≥ −1/2, so that
the long-time dynamics of stretchings in phase-space and in configuration
space are similar. Discrepancies in the rate function occur only for strong
compressions of neighbourhoods with s <−1/2. In configuration space the
strong compression is due to caustic folds that lead to additional spatial
clustering. In short, spatial neighbourhoods expand in the same way as
phase-space volumes, but the way they contract is very different.

The factorisation of spatial volumes into the phase-space and spatial
volume factors in Section 6.3 suggests that the one-dimensional results laid
out in this chapter should generalise to the sum of spatial FTLEs in higher

dimensions. Thus, we speculate that the rate function of Ŝt =
∑d

n=1 σ̂
(i )
t has

a linear part. This would suggest that the projection formula (6.17) for D̂2

can be generalised to higher dimensions, in accordance with the results of
numerical simulations [17, 59].

Furthermore, our results for the spatial rate function are not restricted to
systems with dissipation. In Paper C we consider a more general case with a
variable ‘damping ratio’ ζ, a measure for the dissipation in the system. In this
chapter, I presented the case ζ=−1/2. In Paper C we obtain conservative
dynamics by taking the limit ζ→ 0. In such conservative systems, there is no
fractal clustering. However, the caustic singularities still lead to substantial
inhomogeneities in the spatial distribution of particles. The spatial rate
function Î (s ) in conservative systems has a linear part that starts at s = 0
and extends to −∞, and the spatial SCGF Λ̂(k ) diverges for k ≤ −1. As we
argue in the Sec. 9 of Paper C, the close relation between the inertial-particle
problem and random systems without dissipation could allow to relate the
divergence in Λ(k ) to the analysis of the ‘twinkling’ of stars in optics [120].
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7 Persistent limit

In the white-noise limit in one spatial dimension, many of the observables
of the statistical model can be calculated analytically. The reason is that the
dynamics of the neighbourhoods become independent of the dynamics of
the reference trajectory, so that the equations of motion (3.8) form a Markov
system. This is, however, not possible in general, because the statistical
properties of the fluid-velocity gradient matrix At (x t ) depend on the mo-
mentary particle position x t which, in turn, depends on the history of the
fluid-velocity field u (x , t ). A notable exception is the persistent limit, for
which analytic results can be obtained in one spatial dimension. The reasons
that allow to solve the equations in this limit are, however, quite different.

In this chapter, I review the main results of Paper B. In this article, we
describe how to obtain analytical results in the one-dimensional persistent
limit of the statistical model. We encountered the persistent limit already
in Section 2.5.3. The model describes heavy particles in a highly persistent
fluid-velocity field, where the correlation time τc is the largest of all time
scales, τc�τa,τp.

7.1 Particle trapping

Whenτc is much larger than both the advection timeτa and the particle time
scaleτp, the particles move through the fluid essentially as if the fluid-velocity
field u (x , t )were constant in time. When u (x , t ) is sufficiently compressible,
particles can get trapped in long-lived sinks of the fluid-velocity field u (x , t ).
To see this, consider a fully compressible fluid-velocity field with ℘= 1. The
equations of motion then read in dimensionless form

d
dt x t = vt , d

dt vt =−∇U (x t , t )−vt , (7.1)

where U (x , t ) = −φ(x , t ) and φ(x , t ) is the random scalar function intro-
duced in Chapter 2. We see from Eqs. (7.1) that U (x , t ) takes the role of a
potential in configuration space. In the de-dimensionalisation scheme used
in this thesis, time is rescaled by the particle relaxation time τp, as discussed
in Section 2.5.1. From Eq. (2.7) and the limit (2.22) we find that the random
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potential U (x , t ) has the correlation function

〈U (x , t )U (x ′, t ′)〉= 〈φ(x , t )φ(x ′, t ′)〉 ∼
κ2

d (d +2)
exp

�

−(x −x ′)2/2
�

. (7.2)

Hence, U (x , t ) is essentially constant in time, when time is measured in units
of τp. Since the dynamics is still dissipative, the particles accumulate in the
vicinity of the stable minima of the potential U (x , t ). The extrema of U (x , t )
are obtained by the condition∇U (x ∗, t ) =−u (x ∗, t ) = 0. Hence, the points
x ∗ are the fixed points of the dynamics (7.1) in configuration space where the
fluid-velocity field vanishes. In order for a fixed point x ∗ to be a minimum
of U (x , t ), all eigenvalues of the Hessian matrix ∂i ∂ j U (x ∗, t ) = −Ai j must
be positive. These two conditions define isolated points x ∗ in space where
particles are trapped.

Traps are created and destroyed at rate ∼τ−1
c . A trap is destroyed when,

e.g., one of the eigenvalues of the Hessian becomes negative. The particles in
the vicinity of a destroyed trap are released and migrate to another trap. The
migration time of the particles from one trap to next is given by∼max{τp,τa},
which is much smaller than the typical persistence time of the traps. Hence,
when τc�τa,τp, the migration of particles between traps can be neglected.
As a consequence, the particles spend the vast majority of the time close to
the stable minima of U (x , t ).

In the strict limit Ku →∞, St → 0 so that KuSt ∝ κ = const, we can
therefore obtain the dynamics of the particles by considering the tangent
flow in the vicinity of the traps

d
dt R t =

�

0d×d 1d×d

An −1d×d

�

R t , (7.3)

where An = −HessU (x ∗n , t ) is the fluid-velocity gradient matrix at the n-
th trap. Because the separation between traps is of the order of ∼ η = 1
the matrices An are approximated by independent, identically distributed
random matrices, so that 〈An ,i jAn ′,k l 〉 ≈ 〈An ,i j 〉〈An ′,k l 〉 for n 6= n ′.

