

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Statistical Model Update Optimization in

Industrial Practice
Bachelor of Science Thesis in Software Engineering and Management

Maria-Bianca Cindroi

Robinson Iheanacho Mgbah

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

The Author grants to University of Gothenburg and Chalmers University of Technology the non-exclusive right to

publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures

or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company),

acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party

regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party

to let University of Gothenburg and Chalmers University of Technology store the Work electronically and make it

accessible on the Internet.

Statistical Model Update Optimization in Industrial Practice

Maria-Bianca Cindroi

Robinson Iheanacho Mgbah

© MARIA-BIANCA CINDROI, 2018

© ROBINSON IHEANACHO MGBAH, 2018

Supervisor: MOHAMMAD MOUSAVI

Examiner: RICHARD TORKAR

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Acknowledgements

We would like to thank our academic supervisor, Mohammad Mousavi, and our

company supervisors, David Andersson and Michael West, for all the guidance

and availability throughout the project. Additionally, we thank every participant

from the troubleshooting teams from the company the thesis has been done in.

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Statistical Model Update Optimization in Industrial Practice

Maria-Bianca Cindroi

guscincn@student.gu.se

University of Gothenburg, Software Engineering and Management

DIT 565 Software Engineering and Management Bachelor Thesis

Project

Robinson Iheanacho Mgbah

gusmgbih@student.gu.se

University of Gothenburg, Software Engineering and Management

DIT 565 Software Engineering and Management Bachelor Thesis

Project

Abstract—This thesis presents a study done on optimizing machine

learning model updates. The department of Quality and

Functionality in a multinational telecommunication company is

searching for an optimal solution to the problem of when, and how,

to trigger a training cycle of a statistical model on their test

execution dataset.

We have investigated techniques regarding the possibilities of

optimizing a statistical model update. A case-study has been

conducted, using a telecommunication company as a case subject

company.

Summary Here:

Keywords— machine learning model; optimization; changing

models

INTRODUCTION

Considering the attention that machine learning is receiving in

the IT world today, effective techniques and best practices need

to be established in regard to how and when the models that

have been created should be built, discarded or updated in order

for them to be relevant to the industry.

Thus, the department of Quality and Functionality in our case

subject company is searching for an optimal solution to the

problem of when, and how, to trigger a training cycle of a

statistical model on their test execution dataset.

Massive amounts of data are collected from the internal failed

test-cases performed on the radio base station in the continuous

integration flow, continuous deployment sites, and customers’

trouble reports. The case subject company is interested in

finding out the optimal timing of when to refit a model on a

recent dataset for the model in order to minimize

troubleshooting time for the troubleshooting teams. The data is

stored in an artifact storage, with references to it being

summarized in datastore. From the datastore, a sample dataset

is fetched and used for training the model. The training data in

conjunction with the model fitting procedure produce a

serialized model. Given the serialized model, a deserialization

[1] process is performed, and the deserialized model is used to

make predictions on incoming data in the fault-tickets. The data

that will be used for this study is the data received from the

ticketing system, and/or analysis results. For a model to predict

accurately, the data on which the predictions are made must

have a similar distribution as the data on which the model has

been trained. Since data distributions change over time,

deploying a model should be a continuous process. The

department is interested in finding out the optimal timing of

performing a model update in order to avoid redundant training

cycles and adapt the model to shifting new data.

Generally, best practices in updating of machine learning

models mostly involve observation drawn from experiments. A

model update could be triggered on a pre-set time window [16].

1) Case Company

The thesis has been done in a multinational telecommunication

company. Hundreds of development teams in the company are

delivering code daily, which leads to a high probability of

commits that introduce bugs and/or break legacy.

2) Background

In the company’s ways of working, there exists a ticketing

system where faults could be raised on specific categories.

There can be currently three types of faults: product,

environment, and test. The ticketing system facilitates product

development by visualizing relevant data for the given specific

discovered fault over all the product deliveries.

On a weekly basis, around 300000 data points are being piped

from different data-sources to a common data cluster owned by

a third-party company and visualized through the ticketing-

system by posting queries to the cluster. The queries are being

posted through an API that returns relevant data to a given

query.

Fig 1. Example of how the ticketing system works

A product fault represents a fault observed in the hardware or

the software of any of the products the case-study company

delivers to its customers.

For the company to have happy-customers, fault-free products

must be delivered. This is currently being achieved through

extensive pre-delivery testing. A test-fault represents a fault

observed in any of the failed tests on pre-delivery products.

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

An environment fault represents a fault observed in the

development environment of the product, or in the internal-

environment of the product itself.

Currently, troubleshooting takes a long time since a big part of

the tickets that are being manually raised do not have the right

fault tags. This makes tickets end up in wrong organizations,

and software faults take longer time to be resolved due to

redirected tickets around the company. A machine learning

model is currently being implemented to automatically predict

the accuracy of the software faults in the tickets that are being

raised based on the metadata and the data provided in the ticket.

This model will require an update on the new dataset that is

being fed with, but an optimal time to perform the model update

has not been established.

3) Purpose of the study

The purpose of this thesis is to devise a technique to determine

when an update should be triggered for a machine learning

model. When it comes to the above-mention project, the

purpose of this thesis is to devise a method to when an update

should be performed, in order to help in troubleshooting, and

software testing.

Generally, best practices in machine learning model update

procedures are mostly involving observation drawn from

experiments assuming trial-and error methods. A model update

is mostly triggered on a pre-set time window. The goal of our

technique is to improve machine learning model updates.

Experiments must be implemented for results to be drawn in

this regard. This experiment can involve: simulating model

update on historical data and applying the proposed solutions to

it; but also proposing an optimized technique for the company’s

solution which improves the overall statistical accuracy of

model predictions in the given project and the experienced

quality of its predictions when used as input for problem

solving performed by human-troubleshooters.

4) Research questions

For the model to remain relevant to solving the problem, model

updates must be performed periodically. The right moment for

the model update represents the time window when the update

is performed at the most resource-optimal and model data-

relevant moment. Model update requires resources such as

time, data and CPU usage. By performing this update at the

right moment, these resources are used optimally. A model

data-relevant moment is when there is a significant change in

the classification results.

Given a statistical model containing information about

software, and software test failures, when, and how should an

optimal model update be triggered for the model to still be

accurate, and capable of classifying the failures accordingly?