7.2 Observables in one spatial dimension

Observables in the persistent limit are computed by the following strategy: At
a trap with index n we compute the observables conditional on the realisation
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of the gradient matrixAn . The statistics of realisations ofAn are given by the
properties of the random potentialU (x , t ) =−φ(x , t ). They can be computed
from the so-called ‘Kac-Rice formula’ [121, 122].

One then removes the conditioning by integrating the conditional observ-
ables over the statistics of realisations of An . In Paper B we have computed
the leading Lyapunov exponent λ1 and the rate of caustic formation J in
the one-dimensional persistent limit. Generalisations to higher dimensions
can be done in a similar way, as long as the underlying fluid-velocity field is
sufficiently compressible. For a homogeneous, isotropic and incompressible
fluid-velocity field u (x , t ), there are no particle traps of the kind I describe
here, because TrA= 0. Hence, the linearised fluid-velocity field fixed point
x ∗ for which u (x ∗, t ) = 0 has at least one unstable direction.

7.2.1 Leading Lyapunov exponent and rate of caustic formation

From now on, I restrict the discussion to the one-dimensional case. In this
case, the existence of particle traps is ensured by the compressibility of the
one-dimensional fluid-velocity field. We start by considering the dynamics
of the particle velocity gradient Zt = tanαt . From Eq. (5.4a) we obtain the
equation of motion for Zt , given by

d
dt Zt =−Zt −Z 2

t +An , (7.4)

where we have replaced At → An , so that the particle trajectory is in the
vicinity of the n-th trap. The distribution of the gradient An at any trap is
obtained from the Kac-Rice formula [121, 122]. The latter gives the density

P (An = a ) =

¨ |a |
κ2 exp[−a 2/κ2] , a ≤ 0

0 , a > 0 .
(7.5)

P (An = a ) is the probability density of gradients A(x ∗, t ) conditional on that
the fluid-velocity field u (x ∗, t ) at x ∗ vanishes and that A(x ∗, t ) < 0. Note
that this density is very different from Gaussian, although both the one-
dimensional fluid-velocity field u (x , t ) and its gradient A(x , t ) have Gaussian
statistics at any position x in space. The reason for this discrepancy is that
the density in Eq. (7.5) is evaluated at the particle position xt , which must
lie close to a stable minimum of the potential U (x , t ) =−φ(x , t ).
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Figure 7.1: Leading Lyapunov exponent λ1 and rate of caustic formation J in
the one-dimensional persistent limit. (a) λ1 as functions of κ, Eq. (7.6). The
dotted lines show the asymptotic behaviour for small and large κ, see main
text. (b) J as a function of κ, Eq. (7.7). The dotted line shows the the activated
behaviour for small κ, see main text.

In Paper B we apply the conditioning method that I briefly described in
the beginning of this section to calculate the leading phase-space Lyapunov
exponent λ1 and the rate of caustic formation J . The results are

λ1 =−
1

2
+

2F2

�

1, 3/2, 7/4, 9/4;−1/(32κ2)
�

120κ2
, (7.6)

and

J = (25/2π)−1 exp
�

−1/(64κ2)
�

K−1/4[1/(64κ2)] , (7.7)

where 2F2 and K are the generalised hypergeometric function and the mod-
ified Bessel function, respectively [123]. Figure 7.1 shows the expressions
(7.6) and (7.7) as functions of κ. The Lyapunov exponent λ1 in Fig. 7.1(a)
is always negative. For small κ, we find λ1 ∼ −

p

π/2κ, which corresponds
to result for advected particles, obtained in Ref. [124]. In the large-κ limit,
λ1 asymptotes to −1/2+1/(120κ2). This means that the particle density in
phase-space concentrates on point-like sets and does not have the fractal
structure that we observed Chapter 3. The rate of caustic formation J shown
in Fig. 7.1(b) has an exponential activation for small κ, J ∼ κexp[−1/(96κ2)],
similar to that observed in a slightly different context in Ref. [118].

For finite Ku and St, the migration time between the traps is in general
not negligible compared to their typical lifetime. During the migration of
particles from one trap to another, the particles move through the fluid,
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sampling different fluid-velocity gradients on their way. In particular, there is
a finite probability of sampling positive gradients, as opposed to P (An > 0) = 0
for the density (7.5). The particles migrate over typical length scales of∼η= 1
through the flow. The effect of the migration on the gradient density thus
depends on non-local properties of the random potential U (x , t ). Therefore,
we have no closed-form expression for the probability density P (An = a ) of
fluid-velocity gradients. However, we compute this density numerically in
Paper B, see Fig. 4 in that paper.

In the second part of Paper B we show that the numerically computed gra-
dient density allows to approximate λ1 and J in the vicinity of the persistent
limit. This approximation is surprisingly good, as can be observed in Fig. 3
of the paper. This suggests that for large enough Ku and small enough St,
the knowledge of the distribution of fluid-velocity gradients essentially de-
termines all observables. Dynamical effects that come from the interplay of
the fluid-velocity field with particle dynamics can be neglected. The reason
is that the condition τc� τa,τp still holds, although not in the strict limit
(2.22), so that the particle dynamics takes place on much smaller time scales
than τc. The main difference to the persistent limit is due to the possibility
of sampling positive fluid-velocity gradients for finite Ku and St.

7.3 Implications for simulations and experiments

The results of Paper B apply to a one-dimensional and thus compressible
fluid-velocity field. From the discussion in the beginning of this chapter,
and in Ref. [124], I expect that similar results can be obtained in sufficiently
compressible, higher dimensional flows. The main ingredient of the analysis
is the existence of long-lived, localised traps where the particles spend most
of their time. In homogeneous, isotropic and incompressible turbulence,
there are no such traps for heavy particles. A theory of similar kind may,
however, have an application for negatively buoyant particles, that are lighter
than the fluid such as, e.g. air bubbles in water. Bubbles may get trapped in
the long-lived vortical structures in turbulence, and experience persistent
gradients.