The following sub-questions have been deduced:

RQ1aWhen should the model update be automatically

triggered?

 RQ1.1 Is there a statistical relationship between model

accuracy and the amount of data used during model fitting?

 RQ1.2 Is there a co-occurrence between the model accuracy

and the trend difference between new and old data?

 RQ1.3 Should the optimal model update moment be

 triggered in a predefined time window?

RQ2 How should the update be triggered? Should the model be

locked when the update is performed to avoid breaking it or is

it safe to update the model without locking it to avoid high

resource usage?

RQ3. Does the possibility of having a trade-off between the

method in which the updating is performed (RQ2), and the

time-window when it is performed (RQ1) provide the most

optimal solution for the model update? Should the model update

be custom-made for each scenario to improve resource

efficiency?

In the above-mentioned questions, we assume that the data

model will rapidly quantify since the data sources increase at a

fast pace.

LITERATURE REVIEW

1) Problem Domain Literature

With the assistance of both supervisors, literature from the

problem domain have been identified:

1. Hall Daumé III, A course in machine learning

2. Zi Yuan, Lili Yu, Chao Liu, Linghua Zhang, Predicting

Bugs in Source Code Changes with Incremental Learning

Method

3. Walter Daelemans, Véronique Hoste, Fien De Meulder,

Bart Naudts, Combined Optimization of Feature Selection

and Algorithm Parameters in Machine Learning of

Language

4. Véronique Hoste, Optimization Issues in Machine

Learning of Coreference Resolution

5. R. Polikar, L. Upda, S. S. Upda and V. Honavar, "Learn++:

an incremental learning algorithm for supervised neural

networks”
6. Learning from Time-Changing Data with Adaptive

Windowing(2006), Albert Bifet, Ricard Galvada

7. Concept Drift Detection and Model Selection with

Simulated Recurrence and Ensembles of Statistical

Detectors (2013), Piotr Sobolewski & Michal Wo źniak

8. Learning under Concept Drift: an Overview (2010)

,Indr ̇eˇ Zliobait ̇e

9. The problem of concept drift: definitions and related work

(2004), Alexey Tsymbal

10. Sample-based software defect prediction with active and

semi-supervised learning Ming Li, Hongyu Zhang,

Rongxin Wu, Zhi-Hua Zhou

11. Optimizing Classifier Performance via an Approximation

to the Wilcoxon-Mann-Whitney Statistic, Lian Yan,

Robert Dodier, Michael C. Mozer, Richard Wolniewicz

Within machine learning, one of the prevalent issues has been

handling concept drift.

Overtime, underlying distribution datasets upon which models

are built could change with time. When these changes occur,

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

the models built on the old data become inconsistent with new

data which in turn requires regular update for these models [6].

This problem is known as concept drift.

Since models deal with information, they need to be updated

whenever they are fed with new data which differs significantly

from the data used to train them. When a model is built, it is

immutable but certain parameters and information used in the

building process are stored, these are then applied to the new

data which results in a model retrain [7].

 Some studies have been done in other to understand important

factors that relate to model update. Since model updates require

resources such as time and CPU power. It is important to learn

and understand the factors which play important roles in model

update. For example, how often should model updates be

performed to ensure relevance in the model, should this update

be done manually or automatically and how can this update be

done in the most efficient way keeping the use of resources at

an optimized level [20].

2) Literature on potential solution approaches

The above-mentioned literature on Machine Learning and bug

prediction has been analyzed, and the literature on potential

solution approaches implemented by other parties have been

identified:

1. Hall Daumé III, A course in machine learning, Chapter 7
2. Albert Bifet, Ricard Galvada , Learning from Time-

Changing Data with Adaptive Windowing(2006)

3. Piotr Sobolewski & Michal Wozniak, Concept Drift

Detection and Model Selection with Simulated

Recurrence and Ensembles of Statistical Detectors (2013),

4. ,Indr ̇eˇ Zliobait ̇e, Learning under Concept Drift: an

Overview (2010)

THE CATEGORIZATION PROJECT

The categorization project is a project meant to categorize failed

test-cases under the main three labels: test, product,

environment based on the failed test-cases metadata using a

machine learning method. The method is currently

implemented using multinomial logistic. The data has been

collected from 2017, while the categorizing project has been in

production since February 2018.

The project has been developed in Python3.6, while the

database is implemented Hadoop HDFS, MongdoDB, and

Elasticsearch solutions.

RESEARCH METHODOLOGY

In order to answer the research questions, research

methodology techniques as questionnaires (in workshops) and

experiments have been employed.

1) Workshop Setup

In order to draw observations in regards to what extend the

user trust and uses the prediction algorithm in daily work, an

initial workshop will be organized where users are asked to

answer questions regarding how long the troubleshooting

takes, and what the accuracy of the current predictions at the

time.

In the case in which relevant information about approaches on

how to optimize the model update, modifications will be done

to the in-production model update method according to the

deducted results. The prediction algorithm will be allowed to

run for 1-2 weeks, after which a secondary workshop will be

held in order to conclude if the users have observed any

modifications in the predictions. The workshop setup and the

set of question will be the same as that of the first workshop.

The workshops were designed to follow this pattern: developers

from several troubleshooting teams were asked to answer a

questionnaire. Considering that most of the participants are

stationed in other countries, support has been made available

for remote-participation.

A) Workshop 1

Workshop 1 follows the above-mentioned pattern. In order to

support remote users, the questionnaire was introduced during

the morning scrub meetings on the 27th of April and were asked

to answer before 4th of May. The developers that are part of

troubleshooting teams currently sitting in Gothenburg, were

asked to join a locally organized workshop on the 4th of May.

The set of questions used in the workshop are given below:

1. How long does it take to currently troubleshoot with the

help of the system (in hours)?

2. On a scale of 1 to 5, how much do you trust the predicted

problem type presented in the ticket?

1. I do not trust it at all.

2. I trust it to some extent.

3. I somehow trust it.

4. I trust it to a great extent.

5. I fully trust it.

3. As a ways of working, do you double check the accuracy

of the predicted problem type presented in the ticket?

1. Yes

2. No

3. Other

4. How often have you encountered a wrongly predicted

problem type?

a. 1 in 50

b. 1 in 10

c. 1 in 4

d. 1 in 2

5. Is there anything that you will add in order to make the

system easier to use?

2) Simulation Setup

Using the in-production model validator, simulations have been

performed using different input parameters in a sliding-window

manner. An initial step length was chosen to iterate over the

input batch of training data. The validation data was predicted

using the model’s knowledge at the current state. The result of

this simulation was a number representing the proportion of

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

accurate predictions. The step length and the validation data

were of the same size.

 step length sy validation data

 Training data

 step length sy validation data

Fig 2. Model validating in a sliding window manner

A statistical test was used to validate these hypotheses. A non-

parametric test was chosen for the analysis since no

assumptions could be made about the normality of the data

distribution. Due to concept drift, no assurance that data

remains the same overtime can be expected. Randomness in

data affects the reliability of the conclusion, therefore it is

important to employ statistical tests to rigorously assess

whether these results are indeed reliable [8]. The Mann-

Whitney U test has been chosen in order to validate the results

of the Kruskal-Wallis test performed above. because it is a

preferred choice when comparing more than 2 independent data

samples [9] in order to check if they come from identical

populations.

The case company has started collecting relevant data in

2016(See Appendices 5. Distribution of data points from the

beginning of time), but relevant data points to the categorization

project are being observed from September 2017 (See

appendices 6. Distribution of relevant data points to the

categorization project). The data used in this thesis is mostly

data collected since January 2018(see Appendices 7.

Distribution of data relevant to this thesis) due to the fact that

in January there have been efforts put into standardizing the

collected data among all stakeholders of the data warehouse.

In order to verify the results, a Kruskal-Wallis test has been

used to check if there is any simulation group that comes from

a different population distribution than the others. A two-tailed

Man-Whitney U test was also employed to check if a statistical

relationship against each simulation result combination may be

observed.

The Mann-Whitney U test is a preferred choice when

comparing 2 independent, small [10], ordinal data samples [11].

𝑈1 = 𝑅1 −
𝑛1(𝑛1+1)

2
 , where:

 R = the sum of ranks in the sample

ni = sample size for sample i
Fig 3. Mann-Whitney U test formula

The Kruskal-Wallis [17] test has been chosen due to the fact it

is a generalization of the Mann-Whitney U test which allows

comparison between more than two data samples.

𝐻 = (𝑁 − 1)
∑ 𝑛𝑖(�̅�𝑖·

𝑔
𝑖=1 − �̅�)²

∑ ∑ (𝑟𝑖− �̅�)²
𝑛𝑖
𝑗=1

𝑔
𝑖=1

 , where:

ni = is the number of observations in group i

rij = is the rank (among all observations) of observation j

from group i

𝑁 = total number of observations across all groups

�̅�𝑖· =
∑ 𝑟𝑖𝑗

𝑛𝑖
𝑗=1

𝑛𝑖
 is the average rank of all observations in

group i

�̅�𝑖 =
1

2
(N + 1) is the average of all the rij

Fig 4. Kruskal-Wallis test formula

The tests were analyzed using the standard critical values of the

Mann-Whitney U table [12].

A significance level(α) of 0.05 indicates a 5% risk of

concluding that a difference exists when there is no actual

difference.

In the case in which large sample groups will be

observed(n>20) where Mann-Whitney U two-tailed tests

cannot be applied, and a statistically significant difference

between the medians of the specific data group will be observed

in the Wallis-Kruskal test result, a Z-test will be applied as the

value of U approaches a normal distribution [22].

RESULT ANALYSIS

We assume that the solution improves the overall statistical

accuracy of model predictions and the experienced quality of its

predictions when used as input for problem solving performed

by human troubleshooters.

1) Results Workshops

A) Workshop 1

25 subjects participated in a questionnaire, among which 4

people sat in Gothenburg, and the rest were distributed over

China, Poland, Stockholm, and Croatia.

1. How long does it take to currently troubleshoot with the

help of the system (in hours)?

Out of the 100 subjects that have been invited to the workshop,

25% (25 subjects) have participated. Out of the 25 respondents,

32% of the respondents (8) have been unsure about the number

of hours that currently takes to troubleshoot; the rest have

replied according to the table below:

No of

respondents

Percentage Hours

1 4% 0.5

2 8% 2

2 8% 3

1 4% 3-4

1 4% 0.5-4

2 8% 4

2 8% 5

1 4% 6

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

1 4% 8

2 8% 12

1 4% 16-32

1 4% 40
Fig 5. Troubleshooting hours according to respondents

According to the table above, troubleshooters spend an average

of 7.21 hours on troubleshooting a fault using the ticketing

system.

2. On a scale of 1 to 5, how much do you trust the predicted

problem type presented in the ticket?

Answer Percentage Number of

respondents

I do not trust it at

all.

0% 0

I trust it to some

extent.

16% 4

I somehow trust

it.

40% 10

I trust it to a great

extent.

36% 9

I fully trust it. 8% 2
Fig 6. Users trust in the ticketing system

3. As a ways of working, do you double check the accuracy

of the predicted problem type presented in the ticket?

Answer Percentage Number of

respondents

Yes 80% 20

No 20% 5

Other 0% 0
Fig 7. Troubleshooting teams’ usage percentage of the ticketing system

4. How often have you encountered a wrongly predicted

problem type?

Answer Percentage Number of

respondents

1 in 50 24% 6

1 in 10 44% 11

1 in 4 28% 7

1 in 2 4% 1
Fig 8. Percentage of observed wrongly set problem type

5. Is there anything that you will add in order to make the

system easier to use?

Out of the 25 respondents, 22 respondents replied that there is

no improvement they could add to the system, while 3 have

suggested that more information of the failing test level in the

ticketing system would be useful.

B) Workshop 2

In section 2 of this chapter, the simulation results have been

analyzed and no statistically significant results have been

observed that will enable an optimization technique for the

predicting algorithm discussed in this thesis, thus attempting to

analyze how the user perspective changes after the update

method has been modified is not possible.

Conclusion: Even though the project in discussion is relatively

new, it has succeeded in having international awareness with

the company, but a slight reluctance to its results can still be

observed among the 25 respondents, out of which 76% trust the

system to a smaller or a greater extend.

Useful feedback has been received from the user about the

system, where 3 of the respondents would appreciate a more

extensive information of the failing test level in the tickets.