An interesting aspect of the persistent limit is that it allows for caustics
only at traps at which An < −1/4. This can easily be seen from Eq. (7.4),
which has a stable fixed point for A > −1/4, so that the dynamics cannot
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escape to negative infinity. Preliminary numerical studies of heavy particles
in turbulence [125] suggest that a similar correlation between the momentary
properties of the fluid-velocity gradient matrix At and the rate of caustic
formation J may exist in two- and three-dimensional systems. I discuss
these preliminary results in more detail in the outlook in Chapter 10.
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8 Suspensions of particles of different sizes

Mono-disperse suspensions of heavy particles in turbulence are an ideal-
isation. In practice, turbulent suspensions contain particles that are not
strictly identical, but vary e.g. in their size, shape and mass. This dispersion
in the particle properties has a strong impact on the dynamics of particle
suspensions. In this chapter, I review the results of Paper A, where we relax
the identical-particle idealisation: We consider suspensions of particles of
different Stokes numbers, so-called poly-disperse suspensions.

The first step towards understanding the behaviour of poly-disperse sus-
pensions is to consider suspensions of particles of two Stokes numbers,
which we call bi-disperse. Similarly to the mono-disperse case, we assume
that the particle suspension is dilute and that particles do not collide, so
that the individual particles follow the single-particle equations of motion
(3.1). With these simplifications, a bi-disperse suspension is essentially a
pair of mono-disperse suspensions, driven by identical realisations of the
fluid-velocity field u (x , t ). Each individual suspension behaves as described
in Chapter 3. Since, however, both suspensions are immersed in the same un-
derlying random fluid-velocity field, the relative dynamics between particles
is non-trivial.

8.1 Bi-disperse particle distribution

The Stokes time τp = γ−1 = 2ρpa 2/(9νρf), is a function of the radius a of
the particle. In a bi-disperse suspension we consider two different particle
species with radii a and a ′, and with corresponding Stokes times τp and
τ′p. I denote by (x t , vt ) and (x ′t , v ′t ) the position and the velocity of a pair of
particles with Stokes times τp and τ′p. The dimensional equations of motion
for (x t , vt ) and (x ′t , v ′t ) then read

d
dt x t = vt , d

dt vt =
1

τp
[u (x t , t )−vt ] , (8.1a)

d
dt x ′t = v ′t , d

dt v ′t =
1

τ′p
[u (x ′t , t )−v ′t ] . (8.1b)

Analogously to the mono-disperse case discussed in Chapter 3, the particle
phase-space density of the bi-disperse suspension becomes singular in the
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Figure 8.1: Phase-space density of a bi-disperse suspension of particles in
the one-dimensional white-noise limit. The phase-space densities of the two
different particle species are shown in different colours. Red colour coding
corresponds to particles with ε = 1.58, blue colour coding corresponds to
particles with ε′ = 1.43. The relative parameters (see main text) are given by
ε̄ = 1.5 and θ = 0.1. The phase-space density has evolved for a long time
∆t = t − t0 = 50. (a) Phase-space density in a box of size 10η. (b) Magnification
by a factor of 10 of the small box in subfigure (a). (c) Magnification by a factor
of 10 of the small box in subfigure (b).

long-time limit, and the particles converge to a fractal attractor. Figure 8.1
shows the particle distribution of a bi-disperse particle suspension in the
one-dimensional white-noise limit, where the role of τp and τ′p is played by
the two different white-noise parameters ε and ε′. In order to see how the
different particle species within the suspension behave relative to each other,
the phase-space densities %t ,t0

and %′t ,t0
of particles with ε and ε′ are shown

in different colours. The red colour coding corresponds to %t ,t0
with ε = 1.58,

blue colour coding is chosen for the density %′t ,t0
with ε′ = 1.43. Both densi-

ties have evolved for a long time, so that%t ,t0
and%′t ,t0

are approximations of
the infinite-time densities %̄t and %̄′t , as explained in Chapter 3. In Fig. 8.1(a),
we observe that the two particle species cluster on separate attractorsFt and
F ′t that lie close to each other in phase space. Figures 8.1(b) and (c) show
magnifications of the framed boxes in Figs. 8.1(a) and (b), respectively. As
we see in these magnifications, the strong correlations between the fractals
Ft andF ′t that we observe on large scales in Fig. 8.1(a) become less and less
pronounced the more we zoom in. In Fig. 8.1(c) the two attractorsFt and
F ′t appear independent.

This observation was made independently in Refs. [11] and [28], for the
distribution of particle separations. The authors in these papers found that
the dynamics of particles is spatially uncorrelated at small spatial separations.
At larger spatial scales, the particle cluster in a similar way as in the mono-



74 SUSPENSIONS OF PARTICLES OF DIFFERENT SIZES

disperse case. These regimes were found to be separated by a scale rc, called
the cutoff, or crossover scale [11, 28]. The one-dimensional simulations in
Fig. 8.1 show, however, that the behaviour of the fractals at different scales is
not restricted to spatial clustering, but holds in phase space. That is, also the
velocities of close-by particles are uncorrelated when their relative velocities
are small. Yet Fig. 8.1 shows that when the separations and relative velocities
are not small, the particles seem to behave similarly to particles of the same
size.