According to user feedback, the prediction algorithm has a low

failure rate, with 68% of the users replying that wrongly

predicted types are not commonly seen.

2)Simulation Results

The below-mentioned results have been deducted with the help

of the validator of the algorithm model. This validator is meant

to predict the test-data using the training-data set as a basis for

training the model.

For RQ1.1 a csv file containing the dataset has been read from

and used to validate the model, while for RQ1.3 the data is

being fetched from the database using a date-based query. The

date-based query is in the form of a json rest API, where a filter

is being pushed through the API to the database and a result is

received based on it.

RQ1aWhen should the model updating be automatically

triggered?

RQ1.1 Is there a statistical relationship between model

accuracy and the amount of data used during model fitting?

An observed statistical relationship between the different

combinations of parameters used in the simulation is expected,

whereas simulations with higher values as parameters are most

likely to trigger a model update.

An initial training data set of 25686 data points was chosen.

This data represents the same data sample the model has been

trained on when it was first being developed. The model has

been initially trained on a randomly chosen step length of 1000,

with a validation data set of 10000. The reason this number has

been chosen as a valid approach at this step is in order to

simulate how the model has been working in production. This

training data represents data fetched from the beginning of a

training data batch size of different sizes (5000, 10000, 15000)

was also chosen to be validated against a test data size of

different step lengths in a sliding window manner. Different

step lengths (1000, 2000, 3000) have been applied to each of

the data batch sizes simulations, thus resulting into 9

combinations of sample populations. (See Appendices 1 Results

from simulations for RQ1.1 table for results).

In the following analysis, we note D(S) as the distribution of the

sample X of a given population.

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Kruskal-Wallis test:

In the below-mentioned hypotheses, S = {S1, S2, S3, S4, S5,

S6, S7, S8 S9}, where 𝑆ₐ represents a sample found in

Appendices 2 Validation scores per sample group table.

Null Hypothesis: The sample comes from populations with the

same distribution, which makes the mean ranks coming from

the same group, and model updating moments not being

impacted by the tested step length parameters variation in

combination with the size of the training data.

H0: ∄𝑆ₐ, 𝑆ₒ𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐷(𝑆ₐ) ≠ D(𝑆ₒ) where 𝑆ₒ, 𝑆ₐ ∈ 𝑆 and

𝑆ₒ ≠ 𝑆ₐ

Alternative Hypothesis: At least one of the samples comes

from a population with a different distribution than the others,

which makes the model updating moments to be impacted by

the values tested step length parameters variation in

combination with the size of the training data.

H0: ∃ 𝑆ₐ. 𝜙(𝑆ₐ), 𝑆ₒ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐷(𝑆ₐ) D(𝑆ₒ) where 𝑆ₒ, 𝑆ₐ ∈ 𝑆

and 𝑆ₒ ≠ 𝑆ₐ

Wallis-Kruskal test results

H statistic 13.180578758965984

P-value 0.10578565764728853
Fig 13. Wallis-Kruskal test results

Since the p-value > α, there is not enough evidence to reject the

null hypothesis that the differences between the medians are not

statistically significant.

Combinations of simulation samples were tested against each

other with a Mann-Whitney U test. The following hypothesis

were considered for all tests;

Mann-Whitney U test:

In the below-mentioned hypotheses, T = {T1, T2, T3, T4, T5,

T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18,

T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T30, T31,

T32, T33, T34, T35, T36}, where 𝑇ₐ represents a sample found

in Appendices 3 Mann-Whitney U results table.

Null Hypothesis: There is no statistical relationship observed

in comparing the two data samples, which makes model

updating moments are redundantly performed on sliding

windows of a length less than 3000.

H0: ∄𝑇ₒ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ D(𝑇ₒ) ≥ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑈(𝑇ₒ), ∀ 𝑇ₒ ∈ 𝑇

Alternative hypothesis: Model updates should be performed

on small samples (1000, 2000 respectively 3000) since a

randomly selected value from S1 does not have an equal

distribution with a randomly selected value from S2.

Ha: ∃ 𝑇ₒ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ D(𝑇ₒ) < 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑈(𝑇ₒ), ∀ 𝑇ₒ ∈ 𝑇

Statistical tests have been run on the following combinations of

data samples.

C2
9 =

9!

2! (9 − 2)!
= 36 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

The results retrieved from the Mann-Whitney U results table in

Appendices 2 have been compared against the critical values of

the Mann-Whitney U two-tailed testing table [21].

Conclusion: Since none of the values retrieved from the

simulations have a U statistic result smaller than the critical U

for the specific samples, we conclude that none of the results

have statistically significant evidence at α =0.05 to show that

any two populations of data points are not equal. This implies

that retrains could be done with step lengths higher than 3000

as this does not affect the model update.

RQ1.2 Is there a co-occurrence between the model updating

moments and the trend difference between new and old data?

Since no statistical relationship has been observed at RQ1.1

between the model updating moments and the amount of new

data, a co-occurrence between the trend difference between new

and old data could not be observed either.

RQ1.3 Should the optimal model update moment be

triggered in a predefined time window?

An observed statistical relationship between the different

combinations of data-based updates, whereas simulations with

higher values as parameters are most likely to trigger a model

update.

Since the model has been in production for approximately 5

months (1st January – 1st July 2018), we have considered that

the data collected for the past 5 months (5540534 data points)

is being relevant to the prediction model. A training data batch

size of different sizes (2-month, 3-months, 4-months) has been

chosen to be validated against a test data size of different step

lengths in a sliding window manner. Different step lengths (1-

day, 1-week, 1-month) have been applied to each of the data

batch sizes simulations, thus resulting into 9 combinations of

sample populations. (See Appendices 4 Validation scores per

sample group for date-wise run simulations for results).

In the following analysis, we note D(S) as the distribution of the

sample X of a given population.

Kruskal-Wallis test:

In the below-mentioned hypotheses, S = {S1, S2, S3, S4, S5,

S6, S7, S8 S9}, where 𝑆ₐ represents a sample found in

Appendices 4 Validation scores per sample group for date-wise

run simulations table.

Null Hypothesis: The samples come from populations with the

same distribution, which makes the mean ranks coming from

the same group, and model updating moments not being

impacted by the tested step length parameters variation in

combination with the size of the training data.