8.2 Heuristic description of relative dynamics

Figure 8.1 shows that the particle distribution of a bi-disperse suspension
looks, on large scales, like the particle density of a mono-disperse suspension.
At small scales, on the other hand, the densities of the individual particle
species appear independent. This behaviour can be understood heuristically
by considering a pair of particles with different sizes at small separation. I
denote the position of the first particle by x t , the position of the second one
as x ′t . When the separation between the particles is small, |x t −x ′t | � 1, we
can write u (x , t ) at x ′t as the Taylor expansion

u (x ′t , t )∼u (x t , t ) +A(x t , t )(x ′t −x t ) . (8.2)

The first term in Eq. (8.2) is the fluid-velocity field at the position x t of the
first particle. The second term depends linearly on the particle separation,
and on the fluid-velocity gradient. A pair of spatially close-by particles is
thus essentially driven by the sum of a constant flow u (x t , t ) and a linear
flow A(x t , t )(x ′t −x t ).

For a close-by particle pair at x t and x ′t with identical Stokes times, τp =
τ′p, the term u (x t , t ) accelerates both particles identically. Therefore the
relative dynamics of a pair of identical particles is not affected by u (x t , t ),
but driven only by the linear flowA(x t , t )(x ′t −x t ) [the second term on the
right-hand side of Eq. (8.2)].

In a pair of non-identical particles, on the other hand, each particle reacts
differently to u (x t , t ), since the Stokes times of the particles differ. Hence,
both terms on the right-hand side of Eq. (8.2) contribute to the relative par-
ticle dynamics. When the spatial separation between the particles is small
enough, the contribution from u (x t , t )must dominate. But the contribution
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fromA(x t , t )(x ′t −x t ) in Eq. (8.2) grows linearly with the particle separation.
When the difference between the Stokes times is not too large, we may there-
fore expect that at larger separations,A(x t , t )(x ′t −x t )dominates over u (x t , t ).
These considerations intuitively explain the different behaviours at small
and larger particle separations. Note that I have implicitly assumed here
that the relative velocities between the particles are small enough so that the
particle viscous damping is negligible against the acceleration from the flow
field u (x , t ).

In Paper A we develop a simple, one-dimensional phase-space model
for the phase-space separations between the particle species. The model
describes the parameter dependence of two cutoff scales, rc and vc , for the
onset of uncorrelated relative motion. I review the construction of this model
in the next section.

8.3 Model for relative dynamics

We start out by deriving the equations of motion for particle pairs of two
different Stokes times τp and τ′p. Each particle in the pair follows its own
dynamics determined by its respective equations of motion (8.1). In order to
study the relative dynamics of the particle pair, we consider the quantities

(∆x t ,∆vt ) =
�

x t −x ′t , vt −v ′t
�

, (8.3a)

(x̄ t , v̄t ) =
�

x t +x ′t , vt +v ′t
�

. (8.3b)

Using the single-particle equations of motion (8.1), we can write the dynam-
ics of the quantities in Eq. (8.3) as

d
dt x̄ t = v̄t , d

dt v̄t =
1

τ̄p
[ū − v̄t +θ (∆u −∆vt )] , (8.4a)

d
dt ∆x t =∆vt , d

dt ∆vt =
1

τ̄p
[∆u −∆vt +θ (ū − v̄t )] . (8.4b)

The two parameters τ̄p and θ in Eq. (8.4) are given by

1

τ̄p
=

1

2

�

1

τp
+

1

τ′p

�

, and θ =
|τp−τ′p|
τp+τ′p

. (8.5)
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The time scale τ̄p is the harmonic mean of the two individual Stokes times
of the particle pair. The dimensionless parameter θ is a measure for the
difference between the two Stokes times. In terms of τ̄p and θ the equations
of motion Eqs. (8.4) are similar to the equations for a reference trajectory and
the tangent flow of identical particles in Chapter 3. However, the Stokes time
τp for identical particles is replaced by the mean Stokes time τ̄p. Furthermore,
the dimensionless parameter θ multiplies additional contributions ū and
∆u from the fluid-velocity field u (x , t ). These contributions are expressed
in terms of u (x , t ) as

ū =u (x t , t )+u
�

x ′t , t
�

, and ∆u =u (x t , t )−u
�

x ′t , t
�

. (8.6)

The contributions of ū and ∆u correspond to the constant flow and the
linear flow, respectively, in Eq. (8.2). Equation (8.6) shows that ū and ∆u
are sums of Gaussian random functions evaluated at the positions x t and
x ′t . In general, we do not know the statistics of these random terms, because
u (x , t ) is evaluated at the particle positions x t and x ′t , which themselves
move through the flow. In the white-noise limit, however, the dynamics of
u (x , t ) becomes independent of the particle position.

8.3.1 White-noise limit

In this section, I show how to take the white-noise limit of Eq. (8.4) to obtain
insights into the relative dynamics of a particle pair. Similarly to the white-
noise limit in the mono-disperse system discussed in Section 2.5.2, this
is done by a suitable reparameterisation of the equations of motion (8.4),
followed by a limit in terms of dimensionless parameters. In their current
form, Eqs. (8.4) depend only on one time scale, τ̄p, analoguos to τp in the
mono-disperse case. The parameter θ is dimensionless. Together with the
fluid time scales τc and τa we find that the bi-disperse model can be written
in terms of θ and two out of the three dimensionless parameters

S̄t=
τ̄p

τc
, Ku=

τc

τa
, K̄ =

τ̄p

τa
. (8.7)

In order to take the white-noise limit, we transform the coordinates in Eqs. (8.4)
according to t → t τ̄p, x → ηx , v → ηv /τ̄p and u → ηu/τ̄p. This way, the
equations of motion (8.4) loose their explicit dependence on τ̄p. The depen-
dence on S̄t and Ku is entirely contained in the correlations of the terms ū
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and ∆u . Taking the limit S̄t→∞ and Ku→ 0 such that Ku2S̄t stays finite,
the terms ū and∆u become white-noise signals. Furthermore, the statis-
tics of ū and∆u depend only on the spatial separation∆x t , and not on x̄ t .
This means that the equation of motion for x̄ t decouples from the rest of
the equations. The term∆u t , for instance, has zero mean and correlation
function

〈∆ui (t )∆u j (t
′)〉 ∼


�

ui (x t , t )−ui (x
′
t , t )

� �

u j (x t ′ , t ′)−u j (x
′
t ′ , t ′)

��

,

=
4ε̄2

1+2℘
Ki j (∆x )δ(t − t ′) , (8.8)

for |∆x | � 1, with the tensor Ki j defined in Eq. (2.11). The diffusion constant
ε̄2 = Ku2S̄t(1+ 2℘)/d is the analogue of ε2 in the mono-disperse case, see
Eq. (2.21). The other correlation functions of ū and∆u read

〈ūi (t )ū j (t
′)〉 ∼

4ε̄2

1+2℘

�

2δi j −Ki j (∆x )
�

δ(t − t ′) ,

〈∆ui (t )ū j (t
′)〉= 0 . (8.9)

In Paper A we analyse the one-dimensional white-noise limit of the equa-
tions of motion Eq. (8.4) to describe numerical simulations of the model in
higher dimensions. The description of the model in Paper A is rather brief. I
therefore discuss the one-dimensional model in more detail in the following.

8.3.2 Bi-disperse white-noise model in one spatial dimension

The one-dimensional version of the white-noise model of the bi-disperse
model allows important insights into the behaviour in higher dimensions.
In particular, the main property of the bi-disperse dynamics is that there are
two distinct regimes of diffusion: One of them is a regular, additive diffusion
which dominates at small separations and small relative velocities. In the
second regime, the contributions from the fluid-velocity field that drive
Eq. (8.4) are multiplicative in∆xt . This leads to essentially mono-disperse
dynamics at larger separations and larger relative velocities, in keeping with
the intuitive conclusions drawn in Section 8.2. The simplest way to describe
these regimes is provided by the one-dimensional white-noise limit.

In one spatial dimension, the fluid-velocity field is fully compressible,
℘= 1, and all quantities are scalars. We merge the noise terms in Eqs. (8.4) by
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writing them as the vectorξt with componentsξ(1)t =∆u+θ ū ,ξ(2)t = ū+θ∆u .
This way, we obtain from Eqs. (8.4) the simplified dynamics

d
dt ∆xt =∆vt , (8.10a)

d
dt

�

∆vt

v̄t

�

=−
�

1 θ
θ 1

��

∆vt

v̄t

�

+ξt . (8.10b)

As discussed earlier in this chapter, the equation for x̄t decouples from the
rest of the equations in the white-noise limit, so that it does not appear in
Eqs. (8.10). Recall that (x̄t , v̄t ) in the bi-disperse dynamics corresponds to
(xt , vt ) (the reference trajectory) in the mono-disperse case. In the mono-
disperse dynamics, however, both xt and vt decouple from the dynamics of
the tangent flow R t = (δxt ,δvt )T in the white-noise limit. In Eq. (8.10), on
the other hand, v̄t does not decouple. The vector-valued noise term ξt is
white in time, but its correlation functions depend on the separations. The

diffusion matrixDi j =
∫∞

0
dt 〈ξ(i )t ξ

( j )
0 〉 reads

D ∼
4

3
ε̄2

�

θ 2+3/4(1−θ 2)∆x 2
t θ

θ 1

�

. (8.11)

Forθ = 0 the equations for∆vt and v̄t in Eq. (8.10) decouple and (∆xt ,∆vt )→
(δxt ,δvt ) becomes the one-dimensional tangent flow. In this case, the rel-
ative motion of the particles is driven only by the fluid-velocity gradients.
The equations for the mean motion (x̄t , v̄t ) are then equivalent to the twice
single-particles dynamics since (x̄t , v̄t )→ 2(xt , vt ) for θ → 0.

For θ = 1, on the other hand, Eq. (8.10) describes relative dynamics of a
particle pair the limit of one particle being much smaller than the other one.
In this case, the diffusion matrix D in Eq. (8.11) is independent of ∆xt , so
that Eq. (8.10) becomes a Gaussian process.

For 0 < θ < 1 the nature of the particle motion depends on the magni-
tudes of the particle separation ∆xt , and of the relative velocity ∆vt . As
we argue in Paper A, the dynamics continuously alternates between being
purely diffusive for∆x 2

t � θ
2/(1−θ 2) and∆v 2

t � ε̄
2θ 2, and being effectively

mono-disperse for ∆x 2
t � θ

2/(1− θ 2) and ∆v 2
t � ε̄

2θ 2. This leads to the
definition of the cutoff scales rc and vc :

rc ∼
θ

p
1−θ 2

, and vc ∼ ε̄θ . (8.12)
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For small enough θ both cutoff scales depend linearly on θ . For separations
and relative velocities smaller than the cutoff scales (8.12), the diffusion
constantD is independent of∆xt :

D ∼
4

3
ε̄2

�

θ 2 θ
θ 1

�

. (8.13)

In this case, the process (8.10) is Gaussian. The Gaussian dynamics at small
phase-space separations leads to a steady-state distribution that is Gaussian
at small∆xt and∆vt . In the opposite case, on the other hand, the equations
of motion for∆vt and v̄t decouple, so that (∆xt ,∆vt ) becomes independent
of v̄t . In this limit, we obtain the effective equations of motion

d
dt ∆xt =∆vt , (8.14a)
d

dt ∆vt ∼−∆vt +∆xtηt . (8.14b)

The white-noise ηt has the correlation 〈ηtηt ′〉= 2ε̄2(1−θ 2)δ(t − t ′), so that
Eqs. (8.14) are identical to the equations of motion of a mono-disperse par-
ticle pair in the one-dimensional white-noise limit, but with an adjusted
(effective) white-noise parameter, ε2 → ε̄2(1− θ 2). For small θ , this sub-
stitution reads ε2 → ε̄2, as discussed in Paper A. Hence, for phase-space

separationsRt much larger than the phase-space cutoff Rc =
Æ

r 2
c + v 2

c , the
distribution of phase-space separations P (Rt ≤δ) has a power-law scaling,
Eq. (4.1), with exponent D2, as explained in Secs. 4.1 and 5.2.1.