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

H0: ∄𝑆ₐ, 𝑆ₒ𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐷(𝑆ₐ) ≠ D(𝑆ₒ) where 𝑆ₒ, 𝑆ₐ ∈ 𝑆 and

𝑆ₒ ≠ 𝑆ₐ

Alternative Hypothesis: At least one of the samples comes

from a population with a different distribution than the others,

which makes the model updating moments to be impacted by

the values tested step length parameters variation in

combination with the size of the training data.

H0: ∃ 𝑆ₐ. 𝜙(𝑆ₐ), 𝑆ₒ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐷(𝑆ₐ) D(𝑆ₒ) where 𝑆ₒ, 𝑆ₐ ∈ 𝑆

and 𝑆ₒ ≠ 𝑆ₐ

Wallis-Kruskal test results

H statistic 2

P-value 0.3679
Fig 14. Wallis-Kruskal test results

Since the p-value > α, there is not enough evidence to reject the

null hypothesis that the differences between the medians are not

statistically significant.

Combinations of simulation samples were tested against each

other with a Mann-Whitney U test. The following hypothesis

were considered for all tests:

Mann-Whitney U test:

In the below-mentioned hypotheses, T = {T1, T2, T3, T4, T5,

T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18,

T20, T21, T22, T23, T24, T25,}, where 𝑇ₐ represents a sample

found in Appendices 5 Mann-Whitney U results for date-wise

run simulations table.

Null Hypothesis: There is no statistical difference observed in

comparing the two data samples, which makes model updating

moments are redundantly performed on sliding windows

formed on date-based queries.

H0: !∃𝑇ₒ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ D(𝑇ₒ) ≥ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑈(𝑇ₒ), ∀ 𝑇ₒ ∈ 𝑇

Alternative hypothesis: Model updates should be performed

on dynamically build date-based queries since a randomly

selected value from a sample does not have an equal

distribution with a randomly selected value from another

sample.

Ha: ∃ 𝑇ₒ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ D(𝑇ₒ) < 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑈(𝑇ₒ), ∀ 𝑇ₒ ∈ 𝑇
25 test combinations based on 8 simulation data results have

been tested against each other using Mann-Whitney U test-

The results retrieved from the Mann-Whitney U results table in

Appendices 2 have been compared against the critical values of

the Mann-Whitney U two-tailed testing table [21].

Conclusion: Since none of the values retrieved from the

simulations have a U statistic result smaller than the critical U

for the specific samples and the result of the Kruskal-Wallis test

is not showing any significant difference between the medians

of the data groups, we conclude that none of the results have

statistically significant evidence at α =0.05 to show that any two

populations of data points are not equal. After a quick-glance

over the results, most of the refitting accuracy hit a score of less

than random. This implies that a new prediction algorithm

update is independent on the amount of time that has passed

from the former update and cannot be optimized based on date-

based queried. This could be due to the significant difference

between the data points distribution (see Appendices 6 and 7)

or due to the fact that over a period of time a specific fault could

not be seen in the training data, thus the prediction algorithm

unable to classify it accordingly in the test-data.

RQ2 How should the update be triggered? Should the model be

locked when the update is performed to avoid breaking it or is

it safe to update the model without locking it to avoid high

resource usage?

The potential case in which performing a model swap could

corrupt the model itself is when parallel programming is

employed in development since an expensive calculation runs

on less resources.

Two common approaches in parallel programming are either to

run code via threads (multithreading module [14].) or multiple

processes (multiprocessing module [13]), respectively.

Comparative to the processes approach, which do not threaten

with breaking the model due to the fact that each process runs

completely independent from the others; threads could

potentially cause conflicts in case of improper synchronization

due to the fact that each thread has access to the same memory

area.

The project used as a case study in this paper has been, as stated

above, developed in Python3.6. Multiple threads do not run

concurrently in Python due to the global interpreter lock (GIL

[15]).

According to the Python Software Foundation [15], GIL is a

mutex that protects access to Python objects, preventing

multiple threads from executing Python bytecodes at once. The

lock is necessary due to the fact that the multithreading library

is development using CPython which does not have a thread-

safe memory management.

Conclusion: Considering the points raised above, we conclude

that the model will always be locked when the update is

performed due to the global interpreter lock.

RQ3 Does the possibility of having a trade-off between the

method in which the updating is performed (RQ2), and the

time-window when it is performed (RQ1) be the most optimal

solution for the model update? Should the model update be

custom-made for each scenario to improve resource efficiency?

Using the data from RQ1 and RQ2, in RQ3, we will combine

the results from the previous research questions and attempt to

find a trade-off between the two.

As no statistical relationship has been observed regarding

model updates done either date-wise or data-amount wise, and

the fact that the specific model is always locked when the

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

update is triggered due to the programming language it has been

implemented in, no trade-off scenario applies to this case.

DISCUSSION AND OBSERVATIONS

While conducting the simulations, several important notes have

been observed and communicated to the developing team.

1. The database queries used in the validator fail to return the

same amount of data for the same query at different point in

time. This might be due to other stakeholders updating relevant

entries in the datastore at the same time, and thus locking the

data entries. The observed marge of difference has been

fluctuating up to 10000 entries over the course of a week when

queries are done real time.

2. The database query API returns different number of columns

per record when queried date-wise which could affect the

results of RQ1.2 significantly due to inadequacies in data

points. This issue does not appear when it comes to the results

analyzed in RQ1.1 since the data used in RQ1.1 has been

cleaned and columns amount made even before validations

have been run.

3. Several software bugs have been observed in the validator

when it comes to querying the database date-wise, out of which

several have been patched and solved. Worth mentioning is the

case in which the validator was found finishing execution when

no data points could be observed over a timespan of several

days, and the case in which the validator could not find all the

fault-types in the test-data, thus failing to conclude the

attempted update.

These observations have the capability of nullifying the results

analyzed at RQ1.2.

4. In order to be able to isolate the problem to data-source only

bug, we suggest that more extensive testing be done in order to

avoid bugs like the above-mentioned one in the validator before

the project goes from development to production.

5. On the other hand, the categorizer project has high popularity

within the company with a high user-trust in its results.

CONCLUSION

Considering the results and observations discussed above, we

can conclude that the current method of updating the prediction

algorithm is the safest and most optimal, and no other more

optimal approach can be applied with the current development

tools of the team.

REFERENCES

[1] Marshall Cline. "C++ FAQ: "What's this "serialization" thing all about?"".

Archived from the original on 2015-04-05.

[2] A course in machine learning, Hal Daume III, 2017

[3] Multi-label classification, Grigorios Tsoumakas & Ioannis Katakis

[4] Selection of relevant features and examples in machine A.L. Blum, P
Langley/Artificial Intelligence 97 (1997) 245-271

[5] A Survey on Feature Selection Jianyu Miaoa,c, Lingfeng Niub,c,∗

[6] The problem of concept drift: definitions and related work , Alexey
Tsymbal April 29, 2004

[7] https://blog.bigml.com/2018/02/06/retraining-machine-learning-
models/

[8] A Hitchhiker’s Guide to Statistical Tests for Assessing Randomized
Algorithms in Software Engineering, Andrea Arcuri and Lionel Briand

[9] The Kruskal-Wallis Test and Stochastic Homogeneity , Andras Vargha &
Harold D. Delaney

[10] W. LaMorte, W. (2017). Mann Whitney U Test (Wilcoxon Rank Sum Test).
[online] Sphweb.bumc.bu.edu. Available at:
http://sphweb.bumc.bu.edu/otlt/mph-
modules/bs/bs704_nonparametric/BS704_Nonparametric4.html
[Accessed 13 May 2018].

[11] Fay, Michael P.; Proschan, Michael A. (2010). "Wilcoxon–Mann–
Whitney or t-test? On assumptions for hypothesis tests and multiple
interpretations of decision rules". Statistics Surveys. 4: 1–39.
doi:10.1214/09-SS051. MR 2595125. PMC 2857732 Freely accessible.
PMID 20414472.

[12] Ocw.umb.edu. (n.d.). Critical Values of the Mann-Whitney U test Table.
[online] Available at: http://ocw.umb.edu/psychology/psych-270/other-
materials/RelativeResourceManager.pdf [Accessed 13 May 2018].

[13] Docs.python.org. (2018). 17.2. multiprocessing — Process-based
parallelism — Python 3.6.5 documentation. [online] Available at:
https://docs.python.org/3/library/multiprocessing.html [Accessed 16 May
2018].

[14] Docs.python.org. (2018). 17.1. threading — Thread-based parallelism —
Python 3.6.5 documentation. [online] Available at:
https://docs.python.org/3/library/threading.html [Accessed 16 May
2018].

[15] Wiki.python.org. (2018). GlobalInterpreterLock - Python Wiki. [online]
Available at: https://wiki.python.org/moin/GlobalInterpreterLock
[Accessed 16 May 2018].

[16] Learning from Time-Changing Data with Adaptive Windowing(2006),
Albert Bifet, Ricard Galvada

[17] Daniel, Wayne W. (1990). "Kruskal–Wallis one-way analysis of variance
by ranks". Applied Nonparametric Statistics (2nd ed.). Boston: PWS-
Kent. pp. 226–234. ISBN 0-534-91976-6.

[18] A Sliding Window Solution for the On-line Implementation of the
Levenberg-Marquardt Algorithm ,Fernando Morgado Dias, Ana Antunes,
José Vieira, Alexandre Mota

[19] No Free Lunch For Early Stopping, Zehra Cataltepe, Yaser S. Abu-
Mostafa, Malik Magdon-Ismail

[20] The Seven Steps to Model Management,
https://www.knime.com/blog/the-seven-steps-to-model-management

[21] Real-statistics.com. (2018). Mann-Whitney Table | Real Statistics Using
Excel. [online] Available at: http://www.real-statistics.com/statistics-
tables/mann-whitney-table/ [Accessed 22 May 2018].

[22] Sprinthall, R. C. (2011). Basic Statistical Analysis (9th ed.). Pearson
Education. ISBN 978-0-205-05217-2.

https://blog.bigml.com/2018/02/06/retraining-machine-learning-models/
https://blog.bigml.com/2018/02/06/retraining-machine-learning-models/
https://www.knime.com/blog/the-seven-steps-to-model-management

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

APPENDICES:

1. Results from Simulations RQ1.1

Training Data

Batch Size/

Step Length

1000 2000 3000

5000 Step number: 0, Validation score: 0.957

Step number: 1, Validation score: 0.945

Step number: 2, Validation score: 0.856

Step number: 3, Validation score: 0.363

Step number: 4, Validation score: 0.618

Step number: 5, Validation score: 0.408

Step number: 6, Validation score: 0.808

Step number: 7, Validation score: 0.773

Step number: 8, Validation score: 0.585

Step number: 9, Validation score: 0.258

Step number: 10, Validation score: 0.065

Step number: 11, Validation score: 0.348

Step number: 12, Validation score: 0.974

Step number: 13, Validation score: 0.965

Step number: 14, Validation score: 0.789

Step number: 15, Validation score: 0.896

Step number: 16, Validation score: 0.772

Step number: 17, Validation score: 0.687

Step number: 18, Validation score: 0.678

Step number: 19, Validation score: 0.47

Step number: 0, Validation score: 0.957

Step number: 1, Validation score: 0.856

Step number: 2, Validation score: 0.618

Step number: 3, Validation score: 0.808

Step number: 4, Validation score: 0.585

Step number: 5, Validation score: 0.065

Step number: 6, Validation score: 0.974

Step number: 7, Validation score: 0.789

Step number: 8, Validation score: 0.772

Step number: 9, Validation score: 0.678

Step number: 0, Validation score: 0.957

Step number: 1, Validation score: 0.363

Step number: 2, Validation score: 0.808

Step number: 3, Validation score: 0.258

Step number: 4, Validation score: 0.974

Step number: 5, Validation score: 0.896

10000 Step number: 0, Validation score: 0.902

Step number: 1, Validation score: 0.884

Step number: 2, Validation score: 0.788

Step number: 3, Validation score: 0.737

Step number: 4, Validation score: 0.258

Step number: 5, Validation score: 0.065

Step number: 6, Validation score: 0.301

Step number: 7, Validation score: 0.418

Step number: 0, Validation score: 0.902

Step number: 1, Validation score: 0.788

Step number: 2, Validation score: 0.258

Step number: 3, Validation score: 0.301

Step number: 4, Validation score: 0.919

Step number: 5, Validation score: 0.811

Step number: 6, Validation score: 0.732

Step number: 0, Validation score: 0.902

Step number: 1, Validation score: 0.737

Step number: 2, Validation score: 0.301

Step number: 3, Validation score: 0.644

Step number: 4, Validation score: 0.732

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Step number: 8, Validation score: 0.919