In terms of the steady-state probability density Ps (∆x ,∆v ), the two differ-
ent regimes lead to a Gaussian plateau for phase-space separations smaller
than the cutoff scales (8.12), and to power-law tails at large phase-space
separations. Fig. 8.2(a) shows a schematic contour plot of the logarithm of
Ps (∆x ,∆v ). The yellow region shows that the plateau which is bounded by
the two cutoff scales rc and vc . The blue region with equidistant level lines
(dotted lines) shows the mono-disperse regime, where the distribution scales
as a power law.

Although our derivation of the cutoff-scales as presented here is strictly
valid only for the one-dimensional white-noise limit of the relative dynamics
(8.4), the conclusions apply qualitatively also in higher dimensions, because
the random fluid-velocity field u (x t , t ) is spatially isotropic. For d > 1 the
radial separation r = |∆x t | takes the role of ∆xt , and the radial velocity
vr =∆vt ·∆xt /r corresponds to∆vt .
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Figure 8.2: Schematic contour plots of the joint distribution Ps (∆x ,∆v ), and of
θ (St1, St2). (a) Contour of the logarithm of the joint distribution, log Ps (∆x ,∆v )
plotted schematically against∆x and∆v , both plotted on a logarithmic scale.
The yellow region marks the plateau. The blue region with the dotted lines
corresponds to the power-law regime (see main text). (b) Contour plot of θ in
the St1-St2 parameter plane. The dashed line shows St1 = St2, the dotted region
corresponds to θ < 0.1. The thick, solid lines show to the level lines θ = 0.1.
The dotted lines show the levels θ = 0.2, 0.3, . . . , 0.9.

We confirm the qualitative agreement of the one-dimensional model
with the higher-dimensional case in Paper A. In Fig. 1(a) in Paper A we show
numerical simulations of the two-dimensional statistical model. For r � rc

and vr � vc, the distribution shows a power-law behaviour, just as in the
mono-disperse case [23]. The exponent of the power-law is identical to that
of the mono-disperse case, but with adjusted Stokes number St→ S̄t, see
Fig 1(d) in Paper A. Note again that the Stokes number St and the mean
Stokes number S̄t correspond to ε and ε̄, respectively in the white-noise limit.
Hence, the S̄t dependence of the exponent is explained by the effectively
mono-disperse dynamics (8.14) in the tails, where ε→ ε̄ for smallθ . Similarly,
the approximately linear dependence of the cutoff scales rc and vc on the
parameter θ , Eq. (8.12), is confirmed for the two-dimensional statistical
model in Fig. 1(c) in Paper A.

To conclude, there are two different regimes in the dynamics of bi-disperse
suspensions that depend on the two parameters θ and S̄t (ε̄ in the white-
noise limit). The magnitude of the parameter θ determines the size of the
plateau in the joint distribution of∆vt and∆xt . Whenθ is small enough, one
can observe a clear separation between the diffusive and the mono-disperse
behaviour. For θ of the order of θ ≈ 0.1, however, the cutoff scales rc and vc

are of the order or the regime of validity of the smooth approximation that
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defines the Batchelor regime. This means that the onset of the power-laws
may not be observed when θ is too large. This can be seen in Fig 1(c) in
Paper A: For θ = 0.1, the power-law tails in the distribution of the radial
velocity vr at small radial separations is completely covered by the extensive
plateau in the distribution. In the St1 − St2 parameter plane, the region
θ ≤ 0.1 is quite small. In other words, if we pick two values for St1 and St2 at
random, the probability of having θ ≤ 0.1 is relatively small. Figure Fig. 8.2(b)
shows a contour plot of θ as a function of St1 and St2. The wedge-shaped
dotted region corresponds to θ ≤ 0.1. That the case θ ≤ 0.1 occupies only a
small area in the St1−St2 parameter plane has important implications for
numerical simulation and experiments. Here the parameter θ is often so
large that the diffusive dynamics extends into the inertial range of turbulence,
where smooth approximations of the kind (2.10) break down.

8.4 Implications for simulations and experiments

In my opinion, the most relevant result of our investigation of bi-disperse
particle suspensions is the parameter dependence of the cutoff scales rc

and vc in Eq. (8.12). In the numerical simulations carried out recently in
Refs. [33, 35] the authors consider the root-mean square radial velocity w =
Æ

〈v 2
r 〉 of particle pairs in bi-disperse suspensions in turbulence. As the

authors of Refs. [33, 35] vary the individual (turbulent) Stokes numbers, St1

and St2, of the particle pair, they observe that w is smallest for St1 = St2, where
θ = 0. This is explained by the results of our model, because finite θ cuts off
the distribution of relative velocities at small |∆vt |, giving more weight to
large relative velocities, and resulting in a minimum of w at θ = 0. In Ref. [34]
the authors considered the steady-state distribution Ps (vr , r ), evaluated at
finite r ≈ 1, see Figs. 2 and 4 in that paper. Here r is measured in units of the
Kolmogorov scale ηK. The authors observe that the distribution is essentially
Gaussian with increasing variance as the difference in the Stokes numbers
increases. This finding is explained in terms of our model by looking at
their θ values, which range between θ ≈ 0.33 and ≈ 0.94, so that the joint
distribution Ps (vr , r ) is dominated by the plateau. Because the chosen values
of θ in Ref. [34] are quite large, the plateau extends approximately to the
Kolmogorov scale and there are no power-law tails at small scales.