Step number: 9, Validation score: 0.644

Step number: 10, Validation score: 0.811

Step number: 11, Validation score: 0.719

Step number: 12, Validation score: 0.732

Step number: 13, Validation score: 0.681

Step number: 14, Validation score: 0.586

15000 Step number: 0, Validation score: 0.36

Step number: 1, Validation score: 0.367

Step number: 2, Validation score: 0.403

Step number: 3, Validation score: 0.874

Step number: 4, Validation score: 0.639

Step number: 5, Validation score: 0.735

Step number: 6, Validation score: 0.604

Step number: 7, Validation score: 0.774

Step number: 8, Validation score: 0.802

Step number: 9, Validation score: 0.623

Step number: 0, Validation score: 0.36

Step number: 1, Validation score: 0.403

Step number: 2, Validation score: 0.639

Step number: 3, Validation score: 0.604

Step number: 4, Validation score: 0.802

Step number: 0, Validation score: 0.36

Step number: 1, Validation score: 0.874

Step number: 2, Validation score: 0.604

2. Validation scores per sample group

Group Validation Score for Model Refit/Simulations

(5000, 1000) [0.957, 0.945, 0.856, 0.363, 0.618, 0.408, 0.808, 0.773, 0.585,0.258, 0.065,

0.348, 0.974, 0.965, 0.789, 0.896, 0.772, 0.687, 0.678, 0.47]

(5000, 2000) [0.957, 0.7955, 0.5195, 0.7905, 0.4215, 0.0895, 0.9675, 0.767, 0.7295,

0.6315]

(5000, 3000) [0.957, 0.4573333333333333,

0.722,0.14566666666666667,0.9103333333333333,0.8166666666666667]

(10000, 1000) [0.902, 0.884, 0.788, 0.737, 0.258, 0.065, 0.301, 0.418, 0.919,

0.644, 0.811, 0.719, 0.732, 0.681, 0.586]

(10000, 2000) [0.893, 0.762, 0.1615, 0.292, 0.799, 0.706, 0.742]

(10000, 3000) [0.8676666666666667,0.369,

0.42833333333333334,0.6376666666666667,0.6973333333333334]

(15000, 1000) [0.36, 0.367, 0.403, 0.874, 0.639,0.735, 0.604, 0.774, 0.802, 0.623]

(15000, 2000) [0.337, 0.6275, 0.677, 0.6505, 0.7015]

(15000, 3000) [0.32033333333333336, 0.7513333333333333,0.66]