Both the power-law tails and the plateau in P (vr , r )are observed in Ref. [37]
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where validity of our bi-disperse model is studied by numerical simulations
of particles in turbulence. They authors of Ref. [37] confirm the linear de-
pendence of both cutoff scales rc and vc on the parameter θ , for small θ .
This shows that θ is the characteristic parameter that determines the size of
the plateau in the distribution P (vr , r ), as predicted by our one-dimensional
model.

In experiments [41, 43, 44, 45] particle suspensions are always poly-disp-
erse. This means that θ itself becomes a random variable that differs from
particle pair to particle pair. It is challenging to generate a narrow range of
Stokes numbers in experiments because the Stokes number in turbulence
St= τp/τK is calculated by dividing the Stokes time τp by the Kolmogorov
time scale τK, both of which are subject to uncertainties. The main uncer-
tainty in the Stokes time is the particle radius a which has a relative error of
between 1/6 and 1/3 in Refs. [41, 43, 45] and approximately 1/20 in Ref. [44] .
The main uncertainty in the estimation of τK is the energy dissipation rate
εwhich was reported to have a relative error of about 1/10 in Refs. [41, 43].
From the error estimates of the particle radii a and of the turbulent energy
dissipation rate ε in the experimental papers, one can estimate the fluctua-
tions in the parameter θ . Given the error estimates reported in Refs. [41, 43],
for instance, we can roughly estimate the standard deviation of θ to be ≈ 0.3.
According to our model this corresponds to substantial fluctuations of the
size of the plateau, of the order of the Kolmogorov scale ηK. This means
that it is challenging to actually measure the predictions of the bi-disperse
model, let alone the mono-disperse model, in state-of-the-art experiments,
because the plateau in the distribution Ps (vr , r ) is likely to be of the order
of ηK. In order to explain experimentally obtained particle distributions at
sub-Kolmogorov scales, one must therefore model the effect of a random θ
that varies among particle pairs. I discuss my ideas for such a model in the
outlook in Chapter 10.



83

PART IV

CONCLUSIONS AND OUTLOOK

In my opinion, the most fascinating aspect of research is that it never ends. It
starts with a question, an idea or simply a plan of how to calculate or measure
something. Sometimes, if we are lucky, our questions have definite answers,
and we eventually reach a conclusion. If not, we are led to ask new, and
possibly more precise questions, formulate new ideas, and make new plans.

In my time as a doctoral student I was given the opportunity to ask ques-
tions, and was lucky to find answers to some of them.

9 Conclusions

For me, the most intriguing result of my work is the linear part in the rate
function of the spatial FTLE σ̂t , presented in Chapter 6 and Paper C. One
reason could be that it is my latest work. For some reason I am most enthu-
siastic about the questions that I am thinking about at the moment. But
I believe it is more than just that. My feeling is that this result combines
several aspects that make a good story. First, it starts out with an interesting
question: how do caustic folds affect spatial clustering? Second, posing the
question in a way so that it could be answered, required me to learn about
large-deviation theory, a mathematical subject that was entirely new to me.
Third, the analysis of the question with these tools leads to a surprisingly
simple answer, that has far-reaching consequences which go beyond the
initial scope of this work. Finally, and perhaps most importantly, the result
leads to many new and refined questions, which I could not formulate in
the beginning. This feeling of only having scratched the surface is, to me,
exciting and frightening at the same time.

The possibly most important result, albeit being only partly new, is the
explanation of the cutoff-scales rc and vc of the relative phase-space dy-
namics of bi-disperse particles, presented in Chapter 8 and Paper A. This
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result shows that different particle sizes have a significant effect on the rela-
tive distribution at small phase-space separations. Even in state-of-the-art
laboratory experiments, it is very challenging to generate a droplet-size dis-
tribution that is narrow enough to justify the mono-disperse approximation
for the suspension. Therefore, the parameter θ that controls the magnitude
of the cutoff-scales is most probably too large to measure a power-law scaling
in the distribution of phase-space separations at scales of the order of the
Kolmogorov length scale. The next question must therefore be how we can
explain the phase-space distribution of poly-disperse particle suspensions
at these scales

I started working on the persistent limit (presented in Chapter 7 and
Paper B) as a simple toy example for a particle model with a fluid-velocity
field of non-zero (but infinite!) correlation time τc . Soon I realised that
it is analytically solvable, although perhaps, I thought, unphysical. In my
opinion, the model offers quite a unique and simple way of understanding
the particle dynamics when the fluid changes only slowly. As it seems to turn
out now [125] the methods that I used to solve the persistent limit, albeit
in a different form, may be useful to explain some aspects of the particle
dynamics in turbulence. The persistent limit seems to explain the necessary
local conditions under which caustics form along trajectories. I come back
to this point in the outlook.

10 Outlook

Finally, I describe some of the new questions that emerged from previous
ones. As initial ideas do, these research questions vary substantially in their
concreteness and precision. In this last chapter of the thesis, I formulate
these questions as precisely as I can, while trying to be vague enough to
account for all uncertainties.

Poly-disperse suspensions of particles

A poly-disperse suspension at scales below the correlation length η of the
fluid-velocity field can be interpreted as an ensemble of many mono-disperse
suspensions, each of which clusters on its own fractal attractorFt in phase-
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space. The relative dynamics between the particles in the suspension is
characterised by the parameters θ and S̄t, that I introduced in Chapter 8. If
we take a particle pair from the suspension at random, the parameters θ and
S̄t are random variables.

In nature and experiments the distributions of θ and S̄t depend on what
the particles are made of, and how they are created. In turbulent clouds, for
instance, the size distribution of water droplets depends on the history of
particle collisions [2]. In experiments, on the other hand, the particles may be
liquid or solid, and they can be created in different ways, affecting their size
distributions. In the experiments reported in Refs. [41, 43, 44] the particles
are made of a liquid that is brought onto a spinning disc. The spinning
disc spills out the liquid as small droplets with a narrow size distribution. In
Ref. [45] small solid particles (‘glass bubbles’) are used whose size distribution
is controlled by sieving.