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

3. Mann-Whitney U results

Test Samples used for the test Step

lengths of

sample

data

Critical U

from

table

U-

Statistics

from test

P-Value

T1 sample_step_length1000_batch_size5000

against

sample_step_length2000_batch_size5000

20

and

10

55 97.5 0.4649391098256198

T2 sample_step_length1000_batch_size5000

against

sample_step_length1000_batch_size10000

20

and

15

90 136.0 0.3263324935480303

T3 sample_step_length1000_batch_size5000

against

sample_step_length2000_batch_size10000

20

and

7

34 61.0 0.3190736222938987

T4 sample_step_length1000_batch_size5000

against

sample_step_length3000_batch_size10000

20

and

5

20 42.0 0.305192256937339

T5 sample_step_length1000_batch_size5000

against

sample_step_length3000_batch_size5000

20

and

6

27 56.5 0.4275538222841562

T6 sample_step_length3000_batch_size5000

against

sample_step_length2000_batch_size5000

6

and

10

11 28.5 0.45678166516889307

T7 sample_step_length1000_batch_size5000

against

sample_step_length1000_batch_size15000

20

and

10

55 84.0 0.24764822023820338

T8 sample_step_length1000_batch_size5000

against

sample_step_length3000_batch_size15000

20

and

5

20 36 0.17953348933015717

T9 sample_step_length1000_batch_size5000

against

sample_step_length2000_batch_size15000

20

and

3

8 20 0.19290871783341984

T10 sample_step_length2000_batch_size5000

against

sample_step_length1000_batch_size15000

10

and

10

23 40 0.23633779675579358

T11 sample_step_length2000_batch_size5000

against

sample_step_length2000_batch_size15000

10

and

5

8 16.0

0.14893008377490308

T12 sample_step_length2000_batch_size5000

against

sample_step_length3000_batch_size15000

10

and

3

3 10 0.2234364103554154

T13 sample_step_length3000_batch_size5000

against

sample_step_length3000_batch_size15000

6

and

3

1 6.0 0.2593025082143628

T14 sample_step_length3000_batch_size5000

against

sample_step_length1000_batch_size15000

6

and

10

11 22 0.20796881311651105

T15 sample_step_length3000_batch_size5000

against

sample_step_length1000_batch_size10000

6

and

15

19 30 0.25407402747406904

T16 sample_step_length3000_batch_size5000

against

sample_step_length2000_batch_size15000

6

and

5

3 9.0 0.15765122604087278

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

T17 sample_step_length3000_batch_size5000

against

sample_step_length3000_batch_size10000

6

and

5

3 10 0.20565689588812947

T18 sample_step_length3000_batch_size5000

against

sample_step_length2000_batch_size10000

6

and

7

6 17 0.3085375387259869

T19 sample_step_length1000_batch_size10000

against

sample_step_length2000_batch_size10000

15

and

7

24 51 0.47190153623465564

T20 sample_step_length1000_batch_size10000

against

sample_step_length3000_batch_size10000

15

and

5

14 31 0.3002356300616926

T21 sample_step_length2000_batch_size10000

against

sample_step_length3000_batch_size10000

7

and

5

5 14 0.3130587399583693

T22 sample_step_length1000_batch_size15000

against

sample_step_length2000_batch_size15000

10

and

5

8 23 0.42711980288404666

T23 sample_step_length1000_batch_size15000

against

sample_step_length3000_batch_size15000

10

and

3

3 13 0.39992305283123664

T24 sample_step_length2000_batch_size15000

against

sample_step_length3000_batch_size15000

5

and

3

0 7.0 0.5

T25 sample_step_length2000_batch_size5000

against

sample_step_length1000_batch_size10000

10

and

15

39 66 0.31864358516179914

T26 sample_step_length2000_batch_size5000

against

sample_step_length2000_batch_size10000

10

and

7

14 32 0.4036250839660036

T27 Sample_step_length2000_batch_size5000

against

sample_step_length3000_batch_size10000

10

and

5

8 19 0.2502797489090697

T28 sample_step_length1000_batch_size10000

against

sample_step_length1000_batch_size15000

15

and

10

39 66.0 0.31864358516179914

T29 sample_step_length1000_batch_size10000

against

sample_step_length2000_batch_size15000

15

and

5

14

27.0 0.19136654444261297

T30 sample_step_length1000_batch_size10000

against

sample_step_length3000_batch_size15000

15

and

3

5 19 0.3611414813580961

T31 sample_step_length2000_batch_size10000

against

sample_step_length1000_batch_size15000

7

and

10

14 32 0.4036250839660036

T32 sample_step_length2000_batch_size10000

against

sample_step_length2000_batch_size15000

7

and

5

5 10 0.1278115537732063

T33 sample_step_length2000_batch_size10000

against

sample_step_length3000_batch_size15000

7

and

3

1 8 0.324251689826488

T34 sample_step_length3000_batch_size10000

against

sample_step_length1000_batch_size15000

5

and

10

8 25 0.4755851346484678

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

T35 sample_step_length3000_batch_size10000

against

sample_step_length2000_batch_size15000

5

and

5

2 12 0.5

T36 sample_step_length3000_batch_size10000

against

sample_step_length3000_batch_size15000

5

and

3

0 7 0.5

4. Validation scores per sample group for date-wise run simulations1

Days of training data /

Days of validation data

1-day 1-week 1-month

4 months

[0,358779, 0.498567,

0.212121, 0.517544,

0.469484, 0.596429,

0.343023, 0.555249,

0.127726, 0.583732,

0.198068, 0.215094,

0.285333, 0.185764,

0.250464, 0.370813,

0.293976, 0.514874,

0.290466, 0.234783,

0.317778]

[0.524068, 0.392324, 0.41385] [0.51959]

3 months

[0.236601, 0.174971,

0.220708, 0.181575, 0.15736,

0.164311, 0.528302,

0.439614, 0.24898, 0.259398,

0.581206, 0.556769, N/A,

N/A, 0.3664, 0.262048,

0.23756, 0.60733, 0.587332,

0.342541, 0.5427, 0.391221,

0.274964, 0.478146,

0.474277, 0.269841,

0.271768, 0.368421,

0.450581, 0.2125, 0.291878,

0.402299, 0.400612,

0.176471, 0.199029,

0.346715, 0.338192, 0.11202,

0.0644172, 0.752336,

0.145631, 0.168627,

0.459384, 0.326241,

0.506494, 0.309002,

0.340686, 0.231121,

0.150224, 0.518931,

0.579812]

[0.488116, 0.33376, 0.258386,

0.339385, 0.51087, 0.138421,

0.248014]

[0.278428]

2 months

2Results could not be

retrieved

[0.498594 ¸ 0.370629, N/A,

0.855362, 0.475115, 0.525646,

0.45068, 0.662122, 0.430505,

0.680892¸ 0.519067, 0.5055,

0.494492, 0.608241, 0.57017,

0.680685, 0.426067]

[0.348034, 0.303679, 0.478957,

0.260702]

1 This table has a slight difference in output than the previous one due to space

2 Results could not be retrieved for the given training data period due to the fact that not all the product faults (product,

environment, test) could be found in the training data. Having this parameter is a mandatory condition for the training algorithm

to be able to produce results.

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

5. Mann-Whitney U results

Test Samples used for the test Step

lengths of

sample

data

Critical

U from

table

U-

Statistics

from test

P-Value

T1 sample_step_length1 day batch_size3months against

sample_step_lenght7 days_batch_size3months

49

and

7

- 178 0.8844

T2 sample_step_length1 day_batch_size3months against

sample_step_length1month_batch_size3months

49

and

1

- 27 0.92

T3 sample_step_length7days_batch_size3months

against

sample_step_length1month_batch_size3months

7

and

1

- 4 1

T4 step1day_batch120 and step30days_batch120

21

and

1

- 20 0.1818

T5 step1day_batch120 and step7days_batch120

21

and

 3

- 17 0.2342

T6 step7days_batch120 and step30days_batch120

3

and

1

- 3 0.5

T7 step7days_batch60 and step30days_batch60

10

and

 3

31 30 0.006993

T8 step1day_batch90 and step1day_batch120

49

 And

 21

- 482 0.684

T9 step7days_batch90 and step7days_batch120

7

And

 3

11 4 0.1833

T10 step7days_batch90 and step30days_batch120

7

and

1

- 6 0.5

T11 step7days_batch90 and step7days_batch60

7

and

10

14 10 0.01357

T12 step7days_batch90 and step30days_batch60

7

and

3

16 14 0.5167

T13 step1day_batch90 and step7days_batch120

49

And

 3

- 40 0.2065

T14 step1day_batch90 and step30days_batch120

49

and

1

- 40 0.4

T15 step1day_batch90 and step7days_batch60

49

 and

10

- 73 0.0002302

T16 step1day_batch90 and step30days_batch60

49

and

3

- 87 0.6285

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

T17 step30days_batch90 and step1day_batch120

1

 And

 21

- 7 0.7273

T18 step30days_batch90 and step7days_batch120

1

And

 3

- 0 0.5

T19 step30days_batch90 and step30days_batch120

1

And

 1

- 1 1

T20 step1day_batch120 and step7days_batch60

21

and

10

- 34 0.001881

T21 step1day_batch120 and step30days_batch60

21 and 3 - 38 0.6196

T22 step7days_batch120 and step7days_batch60

3 and 10 13 6 0.1608

T23 step7days_batch120 and step30days_batch60

3 and 3 - 9 0.1

T24 step30days_batch120 and step7days_batch60

1 and 10 - 0 0.1818

T25 step30days_batch120 and step30days_batch60

1 and 3 - 0 0.5

6. Distribution of relevant data points

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

7. Distribution of the data relevant to this thesis