For a given distribution of Stokes numbers, it is a simple task to compute
the joint distribution of θ = |St1 − St2|/(St1 + St2) and S̄t = 2/(St−1

1 + St−1
2 ),

assuming that for a randomly chosen pair of particles the Stokes numbers
St1 and St2 are independent and identically distributed. A short calculation
shows that for a simple homogeneous particle-size distribution in a range
between amax and amin, one obtains a joint distribution P (θ , S̄t) of θ , S̄t that
is peaked at θ = 0 and that vanishes at a maximum value θmax = |a 2

max −
a 2

min|/(a
2
max+a 2

min).
In Chapter 8, I modelled the relative dynamics of a particle pair of different

but fixed Stokes numbers, and thus for fixed θ and S̄t. One can formulate
a simple model for the relative dynamics of a poly-disperse suspension by
interpreting the results from Chapter 8 as conditioned on the values θ and S̄t,
P (vr , r |θ , S̄t). The joint distribution of relative velocities vr and separations
r in the poly-disperse suspension is then given by lifting the conditioning:

P (vr , r ) =

∫

dθ

∫

dS̄t , P (vr , r |θ , S̄t)P (θ , S̄t) . (10.1)

From this simple model we may get a qualitative estimate of the shape of the
joint distribution of separations and relative velocities P (vr , r ). My future
plan is compare this distribution to the results of numerical simulations and
experiments.
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Persistent limit in higher dimensions

A question for heavy particles in incompressible turbulence is: Are there char-
acteristic local configurations of the turbulent fluid-velocity field u (x , t ), and
its gradient A(x , t ), that cause nearby particles to form a caustic? This ques-
tion is of general importance because it could improve our understanding of
how caustics form in the particle dynamics.

In numerical simulations of heavy particles in incompressible turbulence
indications were found [125] that such characteristic configurations indeed
exist. These preliminary studies show that the momentary properties of the
fluid-velocity gradient matrixA(x t , t ) are strongly correlated with the occur-
rence of caustics. In two-dimensional turbulence, for instance, it appears
that caustics occur along trajectories when TrA(x t , t )2 > 0, but never in the
opposite case [125].

This finding can be explained with the methods developed for the one-
dimensional persistent limit in Chapter 7. Although the persistent limit
τc�τa,τp is not strictly justified in turbulent flows, numerical results [126]
suggest that τc is typically between 3 and 8 times larger than τa. For small
enough τp, we may therefore, in a reasonable approximation, treat the fluid-
velocity gradient matrix as constant in time,A(x t , t ) =A(x t ). Note however,
that there are no particle traps in incompressible turbulence, so that the
statistics of At is unknown and needs to be measured by following particles
through the flow. Preliminary results on the analysis of the two-dimensional
persistent limit confirm that caustics form only when TrA(x t , t )2 > 0, in
agreement with the numerical results for heavy particles in turbulence [125].
The three-dimensional case seems to be more complicated. My plan is to
generalise these preliminary results to d = 3. Using the persistent limit, I
want to predict a ‘phase diagram’ of the rate of caustic formation as a function
of the invariants of the fluid-velocity gradient matrix A(x t , t ).

Spatial projection of the phase-space density

So far, the analysis of the projection to of the phase-space distribution %̄t ,t0

to configuration space applies to the long-time statistics of local phase-space
neighbourhoods in one spatial dimension. For these neighbourhoods, I de-
rived in Chapter 6 and in Paper C the large-deviation form of the rate function
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of the spatial finite-time Lyapunov exponent (FTLE) σ̂t . We conjectured that
the rate function of the sum of spatial FTLEs Ŝt may have the same form.

Clearly, it would be satisfying to prove this conjecture for the higher-
dimensional case. Apart from that, I explained in Chapter 6, and in Paper C,
that the projection formula for the spatial correlation dimension D̂2 follows
from the linear part in the spatial rate function. For q > 2, it was shown
in Refs. [117, 127] that a generic fold of a constant probability measure dis-
tributed homogeneously over a d -dimensional subspace leads to D̂q < d .
This indicates that the effect of caustic folds on the spatial Renyi dimension
D̂q may, for q > 2, be more drastic than the simple saturation obtained from
the projection formula (6.17). In short, the folds may decrease D̂q below
d . My plan is to analyse D̂q for q > 2 using a combination of the so-called
multifractal formalism [68, 71, 128], a large-deviation formalism for fractals,
and the ‘contraction principle’ [85, 129] for rate functions. This principle
allows one to compute rate functions of lower dimensional systems from the
rate functions defined on higher-dimensional spaces.

Finally, I plan to investigate further the connection between the phase-
space folds of the phase-space density %̄t and catastrophe theory. In optics,
Berry [120] showed that catastrophes of different co-dimension determine
how the statistical moments of the light intensity diverge as the wavelength
tends to zero. These divergences are analogous to the divergence of the
spatial scaled cumulant-generating function Λ̂(k ) discussed in Chapter 6. In
optics the wavelength provides a natural cutoff, so that intensity moments
diverge only when the cutoff is removed. My plan is to study Λ̂(k ) for k ≤−1
in the presence of such a cutoff, which could be given by, for instance, a finite
number of particles. This analysis could give further insights into the effect
of the spatial projection upon the spatial distribution of particles.

On a different yet related note, I plan to study the effect of measurement
noise on the spatial rate function Î (s ). This analysis may, together with the
assumption of a finite number of particles, allow to predict the shape of the
spatial rate function under conditions that are closer to those in laboratory
experiments.
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